18.781 ANALYTIC NUMBER THEORY QUIZ

Friday, Nov. 30, 2007

Name:
Numeric Student ID:
Instructor's Name:
I agree to abide by the terms of the honor code:
Signature:

Instructions: Print your name, student ID number and instructor's name in the space provided. During the test you may not use notes, books or calculators. Read each question carefully and **show all your work**; full credit cannot be obtained without sufficient justification for your answer unless explicitly stated otherwise. Underline your final answer to each question. There are 4 questions. You have 50 minutes to do all the problems.

Question	Score	Maximum
1		6
2		6
3		6
4(BONUS)		3
Total		18

1. Give an explicit definition of the characters $\chi_q:(\mathbb{Z}/q\mathbb{Z})^{\times}\longrightarrow\mathbb{C}^{\times}$, where q is prime. That is, provide a careful definition of such a function χ_q and then prove that your definition satisfies the necessary property of a character.

Solution:

Everything on this quiz can be found someplace in the notes posted online, so I will be relatively brief on these solutions.

The character χ_q to the modulus q is defined by

$$\chi_q(n) = \zeta_{q-1}^{\nu(n)}$$

where ζ_{q-1} is a (q-1)st root of unity, and $\nu(n)$ is defined by the equation

$$g^{\nu(n)} \equiv n \ (q), \quad g$$
: a primitive root mod q .

Since g is a primitive root, it's powers g^k give a complete reduced residue system mod q, and hence we may find such an exponent $\nu(n)$ satisfying the above congruence for any n with $q \nmid n$. Moreover, any other exponent $\nu'(n)$ satisfying this property differs from $\nu(n)$ by a multiple of q-1 (the order of g). This shows that χ_q does not depend on the choice $\nu(n)$ or $\nu'(n)$, since $\zeta_{q-1}^{\nu(n)} = \zeta_{q-1}^{\nu'(n)}$. (That's actually quite important, as our definition would not make sense without this fact.)

To check that χ_q is a character, we must verify the multiplicative property $\chi_q(mn) = \chi_q(m)\chi_q(n)$. This follows easily from the above definitions together with the fact that

$$\nu(mn) \equiv \nu(m) + \nu(n) \ (q-1)$$

2. Provide a definition for the Dirichlet series $L(s, \chi)$, for χ a character mod q, and then prove the following equality (for any non-zero residue $a \mod q$):

$$\frac{1}{q-1} \sum_{\chi \bmod q} \bar{\chi}(a) \log(L(s,\chi)) = \sum_{p: \text{ prime } \sum_{p^m \equiv a}^{\infty} \frac{1}{m} p^{-ms}$$

Solution:

This identity really comes straight from the notes, and is the key identity to setting up Dirichlet's theorem on primes. There are three main ingredient to proving it.

•

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{n \neq a} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}$$

which is just like the Euler product for the Riemann zeta function. It still holds in this case because χ is a multiplicative function.

• Apply log to the above identity, and use the fact that, as a power series,

$$-\log(1-x) = \sum_{m=1}^{\infty} \frac{x^m}{m}$$

• Finally, use the following all-important fact about characters:

$$\sum_{\chi} \chi(n) = \begin{cases} q - 1 & n \equiv 1 \ (q) \\ 0 & \text{otherwise.} \end{cases}$$

which is an easy consequence of our definition in the previous problem in terms of roots of unity, remembering that there are q-1 characters mod q which result from the distinct choices of roots of unity. From this, it follows that

$$\sum_{\chi} \bar{\chi}(a)\chi(n) = \begin{cases} q - 1 & n \equiv a \ (q) \\ 0 & \text{otherwise.} \end{cases}$$

which gives the above equality.

3. Prove that the following statement is equivalent to Dirichlet's theorem on primes in an arithmetic progression (FOR THE GENERAL MODULUS):

STATEMENT: Given any two positive integers h, k with gcd(h, k) = 1, there exists at least one prime in the set $\{kn + h\}$, where n ranges over all positive integers.

Solution:

One direction of the equivalence is immediate. If there are infinitely many primes in any arithmetic progression (Dirichlet's theorem) then taking the modulus to be k and the residue class to be h, certainly there exists one such prime $p \equiv h(k)$, for gcd(h, k) = 1.

For the reverse direction, assume the statement, and suppose Dirichlet's theorem was false – i.e., there exist some h, k such that there are only finitely many primes $p \equiv h(k)$. Then there is a largest one p_{max} . Then consider the arithmetic progression of integers $\equiv h(kp_{\text{max}})$. Since h and kp_{max} are relatively prime, then by the statement, there exists a prime $P \equiv h(kp_{\text{max}})$ which implies $P \equiv h(k)$ and $P > p_{\text{max}}$, a contradiction.

4. (BONUS)

(a) Prove that $L(1,\chi_q) \neq 0$ if χ_q is a complex character (i.e. $\chi_q(n)$ not real for some n).

Solution:

This is straight from the notes. It relies on a proof by contradiction.

(b) Let χ_q be the non-trivial real character mod q. Choose a prime q and give an explicit evaluation of $L(1,\chi_q)$, thus exhibiting in this special case that the value is non-zero.

Solution:

Use the explicit formula for $L(1, \chi_q)$ given for primes $q \equiv 3$ (4) to compute an example. (It's just a finite sum so for choice of small q, it is easy to compute explicitly. The example q = 23 is done in the notes.