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In this note we present the application of fractional calculus, or
the calculus of arbitrary (noninteger) differentiation, to the solu-
tion of time-dependent, viscous-diffusion fluid mechanics prob-
lems. Together with the Laplace transform method, the applica-
tion of fractional calculus to the classical transient viscous-
diffusion equation in a semi-infinite space is shown to yield
explicit analytical (fractional) solutions for the shear-stress and
fluid speed anywhere in the domain. Comparing the fractional
results for boundary shear-stress and fluid speed to the existing
analytical results for the first and second Stokes problems, the
fractional methodology is validated and shown to be much sim-
pler and more powerful than existing techniques.

1 Introduction
Fractional calculus is a mathematical concept of differentiation

and integration to arbitrary �noninteger� order, such as
��2/3f /�x�2/3. Some useful definitions and properties of fractional
derivatives are presented in the Appendix. Interest in fractional
calculus became evident almost as soon as the ideas of classical
calculus were known. In fact, Leibnitz �1� mentioned it in a letter
to L’Hospital back in 1695.

Systematic studies of fractional calculus were undertaken dur-
ing the first half of the 19th century �2–4�. Euler �5�, Lagrange
�6�, and Fourier �7� mentioned the concept of derivatives of arbi-
trary order earlier in their studies without contemplating any spe-
cific application.

Notable contributions have been made to both the theory and
application of fractional calculus during the 20th century when
some rather special, but natural, properties of differintegrals �i.e.,

derivatives of arbitrary order� were examined with respect to ar-
bitrary functions �8–11�. Applications include those to problems
in rheology �12,13� to electrochemistry �14–16�, and to chemical
physics �17�.

The lack of applications of fractional calculus to solving prob-
lems in engineering, and more particularly in fluid dynamics, is
notorious. This note fulfills our objective to bring forth the con-
cept of fractional calculus to the fluid mechanics community.

We consider the problem of time-dependent momentum diffu-
sion with a semi-infinite Newtonian fluid exposed to a time-
dependent excitation at the solid-fluid interface to show how frac-
tional calculus, together with the Laplace transform method, can
be utilized to reduce the order of the differential equation ruling
the phenomenon. We also show how to obtain closed-form general
analytical solutions of boundary shear-stress �when the boundary
velocity is known� or boundary velocity �when the boundary
shear-stress is known� to this problem. Finally, we validate the
analysis by considering the classical 1st and 2nd Stokes problems,
and comparing the solutions obtained with the fractional approach
to the solutions obtained by different methods.

2 The Extraordinary Viscous-Diffusion Equation
To contemplate how fractional calculus can be useful in fluid

dynamics, we consider a one-dimensional time-dependent
viscous-diffusion problem of a semiinfinite fluid bounded by a flat
plate. The momentum equation, assuming constant and uniform
viscosity and neglecting convective inertia �advection� effects, is:

�F�y ,t �

�t
�v

�2F�y ,t �

�y2 �0 (1)

where F(y ,t) is the fluid vorticity, or the fluid velocity in the case
of negligible pressure effect, t is the time, v is the fluid kinematic
viscosity, and y is the spatial coordinate normal to, and with origin
at, the plate.

Assume the fluid to be �or, is� initially at equilibrium, so that
F(y ,t�0)�F0, with F0 being a constant value. Also, the con-
dition far from the plate remains F(� ,t)�F0. The boundary of
the fluid interfacing the plate is exposed to a time-dependent ex-
citation F(0,t�0)�F�(t) caused by the plate movement. Chang-
ing the variables to ��yv�1/2 and G(� ,t)�F(y ,t)�F0, Eq. �1�
becomes

�G�� ,t �

�t
�

�2G�� ,t �

��2 �0. (2)

The initial and boundary conditions are now written as
G(� ,0)�0, G(� ,t)�0, and G(0,t)�F�(t)�F0�G�(t), re-
spectively. The Laplace transform of Eq. �2� is

d2G*�� ,s �

d�2 �sG*�� ,s ��0 (3)

where G*(� ,s) is the Laplace transform of G(� ,t). Also, since
G(� ,t)�0 we then have G*(� ,s)�0. The solution of Eq. �3� is

G*�� ,s ��C1�s �e ���s1/2���C2�s �e ����s�1/2�� (4)
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where C1 and C2 are arbitrary functions of s. The boundary
condition G*(� ,s)�0 requires that C1(s)�0, and Eq. �5� sim-
plifies to:

G*�� ,s ��C�s �e ����s1/2�� (5)

where C(s) remains unspecified. Now, C(s) can be eliminated by
using Eq. �5� and the expression

�G*�� ,s �

��
��s1/2C�s �e ����s1/2�� (6)

which results upon differentiating Eq. �5�. Combining Eqs. �5� and
�6�, the resulting equation in transform space is

�G*�� ,s �

��
��s1/2G*�� ,s �. (7)

Equation �7� can be inverted by recognizing that
L�1��G*(� ,s)/������L�1�G*(� ,s)�	/����G(� ,t)/�� , and
using the Laplace transform property L�� fG(� ,t)/�t f �
�s fL�G(� ,t)��s fG*(� ,s), valid for a function G(� ,t) that sat-
isfies G(� ,0)�0, where � f()/�t f is a differential operator of order
f. Thus, Eq. �7� becomes:

�G�� ,t �

��
��

�1/2G�� ,t �

�t1/2 (8)

and, on restoring the original variables,

v1/2
�F�y ,t �

�y
��

�1/2�F�y ,t ��F0�

�t1/2 . (9)

Using the properties of fractional calculus �A2� and �A7�, listed in
the Appendix, Eq. �9� can be rewritten as

�F�y ,t �

�y
��v�1/2

�1/2F�y ,t �

�t1/2 ��
vt ��1/2F0 . (10)

Thereby, the viscous-diffusion Eq. �1�, which is an ordinary PDE
of first order in time and second order in space, is transformed
into an extraordinary PDE of half-th order in time and first order
in space, Eq. �10�. Observe that this transformation is valid any-
where in the domain, including at the fluid-plate interface.

Now, recalling the diffusion constitutive law for the flux J(t) at
the fluid-plate interface, namely,

J� t ����
dF�0,t �

dy
(11)

where � is the fluid dynamic viscosity, and using Eq. �10� to find
an expression for dF(0,t)dy , the surface flux J(t) can be directly
computed from the surface excitation F(0,t) using

J� t ��
�

v1/2 �d1/2F�0,t �

dt1/2 �
1

�
t �1/2 F0� . (12)

Therefore, the flux at the fluid boundary can be obtained by
simply semi-differentiating the intensive scalar quantity F(0,t).
Note that for a given flux excitation J(t) at the boundary, the fluid
response F(0,t) can be obtained by taking ��1/2 �Eq. �12�� /�t�1/2

resulting in:

F�0,t ��
v1/2

�

d�1/2J� t �

dt�1/2 �F0 . (13)

It is important to emphasize that the transformation of the dif-
fusion Eq. �1� into the extraordinary PDE Eq. �10� is general and
not restricted by any additional assumption on the physics of the
process in question.

3 Validation
To validate the previous results, consider, for instance, the first

Stokes problem, i.e., the case of a flat plate that is suddenly jerked

in an infinite fluid domain and whose velocity for t�0 is constant
and equal to U. The equation of motion for this simple case is

�u�y ,t �

�t
�v

�2u�y ,t �

�y2 �0 (14)

where u is the local fluid velocity. The initial and boundary con-
ditions for this problem are u(y ,0)�0, u(0,t)�U , and u(� ,t)
�0.

Upon identification of u with F, Eq. �14� becomes identical to
Eq. �1�, with the same kind of initial and boundary conditions
�with F0�0�. One can, therefore, use Eq. �12� with J(t) replaced
by the shear-stress at the surface �w(t), and write

�w� t ���v�1/2
d1/2U

dt1/2 (15)

or, using property �A7�, obtain

�w� t ����
vt ��1/2U (16)

which is exactly the same as the result obtained by solving Eq.
�14� analytically for the velocity with the entire domain, using the
similarity variable, and then obtaining an expression for the wall
shear-stress via the constitutive relationship for a Newtonian fluid
�18�. Observe that, with the fractional approach, the same result is
obtained in one simple operation, i.e., finding the semi-derivative
of the uniform fluid speed U �observe that the semi-derivative of a
constant is nonzero—see Eq. �A7� in the Appendix�.

From Eq. �16�, one can observe that the displacement thickness,

*, for the case of a suddenly jerked flat plate, is proportional to
(
vt)1/2. By substituting t with x/U , one can find


*��
vx/U �1/2 (17)

or, after dividing Eq. �17� by x,


*

x
�
1/2Re�1/2 (18)

where Re�xU/v . By noticing that 
1/2�1.77, one can conclude
that the result obtained by means of the fractional calculus ap-
proach is much closer to the precise value 1.721 than the value
1.83 which one can get after applying the more laborious integral
method �19�.

Consider now a more complicated problem �the so-called sec-
ond Stokes problem� in which the plate velocity is time-dependent
and varies as U(t)�Usin(�t). The wall shear-stress at the steady
periodic regime can be obtained analytically in this case as well.
The procedure to obtain this solution involves first modifying the
viscous-diffusion equation to a complex velocity model, then
solving the differential equation for the complex velocity, extract-
ing the velocity solution from the complex velocity and finally
using the constitutive relationship for a Newtonian fluid to obtain
the corresponding shear-stress ��18�, pp. 138–141�. The result is

�w� t ��U�� �

2v � 1/2

�sin��t ��cos��t �� . (19)

Using the fractional calculus approach, Eq. �12� gives for the
shear-stress

�w��v�1/2
d1/2�Usin��t ��

dt1/2 . (20)

Now, using �A3�, �A4�, and �A8� with Eq. �20�, one has

�w� t ���v�1/2U�1/2� sin� �t�



4 ��21/2�� � 2�t


 � 1/2� � (21)

where � is the auxiliary Fresnel function �see Appendix�. Observe
that Eq. �21� is not identical to Eq. �19�. This is because Eq. �21�
is the general solution for the shear-stress, which includes the
initial transient regime, see Fig. 1. On the other hand, Eq. �19� is
the solution only of the steady-periodic regime, i.e., when time
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is long enough for the flow process to become periodic. Notice
that the term proportional to the auxiliary Fresnel function � of
Eq. �21� governs the initial unsteady regime. When time is
long enough, the contribution of the auxiliary Fresnel function
to Eq. �21� becomes negligible because �(z) approaches zero
as z increases �for instance, at t�10
/� , �max���2�t/
)1/2�	�
�0.001). In this case, and upon expanding the sine function, one
recovers from Eq. �21� exactly the solution for the steady-periodic
regime presented in Eq. �19�.

4 Summary and Conclusions
A brief historical overview of fractional calculus was presented.

considering the viscous-diffusion problem of a semi-infinite fluid
bounded by a moving solid surface, the simplified transport PDE,
of first order in time and second order in space, was converted, via
Laplace transform, into an extraordinary differential equation of
half order in time and first order in space.

Closed-form analytical solutions for the flux and for the scalar
response �fluid vorticity or velocity� at the fluid-solid interface
were found. The results were validated considering the known
solutions for the 1st and 2nd Stokes problems. The simplicity and
accuracy involved in obtaining the local system response to a
transient excitation within a semi-infinite viscous-diffusion system
using the fractional approach was then established. Moreover,
specifically regarding the 2nd Stokes problems, the fractional ap-
proach leads to an analytical solution for the entire regime, Eq.
�21�, including the nonperiodic initial regime. Observe that the
nonperiodic initial regime is not covered by the analytical solu-
tion, Eq. �19�.

The fractional approach presented here has the potential for
becoming a powerful tool in solving other differential equations
in fluid mechanics �such as time-diffusion vorticity equations
with sources or sinks, linearized compressible aerodynamics equa-
tions, linearized viscous sublayer equations, and acoustic wave
equations�.

The application of fractional calculus need not be restricted
to linear equations. Moreover, the factorization of time-diffusive
operators �i.e., �/�t��2), common in fluid dynamics equations,
can be proposed as a more direct and general method �because it
is not restricted to one-dimension� for obtaining the fractional
equivalent to the original PDE’s. Being of reduced order, the re-
sulting fractional equation should require less computational effort
to be solved. Finally, we point out that by using an extension to
Taylor’s series applied to fractional derivatives �20�, the discreti-
zation of fractional equations does not require the use of transform
definitions.

Appendix
In this Appendix, some useful definitions and properties of frac-

tional derivatives are presented. From the several equivalent defi-
nitions of fractional derivatives, the most elegant is the Riemann-
Liouville definition �21�, namely:

d f�g� t ��

dt f �
1

��� f ��0

t g���

� t���1� f d� (A1)

where f is any negative number and � is the Gamma function.
Some of the useful properties derived from Eq. �A1� are:

d f�u� t ��v� t ��

dt f �
d f�u� t ��

dt f �
d f�v� t ��

dt f (A2)

d f�Cg� t ��

dt f �C
d fg� t �

dt f

d f� tg� t ��

dt f �t
d fg� t �

dt f � f
d f �1g� t �

dt f �1
(A3)

dh

dth � d fg� t �

dt f ��
dh� fg� t �

dth� f

d f�g�Ct ��

dt f �C f
d fg�Ct �

d�Ct � f (A4)

d f
� t���

dt f �
1

��� f �
� t���� f �1, f �0 (A5)

d f� tn�

dt f �
��n�1 �

��n�1� f �
tn� f

d f�C�

dt f �
Ct� f

��1� f �
(A6)

where 
(t��) is the Dirac delta function, defined as 
(t��)
�� , if t�� , otherwise, 
(t��)�0. In the previous formulas, C
is a nonzero constant. Observe that the first expression in �A4� is
not general �see �20� for limitations�.

The semi-derivatives �case of f being �1/2� of some common
functions are:

�1/2�C�

�t1/2 �C�
t ��1/2 (A7)

d1/2�sin� t ��

dt1/2 �sin� t�



4 ��21/2�� � 2t


 � 1/2� (A8)

d1/2�cos� t ��

dt1/2 �
1

�
t �1/2 �cos� t�



4 ��21/2�� � 2t


 � 1/2� (A9)

d�1/2�C�

dt�1/2 �2C� t


 � 1/2

(A10)

d�1/2�sin� t ��

dt�1/2 �sin� t�



4 ��21/2�� � 2t


 � 1/2� (A11)

d�1/2�cos� t ��

dt�1/2 �cos� t�



4 ��21/2�� � 2t


 � 1/2� (A12)

In Eqs. �A8�, �A9�, �A11�, and �A12�, � and � are the auxiliary
Fresnel integrals �function f and g, respectively, in �22�, p. 300�.
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Constant Pressure Laminar,
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A nondimensional number that is constant in two-dimensional,
incompressible and constant pressure laminar and fully turbulent
boundary layer flows has been proposed. An extension of this to
constant pressure transitional flow is discussed.
�DOI: 10.1115/1.1486221�

1 Introduction
For the two-dimensional �2-D�, constant pressure and incom-

pressible laminar flow and fully turbulent flow over a semi-infinite
flat plate, a nondimensional number that is independent of the
nature of these flows has been proposed here. This nondimen-
sional number is based on the boundary layer momentum thick-
ness, the shape factor, the skin-friction coefficient, and the stream-
wise distance.

Since the proposed nondimensional number is constant for the
constant pressure laminar and turbulent flows, it is assumed to
have the same value in constant pressure transitional boundary
layer flows. This is utilized to propose an implicit solution of the
momentum integral equation for the laminar, transition and turbu-
lent regions.

2 Analysis
We consider the 2-D constant pressure, and incompressible

boundary layer flow over a semi-infinite plate. Let u and v denote
the boundary layer velocity components in the x and y directions,
respectively; x is the streamwise direction. The free-stream veloc-
ity is denoted by U. The constant pressure momentum integral
equation considered here is �1�,

d�/dx�C f /2. (1)

Here, � and C f denote the local momentum thickness, and the
skin-friction coefficient, respectively:

���
0

� u

U � 1�
u

U � dy , C f�2�U�2��u/�y �y�0 ,

where � is the kinematic viscosity. Although the momentum inte-
gral equation �1� is valid for the laminar, turbulent and transitional
flows, only the laminar and turbulent cases have been solved �see
Ref. �1��, separately. Usually, one requires a correlation for C f to
obtain �.

We propose the nondimensional quantity,

L��/�xC fH
0.7�. (2)

Here H(�
*/�) is the shape parameter, and 
* is the local dis-
placement thickness:


*��
0

�� 1�
u

U � dy .

For the laminar flow, the Blasius solution �1� (C f��/x , H
�2.6) gives the value of this nondimensional quantity as L
	0.51. Similarly, the 1/7th power-law for fully turbulent flow �1�
(�/x	0.036Rx

�0.2 , C f	0.0592Rx
�0.2, H�1.27, where Rx

(�Ux/�) is the Reynolds number� gives L
0.51. The 1/7th law
being a popular one and in view of the availability of reliable
experimental data, the 1/5th or 1/10th power-law has not been
considered here. The experimental data for fully turbulent flows
show that both H and C f decrease slowly with x �see, for example,
Proc. AFOSR-IFP-Stanford Confc. �2��. As shown in Fig. 1, the
measured constant pressure data �number 1400 and 3000� of
AFOSR-IFP-Stanford Confc. �2� also show that L	0.5 at high
Reynolds number; in this figure R� denotes the Reynolds number
based on the momentum thickness. �It may be noted that the
AFOSR-IFP-Stanford Confc. Data are those carefully selected for
the data bank value.� It can be seen in this figure that, except at
R�	600, the experimental data show an excellent collapse over a
large Reynolds number range; the maximum deviation of 12% is
attributed to the scatter usually associated with the experimental
data. The behavior at R�	600 is attributed to the low Reynolds
number effect; for example, it is known �3� that the Cole’s wake
function agrees with the experimental data for fully turbulent
flows at R�	1000. The momentum equation �1� does not contain
H, which is associated with the boundary layer velocity profile
shapes. An inspection of the momentum integral equation �1� sug-
gests that the quantity �/(xC f) can be of the order of unity. This
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