
3. Exercises in Fluid Mechanics

3.1 Problems

3.1.1 Hydrostatics

1.1 The density of a fluid ρf is to be deter-
mined with a U-tube. One stem is filled
with water.

water

liquid

h

L

g

h = 0.3 m L = 0.2 m ρw = 103 kg
m3

1.2 In three communicating vessels pistons
are exposed to the forces F1, F2 and F3.

F1 = 1100 N F2 = 600 N F3 = 1000 N
A1 = 0.04 m2 A2 = 0.02 m2

A3 = 0.03 m2 ρ = 103 kg
m3 g = 10

m
s2

Determine the differences in height ∆h1

and ∆h2!
1.3 A cube floats in two laminated fluids,

one on top of the other.

ρ1 = 850
kg
m3 ρ2 = 1000

kg
m3

ρC = 900
kg
m3 a = 0.1m

Determine the height h!

1.4 A cylindrical vessel floats in another
cylindrical vessel, filled with water. Af-
ter adding a mass m the water surface
is raised by ∆H.

Given: ρ, A, m
Determine the difference in height ∆H!

1.5 A boat with vertical side walls and a
weight W0 has a draught in sea water
h0 and displaces the volume τ0. Before
entering the mouth of a river the weight
of the cargo is reduced by ∆W , in order
to avoid the boat running aground. The
draught is then h1 and the volume is τ1.
The density of the sea water is ρS, and
that of the water in the river ρR.

ρS = 1.025 · 103 kg
m3 ρR = 103 kg

m3

W0 = 1.1 · 109 N ∆W = 108 N
h0 = 11 m h1 = 10.5 m g = 10

m
s2
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Determine
(a) the volume τ0,
(b) the area of the deck A,
(c) the difference τ2−τ1 of the displaced

volumes in fresh water and sea wa-
ter,

(d) the draught h2 in fresh water!

1.6 A diving bell with the weight W is low-
ered into the sea.

D = 3 m H = 3 m T = 22 m
ρa = 1.25

kg
m3 ρW = 103 kg

m3

pa = 105 N
m2 W = 8 ·104 N g = 10

m
s2

(a) How high does the water in the bell
rise if the temperature remains con-
stant?

(b) How large is the force (magnitude
and direction) with which the bell
must be held?

(c) At what depth of immersion is the
force zero?

1.7 A container filled with water is fastened
to a plate. It has a small opening in the
top.

R = 1 m ρ = 103 kg
m3 g = 10

m
s2

Determine the force in the screws un-
der the assumption that the weight of
the container can be neglected!

1.8 A conical plug with density ρs closes the
outlet of a water basin. The base area
of the cone levels with the surface of the
fluid.

R = 10−2 m H = 10−2 m g = 10
m
s2

ρs = 2 · 103 kg
m3 ρ = 103 kg

m3

How large must the force be to lift the
plug?

1.9 A rectangular sluice gate with the width
B separates two sluice chambers.

B = 10 m h1 = 5 m h2 = 2 m

ρ = 103 kg
m3 g = 10

m
s2

Determine
(a) the force acting on the sluice gate,
(b) the point of application of force!

1.10 A pivoted wall of a water container with
width B is supported with a rod.

h = 3 m B = 1 m α = 30◦

ρ = 103 kg
m3 g = 10

m
s2

Determine the force in the rod!
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1.11 The triangular opening of a weir is
closed with a plate.

B = 1 m ρ = 103 kg
m3 g = 10

m
s2

Determine
(a) the closing force,
(b) the point of application of force!

1.12 A fluid with a free surface rotates in
an open circular cylindrical vessel with
constant angular velocity, large enough,
so that the fluid just reaches the edge of
the vessel. When the fluid is at rest, it
fills the vessel up to the height h0.

D = 0.5 m h0 = 0.7 m H = 1 m

ρ = 103 kg
m3 pa = 105 N

m2 g = 10
m
s2

Determine
(a) the height h and the angular veloc-

ity ω,
(b) the pressure distribution at the wall

and on the bottom!
Hint:

∂p

∂r
= ρ ω2 r

∂p

∂z
= −ρ g

dp =
∂p

∂r
dr +

∂p

∂z
dz

1.13 Determine the pressure as a function of
the height z
(a) for an isothermal atmosphere,
(b) for a linear temperature variation

T = T0 − α z,
(c) for an isentropic atmosphere,
(d) for a height of 3000 m, 6000 m und

11000 m!
z = 0 :
R = 287

Nm
kg K

T0 = 287 K γ = 1.4

p0 = 10
N
m2 α = 6.5 ·103 K

m
g = 10

m
s2

1.14 A metereological balloon of mass m and
initial volume τ0 rises in an isothermal
atmosphere. The envelope is slack until
the maximum volume τ1 is attained.

p0 = 105 N
m2 p0 = 1.27

kg
m3

m = 2.5 kg

τ0 = 2.8m3 τ1 = 10m3 R = 287
Nm
kg K

g = 10
m
s2

(a) How large is the force the balloon
must be held with before take off?

(b) At what altitude does the balloon
attain the volume τ1?

(c) How high does the balloon rise?

1.15 A balloon with an inelastic envelope has
an opening at the bottom for equaliza-
tion of the pressure with the surround-
ing air. The weight of the balloon with-
out the gas filling is W . Before take off
the balloon is held with the force Fs.
W = 1000 N Fs = 1720 N

R = 287
Nm
kg K

T = 273 K g = 10
m
s2

Determine the height of rise of the bal-
loon in an isothermal atmosphere!

3.1.2 Hydrodynamics

If not mentioned otherwise, the flow is as-
sumed to be loss-free in this chapter.

2.1 Given the velocity field
u = u0 cosω t v = v sinω t
with u0

w
= v0

w
= 1 m.

Determine
(a) the streamlines for ω t = 0, π

2 , π
4 ,

(b) the path lines,
(c) the path line of a particle, which at

time t = 0 is in the point x = 0,
y = 1 m!
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2.2 Under an iceberg a steady downward
flow is initiated by the cooling of the
water by the ice. Determine the flow
velocity v in the depth h under the
assumption, that the cold water (den-
sity ρc) does not mix with the warm
water (density ρw).

h = 50 m
ρc − ρw

ρc

= 0.01 g = 10
m
s2

2.3 Hot exhaust air of temperature Ti flows
through an open smokestack with a
large suction scoop into the atmo-
sphere. The external temperature is Ta.

Ti = 450 K Ta = 300 K
H = 100m g = 10

m
s2

Determine the discharge velocity, tak-
ing into account the influence of com-
pressibility!
Hint: Use the Bernoulli equation in dif-
ferential form:

1
ρ
dp + v dv + g dz = 0

2.4 Determine the free-stream velocity v∞
of a Prandtl static pressure tube, taking
into account the influence of the viscos-
ity for

(a) µ = 10−3 Ns
m2 ,

(b) µ = 10−2 Ns
m2 ,

(c) µ = 10−1 Ns
m2 .

D = 6 · 10−3 m ∆p = 125
N
m2

p = 103 kg
m3

2.5 ≤ Re ≤ 250 : β = 1 + 6
Re

250 ≤ Re : β = 1

2.5 In order to determine the velocity in a
pipe flow the pressure difference ∆p is
measured. The pressure difference de-
viates from the dynamic pressure of
the undisturbed flow, if there is a large
blockage in the pipe.

Plot v∞/
√

2 ∆p
ρ

as a function of d
D

!

2.6 Water flows out of a large reservoir un-
der the influence of gravity into the
open air.

h = 0.1 m H = 1.5 m D = 0.1 m
What is the diameter d of the water
stream at the position H below the
opening?

2.7 Water flows out of a large pressure tank
into the open air. The pressure differ-
ence ∆p is measured between the cross
sections A1 and A2.
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A = 0.3m2 A2 = 0.1m2 A3 = 0.2m2

h = 1 m ρ = 103 kg
m3 pa = 105 N

m2

g = 10
m
s2 ∆p = 0.64 · 105 N

m2

The outflow pipe was provided with a
variable cross-section distribution in or-
der to enable the measurement for the
pressure. The pressure difference ∆p is
measured in the cross sections indicated
in the sketch.
Determine
(a) the velocities v1, v2, v3,
(b) the pressures p1, p2, p3, and the pres-

sure p above the water surface!

2.8 Water flows out of a large vessel
through an opening of width B and
height 2a into the open air.

For
a

h
→ 0 the volume flow per unit

time is Q̇0 = 2 a B
√

2 g h. Determine

the relative error
Q̇0 − Q̇

Q̇
for

a

h
=

1
4
,

1
2
,

3
4
!

2.9 Two large reservoirs, one located above
the other, are connected with a vertical
pipe, with a nozzle attached to its end.

A = 1 m2 Ad = 0.1 m2 h = 5 m

H = 80 m pa = 105 N
m2 ρ = 103 kg

m3

g = 10
m
s2

(a) How large is the volume flow per
unit time?

(b) Sketch the curve of the static pres-
sure in the pipe!

(c) At what size of the cross section
of the exit will vapor bubbles be
formed, if the vapor pressure is

pv = 0.025 · 105 N
m2 ?

2.10 Air flows out of a large pressure tank
through a well-rounded nozzle and a
diffuser into the open air.

ρ = 1.25
kg
m3 ∆p = 10

N
m2

Determine the velocity in the throat of
the nozzle as a function of the ratio of
the cross sections A

AD

(a) for loss-free flow,
(b) for an efficiency of the diffuser of

ηD =
pa − pD

ρ
2 (v2

D − v2
a)

= 0.84 !

(c) What is the maximum velocity that
can be attained for this efficiency of
the diffuser?

2.11 Water flows through a nozzle mounted
in a pipe (cross-sectional ratio mD, dis-
charge coefficient αD) and an orifice
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(mD, αB). The mercury gauges show
differences in height of hD and hB.

mD = 0.5 αD = 1.08 mB = 0.6
hD = 1 m hB = 1.44 m D = 0.1 m

ρW = 103 kg
m3 ρHg = 13.6 · 103 kg

m3

g = 10
m
s2

Determine
1. the volume flow per unit time,
2. the discharge coefficient of the ori-

fice!

2.12 A sluice gate is suddenly opened.

As = 3000 m2 h(t = 0) = h0 = 5 m
g = 10

m
s2

How large must the cross section of the
opening A be so that the water level
of the bordering lake is attained within
10 minutes, if quasi-steady flow is as-
sumed?

2.13 Two equally large reservoirs, one of
which is filled with water, are separated
from each other by a wall.

B = 20 m h(t = 0) = h0 = 5 m
f = 0.05 m g = 10

m
s2

Determine the time necessary for equal-
izing the water levels, if the dividing
wall is lifted by the amount f � h0!
Neglegt the contraction of the flow!

2.14 Water flows out of a large reservoir into
a lower reservoir, the discharge open-
ing of which is suddenly reduced to one
third.

A = 0.03 m2 AB = 1 m2

h = 5 m g = 10
m
s2

Determine the time, in which the water
level rises to the quadruple value of its
initial height h!

2.15 A pipe filled with gasoline is held verti-
cally in water and closed at the upper
end with a top. A small, well-rounded
outlet in the top is opened.

D = 0.1 m d = 0.01 mm L = 0.8 m
ρB = 800

kg
m3 ρw = 103 kg

m3 g = 10
m
s2

Since the gasoline is lighter than wa-
ter, it will begin to flow upward through
the small hole. The surface of the water
surrounding the pipe is very large com-
pared to the cross-sectional area of the
pipe.
How long will it take, until the pipe is
completely emptied from gasoline?
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2.16 A fluid flows through a pipe with a well-
rounded intake. Its velocity is v0(t).

Show that the integral of the local accel-
eration can be approximated as follows:

∫ L

−∞
∂v

∂t
ds =

(
D√
2

+ L

)
dv0

dt

Hint: Assume that for s < − D√
8

the fluid
flows radially towards the intake with
the velocity v = Q̇

2 π s2, and that for
s ≥ D√

8
the velocity is equal to v0! For

s = − D√
8
, v = v0.

2.17 Liquid flows out of a large container
through a hose, lying horizontally on
the ground, in steady motion into the
open air. The end of the hose is sud-
denly lifted up to the height of the liq-
uid level.

L = 10 m h = 5 m D = 0.16 m
g = 10

m
s2

Determine
1. the velocity v0 immediately after

lifting up the hose,
2. the time, in which the velocity de-

creases to v0
2 ,

3. the fluid volume that flowed through
the hose during this time!

2.18 The discharge pipe of a large water con-
tainer is led to a lake. The throttle
valve at the end of the pipe is suddenly
opened.

L = 20 m � D h = 5 m L1 = 5 m

p = 103 kg
m3 g = 10

m
s2

1. After what time are 99% of the final
velocity attained?

2. How much does the pressure at the
position 1 differ from its final value?

2.19 A piston is moving sinusoidally in a pipe
s = s0 sinω t.

pa = 105 N
m2 L = 10m � D h = 2m

s0 = 0.1m ρ = 103 kg
m3 pv = 2500

N
m2

g = 10
m
s2

At what angular velocity ω is the pres-
sure at the piston head equal to the va-
por pressure pv?

2.20 In a hydraulic ram the valve I and the
valve II are alternatively opened and
closed. A part of the water is pumped
from the height h1 to the height h2. The
other part flows through the valve I.

h1 = h2 = 5 m L = 10 m � D
A = 0.1 m2 � AB T1 = 1 s
g = 10

m
s2
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(a) First the valve I is opened for the
time T . Determine the volume QI

of the water discharged!
(b) After closing the valve I, the valve

II is opened until the velocity in the
pipe is decreased to zero. How large
is the discharge volume QII?

2.21 The flap at the end of a discharge pipe
of a large container is suddenly opened.

pa = 105 N
m2 L1 = L2 = 5 m � a

D1 = 0.1 m D2 = 0.05 m h = 2 m

ρ = 103 kg
m3 g = 10

m
s2

Determine
(a) the time T , in which the velocity at-

tains 99% of its final value,
(b) the volume of the fluid discharged,
(c) the pressures pA and pB immedi-

ately after opening the flap and at
time T !

(d) Sketch the pressure at the positions
A and B as a function of time!

2.22 The pressurized pipe system of a stor-
age power station is closed with a valve.
During the closure (shut-down time Ts)
the discharge volume decreases linearly
from Q̇0 to zero.

h = 200 m L = 300 m A = 0.2 m2

Q̇ = 3
m3

s
ρ = 103 kg

m3 g = 10
m
s2

∆psave = (p1 − pa)save = 2 · 107 N
m2

Determine
(a) the excess pressure in front of the

open valve for steady flow,
(b) the pressure variation p1(t) during

closure of the valve (Sketch the re-
sult!),

(c) the closure time of the valve so that
the excess prssure does not exceed
the safe value ∆psafe!

3.1.3 Momentum and Moment
of Momentum Theorem

In this chapter the friction forces are ne-
glected in comparison to the volume, pres-
sure, and inertia forces, but not the pressure
losses, resulting from flow separation.

3.1 Water flows out of a bifurcated pipe into
the open air. The pressure in the inflow
stem is higher by the amount ∆p than
in the surrounding air.

A1 = 0.2 m2 A2 = 0.03 m2

A3 = 0.07 m2 α2 = 30◦ α3 = 20◦

∆p = 104 N
m2 ρ = 103 kg

m3

Determine
(a) the velocities v1, v2, v3,
(b) the force F in the cross section 1,
(c) the angle α3, for which Fsy vanishes!

3.2 Water flows out of a large container
through a pipe under the influence of
gravity in steady motion into the open
air. Downstream from the nozzle the
water jet is deflected by 180◦. The flow
is assumed to be two-dimensional.

A = 0.2 m2 AD = 0.1 m2 h = 5 m

ρ = 103 kg
m3 g = 10

m
s

Determine the forces retaining the pipe
and the guide vane
(a) for the sketched configuration,



3.1 Problems 77

(b) for the case that the inlet of the pipe
and the nozzle are removed!

3.3 Water flows out of a two-dimensional
nozzle in steady motion with the veloc-
ity v0 against a guide vane, moving with
the velocity vr.

A = 0.1 m2 v0 = 60
m
s

2 β = 45◦

ρ = 103 kg
m3

(a) At what velocity vr does the perfor-
mance of the vane attain its maxi-
mum value?

(b) How large is then the force acting
on the vane?

3.4 Two two-dimensional cascades (in-
finitely many blades) with width B and
spacing t deflect a flow by the angle α.

cascade I                                   cascade II

Given: ρ, v1, α, B, t
Determine
(a) the velocity v2,
(b) the pressure difference p1 − p2,
(c) the pressure loss p01 − p02,
(d) the force exerted by the flow on a

blade!

3.5 A rocket moves with constant velocity.
The air flowing past the rocket is dis-
placed in the radial direction. The ve-
locity in the jet is vA, around it v1.

Given: v1, vA, ρ1, ρA, AR

Determine
(a) the mass of air displaced,
(b) the thrust and the net performance!

3.6 The constant free-stream velocity of a
propeller is v1. A certain distance down-
stream from the propeller the velocity
in the slipstream is v2, outside of it v1.

A′ = 7.06 m v1 = 5
m
s

v2 = 8
m
s

ρ = 103 kg
m3

Determine
(a) the velocity v′ in the cross-sectional

plane of the propeller,
(b) the efficiency!

3.7 A ducted propeller is positioned in a
free stream with constant velocity. The
inlet lip is well rounded.

A = 1 m2 v1 = 10
m
s

p1′ = 105 N
m2

ρ = 103 kg
m3 p1 = 1.345 · 105 N

m2

(a) Sketch the variation of the static
pressure along the axis!
Determine

(b) the mass flow,
(c) the thrust,
(d) the power transferred by the pro-

peller to the flow!

3.8 Two blowers, drawing air from the sur-
roundings, differ in the shape of their
inlets.
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Given: ρ, A, ∆p
Determine
(a) the discharge volume,
(b) the power of the blowers,
(c) the retaining force!

3.9 A pipe with an inserted nozzle is po-
sitioned in a free stream with constant
velocity.

A1 = 0.2m2 A2 = 0.1m2 v∞ = 40
m
s

ρ = 1.25
kg
m3

Determine
(a) the velocity in the cross sections A1

and A2,
(b) the retaining force!

3.10 A jet apparatus, which is driven with
a blower, sucks the volume rate of flow
Q̇2 through a ring-shaped inlet.

A1 = 0.1 m2 A3 = 0.2 m2

pa = 105 N
m2

Q̇2 = 4
m3

s
ρ = 1.25

kg
m3

Determine
(a) the velocity v2 and the pressure p2′ ,
(b) the velocities v1 and v3′ ,
(c) the power of the blower,
(d) the retaining force of the blower cas-

ing (traction or compressive force?)!

3.11 Water flows out of a large frictionless
supported container through a pipe,
with a discontinuous increase of the
cross section, into the open air.

h = 5 m A = 0.1 m2 pa = 105 N
m2

ρ = 103 kg
m3 g = 10

m
s2

(a) For what cross-sectional area A2

does the volume rate of flow attain
its maximum value?
With A2 determined under a) com-
pute

(b) the pressure p1,
(c) the cutting forces Fs1, Fs2, Fs3

(Traction or compressive forces?)!

3.12 A pump is feeding water from a lake
into a large pressurized container. The
volume rate of flow is measured with
a standard nozzle (discharge coeffi-
cient α).

H = 5 m h = 3 m d = 0.07 m

pK = 2 · 105 N
m2 ∆pw = 3160

N
m2

pa = 105 N
m2 ρ = 103 kg

m3 g = 10
m
s2

D = 0.1 m α = 1.08
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Determine
(a) the velocity in the pipe,
(b) the static pressure upstream and

downstream from the pump,
(c) the net performance of the pump!

3.13 Water flows out of a large container
through a pipe with a Borda mouth-
piece into a lake.

h = 1 m g = 10
m
s2

Determine
(a) the contraction,
(b) the out-flow velocity v1

3.14 The volume rate of flow of a ventila-
tion blower is measured with an orifice
(discharge coefficient α, contration co-
efficient Ψ).

pa = 105 N
m2 ∆pw = 300

N
m2

ρ = 1.25
kg
m3

α = 0.7 Ψ = 0.66 A = 10−2 m2

m =
AB

A
= 0.5

(a) Sketch the variation of the static
and total pressure along the axis of
the pipe!
Determine

(b) the volume rate of flow,
(c) the pressure upstream of the blower,
(d) the performance of the blower!

3.15 A hydraulic jump occurs in an open
channel.

h1 = 0.1 m h2 = 0.2 m g = 10
m
s2

Determine
(a) the velocities v1 and v2,
(b) the Froude numbers Fr1 and Fr2,
(c) the energy loss H1 −H2!

3.16 The volume of water flowing out of a
storage pond is controlled with a wicket.

h = 7.5 m g = 10
m
s2

Determine
(a) the out-flow velocity v1 as a function

of the height of level h1 (why is v1

constant in the cross section?),
(b) the height of level, for which the vol-

ume rate of flow attains a maximum,
(c) the height of level, for which the hy-

draulic jump does not occur,
(d) the depth of water and the veloc-

ity downstream from the jump for
h1 = 2.5 m!

3.17 The depth of water h1 of an open chan-
nel with constant volume rate of flow is
controlled by changing the height Zw of
a weir. For Zw = 0 the depth of water
is h0.
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Q̇ = 80
m3

s
B = 20 m h0 = 2 m

ρ = 3
kg
m3

(a) Sketch the variation of the depths
of water for Zw < Zcrit. and Zw >
Zcrit.!
Determine for Zw = 1m

(b) the limiting height Zcrit. of the dam,
(c) the depths of water h1 and h2,
(d) the difference of the energy heights

between upper and lower water,
(e) the force acting on the weir!

Hint: If a hydraulic jump occurs, it will
be at the downstream face of the weir;
the depth of the lower water is h0.

3.18 Assume that in a rotating flow pressure
and velocity depend only on the radius.

(a) Choose the segment of a circular
ring as control surface and, by us-
ing the momentum theorem, derive
the relation

dp

dr
= ρ

v2

r
!

(b) For what velocity distribution v(r)
does the Bernoulli constant have the
same value for all streamlines?

3.19 A lawn sprinkler is fed from a large
reservoir. The water jets are inclined to
the circumferential direction by the an-
gle α. The friction torque of the bearing
is Mr.

H = 10 m h = 1 m R = 0.15 m
A = 0.5 · 104 m2 A1 = 1.5 · 104 m2

|Mr| = 3.6 Nm pa = 105 N
m2

ρ = 103 kg
m3 g = 10

m
s2 α = 30◦

Determine
(a) the number of revolutions,
(b) the rate of volume flow,
(c) the pressure p1,
(d) the maximum angular velocity, if

the friction torque is assumed to be
zero!

3.1.4 Laminar Flow of Viscous Fluids

4.1 Determine the following quantities for
a fully developed laminar pipe flow of a
Newtonian fluid
(a) the velocity distribution

u(r)
umax

= f(
r

R
) , (3.1)

(b) the ratio

um

umax

, (3.2)

(c) the dependence of the pipe friction
coefficient on the Reynolds number!

4.2 A Bingham fluid is driven by grav-
ity between two parallel, infinitely wide
plates.
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Given: b, ρ, µ, τ0, g, dp
dz

= 0

Assume that the flow is fully developed
and determine
(a) the distance a,
(b) the velocity distribution!

4.3 An oil film of constant thickness and
width flows down on an inclined plate.

δ = 3 · 103 m B = 1 m α = 30◦

µ = 30 · 10−3 Ns
m2 ρ = 800

kg
m3

g = 10
m
s2

Determine the volume rate of flow!

4.4 An oil film is driven by gravity.

Given: δ, a, ρ, µ, g.

Determine the velocity distribution in
the oil film
(a) on a plane vertical wall,
(a) on a wall of a vertically standing cir-

cular cylinder!

4.5 A Newtonian fluid flows in the gap be-
tween two horizontal plates. The upper
plate is moving with the velocity uw, the
lower is at rest. The pressure is linearly
decreasing in the x-direction.

Given: H, uw, ρ, µ, dp
dx

Assume fully developed laminar flow
and determine
(a) the velocity distribution,
(b) the ratio of the shear stresses for

y = 0 and y = H,
(c) the volume rate of flow for a width

of the plates B,
(d) the maximum velocity for uw = 0,
(e) the momentum flux for uw = 0,
(f) the wall-shear stress in dimension-

less form for uw

(g) sketch the velocity and shear stress
distribution for uw > 0, uw = 0, and
uw < 0 !

4.6 A Newtonian fluid flows between two
coaxial cylinders.

Given: R, a, µ, dp
dx

Assume fully developed laminar flow
and determine
(a) the velocity distribution (sketch the

result!),
(b) the ratio of the shear stresses for

r = a and r = R,
(c) the mean velocity!

4.7 A Couette viscosimeter consists out of
two concentric cylinders of length L.
The gap between them is filled with a
Newtonian fluid. The outer cylinder ro-
tates with the angular velocity ω, the
inner is at rest. At the inner cylinder
the torque Mz is measured.
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Ra = 0.11 m Ri = 0.1 m L = 0.1 m

ω = 10
1
s

Mz = 7.246 10−3 Nm

Determine
(a) the velocity distribution,
(b) the dynamic shear viscosity of the

fluid!
Hint: The differential equations for the
velocity and shear-stress distributions
are:

d

dr

[
1
r

d

dr
(rv)

]
= 0 ,

τ = −µ r d

dr

(
v

r

)

4.8 A gas of thermal conductivity λ and
specific heats cp and cv flows in the gap
between two horizontal plates. The up-
per plate is moving with velocity uw at
temperature Tw, the lower is at rest and
is thermally isolated.

Given: uw, H, Tw,
dp
dx

= 0,
ρ, µ, λ, cp, cv

Assume fully developed laminar flow
and determine for vanishing convective
heat flux and constant material proper-
ties
(a) the velocity and temperature distri-

bution,
(b) the heat flux per unit area through

the upper plate!
(c) Show that the stagnation enthalpy

has the same value everywhere for
Pr = 1!

(d) Determine the time-dependent tem-
perature variation, if both plates are
thermally isolated, and if at the time
t = 0 the temperature in the flow
field is T0!

4.9 A Newtonian fluid with thermal con-
ductivity λ flows through a pipe. The
wall temperature is kept constant by
cooling the wall.

Given: R, Tw, λ, µ, dp
dx

(a) Assume fully developed laminar
flow and derive the differential equa-
tions for the velocity and tempera-
ture distribution for a ring-shaped
volume element for vanishing con-
vective heat flux and constant mate-
rial properties! State the boundary
conditions!

(b) Determine the temperature distri-
bution

T − Tw

Tmax − Tw

4.10 Under a gun slide a plane wall is moving
with the velocity u∞.

h(x) = h1 e
− x

5 L L = 5 · 10−2 m

h1 = 10−4 m u∞ = 1
m
s

µ = 10−1 Ns
m2

ρ = 800
kg
m3

Determine
(a) the similarity parameter of the prob-

lem,
(b) the volume rate of flow per unit

width,
(c) the pressure distribution in the gap,
(d) the pressure force per unit width

bearing the gun slide,
(e) the performance loss per unit width

t due to bearing friction!

4.11 From the momentum equation in inte-
gral form

dI

dt
=

∫
τ

∂

∂t
(ρ v) dτ +

∫
A
ρ v (v n)dA

=
∑

F
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derive the differential form of the mo-
mentum equation in the x-direction for
an infinitesimally small volume element

ρ

(
∂u

∂t
+u

∂u

∂x
+v

∂u

∂y

)
=−

(
∂σxx

∂x
+
∂τxy

∂y

)

4.12 The x-component of the friction force
acting on a volume element is given by

Ffx =
∂

∂x

[
µ

(
2
∂u

∂x
− 2

3
∇ · v

)]
+

+
∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

+
∂

∂z

[
µ

(
∂w

∂x
+
∂u

∂x

)
.

]

Reduce this equation for an incompress-
ible fluid with constant viscosity!

3.1.5 Pipe Flows

5.1 The viscosity of an oil is to be measured
with a capillary viscosimeter.
This is done by measuring the time T ,
in which a small part of the oil (volume
τ) flows through the capillary. Assume
that the flow is loss-free upstream of the
position 1!

τ = 10 cm3 ρ = 900
kg
m3 L = 0.1 m

h = 0.05 m D = 1 mm T = 254 s

g = 10
m
s2

5.2 Water flows out of a large container
through a hydraulically smooth pipe,
with a nozzle fixed to its end. The pres-
sure upstream of the nozzle is p1. The

friction losses in the intake of the pipe
and in the nozzle can be neglected. As-
sume that the flow in the pipe is fully
developed!

L = 100 m D = 10−2 m

d = 0.5 · 10−2 m pa = 105 N
m2

p1 = 1.075 · 105 N
m2 ρ = 103 kg

m3

µ1 = 10−3 Ns
m2

Determine
(a) the velocity in the pipe and at the

exit of the nozzle,
(b) the pressure in the container,
(c) the velocity at the exit of the nozzle

for L = 0 and the same pressure in
the container!

5.3 Two containers are connected with each
other by 25 pipes with diameter D1 and
25 pipes with diameter D2. A pressure
difference of ∆p is measured between
the containers. The pressure-loss coef-
ficient of the intake is ζ.

D1 = 0.025 m D2 = 0.064 m

L = 10 m ρ = 103 kg
m3 λ = 0.025

∆p = 105 N
m2 ζ = 1

Determine the volume rate of flow!

5.4 A fluid flows through a hydraulically
smooth pipe. The pressure drops by the
amount ∆p over the length L.

L = 100m D = 0.1m ∆p = 5·104 N
m2
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Oil : µ = 10−1 Ns
m2 ρ = 800

kg
m3

Water : µ = 10−3 Ns
m2 ρ = 103 kg

m3

Determine the velocities of the flow!
Hint: Use the Prandtl resistance law for
super-critical Reynolds numbers!

5.5 Compressed air is pumped through a
hydraulically smooth pipe. The pres-
sure p1, the density ρ1 and the veloc-
ity ūm1 are assumed to be known in the
intake cross section.
D = 10−2 m p1 = 8 · 105 N

m2

ūm1 = 10
m
s

ρ1 = 10
kg
m3 µ = 1.875 · 10−5 Ns

m2

(a) Derive the following relation with
the aid of the momentum theorem:

dp

dx
+ ρ1 ūm1

dūm

dx
+

λ

D

ρ

2
ū2

m = 0

(b) Determine the length, over which
the pressure drops by one half of
its initial value for compressible flow
with constant temperature and for
incompressible flow!

5.6 The velocity distribution in the intake
region of a laminar pipe flow is de-
scribed by the following approximation:

u

um

=
f
(

y
δ

)
1 − 2

3
δ
R

+ 1
6

(
δ
R

)2

f
(

y
δ

)
=

⎧⎨
⎩ 2y

δ
−
(

y
δ

)2
0 ≤ y ≤ δ(x)

1 δ(x) ≤ y ≤ R

Given: um, R, ρ, µ

Determine the following quantities for
the intake cross section, the end of the
intake region, and for δ

R
= 0.5

(a) the momentum flux,
(b) the wall shear stress!

5.7 Water flows through a hydraulically
smooth pipe with an discontinuous
widening of the cross section into the
open air.

D = 0.02 m D2 = 0.04 m L = 0.2 m

ūm1 = 0.5
m
s

ρ = 103 kg
m3

µ = 10−3 Ns
m2

(a) At what length L2 does the pressure
difference p1 − pa vanish?

(b) How large is the corresponding pres-
sure loss?

Hint: Assume, that the wall shear stress
in the widened part of the pipe can be
determined with the equations for fully
developed pipe flow!

5.8 The feed pipes of a fountain consist out
of four straight pipes of total length L,
two bends (loss coeficient ζK) and a
valve (ζV ).

h = 10 m D = 0.05 m L = 4 m
ζK = 0.25 ζV = 4.5 λ = 0.025
Determine the volume rate of flow and
the height H for dissipative and nondis-
sipative flow with
(a) d = D

2 ,
(b) d = D!
Hint: Assume that the flow in the in-
take and in the nozzle is loss-free and
fully developed in the straight pipes!
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5.9 Water flows through a hydraulically
smooth pipe.

D = 0.1 m Re = 105 ρ = 103 kg
m3

µ = 10−3 Ns
m2

Determine
(a) the wall shear stress,
(b) the ratio of the velocities ūm

ūmax
,

(c) the velocity for y u∗
ν

= 5 and for
y u∗

ν
= 50,

(d) the mixing length for y u∗
ν

= 100!

5.10 The velocity distribution of a turbulent
pipe flow is approximately described by
the ansatz

ūm

ūmax

=
(
y

R

) 1
7

.

Determine
(a) the ratio of the velocities ūm

ūmax
,

(b) the ratio of the momentum fluxes
İ

ρ ū2
m πR2 !

5.11 A pump is feeding water through a
rough pipe (equivalent sand roughness
ks) from the level h1 to the level h2.

Q̇ = 0.63
m3

s
h1 = 10 m h2 = 20 m

L = 20 km D = 1 m ks = 2 mm

ρ = 103 kg
m3 ν = 10−6 m2

s

pa = 105 N
m2 g = 10

m
s2

(a) Sketch the variation of the static
pressure along the axis of the pipe!
Determine

(b) the pressure at the intake of the
pump,

(c) the pressure at the exit of the pump,
(d) the net performance of the pump!

5.12 In a fully developed pipe flow with vol-
ume rate of flow Q̇ a pressure drop ∆p
is measured over the distance L.

Q̇ = 0.393
m3

s
L = 100 m D = 0.5 m

∆p = 12820
N
m2 ρ = 900

kg
m3

µ = 5 · 10−3 Ns
m2

Determine
(a) the pipe friction coefficient,
(b) the equivalent sand roughness of the

pipe,
(c) the wall shear stress and the retain-

ing force!
(d) How large would the pressure drop

be in a hydraulically smooth pipe?

5.13 Air is to be conveyed through a rough
pipe with a well rounded intake with
the aid of a blower.

L = 200 m ks = 1 mm

Determine the ratio of the blower per-
formance for the diameters D = 0.1 m
and D = 0.2 m for the same volume rate
of flow and very large Reynolds num-
bers!

5.14 Water is fed through a system of 100
pipes into a channel with quadratic
cross section.
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Q̇ = 0.01
m3

s
L = 0.5 m a = 0.1 m

D = 0.01m ρ = 103 kg
m3 µ = 10−3 Ns

m2

For what length does the pressure loss
of the channel become equal to that of
the pipe system?

5.15 An open channel with quadratic cross
section is inclined by the angle α.

Q̇ = 3 · 10−4 m3

s
a = 0.05 m

ρ = 10
kg
m3

µ = 10−3 Ns
m2 g = 10

m
s2

Determine the angle of inclination and
the pressure loss per unit length!

3.1.6 Similar Flows

6.1 Derive the dimensionless similarity pa-
rameters with the momentum equation
for the x-direction

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
=

−∂p

∂x
+ µ

(
∂2u

∂x2 +
∂2u

∂y2

)
!

6.2 In hydraulically smooth pipes of dif-
ferent lengths and diameters the pres-
sure loss is measured for different ve-
locities, densities, and viscosities. The
flow is fully developed, incompressible,
and steady.
How can the results of the measure-
ments be presented in a single curve?

6.3 A fluid flows slowly and steadily
through a hydraulically smooth pipe.
The flow is laminar and fully developed.
(a) Derive the Hagen-Poisseuille law

with the aid of the dimensional anal-
ysis from the ansatz

Q̇ =
(
∆p

L

)α

µβ Dγ !

(b) Show that the pipe friction coeffi-
cient is inversely proportional to the
Reynolds number!

6.4 What is the drag of two spheres of dif-
ferent diameter but the same Reynolds
number, if one moves in air and the
other in water, and if the drag coeffi-
cient depends on the Reynolds number
only?

ρa

ρw

= 0.125 · 10−2 µa

µw

= 1.875 · 10−2

6.5 In an incompressible flow about a circu-
lar cylinder the frequency, with which
vortices are shed, depends on the free-
stream velocity, density, and viscosity.
Determine the similarity parameters
with the aid of the dimensional anal-
ysis!

6.6 The pipes in heat exchangers can oscil-
late due to excitation by the cross-flow
they are exposed to. It is known, that
in a flow about a circular cylinder, with
its axis normal to the direction of the
flow, the Strouhal number is constant
for 200 ≤ Re ≤ 105.

D = 0.1 m v = 1
m
s

v′ = 3
m
s

ν = 10−6 m2

s
ν ′ = 1.5 · 10−5 m2

s
Determine
(a) the minimum diameter of the model

cylinder,
(b) the excitation frequency f , if for the

smallest model f ′ = 600
1
s
!

6.7 The power needed to overcome the
aerodynamic drag of an automobile
with quadratic cross-sectional area A
is to be determined in a wind-tunnel
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experiment. The cross-sectional area of
the model cannot exceed Am in order
to avoid blockage effects in the wind-
tunnel.

A = 4 m2 Am = 0.6 m2 v = 30
m
s

(a) What speed has to be chosen for the
measurement in the wind tunnel?

(b) Determine the power needed, if with
a larger model the drag F ′ = 810 N
is measured!

6.8 Water flows through a model of a valve
(volume rate of flow Q̇′). Between intake
and exit the pressure difference ∆p′ is
measured. The valve is supposed to be
used in an air pipe.

A = 0.18 m2 A′ = 0.02 m2

ρ = 1.25
kg
m3 ρ′ = 103 kg

m3

µ = 1.875 · 10−5 Ns
m2 µ′ = 103 Ns

m2

Q̇′ = 0.2
m3

s
∆p′ = 1.58 · 105 N

m2

(a) For what volume rate of flow are
the flows through the model and the
full-scale configuration similar?

(b) What is the pressure difference be-
tween intake and exit?

6.9 An axial blower (diameter D, number
of revolutions n) is to be designed for
air. In a model experiment with water
(reduction scale 1:4) the increase of the
total pressure ∆p′

0 is measured.

Q̇ = 30
m3

s
D = 1m n = 12.5

1
s

ρ = 1.25
kg
m3 µ = 1.875 · 10−5 Ns

m2

ρ′ = 103 kg
m3 µ′ = 10−3 Ns

m2

∆p′
0 = 0.3 · 105 N

m2

Determine
(a) the volume rate of flow and the num-

ber of revolutions during the exper-
iment,

(b) the change of the total pressure of
the blower,

(c) the power and the torque needed for
driving the model and the main con-
figuration!

6.10 The power of a propeller of an airplane
is to be determined in a wind-tunnel ex-
periment (Model scale 1:4) for the flight
velocity v. In the test section of the
wind tunnel the velocity can be varied
between 0 and 300

m
s

, the pressure be-

tween 0.5·105 N
m2 and 5·105 N

m2 , and the
temperature between 250 K and 300 K.
The viscosity of air is described by the
relation

µ

µ300K

=
(

T

300K

)0.75

.

D = 1 m n = 100
1
s

v = 200
m
s

T = 300 K R = 287
Nm
kg K

γ = 1.4

p = 105 N
m2

(a) Determine an operating point (v′, p′,
T ′) such that the results of the mea-
surements can be applied to the full-
scale configuration!

(b) What number of revolutions must
be used in the experiment?

(c) Determine the power, if in the ex-
periment the power P ′ was mea-
sured!

6.11 A model experiment is to be carried out
prior to the construction of a tanker
(Model scale 1 : 100) in a towing basin.
(a) How large would the ratio of the

kinematic viscosities ν′
ν

have to be?
(b) How large must the towing veloc-

ity in water be, if the aerodynamic
drag can be neglected and if only the
wave drag or only the frictional drag
is taken into account?

6.12 A docking pontoon is fastened at the
bank of a river. An experiment is to be
carried out with a model scaled down
to 1 : 16.
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L = 3.6 m B = 1.2 m H = 2.7 m
v = 3

m
s

F ′
D = 4 N h′ = 2.5 cm

ρ = 103 kg
m3

Determine
(a) the flow velocity in the model exper-

iment,
(b) the force acting on the pontoon, if

the force F ′ is measured in the ex-
periment,

(c) the drag coefficient of the pontoon,
(d) the height of a wave h to be ex-

pected at the side of the pontoon,
facing the oncoming flow, if the
height h′ was measured in the ex-
periment!

6.13 In a refinery oil flows through a horizon-
tal pipe line into a reservoir with pres-
sure pR, with the pressure at the intake
being p0. A safety valve is attached to
the end of the pipe line, which in the
case of emergency can close the pipe
line within the time T . In a model ex-
periment with water (diminution scale
1 : 10) the maximum pressure in front
of the safety valve, measured during the
shut-down procedure, is p′

max.

p = 1.5 · 105 N
m2 pR = p′

R = 105 N
m2

ρ = 880
kg
m3 ρ′ = 103 kg

m3

µ = 10−1 Ns
m2 µ′ = 10−3 Ns

m2

T = 0.5 s p′
max = 1.05 · 105 N

m2

Determine
(a) the pressure p′

0 and the shut-down
time in the model experiment,

(b) the maximum pressure in the full-
scale configuration!

6.14 In a petroleum pipe line (diameter D)
the volume rate of flow is to be deter-
mined with a measuring throttle (diam-
eter d). In a model experiment with wa-
ter (diminution scale 1 : 10) a differ-
ential pressure ∆p′

D and a pressure loss
∆p′

l is measured at the measuring throt-
tle.

Q̇ = 1
m3

s
D = 1 m d = 0.4 m

ρ = 800
kg
m3 µ = 10−1 Ns

m2

ρ′ = 103 kg
m3 µ′ = 10−3 Ns

m2

∆p′
D = 500

N
m2 ∆p′

l = 400
N
m2

Determine
(a) the flow velocity and the volume

rate of flow in the model experi-
ment,

(b) the discharge coefficient and the loss
coefficient of the measuring throttle,

(c) the differential pressure and the
pressure loss for the full-scale con-
figuration!

3.1.7 Potential Flows of
Incompressible Fluids

7.1 A cyclone is assumed to have the fol-
lowing velocity distribution:

vθ(r) =
{

ω r r ≤ r0
ω r2

0
r

r > r0
vr = 0

r0 = 10 m ω = 10
1
s

H = 100 m ρ = 1.25
kg
m3

(a) Sketch vθ(r)!
(b) Determine the circulation for a cir-

cle around the axis of the cyclone for
r < r0, r = r0 and r > r0!

(c) Show that for r > r0 the flow is ir-
rotational!

(d) How large is the kinetic energy in a
cylinder with radius R = 2 r0 and
height H?

7.2 (a) State the definitions of potential and
stream function for two-dimensional
flow! What conditions have to be
satisfied so that they can exist?

(b) How are ∇ · v and ∇2 Φ and ∇ x v
and ∇2 Ψ related to each other?

7.3 Examine, whether potential and stream
function exist for the following velocity
fields!
(a) u = x2 y v = y2 x
(b) u = x v = y
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(c) u = y v = −x
(d) u = y v = x
Determine potential and
stream-function!

7.4 A two-dimensional flow is described by
the stream function Ψ =

(
U
L

)
xy. In the

point xref = 0, yref = 1 m the pressure

is pref = 105 N
m2 .

U = 2
m
s

L = 1 m ρ = 103 kg
m3

(a) Examine, whether the flow possesses
a potential
Determine

(b) the stagnation points, the pressure
coefficient, and the isotachs,

(c) velocity and pressure for
x1 = 2m, y1 = 2m,

(c) the coordinates of a particle, which
at time t = 0 passes through the
point x1, y1, for the time t = 0.5 s,

(e) the pressure difference between
these two points!

(f) Sketch the streamlines!

7.5 Given the potential

Φ = yx2 − y3

3
.

(a) Determine the velocity components
and examine, whether the stream
function exists!

(b) Sketch the streamlines!

7.6 Determine the velocity fields
vr = c

r
vθ = 0 and vr = 0 vθ = c

r

(a) ∇ x v and ∇ · v,
(b) potential and stream funktion,
(c) the circulation along a curve around

the origin!

Hint: The following relations are valid
for polar coordinates:

vr =
∂Φ

∂r
=

1
r

∂Ψ

∂θ
vθ =

1
r

∂Φ

∂θ
= −∂Ψ

∂r

∇ · v =
1
r

∂ (r vr)
∂r

+
1
r

∂vθ

∂θ

∇ x v =
(

1
r

∂ (r vθ)
∂ r

− 1
r

∂vr

∂θ

)
k

7.7 Given the stream function
Ψ(r,0) = 1

n
rn sin(n θ).

(a) Sketch the streamlines for n = 0.5;
n = 1 und n = 2 !

(b) Determine the pressure coefficient
for the point x = 0, y = 0, if pres-
sure and velocity are known for the
point xref = 1, yref = 1!

7.8 Consider a large basin with an outlet.
The flow outside of the outlet (r > R0)
can be described by superposition of a
plane sink and a potential vortex. For
r = R0 the in-flow angle is α and the
depth of water is h0. The volume rate
of flow of the discharging water is Q̇.

R0 = 0.03 m h0 = 0.02 m g = 10
m
s2

Q̇ = 0.5 · 10−3 m3

s
α = 30◦

Determine
(a) the circulation Γ
(b) the shape of the water surface h(r)

for r ≥ R0,
(c) the depth of water at large distances

from the outlet!
Hint: The discharge volume of the sink
is to be determined for the radius
r = R0!
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7.9 The free-stream velocity of a two-
dimensional half-body with width 2h
is u∞.

Determine
(a) the stagnation point and the veloc-

ity in the point x = xs, y = h,
(b) the contour of the half-body,
(c) the pressure distribution on the con-

tour,
(d) the isobars,
(e) the curve along which the pressure

is larger by the amount ρ
4 u

2
∞ than

the pressure p∞ of the free-stream,
(f) the isotachs,
(g) the part of the flow field, in which

the velocity component v is larger
than u∞

2 ,
(h) the curve, which is inclined to the

streamlines by 45◦,
(i) the maximum deceleration a parti-

cle moving along the line of symme-
try is experiencing between x = −∞
and the stagnation point!

7.10 Given the stream function

Ψ = u∞ y

(
1 − R2

x2 + y2

)
.

(a) Sketch the streamlines for
x2 + y2 ≥ R2!
Determine

(b) the pressure distribution on the con-
tour Ψ = 0,

(c) the time it takes for a particle to
move from the point x = −3 R,
y = 0 to the point x = 2R, y = 0!

7.11 Consider a parallel free-stream with
velocity u∞ flowing around a circular
cylinder with radius R, with its axis
normal to the direction of the oncoming
flow being in the origin of coordinates.
Determine

(a) the curve along which the pressure
equals the free-stream pressure p∞,

(b) the pressure on a circle around the
origin of coordinates with radius 2R!

7.12 The pressure difference ∆p between two
boreholes in a circular cylinder, with its
axis normal to the direction of the on-
coming flow, is a measure for the angle
ε between the free-stream direction and
the axis of symmetry.

(a) What is the relation between the
pressure difference and the angle of
attack?

(b) At what angle α does ∆p attain its
maximum value for every ε?

7.13 Consider a flow around a bridge pile
with circular with cross section. The
free-stream velocity is u∞. The depth
of water far upstream is h∞.

u∞ = 1
m
s

h∞ = 6 m R = 2 m

ρ = 103 kg
m3 g = 10

m
s2

Determine
(a) the height of the water surface at the

wall of the pile as function of θ,
(b) the height of the water surface at the

stagnation points,
(c) the lowest depth of water, measured

from the ground!
Hint: Assume two-dimensional flow!
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7.14 The roof (weight G) of a hangar of
length L and semi-circular cross section
rests on the walls of the hangar, without
being fixed. The hangar is completely
closed except for a small opening on the
leeward side.

L = 100 m H = 10 m G = 107 N

α = 45◦ u∞ = 50
m
s

ρ = 1.25
kg
m3

Investigate, whether the roof has to be
anchored to the walls!
Hint: Assume two-dimensional flow!

7.15 Consider a flow around a rotating cir-
cular cylinder of length L with its axis
normal to the direction of the free-
stream with velocity u∞. The circum-
ferential velocity of the flow on the sur-
face of the cylinder caused by the rota-
tion is vt.

(a) Determine the circulation!
(b) Discuss the flow field for vt = u∞!
(c) Determine the force acting on the

cylinder!

3.1.8 Boundary Layers

8.1 Show that the drag coefficient of the flat
plate at zero incidence is proportional
to 1√

ReL
for a laminar boundary layer!

8.2 The surface of a flat plate is parallel to
the direction of a free stream of air.

u∞ = 45
m
s

ν = 1.5 · 10−5 m2

s

Determine
(a) the transition point for

Recrit. = 5 · 105,
(b) the velocity at the point

x = 0.1 m, y = 2 · 10−4 m with
the aid of the Blasius solution! At
what coordinate y does the veloc-
ity for x = 0.15 m attain the same
value?
Sketch

(c) the variation of the boundary-layer
thickness δ(x) and a velocity profile
for x < xcrit. and x > xcrit.,

(d) the wall-shear stress as a function of
x for
dp

dx
< 0 ,

dp

dx
= 0 and

dp

dx
> 0 !

8.3 The surface of a flat plate is parallel to
the dircetion of a free stream of water.
Formulate the momentum thickness in
terms of an integral over the wall-shear
stress for a laminar boundary layer

−
∫ x

0

τ(x; y = 0)
ρ u2∞

dx′ dar!

8.4 Air moves past a flat plate (length L,
width B), with its surface parallel to
the direction of the free stream.

u∞ = 10
m
s

L = 0.5 m B = 1 m

ρ = 1.25
kg
m3 ν = 1.5 · 10−5 m2

s
(a) Sketch the velocity profiles u(y) for

several values of x!
(b) State the boundary conditions for

the boundary-layer equations!
(c) Sketch the distribution of the shear

stress τ(y) for the position x!
(d) Compute the boundary-layer thick-

ness at the trailing edge of the plate
and its drag!

8.5 The velocity profile in the laminar
boundary layer of a flat plate at zero in-
cidence (length L) can be approximated
by a polynomial of fourth degree

u

u∞
= a0 + a1

(
y

δ

)
+ a2

(
y

δ

)2
+

+ a3

(
y

δ

)3
+ a4

(
y

δ

)4
.
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(a) Determine the coefficients of the
polynomial!

(b) Prove the validity of the following
relations

δ1
δ

=
3
10
,

δ2
δ

=
37
315

,

δ

x
=

5.84√
Rex

,

cD =
1.371√
ReL

8.6 The velocity profile in a laminar bound-
ary layer on a flat plate at zero inci-
dence of length L is approximated by
A) a polynom of fourth degree

u

u∞
=

3
2

(
y

δ

)
− 1

2

(
y

δ

)3

and
B) a sinosoidal ansatz

u

u∞
= sin

(
π

2
y

δ

)
.

(a) Determine δ1, δ2, δ, and cw!
(b) Compute the boundary-layer

thickness at the trailing edge of
the plate and the drag for
u∞ = 1

m
s

L = 0.5m B = 1m

ρ = 103 kg
m3 ν = 10−6 m2

s
!

3.1.9 Drag

9.1 Two flat plates at zero incidence, one
downstream from the other, are ex-
posed to the free-stream velocity u∞.

u∞ = 1
m
s

L = L1 + L2 = 0.36 m

B = 1 m ρ = 103 kg
m3 ν = 10−6 m2

s

Determine
(a) the retaining forces F1 and F2 for

L1 = L2,
(b) the lengths L1 and L1 for F1 = F2!

9.2 Two quadratic plates are exposed to a
flow, one at zero incidence, the other
with its surface normal to the direction
of the free stream.

u∞ = 5
m
s

L1 = 1 m ρ = 1.25
kg
m3

ν = 15 · 10−6 m2

s
(a) Explain the difference between fric-

tional and pressure drag!
(b) How large must L2 be, so that both

plates generate the same drag?
(c) How does the drag depend on the

free-stream velocity?

9.3 Two flat rectangular plates are exposed
to a parallel flow. The plates have the
same lateral lengths L1 and L2. The
edge of plate 1, with lateral length L1

is parallel to the direction of the free
stream, and of plate 2 the edge with lat-
eral length L2. The free-stream velocity
is u∞.

L1 = 1 m L2 = 0.5 m ν = 10−6 m2

s
(a) Determine the ratio of the friction

forces for u∞ = 0.4
m
s

; 0.8
m
s

; 1.6
m
s

!
(b) How large would the free-stream ve-

locity for the plate 2 have to be, if
the free-stream velocity of plate 1 is
u∞ = 0.196 m

s
, and if both drag co-
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efficients are supposed to have the
same value?

Hints:

cD =
0.074

Re
1
5
L

− 1700
ReL

for 5 · 105 < ReL < 107.

9.4 A kite (surface area A, weight W ) gen-
erates the force F in the kite string at
an angle of attack α.

A = 0.5 m2 W = 10 N u∞ = 10
m
s

α = 10◦ β = 55◦ F = 42.5 N

ρ = 1.25
kg
m3

Determine the lift and drag coefficient
of the kite!

9.5 Assume that the flow around a circu-
lar cylinder separates at α = 120◦, that
the pressure distribution up to the sep-
aration point can be determined with
the potential flow theory, and that the
pressure in the dead water region is con-
stant!

Neglect the frictional drag and deter-
mine the drag coefficient of the cylin-
der!

9.6 A surfboard (width b) moves with the
velocity u over the surface of quiescent
water. The height of the triangular sail
is h and its width b.

L = 3.75 m B = 0.5 m u = 1.5
m
s

ρw = 103 kg
m3 µw = 10−3 Ns

m2

ρa = 1.25
kg
m3

µa = 1.875·10−5 Ns
m2 h = 4m b = 2m

Neglect the wave drag , the drag of the
sail mounting, and the frictional drag
of the upper side of the surfboard and
determine
(a) the wind speed u∞,
(b) the drag of the sail!
(c) How large would the frictional drag

of the upper side of the board be?
Hints:

Board : cD =
0.074

Re
1
5
L

− 1700
ReL

(for : 5 · 105 < ReL < 107)
Sail : cD = 1.2
(for : Re > 103)

9.7 How large must the surface of the equiv-
alent drag of a parachute at least be, in
order to avoid the sinking speed in qui-
escent air to exceed v?

v = 4
m
s

W = 1000 N cD = 1.33

ρ = 1.25
kg
m3

9.8 A sphere and a circular cylinder of
the same material fall with constant
velocity in quiescent air. The axis of
the cylinder is normal to the direction
of the gravitational acceleration. For
0 < Re ≤ 0.5 the drag coefficient of a
sphere is given by cD = 24

Re
and that of

a circular cylinder with its axis normal
to the oncoming flow by

cD =
8 π

Re(2 − lnRe)
.
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ρ = 800
kg
m3 ρa = 1.25

kg
m3

νa = 15 · 10−6 m2

s
g = 10

m
s2

Determine
(a) the maximum diameters, for which

these relations are valid,
(b) the corresponding sink velocities!

9.9 Determine with the aid of the diagram
for the drag coefficient of a sphere

(a) the steady sink velocity of a spheri-
cal rain drop of diameter D in air,

(b) the steady ascending velocity of a
spherical bubble of air of diameter
D in water!

D = 1 mm ρw = 103 kg
m3

νw = 10−6 m2

s

ρa = 1.25
kg
m3 νa = 15 · 10−6 m2

s
g = 10

m
s

9.10 Spherically shaped dust particles (den-
sity ρs) are to be conveyed with a
stream of air against the gravitational
force.

Ds = 5 · 10−5 m ρs = 2.5 · 103 kg
m3

ρa = 1.25
kg
m3 µa = 1.875 · 10−5 Ns

m2

g = 10
m
s2

(a) At what velocity of the air v1 are the
dust particles suspended?

(b) How large is the velocity of the dust
particles if the velocity of the air is
va = 3

m
s

?

Hint:
Assume that the dust particles do not
influence each other!

cD =
24
Re

(1 +
3
16

Re) for 0 < Re < 1

9.11 A spherically shaped fog droplet (diam-
eter D) is being suspended by an up-
ward motion of air. At time t = 0 the
air flow stops and the droplet begins to
sink.

D = 6 · 10−5 m ρw = 103 kg
m3

ρa = 1.25
kg
m3 µa = 1.875 · 10−5 Ns

m2

g = 10
m
s2

(a) How large is the velocity of the air
flow prior to the lull?

(b) After what time does the droplet at-
tain 99% of its steady sink velocity?

Hint: For Re ≤ 0.5 the law cD = 24
Re

is
valid for steady and unsteady flow.

9.12 A sphere is falling in steady motion in
quiescent air with the velocity v1. A
downwash squall increases the velocity
to v2.

D = 0.35 m G = 4.06 N v1 = 13
m
s

v2 = 18
m
s

ρa = 1.25
kg
m3

νa = 15 · 10−6 m2

s
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(a) How large is the drag coefficient
prior to the squall?

(b) What steady final velocity does the
sphere attain after dying out of the
squall?

9.13 A spherically shaped deep-sea probe is
heaved with constant velocity from the
depth H to the surface of the sea in the
time T1.

D = 0.5 m H = 4000 m T1 = 3 h

ρ = 103 kg
m3 µ = 10−3 Ns

m2 g = 10
m
s2

Assume constant density of the water,
neglect the weight of the cable rope, and
determine
(a) the power needed for heaving the

probe, if the cable force is F1 = 2700
N,

(b) the weight of the probe and the
shortest heaving time, if the cable
can take twice the value of the force,

(c) the power then needed!
Hint: Use the diagram of problem 9.12!

9.14 A sphere of diameter D and density ρs

is vertically shot into quiescent air with
initial velocity v∞.
Assume a constant drag coefficient and
determine
(a) the height of rise,
(b) the rise time,
(c) the velocity at impact on the

ground,
(d) the falling time!
(e) What values do these quantities at-

tain for a wooden sphere of density
ρw and for a metal sphere of density
ρm, if cD = 0.4 and cw = 0?

D = 0.1 m v0 = 30
m
s

g = 10
m
s2

ρa = 1.25
kg
m3 ρw = 750

kg
m3

ρm = 7.5 · 103 kg
m3
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3.2 Solutions

3.2.1 Hydrostatics

1.1

p = pa + ρw g h = pa + ρF g (h− L)

ρF = ρw
h

h− L
= 3 · 103 kg

m3

1.2

pi =
Fi

Ai

+ pa

p2 = p1 + ρ g ∆h1 = p3 − ρ g ∆h2

∆h1 =
p2 − p1

ρ g
= 0.25 m

∆h2 =
p3 − p2

ρ g
= 0.33 m

1.3

FL = W

FL = ρ1 ha
2 g + ρ2 (a− h) a2 g

W = ρK a3 g

h =
ρ2 − ρK

ρ2 − ρ1
a = 6.67 · 10−2 m

1.4

W1 = FL1 = ρ AB h1 g

W2 = FL2 = ρ AB h2 g

W2 = W1 +m g

The volume of the water remains con-
stant.

AH− AB h1 = A (H +∆H)− AB h2

∆H =
m

ρ A

1.5 (a)

τ0 =
W0

ρm g
= 1.07 · 105 m3

(b)

∆W = ρM A (h0 − h1) g
A = 1.95 · 104 m2

(c)

W0−∆W = ρM τ1 g = ρF τ2 g

τ2 − τ1 =
W0 −∆W

ρM g

(
ρM

ρF

−1
)

= 2.44 · 103 m3

(d)

τ2 − τ1 = (h2 − h1) A
h2 = 10.625 m

1.6

(a)

pa
π

4
D2 H = p

π

4
D2 (H − h)

p = pa + ρw g (T − h)

h =
ρw g (T + h) + pa

2 ρw g

−
√√√√(ρwg(T+h) + pa

2ρwg

)2

−TH

= 2 m

(b)

F = FL −Wair −W

=
π

4
D2 g [(H − h) ρw −H ρa]

− G

= −9.58 · 103 N
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(c)

0 = FL −Wair −W

h0 = H

(
1 − ρa

ρw

)
− 4W
π D2 ρw g

T0 = h0

(
1 +

pa

ρw g (H − h0)

)

= 18.3 m

1.7

dF = [pi(z) − pa] dA sinα
dA = R dα 2 π R cosα
F =

π

3
R3 ρ g = 1.05 · 104 N

1.8

dFL = ρ g (h− z) 2π r dr
r

H − h+ z
=

R

H

FL =
π

6
R2 H ρ g

F = W − FL

=
π

3
R2 H (ρs − ρ

2
) g

= 1.57 · 10−2 N

1.9

(a)

dF = [p1(z) − p2(z)]B dz

z ≤ h1 : p1(z) = pa + ρg(h1−z)
z ≤ h2 : p2(z) = pa + ρg(h2−z)
h2 ≤ z ≤ h1 : p2 = pa

F =
1
2
ρ g B(h2

1 − h2
2)

= 1.05 · 106 N

(b)

F zF =
∫ z=h1

z=0
z dF

zF =
1
3
h3

1 − h3
2

h2
1 − h2

2
= 1.86 m

1.10

F L =
∫ s=L

s=0
s dF

dF = [pi(s) − pa] B ds

pi(s) = pa + ρ g [L sinα − z(s)]

F =
ρ g B h2

6 sinα
= 3 · 104 N

1.11

(a)

dF = [pi(z) − pa] b(z) dz
pi(z) = pa + ρ g (H − z)

F =
1
4
ρ g B3 = 2.5 · 103 N

(b)

F zF =
∫ z=H

z=0
z dF

zF =
√

3
8

B = 0.217 m
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1.12

Boundary condition:

r = 0, z = h : p = pa

p− pa = ρ g (h− z) +
1
2
ρ ω2 r2

(a) Surface:

p = pa

z0(r) = h+
ω2 r2

2 g

r = R : z0 = H

ω2 = 2 g
H − h

R2

z0(r) = h+ (H − h)
r2

R2

Volume of the water:

πR2h0 =
∫ R

0
z0(r) 2 π r dr

= πR2h+
1
2
πR2(H−h)

h = 2 h0 −H = 0.4 m

ω =

√
4g
R2 (H − h0) = 13.9

1
s

(b)

r = R : p = pa+ρ g (H − z)

z = 0 : p = pa+ρ g h+
ρ

2
ω2 r2

1.13

dp

dz
= −ρ(z) g

(a)

ρ(z) =
p(z)
R T0

p = p0 e
− gz

RT0

(b)

ρ(z) =
p(z)

R (T0 − α z)

p = p0

(
1 − α z

T0

) g
Rα

(c)

ρ(z) = ρ0

(
p

p0

) 1
κ

p = p0

(
1 − γ − 1

γ

gz

R T0

) κ
κ−1

(d)
p/p0 3000 m 6000 m 11000 m

a) 0.695 0.483 0.263
b) 0.686 0.457 0.215
c) 0.681 0.442 0.186

1.14 (a)

F = FL(z = 0) −W

= (ρ0 τ0 −m) g
= 10.6 N

(b) for

z ≤ z1 : p1 τ1 = p0 τ0
p1

p0
= e

− g z1
R T0

z1 =
p0

ρ0 g
ln
τ1
τ0

= 10.0 km

(c)

FL(z2) = W

z2 =
p0

ρ0 g
ln
ρ0 τ1
m

= 12.8 km

1.15

FL(z) = W +Wgas(z)
FL(0) = W +Wgas(0) + Fs

FL = ρ τ g

Ggas = ρgas τ g

ρgas(z)
ρgas(0)

= e− gz
RT

z =
RT

g
ln
(
1 +

Fs

W

)
= 7.84 km
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3.2.2 Hydrodynamics

2.1 (a)

dy

dy
=

v

u
= −v0

u0
tan(ω t)

y =
[
−v0

u0
tan(ω t)

]
x + c

Straight lines with slopes 0,−1,−∞
(b)

x(t) =
∫
u dt+ c1

=
u0

ω
sin(ω t) + c1

y(t) =
∫
v dt + c2

=
v0

ω
cos(ω t) + c2

(
ω
u0

)2
(x− c1)2 +

(
ω
v0

)2
(y − c2)2 = 1

Circles with radius 1 m.
(c) Circle around the origin

2.2

p1 + ρc g h = p2 + ρc
v2

2
p2 = p1 + ρw g h

v =
√

2 g h
ρc − ρw

ρc

= 3.16
m
s

2.3

dp

ρ
+

1
2
d (v2) + g dz = 0

p = ρ RT

inner:

RTi ln
(
p1i

p0i

)
+
v2

2
+ g H = 0

outer:

RTa ln
(
p1a

p0a

)
+ g H = 0

v =

√
2 g H

(
Ti

Ta

− 1
)

= 31.6
m
s

2.4

∆p = β
ρ

2
v2

∞

(a) Assumption:

ρ v∞ D

µ
> 250 v∞ = 0.5

m
s(

ρ v∞ D

µ
= 3000

)

(b) Assumption:

ρ v∞ D

µ
> 250 v∞ = 0.5

m
s(

ρ v∞ D

µ
= 300

)

(c) Assumption:

2.5 <
ρ v∞ D

µ
< 250

v∞ = 0.45
m
s

(
ρ v∞ D

µ
= 27

)
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2.5

∆p =
ρ

2
v2

v∞ D2 = v (D2 − d2)
v∞√
2 ∆p

ρ

= 1 − d2

D2

2.6

ρ g (h+H) = ρ g H +
ρ

2
v2

1

=
ρ

2
v2

2

v1 D
2 = v2 d

2

d = D 4

√
h

h+H
= 0.05 m

2.7 (a)

p1 +
ρ

2
v2

1 = p2 +
ρ

2
v2

2

v1 A1 = v2 A2

= v3 A3

v2 =

√√√√√ 2∆p

ρ
[
1 −

(
A2
A1

)2
]

= 12
m
s

v1 = 4
m
s

v3

= 6
m
s

(b)

p2 +
ρ

2
v2

2 = p3 +
ρ

2
v2

3

p3 = pa = 105 N
m2

p2 = 0.46 · 105 N
m2

p1 = 1.1 · 105 N
m2

p + ρ g h = pa +
ρ

2
v2

3

p = 1.08 · 105 N
m2

2.8

pa + ρ g (a+ h) = pa + ρ g z + ρ
2 v(z)

2

Q̇ =
∫ 2a

0
v(z) B dz

=
2
3

√
2 g B

[√
(h+ a)3−

√
(h−a)3

]

Q̇0 − Q̇

Q̇
=

3 a
h√

(1 + a
h
)3 −

√
(1 − a

h
)3

−1

a/h 0.25 0.5
Q̇0−Q̇

Q̇
0.264% 1.108%

a/h 0.75 1.0
Q̇0−Q̇

Q̇
2.728% 6.066%
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2.9

(a)

pa + ρ g H = p5 − ρ g s +
ρ

2
v2

5

p5 = pa + ρ g s

Q̇ = Ad

√
2 g h = 4

m3

s

(b)

(c) Vapor bubbles are formed, if
p2 = p3 = pv .

v∗
5 A

∗
d = v∗ A

pa = pv + ρ g h+
ρ

2
v∗2

A∗
d = A

√
pa − pv

ρ g H
− h

H

= 0.244 m2

2.10

(a)

vD AD = vaA

p0 = pa +∆p = pa +
ρ

2
v2

a

vD =

√
2∆p
ρ

A

AD

= 4
A

AD

m
s

(b)

p0−pa = (p0 − pD) − (pa − pD)

=
ρ

2
v2

D − ηD(
ρ

2
v2

D − ρ

2
v2

a)

vD =

√
2∆p
ρ

A

AD

·
[(

A

AD

)2

(1 − ηD) + ηD

]− 1
2

vD =
4 A

AD√
0.16

(
A

AD

)2
+ 0.84

(c)

A

AD

→ ∞ : vD = 10
m
s

2.11

(a)

Q̇ = mD
π D2

4
αD

√
2 (p1 − p2)D

ρw

p1+ρw g h1 = p2 + ρw g (h1−hD)
+ ρHg g hD

Q̇ = 0.07
m3

s

(b)

Q̇ = mB
π D2

4
αB

√
2 (p1 − p2)B

ρw

αB = αD
mD

mB

√
hD

hB

= 0.75
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2.12

pa + ρ g z0 +
ρ

2
v2

0 = p1 + ρ g z1

+
ρ

2
v2

1

p1 + ρ g z1 = pa + ρ g z2

The assumption of quasi-steady flow re-
quires that A

As
� 1: v2

0 � v2
1.

v1 A = v0 As = −dh

dt
As

T = −As

A

∫ 0

h0

dh√
2 g h

=
As

A

√
2 h0

g

A = As

√
2 h0

g

T
= 5 m2

2.13

pa + ρ g z0 +
ρ

2
v2

0 = p1 + ρ g z1

+
ρ

2
v2

1

p1 + ρ g z1 = pa + ρ g z2

v2
0 � v2

1

v1 f = v0
B

2
= −dz0

dt

B

2
dz0

dt
= −dz2

dt
dh

dt
=

d(z0 − z2)
dt

= 2
dz0

dt

T = − B

4f

∫ 0

h0

dh√
2 g h

=
B

2f

√
h0

2 g
= 100 s

2.14

pa + ρ g z0 +
ρ

2
v2

0 = pa +
ρ

2
v2

2

v2
0 � v2

2

Volume rate of flow:
dz0

dt
AB = v1 A− v2

A

3
v1 =

√
2 g h

T =
3√
2 g

AB

A
·
∫ 4h

h

dz0

3
√
h− √

z0

=
3√
2 g

AB

A
· 2
[
(3

√
h− √

z0)−

−3
√
h ln(3

√
h− √

z0)
]4h

h

T = 6
AB

A

√
h

2 g
[3 ln 2 − 1] = 108 s

2.15

p1 + ρB g z1 +
ρB

2
v2

1 = pa +
ρB

2
v2

2

pa = p1 + ρw g z1

v2
1 � v2

2

v2 d
2 = v1 D

2

=
dz1

dt
D2
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T =
(
D

d

)2 √ ρB

2 g (ρw − ρB)∫ 0

−L

dz1√−z1

=
(
D

d

)2 √ ρB

ρw − ρB

√
2 L
g

= 80 s

2.16

∫ L

−∞
∂v

∂t
ds =

∫ − D√
8

−∞
∂

∂t

⎛
⎝ v0 π D2

4

2 πs2

⎞
⎠ ds +

+
∫ L

− D√
8

∂v0

∂t
ds =

=
(
D√
2

+ L

)
dv0

dt

2.17

(a)

v0 =
√

2 g h = 10
m
s

(b)

pa +
ρ

2
v2

1 = pa +
ρ

2
v2

2

+ ρ
∫ s1

s1

∂v

∂t
ds∫ s1

s1

∂v

∂t
ds ≈ L

dv2

dt

(
D

L
� 1

)

T = −2 L
∫ v0

2

v0

dv2

v2
2

=
2 L√
2 g h

= 2 s

(c)

Q = A
∫ T

0
v2 dt

= −2 A L
∫ v0

2

v0

dv2

v2

=
π

2
L D2 ln 2 = 0.279 m3

2.18

(a)

pa + ρB g (h+ z2) = pa + ρ g z2

+
ρ

2
v2

2

+ ρ
∫ s2

s0

∂v

∂t
ds∫ s2

s0

∂v

∂t
ds ≈ L

dv2

dt

T = 2 L
∫ 0.99

√
2 g h

0

dv2

2 g h− v2
2

=
L√
2 g h

ln
[√

2 g h+ v2√
2 g h− v2

]0.99
√

2 g h

0

= 10.6 s

(b)

pa = p1 + ρ g h1 +
ρ

2
v2

2

+ ρ L1
dv2

dt

pa = p1e = ρ g h1 +
ρ

2
v2

2e



104 3. Exercises in Fluid Mechanics

for:

dv2

dt
=

1
L

(
g h− v2

2

)
v2 = 0.99

√
2 g h

p1 − p1e = ρ g h
(
1 − 0.992

)
·

·
(
1 − L1

L

)

= 746
N
m2

2.19

pa = pp + ρ g h+
ρ

2
v2

p

+ ρ
∫ sp

s1

∂v

∂t
ds∫ sp

s1

∂v

∂t
≈ L

dvp

dt
(
s0

L
� 1)

pp = pa − ρ g h+ ρ s0 ω
2 ×[

L sinωt− s0

2
cos2 ωt

]
ppmin = pv

pp = ppmin with cosωt = 0

(follows from
dpp

dt
= 0)

ω =

√
pa − pv − ρ g h

ρ s0 L
= 8.8

1
s

2.20

(a)

pa+ρ g h1 = pa +
ρ

2
v2 + ρ L

dv

dt

QI = A
∫ TI

0
vdt

= 2 AL
∫ vI

0

vdv

2 g h1 − v2

= −AL ln
(

1− v2
I

2 g h1

)

Determination of vI :

TI = 2 L
∫ vI

0

dv

2 g h1 − v2

=
L√

2 g h1
ln

√
2 g h1 + vI√
2 g h1 − vI

vI =
√

2 g h1
e

TI
√

2 g h1
L − 1

e
TI

√
2 g h1
L + 1

QI = 0.240 m3

(b)

pa + ρ g h1 = pa + ρ g (h1 + h2)

+
ρ

2
v2 + ρ L

dv

dt

QII = A
∫ TII

TI

v dt

= −2 AL
∫ 0

vI

vdv

2 g h2 + v2

= AL ln
(

1 +
v2

I

2 g h2

)

= 0.194 m3

2.21

(a)

pa + ρ g h = pa +
ρ

2
v2

2

+ ρ

(
L1

dv1

dt
+ L2

dv2

dt

)
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v1 D
2
1 = v2 D

2
2

T = 2
[
L1

(
D2

D1

)2

+ L2

]
·

·
∫ 0.99

√
2 g h

0

dv2

2 g h− v2
2

=
L1

(
D2
D1

)2
+ L2√

2 g h
·

· ln
[√

2 g h+ v2√
2 g h− v2

]0.99
√

2 g h

0
= 5.231 s

(b)

Q =
[
L1

(
D2

D1

)2

+ L2

]
A2 ·

·
∫ 0.99

√
2 g h

0

v2 dv2

2 g h− v2
2

= −
[
L1

(
D2

D1

)2

+ L2

]
A2 ·

· ln
[
2 g h− v2

2

]0.99:
√

2 g h

0

= 0.048 m3

(c)

pA +
ρ

2
v2

1 = pa +
ρ

2
v2

2 + ρ L2
dv2

dt

pB +
ρ

2
v2

2 = pa +
ρ

2
v2

2 + ρ L2
dv2

dt

as shown under (a):

dv2

dt
=

2 g h− v2
2

2
[
L1

(
D2
D1

)2
+ L2

]

t = 0:

pA = pB = pA +
ρ g h

1 + L1
L2

(
D2
D1

)2

= 1.16 · 105 N
m2

t = T:

pA = pa + ρ g h
[
0.992

(
1 − D4

2

D4
1

)

+
1 − 0.992

1 + L1
L2

(
D2
D1

)2

]

= 1.187 · 105 N
m2

pB = pa +
1 − 0.992

1 + L1
L2

(
D2
D1

)2ρ g h

= 1.003 · 105 N
m2

(d)

2.22

(a)

pa + ρ g h = p1s +
ρ

2
v2

1s

v1s =
Q̇0

A

p1s − pa = ρ

⎛
⎝g h− Q̇2

0

2 A2

⎞
⎠

= 18.875 · 105 N
m2

(b)

pa+ρ g h = p1 +
ρ

2
v2

1 +

+ ρ L
Dv1

dt

Q̇(t) = Q̇0

(
1 − t

Ts

)

p1(t) = pa+ρ g h+ρL
Q̇0

A TS

−

− ρ

2

(
Q̇0

A

)2 (
1 − t

TS

)2
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1.

∆pzul = p1max − pa

= ρ g h+ ρ L
Q̇0

A TS

TS = 0.25 s

3.2.3 Momentum and Moment
of Momentum Theorem

3.1

(a)

p1 +
ρ

2
v2

1 = pa +
ρ

2
v2

2 = pa +
ρ

2
v2

3

∆p = p1 − pa

v1 A1 = v2 A2 + v3 A3

v1 =

√√√√√2∆p
ρ

1(
A1

A2+A3

)2 − 1

= 2.58
m
s

v2 = v3 =
A1

A2 + A3
v1

= 5.16
m
s

(b)

ρ v2
3 A3 cosα3 + ρ v2

2 A2 cosα2

−ρ v2
1 A1 = (p1 − pa) A1 + Fsx

Fsx = −866.4 N

ρ v2
2 A2 sinα2 − ρ v2

3 A3 sinα3 = Fsy

Fsy = −238.4 N

(c)

A2 sinα2 − A3 sinα∗
3 = 0

α∗
3 = 12.37◦

3.2 (a)

−ρ v2
D AD − 2 ρ v2

1 A1 = Fs1

vD =
√

2 g h
vD AD = 2 v1 A1

pa +
ρ

2
v2

D = pa +
ρ

2
v2

1

Fs1 = −4 ρ g h AD = −2 · 104 N

ρ v2
D AD = (pa + ρ g h− pa) A +

+ Fs2

Fs2 = ρ g h(2 AD − A) = 0

(b)

ρ v2
D AD = (pa + ρ g h− pa) A
Fs1 = −2 ρ g h A

= −2 · 104 N
Fs2 = 0

3.3
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(a)

P = −FS vr

Moving control surface:

−ρ v2
e A − 2 ρ v2

a A
∗ cos β = Fs

ve = v0 − vr

pa +
ρ

2
v2

e = pa +
ρ

2
v2

a

ve A = 2 va A
∗

P = ρ (v0−vr)2 vr A (1+cosβ)
dP

dvr

= 0

vr =
v0

3
= 20

m
s

(b)

Fs = −4
9
ρ v2

0 A (1 + cosβ)

= 3.08 · 105 N

3.4

(a)

v1 B t = v2 B t cosα

v2 =
v1

cosα

Cascade I
(b)

−ρ v2
1 B t+ ρ v2

1 B t cos2 α

= (p1 − p2)B t+ Fsx

ρ v2
2 B t sinα cosα = Fsy

Force normal to the blade:

tanα = −Fsx

Fsy

p1 − p2 = −ρ v2
1 tan2 α

(c)

p01−p02 = (p1−p2) +
ρ

2
(v2

1−v2
2)

=
ρ

2
v2

1 tan2 α

(d)

Fx = −Fsx = ρ v2
1 Bt tan2 α

Fy = −Fsy = −ρ v2
1 Bt tanα

Cascade II
(b)

p1 +
ρ

2
v2

1 = p2 +
ρ

2
v2

2

p1 − p2 =
ρ

2
v2

1 tan2 α

(c)

p01 − p02 = 0

(d) Momentum equ. as for cascade I

Fx =
ρ

2
v2

1 Bt tan2 α

Fy = −ρ v2
1 Bt tanα

3.5

(a)

ρ1 v1 A∞ = ρ1 v1 (A∞ − AR)
+∆ṁ

∆ṁ = ρ1 v1 AR

(b)

−ρ1 v
2
1 A∞ + ρ1 v

2
1 (A∞ − AR) +

+ρA v2
A AR +

∫
AM

ρ1 vx vr dA = Fs
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For
A∞
AR

� 1 : vx = v1∫
AM

ρ1 vx vr dA = v1

∫
AM

ρ1 vr dA

= v1 ∆ ṁ

Fs = ρA v2
A AR

P = Fs v1

= ρA v2
A v1 AR

3.6

(a)

pa +
ρ

2
v2

1 = p1′ +
ρ

2
v′2

p2′ +
ρ

2
v′2 = pa +

ρ

2
v2

2

v1 A1 = v′ A′ = v2 A2

0 = (p1′ − p2′) A′ + Fs

− ρ v2
1 A∞ + ρ v2

2 A2

+ ρ v2
1 (A∞ − A2)

− ∆ ṁ v1 = Fs

See problem 4.3

ρ v2
1 A∞ +∆ ṁ = ρ v2

2 A2

+ ρ v2
1 (A∞ − A2)

v′ =
v1 − v2

2
= 6.5

m
s

(b)

η =
Fs v1

Fs v′ =
v1

v′ = 0.769

3.7 (a)

(b)

p1 +
ρ

2
v2

1 = p1′ +
ρ

2
v2

1′

v1′ = v2 =

√
2
ρ

(p1 − p1′) + v2
1

ṁ = ρ A v1′ = 13 · 103 kg
s

(c)

−ρ v2
1 A∞ −∆ṁ v1 + ρ v2

2 A

+ρ v2
1 (A∞ − A) = Fs

See problem 4.5.

ρ v1 A∞ +∆ṁ = ρ v1 (A∞ − A)
+ρ v2 A

Fs = ρ v2 (v2 − v1) A
= 0.39 · 105 N

(d)

P = Q̇ (p02 − p01′)
= Q̇ (p1 − p1′) = 448.5 kW

3.8

(a)

pa = p1 +
ρ

2
v2

1

∆p = p2 − p1 = pa − p1

Q̇ = v A =

√
2∆ p

ρ
A

(b)

P = Q̇ (p02 − p01) =

√
2∆ p

ρ
∆p A

(c)

ρ v2 A = Fs = 2∆p A
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(d)

ρ v2 A = (pa − p1) A
∆p = p2 − p1 = pa − p1

Q̇ = v A =

√
∆ p

ρ
A

(e)

P = Q̇ (p02 − p01) =

√
∆ p

ρ
∆p A

(f)

ρ v2 A = Fs = ∆p A

3.9

(a)

p∞ +
ρ

2
v2

∞ = p2 +
ρ

2
v2

2

−ρ v2
2 A2 + ρ v2

1 A1 = (p2−p∞) A1

v2 A2 = v1 A1

v2 =
v∞√

1 − 2 A2
A1

+ 2
(

A2
A1

)2

= 56.6
m
s

v1 = 28.3
m
s

(b)

−ρv2
3A1+ρv2

1A1 =(p3−p∞)A1+Fs

p∞ +
ρ

2
v2

∞ = p3 +
ρ

2
v2

3

v3 = v1

Fs =
ρ

2
(v2

1 − v2
∞) A1 = −100 N

3.10

(a)

v2 =
Q̇2

A3 − A1
= 40

m
s

pa = p2 +
ρ

2
v2

2

p2 = 0.99 · 105 N
m2

(b)

−ρ v2
1 A1 − ρ v2

2 A2 + ρ v2
3 A3

= (p2 − pa) A3

v1 A1 + v2 A2 = v3 A3

v1 =

⎛
⎜⎝1 +

√√√√ 1

2 A1
A3

(
1 − A1

A3

)
⎞
⎟⎠ v2

= 96.6
m
s

v3 = v1
A1

A3
+ v2

(
1 − A1

A3

)

= 68.3
m
s

(c)

P = Q̇1 (p01 − p01′)
= Q̇1 (p1 − p1′)

p1 = p2

pa = p1′ +
ρ

2
v2

1

p =
ρ

2

(
v2

1 − v2
2

)
v1 A1

= 46.6 kW

(d)

ρ v2
1 A1 = (pa − p2) A1 + Fs

Fs = ρ

(
v2

1 − v2
2

2

)
A1

= 1066 N

(Traction force)
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3.11

(a)

−ρ v2
1 A1 + ρ v2

a A2 = (p1 − pa) A2

pa + ρ g h = p1 +
ρ

2
v2

1

v1 A1 = va A2

Q̇ =
√

2 g h A√
2
(

A1
A2

)2 − 2 A1
A2

+ 1

dQ̇

dA2
= 0

A2 = 2 A1 = 0.2 m2

(b)

p1 = pa − ρ g h = 5 104 N
m2

(c)

−ρ v2
1 A1 + ρ v2

a A2 = (p1 − pa) A1

+Fs1

Fs1 = −ρ g h A1

= −5 103 N (Traction force)

Fs2 = 0
ρ v2

a A2 = Fs3

Fs3 = 2 ρ g h A1

= 104 N (Compressive force)

3.12

(a)

Q̇ = v1
π D2

4
= α

π D2

4

√
2∆ pw

ρ

v1 = α
d2

D2

√
2∆ pw

ρ
= 1.33

m
s

(b)

−ρ v2
2 A2 + ρ v2

1 A1 = (p2−pE) A1

pa = p2 + ρ g H +
ρ

2
v2

2

v2 A2 = v1 A1

pE = pa − ρ

2
v2

1

⎡
⎣(D2

d2 − 1
)2

+ 1

⎤
⎦

− ρ g H = 0.482 · 105 N
m2

pA = pK + ρ g h = 2.3 · 105 N
m2

(c)

P = v1
π D2

4
(poA − poE)

= 1.9 · 103 kW

3.13

(a)

ρ v2
e Ae = (p0 − pe) A

p0 = pe +
ρ

2
v2

e

Ψ =
Ae

A
= 0.5
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(b)

ρ v2
1 A = (p0 − p1) A
p0 = pa + ρ g (h+ h1)
p1 = pa + ρ g h1

v1 =
√
g h = 3.16

m
s

3.14 (a)

(b)

Q̇ = α m A

√
2∆ pw

ρ

= 7.67 · 10−2 m3

s

(c)

−ρ v2
e Ae + ρ v2

1 A = (pe − p1) A

pa = pe +
ρ

2
v2

e

Q̇ = v1 A1 = ve Ae = ve Ψ m A

p1 = pa − α2 m2 ·
· ∆ pw

[(
1 − 1

Ψ m

)2

+ 1
]

= 0.998 · 105 N
m2

(d)

P = Q̇ (pa − p1) = 14.4 W

3.15

(a)

−ρ v2
1 B h1+ρ v2

2 B h2 = ρ g B
h2

1

2
−

− ρ g B
h2

2

2

v1 B h1 = v2 B h2

v1 =

√
g

2
h2

h1
(h1 + h2)

= 1.73
m
s

v2 = 0.87
m
s

(b)

Fr1 =
v1√
g h

= 1.73

Fr2 = 0.61

(c)

H1 −H2 = h1 − h2 +
1

2 g
(v2

1 − v2
2)

=
(h2 − h1)3

4 h1 h2
= 0.0125 m

3.16

(a) For each streamline it is,

pa + ρ g h = p + ρ g z +
ρ

2
v2

p + ρ g z = pa + ρ g h1

v =
√

2 g (h− h1)
= v1(independent of z)

(b)

Q̇ = v1 B h1

dQ̇

dh1
= 0

h1max =
2
3
h = 5 m

(b)

Fr1 =
v1√
g h

= 1

h1gr =
2
3
h = 5 m
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(c)

ρ g B

(
h2

1

2
−h2

2

2

)
= −ρ v2

1 B h1 +

+ρ v2
2 B h2

v1 B h1 = v2 B h2

h2 =
h1

2

⎛
⎝
√√√√1+16

(
h

h1
−1
)

−1

⎞
⎠

= 5.93 m
v2 = 4.22

m
s

3.17 (a)

(b)

Zcrit. +Hmin = H0

Zcrit. = h0 +
Q̇2

2 g B2 h2
0
− 3

2
3

√√√√ Q̇2

g B2

= 0.446 m

(c) zW > zcrit. :

h2 = hcrit. = 3

√√√√ Q̇2

g B2

= 1.170 m
H1 = ZW +Hmin

H1

Hmin

=
ZW

Hmin

+ 1 = 1.570

from diagram:

h1

hcrit.

= 2.26

h1 = 2.64 m

(Elevation of the upper water)
(d)

H1 −H3 = H1 −H0

= ZW − Zcrit.

= 0.554 m

(e)

−ρ v2
1 B h1 + ρ v2

3 B h3

= ρ g B

(
h2

1

2
− h2

3

2

)
+ Fs

F = − Fs =
ρg B

2
(h1 − h0) ·

·
(
h1 + h0 − 2 Q̇2

g B2 h1 h0

)

= 2.60 · 105 N

3.18

(a)

− ρ v2 dr
dθ

2
− ρ v2 dr

dθ

2
=

=
(
p− dp

dr

dr

2

) (
r − dr

2

)
dθ −

−
(
p +

dp

dr

dr

2

) (
r +

dr

2

)
dθ +

+ 2 p dr
dθ

2

dp

dr
= ρ

v2

r

(b)

d

dr

(
p +

ρ

2
v2
)

= 0

dp

dr
= −ρ v dv

dr
= ρ

v2

r

v =
const.

r
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3.19 (a)

Mr = 3 ρ vrA (r x va)z

= 3 ρ vrA R(−vr cosα + ω R)

Determination of vr :

pa = pa +
ρ

2
v2

r −
∫ s2

s0

ρ (b · ds)

= pa+
ρ

2
v2

r −ρ

(
gH +

ω2 R2

2

)

vr =
√

2 g H + 2 ω2 R2

with

ξ =
ω R√
2 g h

and

M0 = −3 ρ A R 2 g H cosα :
Mr

M0
=

√
1+ξ2

(√
1+ξ2− ξ

cosα

)

ξ2 =
2 Mr

M0
+ tan2 α − 1
2 tan2 α

·

·

⎡
⎢⎢⎣
√√√√√1 +

⎛
⎝
(
1 − Mr

M0

)
2 tanα

2 Mr

M0
+ tan2 α − 1

⎞
⎠

2

− 1

⎤
⎥⎥⎦

ξ = 0.07

n = 1.05
1
s

(b)

Q̇ = 3 vr A = 2.13 · 10−3 m3

s

(c)

pa + ρ g (h+H) = p1 +
ρ

2
v2

1

v1 =
Q̇

A1

p1 = 1.095 · 105 N
m2

(d)

ξ0 =
1

tanα
= 1.73

ω0 = 163
1
s

3.2.4 Laminar Flow of Viscous Fluids

4.1

(a)

(p1 − p2) π r2 − τ 2 π r L = 0

τ = −µ du

dr
r = R : u = 0

u(r)
umax

= 1 −
(
r

R

)2

(b)

u(m)
umax

=
Q̇

umax π R2

= 2
∫ 1

0

[
1 −

(
r

R

)2
]

×

× r

R
d
(
r

R

)

=
1
2

(c)

λ =
8 τw

ρ u2
m

τw =
4 µ um

R

λ =
64
Re
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4.2 For y ≤ a the fluid behaves as a rigid
body.
(a)

ρ g a ∆z = τ0∆z

a =
τ0
ρ g

(b)

a ≤ y ≤ b :
dτ

dy
= ρ g

τ = −µ dw

dy
+ τ0

y = a : τ = τ0

y = b : w = 0

w(y) =
ρ g

2 µ
[(b− a)2 − (y − a)2]

0 ≤ y ≤ a : w(y) =
ρ g

2 µ
(b− a)2

4.3

Q̇ = B
∫ δ

0
u(y) dy

dτ

dy
= ρ g sinα

τ = −µ du

dy
y = 0 : u = 0
y = δ : τ = 0

u(y) =
ρ g sinα

µ

[
δy − y2

2

]

Q̇ =
ρ g B sinα

3 µ
δ3

= 1.2 · 10−3 m3

s

4.4 (a)

−dτ

dy
+ ρ g = 0

τ = −µ dw

dy

d2w

dy2 +
ρ g

µ
= 0

y = 0 : w = 0
y = δ : τ = 0

w(y) =
ρ g

µ
δ2

[
y

δ
− 1

2

(
y

δ

)2
]
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(b)

τ 2 π dz −
−
(
τ +

dτ

dr
dr

)
2 π (r + dr) dz +

+ρ g π
[
(r + dr)2 − r2

]
dz = 0

−r dτ
dr

− τ + ρ g r = 0

τ = −µ dw

dr

d

dr

(
r
dw

dr

)
+

ρ g

µ
r = 0

r = a : w = 0
r = a + δ : τ = 0

w(r) =
ρ g

2 µ
×

×
[
(a+ δ)2 ln

r

a
+
a2 − r2

2

]

4.5 (a)

dp

dx
+
dτ

dy
= 0

τ = −µ du

dy

d2u

dy2 =
1
µ

dp

dx
y = 0 : u = 0
y = H : u = uw

u(y) =
1

2 mu

dp

dx
H2

[(
y

H

)2
− y

H

]
+

+ uw
y

H

(b)

τ(y = H)
τ(y = 0)

=
uw + 1

2 µ
dp
dx
H2

uw − 1
2 µ

dp
dx
H2

(c)

Q̇ = um B H = B
∫ H

0
u(y) dy

=
(
uw

2
− dp

dx

H2

12 µ

)
BH

(d)

umax = −dp

dx

H2

8 µ

(e)

dIx

dt
= B

∫ H

0
ρ u(y)2 dy =

6
5
ρ u2

m BH

(f)

τw
ρ
2 u

2
m

=
12
Re

(g)

4.6



116 3. Exercises in Fluid Mechanics

(a)

dp

dx
+

1
r

d(τ r)
dr

= 0

Compare problem 5.4b

τ = −µ du

dr
1
r

d

dr

(
r
du

dr

)
− 1
µ

dp

dx
= 0

r = a : u = 0
r = R : u = 0

u(r) = − 1
4 µ

dp

dx
(R2 − a2) ×

×
⎡
⎣R2 − r2

R2 − a2 − ln
(

r
R

)
ln
(

a
R

)
⎤
⎦

(b)

τ(r = a)
τ(r = R)

=
R

a

2 a2 ln a
R

+R2 − a2

2R2 ln a
R

+R2 − a2

(c)

um =
Q̇

π (R2 − a2)

=
1

π (R2 − a2)

∫ R

a
u(r) 2πr dr

= − 1
8µ

dp

dx
R2

[
1 +

(
a

R

)2
+

+
1 −

(
a
R

)2

ln
(

a
R

)
⎤
⎥⎦

4.7 (a)

d

dr

[
1
r

d

dr
(r v)

]
= 0

r = Ri : v = 0
r = Ra : v = ω Ra

v(r) =
ω R2

a

r

r2 −R2
i

R2
a −R2

i

(b)

µ =
τ

−r d
dr

(
v
r

)
∣∣∣∣∣∣
r=Ri

Mz = −τ(r = Ri) 2π R2
i L

µ =
Mz

4 π ωR2
i L

[
1 −

(
Ri

Ra

)2]

= 10−2 Ns
m2

4.8

ρ
de

dt
dx dy =

=
[
q −

(
q +

∂q

∂y
dy

)]
dx + τ u dx−

−
(
τ +

∂τ

∂y
dy

) (
u +

∂u

∂y
dy

)
dx

dτ

dy
= 0

q = −λ ∂T

∂y

τ = −µ ∂u

∂y

ρ
de

dt
= λ

∂2T

∂y2 + µ

(
∂u

∂y

)2

(a) It follows from problem 5.5a):

u(y) = uw
y

H

ρ
de

dt
= ρ cv

(
∂T

∂t
+u

∂T

∂x
+v

∂T

∂y

)

= 0
d2T

dy2 = −µ

λ

(
uw

H

)2

y = H : T = Tw

y = 0 : q = 0

T (y) = Tw +
µ

2λ

(
uw

H

)2
(H2−y2)
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(b)

qw = −λ dT

dy

∣∣∣∣∣
y=H

=
µ u2

w

H

(c)

h0 = cp T +
v2

2
= cp T +

u2

2
h0 = const: ∇ h0 = 0

∂h0

∂x
= cp

∂T

∂x
+
∂(u2

2 )
∂x

= 0

∂h0

∂y
= cp

∂T

∂y
+
∂(u2

2 )
∂y

= cp
dT

dy
+ u

du

dy

=
(
1 − µ cp

λ

) (
uw

H

)2
y

Pr =
µ cp

λ
= 1 :

∂h0

∂y
= 0

(d)

∂T

∂y
= 0

dT

dt
=

µ

ρ cv

(
uw

H

)2

t = 0 : T = T0

T (t) = T0 +
µ

ρ cv

(
uw

H

)2
t

4.9 (a)

Velocity distribution:

τ + r
dp

dx
+ r

dτ

dr
= 0

τ = −µ du

dr

r
dp

dx
− µ

d

dr

(
r
du

dr

)
= 0

r = R : u = 0

r = 0 :
du

dr
= 0

Temperature distribution:

0 = q 2 π r dx + τ u 2π r dx −
−

(
q +

dq

dr
dr

)
2π (r + dr) dx−

−
(
τ +

dτ

dr
dr

) (
u +

du

dr
dr

)
·

· 2 π (r + dr) dx +

+
[
p−

(
p +

dp

dx
dx

)]
·

· u π
[
(r + dr)2 − r2

]

q = −λdT
dr

λ
d

dr

(
r
dT

dr

)
+ µ r

(
du

dr

)2

= 0

r = R : T = Tw

r = 0 :
dT

dr
= 0

(b) It follows from problem 5.1a

u(r)
umax

= 1 −
(
r

R

)2

T − Tw =
µ u2

max

4 λ

[
1 −

(
r

R

)4
]

r = 0 :

Tmax − Tw =
µ u2

max

4 λ
T − Tw

Tmax − Tw

= 1 −
(
r

R

)4

4.10 (a)

Re

(
h1

L

)2

= 1.6 · 10−3

(b)

Q̇

B
=

∫ h(x)

0
u(x,y) dy

= const.
dp

dx
= µ

∂2u

∂y2

y = 0 : u = u∞
y = h(x) : u = 0
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u(x,y) = u∞

(
1 − y

h(x)

)
−

−h2(x)
2 η

y

h(x)

(
1 − y

h(x)

)
dp

dx

Q̇

B
=

u∞ h(x)
2

− h3(x)
12 µ

dp

dx

x = 0 : p = p∞

p(x) = p∞ + 6 µ u∞
∫ x

0

dx′

h2(x′)
−

− 12 µ
(
Q̇

B

) ∫ x

0

dx′

h3(x′)

With p(x = L) = p∞ yields:

Q̇

B
=

u∞
2

∫ L
0

dx
h2(x)∫ L

0
dx

h3(x)

Q̇

B
=

3
4
u∞ h1

e
2
5 − 1
e

3
5 − 1

= 4.49 · 10−5 m2

s

(c) With

K =
e

2
5 − 1
e

3
5 − 1

:

p(x) = p∞ + 15
µ u∞
h1

L

h1
·

·
[
e

2x
5L −K e

3x
5L +K − 1

]
(d)

Fpy

B
=

∫ L

0
(p(x) − p∞) dx

= 15µu∞
(
L

h1

)2[5
6

(e
2
5 −1)+K−1

]

= 3035
N
m

(e)

P

B
= u∞

∫ L

0
τxy(x,y = 0) dx

τxy = −µ du

dr

=
µ u∞
h(x)

[
1 + 3

(
1− 3K

2
h1

h(x)

)
×

×
(

1 − 2
y

h(x)

)]

P

B
= 20 µ u2

∞
L

h1
×

×
[
e

1
5 − 1 − 9K

16
(e

2
5 − 1)

]

= 55.9
W
m

4.11

dIx

dt
=

∫
τ

∂(ρ u)
∂t

dτ+
∫

A
ρ u (v · n) dA

=
∑

Fx

∫
τ

∂(ρ u)
∂t

dτ =
(
ρ
∂u

∂t
+ u

∂ρ

∂t

)
dx dy dz

∫
A
ρ u (v · n) dA =[

−ρ u2 +
(
ρ u2 +

∂(ρ u2)
∂x

dx

)]
dy dz−

−
[
−ρ uv +

(
ρ uv +

∂(ρ uv)
∂y

dy

)]
dx dz

=
[
ρ u

∂u

∂x
+ ρ v

∂u

∂y
+

+ u

(
∂(ρ u)
∂x

+
∂(ρ v)
∂y

)]
×

× dx dy dz

Continuity equation:

∂ρ

∂t
+
∂(ρ u)
∂x

+
∂(ρ v)
∂y

= 0
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∑
Fx = −

(
∂σxx

∂x
+
∂τxy

∂y

)
dx dy dz

(τyx = τxy)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −
(
∂σxx

∂x
+
∂τxy

∂y

)

4.12

µ = const. :

Frx = µ

(
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2

)
+

+
µ

3
∂

∂x
(∇ · v)

ρ = const. :

Frx = µ

(
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2

)

3.2.5 Pipe Flows

5.1

µ =
ρ ūm D

Re

ūm =
4 τ

π D2 T

ρ g (h+ L) = (1 + λ
L

D
+ ζe)

ρ

2
ū2

m

Assumption: Laminar flow

ζe = 1.16
λ = 11.92

Re =
64
λ

= 5.37

Intake region:

Le = 0.029Re D
= 0.16 · 10−3 m � L

µ = 8.40 · 10−3 Ns
m2

5.2

(a)

p1 +
ρ

2
ū2

m1 = pa +
ρ

2
ū2

m2

ū2
m1

π D2

4
= ū2

m2
π d2

4

ū2
m1 =

√√√√√2(p1−pa)
ρ

1(
D
d

)4−1

= 1
m
s

ūm2 = 4
m
s

(b)

p0 = p1 + (1 + λ
L

D
)
ρ

2
ū2

m1

Re1 =
ρ ūm1 D

µ
= 104

λ =
0.316
4
√
Re

= 0.0316

p0 = 2.66 · 105 N
m2

(c)

ūm2 =

√
2 (p0 − pa)

ρ
= 18.22

m
s

5.3

Q̇ = 25
π

4
(ūm1 D

2
1 + ūm2 D

2
2)

∆p = (1 + λ
L

D1
+ ζ)

ρ

2
ū2

m1

= (1 + λ
L

D2
+ ζ)

ρ

2
ū2

m2

ūm1 =

√√√√ 2∆p
ρ (1 + λ L

D1
+ ζ)

ūm2 =

√√√√ 2∆p
ρ (1 + λ L

D2
+ ζ)

Q̇ = 0.518
m3

s

5.4

∆p = λ
L

D

ρ

2
ū2

m

ūm =
1√
λ

√
2∆p
ρ

D

L
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ūm
ρ D

µ

√
λ = Re

√
λ

=

√
2∆p
ρ

D

L

ρ D

µ

(Re
√
λ)crit = 2300

√
64

2300
= 384

Oil:

Re
√
λ = 283

1√
λ

=
Re

√
λ

64

um = 1.56
m
s

Water:

Re
√
λ = 3.16 · 104

1√
λ

= 2.0 log(Re
√
λ) − 0.8

ūm = 2.59
m
s

5.5 (a)

ρ ūm =
(
ρ +

dρ

dx
dx

)
×

×
(
ūm +

dūm

dx
dx

)
= ρ1 ūm1

(
ρ +

dρ

dx
dx

)(
ūm +

dūm

dx
dx

)2
πD2

4
−

−ρ ū2
m

πD2

4
=−τw πD dx+

+
[
p−
(
p+

dp

dx
dx

)]
πD2

4

λ =
8 τw

ρ ū2
m

dp

dx
+ ρ1 ūm1

dūm

dx
+

λ

D

ρ

2
ū2

m = 0

(b) Compressible flow:

ρ
dūm

dx
+ ūm

dρ

dx
= 0

(Continuity equation)

ρ =
ρ1

p1
p (T = const.)

dρ

dx
=

ρ1

p1

dp

dx

dp

dx
− ρ1 p1 ū

2
m1

p2

dp

dx

+
λ

2D
ρ1 p1 ū

2
m1

p
= 0

Re = Re1 = 0.533 · 105

λ =
0.316
4
√
Re

= 0.0208

∫ 2

1
p dp − ρ1 p1 ū

2
m1

∫ 2

1

dp

p
+

+
λ

2D
ρ1 p1 ū

2
m1

∫ 2

1
dx

= 0

L =
D

λ

p1

ρ1 ū2
m1

⎡
⎣1 −

(
p2

p1

)2
⎤
⎦−

− D

λ
ln
(
p1

p2

)2

= 287.9 m

Incompressible flow:

dūm

dx
= 0

dp

dx
= − λ

D

ρ1

2
ū2

m1

L = 2
D

λ

p1 − p2

ρ1 ū2
m1

= 384.7 m

5.6 (a)

r = R − y

İ =
∫ R

0
ρ u2 2π r dr

= 2ρ u2
m π R

∫ 1

0

(
u

um

)2 r

R
d
(
r

R

)
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δ = 0 :
u

um

= 1

İ = ρ u2
m π R2

δ = R :
u

um

= 2
[
1 −

(
r

R

)2
]

İ = 1.33 ρ u2
m π R2

δ =
R

2
:

u

um

=

⎧⎨
⎩

96
17

r
R

(
1− r

R

)
R
2 ≤ r ≤ R

24
17 0 ≤ r ≤ R

2

İ = 2ρ u2
mπ R

2 ×
×
[∫ 0.5

0

(24
17

)2 r

R
d
(
r

R

)
+

+
∫ 1

0.5

[96
17

r

R

(
1 − r

R

)]2
×

× r

R
d
(
r

R

)]
= 1.196 ρ u2

m π R2

(b)

τw = µ um

2
δ

1 − 2
3

δ
R

+ 1
6

(
δ
R

)2

δ → 0 : τw → ∞
δ → R : τw = 4

µ um

R

δ → R

2
: τw = 5.65

µ um

R

5.7 (a)

p1 +
ρ

2
ū2

m1 = pa +
(
1 + λ2

L2

D2

)
×

× ρ

2
ū2

m2 +

+
(
ζ + λ1

L1

D1

)
ρ

2
ū2

m1

ζ =
(

1 − D2
1

D2
2

)2

ūm1 D
2
1 = ūm2 D

2
2

Re1 = 104 λ1 = 0.0316
Re2 = 5 · 103 λ1 = 0.0376

L2 =
D2

λ2

[(
2
D2

1

D2
2

− λ1
L1

D1

)
×

× D4
2

D4
1

− 2
]

= 1.0 m

(b)

∆pv = p1−pa +
(

1−D4
1

D4
2

)
ρ

2
ū2

m1

= 117.2
N
m2

5.8

ρ g h =
(
λ
L

D
+ 2 ζK + ζv

)
ρ

2
ū2

m +

+
ρ

2
u2

d

ud d
2 = ūm D2

Q̇ = ud
π d2

4

=

√√√√√ 2 g h

1 +
(

d
D

)4 (
λ L

D
+ 2 ζK + ζV

) π d2

4

H =
u2

d

2 g

with losses:
(a)

Q̇ = 5.79 · 10−3 m3

s
H = 6.96 m

(b)

Q̇ = 9.82 · 10−3 m3

s
H = 1.25 m

loss-free:
(a)

Q̇ = 6.94 · 10−3 m3

s
H = h

(b)

Q̇ = 27.77 · 10−3 m3

s
H = h
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5.9 (a)

λ =
0.316
4
√
Re

ūm =
µ

ρ D
Re

τw =
λ ρ ū2

m

8
= 2.22

N
m2

(b)

ūm

u∗
=

ūmax

u∗
− 4.07

λ = 8
(
u∗
ūm

)2

ūm

ūmax

=
1

1 + 4.07
√

λ
8

= 0.84

(c)

y u∗
ν

= 5 =
ū

u∗
(Viscous sub-layer)

ū = 5

√
λ

8
ūm = 0.236

m
s

(for y = 0.11 mm)

y u∗
ν

= 50

(Logarithmic velocity distribution)

ū

u∗
= 2.5 ln

(
y u∗
ν

)
+ 5.5

ū = 0.720
m
s

(for y = 1.1 mm)

(d)

l = 0.4 y = 0.4
y u∗
ν

ν√
λ
8 ūm

= 0.85 mm

5.10 (a)

r = R − y

ūm

ūmax

=
Q̇

π R2 ūmax

= 2
∫ 1

0

(
1− r

R

) 1
7 r

R
d
(
r

R

)

=
49
60

(b)

İ

ρ ūm π R2 =
∫ R
0 ρ ū2 2 π r dr
ρ ū2

m π R2

= 2
(
ūmax

ū

)2
·

·
∫ 1

0

(
1 − r

R

) 2
7 r

R
d
(
r

R

)

=
50
49

5.11 (a)

(b)

pa + ρ g h1 = p1 +
(
1 + λ

L

2D

)
ρ

2
ū2

m

Q̇ = ūm
π D2

4

Re =
ūm D

ν
= 8 · 105

R

ks

= 250

(From diagram, page 29)

λ = 0.024

p1 = 1.22 · 105 N
m2

(c)

p2 = pa + ρ g h2 + λ
L

2D
ρ

2
ū2

m

= 3.77 · 105 N
m2

(d)

P = Q̇(p2 − p1) = 160.5 kW
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5.12

(a)

∆p = λ
L

D

ρ

2
ū2

m

Q̇ = ūm
π D2

4

λ =
π2 ∆p D5

8 ρ L Q̇2
= 0.0356

(b)

Re =
ρ ūm D

η
= 1.8 · 105

(From diagram, page 29)

R

ks

= 60

ks = 4.2 mm

(c)

∆p
π D2

4
− τw π DL = 0

τw = ∆p
D

4L
= 16

N
m2

F = −∆p π D
2

4
= −2517 N

(d)

λ = 0.016

(From diagram page 29)

∆p = 5.8 · 103 N
m2

5.13

P1

P2
=

(
1 + λ1

L
D1

)
ρ
2 ū

2
m1(

1 + λ2
L

D2

)
ρ
2 ū

2
m2

Q̇ = ūm
π D2

4
1√
λ

= 2.0 log
(
R

ks

)
+ 1.74

P1

P2
=

1 + λ1
L

D1

1 + λ2
L

D2

(
D2

D1

)4

= 39.2

5.14

λps
L

D

ρ

2
ū2

mps = λch
Lch

dh

ρ

2
ū2

mch

dh = a

Rech =
ρ a

µ

Q̇

a2 = 105 λch = 0.018

Reps =
ρ D

µ

Q̇

100 π D2

4

λch = 0.030

= 1.27 · 104

Lch = 13.57 m

5.15

ρ g L sinα +
ρ

2
ū2

m =
(
1 + λ

L

dh

)
ρ

2
ū2

m

dh =
4 a2

3 a

Reh =
ρ dh

µ

Q̇

a2 = 8 · 103 λ = 0.033

α = 0.02◦

∆pv

L
= λ

1
dh

ρ

2

(
Q̇

a2

)2

= 3.61
N
m3

3.2.6 Similar Flows

6.1

ū =
u

v1
, v̄ =

v

v1
, p̄ =

p

∆p1
, ρ̄ =

ρ

ρ1
,

µ̄ =
µ

µ1
, x̄ =

x

L1
, ȳ =

y

L1
, t̄ =

t

t1

ρ̄

(
Sr

∂ū

∂t
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)

= −Eu ∂p̄

∂x̄
+

µ̄

Re

(
∂2ū

∂x̄2 +
∂2ū

∂ȳ2

)

Sr =
L1

v1 t1
, Eu =

∆p1

ρ1 v2
1
,

Re =
ρ1 v1 L1

µ1
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6.2

f1(Re,Eu) = 0 : Eu = f2(Re)

λ =
D

L

∆p
ρ
2 u

2
m

= 2
D

L
Eu = f3(Re)

6.3 (a)

L3 T−1 = (M L−2 T−2)α

· (M L−1 T−1)β Lγ

α = 1 β = −1 γ = 4

Q̇ ∼ ∆p D4

L µ

(b)

λ =
D

L

∆p
ρ
2 u

2
m

∆p D

L
∼ Q̇ η

D3 ∼ um µ

D

λ ∼ 1
Re

6.4

FDa

FDw

=
cDa

π
4 D

2
a

ρa

2 u2
∞L

cDw
π
4 D

2
w

ρW

2 u2∞w

=
cDa µ

2
a

ρw

2 Re2
a

cDw µ2
w

ρa

2 Re2
w

Rea = Rew : cDa = cDw

FDa

FDw

= 0.281

6.5

F (f,µ,ρ,u∞,D) = 0
K1 = fα1 ρβ1 uγ1∞ Dδ1

Take α1 = 1 :

β1 = 0. γ1 = −1, δ1 = 1

K1 =
fD

u∞
= Sr

K2 = µα2 ρβ2 uγ2∞ Dδ2

Take α2 = −1 :

β2 = 1, γ1 = 1, δ2 = 1

K2 =
ρ u∞ D

µ
= Re

6.6 (a)

Sr′ = Sr : Re′
min = 200

D′
min = Re′

min

ν ′

v′ = 1 mm

(b)

Sr = Sr′ : f =
v D′

min

v′ D
f ′ = 2

1
s

6.7 (a)

Re = Re′ : v′ =

√
A

A′ v

Small, so that flow in wind-tunnel
remains incompressible:

A′ = Am : v′ = 77.46
m
s

(b)

P =
FD

F ′
D

F ′
D v

=
cD

ρ
2 v

2 A

cD′ ρ
2 v

′2 Am

F ′
D v

Re = Re′ : cD = c′
D

P = F ′
D v = 24.3 kW

6.8 (a)

Re = Re′ :

Q̇ =
vA

v′A′ Q̇
′

=
µ ρ′ D′A
µ′ ρ DA′ Q̇

′

A

A′ =
(
D

D′

)2

Q̇ = 9
m3

s

(b)

Eu = Eu′ : ∆p =
ρ v2

ρ′ v′2 ∆p
′

=
ρ Q̇2 A′2

ρ′ Q̇′2 A2
∆p′

= 4.94 · 103 N
m2



3.2 Solutions 125

6.9 (a)

Re = Re′ : Q̇′ =
v′ D′2

v D2 Q̇

=
η′ ρ D′

η ρ′ D
Q̇

= 0.5
m3

s

Sr = Sr′ : n′ =
v′ D
v D′ n

= 13.3
1
s

(b)

Eu = Eu′ : ∆p0 =
ρ v2

ρ′ v′2 ∆p0

= 527
N
m2

(c)

P = Q̇∆p0 = 15.82 kW
P ′ = Q̇′∆p′

0 = 15 kW

M =
P

2 π n
= 201 Nm

M ′ =
P ′

2 π n′ = 179 Nm

6.10 (a)

T ′ = T : µ′ = µ300 K

Ma = Ma′ : v′ = v = 200
m
s

Re = Re′ : p′ =
ρ′

ρ
p =

D

D′ p

= 4 · 105 N
m2

(b)

Sr = Sr′ : n′ =
v′ D
v D′ n = 400

1
s

(c)

P =
ρ
2 v

3 D2

ρ′
2 v′3 D′2 P

′ = 4 P ′

6.11 (a)

Re = Re′ :
ν ′

ν
=

v′ L′

v L

Fr = Fr′ :
v′

v
=

√
L′

L
ν ′

ν
= 10−3 (!)

(b)

Fr = Fr′ :
v′

v
=

√
L′

L
= 0.1

oder

Re = Re′ :
v′

v
=

L

L′ = 100

6.12 (a)

FrL = Fr′
L : v′ = v

√
L′

L

= 0.75
m
s

(b)

cD = c′
D

FD =
ρ
2 v

2 B H
ρ
2 v

′2 B′ H ′ F
′
D

= 1.64 · 104 N

(c)

cD = 1.12

(d)

v√
g h

=
v′

√
g h′ : h = 16 h′ = 0.4 m

6.13 (a)

Eu = Eu′, Re = Re′ :
p′

0 − pR

p0 − pR

=
ρ′ v′2

ρ v2 =
ρ D2 µ′2

ρ′ D′2 µ′2

p′
0 − pR = 440

N
m2

Sr = Sr′ :

T ′ =
v D′

v′ D
T = 0.57 s

(b) Analogously to a)

Pmax = 6.68 · 105 N
m2

6.14 (a)

Re = Re′ : v′ =
ρ µ′ D
ρ′ µ D′

Q̇
π
4 D

2

= 0.1
m
s

Q̇ = 8 · 10−4 m3

s
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(c)

α =
˙4 Q

π d2√
2 ∆ p′

D

ρ

=

(
D
d

)2

√
2 EuD

EuD = Eu′
D : α = α′ = 0.6366

Eul = Eu′
l : ζ = ζ ′ = 77.1

(d)

∆pD =
ρ v2

ρ′ v′2 ∆p
′
D

= 0.625 · 105 N
m2

∆pl =
ρ v2

ρ′ v′2 ∆p
′
l

= 0.5 · 105 N
m2

3.2.7 Potential Flows
of Incompressible Fluids

7.1 (a)

(b)

Γ =
∮

c
v ds

=
∫ 2 π

0
vθ(r) r dθ

=
{

2 πω r2 r ≤ r0

2 πω r2
0 r > r0

(c)

Γ =
∮

c
v ds = 0

ω = 0

(d)

E =
∫ 2 r0

0

ρ

2
v2

θ H 2 π r dr

= π ρ H ω2 r2
0 (0.25 + ln 2)

= 3.7 · 108 Nm

7.2 (a)

u =
∂Φ

∂x
v =

∂Φ

∂y

Potential Φ exists, if

∇ x v = 0 .

u =
∂Ψ

∂y
v = −∂Ψ

∂x

Stream function exists, if,

∇ · v = 0 .

(b)

∇ · v = ∇2 Φ

∇ x v = −∇2 Ψ k

7.3
∇ · v | ∇ x v |

a) 4xy y2 − x2

b) 2 0
c) 0 -2
d) 0 0

Stream function exists, for c) and d),
the potential for b) and d).

Determination of the stream function:
(a)

Ψ =
∫
u dy + f(x) =

y2

2
+ f(x)

v = −∂Ψ

∂x
= −f ′(x) = −x

Ψ =
1
2
(x2 + y2) + c

(b)

Ψ =
1
2
(y2 − x2) + c
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Determination of the potential:
(c)

Φ =
∫
u dx + f(y) =

x2

2
+ f(y)

v =
∂Φ

∂y
= f ′(y) = y

Φ =
1
2
(x2 + y2) + c

(d)

Φ = xy + c

7.4 (a)

| ∇ x v |= 0 : Potential exists.

(b)

u =
U

L
x v = −U

L
y

Stagnation points:

u = v = 0 : x = y = 0

Pressure coefficient:

cp =
p− pref

ρ
2 v2

ref

= 1 − u2 + v2

u2
ref + v2

ref

= 1 − x2 + y2

x2
ref + y2

ref

Isotachs:

v2 = u2 + v2 =
(
U

L

)2

(x2 + y2)

x2 + y2 =
(

v L

U

)2

Circles around the origin of coordi-
nates with radius

| v | L
U

(c)

u1 = 4
m
s

v1 = −4
m
s

| v1 |= 5.66
m
s

p1 = pref + cp1
ρ

2
v2

ref

= 0.86 · 105 N
m2

(d)

t =
∫ x2

x1

dx

u
=

L

U
ln
x2

x1
x2 = 5.44 m

Ψ = const : x1 y1 = x2 y2

y2 = 0.74 m

(e)

p1 − p2 = (cp1 − cp2)
ρ

2
v2

ref

= 0.442 · 105 N
m2

(f)

7.5 (a)

u = 2 x y v = x2 − y2

∇·v = 0:Stream function exists.

(b)

Ψ = x y2 − x3

3
+ c

Streamlines: Ψ = const.

y = ±
√
x3

3
+
k

x
(x �= 0)

Asymptotes:

x → ±∞ : y = ± x√
3

x → ±0 : y → ±∞
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7.6

vr =
c

r
vθ = 0

(a)

∇ x v = 0
∇ · v = 0

(b)

Φ =
∫
vr dr + f1(θ)

= c ln r + f1(θ)
∂Φ

∂θ
= 0 : f1(θ) = k1

Ψ =
∫
r vr dθ = cθ + f2(r)

∂Ψ

∂r
= 0 : f2(r) = k2

(c) Circle with radius r:

Γ =
∫ 2 π

0
vθ r dθ = 0

vr = 0 vθ =
c

r

(a)

∇ x v = 0
∇ · v = 0

(b)

Φ = c θ + k3

Ψ = −c lnx + k4

(c)

Γ = 2 π c

7.7 (a) n = 0.5:

Ψ = 2
√
r sin

(
θ

2

)

Ψ = 0 : θ = 0.2 π

Ψ = c : r =
(
c

2

)2
sin−2

(
θ

2

)

Parallel flow:

n = 1 : Ψ = r sin θ = y

n = 2 : Ψ =
1
2
r2 sin(2 θ) = xy

See problem 8.4.
(b)

cp =
p− pref

ρ
2 v2

ref

= 1 − v2

v2
ref

vθ = −rn−1 sin(n θ)
vr = rn−1 cos(n θ)

cp = 1 −
(
x2 − y2

2

)n−1

n = 1 : cp(0.0) = 0
n > 1 : cp(0.0) = 1
n < 1 : cp(0.0) = −∞

7.8 (a)

Ψ =
E

2 π
θ − Γ

2 π
ln

r

R

vr =
E

2 π r

vθ =
Γ

2 π r
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tanα = −vr

vθ

∣∣∣∣
r=R0

E = − Q̇

h0

Γ =
Q̇

h0 tanα
= 4.33 · 10−2 m2

s

(b)

ρ g h+
ρ

2
v2 = ρ g h0 +

ρ

2
v2

0

v2 = v2
r + v2

θ

v2
θ = v2

r=R0

h(r) = h0 +
1
8g

(
Q̇

π R0 h0 sinα

)2

·

·
[
1 −

(
R0

r

)2]

(c)

lim
r→∞h(r) = h0+

1
8g

(
Q̇

π R0 h0 sinα

)2

= 2.35 · 10−2 m

7.9

(a)

Ψ = u∞ y +
E

2 π
θ + c

= u∞

[
y +

h

π
arctan

(
y

x

)]
+ c

u = u∞

(
1 +

h

π

x

x2 + y2

)

v = u∞
h

π

y

x2 + y2

Stagnation point: u = v = 0 :

xs = −h

π
, ys = 0

u(xs,h) = u∞
π2

1 + π2

v(xs,h) = u∞
π2

1 + π2

(b) Contour: Streamline through stag-
nation point

rC =
h

π

π − θ

sin θ
=

h

π

θ′

sin θ
with

θ′ = π − θ

(c)

cp = 1 − u2 + v2

u2∞
= −h

π

2x + h
π

x2 + y2

cpC =
sin(2 θ′)

θ′ −
(

sin θ′

θ′

)2

(d)

cp = const:

(
x +

h

π cp

)2

+ y2 = (1−cp)
(

h

π cp

)2

Circles around
(
− h

π cp
.0
)

with radius
h
√

1−cp

π cp

(e)

cp =
1
2

:
(
x +

2h
π

)2

+ y2 = 2
(
h

π

)2
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(f)
√
u2 + v2

u∞
= k

(
x−

h
π

k2 − 1

)2

+ y2 =
(

kh
π

k2 − 1

)2

Circles around
(

h
π (k2−1) .0

)
with ra-

dius kh
π (k2−1)

(g)

v = u∞
h

π

y

x2 + y2 >
u∞
2

x2 +
(
y − h

π

)2

<

(
h

π

)2

(h)

tanα =
v

u
= 1(

x +
h

2π

)2

+
(
y− h

2π

)2

=
1
2

(
h

π

)2

(i) Acceleration along the x-Axis:

b =
du

dt
= u

∂du

∂dx

= −u∞
h

π

(
1
x2 +

h

π

1
x3

)

db

dx
= 0 : xmax = −3

2
h

π

bmax = − 4
27

π

h
u2

∞

7.10 (a)

Ψ = 0 : y = 0
x2 + y2 = R2

(Parallel flow)

r =
√
x2 + y2 → ∞ : Ψ → u∞ y

Stream function describes the flow
around a cylinder.

(b)

cp = 1 − v2
r + v2

θ

u2∞

vr = u∞

[
1 −

(
R

r

)2]
cos θ

vθ = −u∞

[
1 +

(
R

r

)2]
sin θ

r = R : cp = 1 − 4 sin2 θ

(c)

∆t =
∫ 2R

−3R

dx

u(x.0)

u(x.0) = u∞

(
1 − R2

x2

)

∆t =
1
u∞

[
x +

R

2
ln

x−R

x +R

]−2R

−3R

=
R

u∞
(1 + 0.5 ln 1.5)

7.11 Determination of velocity components
see problem 8.10.

cp =
(

R
r

)2
[
2 cos(2 θ) −

(
R
r

)2
]

(a)

cp = 0

r =
R√

2 cos(2 θ)
or

(√
2 x
R

)2

−
(√

2 y
R

)2

= 1

Hyperbola
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(b)

cp =
7
16

− sin θ

7.12 (a)

∆p = (cp1−cp1)
ρ

2
u2

∞

cp = 1 − 4 sin2 α

sin2 α2 − sin2 α1 = sin(α1 + α2)
· sin(α2 − α1)

∆p = 2 ρ u2
∞ sin(2 α) sin(2 ε)

(b)

α =
π

2

7.13 (a)

ρ g h∞ +
ρ

2
u2

∞ = ρ g h(θ) +
ρ

2
v2

r = R : v2 = v2
θ = 4u2

∞ sin2 θ

h(θ) − h∞ =
u2

∞
2g

(1−4 sin2 θ)

(b) Stagnation points:

θ = 0 und θ = π

h = h∞ +
u2

∞
2 g

= 6.05 m

(c)

θmin =
π

2
,

3 π
2

hmin = h∞ − 3 u2
∞

2 g
= 5.85 m

7.14

dFy = (pi − p) LH sin θ dθ

pi = p∞ +
ρ

2
u2

∞

p = p∞ + cp
ρ

2
u2

∞

= p∞ + (1 − 4 sin2 θ)
ρ

2
u2

∞

Fy =
∫ 3 π

4

π
4

2 ρ u2
∞ LH sin3 θ dθ

= 2 ρ u2
∞ LH

[
−1

3
sin2 θ cos θ−

−2
3

cos θ
] 3 π

4

π
4

= 7.37 · 106 N < G

Mooring not necessary.

7.15 (a)

Ψ = u∞ r sin θ
[
1 −

(
R

r

)2]
−

− Γ

2 π
ln

r

R

vr = u∞

[
1 −

(
R

r

)2]
cos θ

vθ = −u∞

[
1 +

(
R

r

)2]
sin θ ∗

+
Γ

2 π r

r = R : vθ vortex = vt =
Γ

2 π R
Γ = 2 π R vt

(b) Flow field for vt = u∞:

Ψ = u∞ r sin θ
(

1 −
(
R

r

)2)
−

− u∞ R ln
r

R

vr = u∞

[
1 −

(
R

r

)2]
cos θ

vθ = u∞

[
R

r
−
[
1 +

R2

r2

]
sin θ

]

Ψ = 0 :
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Contour: Circle around the ori-
gin of coordinates with radius R.
2 Stagnation points on the contour
(r = R): θs = π

6 ,
5π
6 ; nor free Stagna-

tion points

(c)

dFx = −pLR cos θ dθ
dFy = −pLR sin θ dθ

p = p∞ + cp
ρ

2
u2

∞

r = R :

cp = 1 −
(
vt

u∞
− 2 sin θ

)2

Fx = −LR
∫ 2 π

0

ρ

2
u2

∞ ×

×
[
1 −

(
vt

u∞
− 2 sin θ

)2
]

×
× cos θ dθ −
− LR

∫ 2 π

0
p∞ cos θ dθ = 0

Fy = −LR
∫ 2 π

0

ρ

2
u2

∞ ×

×
[
1 −

(
vt

u∞
− 2 sin θ

)2
]

×
× sin θ dθ −
− LR

∫ 2 π

0
p∞ sin θ dθ

= −2 π ρLR vt u∞
= −ρ u∞ Γ L

3.2.8 Boundary Layers

8.1

cD ∼ FD

ρ u2∞ BL
∼ τ̄w

ρ u2∞

∼
η u∞

δ

ρ u2∞
∼ µ

ρ u∞ δ

Inertia and frictional forces of equal or-
der of magnitude:

ρ u2
∞

L
∼ τ̄w

δ

cD ∼ 1√
ReL

8.2 (a)

xcrit. =
ν Recrit

u∞
= 0.167 m

(b)

η =
y

x

√
Rex = 1.095

u

u∞
= 0.36 : u = 16.2

m
s

from diagram, page 60

x = 0.15 m : Rex = 4.5 · 105

y

x

√
Rex = 1.095 : y = 2.45 · 10−4m

(c)

(d)



3.2 Solutions 133

8.3

−ρ u2
∞ δ + ρ

∫ δ

0
u2 dy +∆ ṁ u∞ =

=
∫ x

0
τ(x′,y = 0) dx′

∆ ṁ = ρ
∫ δ

0
(u∞ − u) dy

∫ δ

0

u

u∞

(
1 − u

u∞

)
=

= δ2 = −
∫ x

0

τ(x′,y = 0)
ρ u2∞

dx′

8.4 (a)

ReL = 3.33 105 :

Boundary layer laminar

(b)

y = 0 : u = v = 0
y → ∞ : u → u∞

(c)

From boundary-layer equation:
∂τ

∂y
= 0 for y = 0 und y = δ

(d) From Blasius solution:

δ(x = L) =
5L√
ReL

cf =
0.664√
Rex

δ(x = L) = 4.33 mm

Fw = 2
∫ L

0
B τw dx

= ρ u2
∞ B

∫ L

0
cf dx

= 0.144 N

8.5 (a) Boundary conditions:

y

δ
= 0 :

u

u∞
= 0,

v

u∞
= 0

y

δ
= 1 :

u

u∞
= 1

From boundary-layer equation:

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= η

∂2u

∂y2 :

y

δ
= 0 : u = v = 0 :

∂2
(

u
u∞

)
∂
(

y
δ

)2 = 0

y

δ
= 1 :

∂u

∂x
=

∂u

∂y
= 0 :

∂2
(

u
u∞

)
∂
(

y
δ

)2 = 0

Inviscid external flow

y

δ
= 1 : τ ∼ ∂

(
u

u∞

)
∂
(

y
δ

) = 0

u

u∞
= 2

(
y

δ

)
− 2

(
y

δ

)3
+
(
y

δ

)4

(b)

δ1
δ

=
∫ 1

0

(
1 − u

u∞

)
d
(
y

δ

)

=
3
10

δ2
δ

=
∫ 1

0

u

u∞

(
1 − u

u∞

)
d
(
y

δ

)

=
37
315
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Von Kármán integral relation

dδ2
dx

+
τ(y = 0)
ρ u∞

= 0

τ(y = 0) = − µ u2
∞
δ

d
(

u
u∞

)
d
(

y
δ

)2

∣∣∣∣∣∣∣
y
δ
=0

= −2
µ u∞
δ

Integration:

δ

x
=

5.84√
Rex

cD =
2
L

∫ L

0

τw

ρ u2∞
dx

= − 2
L

∫ L

0

τ(y = 0)
ρ u2∞

dx

=
1.371√
ReL

8.6 (a) Solution see problem 9.5
A)

δ1
δ

=
3
8
,

δ2
δ

=
39
280

,

δ

x
=

4.641√
Rex

,

cD =
1.293√
ReL

B)

δ1
δ

= 1 − 2
π

= 0.363

δ2
δ

=
2
π

− 1
2

= 0.137

δ

x
=

√
2 π2

4−π√
Rex

=
4.795√
Rex

cD =
2
√

2 − π
2√

ReL

=
1.310√
ReL

(b) A)

δ(x = L) = 3.288 mm
FD = cD ρ u2

∞ 2 L B

= 0.91 N

B)

δ(x = L) = 3.39 mm
FD = 0.93 N

3.2.9 Drag

9.1 (a)

F1 = cD1
ρ

2
u2

∞ 2 L1 B

ReL1 = 1.8 · 105 < Recrit.

cD1 =
1.328√
ReL1

= 3.13 · 10−3

F1 = 0.564 N
ReL = 3.6 · 105 < Recrit.

Ftot = F1 + F2

=
1.328√
ReL

ρ

2
u2

∞ 2 L B

F2 = 0.233 N

(b)

Ftot = 2 F1

L1 =
L

4
= 0.09 m

L2 = 0.27 m

9.2 (a) The frictional drag results from
the shear stresses acting on the
body, the pressure drag results from
change of the potential pressure dis-
tribution caused by the frictional
force.

(b)

cD1
ρ

2
u2

∞ 2 L2
1 = cD2

ρ

2
u2

∞ 2 L2
2

Re1 =
u∞ L1

ν
= 3.33 · 105

cD1 =
1.328√
Re1

= 2.30 · 10−3

Assumption:

Re2 =
u∞ L2

ν
> 103 : cD2 = 1.1

L2 = L1

√
2 cD1

cD2
= 6.47 · 10−2 m

Re2 = 2.16 · 104 > 103

(c)

FD1 =
1.328√
Re1

ρ

2
u2

∞ 2 L2
1 ∼ u

3
2∞

FD2 = 1.1
ρ

2
u2

∞ L2
2 ∼ u2

∞
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9.3 (a)

FD1

FD2
=

cD1

cD2

u∞ Re1 103 cD1

0.4 m
s 4 · 105 2.10

0.8 m
s 8 · 105 2.76

1.6 m
s 1.6 · 105 3.19

Re1 103 cD2
FD1
FD2

2 · 105 2.97 0.707

4 · 105 2.10 1.313

8 · 105 2.76 1.156
(b)

Re1 = 1.96 · 105

cD1 = cD2 = 3.0 · 10−3

1)

Re2 = Re1 : u∞2 = 0.392
m
s

2)

Re2 ≈ 1.3 · 106 : u∞2 = 2.6
m
s

3)

Re3 ≈ 9 · 106 : u∞2 = 18
m
s

(2) and 3) from diagram page 64).

9.4

cL =
FL

ρ
2 u

2∞ A

FL − W − F sin(β − α) = 0

cL =
W + F sin(β − α)

ρ
2 u

2∞ A
= 1.28

cD =
FD

ρ
2 u

2∞ A

FD − F cos(β − α) = 0

cD =
F cos(β − α)

ρ
2 u

2∞ A
= 0.96

9.5

cD =
2
∫ π
0 dFw(α)

ρ
2 u

2∞ DL

dFD(α) = dF (α) cosα

= p(α) L
D

2
cosα dα

p(α) = cp(α)
ρ

2
u2

∞ + p∞

0 ≤ α ≤ 2
3
π :

p(α) = (1 − 4 sin2 α)
ρ

2
u2

∞ + p∞

2
3

≤ α ≤ π :

p(α) =
[
1 − 4 sin2(

2
3
π)
]
ρ

2
u2

∞ + p∞

= −2
ρ

2
u2

∞ + p∞

cD =
√

3

9.6 (a)

FDS = FDB

cDB
ρw

2
u2LB = cDS

ρa

2
×

×(u∞ − u)2hb

2

ReL =
ρW u L

µW

= 5.625 · 106

cDB =
0.074

Re
1
5
L

− 1700
ReL

= 3.0 · 10−3
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Assumption:

Reb =
ρa (u∞ − u) b

µa

> 103

cDS = 1.2

u∞ = u

(
1 +

√
cDB

cDS

ρW

ρa

2 LB
hb

)

= 2.95
m
s

Reb = 1.94 · 105 > 103

(b)

FDS = 6.33 N

(c)

F ∗
DB = c∗

DB

ρa

2

(
u∞ − u2

)
LB

Re∗
L =

ρa (u∞ − u) L
µa

= 3.63 · 105

c∗
DB =

1.328√
Re∗

L

= 2.20 · 10−3

F ∗
DB = 5.45 · 10−3 � FDB

9.7

cD
ρ

2
v2 A = W

A =
W

cD
ρ
2 v

2 = 75.2 m2

9.8 (a)

FD = W (Lift can be neglected)

Sphere:

cD
ρa

2
v2 π D

2
S

4
= ρ

π D3
S

6
g

v = Re
νa

DS

DS = 3

√
18Re

ρL

ρ

ν2
a

g

Re = 0.5 :
DSmax = 6.81 · 10−2 mm

Cylinder (Length L):

cD
ρa

2
v2 DC L = ρ

π D2

4
L g

DC = 3

√
16Re

2 − lnRe
ρa

ρ

ν2
a

g

Re = 0.5 :
DCmax = 4.71 · 10−2 mm

(b)

vS = 0.110
m
s

vC = 0.159
m
s

9.9

v = Re
ν

D

(a) (Lift can be neglected:)

FD = W = ρW
π D3

6
g

FD = cD
ρa

2
v2 π D

2

4
= cD Re2 π

8
ρa v

2
a

Re
√
cD =

√
8 FD

π ρa

1
νa

=

√
4
3
ρW

ρa

D g
D

νa

= 217.7

from diagram: Re = 250

v = 3.75
m
s

(b) (Weight can be neglected)

FD = FL = ρW
π D3

6
g

FD = cD
ρW

2
v2 π D

2

4

Re
√
cD =

√
4
3
D g

D

νW

= 115

Re = 113
v = 0.11

m
s

9.10
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W = FD (Lift can be neglected)
vrel = va − vs

(a)

vs = 0

cDW
ρa

2
v2

1
π D2

S

4
= ρS

π D3
S

6
g

Assumption: Re =
ρa v1 DS

µa

< 1

v1 = −24
9

µa

ρa DS

+

+

√√√√( 24 µa

9 ρa DS

)2

+
8
27

ρS

ρa

DS g

= 0.168
m
s

Re = 0.559 < 1

(b)

vrel = v1

vs = va − v1 = 2.832
m
s

9.11 (a)

FD = W

(Lift can be neglected)

cD
ρa

2
v2

a

π D2

4
= ρW

π D3

6
g

Assumption:

Re =
ρa va D

µa

< 0.5

va =
ρW g D2

18 µL

= 0.107
m
s

Re = 0.427 < 0.5

(b)

ρW
π D3

6
dv

dt
= ρW

π D3

6
g −

− 24 µa

ρa v D

ρa

2
v2 π D

2

4

Steady sinking velocity:
vs = va

1
g

dv

dt
= 1 − v

va

T = −va

g
ln
(
1 − v

va

)0.99 va

0
= 0.049 s

9.12 (a)

W = FD1

(Lift can be neglected)

FD1 = cD1
ρa

2
v2

1
π D2

4
cD1 = 0.4 (Re1 = 3.03 · 105)

(b)

Re2 =
v2 D

νa

= 4.2 · 105

from diagram: cD2 = 0.1

FD2 = cD2
ρa

2
v2

2
π D2

4
= 1.95 N < W

Acceleration v3, so that

G = FD3

G = cD3
ρa

2
v2

3
π D2

4

from diagram: cD3 = 0.1

v3 = 26.0
m
s

9.13 (a)

P1 = F1 v1 = F1
H

T1
= 1000 W

(b)

W = F1 + FL − FD1

= F1 + ρ
π D3

6
g −

− cD
ρ

2

(
H

T1

)2 π D2

4

Re =
ρ H D

µ Ta

= 1.85 · 105

from diagram: cD1 = 0.4
G = 3349 N

(c)

FD2 = cD2
ρ

2

(
H

T2

)2 π D2

4
= 2 F1 + FL −W
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Assumption:

Re2 =
ρ H D

µ T2
> 3.6 · 105

from diagram: cD2 = 0.1

T2 = HD

√
π ρ cD2

8 (F1 + FD1)
= 241.0 s

Re2 = 8.3 · 106

(d)

P2 = 2 F1
H

T2
= 89.64 kW

9.14 (a)

ρW
π D3

6
dv

dt
= −ρS

π D3

6
g −

− cD2
ρa

2
v2 π D

2

4

Introduce steady sinking velocity:

v2
s =

4
3
ρS

ρa

D g

cD

−

−1
g

dv

1 +
(

v
vs

)2 = dt =
dz

v

H = −1
g

∫ 0

v0

v dv

1 +
(

v
vs

)2

=
v2

s

2 g
ln
[
1 +

(
v

vs

)2
]

(b)

TH = −1
g

∫ 0

v0

dv

1 +
(

v
vs

)2

=
v2

s

g
arctan

v0

vs

(c)

ρS
π D3

6
g
dv

dt
= − cD

ρa

2
v2π D

2

4
+

+ ρS
π D3

6
g

1
g

dv

1 −
(

v
vs

)2 = dt =
dz

v

H =
1
g

∫ vB

0

v dv

1 −
(

v
vs

)2

= − v2
s

2 g
ln
[
1 −

(
vB

vs

)2
]

vB =
vs√

1 +
(

v
vs

)2

(d)

TB = −1
g

∫ vB

0

dv

1 −
(

v
vs

)2

=
v2

s

g
ln
vs + vB

vs − vB

(e)
cD = 0.4 cw = 0

wooden metal
sphere sphere

H [m] 37.2 44.0 45
TH [s] 2.64 2.96 3
vB

[m
s

]
24.9 29.3 30

TH [s] 2.81 2.98 3


