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Abstract

In 1955 Erd6s posed the multiplication table problem: Given a large integer N, how many
distinct products of the form ab with a < N and b < N are there? The order of magnitude
of the above quantity was determined by Ford. The purpose of this thesis is to study
generalizations of Erdos’s question in two different directions. The first one concerns the
k-dimensional version of the multiplication table problem: for a fixed integer £ > 3 and a
large parameter N, we establish the order of magnitude of the number of distinct products
ny---ng with n; < N for all ¢ € {1,...,k}. The second question we shall discuss is the
restricted multiplication table problem. More precisely, for Z C N we seek estimates on the
number of distinct products ab € £ with a < N and b < N. This problem is intimately
connected with the available information on the distribution of & in arithmetic progressions.
We focus on the special and important case when 8 = P, = {p + s : p prime} for some
fixed s € Z \ {0}. Ford established upper bounds of the expected order of magnitude for
{ab € P;:a < N,b < N}|. We prove the corresponding lower bounds thus determining the

size of the quantity in question up to multiplicative constants.
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Chapter 1

Introduction

1.1 The Erd6s multiplication table problem

When we learn to multiply in base 10 we memorize the following table.

Table 1.1: The 10 x 10 multiplication table

4 5 6 7 8 9 10
4 5 6 7 8 9 10
§ 10 12 14 16 18 20
9 12 15 18 21 24 27 30
12 16 20 24 28 32 36 40
15 20 25 30 35 40 45 50
12 18 24 30 36 42 48 54 60
14 21 28 35 42 49 56 63 70
16 24 32 40 48 56 64 72 &0
18 27 36 45 54 63 72 81 90
30 40 50 60 70 80 90 100

00 O = DO
D Wl W
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—
e}
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o
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Even though this multiplication table has 100 entries, only 42 distinct numbers appear
in it. In 1955 Erdés [Erd55, Erd60] asked what happens if one considers larger tables, that

is for a large integer N what is the asymptotic behavior of

A(N):=|{ab:a < N,b < N}?

An argument based on the number of prime factors of a ‘typical’ integer quickly reveals that

A(N) =0o(N?) (N — o0).
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Indeed, we have that

w(n) := |{p prime : p|n}| ~ loglogn

on a sequence of integers n of density 1 (see Theorem 1.1 below). So for most pairs of
integers (a,b) with a < N and b < N the product ab has about 2loglog N prime factors
and hence the density of such products in [1, N?] tends to 0 as N — oo. Even though this
argument may seem a bit naive, a simple generalization of it quickly leads to relatively sharp
upper bounds on A(N). Before we proceed we state a well-known result due to Hardy and

Ramanujan.

Theorem 1.1 (Hardy-Ramanujan [HarR]). There are absolute constants Cy and Cy such

that for all x > 2 and all r € N we have

o O (loglogx 4+ Co)"*
~ logx (r—1)!

m(z) = {n <z :w(n) =r}
Fix now a parameter A > 1 and set L = |Aloglog N | and
Q) = Alog A — A+ 1.

Then

A*(N):=|{ab:a < N,b < N, (a,b) = 1}|
< H{n < N?:w(n) > LY + {(a,b) :a < N,b< N,w(a)+w() <L}

=> m((N)+ Y m(N)m(N)

r>L r4s<L

N2
<y (1+ (log N)Aoe271)

(log N)QW (loglog N)1/2’

by Theorem 1.1 and Stirling’s formula. Choosing A = 1/1og2 in order to optimize the above

estimate yields
NQ
(log N)@(1/log2) (Jog log N)1/2°

A*(N) <

2



Consequently,
N2
log N)Q(1/leg2)(log log N)1/2

AN) <> AY(N/d) < ( (1.1.1)

d<N
The above argument, which is due to Erdds [Erd60], suggests that most of the distinct entries
in the N x N multiplication table have about loglog N/log?2 prime factors. Determining
the order of magnitude of A(NN) boils down to understanding the number of representations
of such integers as products ab with a < N and b < N. This was carried out by Ford in

[For08a, For08b|, who improved upon estimates of Tenenbaum [Ten84].
Theorem 1.2 (Ford [For08a, For08b]). For N > 3 we have

N2
(log N)Q(1/1og2) (Joglog N)3/2°

A(N) =<

The main new ingredient in Ford’s work was the realization that most of the contribution
to A(IN) comes from integers n with w(n) = m = |loglog N/log 2] whose sequence of prime

factors p; < --- < p,, satisfies
loglog p; > iloglogN -0() (1<j<m). (1.1.2)
m

Furthermore, such integers appear at most a bounded number of times in the multiplication
table, at least in an average sense. Via standard probabilistic heuristics we may reduce the
probability that condition (1.1.2) holds to the estimation of

j—0@1)

Prob(¢; > -

which was proven to be about 1/m =< 1/loglog N by Ford [For08c|. This estimate together

with (1.1.1) gives a rough heuristic explanation of Theorem 1.2.



1.2 The (k+ 1)-dimensional multiplication table
problem

A natural generalization of the Erdés multiplication table problem comes from looking at
products of more than two integers. More precisely, for a fixed integer £ > 2 and a large

integer N we seek estimates for

A similar argument with the one leading to (1.1.1) implies

Nk+1
(log N)Q(k/log(k+1)) (Jog log N )1/2

Apir(N) <4 (1.2.1)

This estimate suggests that most of the distinct entries in the N x --- x N multiplication
—_——

k+1 times
table have about

_ | kloglog N
| log(k +1)

prime factors. Further analysis of the multiplicative structure of such integers indicates that
most of the contribution to Aj;1(N) comes from integers n with w(n) = m whose prime

factors p; < - -+ < p,, satisfy
loglogp; > L loglog N — O(1) (1< j<m). (1.2.2)
m

As in Ford’s work when k = 1, this suggests that the order of magnitude of Ay, 1(V) is the
right hand side of (1.2.1) multiplied by 1/loglog N. Indeed, we have the following theorem,

which was proven in [KoulOa].



Theorem 1.3. Fiz k > 2. For all N > 3 we have

Nk+1
(log N)@k/log(k+1)) (1og log N )3/2°

Ak—H (N) =k

In Section 2.3 we shall give a more precise heuristic explanation of the above theorem.
The proof of Theorem 1.3 is based on the methods developed by Ford in [For08a, For0O8b] to
handle the case £ = 1. The hardest part of the argument consists of showing that the average
number of representations in the (k + 1)-dimensional multiplication table of integers that

satisfy (1.2.2) is bounded. We shall elaborate further on this in Section 2.4.

1.3 Shifted primes in the multiplication table

In the previous section we discussed the analogue of the Erdds multiplication table for
products of three or more integers. However, even when we consider products of just two
integers there are still unresolved questions. For example, given an arithmetic sequence
# C N, how many elements of 4 appear in the N x N multiplication table, that is what is
the size of

A(N; B) .= |{abe B :a < N,b < N}

as N — oo? We call this the restricted multiplication table problem. 1f 2 is reasonably well-
distributed in arithmetic progressions 0 (mod d), then a relatively straightforward heuristic

argument shows that we should have

|2 N1, N
We focus on the special and important case when & = P, := {p + s : p prime} for some

fixed s € Z\ {0}. In [For08b] Ford proved the expected upper bound on A(N; Ps) using the

techniques he developed to handle A(N) together with upper sieve estimates.



Theorem 1.4 (Ford [For08b]). Fiz s € Z\ {0}. For all N > 3 we have

A(N)

A(N: P, —_—.
(N; o) < log N

Lower bounds on A(N; P;) are harder because they need as input more precise informa-
tion on primes in arithmetic progressions, a problem which is notoriously difficult. The most
straightforward way to bound A(N; Ps) from below is to use a linear sieve, whose successful
application is vitally dependent on having good control of the counting function of primes
in arithmetic progressions on average. The standard way of obtaining such control is via
the Bombieri-Vinogradov theorem [Dav, p. 161]. However, in this setting this theorem is
inapplicable. Indeed, the function A(N; P;) counts shifted primes of the form p + s = ab
with @ < N and b < N, which means that in order to bound A(N; Ps) we need control
of the number of primes p < N? — s in arithmetic progressions —s (mod a) of modulus a
that can be as large as N ~ /N2 — s. The Bombieri-Vinogradov theorem can only handle
arithmetic progressions of modulus a < N'~¢ for an arbitrarily small, but nevertheless fixed,
positive €. To overcome this problem we appeal to a result proven by Bombieri, Friedlander

and Iwaniec, which is Theorem 9 in [BFI].

Theorem 1.5 (Bombieri, Friedlander, Iwaniec [BFI]). Fiz a € Z \ {0}, C > 0 and € > 0.

There exists a constant C' depending at most on C' such that

2

r<R

Z(”Wq"” ) ;éf;))‘ <o fogay

<Q
uniformly in R < /19~ and RQ < x(logx)~".

Remark 1.3.1. In fact, Theorem 9 in [BFI] is stated in terms of

U(xid,a):= Y logp,
pM"<z
p™=a (mod d)



but a standard partial summation argument can easily convert it to the above form.

Using Theorem 1.5 together with a preliminary sieve, via the fundamental lemma of sieve
methods (cf. Lemma 3.1.2) to smoothen certain summands !, we establish the expected lower

bound for A(N; P;), a result which appeared in [KoulOb].
Theorem 1.6. Fiz s € Z\ {0}. For all N > 3 we have

A(N)
log N’

A(N; Py) >

1.4 Outline of the dissertation

In Chapter 2 we introduce certain divisor functions, which are the main objects of investi-
gation of this work, and show how to pass from them to the results of Chapter 1. Also, we
state our main results about these divisor functions and comment on some of the methods
and ideas that are central in their study. In Chapter 3 we list several preliminary results
from number theory, analysis and statistics that will be used in subsequent chapters. The
first result of Chapter 4 is a reduction theorem that is the starting point towards the proof
of our main results. Also, we demonstrate how to reduce the problem of bounding A(N; P;)
to the problem of bounding A(N) and prove Theorem 1.6. Chapter 5 is dedicated to the
(k + 1)-dimensional problem, translated in the language of divisor functions. Finally, in
Chapter 6 we comment on some work still in progress and state some preliminary results

which generalize our estimates for A1 (V).

'A way to view the fundamental lemma, which lies at the heart of classical sieve methods, is as an
attempt to approximate the characteristic function of integers n whose prime factors are greater than z with
a ‘smooth’ function using combinatorial and other methods. Here the role of the smooth approximation is
played by a convolution A % 1, where A has small support. The adjective ‘smooth’ is justified because, by
opening the summation in A * 1, a single sum weighted with A * 1 can be converted to a double sum whose
inner sum is weighted with the smooth function 1 and the outer sum has small support



1.5 Notation

We make use of some standard notation. The symbol Sy stands for the set of permutations of
{1,...,k}. Ifa(n), b(n) are two arithmetic functions, then we denote with a*b their Dirichlet
convolution. For n € N we use P*(n) and P~ (n) to denote the largest and smallest prime
factor of n, respectively, with the notational conventions that P™(1) =0 and P~ (1) = 4oc.
Furthermore, 7(n) stands for the number of divisors of n, w(n) for the number of distinct
prime factors of n and (n) for the total number of prime factors of n. Given 1 < y < z,
P(y, z) denotes the set of all integers n such that PT(n) < z and P~(n) > y. Finally,
7(x;q,a) stands for the number of primes up to x in the arithmetic progression a (mod q)
and li(z) for the logarithmic integral [ dt/logt.

Constants implied by <, > and =< are absolute unless otherwise specified, e.g. by a
subscript. Also, we use the letters ¢ and C' to denote constants, not necessarily the same
ones in every place, possibly depending on certain parameters that will be specified by
subscripts and other means. Also, bold letters always denote vectors whose coordinates are
indexed by the same letter with subscripts, e.g. a = (aq,...,a;) and & = (&,...,&.). The
dimension of the vectors will not be explicitly specified if it is clear by the context.

Finally, we give a table of some basic non-standard notation that we will be using with

references to page numbers for its definition.



Symbol Page
Q(A) 2
P 5
n 11
H(z,y,z) 10
H(x,y,z; Ps) 12
HE (1 y, 2y) 13
L(a;0) 15
L(a;0) 15
L) (a) 16
L+ (a) 16
L*+D(a) 19
S+ (t) 38
Tk+1(a) 17
Trt1(a) 15
Tk-l—l(aa Y, Qy) 18
P (y,2) 16
PE(t) 16
€k, €k; 15
p 62



Chapter 2

Main results

In this chapter we shift our focus from the multiplication table to certain divisor functions

which will be the main technical objects of investigation.

2.1 Local divisor functions

In [For0O8b] Ford deduced Theorem 1.2 via his bounds on a closely related function: For

positive real numbers x,y and z define
H(z,y,z) =|{n <z :3dn withy <d < z}|.

Using dyadic decomposition we can relate A(N) to the size of H(x,y,2y). Indeed, we have

that
N2 N N2 N N
H<— ) § H( , ) 2.1.1
2 2’ om’ 2m+1 om ( )

There are two main advantages in working with H(z,y,2y) - and, more generally, with
H(z,y,z) - instead of A(N). Firstly, bounds on H(x,y,2y) are applicable to problems
beyond the N x N multiplication table; we refer the reader to [ForO8b] for several such
applications. Secondly, bounding H(z,y,2y) is technically slightly easier than bounding
A(N).

In [For08b] Ford determined the order of magnitude of H(z,y, z) uniformly for all choices

of parameters x,y, z. In order to state his result we introduce some notation. For a given

10



pair (y, z) with 2 < y < z define n,u, 5 and & by

£
Vioglogy

z=ely=y"" n=(logy)’, B=logd—1+

Furthermore, set

20(y) = yexp{(logy) ™=} &y + y(logy) ~ !

and

1+
1 —
o QTogz): 0B <logd—1,

Theorem 2.1 (Ford [For08b]). Let 3 <y+1<z<uz.

(a) If y < \/z, then

;

log(z/y) =, y+1<z< 2(y),
ﬁ ) ZO(y) <z< 297
Hx,y.2) _ ) max{1,—¢}(log y) 7P =0
g Q(1/1082) (1og 2)~3/2 2
u (log2)=%2, 2y <z <y?
17 z Z y2.

(b) If y > \/x, then

Theorem 1.2 then follows as an immediate corollary of the above theorem and inequal-

ity (2.1.1).

11



In a similar fashion, instead of estimating A(N; Ps) we work with the function

H(z,y,z; Ps) == |{p+s<z:3dp+swithy <d<z}.

This function was studied in [ForO8b], where it was shown to satisfy the expected upper

bound.

Theorem 2.2 (Ford [For08b]). Fiz s € Z\ {0}. For3<y+1< 2z <z withy < \/r we

have
H
H(z,y.2) if 2 > y + (log y)*/,
log x
H(z,y,z; P) <5 x Z 1
——, else.
log x y<des o(d)

Remark 2.1.1. The reason that the upper bound in Theorem 2.2 has this particular shape is

due to our incomplete knowledge about the sum Zy cd<: @ when the interval (y, z] is very

short. The main theorem in [Sit] implies that

> @ <log(z/y) (2> y+ (l0gy)*"),
y<d<z

whereas standard conjectures on Weyl sums would yield that

1
> o log(z/y) (2 >y +loglogy). (2.1.2)
y<d<z

The range of y and z in (2.1.2) is the best possible one can hope for, since it is well-known

that the order of n/¢(n) can be as large as loglogn if n has many small prime factors.

In addition to Theorem 2.2, Ford proved a lower bound of the expected size for H (x,y, z; Ps)

in a special case of the parameters.

12



Theorem 2.3 (Ford [For08b]). Fiz s € Z\ {0}, 0<a<b<1. Forxz > 2 we have

X
H(x7xaal’b;Ps) >>s,a,b 1 .
ogx

In [KoulOb] we extended the range of validity of the above theorem significantly. We

state below a weak form of Theorem 6 in [KoulOb].

Theorem 2.4. Fix s € Z\ {0} and C > 2. For3 < y+1 < z < x with y < \/x and

C

z>y+y(logy)~© we have

H(z,y,z2)

H(l’,y,Z;PS) >>S,C logx

Remark 2.1.2. In [KoulOb] more general results were proven, which partially cover the range

C

z < y+y(logy)~© as well. However, for the sake of the economy of the exposition we

shall not state or prove these results, since the main motivation of this dissertation is the

multiplication table and its generalizations for which Theorem 2.4 is sufficient.

Theorem 2.4 will be shown in Section 4.4. Combining Theorems 2.2 and 2.4 with an
inequality similar to (2.1.1) we immediately obtain Theorems 1.2 and 1.6.

Finally, continuing in the above spirit, instead of studying Ay (V) directly, we focus
on the counting function of localized factorizations of integers, which is defined for x > 1,

y € [0,+00)* and z € [0, +00)* by
H* (g y 2y) = {n <x:3dy - din with gy <d; < 2 (1 <i <k}
Theorem 2.5 establishes the expected quantitative relation between H (k“)(x, y,2y) and
App1(N1, oo Nir) = {na - onggr oy <SN; (1< <k +1)},

where Ny, ..., Ny are large integers.

13



Theorem 2.5. Fix k > 2. For 3 < N; < Ny < --- < Npyq we have

N N,
Ak+1<N17 BRI Nk:+1) =k H(k+1) (Nl T Nk-i—la (71a S 7k>7 (Nla s 7N/€)>
Remark 2.1.3. We call the problem of estimating Ayyq1(NVy, ..., Nky1) for arbitrary choices

of Ny,..., Niy1 the generalized multiplication table problem.

The proof of Theorem 2.5 will be given in Section 4.3. It is worth noticing that its proof
does not depend on knowing the exact size of H*+1)(x, y, 2y); rather, we deduce it from a
reduction result for H**V(z,y,2y) (cf. Theorem 2.8). In view of Theorem 2.5, in order
to bound A1 (N) it suffices to bound H®* V) (z,y,2y) when y; = - - = y, uniformly in z
and y;. Thus the following estimate, which appeared in [KoulOa], completes the proof of

Theorem 1.3.

Theorem 2.6. Fir k > 2 andc > 1. Letx > 1 and 3 < y; < -+ <y < yf with
2%y ye < x/y. Then

X

(k+1) =
HE2 9, 2Y) =k (o S0 ot (Tog log g1 772

Theorem 2.6 will be proven in Chapter 5.

Remark 2.1.4. The condition 2y, -y, < /y, causes essentially no harm to generality
because of the following elementary reason: if d; - --di|n and we set dy,1 = n/(dy - --dy),

then d1 cee dk,ldkﬂ\n.

2.2 From local to global divisor functions

In [For08b] the first important step in the study of H(z,y, z) is the reduction of the counting
in H(z,y,z), which contains information about the local distribution of the divisors of

an integer, to the estimation of certain quantities that carry information about the global

14



distribution of the divisors of integers. More precisely, for a € N and ¢ > 0 define
L(a;o) = U[logd —o,logd)
dla
and
L(a;0) = Vol(L(a; 0)).

Then we have the following theorem.

Theorem 2.7 (Ford [For08b]). Fiz e >0 and B> 0. For3<y+1<z <z withy <z
and

Y 101/100
<z <
(logy)? =~ =7

we have

x L(a;n)
H =, E )
(a:,y,Z) ,B 1Og2y a

a<y*®
n?(a)=1

Remark 2.2.1. Even though the above theorem is not stated explicitly in [ForO8b], it is a
direct corollary of the methods there: see Theorem 1 and Lemmas 4.1, 4.2, 4.5, 4.8 and 4.9

in [ForO8b].

As we will demonstrate in Section 4.4, the proof of Theorem 2.4 passes through the proof
of a reduction result for H(z,y, z; Ps) analogous to Theorem 2.7 for H(x,y, z).
Similarly, the first step towards the proof of Theorem 2.5 consists of showing a general-

ization of Theorem 2.7. First, let

er = (1, - enp) = (1,1,...,1,2) € R
For a € N and a € N¥ define

Ti1(a) = |{(dy,...,dy) € N* . dy---di|a}|,

15



LEa) = ] [log(dr/2),logds) x -+ x [log(dy/2), log dy)

d1---d¢\a1---ai
1<i<k

and

L** D (g) = Vol(L*+D (a)).

Also, for 1 <y < z set
Py, z) ={ne P(y,z2): p?(n) =1}
and for ¢t = (t1,...,t;) with 1 =t9 <t; <--- <ty set
PEt)={aec N :1q; € Z,(t;_1,1;) (1 <i<k)}

Theorem 2.8. Fixk>1. Forz > 1 and3 <y, < --- <y with 2y, -y, < x/yr we have

B () 3 L

al DY ak
ac Pk (y)

Theorem 2.8 will be proven in Sections 4.1 and 4.2. As an immediate consequence of it,

we have the following result.

Corollary 2.1. Let k > 2 and for i € {1,2} consider x; > 1 and y; = (Yi1, ..., Yik) €
(1, +00)k. Assume that 2%y, 1 -+ yix < xi/yir fori € {1,2} and that there exist constants c

and C' such that yi ; < y2; < yfj forallj € {1,...,k}. Then

H(k+1)<xluy1>2y1) - H(k+1)('r27y272y2)

~k,c,C
T X2

Proof. The result follows easily by Theorem 2.8, Lemma 2.3.1(b) below and the standard

estimate

3 T”‘Tm)xm,B 1 (t>1),

a€ P« (t,tB)

16



which holds for every fixed m > 1 and B > 1. O

When k = 1, a stronger version of the above corollary is known to be true: see Corollary

1 in [For0O8b].

(k:+1)(

2.3 A heuristic argument for H T, Y,2y)

In this section we develop a heuristic argument which gives a rough explanation of Theo-
rem 2.6 as well as how condition (1.2.2) makes its appearance in the study of A1 (N). It is
a generalization of an argument given by Ford in [For08a] for the case k = 1. Before we delve
into the details of this argument, we state a simple but basic result we will be using exten-
sively throughout this dissertation. With a slight abuse of notation, for a = (a4, ..., a;) € N*
set

Terr(@) = [{(dy, ... di) €NV ody - difay---a; (1 <0 < k)Y
Then we have the following lemma.

Lemma 2.3.1. (a) For a € N* we have

k
L*+D(a) < min{mﬂ(a)(log 2)¥, ] |(logas + - -+ loga; +log 2)}

=1

(b) If (ay---ag,by---b;) =1, then

L% D (ayby, ... agbr) < Trgr (@) LD (b).

(¢) For (a,b) =1 and o > 0 we have

L(ab;o) < 7(a)L(b;0).

17



Proof. Parts (a) and (b) have very similar proofs with items (i) and (ii) of Lemma 3.1

in [For0O8b], respectively. Part (c) is item (ii) of Lemma 3.1 in [ForO8b]. O

Consider real numbers z > 1 and 3 < y; < --+ < gy, as in Theorem 2.6. Given n €

NN [1,z] we decompose it as n = ab, where

= I +

pHn,p<2yy

For simplicity assume that a is square-free and that loga < log y;. The integer n is counted

by H**+Y(z,y, 2y) if, and only if,
T (n,y,2y) o= |{(d1,....dy) ENF i dy - dpln,y; < di <2y, (1<i<k)} > 1.

Consider the set

Dyi1(a) = {(logdy, ..., logdy) : dy - - - di|a}

k

and assume for the moment that Dy,1(a) is well-distributed in [0,loga]®. Then we would

expect that

(log 2)*

k+ 1)~
TkJrl(na Yy, 2y) = Tk+1 (aa Yy, 2y) R ( ( )

(logy1)* -

Q

log a)* Tr+1(a)

Therefore we should have that 741(n,y,2y) > 1 precisely when
w(a) >m = L

kloglog 11 (1)
log(k + 1) '

Since
= (loglogy)"!
Tlogy,  (r—1)!

18



(see [Ten, Theorem 4, p. 205]), we arrive at the heuristic estimate

log log y;)"
kD) ) ~ T Z (

T
(log g1 )9/ e +) (log log 1 )'/?°

r>m

~
—~

Comparing this estimate with Theorem 2.6 we see that we are off by a factor of loglog ;. The
reason for this discrepancy lies in our assumption that Dyq(a) is well-distributed. Actually,
most of the time the elements of Dy (a) form big clumps. A way to measure this clustering

is the quantity

L&D (q) := LED(a,1,1,...,1)

:Vol< U [log(d1/2),logd1)><--~><[log(dk/2),logdk)>.
dyi-dila

Consider n with w(a) = m and let p; < - -+ < p,, be the sequence of prime factors of a. We

expect that the numbers py, ..., p, are uniformly distributed on a loglog scale, that is
loglog p; ~ iloglogyl (1<j<m).
m

But we also expect that the quantities log log p; deviate from their mean value jlog log v, /m.
In particular, the Law of the Iterated Logarithm [HT, Theorem 11] implies that if C' =
O(y/loglogyy), then with probability tending to 1 as y; — oo there is some j € {1,...,m}
such that

loglog p; < L loglogy, — C.
m
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Therefore Lemma 2.3.1 yields

IN

L% (@) < mga(par - o) LY (pr -+ py) < (k+ 1) log*(2p1 - - py)

QA

(k+ 1) log" p;

IN

(kﬁ + 1)m—j€kj log log y1/m—kC

= (k + 1)me_kc,

which is much less than 741(a) = (kK + 1)™ if C' — oo as y; — oo. This suggests that we

should focus on integers n for which
loglogp; > %loglogyl —0(1) (1<j5<m). (2.3.1)

As we mentioned in Chapter 1, the probability that the above condition holds is about

1/m =< 1/loglogy, [For07]. So we deduce the refined heuristic estimate

T
(log )@/ s+ (log log y)/2°

H* D (2, y, 2y) ~

which turns out to be the correct one.

2.4 Some comments about the proof of Theorem 2.6

The hardest part in the proof of Theorem 1.3 is showing that if n satisfies (2.3.1), then
Dyy1(a) is well-distributed in the sense that L*+Y(a) > (k +1)™ < (loga)* on average.
One way to bound L**Y(a) from below is to use Holder’s inequality. In turn, this reduces

to estimating sums of the form

Z Mp(a)w,,

20



where w, are certain weights and

M,(a) = /Tk+1(a, e*, 2e*)Pdu

with the notational convention that e* = (e"!,...,e") for u = (uy,...,ux). Indeed, this
approach with p = 2 is used in [For08a, For08b] in order to bound H(x,y,2y) and can be
generalized to show Theorem 2.6 when £ < 3. However, when k£ > 3 this method breaks
down because the L? norm under consideration is too big. To overcome this problem we are
forced to consider L” norms for some fixed p € (1,2). The main difficulty in this modified

approach can be described as follows. A straightforward computation shows that

M,(a) = Z( > 1) . (2.4.1)

di-+dila ei1egla
|log(e;/d;)|<log 2
1<i<k

A key feature of the L? norm, which is taken advantage of in [For08a, For08b], is its combina-
torial interpretation: as (2.4.1) indicates, it can be viewed as counting pairs of points under
certain constraints. However, when one considers L? norms for p € (1,2), this combinatorial
interpretation is lost due to the fractional exponent p — 1 in the right hand side of (2.4.1).
In order to circumvent this problem we perform a special type of interpolation between L'

and L? estimates. We have

VIS S ( 5 1>

a dyi--dgla e1--egla
| log(ei/d;)|<log 2
1<i<k

-y Y wa< 3 1>

d1,...,dr, a=0 (mod d---dy) e1--egla
|log(e;/d;)|<log 2
1<i<k
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Hence Holder’s inequality implies that

ZMp(a)waé Z (z (Z )wa> (Z (Z W, Z

diye.,dg mod dy---dy, mod dy---dy) e1-exla
|log(ei/di)|<log2
1<i<k

Note that the sums

Z w, and Z W, Z 1

a=0 (mod d1 ---di,) a=0 (mod d; ---di,) e1-egla
|log(e;/d;)|<log2
1<i<k

can be viewed as incomplete first and second moments, respectively. The crucial feature of
the interpolation described above is that Holder’s inequality is applied at a point where it
is essentially sharp: the contribution from the incomplete second moment is tamed by the
small exponent p — 1. Lastly, the incomplete first and second moments are estimated via

combinatorial means. We shall describe this argument rigorously in Sections 5.3 and 5.4.

See also Remark 5.2.1.
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Chapter 3

Auxiliary results

In this chapter we list various results from number theory, analysis and statistics we will be

using throughout the rest of this work.

3.1 Number theoretic results

We shall need various results from number theory, predominantly from sieve methods. We

start with the following standard estimate [HR, Theorem 8.4].

Lemma 3.1.1. Uniformly in 4 < 2z < z we have

<zxz:P” > = .
<o Pon) > 2l = o

Next, we state a result known as the ‘fundamental lemma’ of sieve methods. It has
appeared in the literature in several different forms (see for example [HR, Theorem 2.5, p.

82]). We need a version of it that can be found in [FI] and [Iwa80b].
Lemma 3.1.2. Let D > 2, D = Z' with t > 3.

(a) Fiz k> 0. There exist two sequences {\"(d)}a<p, and {\~(d)}a<p such that

IAE(d)] <1,

A" xD)(n)=A"x1)(n)=1 if P (n) > Z,
(A x1)(n) <0< (AT x1)(n) otherwise,
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and, for any multiplicative function f(d) with 0 < f(p) < min{k,p — 1},

> Ai(d)@ =1] (1 - @)(1 + O,(e™)).

d<D p<Z p

(b) There exists a sequence {\o(d)}a<p such that
Xo(d)] <1, (3.1.1)

(Mx1)(n)=1 if P (n)>Z,
(3.1.2)

(Mo *1)(n) <0 otherwise,

and, for any multiplicative function f(d) satisfying 0 < f(p) <p—1 and

I1 ( _@)1<1"gw(1+ ¢ ) (3/2<y < w), (3.1.3)

yortw p ~ logy logy
we have
f(d) f(p)
d;;)\o(d)T > p]:[Z<1 - 7), (3.1.4)

provided that D > Dy(C), where Do(C) is a constant depending only on C.

Proof. (a) The result follows by [FI, Lemma 5, p. 732].

(b) The construction of the sequence {\(d)}4<p and the proof that it satisfies the desired
properties is based on [FI, Lemma 5] and [Iwa80b, Lemma 3]. We sketch the proof below.

Without loss of generality we may assume that Z ¢ N. Set P(Z) =[] _,p and \o(d) =

p<Z

w1(d)1,(d), where 1, is the characteristic function of the set

A ={d|P(Z) :d=pr---pr, pr < - <p1 < Z, paypu1---p1 <D (1<1<7/2)}.

By the proof of Lemma 5 in [FI], the sequence {Ao(d)}32, is supported in {d € N:d < D}
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and satisfies (3.1.1) and (3.1.2). Finally, by Lemma 3 in [Iwa80b], there exists a function h,

independent of the parameters D, Z and K, such that

S0 0> 0o+ TT1-22)

d<D p<Z p

for all multiplicative functions f(d) that satisfy 0 < f(p) < p—1 and (3.1.3). In addition, h
is increasing and h(3) > 0, by [Iwa80a, p. 172-173]. This proves that (3.1.4) holds too and

completes the proof of the lemma. n

The next two lemmas are concerned with estimates of functions that satisfy certain

growth conditions of multiplicative nature.

Lemma 3.1.3. Let f : N — [0, +00) be an arithmetic function. Assume that there ezists a
constant Cy depending only on f such that f(ap) < Crf(a) for all a € N and all primes p
with (a,p) = 1.

(a) For3/2 <y <z andn € NU{0} we have

f(a)(loga)” nl(n + 1)Cf f
Z Y <Lcy o (logz +1 Z
a€E P« (y,x) a€ Py (y,x)

where ¢y is a constant depending only on Cf.

(b) Let A€ R and 3/2 <y < x <29 for some C > 0. Then

> I i >><<cf,A,cexp{—zlffgzx}aogw)"‘ >

aEP,(y2) a€P(y.x)
a>z

Proof. (a) We claim that for all n > 0 and every number z > 0,

S (1)t e 3) <116 +5) o1



Observe that each side of (3.1.5) is a polynomial of degree n in x. Therefore it suffices to
compare the coefficients of 2" of the two sides. Note that the coefficient of 2" of the right

hand side of (3.1.5) is equal to

1
on—r Z Z-1 o in—r, (316)

1<y < <ip_pr<n

where the sum is interpreted to be 1 if » = n. For each summand 4; - - -4,_, in (3.1.6) there
is a unique j € {0,1,...,n—r}such that i, , =n, 6,1 =n—1,... iy _j1=n—j+1

and i,_,_; <n —j. So

i
1

Yoo i, =) nn—1)-(n—j+1) > iy e, (3.1.7)

1<i1 < <ip—r<n 1<) <<y <n—j

<.
Il
o

But the coefficient of 2" of the left hand side of (3.1.5) is equal to

" /n 1 1 . .
Z(m)n—m—i—l?”"‘ Z e

1<i) < <ip—r<m—1

n—r 1 1 . .
SO, L v

1<igi < <ip—p—j<n—j

1 — 2

= . n(n—l)---(n—j+1) E 81 Ty

n—r | n J
2 =0 (j + 1)‘ 1< <+ <ip_p—;<n—j

1 ) .
S on—r Z 11—y,

1<ii < <in—r<n

by (3.1.7) and the inequality 2/ < (j + 1)! for j € N U {0}. This shows (3.1.5). Also, for

every r > 0 Mertens’s estimate on the sum Zp<t log p/p and partial summation imply that

5~ ogp)™! _ (loga)™ (logz +1)*!

"<
. 1 T OWega)) < M—"" (3.1.8)

p<z

for some absolute constant M. Set ¢ = C'yM. We shall prove the lemma with ¢y = 2¢ — 1.
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In fact, we are going to prove that

|
—

n

Z —f(a)(zog )" < (logz +1)" | <c+ %) Z fa) (3.1.9)

a
a€ P (y,x) a€ Py (y,x)

s
Il
=)

for all n > 0. We argue inductively. If n = 0, it is clear that (3.1.9) is true. Fix now n >0

and suppose that (3.1.9) holds for all m < n. Then

fla log a)"+1 Z f(a)(loga)" 1og a)” Z
> - -
a€ P« (y,x) a€ Py (y,x)
1
= Z 08D Z f logb—l—logp)”
y<p<z be 07* y x)
logp n m -
<Cry > ! Z (m) (log b)™ (log p)
p<z be P, (y,x) m=0
" /n (log p)ttn—m f(b)(logb)™ log b)™
oy (m) S
m=0 p<z be P, (y,r)
So, by the induction hypothesis, (3.1.5) and (3.1.8), we find that
Z f log a)n+1
a€E P« (y,x)
<CfM(10gl'+1)n+1 & (n);m_l<c+z> Z ﬂ
o N/ = m 1 i=0 2 a€ P, (y,x) a
C(lOgI’+1)n+1 ﬁ(c_’_E) Z M
, 2 a
i=1 GEL@*(y,I)

This completes the inductive step and thus the proof of (3.1.9). Finally, observe that

< N 2) 1 T'(2¢+n) (n+1)%1n!
c an = )
27 I(20) on

by Stirling’s formula.
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(b) By part (a) we have that

f(a) fla) g~ 1 (loga)”
> avmmn T 2 T, Zmzlfgx)n

a€Zx(y,x) a€ P (y,x) n=0
)
g, 1y f(a)
UED N .
< ) T ogz >, . (3.1.10)
n=0 a€ Py (y,x)
fla
oy )
a€ P« (y,x)

for all x > 2, since 1 4+ 1/log2 < 3. Thus we have

Z f P*( )) Z logp Z fbp

a€ P ( y<p<w p bE P (y,p)
a>z ptb,b>z/p

<c; ¥ Mexp{_log@/p)} v S0

1-1/(2logp)
Y 28P Do (3.1.11)

+ Z logp Z f

min{z,z}<p<z p be Py« (y,x)

o b s )

21
a€E P« (y,x) p<min{z,z} ogp min{z,z}<p<z p

p<min{z,z}

by (3.1.10). Moreover, if z < x, then

(logp)* _ 1) (logp)* log 2
L ) - . 1.
<e ) exp{ 21ng} (3.1.12)

min{z,z}<p<z min{z,z}<p<z

On the other hand, if z > z, then both sides of (3.1.12) are equal to zero. In any case,
(3.1.12) holds. Combining this with (3.1.11) we find that

I I M N

a€ Py (y,x) a€Py(y,x) p<z
a>z
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So it suffices to show that

1 A | |
Tz:zmexp{_ 0g 2 }<<Acexp{— 0g 2 }(logm)A'
p ogp 7

p<z

Set 1 = exp{s222 1}, Note that p > /%) > 1. Thus for z > 100 we have that

2logx
A A
re Y ey Gt r Josr ) e (o)
D 2¢/log x P
1<n</logxz 21/ (nt+1) <p<gl/n p<eViogs
- 1 log z
<4 (logz)?y ——— +e {— }lo 14172 10g 10
4 (log z) ;,u”nf‘“ x|~ g (logz) " loglog z
log z
loga)*exp ~57 = |
<ac (logz)”exp 2logs )’
which completes the proof of the lemma. n

Let M denote the class of functions f : N — [0, 400) for which there exist constants Ay

and By, € > 0, such that
f(nm) < min{A7™, By om} f(n)

for all (m,n) = 1 and all € > 0. The following lemma is an easy application of the results

and methods in [NT].

Lemma 3.1.4. Let f € M, a € Z\ {0} and 1 < g < h <z such that (a,q) =1 and x > |a|.

Ifg<z'¢and h/q > ((x — a)/q) for some € > 0, then

p—a h f(n).
D G A I P

r—h<p§w n<x
p= a(mod q)

the implied constant depends on f only via the constants Ay and By, a > 0.

Proof. Observe that it suffices to show the lemma for the function ]7 defined for n = 2"m
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with (m,2) =1 by
Fn) = min{ A3, min(By.2)} £ (m).
We have that ]7 € M with parameters A; and ch,a, a > 0. Without loss of generality

we may assume that f(1) = 1. Also, suppose that z > z¢(e€, a, f), where xo(a,¢, f) is a

sufficiently large constant; otherwise, the result is trivial. Set

q, if 2[aq

q1
2q, if 21 agq,

and note that if p = a (mod ¢) and p > 2, then p = a (mod ¢;). So if we set p = gym + a

for p > 2, then

Z j”?(]? — a) < Z f<2m> + Z f(%m) + O, f(1)

z—h<p<z q X—-H<m<X q X—-H<m<X
p= a(mod q) P~ (qim+a)>VX 3<gim+a<v'’X
<ar D, fm+ Y fm)+1
X—-H<m<X X—H<m<X
P~ (gim+a)>VX m<vX—a

since ¢1/q € {1,2} and f(2n) < f(n) for all n € N. Let fi(n) = f(n) and fa(n) be the
characteristic function of integers n such that P~(n) > v/ X. Let Q1(z) = z, Q2(z) = gz +a
and @ = Q1Q2. Also, if P(z) € Z|x], then let pp(m) be the number of solution of the

congruence P(z) =0 (mod m). By Corollary 3 in [NT], we have that

S Fm= Y Am)fa(am+a)

X—H<m<X X—H<m<X
P~ (gim+a)>VX

<aes H]] (1 _ PQ_@> I1 fi(n)pg,(n) (3.1.13)

n
p<X P75 asx

f(n)
o) log”x 2 n

<<a,e

?
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since 2|aq;, H > X¢ ¢ < z'7¢ and the discriminant of @) depends only on a. Also, if the

sum

>, flm)
X—H<m<X
mgx/yfa

is non-zero, then H > X/2. In this case, Corollary 3 in [NT] implies that

~ VX fin
S o <o o DI <, )3 fn

X—H<m<X n<X qlog z
mgx/)?—a
which, combined with (3.1.13), completes the proof of the lemma. ]

Lastly, we state an estimate on the summatory function of the reciprocals of Euler’s ¢
function and other closely related quantities. Such a result was proved by Sitaramachandra

Rao [Sit]. Using the methods of [Sit] we extend this result according to our needs.
Lemma 3.1.5. Leta € N, s e N and x > 1 with s < x. Then

¢(a) — 315¢(3) #(s) log p log p
— ] _ __96F
2 ¢an DRTIR g(“3)<ogx+7 %pz—erlJrzp—l)
(n,5)=

w0tz ),

where g(as) = [1,ja ;72(:?1.

Proof. Since the proof of this part is along the same lines with the proof of the main result
in [Sit], we simply sketch it. Let P(x) = {x} — 1/2, where {z} denotes the fractional part

of x. Then using the estimate

Z P(a;/n) < (log 22)%3,

n<x

which was proved in [Wal, p. 98], along with a similar argument with the one leading to
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Lemma 2.2 in [Sit], we find that

Z “ ) < ﬂ(log 20)%/3 (3.1.14)

n<x
(n,r)=1

for every r € N. Also, by the Euler-McLaurin summation formula we have

Z%—logm—}—fy—@—l—O(é). (3.1.15)

n<x

Observe that the arithmetic function n — ¢(a)/¢(an) is multiplicative. In particular, we

have
ola) _ p2(m)
oan) ~ 2= m(m)l

(m,a)=1

(3.1.16)

Using relations (3.1.14), (3.1.15) and (3.1.16) and estimating the error terms as in [Sit] gives

us

n<z <z I<z/m dls m<z/d b<z/dm
(n,s)=1 (m,as)=1 (I,s)=1 (m,as)=1
w(d) p*(m) ( x/d m _sx/d m?
- - 2o () co( )
20 2 matm) ejd ) O\ Gy
(m,as)=1
_y ) o 1A(m) (1o z/d +9) +O(T(S)as (log2x)2/3>7
T d  “—= mg¢(m) m o(as) x
(m,as)=1
since s < z. Finally, a simple calculation and the identity
S m) _ 3156()
= m¢(m) 27t
complete the proof. O
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3.2 The Vitali covering lemma

We state below a simple but very useful covering lemma, which is a variation of the Vitali
covering lemma [Fol, Lemma 3.15]. For a positive real number r and a k-dimensional rect-
angle I we denote with rI the rectangle which has the same center with I and r times its

diameter. More formally, if @¢ is the center of I, then rI := {r(x — x¢) + ®o : € I}.

Lemma 3.2.1. Let Iy, ...,Ix be k-dimensional cubes of the form [ay,by) X -+ X [ag, bx)
(by —ay = -+- = by —ax, > 0). Then there exists a sub-collection I;,,...,I;,, of mutually

disjoint cubes such that

N M
U c 3.

n=1 m=1

3.3 Estimates from order statistics

In this section we extend some results about uniform order statistics proven in [For08b]. Set

Si(uv)={EeR 06 < <6<1 62"

and

Qu(wv) =Prob(6 > "1 <i<hfo<e < <6 <)

v

= I Vol(S,(u, v)).

Combining Theorem 1 in [For08¢c| and Lemma 11.1 in [For08b] we have the following

result.

Lemma 3.3.1. Let w =u-+v —r. Uniformly inu >0, w >0 and r € N, we have

0. (u,0) < (utD(w+1)
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Furthermore, if 1 <u < r, then

u—1/2
r+1/2°

Q-(u,r+1—u) >

Next, we state a slightly stronger version of Lemma 4.3 in [For08a]. The proof is very

similar; the only difference is that we use Lemma 3.3.1 in place of [For08a, Lemma 4.1].

Lemma 3.3.2. Suppose j,h,r,u,v € N satisfy

2§j§r/27 hZO, TSlOU, 'U,ZO7 w:u—f—U—TZl.

Let R be the set of & € S,.(u,v) such that for some | > j + 1 we have

l—u l—u+1 l—u—nh
<H{<L—m—, > —m.
v v v
Then
10(h + 1))/ 1
Vol < 100+ D) (ut 1)

G—=2)! (r+1!°

For p > 1 define
Turv7) ={0<& < <& <L 4 2T (1< <)) (33

Using Lemmas 3.3.1 and 3.3.2 we estimate Vol(7,(r,v,~) using a similar argument with the

one leading to Lemma 4.4 in [For08a].

Lemma 3.3.3. Letu>0,v>1 andr € N such that w=u+v—1r > —C, where C >0 is

a constant. Then
(u+1)(w+C+1)

Vol(T,.(r,v,u)) <o (r+1)!

Proof. Note that if > 2v, then the result follows by the trivial bound Vol(7,(r,v,u)) < 1/7l,

since in this case u > r/2 — C. So assume that 1 < r < 2v. Moreover, suppose that C' € N
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and C' > 2+ log32/log pu. For every & € T,(r,v,u) either

£j>]_+0 1<j<r)

or there are integers h > C'+ 1 and 1 <[ < r such that

j—u>:€l_l—u€ [—_h —h—i—l}

v v v’ W

min (Sj —

1<j<r

(3.3.2)

(3.3.3)

Let Vi be the volume of £ € 7,(r,v,u) that satisfy (3.3.2) and let V5 be the volume of

€ € T,.(r,v,u) that satisfy (3.3.3) for some integers h > C'+ 1 and 1 < [ < r. Then

Lemma 3.3.1 implies that

< Q-(u+ C,v) <o (u—l—1()£1f)i_—:)!0—i-1)7

which is admissible. To bound V; fix h > C'+ 1 and 1 <1 < r and consider & € T,(r,v,u)

that satisfies (3.3.3). Then

and consequently

[>2u+h—-1>u+C > 2.

Set

log 4 log 4 1
hozh—1—[0g }zo-(og +1)21+ 0g8
log log log

We claim that there exists some m € N with m > hg, [4™] < 1/2 and

Gy >
(Y
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Indeed, note that

MU§1++MU§l§2 Z ,u”gf

1/2<5<l
’Uf ’Uf —3
<opid X X ) s
m>0 \_'u, J<‘j< ’m+1J ( s )
L™ ] <1/2
<o(phops 30 (Lt - e e,
m>hg
™) <t/2

So if (3.3.5) failed for all m > hy with || < /2, then (3.3.3) and (3.3.6) would imply that

val + .. _'_Iuvﬁl < 2( l u—h+1 + Z m+1 _ J)leu72m>

m>ho

—Uu - M m —zMm —
=24 (u e IR T VI O 7l PP P 2’“))
m>ho+1

1 phott 41 1 2
l—u l—u l—u
<2u <Z + 2 ) <2p <Z + uho_l) S

by (3.3.4), which is a contradiction. Hence (3.3.5) does hold and Lemma 3.3.2 applied with

u+h, [¢™] and 2m in place of u, j and h, respectively, implies that

(u+ h)(w + h) (10(2m + 1)) (u+1)(w+C+1)
Ve < <. ,
h>zc+1n§0 (r+1)! (Lpm] = 1)t g (r+1)!
which completes the proof. -

We conclude this section with the following lemma.

Lemma 3.3.4. Let p>1, 7€ N, u andv with1 <v <r <100(v — 1) andu+v =1r+ 1.

If r is large enough, then

i /JI]'_Ufj d€ <<M

o (r+ 1)
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Proof. In [For08b, Lemma 4.9, p. 423-424] it is shown that

r

Z 9J—vE; d¢ <

Sr(u,v) j=1

2%y
(r+1)!

under the same conditions for u,v,r. Following the same argument we deduce the desired

result; the only thing we need to check is that fooo(y +1)3u Ydy < +oo. O
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Chapter 4

Local-to-global estimates

In the first two sections of this chapter we reduce the counting in H*+Y(x y,2y) to the

estimation of

S(k—l—l) (a) — Z L(k—i-l) (a)

a PR a
acak(t) | k

and prove Theorem 2.8. The basic ideas behind this reduction can be found in [For08a,
For08b, Koul0a]. However, the details are more complicated, especially in the proof of the
upper bound implicit in Theorem 2.4, because of the presence of more parameters. Finally,

in Sections 4.3 and 4.4 we show Theorems 2.5 and 2.4, respectively.

Remark 4.0.1. In order to show Theorem 2.8 we may assume without loss of generality that
y1 > C, where Cy is a sufficiently large constant. Indeed, suppose for the moment that
Theorem 2.8 holds for all k£ > 1 if y; > C}, and consider the case when y; < Cj. Then either
yr < Cf, in which case Theorem 2.8 follows immediately, or there exists [ € {1,...,k — 1}
such that y; < Ck < yi41. In the latter case let ¥’ = (yi41, ..., yx) and d = [2y1| -+ [2y] <

2lyy -y < (2C%)* and note that

HEY (% Y. 2y') < HE (e y,2y) < HED (@, y) 20),

Moreover,
x/d x

So the desired bound on H* V) (2, y, 2y) follows by Theorem 2.8 applied to H*~#1(z, 1/’ 21')

and H* =V (x/d, ', 2y'), which holds since y;,; > Cj.
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4.1 The lower bound in Theorem 2.8

We start with the proof of the lower bound implicit in Theorem 2.4, which is simpler. First,
we prove a weaker result; then we use Lemma 3.1.3 to complete the proof. Note that the
lemma below is similar to Lemma 2.1 in [For08a|, Lemma 4.1 in [ForO8b] and Lemma 3.2 in

[Koul0a).

Lemma 4.1.1. Fiz k> 1. Forx > 1 and 3 < y; < yp < -+ < yp, with 2%y, -y < x /Y

and y; > C, we have that

k
H 2 L+
kt1(7, Y, 2Y) ~ (H log ™+ yi> Z (a).

€T . ai - ag
=1 ac 7k (2y)

a;i<y!/®* (1<i<k)

Proof. Consider integers n = ay - - - agpy - - - prb € (x/2, x] such that

(1) a € Z*(2y) and a; < y for i =1,.. . k;

)

(2) pi1,...,pr are prime numbers with (log(yi/p1), .. .,log(ye/pr)) € LEV(a);
(3) P~(b) > y;/g and b has at most one prime factor in (y,i/8, 2yy].

Note that for every i € {1,...,k} all prime factors of a; lie in (y;_1, yll / Sk]. Also, condition

(2) is equivalent to the existence of integers dy, ..., dy such that d; - - - d;|ay - - - a; and y; /p; <

d; <2y;/pi, i =1,...k. In particular, 7,1 1(n,y,2y) > 1. Furthermore,

gt < P < B <2 <y
ap---a; — d; di

So (ay +--ag,p1---prb) = 1 and hence this representation of n, if it exists, is unique up to
a possible permutation of pq,...,p; and the prime factors of b that lie in (yz/ 8, 2y;]. Since

b has at most one such prime factor, n has a bounded number of such representations. Fix
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ai,...,a and py,...,pr and note that

X X 1 7/8
X = > 1/82%/
ap-c-agpr-ccpPe o 281Uk y,

So Lemma 3.1.1 and the Prime Number Theorem yield

1 X
SRS

b admissible X/2<p<X m<X
P~ (m)>2yy

and consequently

1 1
Hii(2,y,2y) > >, > . (4L

-
ac 2k (2y) (log 11....log 26 )e L4+ (a) prope
ai<y}/®* (1<i<k)

log yi

Fix a € 2%(2y) with a; < yil/8 for i = 1,...,k. Let {I,}22, be the collection of cubes
log(di/2),logdy) x --- x [log(dr/2),logdy) with dy---d;lay---a;, 1 < i < k. Then for

I = [log(d1/2),logdy) x -+ x [log(dy/2),logdy) in this collection we have

1 1 1
2. =11 > >
(log z—l ,,,,, log Yk)er b Pr =1y, /d;<p;<2y;/d; Pi o8 08 Yk

because d; < a;---a; < yil/s for 1 <1i¢ < k. By Lemma 3.2.1, there exists a sub-collection

{I,,}7_, of mutually disjoint cubes such that

J R
1 L(k+1)(a>
T(log 2)* = Vol( Irj> > 37V01<U ]T) o
j=1 r=1
Hence
J
1 1 Ik +1)
> S S L .
D1 Dk P Pk logyy - - - log yi

v1 Yk k41 =1 y1 Yk
(log b log o yeLE+1) (@) J=1 (log o log ” )GITj



Combining the above estimate with (4.1.1) completes the proof of the lemma. O]

Proof of Theorem 2.8(lower bound). For fixed i € {1,...,k} as well as integers aq,...,a;_1
and a;y1,...,a, the function a; — L**V(a) satisfies the hypothesis of Lemma 3.1.3 with

Cr=k—i+2<k+1, by Lemma 2.3.1(b). So if we set
P={acN:qc @*(Qyi_l,yll/c) (1<i<k)}

for some sufficiently large C' = C(k), then

L(k+1) LU+ (k+1) 1 1(k+1)
3 ey Bt s g e 2 g o i
1 al o« o e ak 2 a’l o« s . a’k‘
ac 2k (2y) acP acP acP
VLY az<yl/8’C
11<‘7il<k 1<i<k
By the above inequality and Lemma 2.3.1(b), we deduce that
k+1 The—ivo(b; LED (g
st e By el y B
acP i=1 b;€ Py (Yi—1,2Yi—1) ! ac 7k (2y) ! k
or b, €Y *( e Yi) al<yl/8’c
1<zl<k

Combining the above estimate with Lemma 4.1.1 completes the proof of the lower bound in

Theorem 2.8. [

4.2 The upper bound in Theorem 2.8

In this section we complete the proof of Theorem 2.8. Before we proceed to the proof, we

need to define some auxiliary notation. For y, z € R* and z > 1 set

H* D (z,y,2)={n<z:p*(n) =1, na(ny, z) > 1}.
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Also, for t € [1,4+00)*, h € [0, +00)* and € > 0 define

€
tzl

ay...a;—1

Pt ) = {a N PHa, 1) < P(a;) (2 <i<k), ai € P, (

where 5 = 1, and

L(k+1

SEHD (¢ h,e) = Z

ac Pk (t;e)

Hlog ( ..ai)—i—al .t?ai).

Then we have the following estimate.

Lemma 4.2.1. Let 3 <y < - < yp <z with 28y -y < 2/(2y)7/%. Then
H D (2,y,2y) — HF D (2/2,y, 2y) < 25D (2y; e, 7/8).

Proof. Let n € (x/2,x] be a square-free integer such that 7441(n,y,2y) > 1. Then we may
write n = dy -+ - dpyy with y; < d; < 2y, fori=1,... k. Soif we set yp1 = /(28 gy -+ y),
then y; < d; < 21y, for 1 <i < k+1. Let 21,..., 2,41 be the sequence v, . . ., yp ordered
in increasing order. For a unique permutation o € Siy1 we have that Pt (d,q) < -+ <
Pt (dy(k41))- Set p; = Pt (dy(j)) for 1 < j < k+1and py =1 and write n = ay - - - agps - - - pib

with P=(b) > p and a; € P.(p;—1,p;) for all 1 <i < k. We claim that

+ (2%)7/8 .
pi > Q= maX{P (ay---a;), } (1<i<k). (4.2.1)
ay...a;
Indeed, we have that y,;) < dyu) = pid for some d|a; ... a;. Hence y,;) < pia; ...a; for all

i €{l,...,k} and consequently

Yo (j) >maX1§j§z‘ya(j) > 2 > (2%)7/8

Pi > max > > > (1<i<k),
1<]<7«a1 aj al...ai al...ai al...ai
by our assumption that y; < -+ < gy < %yzfl and the definition of 2q,..., 2x11. Since we
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also have that p; > max;<j<; P*(a;) = P* (a1 - - - ;) by definition, (4.2.1) follows. Moreover,

P*(a;) < pi = P*(dy)) < max P (dj) <2y (1<i<k),

1<5<e

by the choice of o, and

P~ (a;) > pi1 > Q1.

In particular, @ = (ay,...,a;r) € P.(2y;7/8). Next, note that pyi1|b and consequently
b > pry1 > pr. So for fixed ay,...,ar and pq,...,pr the number of possibilities for b is at

most

T xz
E 1< <
al.. a .

: el .. el ’
o <b< o tp ) agpr - prlogpy = ar---agpr - prlog Qk
P=(b)>py

by Lemma 3.1.1 and relation (4.2.1). Therefore

1
HE (2, y, 29) — B (2/2,9,2y) <o Y Z a P o (4.2.2)

0ESE 1 A5
k+ p

-----

Fix ay,...,a; and 0 € Sy as above and note that
Yo (i do % 2k+1y0 % .
(doy/P1) -+ (dogiy/pi)lar -+ a; and 222 <« 20 < O (1<i<k).
Y2 i Pi
The above relation implies that for some [y, ..., [, € {1,2,2%,...,2"} we have that

Ly lLYo
y = <log—1y D . log 2o )GE"“H( )-
b1 Pk

Let my, ..., my be integers with my ---m;la; ... a; foralli =1,... k. Set

I = [log(my/2), logmy) x --- x [log(my./2), log my)
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and

Then we find that y' € 31 = [log(m/4),log(2m4)) X - - - X [log(my/4),log(2my)) if, and only
if, Uy <p; <8U; foralli=1,...,k. So

k k k
1 1
) H > <]l <1lio
poey, P i1 Uscprl; pi - log(max{U;, Q;}) ~— -7 log @
Pi>Q; (1<i<k) Pi>Q;
y'e3l

Combine the above estimate with Lemma 3.2.1 to deduce that

T <
2 . log Q1 - --log Qk'

Inserting the above estimate into (4.2.2) and summing over all permutations o € Si;; and

all Iy, ..., I, € {1,2,22, ... 2%} completes the proof of the lemma. ]

Next, we bound the sum S*+1)(¢; h, €) from above in terms of S**+1(¢), by establishing an
iterative inequality that simplifies the complicated range of summation 2 (t; €) by gradually
reducing it to the much simpler set 92%(t) and, at the same time, eliminates the complicated
logarithms that appear in the summands of S (k+1)(t; h,e¢). Lemma 3.1.3 plays a crucial role

in the proof of this inequality

Lemma 4.2.2. Fiz k> 1,¢>0 and h = (hy,...,hy) € [0,400)k. Fort = (t;,...,t) with

3<t; <. <t we have

k
SED (b, €) pone (H log ™" ti> Sk ().

=1
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Proof. Set § = ¢€/2k and to = 1. For [ € {1,...,k}, define

h; ifie{l,...,1—1}U{k},
hi; =
hi+k—1+1 ifl<i<k—-1
and
t§/2+l5
P(t) = {a e N, € 2, (maX{P+(a1 Cee@iq), L},ti) (1<i<l),
ap---Qj-1

Also, let ho; = hy,; for i € {1,...,k} and Zy(t) = Zi(t). Lastly, for I € {0,...,k} set
h,l = (hl,la c. 7hl,k) and

ae'@l(t aq - Qg iy ai - a;
k £/ 26
x [T tog™(P*(ar - )
H og (ay---a)) + p—
i=l+1
We shall prove that
SVt ) <one (log 2t 1) 25 (G hyy) (1< 1< k). (4.2.3)

Fix [ € {1,...,k}. Consider integers as,...,a;_; such that

€/2+16

a; € &P, (maX{P+(a1 Cee @), L},ti) (1<i<l-1)
ap i1

and aji1,...,a; such that
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and set

te/2+l6
/ . + -1
i, = maX{P (ay - ai-1), —}
al “ .. al—l

Observe that in order to show (4.2.3) it suffices to prove that

L+ (g 4/ 2+

T:= log~ " l( + ces i )
| R
a €D (t 1—1° t1)
(4.2.4)
L(k+1 . + te‘/2+(l—1)6
Chhe log ™4 (PH(ar -+ ay) + ).
k.h, Z H g - 1) ai---aj_q
a € P (1) I—1 )
Indeed, if (4.2.4) holds, then Lemma 2.3.1(b) and the relation
Tr—14+2(a k—1+2 log 2¢; 1\ k—1+2
> oo I () = ()
a€ P (ty_y5t1-1) “ t_1<p<ti_1 p 08 241
complete the proof of (4.2.3). To prove (4.2.4) we decompose T" into the sums
L(k—H . + t§/2+15
(S Hlog u(p )+a1_“al) l<m<k+1),

ajEPy (t;,ptl)
a€lm

where I, = (0,8)], I, = (°

m17

Sl1ifm e {l+1,....k} and [y = (t),+00). First, we

estimate T;. If a; € I, then

4e/2+16 (e/2H1-1)8
Ptlay- @)+ —+——>P(ay- 1)+ +——— (1<i<k)
al “ e al a’l ) a/l—l

and thus we immediately deduce that
LU+ ( (e/2H(1=1)5

n< Y Hlog (P ) + ﬁ) (4.2.5)
o

@€Y *(tg_lv l)
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Next, we fix m € {{+1,...,k+ 1} and bound T,,. For every q; € I,,, we have that

4e/2+H15 Pt (ay) if 1 <1< m,

Ptay---a) + aZ. T > Je/2+(1-1)3
! : Ptlay-a )+ —+——— ifm<i<k.

a1 Q1

Moreover, the function a; — L**+1(a) satisfies the hypothesis of Lemma 3.1.3 with Cy =

k — 1+ 2, by Lemma 2.3.1(b). Hence

€/2+(1-1)6 (k—+1)

t; L

o= ([T (P 2 ) 5 G
ay .- Q1 al(log P+(al)) Ll lm—1

ale‘} ( 17tl)

k 5/2+(l 2)6
e (H g (P oy + )) (H g1 )
i=l

k+1
><eXp{——élogtm_l}(logtl)—(hl,z-i-m—i-hl,m1) 3 L (a)

@€ P (t_q,t1)

L&D (q k o (6/2+=1)8
Lk,h,e Z A Hlog i <P+(a1 ceapg) + z—)

a1 - Qj_
(ZZEQ*(l 1tl) 1=l 1 -1

Combining the above estimate with (4.2.5) shows (4.2.4) and hence (4.2.3). Finally, iterat-

ing (4.2.3) completes the proof of the lemma. O
Before we prove the upper bound in Theorem 2.8, we need one last intermediate result.

Lemma 4.2.3. Let 1 <I<k—-1and3<t; <---<t,. Then

SE (41, k) < (log 2) 'SEH (8, ).
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Proof. Note that

L% (a) > U log(dy1/2),log dy) x - -+ x [log(dy/2), log dy,)
dy-dilaya; (1<i<k)
di=1 (1<i<l)
- [_ 1Og 27 O)l X ‘CUC_H_I) ((11 A1, Apg2,y - - 7ak)

and consequently

L(k+1)(a) > (log Q)IL(k—l'H)(al Cee gy, Aoy ,ak).

The desired result then follows immediately. O

We are now in position to show the upper bound in Theorem 2.8. In fact, we shall prove

a slightly stronger estimate, which will be useful in the proof of Theorem 2.6.

Theorem 4.1. Fiz k> 1. Letx > 1 and 3 <y, < --- <y with 2%y, -y, < x/y. There

exists a constant Cy such that

F(k+1) 9 k I,(k+1)
(z,9,2y) <. (Hlogfek,i y) 3 (a)

€T . ay---ag
i=1 ac2k(y)
a;<y,* (1<i<k)

Proof. Observe that it suffices to show that

k
HED (2, y, 2y) < (H log ¢+ y)T (4.2.6)

=1

where

Ti=max{S* V(@) : 1<t; < - <y, Vi <t <2y (m<i<k)}.

Indeed, assume for the moment that (4.2.6) holds. Note that

T < S*(y),
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by Lemma 2.3.1(b) and the inequality

a
> e
a

a€ Py (t,t°)

Also,
I,(k+1)
Y L eveeagomy) q<i<n,
al PR a’k
ae%’f(y)
ai>yick

by Lemma 3.1.3(b) applied to the arithmetic function a; — L**Y(a). Hence if Cy, is large

enough, then we find that

I (k+1)
T <, S(k+1)(y) <2 Z J7

a’l P ak
ac Pk (y)

ai<y® (1<i<k)

which together with (4.2.6) completes the proof of the theorem.
In order to prove (4.2.6) we first reduce the counting in H**V(z, y, 2y) to square-free
integers. Let n < x be such that 7, 1(n,y,2y) > 1. Write n = ab with a being square-full,

b square-free and (a,b) = 1. The number of n < z with a > (logyx)**? is at most

1 x
S .
1 k1
a>(log yg)?k+2 ¢ (log i)
a square—full
Assume now that a < (logy)?*2. Set 3o = 1 and

I; ={a e NN ((logy;_1)*"2, (logy;)**?] : a square — full} (1 <j <k).

Let dy - - - dg|n with y; < d; < 2y; for 1 < ¢ < k. Then we may uniquely write d; = f;e; with
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fi++ fela and ey - - - ex|b. Therefore

TSRS 3D Sl Sl el o (RS I (R )

m=1 aEIm fl fk'u‘

(4.2.7)

+o(m).

Fixm € {1,...,k}, a € I, and positive integers fi, ..., fx such that f; - - fx|a. Set 2’ = z/a,

and y; = y;/f; for 1 < i < k. Let z,..., 2 be the sequence yi,...,y; in increasing order.
Define a permutation o € Sy, by z; = y yfori=1,... k. Set z' = (zm,...,2) and note
that

HE (o o 2y') < HEMD (! 2 22)). (4.2.8)
Also,

fi <a<(logym)* ™ <y, (m<i<k), (4.2.9)

provided that y; is large enough. Let ¢ € {m,..., k}. By the pigeonhole principle, there

exists some j € {1,...,i} such that o(j) > i > m. So

2> yU(J)

>z = ) > VUi, (4.2.10)
fff(]

by (4.2.9). Similarly, there exists some j’ € {i,...,k} such that o(j') < i and consequently

(v

Each n € (2//(logy,)¥*t, 2] lies in a interval (27""!2’,27"2'] for some integer 0 < r <
(k4 1) loglog yx/ log 2. Note that

/9T /2T _ T fl e fk

7/8 7/8
2k7m+22m ce 2k - 2k+121 cee 2k - Qkyl e yk 27'+1a Z (ka) Z (QZk) ’

Thus Lemma 4.2.1 with £ —m + 1 in place of k, 27"z in place of = and z,,, ..., z; in place
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of y1,..., Yk, combined with Lemmas 4.2.2 and 4.2.3, relations (4.2.8), (4.2.10) and (4.2.11)

and the observation that

T>L%V,.... 1) = (log2), (4.2.12)
yields
(k+1) (T (k—m+2) @’
H + / ! 9 ! _( 1 ; _ek’i>S —m—+ 2 /
* (xvya y)<<kz>;2r H(Ogy) (z)+(logyk)k+l
= o (4.2.13)
k k
<5 x’(H log ™k yi>T < 7' (log 2y —1)" (H log ™k yi> T.
i=m i=1
Furthermore,

T a
Z k-‘rl( ) <5
a

a> (10g Ym—1 )2k+2
a square-full

(log Qym—l)k ’

which together with (4.2.13) implies

k

% 3 (e (e )l ) e

log 2,,—
a€lm fi-frla (log 2ym—1

Inserting the above estimate into (4.2.7) and combining the resulting inequality with (4.2.12)

shows (4.2.6) and therefore concludes the proof of the theorem. O

4.3 Proof of Theorem 2.5

In this section we prove Theorem 2.5. Let 3 = Ny < Ny < --- < Ny We have that

Ni--- N, N- N, N N,
(k+1) 1 k+1 1 k 1 k
Ak-ﬁ-l(va"'?Nk-i—l)ZH (T (ﬁ""’?)’<2k’—l"”’2k’—l>>
RO (4.3.1)
=k H(k+1)(N1"'Nk+17(717"‘7 2]9) (N17"‘7Nk+1>)7

o1



by Corollary 2.1. Also,

(k+1) (V1 k+1 1 k 1 k
Ak+1(N1""’Nk+1) < 1<2mz;<N H ( omi+-+my <2m1+1""’2mk>’ <2m1""’2mk>>'
1<i<k
(4.3.2)

For fixed i € {0,1,...,k}, let M; be the set of vectors m € (NU{0})* such that 2™ < |/N;

for i < j <k and v/N; < 2™ < N; and set

N N N, N N,
(k+1) k+1 1 k 1 k
T_ Z H <2m1+ +mk7(2m1+17-.~,2mk+1),<2m1,...,2mk+1>).

meM;

To bound 7; consider m € M; and let N = (N[, ,, ..., N}) be the vector whose coordinates
are the sequence {N;/2mi*! k _i41 in increasing order. Then Corollary 2.1, Theorem 2.4,

Lemma 4.2.3 and the fact that \/N; < N < Nj for j € {i+1,...,k} imply that

77041 <N1 - N ( Ny Ny ) ( Ny N ))
2m1+~~~+mk ’ 2m1+17'”’2mk+1 2m1""’2mk
< F(k=i+1) <N1 N ’ N’, 2N’)
Qe my
k

Ny --- Ny W e

=t G S (V) ] (og )7k
j=i+1

N k

<h SRS (NN N ] o )
j=i+1

HED(Ny -« N1, (N, ..., NB) /2, (N4, ... Ny )

xk 2m1+"-+mk H IOgN k]

Summing the above inequality over m € M; gives us that

HED(N, - Npay, (M, N /2, (Nl,...,Nk)> ﬁ(l |
OgNj ek’j,
/N, j:l

T <

which together with (4.3.1) and (4.3.2) completes the proof of Theorem 2.5.
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4.4 Divisors of shifted primes

We conclude this chapter with the proof of Theorem 2.4. Fix C > 2 and s € Z \ {0} and
let x,y, z be as in the statement of Theorem 2.4. Without loss of generality, we may assume
that

7 < ytoL/a00, (4.4.1)

Indeed, if Theorem 2.4 is true when (4.4.1) holds, then for z > y°1/1% we have

H(z,y,y" ")  H(z,y,2)
log T logx

H(z,y,2 P5) > H(z,y,y" "1 P,) >,

101/100

by Theorem 2.1, and consequently Theorem 2.4 is true for z > y as well. So assume

that (4.4.1) does hold. Let yo = yo(s,C) be a large positive constant. If y < yo, then

z H(z,y,z2)
H(x,y,z; Ps) > %?C?SXZ W(l‘ — S;d, —S) >>yo @ =0 W
,8)=1

by the Prime Number Theorem for arithmetic progressions [Dav, p. 123] and our assumption
that {y <d < z:(d,s) =1} # 0. Suppose now that y > yo. Fix an integer ¢t = ¢(s) > 3 and
set w = 2'/2% We will choose t later; till then, all implied constants will be independent of

t. Consider integers n = aqb1bys; < x such that
(1) s1=2/(s,2);
(2) a <w, p*(a) =1 and (a,2s) = 1;
(3) log(y/q) € L(a;n), P~(g) > w and (g, 2s) = 1;
(4) by € P(w,z) and 7(by) < t%
(5) P~ (by) > z;
(6) n € P;.
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Condition (3) implies that there exists d|a such that y/d < ¢ < z/d; in particular, we have

that 7(n,y,z) > 1 and thus n is counted by H(z,y, z; Ps). Also, Q(q) < log z/logw = 20t

and therefore
7(gh) < 29(‘1)7(61) < 2202,

Since each n has at most 7(gb;) < 22Y#? representations of the above form, we find that

2242 H (2,7, z; P,) Z Z Z 1= Z Z By(a, q).

asw log(y/q)€L(a;n)

asw log(y/q)€L(a;n) biba<z/ags1
p2(@)=1 P~ ()>w  bieP(w,z), P~ (bs)>z p2(@)=1 P~ (q)>w
(a,25)=1  (¢,25)=1 7(b1)<t? (a,25)=1  (q,25)=1

agbibasy —s prime

(4.4.2)

For a and ¢ as above let

B(a7 Q) = Z 1 and R<a7 Q) = B(CL, q) - BO(av Q)

b<z/agsi
P~ (b)>w
agbs1—s prime

Given b with P~(b) > w, write b = biby with b € Z(w,z) and P~ (by) > z and put

f(b) = 7(by). Then, for fixed a and ¢ with (ag,2s) = 1, we have that

1 1 p+s 1 z
R(a,q) < Z f(b) = 2 Z f(%) < t ¢(aq)log zlogw’

t
b<z/agsi p+s<x
P~ (b)>w p=—s (mod ags1)
agbsi—s prime ’(5;:1 )>w

by Lemma 3.1.4. Inserting the above estimate into (4.4.2) yields that

2P H(z,y, 2 P) > Y >, Blag)
a<w log(y/q)€L(an)
p*(@)=1 P~ (g)>w
(a,2s)=1 (g,2s)=1
(4.4.3)

—0 (tlogxlogw Z Z M)

a<w log(y/q)EE(a )
pAa)=1  P~(q)>w
(a,25)=1 (g,2s)=1
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Next, we need to approximate the characteristic function of integers n with P~ (n) > w
with a ‘smoother’ function, the reason being that the error term w(x;rq, a) — li(z)/¢(rq) in
Theorem 1.5 is weighted with the smooth function 1 as ¢ runs through [1, Q] NN. To do this

we appeal to Lemma 3.1.2(a) with Z = w, D = 2'/%° and x = 2. Then

P H(z,y, 5 P) > Y > (A x1)(9)B(a,q) — Os(%1)
alw log(y/q)€L(a;n)
w?(a)=1,(a,2s)=1 (g,28)=1

- ¥ > (A x1)(9)B(a,q) — Os(%81 + Z2),

,, | OSw log(y/q)€L(asn)
p?(a)=1,(a,2s)=1 (g,25)=1

(4.4.4)

where
1 =z (AT x1)(q)
Ml Yy G
t1
ogzlogw alw log(y/q)€L(asn) ¢(GQ)
1?(a)=1,(a,25)=1 (g,25)=1
and

Ryi= ) Y. (WD) = (A % 1)(g)Bla,q).

) <w log(y/q)€L(asn)
p?(a)=1,(a,2s5)=1 (g,25)=1

S}

First, we bound %, from above. For fixed a and ¢ with (ag,2s) = 1 we have

T

B S Y
(e,9) < #(aq)log zlog w

by Lemma 3.1.4. Since A * 1 — A\~ % 1 is always non-negative, we get that

AT %1 — (A7 %1
08 108 W alw log(y/q)€L(asn) #(aq)
w?(a)=1,(a,2s)=1 (g,25)=1

Fix a < w with (a,2s) = 1 and let {I,}%, be the collection of the intervals [logd — 1, log d)

with d|a. Then for I = [logd — n,logd) in this collection Lemmas 3.1.5 and 3.1.2(a) imply
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that

log(y/q)€31 ¢laq)
(g,25)=1
_ 1
=2 W =Aw) ) s
h<z1/20 e~y /hd<m<e?"y/hd
(h,2s)=1 (m,2s)=1
315¢(3) g(2as)p(2s) AT (h) = A~ (h) g(ah) ho(a) 23
_ 3 (OR
o 2/s|o(a) h; h (@) ¢(ah)< 1+ Oy ™)
(0722):1
n 1 9(p) 1 1 7
| 1= 1 - O
S o(a) E) < p> pgv( p— 1> Tl e ola)logw
pi2s,pla pi2sa

provided that yo is large enough, since g(p)p/(p — 1) < min{p — 1,2} for p > 3, g(p) =

14+ O(p~?) and g(a) < 1. Hence Lemma 3.2.1 implies that

AT x1 — (A7 %1 1 L(a;
3 ( )(a) —( )(q) 1 (a;7m)

¢(aq) e ga) ogw’ (4.46)

log(y/q)€L(a;n)
(g,25)=1

since AT x 1 — A~ % 1 is always non-negative. By the above inequality and (4.4.5) we deduce

that
B < 1 X Z L(a;n)
2SS ot log z log® w g o(a) - (4.4.7)
p2(a)=1,(a,2s)=1
Next, we bound from below the sum
7= ¥ S (e 1)(@)Blag).

asw log(y/q)€L(a;n)
w?(a)=1,(a,2s)=1 (g,28)=1

We fix a and ¢ with (aq,2s) = 1 and seek a lower bound on B(a,q). By Lemma 3.1.2(b)

applied with Z = w and D = w?, there exists a sequence {A\g(d)}4<,s such that Mg * 1 is
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bounded above by the characteristic function of integers b with P~(b) > w. Thus

Beg= > 1z Y (esp(D)

p<z—zx p<z—s
p=—s (mod ags1) p=—s (mod agsi)
P=((p+s)/ags1)>w pfs
= Z Xo(m)m(x — s;agsym, —s) + Og(1).
m<w3
(m,s)=1
So, if we set
E( ) ( ) li(z — s)
r;m,a) =7w(r —s;m,a) — ————,
¢(m)
then Lemma 3.1.2(b) and the fact that 2|s;s imply that
Blag) > lia-s) Y 2y 0,0) 4@, > Cils)—— 2
s ¢(agsim) ®(aq) log x log w
(m,s)=1

for some positive constant C(s), where

Rpys, = Z Xo(m)E(x; agsym, —s).

m<w3
(m,s)=1

Since AT x 1 is always non-negative, we deduce that
ATkl
y>01(8) T Z Z ( * )(Q)_’_%/7

- log x log w
alw log(y/q)€L(asn)
w2 (a)=1,(a,2s)=1 (g,25)=1

where

7= Y ST D)) R,

,. ., asw log(y/q)€L(a;n)
n?(a)=1,(a,2s5)=1 (g,25)=1

o7

aqgsi



Combining (4.4.4), (4.4.7) and (4.4.8) we get that

Ci(s) =z (AT x1)(q)
920142 Iy P> § E
(@,9,2 P2) 2 2 logzlogw o(aq)
a<w log(y/q)€L(asn)
2 (@=L(a2)=1  (g25)=1

o1 L(a;n)
- OS '% -7 4 9 )
<| [+ et log x log® w Z ¢(a) )

a<w
12(a)=1,(a,25)=1

(4.4.9)

provided that ¢ is large enough. Following a similar argument with the one leading to (4.4.6)
and using the fact that AT % 1 is non-negative, we find that for every a < w with (a,2s) =1

we have

(AT *1)(q) L(a;n)
2 oag) ~° ola)logw’

log(y/q)€L(asn)
(g,25)=1

provided that yo and ¢ are large enough. Inserting this inequality into (4.4.9) and choosing

a large enough ¢ we conclude that

Hiry=P)2 Gl 3 P8 ) (44.10)

for some positive constant Cy(s). Furthermore, note that if a is squarefree, we may uniquely
write a = db, where d|2s, p*(d) = p*(b) = 1 and (b,2s) = 1, in which case L(a;n) <
7(d)L(b;n), by Lemma 2.3.1(c). Thus

a<w )=1 b<w/d d|2s b<w
p?(a)=1 w2 (b)=1 12 (b)=1
(b,2s)=1 (b25)=1

which, combined with (4.4.10), Theorem 2.7 and the trivial inequality ¢(a) < a, implies that

H(z,y,z)

H(CE’,y,Z;PS) 203(8) IOgIL'

- O:(1Z2'))
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for some positive constant Cs(s). In addition, observe that

X
(logy)©

H(z,y,z) >

by Theorem 2.1 and our assumption that z —y > y(logy)~¢. Hence

H(x,y,2) (1 _o. < (log ) (log y)C\%’\».

H(z,y, 2 Ps) >
log x T

So in order to prove Theorem 2.4 it suffices to show that

X

374 s .
P <4 g 2 (log y)o71

(4.4.11)

For every a € N there is a unique set D, of pairs (d,d') with d < d', d|a and d'|a such that

Lian) = |J logd—n,logd)

(d,d')E€Dq

and the intervals [logd — n,logd’) for (d,d') € D, are mutually disjoint. With this notation

we have that

\%'| = ‘Z Z Ao(m) Z Z (AT % 1)(q) E(x; amsiq, —s)‘

(d,d")eDq y/d'<q<z/d

(g,25)=1
:‘ZZ)\O(m) Z Z)\+(h) Z E(z;amsihl, —s)
a m (d,d"YeDq h y/hd'<l<z/hd
(1,2s)=1
Y Y Y Y| Y s
asw  m<wd p<1/20 (d,d')ED, y/hd’<l<z/hd
(a,25)=1 (m,5)=1 (k,25)=1 (1,28)=
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So writing the inner sum as a difference of two sums we obtain that

wceom ($ 5 ¥ T s}

ysTs afw m<wd p<z1/20 blamsih I<T/b
(a,28)=1 (m;5)=1 (h,25)=1 (1,2s)=1
<2 sup { T3(r Z‘ Z (x;rl, — }
ysT=2 % gat/s0 blr  I<T/b (44.12)
(r,s)=1 (1,25)=1
<t {3 w0 Y] 3 Bt |
vsTsz 4, s bir  I<T/b
(r,s)=1 (1,5)=1

since w220 < 27/60 < 21/8/4 for all t > 3. Put u = 1+ (logy)~¢~" and cover the interval
1, 2/8] by intervals of the form [u™, u"*1) for n = 0,1,..., N. We may take N < (logy)“+®.
Since |E(x;m, —s)| < z/(¢(m)log z) for m < 298 < 23/4 with (m, s) = 1 by Lemma 3.1.4,

we have that

Z 73(7“)2 Z ‘Z (x;rl,—s) — Z E(x;rl,—s)

r<z1/8 n=0  blr lgT I<T/pn
(’I‘,S):l n<b<lj‘n+1 ( s)= (l,S)ZI
x
< ) Z > 2 Suiiers
¢(rl)log
r<zl/8 blr T/pnHi<I<T/pn
(r,s)=1 ”<b<;L”‘H
:clogu 7'3 Z
log:c 1/8 o (log z)(log y)C+1

for all T € [y, z|, by Lemma 3.1.5, which is admissible. Combining the above estimate

with (4.4.12) we find that

|%'| <5 sup {Z Z 73(r ‘ Z (x;7l, — ‘} - (log:c)(lf)gy)CH' (4.4.13)

v=1<e D5 s 1<Tam
(rs)=1 (L,s)=1
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Finally, Theorem 1.5 applied with 4C'+ 56 in place of C' and the Cauchy-Schwarz inequality

yield

S 73(7»)7(7»)( 3 E(x;rl,—s)‘

r§21/8 IST/u™
(r,5)=1 (9,8)=1

“ (5 T ¥ BN (5] S sn])”

r<Z1/81<T/um r<z1/8 I<T/p™
(r,s)=1 (l,8)=1

for all T € [y, 2] and all n € {0,1,..., N}, since 2/® < 212 and 2%/® < 23/, Plugging this

estimate into (4.4.13) gives us

i e X
(log x)2C+10 - (log z)(log y)C+1 < (log x)(logy)c+1’

|=@/| <<8,C N

which shows (4.4.11) and thus completes the proof of Theorem 2.4.
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Chapter 5

Localized factorizations of integers

In this chapter we prove Theorem 2.6.

5.1 The upper bound in Theorem 2.6

We start with the proof of the upper bound in Theorem 2.6, which is easier. In view of

Corollary 2.1 and Theorem 4.1, it suffices to show that

L(kﬂ)(a) (log yl)k+17Q(k/log(k’+l))

SE ) = <
3/2
pom (1og10g 1)

a<y;*, u2(a)=1

, (5.1.1)

where C} is some sufficiently large constant. Before we proceed to the proof, we make some
definitions. Set

p=(k+ 1)k

We start with the construction of a sequence of primes ¢, /s, ..., as in [ForO8a, ForO8b,
KoulOa]. Set ¢y = min{p prime : p > k+ 1} —1 and then define inductively ¢; as the largest

prime such that

1
d = <logp. (5.1.2)

L _1<p<Y;
Note that 1/(fg + 1) < 1/(k 4+ 1) < logp because (k+ 1)logp = (k + 1)log(k + 1)/k is an

increasing function of £ and log4 > 1. Thus the sequence {/;}32, is well-defined. Set

D; ={pprime: ¢,y <p</{;} (jeN).
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We have the following lemma.

Lemma 5.1.1. There exists a positive integer Ly such that
Pl <logl; < Pt (j €N).

Proof. By the Prime Number Theorem with de la Valee Poussin error term [Dav, p. 111],

there exists some positive constant ¢; such that
loglog¢; —loglog ;1 =logp+ O(e” 'V logj—1) (5.1.3)

for all j € N. In addition, ¢; — oo as j — oo, by construction. So if we fix p' € (1, p), then

(5.1.3) implies that
log ¢; o
lOg gj,1 B

for sufficiently large j, which in turn implies that that the series »_ e “V logfi converges.

Hence telescoping the summation of (5.1.3) completes the proof of the lemma. O

We are now ready to start our course towards the proof of (5.1.1). Set

wi(a) = {pla : p > k}

and

I,(k+1) (a)
S(k+1) — E -
r (yl) a
Pt (a)<y1,a<y’*

wi(a)=r.pi2(a)=1

Lemma 5.1.2. Let y; > 3 and set v = |loglogy,/logp|. For r > 0 we have that

(loglog yr + Ox(1))" (k + )™} (1 + |r —v])

S£k+1)(y1) < 1)
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Proof. First, note that

LU (n) Th+1(n)

=z T\~ k TEHINTY) 1.
> —— < (log2) > <kl (5.1.4)
P+ (n)<k Pt (n)<k

2 (n)=1 p?(n)=1

by Lemma 2.3.1(a). This completes the proof if » = 0. So from now on we assume that

r > 1. For the sets D; constructed above we have

’U+Lk+1

{pprime: k<p<y}C U D;,
j=1

by Lemma 5.1.1. Consider a square-free integer a = bp; - - - p, with a < ylc’“ and P*(b) <

k <pi <---<p, and define j; by p; € D;,, 1 <i <r. By Lemmas 2.3.1 and 5.1.1, we have

L(’H—l)(a) < Tk+1(b)L(k+1)(p1 o py)
< k41 () min (k + 1) ~*(logpy + - - - + log pi + log 2)" (5.1.5)

<5 Trp1 () (k 4 1)" min{1, F(5)}",

where

F(j) = min p~*(p"* + -+ p").

1<i<r
Observe that
F(G) <p7 (P + -+ p7) < plloga < p" 7 (5.1.6)

by Lemma 5.1.1. Let J denote the set of vectors j = (j1,. .., Jj.) satisfying 1 < j; <. <
Jr <v+ Ly + 1 and (5.1.6). Then (5.1.4) and (5.1.5) imply that

1
SEH (1) < (k41 Zmln{l F(j Z . (5.1.7)

jeg p1<---<pr P1 Pr
pi€Dj; (1<i<r)

Fixj=(1,...,gr) € Jand let by, = {1 <i<r:j=m} forl <m<v+ L+ 1. By
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(5.1.2) , the sum over py, ...

’U+Lk,+1

m -

m=1 PED,

where

I[(3) ={0<& < <6<y = 1< (vt L+ 1)& < i (1< <)}

,pr in (5.1.7) is at most

(log p)” = ((v+ Ly + 1) log p)" Vol(I(3))

()" <0

Pev o bygpyq1!

|

= (loglogy + Ok(1))" Vol(1(j)),

Inserting (5.1.8) into (5.1.7) we deduce that

S D(y1) < (loglog yy + Ox(1))' (k+1)" Y min{1, F(§)}* Vol(I(4)).

JjeJ

Note that for every & € I(j) we have that

and thus

P(§) <x min " (p" 4+ %) =2 F(€) < F(j),

which in turn implies that

JjeJ

> min{1, PG Vol((0) <o [+ [ min{1, Fie)}de

0<81<<6r<1
F(E)Spv_T+ck
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for some sufficiently large constant ¢;. Finally, note that

/ . / min{1, F(€)}hdg

0<81 < <6r<1
F({)ﬁpv_r_"ck

min{l,p“‘”‘ck}
:/ k"1 Vol(0 <& <--- <6 <1:F(€) > a)da
0

min{1,pv" "tk } 1
= / kart VOI(TD(T,U, —E>>da,
0 log p

where 7,(r,v, —loga/logp) is defined by (3.3.1). Hence making the change of variable
a = p~* and applying Lemma 3.3.4 yields

o0

/ / min{1, F(€)}rde = log(k + 1) / (k 4+ 1) Vol (T, (r v, u))du

max{0,r—v—c
0<ér<<6,<1 { }

Fe)<prrer

o u+1)(u+v—r+c+1
o rereoriasy,
max{0,r—v—cg} (T + 1)(k + 1)
1+ |r—o|

S CFD+ e

Combining the above inequality with (5.1.9) and (5.1.10) completes the proof of the lemma.
]

Having proven the above result, it easy to bound S**V(y,) from above. Indeed, if we

set v = |loglogy;/logp|, then

r=0 r=0 (’l” + 1)|
<, (k4 1) (oglogy: + Ox(1))"
g (v+1)!
(log yl)k""l_Q(l/lng)
(log log 1 )%/
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by Lemma 5.1.2, Stirling’s formula and the inequalities

1
. clogp < 1.
kel 0Bl

This establishes (5.1.1) and thus completes the proof of the upper bound in Theorem 2.6.

5.2 The lower bound in Theorem 2.6: outline of the
proof

In this section we give the main steps towards the proof of the lower bound in Theorem 2.6.

As in the previous section, observe that it is sufficient to show that

(lOg yl)k—i-l—Q(k/ log(k+1))
(log log y1)3/?

L(k+1) (a)
> s

Pt(a)<y1
p(a)=1

(5.2.1)

then Corollary 2.1 and Theorem 2.8 yield the lower bound in Theorem 2.6 immediately.
As we mentioned in Section 2.4, the main tool we use in order to bound L*+1)(a) from

below is Holder’s inequality. To this end, given P € (1,+00) and a € N set

P—1

W)=

dy-+dy|a

{(61,...,6k) eN' e eyl llog%

<10g2(1§i§k3)}

Lemma 5.2.1. Let A be a finite set of positive integers and P € (1,+00). Then

1/P 1-1/P
Ti+1(a) Wili(a) 1 L% (a)
Z a = (Z a ) ((log 2)k az a ) '

acA acA cA

Proof. For d = (dy,...,d;) € R¥ let yq be the characteristic function of the k-dimensional
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cube [log(d;/2),logdy) x - x [log(dy/2),logdy). Then it is easy to see that

Teaa(a, e, 2¢") = Y xalu)

dy--dila

for all @ € N, where e* = (e*, ..., e"%) for u = (uy,...,u;) € R¥. Hence

/ The1(a, e, 2e*)du = 741 (a)(log 2)F
RE
and a double application of Holder’s inequality yields

k41 1-1/P
M) C (5:22)

(log2)" > T‘”Tl(a) < (;% /R Trpa(a, e, 26”>PdU) " (Z

acA acA

Finally, note that

Trr1(a, e, 2e™) = Z ( Z 1)

dyi---dila e1-erla
u;<logd;<u;+log2 w;<loge;<u;+log2
1<i<k 1<i<k
P-1
< E ( E 1) .
dy--dgla e1egla
u;<logd;<u;+log2 |log(e;/d;)|<log2
1<i<k 1<i<k

So

/Rk (a, e, 2¢%) P du < Z ( Z 1) /Rk Xa(w)du = (log 2)*Wk (a),

di--dila e1--eila
|log(e;/d;)|<log2
1<i<k
which together with (5.2.2) completes the proof of the lemma. ]

Our next goal is to estimate

Wk (a
3 (@)

a
acA
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for suitably chosen sets .A. Recall the sets D; constructed in Section 5.1. For b = (by,...,by) €
(NU {0})¥ let A(b) be the set of square-free integers composed of exactly b; prime factors

from D; for each j. Set B=0;+---4+by, Bo=0and B; =b;+---+0b;foralli=1,... H.

Lemma 5.2.2. Let P € (1,2] and b= (by,...,by) € (NU{0}). Then

Wk}jrl(a> ((k + 1) log p>B P—1 _(‘ 4oty )
Z PR byl by Z (o)
acA(b) 0<ji<-<ju<H
e,
siN it (k=i P

The proof of Lemma 5.2.2 will be given in three steps: the first one is carried out in

Section 5.3, the second one in Section 5.4 and the last one in Section 5.5.

Remark 5.2.1. ' Lemma 5.2.2 is essentially sharp. To see this H = |loglogy;/logp| and

note that for every fixed [ € {0,1,...,k} we have

k : :

i —1+4 (k—i+2)P\Bi I+ (k—1+1)7)P

RRILY § (0 I (ot it i et A
i+ (k—i+ 1P (log yy )P~ E=D

i=1

(5.2.3)
when j; = 0 for ¢ <[, and j; = H for ¢ > [ . Moreover, we claim that if a € N is such that
p*(a) =1, w(a) = B and loga < logy;, then

I+ (k—-1+1)"B
(logyy)(P=1E=D

Wiia(a) > (5.2.4)

Indeed, recall that

W) = z( > )

di-+dila ei1egla
|log(e;/d;)|<log 2
1<i<k

!The argument given here was discovered in conversations with Kevin Ford
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So setting e; = d; for 1 <7 <[ in the inner sum yields

Wii(a) 2 Y n(@W .4 (a/d)
dla

for every a € N. By Lemma 5.2.1, we get that

(log 2)(k_l+1)(P_1)Tk,l+1(b)P N (k 4+ 1)Pw(b)

P
Wk—l+1(b) > L—1+1) (p)P-1 (log yy )(P—D(E=D

for all b € N. So

(14 (k — 1+ 1))@
(log yl)(Pfl)(k*l) ’

Wik (a) 3> (logyy) 000 Y 1@ — 14 )P/ =
dla

(5.2.5)

which proves (5.2.4). In view of Lemma (5.2.2) and relations (5.2.3) and (5.2.4), it is rea-

sonable to assume that
k

(k—1+1)F)B
wk
k+1 IZ (log y1)P—D k=D

for a € N with w(a) = B and loga =< logy;. In order to make Holder’s inequality (cf.

Lemma 5.2.1) sharp, we would like to show that

Wiii(a) = (k+1)", (5.2.6)

which essentially reduces to showing that

I+ (k—1+1)"
E+1

< (P (0 <i<h).

This is accomplished by choosing P small enough (see Lemmas 5.2.3 and 5.5.1 below).

Next, we impose some conditions on b and P to simplify the upper bound in Lemma 5.2.2.
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More precisely, set

(k+1)*log® p }

P = min{Q, 5
(k+1)2log“p—1

(5.2.7)

and let B be the set of vectors (by,...,by) such that B; < i for all ¢ € {1,..., H}. Lastly,

set
_ (B+1)"
kP41

Lemma 5.2.3. Let k> 2 and b= (by,...,by) € B. If P is defined by (5.2.7), then

Z Wii;(a) < <(k[:| 1 Ing (1—|—Zy j J)

acA(b)

The proof of Lemma 5.2.3 will be given in Section 5.5. Using this result, we complete

the proof of (5.2.1) - and consequently of the lower bound in Theorem 2.6 - in Section 5.6.

5.3 The method of low moments: interpolating
between L' and L? estimates

In this section we carry out the first step towards the proof of Lemma 5.2.2. Before we
proceed, we introduce some notation. Given b € (NU {0}) and I € {0,1,..., B}, define

Eb<[> by BE,,(I)—I <I< BEb(I) if I > 0 and set Eb(I) =0if I =0. AISO, for R € N let
P ={N,....Yy): Y, C{l,...,R}LY;nY; =0ifi # j}.

For Y € 2% and I € {0,1,..., R}* set
k k

ME(Y T) = HZ e Zn:|J(Z (1, R) = |V, N (IL,R) (1<) < k:)H

r=j r=j
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Lastly, for a family of sets {X};es define

UHXﬁjEJD:{mGLL@ﬂﬁekae&Hzl}

Jj€J

In particular,

u({Xla X2}> == XIAX27

the symmetric difference of X; and X5, and
U = 0.

Remark 5.3.1. Assume that Y,...,Y, and Z,,..., Z, satisfy Y;NY; = Z;NZ; = 0 for i # j.
Then the condition

UY,0Z;: 1< <n}) =10

is equivalent to
n n
Uvi=Uz
j=1 j=1

Lemma 5.3.1. Let k> 2, P € (1,2] and b= (by,...,by) € (NU{0}). Then

> szl(a) <y, b(ll'ogpz o> Tem P S (vpysn) T

ac A(b) A o<ry, . 1<B j=1 verh
Proof. Let a =p,---pp € A(b), where

PB,_1+1s---3DPB; S Dz (1 S 1 S H), (531)

and the primes in each interval D; for j = 1,..., H are unordered. Observe that, since
a = p; -+ pp is square-free and has precisely B prime factors, the k-tuples (di, ..., d;) € N*

with d; ---dy|a are in one to one correspondence with k-tuples (Yi,...,Y) € 2% this
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correspondence is given by
d; = H pi

Using this observation twice we find that

Wk]jrl(a) = Z

(Y1,..,Y,) P

‘log ej — Zlogpi
P-1
1) ,

Z) in 2% condition (5.3.2) is defined by

icy;

-y (x>
(Yl,...,Yk)Eyg(
(5.3.2)

where for two k-tuples (Y7, ..

—log?2 < Zlogpi — Zlogpi <log2 (1<j<k).

i€Y; i€Z;

Moreover, every integer a € A(b) has exactly b!---

p1 -+ - pB, corresponding to the possible permutations of the primes py, . .

(5.3.1). Thus

a b1!-. ! p1~'-p

{(61,...,6k)ENk261

21, ZR)EPY,

L Ye) and (Zy,. ..

(1<j<k).

. ek|a7

P-1

<log2 (1< Sk‘)}

(5.3.2)

by! representations of the form a =

., pp under condition

S (s 1)

‘bH B
QGA(b) P1,---sPB Yecp Ze@k
(5:3.1) . (5.3.2?
P-1
e 2 2 (X0
k P1s--PB k
"R oo
1 1 2-P 1 P—1
Sbﬂ"'bH! Z (Z P1 "pB> <Z pl—pB Z 1) ’
Ycok \P1,-PB P1,--PB Zec Pk
B (53.1) (5.3 B
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by Holder’s inequality if P < 2 and trivially if P = 2. Observe that

ﬁ(Z —> < (logp)”,

pED

D ——

Pp1,--5PB pl
(5.3.1)

by (5.1.2). Consequently,

WEL() _ (logp) P8 1 A
s> Whale) (oen® 08 (52 1y
acA(b) Yezk p(léng);B Zepk
(5:3.2) (5.3.3)

(log p)*=*F 1\
ey (xS
YeZy "Zery B (5.3. 1’) (’5 3.2)

Next, we fix Y € 2% and Z € 2% and proceed to the estimation of the sum

> o
pips P17 PB
(5.3.1),(5.3.2)

Note that (5.3.2) is equivalent to

—log2 < Z log p; — Z logp; <log2 (1<j5<k). (5.3.4)
i€Y;\Z; i€Z;\Y;

Conditions (5.3.4), 1 < j < k, are a system of k inequalities. For every j € {1,...,k} and
every I; € Y;AZ; (5.3.4) implies that p;; € [X},4X], where X is a constant depending
only on the primes p; for i € Y;AZ; \ {I;}. In order to exploit this simple observation to its
full potential we need to choose I, ..., I} as large as possible. After this is done, we fix the
primes p; fori € {1,..., B}\{I1, ..., I} and estimate the sum over py,, ..., ps,. The obvious
choice is to set I; = maxY;AZ;, 1 < j < k. However, in this case the indices Iy, ..., I} and
the numbers X1, ..., X; might be interdependent in a complicated way, which would make
the estimation of the sum over py,,...,ps very hard. So it is important to choose large

I, ..., I} for which at the same time the dependence of X1, ..., X} is simple enough to allow
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the estimation of the sum over py,,...,pr,. What we will do is to construct large Iy, ..., I}
such that if we fix the primes p; fori € {1,..., B}\{I1,..., I}, then (5.3.4) becomes a linear
system of inequalities with respect to logpy,,...,logps, that corresponds to a triangular
matrix and hence is easily solvable (actually, we have to be slightly more careful, but this is
the main idea).

Define Iy, ..., Iy and my,...,my with I; € (Y,,,, AZ,,,) U{0} for all i € {1,...,k} induc-

tively, as follows. Let

Il = maX{Z/{(YlAZl, .. ,YkAZk) U {0}}

If I; =0, set my = 1. Else, define m; to be the unique element of {1,...,k} such that
L € Y,,,AZ,,,. Assume we have defined I3, ..., I; and my,...,m; forsomei € {1,..., k—1}

with I, € (Y,,,AZ,,,) U{0} for r =1,...,i. Then set

iy =max{U({Y;AZ;:j € {1,....k}\ {ma,...,m;}}) U{0}}.

If Iy1 = 0, set myyr = min({1,...,k} \ {m1,...,m;}). Otherwise, define m;;1 to be the

unique element of {1,... k} \ {my,...,m;} such that I, € Y,,,,, , ANZ

mip1 D2, This completes

the inductive step. Let {1 < 7 <k : I; > 0} = {j1,...,Jn}, where j; < --- < j,, and
put # = {m;, : 1 <r < n}. Notice that, by construction, we have that {my,...,my} =
{1,...k}and I; #I; for 1 <r <s<n.

Fix the primes p; for ¢ € Z = {1,...,B} \ {l;,,...,1;,}. By the definition of the
indices Iy, ..., Iy, for every r € {1,...,n} the prime number p;, appears in (5.3.4) for
Jj = mj,, but does not appear in (5.3.4) for j € {m;,,,,...,m;,}. So (5.3.4),j € £, isa
linear system with respect to logpy, ,...,logpy; corresponding to a triangular matrix (up
to a permutation of its rows) and a straightforward manipulation of its rows implies that

pr, € [Ve, 4*V,], 1 < r < n, for some numbers V, that depend only on the primes p; for i € 7
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and the k-tuples Y and Z, which we have fixed. Therefore

1 - 1
2 <1l ¥ - <k71_[110g(maX{Vr,€Eb( ) <<ka e,

I I
p[jl ..... PI;, le Jn r= 1Vr<PI <4kV,. p

(5.3.1),(5.3.2) b, eDE,,(I :

by Lemma 5.1.1, and consequently

2 ﬁﬁfh “'>ZH—<1ong"H S,

..... r=1 pi, 1€L ’LEI Jj=1
(531)(532) (5.3.1)

by (5.1.2). Inserting the above estimate into (5.3.3) we deduce that

> W@ o, b(llogp (Z [, & ) N (5.3.5)

acA(b) Ye,/’k Zeol j=1

Next, observe that the definition of Iy, ..., I} implies that
(L, BINU{Y i, D, <7 <k}) =0 (1<j<k)

or, equivalently,

k k

U(Zmrm(fjﬂB]) :U<Ymrﬂ(lj=B]) (1§]§k)7

r=y r=j

by Remark 5.3.1. Hence for fixed Y € 2§, I,,..., I, € {0,1,..., B} and m = (my, ..., my)
with {my,...,mp} = {1,...,k}, the number of admissible k-tuples Z € 2% is at most

ME(Y 3 I), where Yo, = (Yon,, - - -, Y, ), which together with (5.3.5) yields that

Wlil(a) 10%0 : —Ep(I;)
> T <k b,Z(ZZMBYmJH )

acA(b) Yepl 0<hi,..Iy)<B m
So, by the inequality inequality (a + b)F~1 < a1 + b1 for @ > 0 and b > 0, which holds
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precisely when 1 < P < 2, we find that

> Ml o it 3 TTer e 3 (i)

acA(b) m 0<Iy,..,[,<B j=1 Yek

Finally, note that

> (ME(YmeD)™ = 3 (Mp(D)

Yezk Yezh
for every m = (myq,...,my) with {my,...,my} = {1,...,k}, which completes the proof of

the lemma. O

5.4 The method of low moments: combinatorial
arguments

In this section we show the second step towards the proof of Lemma 5.2.2.

Lemma 5.4.1. Let P € (1,400) and 0 < Iy,..., I, < B so that I,q) < -+ < Iy for some

permutation o € Si. Then

k

kv 7\ Pl B J—1+(k—j+2)"\ 0w
ng(MB<Y7I)) S(k+1) H( j—f-(k‘—j—i—l)P ) '

Proof. First, we calculate My (Y; I) for fixed Y = (Y1,...,Yy) € 2%, Set [y =0, I, = B,
0(0)=0,0(k+1)=k+1and

Ni = Loy, Lo+n] N{L,..., B} (0<j<k).
In addition, put

YE):{L"'?B}\CJYJ
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as well as
Yij=NiNY; and y;;=1[Yi;| (0<i<k 0<j<k). (5.4.1)
A k-tuple (Z4,...,Z;) € 2% is counted by ME(Y'; I) if, and only if|
k k
U@ na.B)=JEn,B) 1<j<h). (5.4.2)
r=j r=j
If we set

20:{1,...,3}\Ozj

and

Zi,=NinZ;, (0<i<k 0<j<k),

then (5.4.2) is equivalent to

k k

U Z.= | Ve (0<i<k 0<j<i). (5.4.3)
For every i € {0,1,...,k} let x;(0),...,xi(i+1) be the sequence o(0),0(1),...,0(i),0(k+1)

ordered increasingly. In particular, x;(0) = ¢(0) = 0 and x;(i +1) = o(k+1) = k+ 1. With

this notation (5.4.3) becomes

k k
U iy = U }/;,r (O<Z<k70<j<2)7
r=x:(J) r=x:(J)
which is equivalent to
xi(i+1)— xi(j+1)—
U Zz-,rz U YM (0<i<hk 0<j<i).
r=xi(j) r=x:(j)

For each ¢ € {0,1,...,k} let M; denote the total number of mutually disjoint (k + 1)-tuples
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(Z’i»()’ Zi,la N Zz,k) such that

xi(j+1)—1 xi(j+1)—1
r=xi(J) r=x:(J)
Then
k
My(Y;I) = [ [ M. (5.4.4)
=0

Moreover, it is immediate from the definition of M; that

M, = TG0 +1) = xad))Psont o,
=0

Set v; ;41 = Xi(j +1) — xi(y) for j € {0,...,i}. Note that v;1 + -+ +v;;11 = k+ 1 and that
V41 > 1forall j €{0,...,i}. Let
xi(j+1)—1

W= |J Yie wiy= Wiyl (0<5<0). (5.4.5)

r=xi(j)

With this notation we have that

M; = Hw” (0<i<k). (5.4.6)

23—1-1

Inserting (5.4.6) into (5.4.4) we deduce that

k1

MY 1) = [T (5.4.7)

,j+1
i=0 j=0

Therefore

T:= Y (MLY;I)) H > H vi),

Yezk 1=0 Yj,0,---,Y5,x J=0

where the sets Y;; are defined by (5.4.1). Fix i € {0,1,...,k}. Given Wip,...,W;;, a
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partition of N, the number of Y, ..., Y, satisfying (5.4.5) is

% %

[T06G + 1) = xaG)™esh =TT wi,.
=0 §=0
Hence

w,'_ Pw;; _ (, P P [N
Z H ,J+1 v Z HUUH " (Ui,l+"’+vi,i+l) o

Y;Oz 71/1k] 0 107 7W7,'L.7 0

by the multinomial theorem. So

k k
_ P PN _ P P \ain—ToG
T = H(Um o) = H(Uz’,l o V) T,
=0 i=0

Finally, recall that v;; +---+v;;41 =k +1laswell asv; j;; > 1forall 0 < j <¢ <k, and

note that
i+1 i+1
max{zxf:zxj —k+1,2z;,>1(1 §j§i+1)} =i+ (k+1-9)" (0<i<k),
: s

since the maximum of a convex function in a simplex occurs at its vertices. Hence we

conclude that

o it —1+ —+2) oli
N S =

which completes the proof of the lemma. O

5.5 The method of low moments: completion of the
proof

In this section we prove Lemmas 5.2.2 and 5.2.3.
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Proof of Lemma 5.2.2. Lemmas 5.3.1 and 5.4.1 imply that

k
v Winle) (R DIsp)” 5~ e m =k (k—m+ 123)P>zm
acA(b) a b1' . bH' 0<l <ol <Bm=1 m + (]f —m+ 1)
((k+1)logp)” 3

P*1>*(J’1+"'+jk)
by!l---by!

<k (/)

0=jo<j1<--<jp<H

d Y ()

m=1B;__ <Im<Bj,

((k+1)log p)? Z ﬁ(ppl)jm<m— 1+ (k:—m—l—?)P)Bjm

ST by m+(k—m+ )P

0<j1 << jp<H m=1

k+1

since the sequence {m — 1+ (k—m+2)"} ! is strictly decreasing. This proves the desired

result. O
Before we prove Lemma 5.2.3, we establish the following crucial inequality.

Lemma 5.5.1. Let k > 2 and P defined by (5.2.7). Then

i—l+(k—it2)" _ (1)

2<i<k).
E+1 2sish)

Proof. Set
@) = )" 4o — @+ 1)~k 2 € [0,k]

It suffices to show that f(z) > 0 for 1 <ax < k—1. Observe that f(0) = f(k) = 0. Moreover,

since 1 < P <2, f”(x) >0 for all x. Hence f” is strictly increasing. Note that
f'(k) = (P —1)*(log p)*(k +1)" = P(P = 1)(k + 1)"* <0,
by our choice of P. Hence f”(x) < 0 for x € (0, k), that is f is a concave function and thus

it is positive for z € (0, k). O
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Proof of Lemma 5.2.5. Set

i—1+(k—i+2)F

= 1<i<k+1).
v kE+1 (lsisk+1)

Then Lemma 5.2.2 implies that

Wk (a k+1)logp)? Bj;
> ( )<<k ( b;_?'bif) > H ( ) . (5.5.1)

a Vi1
acA(b) 0<j1 < <jp<H i=1

Moreover,

Vit1 Vit1

k k . k
. B, B; . ; B; .
| | Vi 7i Y1\ i | | Vi \7t VI g | | Ji—Ji—1
( ; ) = (1/ ) ( ; % 2 Yi ’
i=1 2 i=2 2 1=2

by our assumption that b € B. Thus, setting vy = j; and r; = j; — 7,1 for i = 2,. .. k yields

k \B;. B, k
[T (25) ™ < oy ot () g T i
i1 Vi1 Vo o
1\ Br1 1 i T
- (,72> ( (P— 1)k> H( P-1) k H—l)
=2
k , .
_ By, —r1 < i > ‘
= P —
g (pP—1)h=it1
since p"~Y* =y and v, /vy = v. Consequently,
k , N H
P— 1 —Ju T ] ‘ B’r' -
S I s S e T ()
0<j1 <-<jp<H i=1 i+l 0<r;<H —2 r1=0

1<i<k

(5.5.2)
since v; < (pP 1)l fori =2,... k by Lemma 5.5.1. Inserting (5.5.2) into (5.5.1) completes

the proof of the lemma. O]
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5.6 The lower bound in Theorem 2.6: completion of
the proof

In this section we complete the proof of the lower bound in Theorem 2.6, by showing
that (5.2.1) holds. We may assume that y; is large enough. Let N = N(k) be a suffi-

ciently large integer to be chosen later and set

log log y

H:{
log p

—LkJ and B—=H—N+1.

Consider the set B* of vectors (by,...,by) € (NU{0}) such that b; = 0 for i < N,

B, <i—N+1 (Ngz'gH) (5.6.1)
and
H —N
V+V
mem 6.2
Z - 1—1/1/ (5.6.2)

Lemma 5.1.1 and the definition of H imply that log (5 < pf*1* <logy;. Hence
J A®) c {a eN: P¥(a) <y, p*(a) =1} (5.6.3)
beB*

Fix for the moment b € B* C B. By Lemma 5.2.3 and relation (5.6.2) we have that

H

> Wil o, (G los )" (HZVBm m) o, (W DIogp)” )

l... l... |
iy by! by!---bpy!
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Also, if N is large enough, then Lemma 5.1.1 and relation (5.6.1) imply that
> )
Po,

Py, eD;
seeiPb; 1}

Tk+1( B
S (k+1) H a(x
acA(b) PlED p2€D
P27P1 po; #{p1
(k+1)5 3 b\
> 1T (logp - —’)
bn!- - by! =N b (5.6.5)
((k +1)log p)? ﬁ(1— j—N+1 )ﬂ'N“
el 2y (log p) exp{p/=F+=1}

byl

1((k+1)logp)
byl by!
1

[\]

>>k ((k+1)logp) Z
bezpr N

Combining Lemma 5.2.1 with relations (5.6.3), (5.6.4) and (5.6.5) we deduce that
LED(q .
bl - - by!

ey e e

Pt(a)<y1 beB* ac A(b)
p?(a)=1
For i € {1, B} set g; = by_14; and let G; = g1 + -+ - + ¢;- Then
N
1
+ /v (5.6.7)

and
by (5.6.1) and (5.6.2), respectively. With this notation we have that
1
, 5.6.8
— (565)

geg

L) ((k+1)logp)? > ol

Pt(a)<t
-+ gp = B and such that (5.6.6)
- <wxp<B

2 (a)=1
where G is the set of vectors g € (NU {0})? with g; + -
and (5.6.7) hold. For g € G let R(g) be the set of € R such that 0 < z; <
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and exactly g; of the numbers z; lie in [i — 1,4) for each i. Then

> % =) Vol(R(g)) = Vol(Ugeg R(g))- (5.6.9)
geg g 9B geg
We claim that
Vol(UgegR(g)) = B” Vol(Y(N)), (5.6.10)

where Yg(N) is the set of € = (&1,...,&p) € Sp(1, B) that satisfy
B
> P <N (5.6.11)

J=1

(see Section 3.3 for the definition of Sp(1, B)). Indeed, let £ € Yg(N) with {5 < 1 and set
x;j =B Let g = {1 <j<B:i—1<u; <i}| for1 <i< B. It suffices to show that

g=1(91,...,98) € G. First, we have that

which yields (5.6.6). Finally, inequality (5.6.11) implies

N . 1 B . 1 B 3 . B B . j
1_1/V—1_1/1,Z” —1—1/1/Z” | Z,’/—‘_ Z_,” 2
j=1 i=1 Jrxj€li—1,) =1 m=i Jrxj€li—1,9)
B 1 B
_ Z ym Z I > Z l/—m+Gm > + Z V—m—i—Gm,
m=1 Jiz;<m 1<m<B v—1 m=1

Gm>0

that is (5.6.7) holds. To conclude, we have showed that g € G, which proves that inequality
(5.6.10) does hold. To bound Vol(Yg(N)) from below set

B
&)= Y0
j=1
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and observe that
Vol(Yg(N)) = Vol(SB(l B)) — Vol({E € Sp(1,B): f(&) > vV}

- (2B+ 1B VN / f€ (5.6.12)

Sg(1,B)
N

1 v 1
:@B+UH_O<@+UJZMB+M’

by Lemmas 3.3.1 and 3.3.4, provided that N is large enough. The above inequality along
with relations (5.6.8), (5.6.9) and (5.6.10) yields that

L% D(a) _ ((k+1)Blogp)”
2. o B

pt (a)<y1
#?(a)=1

Applying Stirling’s formula to the right hand side of the above inequality completes the

proof of (5.2.1) and thus of the lower bound in Theorem 2.6.
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Chapter 6

Work in progress

In general, our knowledge on H**+Y)(z, y, 2y) is rather incomplete, especially when the sizes
of logyy, ..., logy, are vastly different. We have made partial progress towards understand-
ing the behavior of H*+Y)(z, y,2y) beyond the range of validity of Theorem 2.5: in [Kou] we
determine the order of magnitude of H**V(z, vy, 2y) uniformly for all choices of v, ...,y
when k& < 5. In order to state our result we need to introduce some notation. Given numbers

3=yo <y < <y, set

Also, let i; be the smallest element of {1,...,k} such that

L, =max{¥ 1 <i<k}

and define © = O(k;y) by

(1+$1+"'+-$i11)(1+-’3ﬂz‘1+1+"'+$k)}

e :min{l, X7

Lastly, define ¢ = ¥(k;y) implicitly, via the equation
k k
S (k—i+2)"log(k —i+2).%4 =Y (k—i+1).%.

i=1 i=1

Theorem 6.1. Letk € {2,3,4,5}, x > 3 and 3 < yy < -+ < yg such that 28y, - - -y, < x/yp.
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Then
k

HF (2,4, 2y) _ ©) H( log v; >—Q((k—i+2)19)
i=1

x ~ Vloglog s log y;_1
Moreover, we show that if £ > 6, then Theorem 6.1 does not hold in general, namely

there are choices of y1, ...,y for which the size of H*+Y(z, 4y, 2y) is smaller than the one

predicted by Theorem 6.1.
The ultimate goal of this project would be to determine the order of H**+Y(z, y, 2y)

uniformly in x and y for all £ > 6, or at least understand the case k = 6.
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