Chemical Engineering Thermodynamics

A Brief Review

"Rate" vs. "State"

- Figure 1. Thermodynamics tells us how things "end up" (state) but not how (or how fast) they "get there" (rate)
- Limitations on getting to equilibrium:
 - Transport (mixing): diffusion, convection
 - example: why doesn't more of the ocean evaporate to make higher humidity in the deserts? (heat transfer alters dew point locally, atmospheric mixing limitations, etc.)
 - Kinetics (reaction): the rate at which reactions occur are too slow to get to equilibrium
 - ▶ example: chemical equilibrium says trees (and our bodies) should become CO₂ and H₂O (react with air)
 - ▶ example: chemical equilibrium says diamonds should be graphite (or CO₂ if in air)
- Sometimes, mixing & reaction are sufficiently fast that equilibrium assumptions are "good enough."
 - if we assume that we can use thermodynamics to obtain the state of the system, we avoid a lot of complexity.
 - ▶ do it if it is "good enough!"
 - Most unit operations (e.g. distillation) assume phase equilibrium, ignoring transport limitations.
 - good enough if things are mixed well and have reasonable residence/contact times.

Some Terminology...

"Partial Molar" property
$$\bar{\mathcal{M}}_i \equiv \left(\frac{\partial N\mathcal{M}}{\partial N_i}\right)_{T,P,N_i}$$

change in $\mathcal M$ due to adding a differential amount of species i. For ideal mixtures, $\bar{\mathcal{M}}_i = \mathcal{M}_i$

Gibbs-Duhem
$$\left(\frac{\partial \mathcal{M}}{\partial P}\right)_{T,y}dP + \left(\frac{\partial \mathcal{M}}{\partial T}\right)_{P,y} - \sum_{i=1}^C y_i \, d\bar{\mathcal{M}}_i = 0$$
 Note at constant T and P , $\sum_{i=1}^C y_i \, d\bar{\mathcal{M}}_i = 0$

 \mathcal{M} - arbitrary thermodynamic property (per mole)

 N_i - moles of species i

 y_i - mole fraction of species i(liquid or gas)

$$\mathcal{M} = \sum_{i=1}^{C} y_i \bar{\mathcal{M}}_i$$

Note at constant
$$T$$
 and P , $\sum_{i=1}^{C} y_i d\bar{\mathcal{M}}_i = 0$

"Residual" property
$$\mathcal{M}^R \equiv \mathcal{M} - \mathcal{M}^{ig}$$

how much \mathcal{M} deviates from the ideal gas (\mathcal{M}^{ig}) behavior.

$$\mathcal{M}^{ig} = \sum_{i=1}^{C} y_i \mathcal{M}_i^{ig}$$

"Excess" property
$$\mathcal{M}^E \equiv \mathcal{M} - \mathcal{M}^{ideal}$$

how much \mathcal{M} deviates from the ideal solution behavior.

$$\mathcal{M}^{ideal} = \sum_{i=1}^C y_i \mathcal{M}_i$$

SHR §2.2

Phase Equilibrium

Gibbs Energy

(thermodynamic property)

$$G = G(T, P, N_1, N_2, \dots, N_C)$$

Phase Equilibrium is achieved when G is minimized.

$$dG = -S dT + V dP + \sum_{i=1}^{C} \left(\frac{\partial G}{\partial N_i} \right)_{P,T,N_j} dN_i$$

Chemical Potential

(thermodynamic property, partial molar Gibbs energy)

$$\mu_i \equiv \left(\frac{\partial G}{\partial N_i}\right)_{P,T,N_i}$$

For multiple phases in a closed system,

$$G_{\text{system}} = \sum_{p=1}^{N} G^{(p)}$$

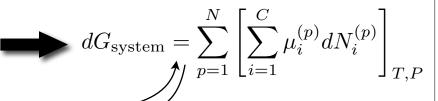
$$dG_{\text{system}} = \sum_{n=1}^{N} dG^{(p)}$$

In phase equilibrium,

$$T^{(1)} = T^{(2)} = \cdots = T^{(N)}$$

 $P^{(1)} = P^{(2)} = \cdots = P^{(N)}$

$$dG_{ ext{system}} = \sum_{i=1}^{N} dG^{(p)}$$
 $T^{(1)} = T^{(2)} = \dots = T^{(N)}$ $T^{(1)} = T^{(2)} = \dots = T^{(N)}$



For a nonreacting system, moles are conserved.

$$\sum_{p=1}^{N} dN_i^{(p)} = 0 \quad \blacksquare$$

$$\sum_{p=1}^{N} dN_i^{(p)} = 0 \implies dN_i^{(1)} = -\sum_{p=2}^{N} dN_i^{(p)}$$

$$dG_{\text{system}} = \sum_{p=2}^{N} \left[\sum_{i=1}^{C} \left(\mu_i^{(p)} - \mu_i^{(1)} \right) dN_i^{(p)} \right]_{T,P}$$

To minimize G, dG=0. But each term in the summation for dG is independent, so each must be zero.

$$\mu_i^{(p)} = \mu_i^{(1)} = \mu_i^{(2)} = \dots = \mu_i^{(N)}$$

For phase equilibrium, the chemical potential of any species is equal in all phases.

Problem:

$$\mu_i \to -\infty$$
as $P \to 0$

Solution: Partial Fugacity

$$\bar{f}_i = C \exp\left(\frac{\mu_i'}{RT}\right)$$

C is a temperaturedependent constant.

For phase equilibrium, the fugacity of any species is equal in all phases.

$$\bar{f}_i^{(p)} = \bar{f}_i^{(1)} = \bar{f}_i^{(2)} = \dots = \bar{f}_i^{(N)}$$

Chemical Potential, Fugacity, Activity

Thermodynamic Quantity	Definition	Description	Limiting case of ideal gas and ideal solution
Chemical potential	$\mu_i \equiv \left(\frac{\partial G}{\partial N_i}\right)_{T,P,N_j}$	Partial molar free energy, \overline{g}_i	$\mu_i = \overline{g}_i$
Partial fugacity	$\overline{f}_i = C \exp\left(\frac{\mu_i}{(RT)}\right)$	Thermodynamic pressure	$\overline{f}_{iV} = y_i P$
Fugacity coefficient of a	$\phi_i \equiv f_i/P$	Deviation of fugacity due to	$\phi_{iV} = 1.0$
pure species	$ar{f}_i = f_i$ for a pure	species pressure	$\phi_{iL} = P_i^s/P$
Fugacity coefficient of a	$\overline{\phi}_{iV} \equiv \overline{f}_{iV}/(y_i P)$	Deviations to fugacity due	$\overline{\phi}_{iV} = 1.0$
species in a mixture	$\overline{\phi}_{iL} \equiv \overline{f}_{iL}/(x_i P)$	to pressure and composition	$\overline{\phi}_{iL} = P_i^s/P$
Activity	$a_i \equiv \overline{f}_i/f_i^o$	Relative thermodynamic	$a_{iV} = y_i$
		pressure	$a_{iL} = x_i$
Activity coefficient	$\gamma_{iV}\equiv a_{iV}/y_i$	Deviation of fugacity due to	$\gamma_{iV}=1.0$
	$\gamma_{iL}\equiv a_{iL}/x_i$	composition.	$\gamma_{iL}=1.0$

For phase equilibrium, the **chemical potential**, **fugacity**, **activity** (but not activity coefficient or fugacity coefficient) of any species is equal in all phases.

$$P_i^s$$
 vapor pressure of species i .

 y_i vapor mole fraction of species i.

 \mathcal{X}_i liquid mole fraction of species i.

$$\bar{f}_{iL} = \bar{\phi}_{iL} x_i P$$

$$\bar{f}_{iV} = \bar{\phi}_{iV} y_i P$$

$$= \gamma_{iL} x_i f_{iL}^o \qquad = \gamma_{iV} y_i f_{iV}^o$$

$$\bar{f}_{iL} = \bar{f}_{iV} \Rightarrow \frac{y_i}{x_i} = \frac{\bar{\phi}_{iL}}{\bar{\phi}_{iV}}$$

we will use this on the next slide...

Phase Equilibrium - K-Values

Phase equilibrium ratio:

How much species i is enriched in the vapor

$$K_i \equiv \frac{y_i}{x_i}$$

Relative volatility:
$$\alpha_{ij} \equiv \frac{K_i}{K_j} = \frac{y_i/x_i}{y_j/x_j}$$

Note: liquid-liquid case equivalent is the "relative selectivity" β_{ii} .

$$\beta_{ij} \equiv \frac{K_{D_i}}{K_{D_j}}$$

Note: liquid-liquid case equivalent is the "partition coefficient"

$$K_{D_i} \equiv x_i^{(1)}/x_i^{(2)}$$

$$\begin{array}{c} \alpha_{ij} = 0 \\ \hline \text{easy} \end{array}$$

$$\alpha_{ij} = 1$$
 impossibl

Solve for
$$y_i/x_i$$
 from $K_i \equiv \frac{y_i}{x_i} = \frac{\bar{\phi}_{iL}}{\bar{\phi}_{iV}}$ the previous slide:

$$f_i \equiv rac{g_i}{x_i} = rac{arphi_{iL}}{ar{\phi}_{iV}} = rac{\gamma_{iL} f_{iL}^o}{\phi_{iV}} = rac{\gamma_{iL} \phi_{iL}}{\phi_{iV}}$$

Concept: determine K_i from thermodynamic models. This gives us y_i/x_i .

m	
e 2	
abl	
12	
至	
S	

	Equation	Application	
Rigorous forms			
Equation of state	$K_i = ar{\phi}_{iL}/ar{\phi}_{iV}$	Benedict-Webb-Rubin-Starling, SRK, PR	
		equations of state, Hydrocarbon and light gas	
		mixtures from cryogenic to critical	
Activity coefficient	$K_i = \gamma_{iL}\phi_{iL}/ar{\phi}_{iV}$	All mixtures from ambient to near critical.	
Approximate forms			
Raoult's law (ideal)	$K_i = P_i^s/P$	Ideal solutions at low pressures	
Modified Raoult's law	$K_i = \gamma_{iL} P_i^s / P$	Nonideal liquid solutions near ambient pressure	
Poynting correction	$K_i = \gamma_{iL}\phi_{iV}^s \left(rac{P_i^s}{P} ight) \exp\left(rac{1}{RT} ight) \int_{P_i^s}^P v_{iL} dP$	Nonideal liquid solutions at moderate pressures	
		and below T_c	
Henry's law	$K_i = \frac{H_i}{P}$	Low to moderate pressures for species above T_c	

Mix & match for different species in a mixture

Example: Raoult's Law (Ideal Mixtures)

Raoult's law:
$$K_i = \frac{P_i^s}{P}$$

Need: P_{is} - saturation pressure for each species

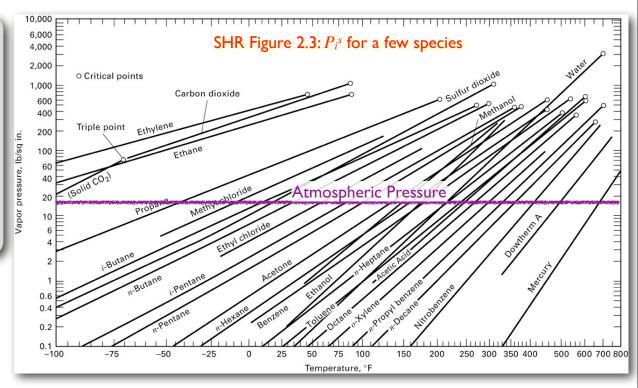
Antoine equation:
$$\log_{10} P_i^s = A - \frac{B}{C+T}$$

Derivation of Raoult's Law:

partial pressure is the
$$p_i = x_i P_i^s$$
 weighted saturation pressure (ideal liquid mixture)

$$p_i = y_i P$$
 Dalton's law (ideal mixture of gases)

$$\begin{array}{ll} \text{combine} & \frac{y_i}{to \text{ find}} & \frac{y_i}{x_i} = \frac{P_i^s}{P} = K_i \end{array}$$



Modified Raoult's law: $K_i = \gamma_i \frac{P_i^s}{P}$

For Raoult's law, K_i is independent of composition, but varies exponentially with temperature!

Liquid-Phase Activity Coefficients

Wilson 2-parameter model for mixtures:

$$\ln \gamma_k = 1 - \ln \left(\sum_{j=1}^C x_j \Lambda_{kj} \right) - \sum_{i=1}^C \left(\frac{x_i \Lambda_{ik}}{\sum_{j=1}^C x_j \Lambda_{ij}} \right)$$

For a binary system:

$$\ln \gamma_1 = -\ln (x_1 + x_2 \Lambda_{12}) + x_2 \left(\frac{\Lambda_{12}}{x_1 + x_2 \Lambda_{12}} - \frac{\Lambda_{21}}{x_2 + x_1 \Lambda_{21}} \right)$$

$$\ln \gamma_2 = -\ln (x_2 + x_1 \Lambda_{21}) - x_1 \left(\frac{\Lambda_{12}}{x_1 + x_2 \Lambda_{12}} + \frac{\Lambda_{21}}{x_2 + x_1 \Lambda_{21}} \right)$$

 $\Lambda_{ij} = \frac{v_{jL}}{v_{iL}} \exp\left[-\frac{(\lambda_{ij} - \lambda_{ii})}{RT}\right]$ $\lambda_{ij} = \lambda_{ji} \qquad \Lambda_{ij} \neq \Lambda_{ji}$ $\lambda_{ii} = \lambda_{jj} \qquad \Lambda_{ii} = 1$

- λ_{ij} are functions of temperature but not composition
- $\Lambda_{ij} = \Lambda_{ij} = 1$ implies ideal solution $(\gamma_i = \gamma_j = 1)$

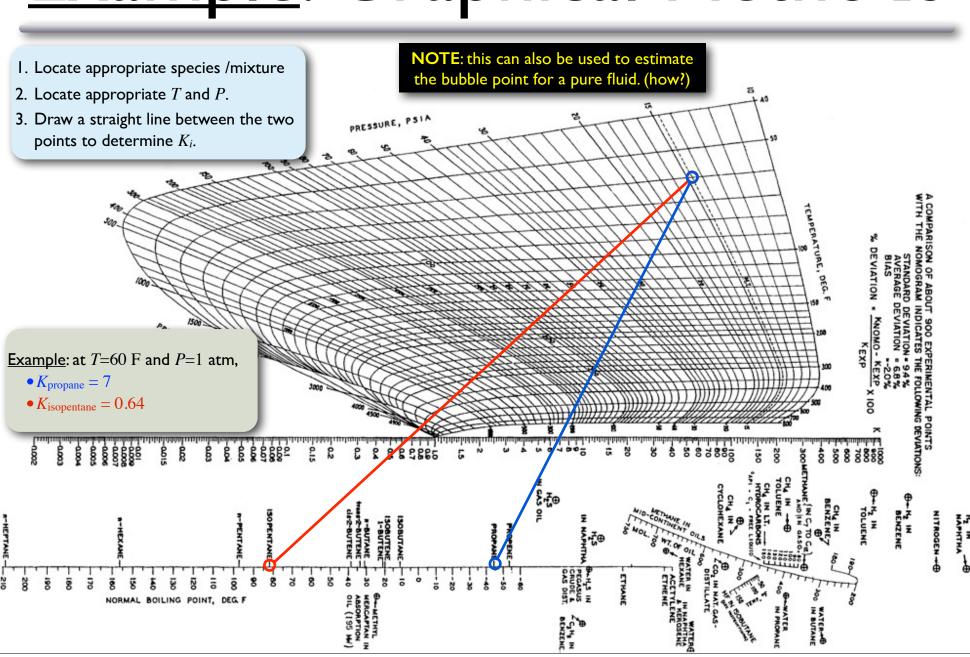
Parameters λ_{ij} or Λ_{ij} are typically determined from experimental data via regression.

Alternatively, if we can obtain γ at infinite dilution,

$$\ln \gamma_1^\infty = 1 - \ln \Lambda_{12} - \Lambda_{21}$$
 2 equations, $\ln \gamma_2^\infty = 1 - \ln \Lambda_{21} - \Lambda_{12}$ 2 unknowns

Less accurate than regression.

Example: Graphical Methods



DePriester Chart

-140

-130

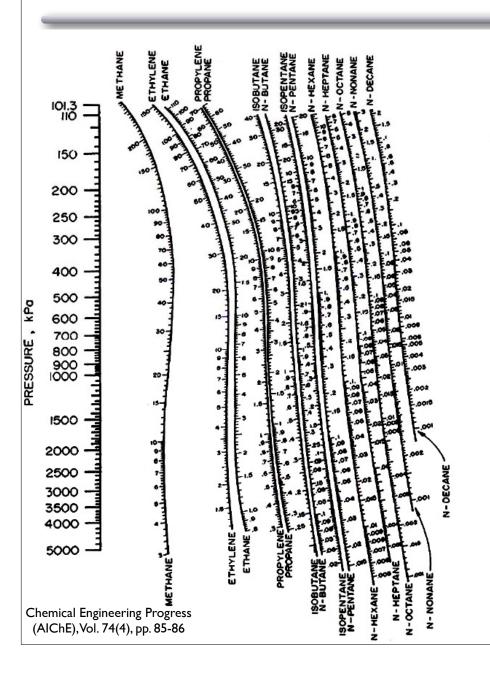
120

-100

-90

30

20



Empirical Correlation:

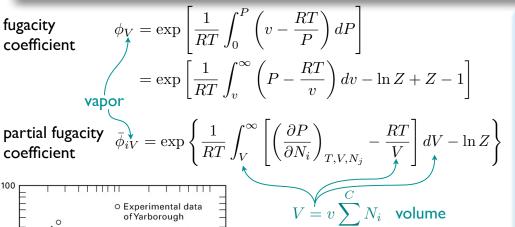
$$\ln K = \frac{a_1}{T^2} + \frac{a_2}{T} + a_3 + b_1 \ln p + \frac{b_2}{p^2} + \frac{b_3}{p}$$

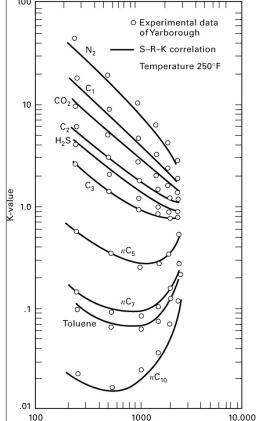
NOTE: T in ${}^{\circ}R$ and p in psia!

Compound	а	а	а	b	b	b
Methane	-292,860	0	8.2445	-0.8951	59.8465	0
Ethylene	-600,076.875	0	7.90595	-0.84677	42.94594	0
Ethane	-687,248.25	0	7.90694	-0.886	49.02654	0
Propylene	-923,484.6875	0	7.71725	-0.87871	47.67624	0
Propane	-970,688.5625	0	7.15059	-0.76984	0	6.90224
Isobutane	-1,166,846	0	7.72668	-0.92213	0	0
n-Butane	-1,280,557	0	7.94986	-0.96455	0	0
Isopentane	-1,481,583	0	7.58071	-0.93159	0	0
n-Pentane	-1,524,891	0	7.33129	-0.89143	0	0
n-Hexane	-1,778,901	0	6.96783	-0.84634	0	0

M. L. McWilliams, Chemical Engineering, 80(25), 1973 p. 138.

Thermo from Equations of State





Pressure, psia

$$K_i \equiv rac{y_i}{x_i} = rac{ar{\phi}_{iL}}{ar{\phi}_{iV}}$$

$b_i = 0.08664 \frac{RT_{i,c}}{P_{i,c}}$ $a_i = 0.42748 \frac{R^2 T_{i,c}^{2.5}}{P_{i,c} T^{0.5}}$

For Redlich-Kwong (and S-R-K) EOS:

$$Z^{3} - Z^{2} + (A - B - B^{2}) Z - AB = 0$$

$$P = \frac{RT}{v - b} - \frac{a}{v^{2} + bv} \quad A = \frac{aP}{R^{2}T^{2}} \quad B = \frac{bP}{RT}$$

mixing rules:
$$a=\sum_{i=1}^{C}\left[\sum_{j=1}^{C}y_{i}y_{j}\sqrt{a_{i}a_{j}}\right]$$
 $b=\sum_{i=1}^{C}y_{i}b_{i}$

$$h = \sum_{i=1}^{C} (y_i h_i^o) + RT \left[Z - 1 - \frac{3A}{2B} \ln \left(1 + \frac{B}{Z} \right) \right]$$

$$\phi = \exp\left[Z - 1 - \ln\left(Z - B\right) - \frac{A}{B}\ln\left(1 + \frac{B}{Z}\right)\right]$$

$$\bar{\phi}_i = \exp\left[(Z - 1) \frac{B_i}{B} - \ln(Z - B) - \frac{A}{B} \left(2\sqrt{\frac{A_i}{A}} - \frac{B_i}{B} \right) \ln\left(1 + \frac{B}{Z}\right) \right]$$

Note that these can be used in vapor or liquid phases, by using appropriate values for Z, and using appropriate phase mole fractions (y_i for vapor, x_i for liquid) (because cubic EOS can approximate two-phase behavior.)

$$\begin{split} & \frac{\text{S-R-K (much better):}}{b_i = 0.08664 \frac{RT_{i,c}}{P_{i,c}}} \\ & a_i = 0.42748 \frac{R^2 T_{i,c}^2 \left[1 + f_\omega \left(1 - T_{i,r}^{0.5}\right)\right]^2}{P_{i,c}} \\ & f_\omega = 0.48 + 1.574\omega - 0.176\omega^2 \quad \omega \text{ - acentric factor} \end{split}$$

Example: K-Values from SRK

Given a mixture of propane (x=0.0166, y=0.3656) and benzene (x=0.9834, y=0.6344) at 300 K & I atm, find the K-value using SRK.

Redlich-Kwong (&SRK) parameters

	Propane	Benzene
T	369.8	562.2
P	4250	4890
ω	0.149	0.209

Requires x_i , y_i . This is a problem since we typically need K_i to determine this ratio!

This is typically used within another solver to determine x_i , y_i (more soon).

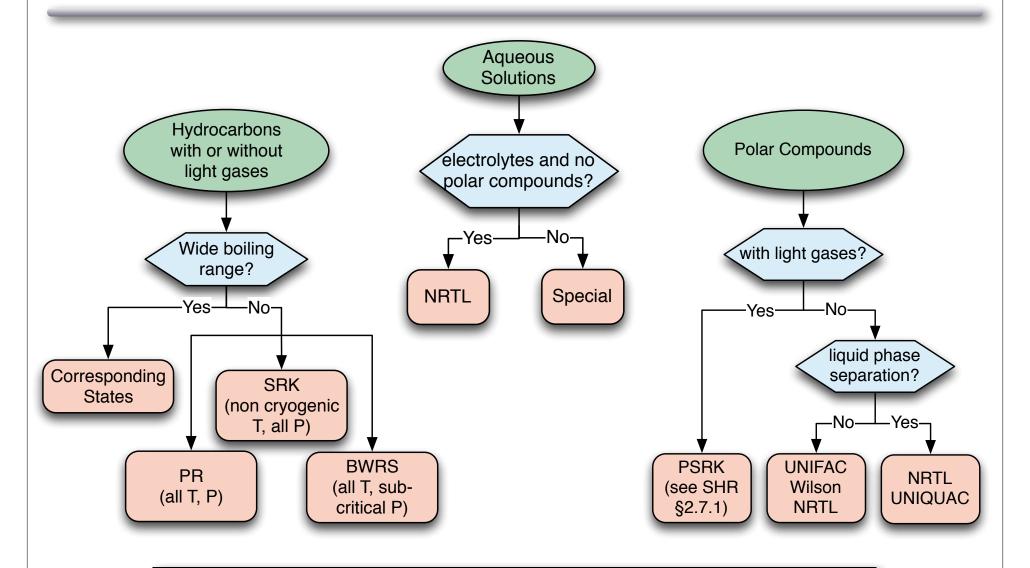
$$Z^{3} - Z^{2} + (A - B - B^{2}) Z - AB = 0$$

$$\bar{\phi}_{i} = \exp\left[\left(Z - 1\right) \frac{B_{i}}{B} - \ln\left(Z - B\right) - \frac{A}{B} \left(2\sqrt{\frac{A_{i}}{A}} - \frac{B_{i}}{B}\right) \ln\left(1 + \frac{B}{Z}\right)\right]$$

$$K_{i} \equiv \frac{y_{i}}{x_{i}} = \frac{\bar{\phi}_{iL}}{\bar{\phi}_{iV}}$$

- 1. Calculate a_i , b_i and then A_i , B_i (tedious, but not difficult).
- 2. Calculate A and B using mixing rules.
- 3. Calculate Z in the vapor and liquid phases. This requires us to solve the cubic equation and pick the appropriate roots.
- 4. Calculate partial fugacity coefficient in vapor and liquid.
- 5. Calculate K_i .

Heuristics for Property Model Selection



See also http://www.che.utah.edu/~sutherland/PropertySelection.pdf for a much more extensive property selection flowchart from Professor Ring.