3. Exercises in Fluid Mechanics

3.1 Problems

3.1.1 Hydrostatics

1.1 The density of a fluid p; is to be deter-
mined with a U-tube. One stem is filled
with water.

water 3
L

liquid

. k
h=03m L=02m p,=10°—>
m
1.2 In three communicating vessels pistons

are exposed to the forces Fy, F; and F3.

F; =1100N F;, =600 N F3 = 1000 N

A1 =0.04 Hl2 AQ =0.02 mz
. ki
Ay =003m? p=10° = g=102
w s
Determine the differences in height Ahy
and Ahs!

1.3 A cube floats in two laminated fluids,
one on top of the other.

1.4

o

ke K

pr =850 -2 py = 1000 -2
rﬁJ n13

pe=900-5 a=0.1m
.

Determine the height h!

A cylindrical vessel floats in another
cylindrical vessel, filled with water. Af-
ter adding a mass m the water surface
is raised by AH.

Given: p, A, m
Determine the difference in height AH!

A boat with vertical side walls and a
weight Wy has a draught in sea water
ho and displaces the volume 7. Before
entering the mouth of a river the weight
of the cargo is reduced by AW, in order
to avoid the boat running aground. The
draught is then h; and the volume is 7.
The density of the sea water is pg, and
that of the water in the river pg.

k . k
ps = 1.025-10° —=  pp = 10° =
m me
Wo=11-10N AW = 10N
m
ho=11m h; =10.5m g=10—
S
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Determine

(a) the volume 7o,

(b) the area of the deck A,

(c) the difference 7, —7; of the displaced
volumes in fresh water and sea wa-
ter,

(d) the draught hs in fresh water!

1.6 A diving bell with the weight W is low-
ered into the sea.

D=3m H=3m T=2m
pa=125—2 py =10" 2
I{In m m
pa=10"— W=8-10'N g=10
m S

(a) How high does the water in the bell
rise if the temperature remains con-
stant?

(b) How large is the force (magnitude
and direction) with which the bell
must be held?

(¢) At what depth of immersion is the
force zero?

1.7 A container filled with water is fastened
to a plate. It has a small opening in the
top.

. kg m
— — 3
R=1m p—lOE 52

Determine the force in the screws un-
der the assumption that the weight of
the container can be neglected!

1.8 A conical plug with density p closes the
outlet of a water basin. The base area
of the cone levels with the surface of the
fluid.

R=102m H=102m g=10-
S

. k 2 ki
pe=2-10° =5 p—10° =
m m
How large must the force be to lift the
plug?

1.9 A rectangular sluice gate with the width
B separates two sluice chambers.

hy p —_
P hy

B=10m h;=5m hy=2m
k .
p=10°0 5 g—102
m S
Determine

(a) the force acting on the sluice gate,
(b) the point of application of force!

1.10 A pivoted wall of a water container with
width B is supported with a rod.

h=3m_ B=1m «a=30°
po10° 58 4o
m3 g2

Determine the force in the rod!
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1.11 The triangular opening of a weir is
closed with a plate.

k
B=1m ;7:103m—g3 gzlﬂg
Determine
(a) the closing force,

(b) the point of application of force!

1.12 A fluid with a free surface rotates in
an open circular cylindrical vessel with
constant angular velocity, large enough,
so that the fluid just reaches the edge of
the vessel. When the fluid is at rest, it
fills the vessel up to the height hy.

f—

D=05m hy=07m H=1m

;):1031‘1—53 pa=10°— g=102
m’ m s
Determine
(a) the height h and the angular veloc-
ity w,

(b) the pressure distribution at the wall
and on the bottom!

Hint:
o e
or P 0z P9
op dp
dp = —dr+—d
P ar Tt Jz :

1.13 Determine the pressure as a function of
the height z
(a) for an isothermal atmosphere,
(b) for a linear temperature variation
T=T)—«az
(c) for an isentropic atmosphere,
(d) for a height of 3000 m, 6000 m und

11000 m!
z=0: N
m
R=287 % T,=28TK ~=14
kg K 0 Y
N K
po=10— a=6510"— g=10
m m S

1.14 A metereological balloon of mass m and
initial volume 7y rises in an isothermal
atmosphere. The envelope is slack until
the maximum volume 7 is attained.

!,
[

po = 10° — DPo=127T—
m m
m = 2.5kg
N
7 =28m® 7 =10m® R= 287kginll(
m

(a) How large is the force the balloon
must be held with before take off?

(b) At what altitude does the balloon
attain the volume 717

(¢) How high does the balloon rise?

1.15 A balloon with an inelastic envelope has
an opening at the bottom for equaliza-
tion of the pressure with the surround-
ing air. The weight of the balloon with-
out the gas filling is W. Before take off
the balloon is held with the force Fi.
W =1000N F,=1720N

T=213K g=102

S
Determine the height of rise of the bal-
loon in an isothermal atmosphere!

3.1.2 Hydrodynamics

If not mentioned otherwise, the flow is as-
sumed to be loss-free in this chapter.

2.1 Given the velocity field

U =1uy coswt v=wvsinwt

with %0 = % = 1m.

Determine

(a) the streamlines for wt =0

(b) the path lines,

(¢) the path line of a particle, which at
time ¢ = 0 is in the point z = 0,
y = 1m!

mm
IRV
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2.2 Under an iceberg a steady downward
flow is initiated by the cooling of the
water by the ice. Determine the flow
velocity v in the depth h under the
assumption, that the cold water (den-
sity p.) does not mix with the warm
ater (densit; . . N
water (density py,) D=6-103m Ap=125 =
m
.2 k
p=10° ;53
o
25 <Re<250: (=1+%
250 < Re : 6=1
2.5 In order to determine the velocity in a
pipe flow the pressure difference Ap is
measured. The pressure difference de-
h=s50m P"P»_ o1 g=10 m viates f.rorn the dyngnnc pressure of
Pe s? the undisturbed flow, if there is a large
2.3 Hot exhaust air of temperature 7; flows blockage in the pipe.
through an open smokestack with a
large suction scoop into the atmo-
sphere. The external temperature is T,.
gl l ap
H Plot v/ /Z—f” as a function of 4!
%

1 2.6 Water flows out of a large reservoir un-
der the influence of gravity into the
open air.

T,=450K T,=300K
m
H=100m g=10- F———==0 1
S ==
h
Determine the discharge velocity, tak- % A
ing into account the influence of com- ]
pressibility!
Hint: Use the Bernoulli equation in dif- 9 ] H
ferential form: i
1
—dpt+vdv+gdz=0 l 1
p - |_a
24 chtcfr)min(;} lthc f.rcc—strcam Vcéocityk.vOO h=01m H=15m D=01m
O a Fran £ Stfm,c %ressure tfu}e’ tfi ng What is the diameter d of the water
}ntof account the influence of the viscos- stream at the position H below the
1ty for N opening?
(a) p =107 22
1;{113 2.7 Water flows out of a large pressure tank
(b) p=10"2 —t into the open air. The pressure differ-
Ns ence Ap is measured between the cross
() p=107" sections A; and A,.

m2’
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2.8

2.9

A=03m? A, =01m? A3=02m?
Lk N

h=1m p=10°— p,=10° =
m m

N
g:IOg Ap=0.64-10°

The outflow pipe was provided with a

variable cross-section distribution in or-

der to enable the measurement for the

pressure. The pressure difference Ap is

measured in the cross sections indicated

in the sketch.

Determine

(a) the velocities v, vq, v3,

(b) the pressures p1, pa, p3, and the pres-
sure p above the water surface!

Water flows out of a large vessel
through an opening of width B and
height 2a into the open air.

LT

_

a
For — — 0 the volume flow per unit

h .
time is Qo = 2 a B v/2 g h. Determine
0o— @ £ a 1
: or - = —
h 4

the relative error

N | —
=W

Two large reservoirs, one located above
the other, are connected with a vertical
pipe, with a nozzle attached to its end.

A=1m?

Ad:O.lmQ
H=80m 10(1:105—2
m

m

(a) How large is the volume flow per
unit time?

(b) Sketch the curve of the static pres-
sure in the pipe!

(c) At what size of the cross section
of the exit will vapor bubbles be
formed, if the vapor pressure is

N
Py = 0.025-10° =7
m
2.10 Air flows out of a large pressure tank

through a well-rounded nozzle and a
diffuser into the open air.

g *ap

TITFIT.

Kk N
p=125-2 Ap=10—;
m- m

Determine the velocity in the throat of
the nozzle as a function of the ratio of
the cross sections ﬁ
(a) for loss-free flow,
(b) for an efficiency of the diffuser of
np = Pa — PD
2 (v} —v2)

2

=0.84 !

(c) What is the maximum velocity that
can be attained for this efficiency of
the diffuser?

2.11 Water flows through a nozzle mounted
in a pipe (cross-sectional ratio mp, dis-
charge coefficient ap) and an orifice
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(mp, ag). The mercury gauges show
differences in height of hp and hg.

mp =05 ap=1.08 mp=0.6
hp=1m hg=144m D=01m

. k . k
pw = 10° -2 py. = 13.6-10° -2
m? m3
m
Determine

1. the volume flow per unit time,
2. the discharge coefficient of the ori-
fice!

2.12 A sluice gate is suddenly opened.

T /1 T T
A

Ay =3000m? h(t=0)=hy=>5m
g:IOE2
s

How large must the cross section of the
opening A be so that the water level
of the bordering lake is attained within
10 minutes, if quasi-steady flow is as-
sumed?

2.13 Two equally large reservoirs, one of

which is filled with water, are separated
from each other by a wall.

T ETETTTEEY

B=20m h(t=0)=hy=5m
m
[=005m ¢g=10—
s

Determine the time necessary for equal-
izing the water levels, if the dividing
wall is lifted by the amount f < h!
Neglegt the contraction of the flow!

2.14 Water flows out of a large reservoir into

a lower reservoir, the discharge open-
ing of which is suddenly reduced to one
third.

vl B
i l
R T_L[,
=T |}
=

A=003m? Az =1m?
m
h=5m ¢g=10—
S
Determine the time, in which the water

level rises to the quadruple value of its
initial height h!

2.15 A pipe filled with gasoline is held verti-

cally in water and closed at the upper
end with a top. A small, well-rounded
outlet in the top is opened.

)

HE

|

D=01m d=00lmm L=08m
g . m

pp =800 = p, =10° =
m m

Since the gasoline is lighter than wa-
ter, it will begin to flow upward through
the small hole. The surface of the water
surrounding the pipe is very large com-
pared to the cross-sectional area of the
pipe.

How long will it take, until the pipe is
completely emptied from gasoline?
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2.16 A fluid flows through a pipe with a well-
rounded intake. Its velocity is vy (t).

vt o

N
-~ ; f

Show that the integral of the local accel-
eration can be approximated as follows:

L
9 g — (£+L) %

Hint: Assume that for s < —% the fluid
flows radially towards the intake with
the velocity v = Q , and that for
s > % the velomty is equal to vo! For

_ D _
8= =15, V= 1.

2.17 Liquid flows out of a large container
through a hose, lying horizontally on
the ground, in steady motion into the
open air. The end of the hose is sud-
denly lifted up to the height of the lig-
uid level.

LZIO% h=5m D=0.16m
S

Determine

1. the velocity vy immediately after
lifting up the hose,

2. the time, in which the velocity de-
creases to 9,

3. the fluid volume that flowed through
the hose during this time!

2.18 The discharge pipe of a large water con-
tainer is led to a lake. The throttle
valve at the end of the pipe is suddenly
opened.

L=20m>D h=5m L;=5m

. kg m
o103 —
p=10 3 g—lOSZ

1. After what time are 99% of the final
velocity attained?

2. How much does the pressure at the
position 1 differ from its final value?

2.19 A piston is moving sinusoidally in a pipe
s = 8g sinw t.

- N

Pa=10>— L=10m>D h=2m
m

kg

N
Py = 2500 —

s50=01m p= 1[)d o2

At what angular velocity w is the pres-
sure at the piston head equal to the va-
por pressure p,?

2.20 In a hydraulic ram the valve I and the
valve II are alternatively opened and
closed. A part of the water is pumped
from the height h; to the height hy. The
other part flows through the valve I.

o —=
=

iy hy l9

hi=hy=5m L=10m> D
A:0.1r11112<<A3 Ti=1s

I
g=10—

s
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(a) First the valve I is opened for the
time 7. Determine the volume Q;
of the water discharged!

(b) After closing the valve I, the valve
IT is opened until the velocity in the
pipe is decreased to zero. How large
is the discharge volume Q;;?

2.21 The flap at the end of a discharge pipe

of a large container is suddenly opened.

N
pa:10572 L1:L2:5m>>a
m
Di=01m Dy=005m h=2m
. k
p=10°=5 g—102
m s
Determine

(a) the time T, in which the velocity at-
tains 99% of its final value,

(b) the volume of the fluid discharged,

(c) the pressures ps and pp immedi-
ately after opening the flap and at
time 7'

(d) Sketch the pressure at the positions
A and B as a function of time!

2.22 The pressurized pipe system of a stor-

age power station is closed with a valve.
During the closure (shut-down time 7})
the discharge volume decreases linearly
from Qy to zero.

h=200m L=300m A=02m?
3 kg . m

. m

=3— p=10"=

@ S P m3 52
— _ 7

Apsﬂ%'e - (pl - pa)sa‘ue =2-10 E

Determine

(a) the excess pressure in front of the
open valve for steady flow,

(b) the pressure variation p;(t) during
closure of the valve (Sketch the re-
sult!),

(¢) the closure time of the valve so that
the excess prssure does not exceed
the safe value Apgq,ge!

3.1.3 Momentum and Moment
of Momentum Theorem

In this chapter the friction forces are ne-
glected in comparison to the volume, pres-
sure, and inertia forces, but not the pressure
losses, resulting from flow separation.

3.1

3.2

Water flows out of a bifurcated pipe into
the open air. The pressure in the inflow
stem is higher by the amount Ap than
in the surrounding air.

A1 =0.2 m2 AQ =0.03 le
A3 =0.07m? @y =30° ag=20°
Ap=10t N e X8

P = m? p= m3
Determine

(a) the velocities vy, vg, vs,
(b) the force F' in the cross section 1,
(c) the angle ag, for which Fj, vanishes!

Water flows out of a large container
through a pipe under the influence of
gravity in steady motion into the open
air. Downstream from the nozzle the
water jet is deflected by 180°. The flow
is assumed to be two-dimensional.

== Ig —=5

N

’\1' ]—ﬁT_)

—_—

A=02m? Ap=0.1m?
. k

p=10° 5 g—10=
m S

h=5m

Determine the forces retaining the pipe
and the guide vane
(a) for the sketched configuration,
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3.3

3.4

(b) for the case that the inlet of the pipe
and the nozzle are removed!

Water flows out of a two-dimensional
nozzle in steady motion with the veloc-
ity vo against a guide vane, moving with
the velocity v,.

A=01m? vy=60—" 24=45°
s

kg

m?

(a) At what velocity v, does the perfor-
mance of the vane attain its maxi-
mum value?

(b) How large is then the force acting
on the vane?

p=10°

Two two-dimensional cascades (in-
finitely many blades) with width B and
spacing ¢ deflect a flow by the angle «.

—_—
R

S
N

cascade I cascade I1

Given: p, vy, a, B, t

Determine

(a) the velocity vy,

(b) the pressure difference p; — po,

(c) the pressure loss po; — pog,

(d) the force exerted by the flow on a
blade!

A rocket moves with constant velocity.
The air flowing past the rocket is dis-
placed in the radial direction. The ve-
locity in the jet is vy, around it v;.

i : Z a—
™ ZaT=

—
¥

“HHHHT

3.6

3.7

3.8

Given: vy, va, p1, pa, Ar

Determine

(a) the mass of air displaced,

(b) the thrust and the net performance!

The constant free-stream velocity of a
propeller is v;. A certain distance down-
stream from the propeller the velocity
in the slipstream is vy, outside of it v;.

e i l—
— - —
— A ——
f— I p—
—_—— — —_———,
- _
= [y | I— ——
fo——— 1
—_— - p—
-y p—
% A]
m
A =706m vi=5— wvy=8—
_ 103 X8
m3
Determine

(a) the velocity v in the cross-sectional
plane of the propeller,
(b) the efficiency!

A ducted propeller is positioned in a
free stream with constant velocity. The
inlet lip is well rounded.

¥y Al
—— —_—
— ——
—— —
J—— T —_—
—_— ———— A ——Vy——
— —_—
——— | + —=
JE—— ——
— —_—
g

N
A=1m? v =102 p,=10°—
S m

p=10% %

(a) Sketch the variation of the static
pressure along the axis!
Determine

(b) the mass flow,

(c) the thrust,

(d) the power transferred by the pro-
peller to the flow!

N
p1=1345-10" —
m

Two blowers, drawing air from the sur-
roundings, differ in the shape of their
inlets.
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Given: p, A, Ap

Determine

(a) the discharge volume,
(b) the power of the blowers,
(c) the retaining force!

3.9 A pipe with an inserted nozzle is po-
sitioned in a free stream with constant
velocity.

———
—_—
A, Al
—
——
—_— e -
—_
——
—_—
—_—
—_—

R

Vm

Ay =02m2 Ay =0.1m2 v, = 40—
S
k
p=125 m—gs

Determine

(a) the velocity in the cross sections A;
and As,

(b) the retaining force!

3.10 A jet apparatus, which is driven with
a blower, sucks the volume rate of flow
@2 through a ring-shaped inlet.

A =01m> A;=02m?

N
— 5
=1

3
Oy =422 p:1.25k—i
] m
Determine
(a) the velocity v, and the pressure py,
(b) the velocities v, and vy,
(c) the power of the blower,
(d) the retaining force of the blower cas-
ing (traction or compressive force?)!

3.11 Water flows out of a large frictionless
supported container through a pipe,
with a discontinuous increase of the
cross section, into the open air.

h=5m A=01m? pa:mf’ﬂz
m

3 kg m
3
p=10"— g—lOSZ

(a) For what cross-sectional area A,
does the volume rate of flow attain
its maximum value?

With A, determined under a) com-
pute

(b) the pressure py,

(c) the cutting forces Fyi, Fg, Fu
(Traction or compressive forces?)!

3.12 A pump is feeding water from a lake
into a large pressurized container. The
volume rate of flow is measured with
a standard nozzle (discharge coeffi-
cient ).

H=5m h=3m d=0.07m

s N N
pr =2-10° —  Ap, = 3160 —
m? m?

- N 5 kg m
pa:l()E pIIOE gzl(];z

D=01Im a=108
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Determine

(a) the velocity in the pipe,

(b) the static pressure upstream and
downstream from the pump,

(c) the net performance of the pump!

3.13 Water flows out of a large container
through a pipe with a Borda mouth-
piece into a lake.

m
h=1m gleS—2

Determine
(a) the contraction,
(b) the out-flow velocity vy

3.14 The volume rate of flow of a ventila-
tion blower is measured with an orifice
(discharge coefficient «, contration co-
efficient V).

_ b

——— ‘B__ﬂ—l_é IZ;
TI 1 —
P
. N N
pa=10° —  Ap, =300 —
m m
Kk
p=125-—2
=
a=07 ¥=066 A=10"2
Ap
=2 —05
m A

(a) Sketch the variation of the static
and total pressure along the axis of
the pipe!

Determine

(b) the volume rate of flow,

(c) the pressure upstream of the blower,

(d) the performance of the blower!

3.15 A hydraulic jump occurs in an open
channel.

hi=01m hy=02m g¢g= 10E2
s

Determine

(a) the velocities v; and vs,

(b) the Froude numbers Fr; and Fro,
(c) the energy loss Hy — Ho!

3.16 The volume of water flowing out of a
storage pond is controlled with a wicket.

h=T75m ¢g=10-
S

Determine

(a) the out-flow velocity vy as a function
of the height of level hy (why is v;
constant in the cross section?),

(b) the height of level, for which the vol-
ume rate of flow attains a maximum,

(c) the height of level, for which the hy-
draulic jump does not occur,

(d) the depth of water and the veloc-
ity downstream from the jump for
hy = 2.5m!

3.17 The depth of water hq of an open chan-
nel with constant volume rate of flow is
controlled by changing the height Z,, of
a weir. For Z,, = 0 the depth of water
is h().

T I
1 //?,-

upper water Tower water
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Q=80-— B=20m hy=2m
S

(a) Sketch the variation of the depths
of water for Z,, < Z.iu. and Z,, >
Zmil.!

Determine for Z,, = 1m

(b) the limiting height Z.;; of the dam,

(c) the depths of water h; and hs,

(d) the difference of the energy heights
between upper and lower water,

(e) the force acting on the weir!

H |

A /
win
15 s

4

“ ]

05 10 15 20 b
he

Hint: If a hydraulic jump occurs, it will
be at the downstream face of the weir;
the depth of the lower water is hy.

3.18 Assume that in a rotating flow pressure
and velocity depend only on the radius.

)
~/

(a) Choose the segment of a circular
ring as control surface and, by us-
ing the momentum theorem, derive
the relation

dp 112'

="

r r

(b) For what velocity distribution v(r)
does the Bernoulli constant have the

same value for all streamlines?

3.19 A lawn sprinkler is fed from a large
reservoir. The water jets are inclined to
the circumferential direction by the an-
gle a.. The friction torque of the bearing
is M,.

H=10m h=1m R=0.15m
A=05-10"m?> A, =1.5-10"m?

N
[M,| =3.6Nm p, =10° —
m

k
p=10° 5 g—105 a=30°
m S
Determine

(a) the number of revolutions,

(b) the rate of volume flow,

(c) the pressure py,

(d) the maximum angular velocity, if
the friction torque is assumed to be
zero!

3.1.4 Laminar Flow of Viscous Fluids

4.1 Determine the following quantities for
a fully developed laminar pipe flow of a
Newtonian fluid
(a) the velocity distribution

u(r) .1
e L JECRY
(b) the ratio
U,
(3.2)

(c) the dependence of the pipe friction
coefficient on the Reynolds number!

4.2 A Bingham fluid is driven by grav-
ity between two parallel, infinitely wide
plates.

o]

e —
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4.3

44

4.5

Given: b, p, i, 70, ¢, 3—’2’ =0

Assume that the flow is fully developed
and determine

(a) the distance a,

(b) the velocity distribution!

An oil film of constant thickness and
width flows down on an inclined plate.

A

o

A

0=3-100m B=1m o=30

kg

. Ns
_ -3 _
pn=30-10 2 p—SOOm3

m

Determine the volume rate of flow!

An oil film is driven by gravity.

Given: 9, a, p, i, g.

Determine the velocity distribution in

the oil film

(a) on a plane vertical wall,

(a) on a wall of a vertically standing cir-
cular cylinder!

A Newtonian fluid flows in the gap be-
tween two horizontal plates. The upper
plate is moving with the velocity u,,, the
lower is at rest. The pressure is linearly
decreasing in the z-direction.

dp

Given: H, uy, p, i,

4.6

4.7

Assume fully developed laminar flow

and determine

(a) the velocity distribution,

(b) the ratio of the shear stresses for
y=0andy=H,

(c) the volume rate of flow for a width
of the plates B,

(d) the maximum velocity for u,, = 0,

(e) the momentum flux for u,, = 0,

(f) the wall-shear stress in dimension-
less form for w,,

(g) sketch the velocity and shear stress
distribution for w,, > 0, u,, = 0, and
Uy < 0!

A Newtonian fluid flows between two
coaxial cylinders.

ulr)

¥
é_'_Lﬂ __j_._at_%

Given: R, a, u, %

Assume fully developed laminar flow

and determine

(a) the velocity distribution (sketch the
result!),

(b) the ratio of the shear stresses for
r=aandr =R,

(c) the mean velocity!

A Couette viscosimeter consists out of
two concentric cylinders of length L.
The gap between them is filled with a
Newtonian fluid. The outer cylinder ro-
tates with the angular velocity w, the
inner is at rest. At the inner cylinder
the torque M, is measured.
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R,=01lm R;,=01m L=01m T
1 mz?mm
w=10_ M,=7.24610""Nm i S
= H
Determine rrrY vrrres 7
(a) the velocity distribution,
(b) the dynamic shear viscosity of the ) B
fAuid! Given: R7 T‘un )‘7 Hy ﬁ
Hint: The differential equations for the (a) Assume fully developed laminar
velocity and shear-stress distributions flow and derive the differential equa-
are: tions for the velocity and tempera-
d 0 d ture distribution for a ring-shaped
— {7 — (rv)} =0 , volume element for vanishing con-
dr |7 dr vective heat flux and constant mate-
T=—pur i (E) rial properties! State the boundary
dr \r conditions!
(b) Determine the temperature distri-
4.8 A gas of thermal conductivity A and bution
specific heats ¢, and ¢, flows in the gap T-T,
between two horizontal plates. The up- —
. . . . Tmaac ﬂi7
per plate is moving with velocity u,, at
temperature T, the lower is at rest and 4.10 Under a gun slide a plane wall is moving
is thermally isolated. with the velocity tuo.
[ L
P
1_
l yl hix)
Given: uy,, H, Ty, 3—2 =0, 7 7
[ )‘7 Cpy Cy
Assume fully developed laminar flow h(zr)=hye 52 L=5-10"2m
and determine for vanishing .convcctivo hy=10~4m wuy =1 m p=10" N72
heat flux and constant material proper- 1 s m
ties p =800 i{;
(a) the velocity and temperature distri- nr
bution, Determine
(b) the heat flux per unit area through (a) the similarity parameter of the prob-
the upper plate! lem, .
(c) Show that the stagnation enthalpy (b) th? volume rate of flow per unit
has the same value everywhere for width,
Pr =1l (c) the pressure distribution in the gap,
(d) Determine the time-dependent tem- (d) the pressure force per unit width
perature variation, if both plates are bearing the gun slide, o
thermally isolated, and if at the time (e) the performance loss per unit width
t = 0 the temperature in the flow ¢ due to bearing friction!
field is Tp! 4.11 From the momentum equation in inte-
4.9 A Newtonian fluid with thermal con- gral form

ductivity A flows through a pipe. The
wall temperature is kept constant by
cooling the wall.

dI 9 i
— = /Ta(pv)dTJr/Apv('un)dA

dt
= ZF
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4.12

derive the differential form of the mo-
mentum equation in the z-direction for
an infinitesimally small volume element

du, ou ou\_ (00, Or,
Plar ™o Yoy ) T o oy

The z-component of the friction force
acting on a volume element is given by

Fyp = %{u (22—2—§V-v>}+
d ou  Ov
b3

7] ow  du

sl (e5) |

Reduce this equation for an incompress-
ible fluid with constant viscosity!

+

+

3.1.5 Pipe Flows

5.1

5.2

The viscosity of an oil is to be measured
with a capillary viscosimeter.

This is done by measuring the time T,
in which a small part of the oil (volume
7) flows through the capillary. Assume
that the flow is loss-free upstream of the
position 1!

. k
7=10cm? szOO—g3 L=01m
m
h=0.05m
m

D=1mm 7T =254s

Water flows out of a large container
through a hydraulically smooth pipe,
with a nozzle fixed to its end. The pres-
sure upstream of the nozzle is p;. The

5.3

5.4

friction losses in the intake of the pipe
and in the nozzle can be neglected. As-
sume that the flow in the pipe is fully
developed!

L=100m D=102m
. N
d=05-102m p,=10°—

m?
N K
pr=1075-10° = p=10° =
m m
Ns
pp=107° w2

Determine

(a) the velocity in the pipe and at the
exit of the nozzle,

(b) the pressure in the container,

(c) the velocity at the exit of the nozzle
for L = 0 and the same pressure in
the container!

Two containers are connected with each
other by 25 pipes with diameter D, and
25 pipes with diameter Dsy. A pressure
difference of Ap is measured between
the containers. The pressure-loss coef-
ficient of the intake is (.

Dy=0025m Dy =0.064m
k
L=10m p=10°—> X=0.025
N m
Ap=10°— ¢=1
m

Determine the volume rate of flow!

A fluid flows through a hydraulically
smooth pipe. The pressure drops by the
amount Ap over the length L.

L=100m D=01m Ap= 5~104E2
m
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Oil: p=10" Ns » = 800 kg (a) the momentum flux,
m? m? (b) the wall shear stress!
Water : p =103 N—z p=103 k—gB
m m 5.7 Water flows through a hydraulically

Determine the velocities of the flow! smooth pipe with an discontinuous

Hint: Use the Prandtl resistance law for widening of the cross section into the

super-critical Reynolds numbers! open air.

Pa
5.5 Compressed air is pumped through a

hydraulically smooth pipe. The pres-

sure pp, the density p; and the veloc-

ity @, are assumed to be known in the

intake cross section. N

D=10"2%m ])1:8‘105—2

m m D=002m Dy;=004m L=02m

U1 = 10 5 U1 = 0.5 m =103 k—gd

o s m

plle% u:1.875-10’5% leo,3$

(a) DeriV.e t}%e following relation with (a) At what length Ly does the pressure
the aid of the momentum theorem: . .

difference p; — p, vanish?
dp t o di, A p 2 =0 (b) How large is the corresponding pres-
dg PV g T ot T sure loss?

(b) Determine the length, over which Hint: Assume, that the wall shear stress
the pressure drops by one half of in the widened part of the pipe can be
its initial value for compressible flow determined with the equations for fully
with constant temperature and for developed pipe flow!
incompressible flow!

5.8 The feed pipes of a fountain consist out
of four straight pipes of total length L,
5.6 The velocity distribution in the intake two bends (loss coeficient (x) and a

region of a laminar pipe flow is de-
scribed by the following approximation:

x 7(3)
tn1-3E4d(3)
2 (1) o<y <)
f(«s)—{ ’ 1(5) 6(9c)y§y§TR

Given: U, R, p, p

Determine the following quantities for
the intake cross section, the end of the
intake region, and for % =0.5

valve (Cy).

h=10m
(k=025
Determine the volume rate of flow and
the height H for dissipative and nondis-
sipative flow with

() d=2,

(b) d = D!

Hint: Assume that the flow in the in-
take and in the nozzle is loss-free and
fully developed in the straight pipes!

D=005m L=4m
vy =45 A=0.025
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5.9 Water flows through a hydraulically
smooth pipe.

k
D=01m Re=10° p=10°% &
2 Ns
_10-3
n=10"0
Determine

(a) the wall shear stress,

(b) the ratio of the velocities 2=,

(c) the velocity for %= = 5 and for
yus _ 50,

v

(d) the mixing length for £2= = 100!

5.10 The velocity distribution of a turbulent
pipe flow is approximately described by
the ansatz

U,

S
N—
i

Y
R

Umaz

t_

Determine
(a) the ratio of the velocities “7: ,

(b) the ratio of the momentum fluxes

; !
pu2, TR? °

511 A pump is feeding water through a
rough pipe (equivalent sand roughness
ks) from the level h; to the level hy.

: m?
L=20km D=1m k;=2mm
. kg 2
p=10° "5 =100
m s
N m
—10° —
Pa = 10 ) g=10 2
(a) Sketch the variation of the static
pressure along the axis of the pipe!
Determine
(b) the pressure at the intake of the

pump,

(c) the pressure at the exit of the pump,
(d) the net performance of the pump!

5.12 In a fully developed pipe flow with vol-
ume rate of flow @ a pressure drop Ap
is measured over the distance L.

—p ——————
L
o
ap
. m?
®@=0393— L=100m =05m
s
N k
Ap = 12820 = p =900 —g
N
p=5-10%
m?
Determine

(a) the pipe friction coefficient,

(b) the equivalent sand roughness of the
pipe,

(c) the wall shear stress and the retain-
ing force!

(d) How large would the pressure drop
be in a hydraulically smooth pipe?

5.13 Air is to be conveyed through a rough

pipe with a well rounded intake with
the aid of a blower.

_ [
T

I'd P,

?

L=200m k;=1mm

Determine the ratio of the blower per-
formance for the diameters D = 0.1m
and D = 0.2m for the same volume rate
of flow and very large Reynolds num-
bers!

5.14 Water is fed through a system of 100
pipes into a channel with quadratic
cross section.
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=r

L] ]l

o —d

b | —

. 3
Q =0.01 - 0.5m a=0.1m
s

2 Ns

Lk
D=00lm p=10"—2 ;i =107°—
m m

For what length does the pressure loss
of the channel become equal to that of
the pipe system?

5.15 An open channel with quadratic cross

section is inclined by the angle a.

Ns m
—10-3 _
n=10 5 9=10 2

Determine the angle of inclination and
the pressure loss per unit length!

3.1.6 Similar Flows

6.1

6.2

Derive the dimensionless similarity pa-
rameters with the momentum equation
for the z-direction

Ou  Ouw  0Ou)_
Plat " "ar " ay) T~

_@ + 0*u + @ |
1 o)

ox 0x?

In hydraulically smooth pipes of dif-
ferent lengths and diameters the pres-
sure loss is measured for different ve-
locities, densities, and viscosities. The
flow is fully developed, incompressible,
and steady.

How can the results of the measure-
ments be presented in a single curve?

6.3

6.4

6.5

6.6

6.7

A fluid flows slowly and steadily

through a hydraulically smooth pipe.

The flow is laminar and fully developed.

(a) Derive the Hagen-Poisseuille law
with the aid of the dimensional anal-
ysis from the ansatz

. Ap\“©
- (=X B DY o1
Q <L> a
(b) Show that the pipe friction coeffi-
cient is inversely proportional to the
Reynolds number!

What is the drag of two spheres of dif-
ferent diameter but the same Reynolds
number, if one moves in air and the
other in water, and if the drag coeffi-
cient depends on the Reynolds number
only?

Pa_ 01251072 Mo —1875.1072

Puw w

In an incompressible flow about a circu-
lar cylinder the frequency, with which
vortices are shed, depends on the free-
stream velocity, density, and viscosity.
Determine the similarity parameters
with the aid of the dimensional anal-
ysis!

The pipes in heat exchangers can oscil-
late due to excitation by the cross-flow
they are exposed to. It is known, that
in a flow about a circular cylinder, with
its axis normal to the direction of the
flow, the Strouhal number is constant
for 200 < Re < 10°.

D=01m v:lE ’1/23E

S S

sm? s m?

v=107"— V' =15-107" —
Determine

(a) the minimum diameter of the model
cylinder,
(b) the excitation frequency f, if for the

1
smallest model f/ = 600 —!
s

The power needed to overcome the
aerodynamic drag of an automobile
with quadratic cross-sectional area A
is to be determined in a wind-tunnel
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6.8

6.9

experiment. The cross-sectional area of
the model cannot exceed A,, in order
to avoid blockage effects in the wind-
tunnel.

A=4m? A, =06m?> v=302
S

(a) What speed has to be chosen for the
measurement in the wind tunnel?

(b) Determine the power needed, if with
a larger model the drag F' = 810 N
is measured!

Water flows through a model of a valve
(volume rate of flow Q'). Between intake
and exit the pressure difference Ap’ is
measured. The valve is supposed to be
used in an air pipe.

A=0.18m> A =0.02m?

kg 5 kg
p =125 P ; 10 3 .
= 18751070 & 4 =10° —
m? m?
3 N

@ =02" Ay =158-10° —;
S m-

(a) For what volume rate of flow are
the flows through the model and the
full-scale configuration similar?

(b) What is the pressure difference be-
tween intake and exit?

An axial blower (diameter D, number
of revolutions n) is to be designed for
air. In a model experiment with water
(reduction scale 1:4) the increase of the
total pressure Apj, is measured.

3
: 1
0=30" D=1m n=125
S
k Ns
p=125 -5 1 =1875-10"° —
m m
Sk N
p=10° =2 =107 —
m3 N m?

— 5
Aply=03-10° —

Determine

(a) the volume rate of flow and the num-
ber of revolutions during the exper-
iment,

(b) the change of the total pressure of
the blower,

(¢) the power and the torque needed for
driving the model and the main con-
figuration!

6.10

6.11

6.12

The power of a propeller of an airplane
is to be determined in a wind-tunnel ex-
periment (Model scale 1:4) for the flight
velocity v. In the test section of the
wind tunnel the velocity can be varied

between 0 and 300 E7 the pressure be-
S

N N
tween 0.5-10° — and 5-10° —;, and the
m? m?
temperature between 250 K and 300 K.
The viscosity of air is described by the
relation

L T \0T5
Haoox (300[()

1
D=1m n=100- v=200—m
S S

~ Nm
300K R =287 K

N
_ 5
p=10"1e

(a) Determine an operating point (v', p’,
T") such that the results of the mea-
surements can be applied to the full-
scale configuration!

(b) What number of revolutions must
be used in the experiment?

(c) Determine the power, if in the ex-
periment the power P’ was mea-
sured!

A model experiment is to be carried out

prior to the construction of a tanker

(Model scale 1 : 100) in a towing basin.

(a) How large would the ratio of the
kinematic viscosities ”;I have to be?

(b) How large must the towing veloc-
ity in water be, if the aerodynamic
drag can be neglected and if only the
wave drag or only the frictional drag
is taken into account?

A docking pontoon is fastened at the
bank of a river. An experiment is to be
carried out with a model scaled down
to 1: 16.
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L=36m B=12m H=27m
u:3% Fi=4N K =25cm
p=10° %
Determine

(a) the flow velocity in the model exper-
iment,

(b) the force acting on the pontoon, if
the force F is measured in the ex-
periment,

(c) the drag coefficient of the pontoon,

(d) the height of a wave h to be ex-
pected at the side of the pontoon,
facing the oncoming flow, if the
height A’ was measured in the ex-
periment!

6.13 In arefinery oil flows through a horizon-
tal pipe line into a reservoir with pres-
sure pg, with the pressure at the intake
being py. A safety valve is attached to
the end of the pipe line, which in the
case of emergency can close the pipe
line within the time 7'. In a model ex-
periment with water (diminution scale
1 : 10) the maximum pressure in front
of the safety valve, measured during the
shut-down procedure, is pl, ...

N
p:1.5~105E pR:I)’,,,:lof)@

k k
p =880 —gg o =10 —i
m m
Ns Ns
— —1 L —3
n=10 2 w =10 5

N
T=05s ph,=105-10°—
m

Determine

(a) the pressure pj and the shut-down
time in the model experiment,

(b) the maximum pressure in the full-
scale configuration!

6.14 In a petroleum pipe line (diameter D)
the volume rate of flow is to be deter-
mined with a measuring throttle (diam-
eter d). In a model experiment with wa-
ter (diminution scale 1 : 10) a differ-
ential pressure Ap/, and a pressure loss
Apy is measured at the measuring throt-
tle.

O=1" D=1m d=04m
s
ke N
p=800—2 p=10"—
m m
. kg 3 Ns
_ 103 %8/ _ 103
N N
Ap, = —  Ap; =400 —
pp = 500 . D, 00 -
Determine
(a) the flow velocity and the volume
rate of flow in the model experi-
ment,
(b) the discharge coefficient and the loss
coefficient of the measuring throttle,
(c) the differential pressure and the
pressure loss for the full-scale con-
figuration!

3.1.7 Potential Flows of
Incompressible Fluids

7.1 A cyclone is assumed to have the fol-
lowing velocity distribution:

wr r<nr
UG(T):{WT(Z, r> v, =0
0

1
ro=10m w=10-
s

ko
H=100m p=125-2

m?

(a) Sketch vy(r)!

(b) Determine the circulation for a cir-
cle around the axis of the cyclone for
r<rg, T=rgandr>rg!

(c) Show that for r > ry the flow is ir-
rotational!

(d) How large is the kinetic energy in a
cylinder with radius R = 2 ry and
height H?

7.2 (a) State the definitions of potential and
stream function for two-dimensional
flow! What conditions have to be
satisfied so that they can exist?

(b) How are V-v and V>@ and V x v
and V2 ¥ related to each other?

7.3 Examine, whether potential and stream
function exist for the following velocity
fields!

(@) u=2*y v=9y2x
b)u=z v=y
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7.4

7.5

7.6

(c)u=y v=—x
du=y v=x
Determine potential and

stream-function!

A two-dimensional flow is described by
the stream function ¥ = (%) zy. In the
point .y = 0, Yrey = 1 m the pressure

) . N
i8S prey = 10 e

=22 L—1m p=10°22
s m°

(a) Examine, whether the flow possesses
a potential
Determine

(b) the stagnation points, the pressure
coefficient, and the isotachs,

(¢) velocity and pressure for
T1=2m, Yy =2m,

(c) the coordinates of a particle, which
at time ¢t = 0 passes through the
point x1, y;, for the time ¢ = 0.5 s,

(e) the pressure difference between
these two points!

(f) Sketch the streamlines!

Given the potential

3
Y
O =ya? - =
vty
(a) Determine the velocity components
and examine, whether the stream
function exists!

(b) Sketch the streamlines!

Determine the velocity fields
v=
(a) Vxwvand V- v,

(b) potential and stream funktion,

(¢) the circulation along a curve around

the origin!

vp=0andv, =0 wvg= ¢

7.7

7.8

Hint: The following relations are valid
for polar coordinates:

_9¢_1ov 102  O¥
“Tor Tro0 T ro0” or
1 0(rv,) | 1 v
R 1)
10(rvg) 1 v,
Vxv = <? ar o0

Given the stream function

¥ (r,0) = L " sin(n 6).

(a) Sketch the streamlines for n = 0.5;
n=1lundn=2"!

(b) Determine the pressure coefficient
for the point x = 0, y = 0, if pres-
sure and velocity are known for the
point ey = 1, Yrey = 1!

Consider a large basin with an outlet.
The flow outside of the outlet (r > Ry)
can be described by superposition of a
plane sink and a potential vortex. For
r = Ry the in-flow angle is a and the
depth of water is hg. The volume rate
of flow of the discharging water is Q.

Roy=003m hy=002m g=10
) s

3

O=05-10" o =30°

Determine ’

(a) the circulation I’

(b) the shape of the water surface h(r)
for r > Ry,

(c) the depth of water at large distances
from the outlet!

Hint: The discharge volume of the sink

is to be determined for the radius

r = R[]'
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7.9 The free-stream velocity of a two-
dimensional half-body with width 2hA
1S Ueo-

Determine

(a) the stagnation point and the veloc-
ity in the point x = z,, y = h,

(b) the contour of the half-body,

(c) the pressure distribution on the con-
tour,

(d) the isobars,

(e) the curve along which the pressure
is larger by the amount £ w2, than
the pressure py, of the free-stream,

(f) the isotachs,

(g) the part of the flow field, in which
the velocity component v is larger
than %=,

(h) the curve, which is inclined to the
streamlines by 45°,

(i) the maximum deceleration a parti-
cle moving along the line of symme-
try is experiencing between z = —oo
and the stagnation point!

7.10 Given the stream function

R2
)

(a) Sketch the streamlines for

z?+y* > R?
Determine

(b) the pressure distribution on the con-
tour ¥ = 0,

(c) the time it takes for a particle to
move from the point = —3 R,

y = 0 to the point z =2 R, y = 0!

7.11 Consider a parallel free-stream with
velocity s flowing around a circular
cylinder with radius R, with its axis
normal to the direction of the oncoming
flow being in the origin of coordinates.
Determine

(a) the curve along which the pressure
equals the free-stream pressure py,
(b) the pressure on a circle around the
origin of coordinates with radius 2R!

7.12 The pressure difference Ap between two
boreholes in a circular cylinder, with its
axis normal to the direction of the on-
coming flow, is a measure for the angle
€ between the free-stream direction and
the axis of symmetry.

ap

(a) What is the relation between the
pressure difference and the angle of
attack?

(b) At what angle o does Ap attain its
maximum value for every €?

7.13 Consider a flow around a bridge pile
with circular with cross section. The
free-stream velocity is ue. The depth
of water far upstream is h..

b
T=T0

| Pep—) !
| —
— |

T Cl 777

Uo =1 — hee=6m R=2m
S

kg m
— 103 _
p=10"— gflﬂSZ

Determine

(a) the height of the water surface at the
wall of the pile as function of 6,

(b) the height of the water surface at the
stagnation points,

(c) the lowest depth of water, measured
from the ground!

Hint: Assume two-dimensional flow!
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7.14 The roof (weight G) of a hangar of
length L and semi-circular cross section
rests on the walls of the hangar, without
being fixed. The hangar is completely
closed except for a small opening on the
leeward side.

a=45 e =502 p=125-2
S m

Investigate, whether the roof has to be
anchored to the walls!
Hint: Assume two-dimensional flow!

7.15 Consider a flow around a rotating cir-

cular cylinder of length L with its axis
normal to the direction of the free-
stream with velocity . The circum-
ferential velocity of the flow on the sur-
face of the cylinder caused by the rota-
tion is vy.

Yon
—

(a) Determine the circulation!

(b) Discuss the flow field for v, = !

(¢) Determine the force acting on the
cylinder!

3.1.8 Boundary Layers

8.1 Show that the drag coefficient of the flat

plate at zero incidence is proportional
1 i |
to 5= for a laminar boundary layer!

8.2 The surface of a flat plate is parallel to

the direction of a free stream g)f air.

ey =452y =15.10° 2
S

S

8.3

8.4

8.5

Determine
(a) the transition point for

Recrit. =5 - 1057
(b) the velocity at the point
x =01m, y = 2-10"*m with
the aid of the Blasius solution! At
what coordinate y does the veloc-
ity for x = 0.15m attain the same
value?
Sketch
the variation of the boundary-layer
thickness 6(z) and a velocity profile
for © < xeyp. and & > Ty,
the wall-shear stress as a function of

—
o
~

—
o
=

x for
dp dp dp
—0: |
<0 , 0 and >0 !

The surface of a flat plate is parallel to
the dircetion of a free stream of water.
Formulate the momentum thickness in
terms of an integral over the wall-shear
stress for a laminar boundary layer

z 1(x;y =0
— / wz) dz' dar!
0 pu
Air moves past a flat plate (length L,
width B), with its surface parallel to
the direction of the free stream.

um:lOE L=05m B=1m
S

kg s m?
p=1.25—3 v=15-107" —
m s
(a) Sketch the velocity profiles u(y) for
several values of z!
(b) State the boundary conditions for
the boundary-layer equations!
(¢c) Sketch the distribution of the shear
stress 7(y) for the position z!
(d) Compute the boundary-layer thick-
ness at the trailing edge of the plate
and its drag!

The velocity profile in the laminar
boundary layer of a flat plate at zero in-
cidence (length L) can be approximated
by a polynomial of fourth degree

u y\2
E = ap+a (%)4’@2 (%) +

3 4
v (5) e (5)
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(a) Determine the coefficients of the

polynomial!
(b) Prove the validity of the following

relations
oo_ 3
5 100
b 3T
5 315’
5 584
z  +/Re,

1.371

Cp =

8.6 The velocity profile in a laminar bound-
ary layer on a flat plate at zero inci-
dence of length L is approximated by
A) a polynom of fourth degree

= (-3 )
U 2 \6/ 2 \§
and
B) a sinosoidal ansatz

u . <7r y)
— =sin(= =
Uso 20
(a) Determine 61, &9, 6, and ¢,,!
(b) Compute the boundary-layer

thickness at the trailing edge of
the plate and the drag for

um:lE L=05m B=1m
S

.k ' m?
p=10°=5 =107 |
m S

3.1.9 Drag
9.1 Two flat plates at zero incidence, one

downstream from the other, are ex-
posed to the free-stream velocity .

L
——L‘TH_-
|'E !

i i
_— —_—

R F

—_—
—_—
Uga

oo =12 L =L+ L,=036m
S
2

ks ) g

B=1m p=10"—=
m S

9.2

9.3

Determine

(a) the retaining forces Fy and F; for
Ly = Lo,

(b) the lengths Ly and L; for F} = Fy!

Two quadratic plates are exposed to a
flow, one at zero incidence, the other
with its surface normal to the direction
of the free stream.

Cu
1328
Re,
—L,
) .
—_— 5100 Re,
Cw
-_— L, —
114 -
- 4 .
Us i
-—-—w e Re,
m kg

U =D — L1 =1m 10:1.25—3
e

2
y=15-10"5 2
S

(a) Explain the difference between fric-
tional and pressure drag!

(b) How large must Ly be, so that both
plates generate the same drag?

(c¢) How does the drag depend on the
free-stream velocity?

Two flat rectangular plates are exposed
to a parallel flow. The plates have the
same lateral lengths L; and L,. The
edge of plate 1, with lateral length L,
is parallel to the direction of the free
stream, and of plate 2 the edge with lat-
eral length Lo. The free-stream velocity
1S Ugo-

m2
L1:1m L2:05m I/:1076?

(a) Determine the ratio of the friction
forces for Uy = 044E; O.SE; 1.6

s
(b) How large would the free-stream ve-
locity for the plate 2 have to be, if
the free-stream velocity of plate 1 is
Uso = 0.196 2, and if both drag co-
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9.4

9.5

9.6

efficients are supposed to have the
same value?

Hints:

0.074
Cp =

1700
4
Re;  Her

for 5-10° < Rey, < 107.

A kite (surface area A, weight W) gen-
erates the force F' in the kite string at
an angle of attack «.

L ite siing

A=05m2 W=10N u, =102
S

a=10° B=55° F=425N
kg

p=125—
m

Determine the lift and drag coefficient
of the kite!

Assume that the flow around a circu-
lar cylinder separates at a = 120°, that
the pressure distribution up to the sep-
aration point can be determined with
the potential flow theory, and that the
pressure in the dead water region is con-
stant!

VT

Neglect the frictional drag and deter-
mine the drag coefficient of the cylin-
der!

A surfboard (width b) moves with the
velocity u over the surface of quiescent
water. The height of the triangular sail
is h and its width b.

9.7

9.8

sail

11F

oo -
mounting

L=375m B=05m u=15->"
S

k N.

pu=10° "2 4, =107
m?3 m?
kg

N
fla= 1875107 — h=4m b=2m
me

Neglect the wave drag , the drag of the

sail mounting, and the frictional drag

of the upper side of the surfboard and

determine

(a) the wind speed uq,

(b) the drag of the sail!

(¢) How large would the frictional drag
of the upper side of the board be?

Hints:

Board cp = &714 — L700
Rei Rey,
(for : 5-10° < Rey < 107)
Sail cp =12
(for : Re>10°%)

How large must the surface of the equiv-
alent drag of a parachute at least be, in
order to avoid the sinking speed in qui-
escent air to exceed v?

u:4? W =1000N cp =133
p =125 k—gs

m
A sphere and a circular cylinder of
the same material fall with constant
velocity in quiescent air. The axis of
the cylinder is normal to the direction
of the gravitational acceleration. For
0 < Re < 0.5 the drag coefficient of a
sphere is given by ¢p = % and that of
a circular cylinder with its axis normal
to the oncoming flow by

87

Re(2 — In Re)

Cp =
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kg K
p=800-2 p,—125-2
m- m-
ve=15-10°"2 g=10=
S S

Determine

(a) the maximum diameters, for which
these relations are valid,

(b) the corresponding sink velocities!

9.9 Determine with the aid of the diagram
for the drag coeflicient of a sphere

Re rrco /
10 -
10 /
10 //,
1
1 10 10’ 10’ 10
20 e

(a) the steady sink velocity of a spheri-
cal rain drop of diameter D in air,
(b) the steady ascending velocity of a
spherical bubble of air of diameter
D in water!
ki
D=1mm p,=10®—= 5
) m?
Ve = 1070
k X
fa —125—g Ve = 15-107% 22
s
g= 10 —
s

9.10 Spherically shaped dust particles (den-
sity ps) are to be conveyed with a
stream of air against the gravitational
force.

|G

ATTTTIE

oL P

9.11

9.12

Kk
Dy=5-10"m p,=25-10° = &
k "N
pa=1.25 "5 1, = 1875-107° —
mn m

(a) At what velocity of the air v; are the
dust particles suspended?
(b) How large is the velocity of the dust
particles if the velocity of the air is
Vg =3 —"7
s
Hint:

Assume that the dust particles do not
influence each other!
24 3

Cp = Re (1+T6RC)

for0 < Re <1
A spherically shaped fog droplet (diam-
eter D) is being suspended by an up-
ward motion of air. At time ¢t = 0 the
air flow stops and the droplet begins to
sink.

k
D=6-10"m p,=10° =2
k N
po=125—2 i, =1875-107° —
mm m
S

(a) How large is the velocity of the air
flow prior to the lull?

(b) After what time does the droplet at-
tain 99% of its steady sink velocity?

Hint: For Re < 0.5 the law ¢p = 2 is

Re
valid for steady and unsteady flow.

A sphere is falling in steady motion in
quiescent air with the velocity v;. A
downwash squall increases the velocity
to vs.

kg
3



3.1 Problems 95

(a) How large is the drag coefficient
prior to the squall?

(b) What steady final velocity does the
sphere attain after dying out of the
squall?

9.13 A spherically shaped deep-sea probe is
heaved with constant velocity from the
depth H to the surface of the sea in the
time T7.

D=05m H=4000m 7T;=3h
k 2 N

p=10° =5 =107 = g=102
m m S

Assume constant density of the water,

neglect the weight of the cable rope, and

determine

(a) the power needed for heaving the
probe, if the cable force is F} = 2700
N7

(b) the weight of the probe and the
shortest heaving time, if the cable
can take twice the value of the force,

(c) the power then needed!

Hint: Use the diagram of problem 9.12!

9.14 A sphere of diameter D and density p;
is vertically shot into quiescent air with
initial velocity v.

Assume a constant drag coefficient and

determine

(a) the height of rise,

(b) the rise time,

(c) the velocity at impact on the
ground,

(d) the falling time!

(e) What values do these quantities at-
tain for a wooden sphere of density
pw and for a metal sphere of density
Pm, if cp = 0.4 and ¢, = 07

D=01m ’00:30E 9210%
s s

kg ) kg
E Pw = 750 E
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3.2 Solutions

3.2.1 Hydrostatics

1.1
P = Patpugh=p.tprg(h—1L)
h ;3 kg
= Pu =3-10° =
pr p h—L m3
1.2
_ Fz'+
pi = gt
p2 = pi+pgAh=p3—pgAhy
Ahy = 22720 o5y
Py
Ahy = B27P2 33y,
Py
1.3
Fr = W
Fr, = prha®g+pa(a—h)a’g
W = PKCL39
o= P2TPK 667102 m
P2 — pP1
1.4

Wy=Fr=pAphayg
Wo=Wi+myg

The volume of the water remains con-
stant.

1.6

m
AH = —
pA
! .
0= Vo _ 107105 m?
pTTLg
AW = pMA(ho—hl)g
A = 1.95-10* m?
Wo—AW = pyTig=pr7yg
WO_AW<pM )
-1 = ——|—-—1
vyl PF
= 244-10° m®
m—n = (hy—Mi)A
he = 10.625 m
1T
gl ] H
-nT—-__J_
T
pl
L_iv {
=E| h
]
™ ™
.-~ D*H = ~D*H-h
Pay py D )
P = Patpwg(T—h)
ho— Peg(T+h)+p.
2pwy
wg(T+h) +p, )
<p 9(T+ )+p> oy
2pwyg
2m
F FL_VI/(H',T_W

s
1 D? g [(H - h) pw—H pa]

G
—9.58-10° N
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0 = FL—Wair_W

hy = H<17&), aw
Pu

Pa
Ty = ho[l4+ —"4——
’ 0( pwg(H7h0)>

= 183 m

1.7

P

I"Rccsu

[pi(2) — pa) dA sina
Rda27m R cosa
‘gRgpg:105um4N

1.8

dFy, = pg(h—z)2rxrdr

H-h+z
FL =

1.9

7D pu g

(b)

[p1(2) — p2(2)] Bdz

hy : p1(2) = pa + pg(hi—2)
h/2 : pz(Z) = Pa + p(](hg—z)
2<hi: ps=pq
1
5p9BM?7@)
1.05-10° N
z=h1

= / zdF

2=0

1 h3—h3
= 3 = 1.86

3 h— h} m

1.10
4
4
4
Y
FL =
dF
pi(s) =
F =
1.11

cs=L
/ sdF
s=0

[ps(s) — pa] B ds

= po+pg|[L sina— z(s)]

pgBRh?

=3-10"N
6 sina

a0

dF

pi(z) = patpg(H—2)

FZF

zZF

1 f f
ZprJ:25-m5N
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1.12

i

x

Boundary condition:
r =0, z=h: p=p,
1
p=pe = pg(h—2)+5pr

(a) Surface:

P = Pa
S22
= h
zo(r) + 24
r=R 2o = H
H-h
2
w* = 2 2
2
2o(r) = h+(H—h)—

RZ

Volume of the water:

R
7R*hy = / zo(r) 27 rdr

JO

1
TR*h + 57rR2(H—h)

h = 2hg—H=04m

[4g 1

(b)
r=R : p=p.t+pg(H—2z)
z=0 : p:paerthrng’rz
1.13
dp
e —p(2) g
(a)
p(z) = 2(2 p=poe i

(b)
p(2)
rlz) R(Ty—az)
a2\ fa
P = Do (1 - ?0)
()

1

p(z) = po (i);

y—1 gz \*1
n o— 1—
p po( ~ RT0>

[ p/po [ 3000 m [ 6000 m [ 11000 m |
a) 0.695 | 0.483 0.263
b) 0.686 | 0457 0.215
) 0.681 | 0.442 0.186

1.14 (a)
= (pmo—m)yg
10.6 N
(b) for
2<z1: P11 = PoTo
P b
Po
Po T1
z1 = — In—
Po g To
= 10.0 km
(c)
FL(Z‘Z) = M/
Po Po T1
Zp = — In——
Po g m
= 12.8 km
1.15
Fr(z) = W+ Wyas(z)
Fr(0) = W4 Wyas(0) + F
F, = pryg
G_qllS = panTq
p!]as(z) _ 67%
pgaS(O)
RTI <1+ FS)
z = —In —
g w

= 7.84 km
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3.2.2 Hydrodynamics

2.1 (a)
d
Yoo tan(w t)
dy U Ug
y = % tan(w f)} x+c
U

Straight lines with slopes 0,—1,—c0

(b)

/udt-‘rcl

_—— sin(wt) + ¢
w

y(t) = /v dt +co

% cos(wt) + ¢
w

(2) @=c) +
(2) (v

Circles with radius 1 m.
(c) Circle around the origin

Il
_

2.2

v
prtp.gh = P2t pe
P2 = p1F+pugh
v o= JagnPe=Pe

2.3
H
T
d 1
7p+5d(v2)+gd7; =0
p = pRT
inner:
Pri v
RIiln|—|+—=+4+9gH=0
Doi 2
outer:
RT,In (12) tgH = 0
Poa
T; m
=4/2¢gH (= — = 31.6 —
v V g (Ta S
2.4
Ap =0 g ’Uzo

(a) Assumption:

PV D

> 250 vy

S
D
(’”L - 3000)
[L

Il
o
o

(b) Assumption:

P Vs D
I

> 250 Vo =0.5

S
o D
(L _ 3OO>
1

(c) Assumption:
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2.5
. s l
—— D
) ~ |
ap
Ap = g'uz
Voo D? = v (D?—d?)
2
Voo _ 1 i
24y D2
p
e
280
7
0 —= d/D
2.6
d=D{|—— = 0.05
h+ H "
2.7 (a)
P P
P1+§U% = p2+§v;
(%1 A1 = U9 AQ
vg Az

2.8

U2

U1

pt+pgh

w|Bwn

P
p3+ 5 ’U§

2
N

10°—

m?

= 04610
m

= put

1.1-10°—
m?2

N

14
3t

;N
1.08-10°—

m

o [1-(2)]

Patpgla+h) =patpgz+5u(z)?

. 2a
Q = / v(z) Bdz
0
2 p
= 3V2s B[t lh=ay]
Q—Q 34
N (E
a/h 0.25 0.5
Q“T—Q 0.264% | 1.108%
a/h 0.75 1.0
QOT*Q 2.728% | 6.066%
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2.9 2 v 3 (a)
o weng—
h UDAD = vaA
l— 9 )
=7 K== Po=Dpat+Ap = pa+§ a
P
Vp =4 —— = —
R P p Ap Ap s
A | WY (b)
Po—Pa = (Po—pp)— (Pa—PD)
z P P P
ofF :.f = 5”%*%(5%23*5”3)
_— = 5 —
[ [ | By )
_ 24Ap A
(@ wo= 4
1
_ P o A2 w2
Ps = Patpgs A
. m3 B 45
Q = Aj\/29h=4— Up = —
S A
\/016 (4£) +084
b
(YR ©
!
£ PoH A m
&2“ v %pgs E%OO ’U]_):].Of
RS
4 2.11
12 3 L 5

(¢) Vapor bubbles are formed, if
P2 =pP3 = Po -

i Ay = v A
Pa = pv+pgh+§v*2

. Pa—DPo D (a)
A5 = -
! pgH H
2
= 0.244 m* O=mp ™ D% o (P —p2)p
4 Pw

PiF+pwght = P2+ pwg(hi—hp)
+ pugghp

geap \r"/—h“s«, 5 00723
0 s
/m R (b)

m D? 2(p1 —p2)B
4 aB p
mp hD

= —\[— =0.75
ap Qap mp hB

Q = mp



102 3. Exercises in Fluid Mechanics

2.12
—p, —=
il
Qo || lg
] it}
1 1 z
i Ed PP PP AT 77 27
A

p
Patpgrotsvg = pitpga

2
P
+5 vt

P1+pgz = pPatpgze

The assumption of quasi-steady flow re-
quires that f < v <o

dh
'UlA:’UOAszngS
po A dh A [T
T AJw2gh A g
2ho
A:AsTg:5m2
2.13
P
] *— 8 7
at
1 oo . |
A l :
y 'E'"vz’
1 A
3 £ 4

TTT T //f/l;

Patpgzo+lu?

B) = ptpga
+gv%

Pr+pgz = Patpgr

1;3 < Uf

f dZQ B
nf=v- = ——F =
IR dt 2

do _ _d=

at dt

dh_de—z) L dx

dt dt - dt

o _ _B o dh
f ho\/2gh
=100 s

4
_ B |
- 2f V29

2.14

P p
P(L+PQZO+§Ug:pa+§U%
v§<<v§

Volume rate of flow:
dz A
T; AB = U A— Vo g
2gh

(%1

p_ 3 Ap i dx
V29 A n 3V -7
3 Ap

= a6V VR~

~3VE @3 VR - yz)|

Ap [
T=628 [ 321 =108 s
29

A
2.15
d
v
B B
p1+,03!121+%vf = pa+p2 v2
Pa = P1+pwgz
v% < v%
v d> = v D?
_ le D2

dt
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2.16
l\flsl
]
| :
-ONE —s t
Vo R ()
—co Ot —0 Ot \ 27ms?
L
+/ %dsz
_D Ot
NG
D d’Uo
= ([=+L] 2
(ﬁ* ) i
2.17

vg=14/2gh =10 m
s

Pat+ 501 = Pat 53

2

2.18

rs1 Qv
Y
+p/51 at “°
st Qv duy D
Pas ~ 12 (Z <
W ot dt (L < )
Yo
T [t
v vy
2L
= =2s
V2gh
T
0 = A/ vy dt
0

_QAL/%O@
o (%))

PIIII I TSI

Patpeg(h+2) = patpgz

+ gvg
52 Qv
+ — ds
P ) ot
s2 Qu dvg
—ds ~ L—
W ot dt
0.99 /29 h v
T = L/ I &2
0 2gh—v3;
B L
T \V2gh
| |:\/m+v2:|0,99 2gh
n | Y242
V2gh -],
= 10.6 s

Pa = p1+pgh1+gﬂ§

dv
+pL1d—:

Pa = ple:pghlJrgv%e
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for:
dUg _ 1 Vo
dt L( 4 2)
v = 0.994/2gh
pr—pe = pgh (1-0.99%)-

(1-5)

N
746 —
m

I
=
=

=+
A
s
>
+

Pa

+

s
|

o

wov dy, s
s Ot T dt L

Py = Pa—pgh+ psow’® X
S
[L sinwt — Eocos2 wt

Ppmin = Do
Dp = Dpmin With coswt =0

(follows from% =0)

—pu — 1
po JPamPe—pgh o1
pso L S

(a)

P o dv
a h = a 5 L —
Patpghn pat v oL
Ty
Q = A/ vdt
0

v udv
o [r
0 2ghy —v?

1)2
= —ALln(1--—-1
2ghy

Determination of v;:

vr dv
T, = 2L/ o
! Jo 2ghy —v?
L 111\/2gh1+1)1
\/2gh1 \/2gh1—vj
TrVZghy 1
L —_

e
V29—
T +1

e
0.240 m?

<
<
Il

&
I

Patpghi = patpg(ha+hs)
P o dv
L L —
+ 211 +p i

Trr
Qi = A v dt
Ty

0
= —2AL [ —F——
vr 2 g ho + v?

Art (14 Y
n
29}12

vdv

= 0.194 m?
2.21
kv

== lg R

A B
h L (,

p l — el

N 2
1 1o, b,

(a)

P
Patpgh = Pat 502
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U1 D% = Vg Dg

Dy\?
T = 2|L ol
{ 1<D1> + z}
0.99v/29h oy
/0 2gh— v}
2
_ L(B) 4L
V2gh
| |:\/2gih+v2:|099 2gh
n|¥Yegot =
V2gh—wy],
= 5.231s
Dy\?
= |Li|= Ly| As-
@ { 1<D1> - 2} ’
/0.99 29k yy duy
0 2gh—v3
Dy\?
= —|L Ly| A, -
{ 1(D1) + 2} 2
2()‘99: 2gh
ln{Qghfvz]O
= 0.048 m*
P 1% dUQ
PA+§U12:Pa+2U§+PL2dt
p P dv:
p3+§U§:pa+2v§+pL2dtZ
as shown under (a):
dvs 2gh— v}
= 2
W oL (B) 4 o
t=0:
pgh
pa = pPp=pa+ 5
1+1 (5)
s N
= 1.16-10"—2
m
t="1T:
D4
pa = pﬁpgh[O-%2 <1fﬁi>
1

1-0.99
14 L (Dz)2]

Lz \D:

N
= 1.187-10° —
m-

1-0.992
P = Do+

= 1.003-10° ﬁQ
m

L D5
1+2 (3

)2p

gh

(a)

P
pa+pgh = p15+§1}15
T
1s A

)3
Pis —Pa = P Qh*m
18.875 - 10° —;
m
(b)
_ P o
Patpgh = Pt G vr
D’Ul
Li
Tk
. t
Q1 = Q (1—ﬁ)
Qo
) = p. h+pL—2 —
pi(t) Potpghtp Lo
t

- 2%

T

;
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R
ol
p"- pL“n
‘ p, +pgh
]
0 . t
1.
Apzul = DPimaz — Pa
_ Qo
ATs
Ts = 0.25s

3.2.3 Momentum and Moment
of Momentum Theorem

3.1

P 4 4
p1+§vf = pa+§v§:pa+§v§
Ap = pi—pa
v A = vy Ayt A
2 Ap 1
v = e —
Ay
<A2+A3) -1
m
= 2.58 —
s
Ay
Vg = Vg=-——10
2 3 At A,
m
= 5.16 —

s
(b)
p 3 Az cosaz + pus Ay cosan

—p U% Al = (pl - pa) Al + Fsac
F., — —866.4 N

p vg Ay sinag — p v§ Az sinag =

F

sy

F,, = —2384N

3.3

pvh Ap

Ay sin

. *
— Az sinag

|
o

*
Qg =

—pv%AD—vafAlel

Up
Up AD
p
Pa + 5 Z)ZD
Fa=—-4pghAp

(Pa
+ Fy
pgh(2Ap—A)=0

= /2gh
= 2’01/41
= pa+gvf
= —2-10"N

+pgh—p.) A+

pvp Ap (Patpgh—pa) A
Fa = —2pghA
= —2.10"N
Fo = 0
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P= *FS Uy

Moving control surface:

—pv? A 2pvE A% cos3=F,
Ve = Ug—
P o P 2
Pat 5V = Pat gl
v, A = 2v, A

P = pvg—v.)*v, A(1+cosf)

P
dv,
v, = g0
s
(b)
4 5
F, = *§p’UOA(1+COSﬁ)

3.08-10° N

cascade 1 - It __'_/
cascade 11
(a)
vy Bt = vy Bt cosa
U1
Vg =
cos o
Cascade 1

(b)

—pv? Bt+pv? Bt cos®
= (p17p2)Bt+Fsz

pv% Btsina cosa = Fy,
Force normal to the blade:

ST
tana = —

sy
pL—p2=—p vf tan® o

(©)

P
po1—po2 = (P1—p2)+ 3 (vi—23)
= g v% tan® o
(d)
F, = —F,= pv% Bt tan?a
F, = —F, =—pviBttana
Cascade 11
(b)
P P
p1+§vf = p2+§v§
pL—p2 = g@f tan® o
(c)
Por —Ppo2 =0

(d) Momentum equ. as for cascade I

E =7 v? Bt tan? o
F, = —polBttana
3.5
v ¥ cylindral surface Ay,
LR PV At

pP1 U1 Aw = P11 (Aoc - AR)
+ Am
Am = pyv Ag

—p1 0} Aso + p1 0} (Ase — AR) +
+ﬂA'U,24AR+/ P10, dA = F
Am



108 3. Exercises in Fluid Mechanics

F Aso > 1
or X P
AR (¥ (%1
/ PLUz v dA = vl/ pLU. dA
Anr Am
= lem
F, = PA’UiAR
P = Fs"l}l
= pAU,%\leR
3.6 i 0
_".'-u\__-._.__‘,__u
i~ j—
i n———-—
- _.—--u-2
SHTREIE e
(a)
pa+gﬂf = p11+gv’2
P P
p2’+§v(2 = pa+§v§
V1 Alz’l)l A/ = U2 AZ
0 = (pr—p2) A+ F,
s A + pus Ao
+ pv% (Ao — A2)
— Anmv =F;
See problem 4.3
pvi A +Am = puiA,
+ pvf (Ao — Ag)
o = U1 — U2
2
= 652
S
(b)
Fovy v
n= o = — =0.769
37 (a) Y S
:'W —
g —— fl A_{'_,,_..
i 1 —
=l T e _ ==
? ok ?
|
]
]
]

(b)
p1+gvf p1r+gv%
2 2
vy =vy = ;(plfpl')JFUl
k
m=pAuv, = 13.-10° -2

S

—pv? Ay — Ainvy + pvi A
+P/U% (A — A) = F§

See problem 4.5.

pu1 A+ A = puy (A — A)

+puvy A
F, = pua(vg—up) A
= 0.39-10° N

P = Q(Poz—pow)

= Q (p —pr) = 448.5 kW

3.8

Ap = pa—p1=pa— D1

vA= wA
V op

. 2Ap

Q.
Il

P =Q (po2 —po1) = TAPA

(c)

pvP A=F,=2ApA
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l 2 Tl }
I . “‘. \ |'_—~:" f Iy
| S A ..-"__q!.. — e
| ]
| B
I -
(a)
(d) .
pv A = (pa—p1) A vy = AQQA T
Ap=ps—p1 = pPa—m 3*p 12 S
. A Do = P2+ 5V
O=vaA = 2224 22 .
pa = 0.99-10° —
(e) m?
: [A (b)
P =Q (po2 — po) = TPAPA
—pv? Ay — pvi Ay + pui As
() =(p2— Pa) Az
p’U2 A — F‘S — ApA U1 A] + () A2 = U3 A3
3.9 -
v = |1+ |——F— | vo
—_— —_— Ay _ A
— R ( 24 (1 Ai))
J—— _3+ [ v S —*E v = 96.6 N
—_— =% i A A,
——— E po— vz = U1*+U2<1**)
fo " = 6832
S
) ©
P 2 P 9
o+ TV = += .
g 2 b P 2 " P = @ (Pm - Poy)
—pvs Ay +pvi Al = (pa—peo) A = O (p1—pv)
vp Ay = v A P = P2
[ _ P o
Vg = Yoo 5 Pa = DPv + 5 vy
A; A
1—242 49 (42) » = g(vg,vg) o Ay
= 566 = = 46.6 kW
s
v = 283 % (d)
(b) pvi At = (pa—p2) A1+ F,
_pngl-i-pval:(p3—poo)A1+Fs F o= p (vf - Ug) 4
, P o P 2
Poo t 506 = P3t 503 = 1066 N
v = U1 )
F, = P (W2 —2) A, = —100 N (Traction force)

2
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—pvi A1+ pvl Ay = (p1—pa) A
patpgh = pﬁrgv?

’UlAl = UaAZ
O = vV2ghA
- 2
2 (B) 24 +1
dQ
aa, =
Ay = 24, =02m2

N
pL=pPa—pgh=>510"—
m

Fg = —pghA
= —510% N (Traction force)

FSZ = 0
Fs3

pvE Ay

Fa = 2pgh A
= 10* N (Compressive force)

3.12

—pvs Ay + puvi Ar= (pa—pe) A

pz+p9H+§v§

D? 2
(§71> 1

5 N
— ng:OASQ.lOOE

3
Q
Il

vy Ay = v A

pe = 20k
a 2 1

N
pa = px+pgh=23-10°—
m

7w D?

P= v == (Poa — Por)

= 1.9-10° kW

3.13

Po = DPet 5 Ve
Ae
v = — =05
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(b) (a)

2 _ , h?
pviA = (pp—p)A —pviBhi+pviBhy = prﬂf
Po = pu+P!](h+h1) h2
P = Datpgh - PQB
v = gh:3.16E
S ’UlBhl = ’UthQ
v = %#(}Ll+h2)
- 739
v = 0.879
S
(b)
U1
Fry = =1.73
" vVagh
Fry = 0.61
()

1
Hy—Hy=hy —ho+ 25 (v? —v3)
(hs — hy)?

W Z M 0125
A1y hy m

= 7.67-10"

3.16

(c)
—pvlActpri A = (pe—p1) A

Da = DPet

O = v A =v A —v.UmA (a) For each streamline it is,
- 141 = Ve Ae = Ve

po= pa—ofm’ Patpgh = p+pgz+g”2
2
Apy {(1—i> +1} ptpgz = patpgh
vm
N v = /2g(h—h)
= 0.998-105E = vy (independent of z)
. ) = v Bh
P=Q(p,—p) =144 W Q te
aqQ 0
o d;“
I -l hlmazth = 5m
I g | 3
: | (b)
— o
V. Fr, = =1
hzl 2 T N
M —V _LJ 5
-“’«k“ﬂr‘,, R CTTLETLLCCTTTTTS. hig = gh:5m
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()

R Rl
93(3‘5

—pviBh +

+pv3 B hy

UlBhl = UQBhQ

hi h
hy = —||1416(—-1]-1
2 2( + 6<}L1 ) )

= 593 m
vy = 4222
S
3.17 (a) —
2, b s
7 ////! 7

Zerit. + Hmin = Hp

Q* 34
Zopir, = ho+ —os—=
! ot ogBre 2\ g5

= 0.446 m

(€) 2w > Zerat. :

hy = hcrit.: \

= 1170 m

Hl = ZW + Hmin
H,y Zw

H min H, min
from diagram:

h
hcrit.
hy = 2.64m

= 2.26

(Elevation of the upper water)
(d)
H,—Hy = Hi—Hp
ZVV - Zr:ri,t.
0.554 m

= +1=1.570

—pvi Bhy+pvs Bhy

W R
:pr<1 23>+Fs

2

F= - F
2

g B
= P92 (hy = hy) -

<h/1 + hg — 27@>

g B2 hy ho

= 260-10°N

3.18

dp dr dr
— - — — | df
(p dr 2><+2> *
db
2pdr —
+ pr2
dp _
dripr
(b)
d Po2) _
w(pr5e) =0
dp dv v?
B
dr p dr pr
const
T—
r
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3.19 (a)

M, = 3pv.A(rxwv,).
= 3pv,AR(—v, cosa+w R)

Determination of v, :

Pa = Pat

[N

52
= [T p(b-ds)

0

w? R?
= ptLe?—)p (gH+

2

V29 H+2w? R?

2

v =
with
wR
= ——— and
VeI
My = —3pAR2gH cosa

M, oo 1. §
M, 1+f2 ( 1+52—@>

2 AZ +tan’a —1

2 M
¢ 2tan? o
M, 2
14 ( — 1710) 2 tan 3
2 % +tan?a —1
& = 0.07
1
n = 1.05-
S

3
O=3vA=213-10"° =
S

(©)

Patpg(h+H) = p+L0?

2
oo Q
1 A,
= N
P o= 1.095-10“—2
m
(d)
1
& = =1.73
tan a
1
wy = 163 —
S

3.2.4 Laminar Flow of Viscous Fluids

4.1

(a)
(pl—pz)ﬂr2—7'27rrL:0
du

_HE
r=R: u = 0

)
uT",(I,.’L' B R

u(m) _ Q

uf”.(l.'lf u'r’L(l[ITWRZ
1 r 2
_ / 1- (7) x
0 { R
T

“74(%)

T =

(b)

DO | —

8 Tw

iz,
4 p Uy,

64
Re
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4.2 For y < a the fluid behaves as a rigid

body.
(a)

I

~TTTTT
———
w

PPy ryy

t—20—=i
(al‘iz' *t,&z

pg2aAz

—b—

pgalz=mrAz

TTTTY

TERRT

14
todyﬂ)f

dw

dy

+ 70

70
a=—
Py
b
(v) T
]
dlz 11 |
P9
dr
aly<b: — = pg
dy
T = —u
Y= T = To
y=b: w = 0
g
w(y) = 22[(0 - a)* = (y - 0)?)

4.3

) §
Q = B [ uw)dy
dr .
— = sin «v
dy PyY
du
T = —pu—
"y
y=20 u = 0
y=46d: 7 = 0
pgsina y?
uy) = PRS-
O - prsina(SS
3
= 1.2-10‘3E
4.4 (a)
\ 6
QI§ y
N
Wz —=i dy |=—
dzl -;.:_tdy
!
Pg
dr
ot = 0
dy+/)9
dw
T = —WU—
/dy
d2
Ew_ pg
dy*>  p
y=0 w = 0
y=0d0: 17 = 0
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r
lz l —=idr j=—o

W

: El[ ‘l:ogf—dr

—
T2mdz —

—(T—l—(jiidr) 27 (r+dr)dz+
r

+pg7r[(r+dr)2—r2] dz=0

dr " 0
—p _ =
ar T TPIT
dw
T = —u—
dr
d dw Py
il - L
dr (T dr) * 0 "
r=a =0
r=a+9 7=0
i
w(r) 5 X
2,2
X{(a—&—ﬁ)Zlnf—&-a T}
4.5 (a) Y 1-‘%“ o
H — dp
’L_ l L—dxt—-l
x .
d, d
dp  dr
de  dy
du
o= ot
/ldy
Pu _ 1dp
dy?2  pdx
y=20 u = 0
y= = Uy

Ty =H) o+ H
T(U = 0) Uy — i% 2

2
_ (M _dp HTN gy
2 der 12 p

dI H 6
e B 1 Yy = — 2 BH
i /0 puly)dy =< puy,
(f)
Tw E
L2 Re
() 7

=V

=
B N

4.6

t‘:—tdf
\\
ug 2722
r _'I- .d_! X
T_L&.I_..,_._________.q_
i
W ML

¥ o—dax—f
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(a)

dp 1d(rr)
dzx + rodr

Compare problem 5.4b

du
T=—U—
ﬂdr
d du 1dp
dr dr wdr
r=a: u=0
r=R: wu=
1dp, 2
u(r) 4uda:( a”) x
R?_T,Q

ulr

a) R 2d®>In%+R>—a?
T(r=R) a2R*In%+R>—a>

9
=
<
Il

@
m (R? — a?)

1 R
= o (=) /a u(r) 2mr dr

1 dp , <a>2
= - 1 il
SdeR{Jr R +

Uy =

r
wo= d v
" (?) =R,
M, = —t(r=R)2r R} L
M, Ri\?
- e ()
4dmwR; L R,
Ns
_ -2
= 10 3
4.8
rarrrrrsrrressrsrrrrerrerrAlan
4a d at e
ur 2 gy 47Ty L‘*a—drl

= {q— <q+@dy>} dx +1Tudr —

dy
or ou
— <T+87ydy> <u+87ydy> dz

dr

diy —_ 0

oT

q = *Aafy
o

% — )\027T+ % ’
Pag = Oy? o dy

(a) It follows from problem 5.5a):

Y

u) = g

de oT oT oT
p% = pcy (E—&-u%—i-va—y)

=0

PT g ()
dy X <ﬁ

y = H: T=T,

y = 0: ¢=

0
T(y) = T,+ 1o (%”)2 (H—y?)
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we 2T Py,
w dy i H
(c)

v? u?
ho = CpT+?:CpT+E
hg = const: Vhy=0
Ohy oT 8(“)

o K &L+ ox =0
Oy _ 0T 0(%)
oy Ty y
= ¢ ngudl
TP dy dy
BCp\ (U2
= (1-— —w
( X ) (H) 4
1t Cp Oho
Pr = — = — =
7 \ 3y 0
(d)
orT
— =0
dy
a _ p (@)2
dt ~ pc, \H
t = 0: T:TO

B\

Tt) = T — )t
0 = T+ ()
49 (a)

q.d—:tdr

ua:::'dr '(»g—:dr o
f poad:

Velocity distribution:

d
el ar
dr

T

dm 'ud7

=0
B du
udr

dp d T@ _
dr)

r=R : u=0
du
O %—

Temperature distribution:
0 =

dq
- <q+$dr> 27 (r +dr) doe —

dr du
— (7’-%-%617“) (u-i-gdr)‘

27 (r+dr)de+

b))

uTm [(7 +dr)? — 7"2}

q2nrdr+Tu2nrdr —

(b) It follows from problem 5.1a

e ()

2 N\ 4
/'I/uTn,(l.’I] 7
T-7, = Mime |y (L
Bl ()]
r=0:
jou?
,Tmaz*Tw = e
4\
T_ﬂll - 1 <T>4
Tmaszw R

4.10 (a)
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@ oy (v dp
2n h(z) h(z)) dz
Q _ux h(z) h(z) dp
B 2 12 p dz

r=0: p=px

With p(z = L) = ps yields:

jL dx
7 Uso JO h2 ()

Q
B - 2fL dx
Q
B

0 R3(z) z)

3 ; er 1

= Uoo N1 —5——
4 el
mZ
4.49-107° —

6071
es—1°

s L
h1 h]
{e«%fKeoL +K71}

p(z) = poo+15

B~ o) - poyda

LN2%[5 2
= pun (=) 221+ K-1
5““°°<h1> [6 (s =1)+ ]

P L

5 = Uoo /0 Toy(z,y = 0) d
du

T:x:y = —H d’f‘

4.11

Y
1—
. h(x)ﬂ
P
B = 20 p u;h—l X
9K
X [e%—l——(e%—l)]
16
= 55.9E
m
3 x
Ty * ;y dy

dl,  [9(pu)
dt /T ot )dA

= ZFw

/ pu) dr = (p% + u0—> dxdydz

ot ot ot

/Apu(v~n)dA:

(02
{fp u? + (p u? + 0(2; ) dz)} dy dz—

— {fpuv + (puz) + puv) dy)} dzx dz
Jy

_ ou 9,
T |Phar TPy

d(pu)  9(pv)
o < or Jy *
X dx dy dz

Continuity equation:

dp  Od(pu)  O(pv)
ot ox dy

=0
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ZFm =— 00y | Oy dz dy dz (a)
ox oy p
p1 +§“21 = Pa + 2“m2
(T = Tay)
2 2
ou ou n ou a2, 7r4D a2, Wf
il T el
at 0 Oy 2 ) N
P1—Pa
— 00—11 asz u'?nl - p D
ox dy <E) -1
m
- 1=
4.12 S
i m
i = const.: Umy = 4 s
Pu  Pu  u
F.. = —+ —+— b
a (812+8y2+8z2>+ (b)
Loy _ Lyp e
+38.7:(V v) Po = P1+(1+)\D)2“ml
p = const.: P Umr D
Pu  Pu  O*u Re = ,ul = 10¢
F. = 1% (@‘F E)iyz @) . 0.316 00316
4 - Y-
v Re
3.2.5 Pipe Flows po = 2.66-10° —
m
5.1
. ()
p Uy D
/J/ = —
2 — FPa
fre dy = |20 =Pa) _go
— S
Ym = T DT
L P _2
/)q(h+L) = (1—"_/\5—"_(5)5“’771 5.3
. 7T _ _
Assumption: Laminar flow Q = 251 (1 D} + iz D3)
L
¢ = 116 Ap = (1+/\§+§)gafm
A o= 1192 I )
64 — = F g2
re = S = UHAD + 05 T
Intake region: FT— #
p(l+ A o+ <)
L. 0.029 Re D -
0.16-107 m < L iy = #
— 8401080 pUHAD+0)
K ’ 2 . l'Il3
O = 0518 —
5.2 °
54
Lop
Ap = A =2
P D 9 Um

Um =
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a. PP =
I

(Re \/X) crit
Oil:

RevVi =
G R
VAN 64

Um =

Water:
RevA = 3.16- 10
= 2.0 log(Re VA) — 0.
7 g( )

Gy = 2.59 =
S

t
t

(a) o pvg—‘g dx

8

Om Gt ddU LI

d
= (p-i—ﬁda;) X

d_'ln
X (ﬂm—i- Y dx)
dx

= M 717”1

=—1,mD

o)

)\:87'w

72
p i,

dp
i

U,
P1 uml

AP
dx D2

P2

dxr+
nD?

4

m =10

(b) Compressible flow:
da,, _ dp
P dx i dz
(Continuity equation)

=0

p = oL p (T = const.)
P
dp_ prdp
dx p dx
dp  pipiis, dp
dx p? dx
+ ipl P1 ﬁgm
2D P
=0
Re = Re; =0.533-10°
0.316
A= o = 0.0208
vV Re

2
/pdp*
1

2 dp
—2

u — +
P1 D1 m]/l »

A s /2d
2Dp1p1um1 iA &z

-0
2
D
[ pfz {1<1’2>}
A P1 Um1 P1

2
_ P <@> —9287.9m
A P2

Incompressible flow:

dii,y,
-_m _
dx
@ _ ,Aﬂ(f
dz D2 ™
D p —
L o= 22072 57
A f)luml
5.6 (a)
r = R—y
. R
1 = / pu?2mrdr

= 2pu’, ﬂR/ (um)Z%d(%)
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u 2
§ = 0: —=1 D, D3 L1>
Ly, = —||2—=5—M =] X
. ) A{( oo
= pul T R? DA
2
0 = R: X D7?_ }
U 7\ 2
= 21— (= = 10m
UIYL { <R>}
[ = 133pu2 7R (b)
D% P 2
5 E Ap, = pl_pa+<1_ﬁg>§uml
2 N
= 1172 —
o {i’%( k) f<r<h w?
o 17 0<r<g 5.8
. L p
I = 2pu’mR?x pgh = (A5+2Q<+Cu> §ufn+
0.5 /24N\2 r r P o
=) —d(= + -u
XUO <17) R (R>+ L2
1796 r r\12 ugd® = ’ll,,,,D2
= (1-= .
+/().J17R< R) X O = u L
74 () '
R R
= 1196 pu?, 7 R? B 2gh m d?
= . ma
(b) L+ (5) (M p+20+ )
2
_ 5 9
Tw = KU Um 2 ud
) 5 =
=35+ (%) =3,
d—0 Ty — 00 with losses:
1 Uy f
60— R w =4 (a)
i R
R . . md
o5 T = 565" 0=579-10°""  H—69m
S
b
57 (a) (b)
3
L )-982-10° L H=12
pﬁgﬁiﬂ *pa+<1+/\gﬁ2>x @ =982-1077 = 5 m
2
P _2
x 2 Umz loss-free:
Li p (a)
+ <§+)\1 Dl) QUm] ,
D2\? Q0=69-10""2  H=h
C = *ng
ﬁml D% = Umpm2 D; (b)
3
Re; = 10 )\ =0.0316 O=2177-10° % H=ph
Res = 5-10° A = 0.0376 °
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5.9 (a) (b)
\ 04.316 I ffput2mrdr
Re p Uy ™ R? pu, mR?
Uy, = pLD Re
)\[)ﬂgn N - 9 <ﬂma1>2 .
o= SEmo2m o —
b [ 0-3) 7 (3)
(b) 0 R/ R R
o lima _ 0
v = a 4.07 = 19
Uy \ 2
A =8 (a) 5.11 (a)
U, 1
Umo T o84
Umax 14+4.07/3
(c)
e 52 (Viscous sub-layer)
v Uy
(b)
A m
P [ - L _
=543 tm = 0236 — pa+09h1—p1+<1+)\ﬁ>gui
(for y = 0.11 mm)
. 1w D?
Y Uy =50 Q = U 4
v _
(Logarithmic velocity distribution) Re = Um D —8.10°
v
R
. = = 250
L m(y“*) 455 ks
U, v
i — 0720 ™ (From diagram, page 29)
S
(for y = 1.1 mm) A = 0.024 N
— . 5 0
@ po= 122:10° —
| = 04y—044" Y (©)
v Ay
8 tm Lop_,
= 0.85 mm P2 = PaJrP!}thr)\@iUm
N
_ 105
5,10 (a) = 377107
r = R—y (d)
T Q .

1 r\F 7T r
2 1-—) —=d|—=
0-7) 74(z
@

60

)
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H ..:I
-]
@
ap
(a)
_ Lp_,
Ap = A D 3 Um
. a1 D?
Q = iy
2 5
_ mArDY 356
8pLQ?
(b)
U D
Re="2"m2 _18.10°
n
(From diagram, page 29)
R
L
ks
ks = 4.2 mm
()
D2
Ap T —Twnm DL = 0
D N
W= Ap = 16—
K P 4L m?
2
F= pr“f = —2517TN
(d)
A =0.016
(From diagram page 29)
. N
Ap=58-10° —
m
5.13
P (1+ XM &) g2,
PZ (1"1‘)\23)5125”2
. 7w D?
Q = Un—y
1 R
— = 201log|— 1.74
) o8 (5.) +
P, 1+ XM & /Dy\*
d - 2o (—2) =39.2
P2 1 + /\2 Do Dl

5.14
L P 2 Lch P _o
/\psB 5 Umps = Aeh d, 2 Upnch
dh = a
Rey=""9 _100 A, =008
J
pD @
Re,s = Aen = 0.030
P L 100 7 D2 h

d, C )
Re, = M%:s-m“ A =0.033
J
a = 0.02°
L2
Ap, 1Lp(@Q N
= AL (=) =361—
L dy 2 <a2 ; m?

3.2.6 Similar Flows

6.1
U=, 0=—, p=—-, p=2,
U1 U1 Apy 1
) oz oy st
M_Z7 x_flv y_flv t_a

op p (0*un 0%
— _Fu-ft 4+ 4=
"9z " Re ((%2 * 012
Sr = i7 Fu= Ap12~
vy tq p1 V7
Re = prv1 Ly
M1
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6.2
fi(Re,Eu) =0: FEu= fs(Re)
D Ap D
A= 7 —g z =2+ Eu = f3(Re)
6.3 (a)
L3 T—l — (A/[ L—Z T—Q)u
(M L' 1
a =1 fg=-1 y=4
. Ap D*
Q ~ 17
I
(b)
D Ap
A= =
ApD Qn  ump
L D3 D
1
A~ =
e
6.4
FDQ _ CDang% uch
FDw B CDw % D?H% Ugow
_ Cpa 5 o Re?
B CDw #12[} %’ Re%u
Re, = Rey: Cpa=CDw
FDa
= 0.281
FDw
6.5

F(f:u/)‘uomD) =0
Ky = fu psfﬁ )t D%

Take ay = 1:
b =0 m=-1, =1
D
Kl = L:ST
Uoo

K, = p* pﬁz w2 D%
o0

Take ap = —1:
B =1, m=1 dh=1
Uy D
Ky, = 252 _pe

Re = Re : v':y/%v

Small, so that flow in wind-tunnel
remains incompressible:

A=A, o = 7746 2
S

Fp
_ ’
P = Fr Fpov
D
3
_ _tp5v A oo
cp v A b
Re = Rd': cp=dp

Re = Re'
. vA .,
@ = v/A/Q
_ up’D’AQ/
wpDA
A D\?
v~ (5
S 9n713
s
2
Eu=FEu: Ap = p/—vlep'
pv
_ PQQA/ZA/
p/Q/2A2
N
= 494-10° —
m



6.9 (a)
A ,U/DIQ
= ,' / =
Re=Re : Q D2
B n’pD/Q
D
3
= 05
s
!
D
Sr=8r":n = ZD’”
1
= 133 -
s
(b)
2
EBu=FEu: Apy = %Apg
N
= 527
571112
(c)
P = QApy=15.82 kW
P = QAp,=15kW
M = 2P =201 Nm
m™n
P/
M = —— =179 Nm
T™n
6.10 (a)
T=T: u = ok
Ma=Md: + = v=200"2
s
/
D
Re=Re: p = Zp=2
e (e P pp bl
N
= 4-10°
(b)
!
D
Sr=Sr": nlva,n74007
(c)
23 D?
_ 2 ' 4 Dt
P_%’v/:sD/z =4P
6.11 (a)
7T 4
Re = Re': U=
¢ ¢ v v L
v L
Fr=Fm': Lo\ =
7 T » 7
!
vo_ 1073 (M

X

3.2 Solutions 125
(b)

/ L/
Fr=Fr. L— f:O‘l

oder
v L
Re = Re' : —=— =100
¢ ¢ v L
6.12 (a)
L/
Fr, = Fri: v =v T
m
= 0.75 —
s
(b)
cp = dp
oo fv*BH
D gv/Q B' H' D
= 1.64-10*N
(c)
cp=1.12
(d)
v v’
= ch=161 =04
Vagh gh "
6.13 (a)
Eu = FEu, Re=Re:
Po—pr _ PV pD*p”?
po—pr  pv:  p D2y

/
Po—Pr = 440@

Sr = Sr':
D/

T = ST =05Ts
(2

(b) Analogously to a)

Praa = 6.68 - 10° ﬁ2
m

6.14 (a)
"D Q
Re=Re: o = P —
p/ i D’ T D2
m
= 0.1 —
S

. 3
O = s-10 2
S
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()
2
4 D
o = _ (d)
2 Aply '\/QE’MD
P
Eup = Eup: «a=d =0.6366
Fw = EBu: (=(=1771
(d)
2
pu
App = PRE P
N
= 0.625-10° —
m
2
pv
Ap = W P
N
= 05-10° —
m

3.2.7 Potential Flows

of Incompressible Fluids

7.1 (a) v
1
|
1
1
1
|
y r
(b)
r = %vds
.CQTr
= / ve(r) r do
Jo
. 2mwr? r<ry
T 21wl >
(©)
c
,
/
/)\\
/ \
P T —
ro

r = %vds:o
S

2 1o p
/0 §U92H27T7‘d7‘

7pHw?rd (0.25+1n2)

3.7-10° Nm
,_ 0P 0P
T o U_ay

Potential @ exists, if

Vxv=0.

o o
u=—-— =——
y ox

Stream function exists, if,

V-v=0.
(b)
Vv = V2o
Vxv ViU k
7.3
Vv ||Vxo]
a) | 4xy y? —a?
b) 2 0
c) 0 -2
d) 0 0

Stream function exists, for ¢) and d),
the potential for b) and d).

Determination of the stream function:

(a)

v /udy+f(x):y—2+f(x)
o )
v o= —af—f(x)f—r

1
U = 5(:52—&—3/2)—&-0

1
U= §(y27x2)+(:
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(©)

Determination of the potential:

2
x
o = [udotfly) =5+
v,
v= g, W=y
1
¢ = §(x2+y2)+c
b=2y+c
| Vxuv|=0: Potential exists.
u*gx v*—g
"I Y

Stagnation points:

u=v=0: z=y=0

Pressure coefficient:

D — Dref
5V
u? 4+ 2
U,y VUl
2 4 2
Trep + Yres

¢ =

- 1-

Circles around the origin of coordi-
nates with radius

; /12 dx L1 To
= — = —In—=
Jxy u U Ty

Ty =544 m
U =const: X1y = ToYo
Yo = 0.74 m
(e)
p1—p2 = (cpn— ) g vzef

N
0.442 - 10° —
m

N
W

U:I2

0:Stream function exists.

2xy

x3

v = xy2—§+c

Streamlines: ¥ = const.

[x3  k
=4/ 4 2
Y 3+ac

Asymptotes:

(z #0)
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7.6

o = /‘v,dr+f1(9)
= clnr+ f1(6)
op
90 Of fi(0) =k
v o= /rv,.d9:c0+f2(r)
88% = 0 fz(T):kQ

(c) Circle with radius r:

27
/ vgrdf =0
0

C
v, = 0 Vg = —
r

r

Vxv = 0

S
I

cl+ ks
U = —clnx+ky

I'=2nc

7.7 (a) n=0.5:

9 /Fsin (g)

= 0: =027

> '—(E>2 sin~? Q
c: r= 5 2

S
Il

=

Parallel flow:

n = 1:Y=rsinf=y
1.
n = Q:W:§7'Z sin(2 0) = xy

See problem 8.4.
(b)

Cp = ppi IZJTEf =1-
2 Uref Uref

oy —r™= sin(n 6)

v, = " cos(nf)

2 _ .2 n—1
¢, = 1_(1‘ 29)
: =0

n > 1: ¢,(00)=1
n < 1: ¢,(0.0)=-00
7.8 (a)
v
K
//—-' ~d
A r
 Fo )
\
\
S s
N y

E r r
v o= — i _
27 2 nR
E
v, =
2mr
r

v

&
Il
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vy
tana = ——
Vo r=Ro
Q
E = <%
ho
- 2
T
hoy tan « S

pgh+gv2 = pgh0+gvg
v = vl 0]
vy = vszn

. 2
h(r) = ho + é (L> :

7w Ry hy sin a

-]

. 2
1 Q
li N = ot —[—
rgroloh(” hot 8¢ (7r R hg sin a>
=235-102m
7.9
y
rk

E
U = upy+—0+c
27
e
= Uy |y + —arctan <7> +c
m T
1+h T
U = Uy —
T x4 y?
hy
v =

U= 5
ma?+y?

Stagnation point: u =v =10

h
Ts = ——, ys:O
™
2
T
57h = 7 |, o9
u(zs,h) U
2
e
S7h T | o
v(xs,h) U

(b) Contour: Streamline through stag-
nation point

o hm=0 _h ¥
e = 7 sinf 7 sind
with
¢ = n-0
(c)
_ W+ h2+ 2
N wt,  ma? 4P
sin(2 6) sing\*
GC = I - I
(d)
¢, = const:

h\: o, ho\?
o =(1-¢,) |—
<$+ ”Cp> Y (1=c) (”(517)

Circles around ( L.O) with radius

T mep
hy/1=cp
T ep
(e)
1 2h\? N h\?
Cpi§ $+? +y = ;
¥
1
ﬁ\ .“ nx
-2 -1
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6

st

)

e
)

Circles around ( =Ty with ra-
dius %
(8)
hy Uso

- >
a4 y2 2

9 ( h>2 <h>2
r+ |y —— < | =
m s

my

ik
\

(i) Acceleration along the z-Axis:

y _ du_ odu
T at ' odr
k(L
T Tl 2T B
db 3h
— =0 mazx -y
dx * 2w
4 T ,
bmaz 727751//00

7.10 (a)
v=0: y =0
P4y = B
(Parallel flow)
r=yz24+y? >00: VU oumy

Stream function describes the flow
around a cylinder.

W = const.

v+ v}
o = L
2
Uy = Uso {1— <E> } cos 6
r
2
Vg = —Us |:1+ (E> } sin 0
r
r=R: cp:174sin20
(c)
2R
A - / dx
—3r u(x.0)
RQ
w(2.0) = ue (1— ﬁ)
1 R, xz— R
At = . [1+§ In 7]:_"_3}
R
= —(1 Inl
Uoo( + nl.5)

7.11 Determination of velocity components
see problem 8.10.

o= (§)2 [2 cos(26) — (5)2
(a)

¢ = 0
R
r = —f————— or
2 cos(26)
V2u 27 V2y 2_1
R R )
Hyperbola
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Ap = (em— Cpl)Buzo

Cp 1—4 sin®a
sin? g —sin?ay = sin(a; + o)

SiIl(OCQ — al)

Ap =2 pu? sin(2a) sin(2e€)

(b)
™
a=_
2
7.13 (a)
pghm+gu§o = pgh(9)+§v2
r=R:v* = v} =42 sin’0

2
_ _ Yo 1 gain?
h(0) —he = % (1—4sin”0)

(b) Stagnation points:

f=0und b =m
u?
h=he+="=6.05m
29
(c)
T 37
emin_ ) 5
2 2
2
29

7.14 ,
o /¢
Py
H
a ]
\
dF, = (pi—p)LH sin6df
Pi = Pt g uZ

P
p = poo+cp§uzo

Poo + (1 — 4 sin?6) guzo
37
F, = /4 2 pu? LH sin®0 df
T
2 1.y
= 2pu; LH [—g sin” 6 cos —
3
9 3m
—= cos@] )
3 i
= 737-10°N<G
Mooring not necessary.
7.15 (a)
2
VY = uy,r sinf {1— <E> } —
r
r 1 T
27 " R
R 2
Vp = Uso {1— (—) } cos
r
2
Vg = —lUso {1 + (E) } sin 6
r
r
2mr
r

r R: Vg vortex = UVt =
I' = 27 Ry

(b) Flow field for vy = uc:

2
U = UypT sin€<17<§)>f
r
r
_ In —
Uso R nR
2
Uy Uso {1— <§> } cos
r

2
Vg = Uso {E — {1—&—%} siHO}
r r

v = 0:
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Contour: Circle around the ori- 3.2.8 Boundary Layers
gin of coordinates with radius R.

2 Stagnation points on the contour 8.1
(r=R):0,= g,%’“; nor free Stagna- Fy T
tion points ¢ ~ o2, BL ~ DAz,
¥ % 1
N -~ -~

pul,  puxd

—_— T
\/—7\/// Inertia and frictional forces of equal or-
@
K / der of magnitude:
W = const. 2

pu T
L 0
¥) oF 1
c ~
x D /7R6L
. dF
p ¥
dF 8.2 (a)
de vy = LBt 0167 m
Uoo
[£]
: X (b)
Y
n=<=4/Re, = 1.095
dF, = —pLR cosfdf u] T
P o «
= o+ Cp = 0 . .
b p Pk from diagram, page 60
r = R:
. 2 _ . _ BT
cp:lf<£72§‘in0> y z=015m : Re,=45-10
oo Z\/Rey, =1.095 : y=245-10""m
x
2m
P 9
F, = —-LR =
o gl (c)
2
x [1—<ﬂ—2sm0> } x
Uso
X cosfdf —
2
— LR/ Poo cOsldf =0
0
2T
F, = —LR gu’;x
0
2 (d)
X {1—(——251119) } X
Uoo
X sinf df —
2
- LR/ oo 00 dO
0
= =27 pLRv; Uy
= —pusxI'L

separation



3.2 Solutions 133

8.3
Am
Um L U
e L
—
5
fpu205+p/ wrdy + A us =
0
:/ZT(w/,y:O) dx’
0
5
Am=p | (U —u)dy
/‘5i<1_ﬁ>:
0 Uso Uso
T -
:(52:7/ T('T >y2 O) dl',
Jo pu
8.4 (a)

Rey, = 3.3310° :

Boundary layer laminar

U

From boundary-layer equation:

&:0 fory=0und y =9
dy

¥

&

(d) From Blasius solution:

So_p) — Ok, _ 060
TmB S Re YT Ve
0(zx=L) = 433 mm

L
F, = 2/ BT, dx
0

L

= puZOB/ ¢y dw
Jo

0.144 N

8.5 (a) Boundary conditions:

=0: —=0, —=0
Uso Uso

= 1: ?—Lzl
uOO

SRSESAES

From boundary-layer equation:

< ou 6u> 0*u
plus-+tvo—|=n

or " Coy) oy
% =0 u=v = 0
0% (-~
(:aoQ) = 0
2(3)
Yy ou  Ou
==1: —=— = 0:
1) ox 0Oy

=0
o(3)
Inviscid external flow
v _ . 0@,
) B %)

LA AP AN EA
E*Q(e;) 2(5)*(5)

Sy
Il
C\_‘
—
—
|
¢ l=
~
ISH
P
SRS
~—
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Von Karmén integral relation

46,  Tly=0) _
dx P Uso
a2, d (%
ly=0) = — 5= <;3
d(‘g
M Uoo
= _gHtix
0
Integration:
5 584
z v/ Re,
— 3 /L Tw dx
D= Tk pu, ’
oL —
_ _2/ Ty=0),
LJo puZ
LG
N \/RCL
8.6 (a) Solution see problem 9.5
A)
LI
5 8’
bW
0 280’
5 4641
z  +/Re,
1.293
c =
i VRer,
B)
(51 2
EE
5 - 0.363
) 2 1
2 _ 2 _—_o1
3 i 0.137
6 B 419
r v Re, N vV Re,
DRV O )1
L= \/REL 7\/R6L
(b) A)
ozx=1L) 3.288 mm
Fp = chuZCQLB
= 091N
B)
d(x=L) = 3.39 mm

Fp = 093N

3.2.9 Drag
9.1 (a)
F1 CD1gUi02L1B
Rem 1.8- 105 < Recrit.
1.328
- =313-107°
Cp1 /Tem
Fy = 0.564 N
Reyp, 3.6-10° < Regir.
Eot = Fl + FZ
L% vz arn
vV REL 2
F 0.233 N
(b)
Ftnt = 2 Fl
L
Ly = 1 = 0.09 m
Ly = 027m

9.2 (a) The frictional drag results from

(b)

the shear stresses acting on the
body, the pressure drag results from
change of the potential pressure dis-
tribution caused by the frictional
force.

cp1 p w20} = cpy P u? 2 L2
2 2
0o L 5
Rep = 2221 — 333.10°
v
1.328 )
P = 230-1073
D1 T,
Assumption:
Use L .
Rez = “72>1052 CD2:1-1
v
2 CD1 _2
Cp2

Rey, = 2.16-10* > 10°

1328 p 5 . 5 3
F) = - 2 L7 ~udk
b R(;’l 2 Yoo 1 v

Fpy = 1.1gu;Lg~ugo
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9.4

(a) 9.5
Foi _eo
Fps Cp2
Uoo Req 10% cpy
04m | 4-10° | 210
08= | 8.10° | 276
162 | 16-10° | 319
Rey | 10%cpy | 42
2.10° | 297 | 0707 oy = 2l dFu(a)
1.10° | 210 | 1.313 £ug, DL
8.10° | 276 1.156 dFp(a) = dF(a) cosa
D
(b) = pla)L 5 cosa do
Rey = 196-10° p@) = )P+ pe
Cp1 = Cpy = 3.0- 1073 2
1) 9
m 0<a< 3 T
Res = Rep: s =0.392 —
s
2) p(a) = (1 —4 sin® @) guio + Do
Res ~ 1.3-10°: oy = 2.6 =
s
2 <a<
<a<n
3) gSas
Res ~ 9-100: 1o =18 2
s
. P 2
= |[1—-4sin*(s7)| & o
(2) and 3) from diagram page 64). p(@) sin (3 ) g U P
P 2
= _9of -
5 Uoo +p
Ccp = \/g
U
9.6 (a)
Fps = Fpp
CDB&UZLB = CDS& X
Fr 2 2 W
LT ruz A X(uoo*U)%
F, — W—-Fsin(B—a)=0 " pwulL
i e, = WX
cy, = —W +}; S;n(ﬂ CV) =1.28 Hw
§us. A = 5.625-10°
Fp
= 0.074 1700
fu A cpp = T
5 Rep,
Fp — Fceos(B—a)=0 Rej
P _ — 301078
oy = FeosB—a)

2 02
SuZ, A
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Assumption:
a oo b :
Rey = Lol Wby
ta
Cps = 1.2
. 2LB
U = w1+ £pB pw 222
¢ps pa hb
= 295 =
s

Re, = 1.94-10° > 10°
Fpg=6.33N

* _ * & a2
Frg = cpp 5 (uoo u)LB
Pa (Uoo —u) L

Ha

_ 1328 =220-1073

.
chg =

.

\/ Rej,

Frp = 545-107° < Fpp

* —
Re; =

9.7
CDg’UQA = W
w
A=—— = 752w’
CD§U
9.8 (a)

Fp =W (Lift can be neglected)

Sphere:
Pa ,mD%  wD}
Dy T TP
v,
— R a
v eDs
2
Ds = {18RePt e
P g
Re=10.5:

Dgmas = 6.81- 1072 mm
Cylinder (Length L):

o 7w D?
CD%’U2D0L:p 1 Lg

Do d 16 Re  po v3
¢~ 2—InRe p g

=3.63-10°

Re=0.5:
Dz = 4.71-1072 mm

vg = 0.110 2
s
ve = 0.159 =
s
9.9
v
= Re —
v e5
(a) (Lift can be neglected:)
71'D3
Fp = W=pw G Y
B Pa o mD?
F]_) = Cp D) v 74
= ¢p Re? %pa v2
8Fp 1
Re/cp = —
P pD Tr p(l l/(l
4 D
- 2PV p 9=
3 Pa Va
= 2177
from diagram: Re = 250
v = 375 =
s
(b) (Weight can be neglected)
7w D3
Fp = Fr=pw G Y
7w D?
4 D
Re+/cp = -Dg— =115
3 Uw
Re = 113
v o= 011 =
s
9.10 y
L
y v ‘Vuu
gl ‘Vs
4
2
]
4
Y
I
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W = Fp (Lift can be neglected)
Urel = Vg — Vs
(a)
vy = 0
Pa o 7 D% 7 D}
CDWE/U% 4g = Ps 699
o U1 D
Assumption: Re = PaL TS
fta
24 g
v = ——
' 9 pa Ds
2
24/"@ 8 Ps
2P p
’ «9%%) Tt p, 8
— 0168 =
s
Re = 0.559<1

9.11 (a)

U1

m
Vg — U1 = 2.832 —
S

Fp=WwW

(Lift can be neglected)

o o T D?
G

Assumption:

Re =
Ha

7w D3 dv
Pw

Pa Va D

pw g D?
18 pur,
0.427 < 0.5

6 da " 6

w D3
6

P w g

< 0.5

—0.107 =
S

T D?

g—

24#(1 Pa 27TD2
[ A T ——

Pav D

2 4

Steady sinking velocity:

Vg = Uy

Tdv v
g dt Vg
0.99 v,
T = e 1n<1—3)
g Va/ 0

= 0.049s

9.12 (a)
W = Fp,

(Lift can be neglected)

a m D2
Fpr = ¢cpm % v? 1
cpi = 04 (Rep =3.03-10°%)

(b)

V2 D

Rey = = 4.2-10°
Va
from diagram: cps = 0.1
Pa o D?
Fpy = Cngvg 1
= 1.9 N<W
Acceleration vs, so that
G = Fps
Pa o T D?
G = Cp3 5’032) 4
from diagram: c¢p3 = 0.1
vy = 2602
S
9.13 (a)
H
P=F v =F —=1000 W
T
(b)
W = Fi+F,—Fp
w D3
= Fi+p g—
p (H>2 m D?
— et (=
Po\n) a4
HD
Re = 222 _185.10°
pTy
from diagram: cp; = 0.4
G = 3349 N
(c)
P H>2 7 D?
Fpy = ~ =
D2 Cp2 9 (T2 1

2R+ FL-WwW
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Assumption: H 1 /UB ;
gJo 1_(z
HD v
Rey =222 5 36-10° , () ,
2 i1 ()
2g Vs
from diagram: cps = 0.1 v Vs
B
1+ ()
T P CD2
T, = HD , |—r——
2 8 (Fl + F]_n) (d)
= 241.0s
Rey = 83-10° T, = ! /”B v
7o)
@ 2 :
Vg Vs + VB
H = —2In —
Py =2F, — =89.64 kW g Vs —UB
T,
()
9.14 (a) cp =04 cw =0
D d D wooden | metal
m D? dv 7 D : ,
pw T E = —ps : g— sphere | sphere
, Him] | 37.2 | 440 45
cpp Pe 2 T D Ty ls] | 264 | 2.96 3
2 4 vp [2] | 249 | 293 | 30
Introduce steady sinking velocity: Ty [s] | 281 2.98 3
2 ApsDyg
: 3 pa Cp
1 dv d
W - a=Z
91+ (2) v
Py RTS
g Jvo 1+ (%)
)2 2
= <2 In {1 + (£> }
2g Vs
(b)
1 0 d
Ty = — [ —2
70 ()
U? Vo
= — arctan —
g Vs
(c)
7 D3 dv Pa 5T D? n
— g = cp—v
P76 Yt T
7w D3
+ ps 6 Y

I
=
|
|




