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Introduction. The purpose of this work is to give some new applications
of Hecke zeta functions with Gr&ssencharaktere, hereafter known as Hecke
characters, to rational primes with special properties. These properties typi-
cally restrict the primes to a set of zero density in the set of all primes.

As an example, consider for § > 0 the set of primes

Ps = |p=al+b? where |a,| < p'/*~?)
and its counting function for x = 0
n5(X) = # \p < x; pEPy).

As an approximation to the famous problem of showing that n*+1 is
prime infinitely often Kubilius (see [M2]) obtained the following theorem for
some d, > 0.

Tueorem (Kubilius). For 0 <6 < é,

CXI —-d

ms(x) ~ log x

for ¢ > 0 some absolute constant.

The largest value of 8, which has been obtained is given in [M1] as d,
= 12/37, while under an appropriate density hypothesis we would have &,
= 1/2, which is almost as good as what would follow under the appropriate
GRH (see [K3)).

The applications are to two types of generalizations of this problem to
higher dimensional cases. The most obvious is to replace x?+y? by an
arbitrary norm form over a number field k of degree n:

fX)=f(x, ..., ) =N(Y aix;)N(a)~!
i=1

defined with respect to an ideal a with integral basis |o;] of a special type.
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Let for 6 > 0 and some m such that 1 <m<n and «, >0
P ={p=f(x); |x| < p""? for i # m)

and nf(x)= # \p< x: pe#).
We prove in Section 3.2

THEOREM 3.2. For 0< 6 <(3n)7 1,

1=(n—1)é
f B =
) (x) =
2 (%) log x
where ~ means < and > with implied constants depending only on k.

A more interesting generalization is to consider primes p for which |a,|
< p'/27% where a,, is the “error term” in the number of solutions mod p of a
general diagonal curve

X: ax*+by’ =c,

where «, f,a,b,ceZ\|0} [with «a=>f2>2] and. p=1(modm), where
m = lem(a, B). For g depending only on X let

P = P*=p=1(m); p fabc and |a,| < 2gp'/*~?)
and n;%(x) be the ‘associated counting function. In Section 3.3 we prove

THOEOREM 3.3. For 0 <4 <(3¢(m))™', ¢ = Euler’s function

1= 6(m)/ 2
¥ (x) >
log x
with the constant depending only on X.

In the special case y?> = x'+d for [ >3 prime and d # 0 we obtain in
Section 4 a sharp upper bound for the counting function ms;(x) of

p=1(): pkd,la| >(-1)p"*(1—-A4p~?)]
for A > 0 constant and suitable é > 0. Explicitly, we have
TueoreM 34. For 0<6 <1/(31-3)

Jcl =dl-1)2

ms(x) =
5(x) e s
where the constants depend only on | and d.

The first two sections contain the analytic results concerning Hecke
zeta-functions which are needed to prove these theorems.
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1. The large sieve for Grissencharaktere

1.0. Conventions and statement of results. Let k/Q be a number field of
degree n=r,+2r,, q an integral ideal with N(q)=g¢q, and yA" =4 an
arbitrary Hecke character mod g Here meZ" ! and

p L=t b O L ol

where {1;! forms a basis for the torsion-free Hecke characters mod q (see
[H2]) and y is a narrow class character mod q.

Unless otherwise indicated, implicit constants depend only on k and the
expression x ~ y means |x| < Ay and x = By for constants A, B > 0 which
depend only on k. A, B, and C denote such constants and their values may
differ in different expressions. Ideals in k will be denoted by german letters, p
being always a prime ideal and a integral. As immediate corollaries to the
main result of this chapter, which is Theorem 1.3, we state the following
mean value theorems for Dirichlet series over k twisted by Hecke characters.

TueoreMm 1.1. Let c¢(a)€C be arbitrary for N(a) < N and write

llel> = ¥ le(a)l*.

N(o)EN

Then
T
N Y ¥ [|Y cor™(@N(a*dt <(N+qT")log"qT]lcl|?,

zmodag |m|<T —T N(a)=N

T
@ Y ¥* Y (| Y cl@yi"(9N(o[>dt <(N+Q*T")log" QT ||cl|*.

g<Q ymoda |m| €T —T NEN
Here and throughout * restricts to primitive j.

It is unfortunate that the range of |m| and |t| must be the same and it
seems reasonable to conjecture that if the range for [m| is |m| < M then the
left-hand side of (i) should be

< Y (N(@+gM" ' T)lc(a)?
N =N
while that of (ii) should be
< Y (N(@+Q*M" ' T)lc(a)?
NN *
so that they reduce to Gallagher’'s [G2] results when k= Q.



206 W. Duke

1.1. Duality. In this section the interpretation of large sieve inequalities
as norm estimates for Dirichlet operators as given by [F-V] will be general-
ized to number fields.

A generalized Hecke character

(LLI) w(a) = x(a) A" (a) N (o)
is a multiplicative function from ideals in k to C of the above form. Set
(1.1.2) loll = "/ (el + 1 +|m])

where ¢ = N(q) and let Q be a finite set of generalized Hecke characters with
cardinality |Q|. We shall parameterize 2 by the “width”

(1.1.3) D=D(Q) = max ||& o,

wy.waeld
A standard ideal counting argument shows

LemMa 1.1.1. If the t's belonging to each weQ are spaced by some
positive absolute constant, then |Q| < D*".

Q is said to be 8-well spaced if for each w;, w,€Q, w, # w,, where
=xA"NY =12
we have either
@i |t;—ty =6 or

(114 s

(i) x1%24"" "2 is nonprincipal.

For a set .4 of integral ideals define the Dirichlet operator
7 =% (N, Q): (N~ L2(Q)
by
(1.1.5) Z2(c)= Y c(ow(a).
a4

The reason this operator is interesting is that an estimate for its norm |||
gives the mean value inequality

(1.1.6) YIY c(ao(a?* <1211 lcl
wef) ae N
for arbitrary c.
It is fundamental that || 7*|| = ||2||, where Z* is the adjoint of 2. In its
equivalent dual form (1.1.6) is called a large sieve inequality
(1.17) YT cl@ (o) < (1*12 el
aed wel

again for arbitrary c.
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The fact that ||Z|| =||Z*|| allows us to bound ||Z|| in terms of a
smoothed product of w’s.

Lemma 1.12. Let @: R* = R" satisfy
(i) @(N(q)=1 for ae.d4,

(ii) @ is rapidly decreasing.
Then, letting ®(w,, w,) ——-Zq:(N(a))cElw,(a) we have

|)1* < max | (w, w)|+|2| max |P(w,;, ®,)l.

wef wy #wy

Proof.

Y E @ (a? < L o(N(a)[E clw d(df?
A a n

= Y X o(N(d)d, () clw,)cl(w,)

nxN a

<lelPmax( Y, [¥ o (N () o, w, (a))

w1ef! wye a
so

17*|1> = | ZI1* < max ¥ |# (@, w,)|

< max|®(w, o) +|Q| max |®(w;, @;)|. =

w wy Fwg

. To apply this lemma we first need to establish a uniform estimate for
Hecke zeta functions in a left half-plane.

1.2. A uniform estimate for Hecke zeta functions. In this section we
establish a uniform estimate for a Hecke zeta function in the half-plane
Res €8y <0. Let

(s, 1™ =L(s, ) = X x (9 A" (Q N(9)~*

for Res > 1. { has an Euler product
(s A =TIA=x@A"ENE™) ™,

pka

by unique factorization of a into prime ideals p, also for Res > 1. If x is not
prmuuve then it is induced by x*, a primitive character mod f, where | g and
x*A™ is a primitive Hecke character mod f. (see [H2]). Further,

(1.2.1) Lis, 4™ = L(s, x* AMT(1-x* A" (N (®) )
pla

—{(s, 22 Y u(@x* A"(N (o)

ala
(ai}=1
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and ((s, x* A™) satisfies the functional equation (write A* = y* ™)
(1.2.2) {(s, A®) =w(A*) A" 2G(1—s,m. DL(1—s, 1*¥
where |w| =1, A2 =|d|N(fn~"2 "%, d the discriminant of k.
Here jy is the sign character induced by y* and

r((s+a,—ib)) ™52 TI(s+3}laj—ib,)
1 T((1=s+a,+ib)) y=r,+1 (1 =s+3%|a,|+ib,)
where ay, ..., a,lelo, 1} are determined by y while a, .4, ... .
byyiiiia b,.l+,1 €R, these values depending only on m. We will wrltc

r

(123) G(s,m, ) = ]‘[

eZ,

Il = max |ela,l/2+ib,|
q=1,...,ry +r3

where

0, q=l,...,r1,
g, =
4 l, q=r‘1+1,...,rl+r2.

It is easily seen that ||4|| ~ |m| where ~ means < and ». In other words, the
parametrization by m reflects truly the gamma factor parameters up to
constants depending only on k.

Tueorem 1.2. For Res < d, <0
IC (s, 2A™)| €30 (AG" " (14 [s] + )y 4122,

Proof. After reduction to primitive y* the proof requires, in view of the
functional equation (1.2.2), estimates for three types of I" function quotients.

LemMma 1.21. For ¢ =Res >0

ris) sp-2
FE0-9) s..zH (1+0(1/ls))).

Proof. By the reflection principle we may assume t > 0. Now

rs)
F(f{l —s))
By Stirling’s formula (with s =6 +it, 6 =rcosf, and t =rsinf):

log I'(s) = (s—%) logs—s+4log2n+0(1/r)

n~ Y221 "scos (3 7s) I (s).

S0
log|I'(s)] = (6 —%)logr—(6t+0)+4log2n+0(1/r),
which implies that

[F(s) = /2rre~ 12~ @*9(14.0(1/r)
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$0
|m= 22 "5 cos (3ns) I (s)|

— 21;3-,|eiw2)¢a+m-(sr+c)+e-iwl‘)tﬂﬁﬂ-tﬂﬁﬂl[ re- 1-’2(] +0(1/r))
= Als/21°” 2 (1+0(1/ls]))

and we are done if 4 <2.

Now
A< e O+M+al | o-1@-nDt+al < | 4 o~ UO-H2)+a)

since t, 0,52 0.
Finally,
(0-m/)t+0 =(0—n/2)rsinf+rcosf >0 for 0 <6 <m/2.

Lemma 1.2.2. For 6 =Res =0
r@a+s)| _
rge-s)

Proof. Same as above using

r@a+s) _
F(;(Z-—s))
LemMma 1.23. For 621, a=20

I'(s+a)
rl—s+a)

Proof. First note that by Stirling’s formula, for ¢€[0, 1]

< 2s/21°" Y2 (1+ 0 (1/)s])).

(1.2.4) =112 1 =sgin (ns) I'(s).

<|s+a? 1.

_T(otatic)
I'(c+a+e+ic)

01792 5 4 atic| ™t

where 0, = arg(o+a+ic), 8, = arg(c+a+e+ic) so that (6,—6,)c >0 and
hence above is

(1.2.5) < |o+a+ic|™"

Next, the functional equation I'(s+1) = sI'(s) gives

(1.26) |M(o+a+e+ic)
=|o+a+e—1+ic|...lo+a+e—[20]+ic| [l (6 +a+e—[20] +ic).

Choose & €(0, 1] such that [26]—& = 20—1 and thus c+a+e—[20] =1—0¢
+a. Also, |l—o+a| <|o+a+e—1| for ¢ >1 so by (1.2.5) and (1.2.6)

- L +.|m]r‘(l—a+a+ic)
<|o+a+ic " tlo+a+ic F—ota—io

=|o+a+ic*~*.

I'(e+a+ic)
r(l—o+a—ic)
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Proof of Theorem 1.2. Returning to (1.2.1) we have for ¢ <, <0:
(s, xA™ < IS (s, x* A 3 N(@) 77 <, [C (s, 2* 4™ N (a/f)! /270
(n.;)‘il
and by the functional equation (1.2.2)
(1.27) (s, xA™) <MUJdN(f}N[cVD:r"’2_2'2|”2“’IG(I —s, m, 3.
By Lemmas 1.2.1 and 1.2.2,

7 |[F@A—s+a,—iby) s—:b /2= o
ﬂ r@ma +;b,)) “ < (B(1+Isl +11411) :
By Lemma 1.2.3

ry+ra l‘r(l_s-‘-%laql_qu}l rytra
< -0+ —it—ijb |t~ 20
AL e agemy | <AL o dlad =it

< (14| +1A1)2" 2,

Thus,
IG(1—s, m, P < 271277 (1 4|5+ [|Afpyr1/2=
so by (1.2.7)
12(5, A s [AN () (270) ™ "1M272 (1 -+ |s] + ||AJ™ /2~
<[Ag""(1+|s| +[ImI)]™*/>~. u

Remark. For , <0 <1-4,, 0 >, = —1/2 Phragmén—Lindeldf gives
(see [R], p. 204)
(1.28) IC(s, AN <5 [Ag"/"(1+[s[ +1|2|)]"1/2= /2= 00/2,

13. Estimates for ||Z|. Here we will prove the main result of this

chapter, Theorem 1.3, using the analytic method of Haldsz and Montgomery.
We now choose the smoothing function ¢ to be

(13.1) on(x) = S[e~ W23 _ o=

where L = log D and 5 is chosen so that (i) in Lemma 1.1.2 is satisfied for A~

with norms contained in [N, 2N]. This restriction is assumed to hold
throughout this section but it is easily removed for the proof of Theorem 1.1
by a standard trick. With this ¢, recall the notation of Lemma 1.1.2:

(13.2) D (0, W) =) on(N(0)d; w,(0)

= SE I, A3(0) N(a)iuz—ul [e"”“”zﬁ’l“'_e-tNtn}INJ-"L]_
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Lemma 1.3.1. For ¢y above if we suppose N = (ADlog?D)" then for
;.. = 11 ;.2

Y2 (0) N () @y (N ()| €&(2) Ne™ V3P4 N1Z2 D=2
where

£(i) = {1, A pr-'incipaf,

10, otherwise.

Proof. By a standard Mellin pair

| C(w+it, A)I‘( LH)[@)‘;—_&]M

Rew=2

5
(133) LHS= P

Note that I'(w/3L+1)[-] above is analytic for Rew > —3L and so the
integrand has a simple pole at w = 1—it if and only if 4 is principal, with
residue in that case

& Ne~1M3L,
Hence
LHS <é&(i) Ne MB3L4
where
5
I =— wit, f}f’( )[{2N)“ N“’]dw\
2rnL Rcu-=j- 2Lg(

which, by Theorem 1.2 and Stirling’s formula is

&N"2LLY [ (AQM™ (14| = 2L+i(u+1)| +|ml))¥/2+ 20 o= W23 1y /31 =716 dy

-

< N—ZL L 1 (Aql,fﬂ(l +|I] +|m|))nl112+21.l

o

X [ |l 2L[MH3+ 20 g~ AW (/3 1)~ ¢ du
0

< N—ZL L 1 (Aq”"(l +]{|+ Iml} L)n{l;2+2u [ (u/3L}n(U2+zL)—‘uﬁe—u,stdu
0

= N'u(Aq”"(l +[t] +|m|) L)"‘”““"F(%R+ZL—%)
< N~ ZL(Aq”"(l-i-lﬂHml} LZ)n(UZd-ZL)e-ZnL.
By assumption this is

< N~ ZLNU2+2Le-2nL NUZ D~ Zn u
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Lemma 1.3.2. If Q is 6nlog? D-well spaced and N > (ADlog?D)" then
lZII> < N.

Proof. In the notation of Lemma 1.1.2 |®(w, w)] < N and |®(w,, w,)|
<e()ND™?"+ NY2D~?" by Lemma 1.3.1. Lemmas 1.1.1 and 1.1.2 give

17]> <« N+|Q(ND~2"+NY2D"2" <« N+D*(ND 2"+ N'*D 2" < N. u
We are now ready to prove the main result of this section.
TueoreMm 1.3. If Q is 6nlog® D-well spaced then

|Z|I*> < N+D"log®"*2D.

Proof. By the previous lemma we may assume
(1.3.4) N <(ADlog?D)".
Let p,, ..., p; be a finite set of distinct prime ideals ordered by norm. Write

R =(ADlog?D)"(2nlog D)N*;

by (1.34) R > 2nlogD. p; may be chosen to satisfy

() R < N(py) < BR, B sufficiently large,

(1) sf[1 N(p;) > D" s < 2nlog D/log N (p,).

Since for each w some p; cannot divide w's modulus q as D" > N(q), we
have

YEc@o@P< ¥ Y[ cdomal> < Y 124, DIl
@ a i=1n & i=1
We may apply Lemma 1.3.2 to each Z(p; .#) by (i) to deduce that

(1.3.5) lZiI* < N Z N (p;) < NsN(p,).

i=1
By the Prime Ideal Theorem the numoer of prime ideals with norms
between _N(plj and CN(p,) is = N(p,)/log N (p,) for C sufficiently large.
By (i) N(p,) = 2nlog D so by (ii) s < N(p,)/log N(p,) and

(1.3.6) N(py) < CN(p,).
Hence by (1.3.5), (1.3.6), (i) and (ii)
|12]|> < D"log®"*2D. a

2. Zero density of Hecke zeta-functions

2.0. Statement of result. In this chapter an average zero density estimate
of_ Ingham’s type for Hecke zeta-functions is given. This, when combined
with the strong zero-free region of Urbialis [U] for general Hecke zeta-
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functions, yields nontrivial unconditional results about primes with “non-
linear” constraints, as discussed in the introduction. Montgomery (see [M3])
obtained the g-versions of the following theorem in the case k = @, and our
treatment is based on the simplification of Montgomery’s method by Bom-
bieri [B]. From now on unless indicated otherwise implied constants depend
on ¢ and k. Also, we sometimes write 4 = yA™

Theorem 2.1. For A depending only on k and ymod q fixed

3n
Y No, T, y2™) < Tz-"'"logA T
Im|<T
where N (o, T, yA™) is the number of zeros of {(s, yA™) in Res > o, [Ims|< T
for a€[0, 1].

The constant 3n/(2—a) is poor near ¢ = | and by applying the Halasz
method directly Montgomery and others have improved this constant in case
k = Q. Such methods may be extended in general to give better constants in
our applications than those stated. The essential ingredients are a good
average bound for the fourth power moment of (s, 4) on its critical line and
the large sieve. It is remarked that a sharp mean square estimate as given in
[S1] gives the density results with the constant replaced by 4/(3 —20).

We note that for {,(s), the Dedekind zeta-function, Heath-Brown [HI]
has given the following density estimate.

Tueorem (Heath-Brown). For any & > 0 there is a ¢ = c(g, k) such that
N(o, T, 1) €, T"*91 -9 ]og‘ T
for n=3. For n=2, (n+¢) must be replaced by 8/3.

Since the sum over m is over > T"~! terms we see that Theorem 2.1 is
an improvement on “average” of this result, of the same type as Ingham’s
result for {(s). It is also possible to keep the estimate uniform in g and to
sum over ¢ < Q so as to generalize Montgomery’s results for Dirichlet L-
functions. Without summing over the m-aspect this has been done by Hinz
[H4].

Another class of density estimates first gotten by Fogels [F1] and
Gallagher [G2] (see also [B]) for Dirichlet L-functions have no log factors
but large multiples of (1—o0). Used in conjunction with the Deuring-
Heilbronn phenomenon they may be used to prove Linnik’s theorem and
other g-effective results. The presence of the log factor also necessitates the
use of a strong zero-free region of Vinogradov’s type. Since this has been
obtained for Hecke zeta functions, Theorem 2.1 gives reasonably small
constants in the applications.

2.1. The fourth power moment. In order to apply a mean value inequality
to {%(s, 2) we must approximate it by a finite Dirichlet series. This is done
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conveniently on Res = 1/2 by a smoothed approximate functional equation
in conjunction with Theorem 1.1 to yield the following average estimate.

THeEOREM 2.2. For yx and q fixed

T
Y [ KG+it, xA")*dt < T"log" T.

Iml €T -T
The assumption that |m| is in the same range as [t is essential for the
method used. For k imaginary quadratic Sarnak [S3] has shown how to
replace the right-hand side when g = (1) by the sharp estimate T?log* T. It is
interesting that the same assumption about the range of |m| is crucial for his

argument as well, which uses Eisenstein series over k.

Proof. By a standard trick we may reduce the problem to proving

2BT

Y JK*<Tlog"T

|ml=T BT
for B a large constant.
By the approximate functional equation given in [H5] as Theorem 2 we
have for BT <t<2BTand Im<T

{2G+it, %) = Yd()2* (9 N (92" ¢(N (a/x)

+0(Yd(a)A* () N (92 ¢ (N (a)/y)+0(1)

where A* = y* A™ is primitive mod f.
Here ¢ and ¢’ have compact support (see [H4]) and

xy = (dI N (7) (Itl/2m)").

Thus ¢2(1/2+it, A*) may be approximated by two finite Dirichlet series
with ~ T" terms in the given range with bounded error. Using the usual
techniques to deal with the dependence on ¢ the result follows by Theorem
1.1(i) and (1.2.1). =

2.2. Proof of Theorem 2.1. For x real and large let

M,=M.s,m, )= 3 p@xA"(aN(a~*
Nio)<x
and set
22.1) b@= Y wu).
Mo <x
Here u is the Mdbius function on ideals a Then

ML=1+ Y b(9xi"(aN(a~*

N(a)>x
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for Res > 1. Next introduce another large parameter y and smooth to get

(222) e+ Y b(agA"(a) N() e MW

Nio)>x

l W
=l WM (s, m, 0+== | Lls+w, YM (s+w, m, )T (w)y*dw
27 pew=1/2-0
where o €(1/2, 1] and 4 is not trivial. If A is trivial a term must be added but
its effect is negligible due to the exponential decay of I'(2—s) as |Ims| — 0.
Now suppose ¢ = f+iy is a zero of {(s, ) with >0, [y < T. From
(2.2.2)

(2.23)

y+(log T2
] Z b(a)xﬁ.”'(a}N(a}“‘e’”‘“”” +yli2-e [ [EG+it, A IM]dt > 1.
N >x y=(log T)2

There are three possibilities for o:
i ] Z b{a}xﬁ.”'{a}N(a}‘“e‘Nlnﬂr' > 1.

Nin) >x
2. For some t, such that |t,—7| <log?T
IM.\'(%-'-Hga x|m)l > xd'_ ”2'

?‘Hang
3. | IC ({H-l'l, Alde > (y/x)°~ 12

e Iolzz'r

Let N;, i =1, 2, 3, be the number of zeros ¢ satisfying conditions 1, 2, 3
resp. We choose a subset R; of zeros from each class for which the associated
set of generalized Hecke characters

Q = lw(d) = xA"(QN(a)™": |m| < T, 0€R;j
is > log? T well spaced and is such that
(224) N; €|R|log®T, i=1,2,3.
R,: By Cauchy’s inequality,
IR;| <Y [Yb(a)w () N(a)~#* <log TY. Y [Y b(do(ad N(o~*?
M

k o U

where (I} cover [x,y] by <logT intervals of the form [Ny, 2N,]. By
Theorem 1.3 and partial summation

(2.2.9) IR,| <log TY. (Il + T"log" T)Y |b(a)* N(a)~%°

<Y (I]+ T"log T) [~ log* T<(y* 2+ T"x'"2)log"T.
k 4
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Choosing y = x¥2, x = T"2~9 we get

3n . _
(2.2.6) IR,| <« T2=¢"" " log" T,

R;: As for R,, in a similar manner we get

3n
(2.27) IRy <(x+T"log? Tx' "2 < T2=4"" “logT.
Ry: Write I, =(y—1log? T, y+1log?T) so
[Rs|x**~' < ¥ ([IEG+it, Aldt)* <log* TY. [|¢]*dt

eeR3 I, R3'l,

by Holder’s inequality, so

2T
R3] < x'~%7log" T Z _l' ILG+it, A)*dt <x'"2°T"log" T
Iml €T 2T
by Theorem 2.2, and this is
in
(2.2.8) <TZ-olog"T

To complete the proof, we have
3 In
Y N <Y Rlog®T <T7=3" "“log" T
i=1

by (2.2.4), (6), (7), and (8). Finally,

> X N(a,txmsim
i=1

x ImlsT

since every zero g satisfies 1, 2, or 3. =

3. Applications to primes and character sums

3.0. Previous results. In order to place the applications given in this
chapter in perspective, I will give a brief survey of some motivating results
given (in some cases only implicitly) previously.

Let F(x) be an integral polynomial of degree n which is square-free.
Consider the character sum

where ( <) is the Legendre symbol and p is an odd prime not dividing any
coefficient of F. The Weil estimate is

n—1
3 J p'?, where [x] = greatest integer contained in x.

la,| < 2[
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For n > 2, little else is known in general concerning the distribution of |a,|
as p —o0.

If we suppose that y?> = F(x) is an elliptic curve E with complex
multiplication by the integers in k = Q(\/c_i) where d = d, is the discriminant,
then much more can be said. By the theory of complex multiplication k must
have class number one in this case [G3].

Let 4 = discriminant of E and for any ¢ > 0 define the set of primes

d
PE = {p,{'d; (—) =1 and |a,| < 2p”1“’}
p
and its counting function
mi(x) = # \p< x; pes;.

By combining the results of Deuring [D3] and Kubilius [K3] we can
infer that for some 8, > 0 the following holds.

THeOREM. For 0 <6 <&y, as x >
1-5

X
(3.0.1) 5 (x) ~ “ogx

where 0 < ¢ < 1/2 depends only on E.

The best value of 8, known to this author is 8, = 12/37 given in [M1].
If we assume the density hypothesis for (s, yA™) over k in the form

Z N(ﬂ, T; xlm} Q(M”-l T]Z(l—ﬂ'}logd MT
Im| <M

then (3.0.1) holds with 6, = 1/2, and this is essentially as strong as what can
be shown assuming the GRH for these functions. As mentioned in the
introduction this' was pointed out by Kubilius [K3] in case

F(x) = x(x2+ 1)!

where he showed that under the appropriate GRH there are infinitely many
p = 1(mod4) such that
(3.0.2) la,| <logp.

" This is in view of Jacobsthal’s evaluation of a, as the unique solution of

4p = a2+b2, a,= —1(mod4).

That for certain other F(x) the appropriate version of the above
theorem holds is implicit in the uniform PNT for certain biquadratic
extensions given in [G1]. Examples of such F(x) are

F(x)=x8+1, x1241, x(x'?+1)

as provided in [B-E], and for these such a theorem holds for o = 1/11. '
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For F(x) = x*+1 Sarnak [S2] has given the analogue of Kubilius’
result (3.0.2) for infinitely many p = 1(modS5) under the appropriate GRH.
However, his methods do not seem to extend due to an uncertainty principle
in the harmonic analysis involved.

The “Problems” referred to in the title are to establish results of the type
discussed above in higher dimensional situations unconditionally. In the next
section a general form of the theorem above is formulated as Theorem 3.1.
Then in Section 2 this is applied to counting primes represented by norm
forms with all but one coordinate small. Section 3 contains the main result,
which is a (weak) generalization of the above theorem to arbitrary diagonal
curves. Finally, in Section 4, more detailed information is given concerning
the distribution of p with |a,| large in case F(x) = x'+d where | > 3 is prime
and d # 0.

3.1. A uniform estimate for certain primes. First we estimate a smoothed
von Mangoldt sum which picks out prime ideals in a given narrow ideal
class which satisfy a condition in some Grossencharakter variables which is
uniform in a certain range. This results in Theorem 3.1, upon which our
applications are based.

Suppose k/Q is a number field of degree n and choose H = |4, ..., 4,
a fixed set of independent Hecke characters mod q so e<n—1. If e=1
suppose 4, has infinite order.

As usual, unless otherwise specified, all implied constants depend only
on q Define for a prime ideal p fq

Ou(p) =0(p)ER/Z°=T°

by
(3.1.1) iip)=e
Let I be a narrow ideal class mod q and write g = N(q). For 0T,

A >0 fixed consider the following set of rational primes parametrized by ¢
=0:

(3.12)  #5 = !p= N(p) for some pel with [|0(p)—0,| < Ap~°)

2mif e
k]

i=1,...,e

where ||-|| is Euclidean distance on T¢ and its counting function m;(x)
= 1l (x).

After Hecke we have m,(x) ~ ¢x/log x for some ¢ > 0. In this section we
will prove

Theorem 3.1. For q fixed and 0 < 6 < 1/3n we have
1—ed
{313) ;r[é{x} By
log x

where =~ means < and >.
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Proof. We will show only that LHS > RHS by smoothing under, the
other following similarly by smoothing over.

Let (1) = 0 be an even smooth function supported in [ —4log 2, log 2]
and such that ¢ =0 and ¢(0) = 1. Set

gx(f)=g(r)=rp(10g d )

x/2
so that suppg < [x, 2x]. Also, let f: R® =R be smooth and supported in
B(0, 1/2) with f(0) =1 and as usual write for ¢ >0, 0 eR*

(3.14) f(0) =&™° f(6/e),

and consider f, as defined on T* for ¢ small.
Now define the smoothed von Mangoldt sum for x >0

(3.1.5) Y, (x,e) =Y A()g.(N () (0(a)—0)

ael

where A(a) is the generalized von Mangoldt function defined by

_ flogN(p), a=yp"
Al = {0, otherwise.

¥, (x, ¢) may be used in the standard way to underestimate 7,(x) by taking
(3.1.6) exx?
and summing over 2~ *x and summing by parts. Specifically we need
(3.1.7) ¥, (x, &) > x
subject to (3.1.6) since |f)| <&7° < x*.

If G(s) = Tg(t)r“i—r then G is entire of exponential type and the fol-
lowing cstimalg holds.

Lemma 3.1.1. For any leZ”

2x)°(1+1s)~!, =0,

G+l < o1 418)~, o <0.

Proof. G(s) = (\.”5 x)* 1 @(t)e* dt and the result follows by integrating

by parts [ times using the smoothness and compact support of ¢.
Thus, by Mellin inversion, for any [ >0

2+iT
g(N(a)= i ) G(s)N(a) *ds+O(N(a) " 2x*T™)

2—iT

2 — Acta Arithmetica LI13
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S0
(3.1.8)
Y (x, e = Z,A(a}—“_fTG{s}N(a) Sds f,(0(a)— 0o)+0,(x* T 'e™°).
We may expand f; in its Fourier series
£(0(0) = Z £ (em) A% (a),
sO

£(0(9=00) =¥ fem)e” "7 25 (),
where AT = A7'...Ar¢. Cutting this series off at |m| = T, the above large
parameter, we have for any leZ”

3.19)  f(0(d—00)= Y flemye > 0™ i (a)+0,((T) ')

Im[<T
by the rapid decay of f. This shows we should take
(3.1.10) eT=T°

for some g, > 0. If this holds then also T = x* for some a > 0 so by (3.1.8)
and (3.19)

2+iT

¥, (X, ¢) = ﬁzx(n):xa"'(nm(a)i [ GEN(*ds

La-ir

x Y fleme ~astengo(l),
Iml<T
where y runs over all narrow class characters mod q and B~ '=2hd(q), h
= class number of k, and r <r,.
Thus subject to (3.1.10)

- ey 1 2T {'(s, xAR)

= = ~2maG G (s) 2 ail

(3.1.11) ¥, (x, a)—ﬁ§xu) .milﬂf{sml = WC(s, )
+o(1).

Lemma 3.1.2. Notation as above and assuming (3.1.10)

W, (x,0) =2 x+0F ¥ T x*4+0(qT9
é(q 2 ImI<T imel ST

where ¢, > 0 is absolute and o runs over nontrivial zeros of {(s, xAR). For this
lemma implied constants depend only on k.

Proof. The proof proceeds along classical lines. First replace the
vertical contours in (3.1.11) by horizontal ones which go from 2+iT to
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—o0+iT and thus pick up contributions from the zeros (and pole at s = 1 if
xAR is trivial) of (s, xA). Of course the T must be chosen so as to avoid as
much as possible any ordinate of a zero for |m| < T. As in the classical case
when n = 1 we base the estimates for zeros of { (s, xA%) and for |{'/{| needed
in this proof on the following lemma. Here A™ runs over all torsion-free
Hecke characters mod g.

LeEMMA 3.1.3. Let o run over nontrivial (Re o > 0) zeros of { (s, xA™). Then
for teR

§l+{t—lm@}2
Proof. This is proved as in [D1], p. 103 for the case of Dirichlet L-
functions after first reducing to primitive x*, since {(s, xA™) and (s, x*A™)
have the same nontrivial zeros by (1.2.1). The difference is that Stirling’s
formula must be applied to the more general factor. m
As a consequence, there are <,qT¢logqT zeros p for |m| € T such that

[Ime—T| <1

<, logq(|t| +|m| +2).

1

so there is a gap of length » ¢~ ' T °log™'qT, provided T is large.
Also, for —1<e<2and m <T

{'(o+iT, xA™) ; _

e — (c+iT—0) '+ 0(logqT)

{(a+iT, xA™) |:me-Zn<l ¢ 84

if T avoids any zero ordinate. By varying T by a bounded amount we can be
assured that on the contours from 2+iT to —14iT (we must avoid trivial
zeros as well)

(3.1.12)

{' (s, xA™) 2 2 1ng2
—— = | €q*T*log*qT.
x Iml<T (s, xA™) 1 i
By the rapid decay of G(o+iT) in T we see that
2 £iT
(3.1.13) Y ¥ fem [ 1GE (s, HL(s, Alds = o(1),
x Im|ST -1 4T

writing A = yA™. Also, since (s—1){(s, yA™) is entire of order 1, by Lemma
3.1.1 the same holds for the contours from —o0o+iT to —1+iT.

1
Clearly the first term in Lemma 3.1.2 comes from the pole of CC((S )) at
s=1.
408 NP e ®
Since res 6. =1,f(0)=1,and G(1) = \/ix | @(t)e'dt, we see that
a=1 -—m

¢, >0 is absolute.



222 W. Duke

The second term bounds the contribution of the nontrivial zeros since
—_ o0
IG ()] =1(\"2x)¢ | @()e*dt| < xRee
-

To complete the proof it is enough by (3.1.10) to show that the trivial
zeros contribute O (g logg-¢~°). These occur at the poles of the gamma factor
and include zeros contributed by nonprimitive ¥ on Res = 0. The first kind
are at negative integral or even integral translates of a fixed set of complex
numbers with nonpositive real parts, for each yAj. By Lemma 3.1.1 and
(1.2.1)

Y Y Ifeml ¥ 1G@) <logqy, Y |f(em)] <qlogq-z™*.

x ImlsT @rivial z Iml=T
IImgl €T

Finally, we note that the effect of varying T by a bounded amount is to
change the sum in the second term of the lemma over ¢ by O(¢qTlogqT)
terms and each term is O(T 'x) for all />0 by Lemma 3.1.1 so the

restriction on T may be removed. This completes the proof of Lemma
312. =

To complete the proof of Theorem 3.1 we need to apply the zero density
estimate Theorem 2.1 as well as the following strong zero-free region for
{(s, yA™) which follows in a standard way from Lemma 5 in [U].

Tueorem (Urbialis). (s, xA™) has no zeros for |Ims| < T and
(3.1.14) Res > 1—cylog T

if Iml < T, T=2 and ¢, > 5/7. Here ¢; >0 depends only on k, g, and c,.
Lemma 3.1.4. Suppose
Y N(o, T, yA™) <« T*' "7 log" T.
Iml<T

If T=x%and 0 <5 <(bn)™" then
Y. xf=o(x),

|m| =T |[Img|=T

where o runs over nontrivial zeros of {(s, xA™).

Proof.

Y x¢ < - [x7da(Y N(a, T, 1)

1
= Y N, T, zA"+[logx-x") Ndo
Iml<T 0
1=n(T)
< T"log T+xlogx J- [T x"']'""do
0
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where 5(T) = ¢;log” 2 T by (3.1.14). The result now follows easily using the
condition & < (bn)~!

Combining Lemmas 3.1.2 and 3.1.4 and Theorem 1.2, to give b =3 we

see that (3.1.7) follows, and this completes the proof of Theorem 3.1.

3.2. Primes represented by norm forms. A general application of The-
orem 3.1 is to use it to study primes represented by norms forms for ideals
which have all but one coordinate relatively small.

Notation as before, consider for an ideal a the integral form in x
= (Xpy eeey Xp)

f(x)=N(@ "' N(L & x)

where ! is an integral basis which satisfies the additional properties

0!“] mll)

(1) /d_,‘N{u) with \f__- = +1,

{HI alﬂ]

where d, = discriminant of k, and

(ii) For some m such that 1 <m<n, a, >0, ie. a, is totally positive.

Say two such forms are narrowly equivalent if their associated ideals are
in the same narrow ideal class I, and denote by f; the class of all such forms.

In case k = Q(\/d,) it is classical (see e.g. [H3] and [D1]) that f; is a
class of properly equivalent primitive binary quadratic forms over Z with
discriminant d, = b*—4ac if

f(x, y) = ax*+bxy+cy*, (a,b,0)=1.

Furthermore, every such class of forms (which are positive if d <0) is given
by exactly one f;.
For m fixed let

A =\p=f(x), x=(xy, ..., X,) €EZ" such that
Ix;)] < p'"? for i # mj,

for any 6 = 0

if &> 1/n then of course # = @ while if 5 = 1/n then #§ consists of
primes represemcd by finitely many polynomials of degree n. Determining
whether or not in this case 44 has infinitely many elements is a difficult and
unsolved problem since it includes, in case k= Q(\/_H ), the existence
question of infinitely many primes p of the form n 241

If 5 =0 it follows from the work of Hecke [H2] that 2§ has positive
density in the set of all primes. That is, for x>0 let 7 (x)
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= #{p<x;peP). Then

X
nd(x) ~ e for some 0 <c < 1.

As a more positive attack on the above problem we can now derive
from Theorem 3.1

TheorREM 3.2. For 0<6 <(3n)~!
nf(x) = XIIO(; xm
where the implied constants depend only on k.
Proof. In order to apply Theorem 3.1 observe that
p=NQExx)N(@~' with } x>0
iff p= N(p) with some pel~!.
This follows by the correspondence
ap = x0o)=( with aca and a > 0.
Consider now the geometric imbedding into R™ x C"? of 6, given as usual by

r) _(rp+1) (ry+ry)
, o 5wy, O ).

g 1
a=@?, ...«

The condition |x| < p**~? for i # m is equivalent to the conditions
I0(P)—0oll <p~° and Y x;; >0.

Here 6 is with respect to all torsion-free Hecke characters mod 1 and 6,
= 0((«,)) —0(a). This follows by the geometric interpretation of @ on princi-
pal ideals using that a,, > 0. Thus by Theorem 3.1 the result follows. m

3.3. Application to diagonal curves. Our main application is to the
arithmetic of diagonal curves

(3.3.1) X: ax*+by? = c¢(mod p)

where «, f,a,b,ceZ\{0}, 2<p<a, m=Icm(a, f), d=ged(a, f), and
p = 1(mod m). Specifically, the number of (affine) solutions N, of (3.3.1) may
be expressed [D-H]

(3.3.2) N,=p+A—a,
where
a {l—d, —a/b is a dth power mod p,
1, otherwise
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is bounded. Define the set of rational primes for é = 0

Z¥ = \p=1(m); p fabc and |a,| < 2gp'*~%

where g = (1/2) [(x—1)(B—1)—(d—1)] is the genus of X over C, and let for x
=0

n¥(x)= # |p< x; pe?y}.

The main result implies that for 6 <(3¢(m))~", 2¥ contains infinitely
many primes. Here ¢ is Euler’s function.

Theorem 3.3. For 0< 3 <(3¢(m))™!

‘Cl = dep(m)/ 2

() > - log x

with implied constant depending only on X.

Proof. In order to apply Theorem 3.1 we must express a, in terms of
an independent set of Hecke characters. This was accomplished by Weil by
expressing a, in terms of Jacobi sums and then recognizing these as Hecke
characters in a cyclotomic field (see [D-H] and [W]). We will only summar-
ize this development here, filling in details in the next section in a special case.

Let k = Q(e*™/™) and p be a prime in k with p f(abem). Let (x/p), be the
kth power residue symbol and define the “generalized” Jacobi sum

u xY (vY
333 Jue (™ p)= = (_) (_)
( ) ’ (ll ax+{§§d9) P/a\P /g

This is denoted n,, (x*, ¢*) in [D-H] where it is shown that

: : I
(334) a,=— Z Jabr ( 5 p)
B #£0(a) v
v £0(8)
(up+va)d ~ 1 £0(m)

for any p over p = 1(m). It follows from Weil [W] that

g B(m)/2
(3.3.5) —a,=2p"% Y cos(2n ) m;;0;(p)
i=1 j=1
where m;;€Z and 6; comes from a set of independent Hecke characters
mod q for some q depending on X with (m?)|q.
Next, the range of the function defined on T¢™/? by

g(6) =) cos(2n). m;; 6)

is easily seen to be [—g, g] so the hypersurface defined by g(6o) = 0 is not
empty. Applying Theorem 3.1 with any such 6, we get Theorem 33. =
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Remark. Of course, any value of a €[ —2g, 2g] could have been chosen
to get Theorem 3.3 for

(3:3.6)  73(x) = # (p<x;p=1(m), pXabc, and |a,p~ "> —a| < 2gp~?

b
In the next section we will obtain a sharp upper bound for (essentially)
m3°(x) in case X is given by (for [ >3 prime)

y2 =x'+d.

3.4. Large values of certain Jacobsthal sums Returning to the example
and notation of Section 3.0 suppose F(x) = x'+d for | > 3 prime and d # 0.
Then for ptd, p>2

(34.1) “= ¥ (x +d)

xmodp

(—) being the Legendre symbol. As before
la,| < (1—1) p*/2.
Consider the set of primes
#s=p=1();ptd and |a,| > (I-1)p"?(1-Ap~?!

for A > 0 constant, and its counting function m;(x). It follows from a more
general result of Korobov [K1] that

(34.2) my(x) €1

for A > (I—3)(I—4)/8, so that a slightly stronger result than the RH holds for
all but finitely many p. The question arises as to whether or not this holds
for some & < 1. It follows from the remark following Theorem 3.3 that for 0

<& <1/(31-3) it does not. In this section we show that such exceptional
primes p where

layl > (I—-1)p**(1—Ap~9)

form a set of zero density in the set of all primes. More precisely,

THEOREM 34. For 0 <6 <1/(31-3)

itz
n,(x)::x 2 /logx

where the implied constants depend only on | and d.

Proof. In view of the following lemma we see that this follows from
Theorem 3.1 with 6, =0.
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Lemma 34.1. For any p Y(d) in Q(e*™") over p=1(mod])
u=1y2

a,=—2p'? Y cos(2nb;(p)),

i=1
where 4, = €™ is an independent set of Hecke characters mod (413 d).
Proof. Let k = Q(e*™"); for p over p=1(modl), p ¥d,

=1y/2

(34.3) a, = —2p'? Y. cos(2nb;(p)
i=1
x!+d B x'+d)2'_ x!+d)f -1 i)J
xs{O;Jl'}"( p )_Z( P —Z( p zu;(lﬂ [

2 6) ) )

in the notation of (3.3.3) with « = 2, § = 1. Hence by [W] we must show that
for & €0,, the integers in k, such that a = 1(4/%d)

d\(—d AL

(E)(T), B (E)(E), -
This follows by quadratic and Eisenstein reciprocity together with the
supplementary laws if (d, 2I) # 1 ([H3], p. 221, 224, and [I-R], p. 207.), since

o is primary in either case.
The independence of |4;} is proved in [D2].

References

[B] E. Bombieri, L¢ Grand Crible dans la Théorie Analytique des Nombres, Astérisque 18
(1973). '
[B-E] B. C. Berndt and R. J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number
Theory 11 (1979), 349-398.
[D1] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980.
[D2] G. P. Davidoff, Statistical Properties of Certain Exponential Sums, Thesis, NYU,
1984.
[D3] M. Deuring, Die Typen der Multiplikatorenringe Elliptischer Funktionenkiirper, Abh.
Math. Sem. Univ. Hamburg, 14 (1941), 197-272.
[D-H] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in
gewissen zyklischen Fallen, Journ. fir Math. 172 (1934), 2-182,
[F-V] M. Forti and C. Viola, On Large Sieve Type Estimates for the Dlr:ckte: Series
Operator, Proc. Symp. Pure Math. 24 (1973), 31-49.
[F1] E. Fogels, On the zeros of L-functions, Acta Arith. 11 (1965), 67-96.
[F2] —. On the abstract theory of primes I1I, ibid. 11 (1966), 293-331.
[G1] E. Gaigalas, Distribution of prime numbers in two imaginary quadratic fields, I, II,
Liet. Math. Sb. 19 (1979), 45-60.



228 W. Duke

[G2] P. X. Gallagher, A large sieve density estimate near o = 1, Inventiones Math. 11
(1970), 329-339.

[G3] B. Gross, Arithmetic on Elliptic Curves with Complex Multiplication, Lecture Notes in
Math., #779 (1980).

[H1] R. Heath-Brown, On the density of the zeros of the Dedekind Zeta-function, Acta
Arith. 33 (1977), 169-181.

[H2] E. Hecke, Eine Neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der
Primzahlen, Math. Z. 6 (1920), 11-51.

[H3] —, Lectures on the Theory of Algebraic Numbers, Springer, 1981.

[H4] 1. Hinz, Uber Nullstellen der Heckeschen Zetafunktionen in algebraischen Zahlkirpern,
Acta Arith. 31 (1976), 167-193.

[H5] M. N. Huxley, The Large Sieve Inequality for Algebraic Number Fields, 11, Means of
moments of Hecke zeta-functions, Proc. London Math. Soc. (3) 21 (1970), 108-128.

[I-R] K. Ireland and M. Rosen, 4 Classical Introduction to Modern Number Theory, 2nd
ed., Springer, 1982.

[K1] N. M. Korobov, An Estimate of the Sum of the Legendre Symbols, Dokl. Akad.
Nauk. SSSR 196 (1971), 764-767.

[K2] F. B. Kovalcik, Density Theorems and the Distribution of Primes in Sectors and
Progressions, Sov., Math. Dokl. 15 (1974), 1521-1525.

[K3] I. Kubilius, On a Problem of the Multidimensional Analyvtic Theory of Numbers, Uch.
Zap. Vil'nyussk. Univ. Ser. Mat. Fiz.-Khim. Nauk. 4 (1955), 5-43.

[M1] M. Maknys, Refinement of the remainder term in the law of the distribution of prime
numbers of an imaginary quadratic field in sectors, Liet. Mat. Sb. 17 (1977), 133-137.

[M2] —, Metric and Analytic Number Theory at Vilnius University,ibid 20. (1980), 29-38.

[M3] H. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math.
#227, Springer, 1971.

[R] H. Rademacher, On the Phragmen-Lindeldf Theorem and Some Applications, Collec-
ted Works, 1958, pp. 496-508.

[S1] P. Sarnak, Notes on an Approximate Functional Equauon. ..., Preprint.

[S2] —. On the Number of Points on Certain Curves and an Uncertainty Principle, Number
Theory, New York 1983-84, Lecture Notes in Math. #1135 (1985), pp. 239-253.

[S3] —, Fourth Moments of Grissencharakter Zeta Functions, Comm. Pure and Applied
Math. 39 (1985), 167-178.

[U] J. Urbialis, Distribution of Algebraic Primes, Lict. Mat. Sb. 5 (1965), 504-516.

[W] A. Weil, Jacobi Sums as ‘Grissencharaktere’, Trans. Amer. Math. Soc. VI, 73 (1952),
487-495.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, SAN DIEGO
La Jolla, Cal. 92083, USA,

Current address

DEPARTMENT OF MATHEMATICS
RUTGERS UNIVERSITY

New Brunswick, N. J. 08903, US.A.

Received on 15.9.1986
and in revised form on 6.11.1987 (1671)

ACTA ARITHMETICA
LII (1989)

Une nouvelle caractérisation des éléments
de Pisot dans l'anneau des adéles de Q

par

MarTHE GraNDET-HuGoT (Caen)

Les €éléments de Pisot d’'un anneau d’adéles de Q ont été introduits par
F. Bertrandias [1], elle en a donné une premiére caractérisation analogue a
celle des nombres de Pisot réels.

En appliquant 4 ces ensembles une méthode voisine de celle qui nous a
permis d’améliorer certains résultats de Pisot, dans le cas réel (cf. [4]), nous
aboutissons a des caractérisations plus fines.

1. Définitions et notations. Soit P 'ensemble des valeurs absolues de Q,
on note ||, la valeur absolue archimédienne et ||, la valeur absolue p-
adique normalisée.

On désigne par Q, le corps des nombres p-adiques, par Z, son anneau
de valuation et par C, la complétion de sa cloture algébrique (on pose Q.

=Ret C,=0()
On note:
D,(a,r) = xeC,; |x—a|, <r},
15P(a, r)=xeC,; |x—al,<r],
Cola,r)= xeC,; |x—al|,=r
Soit I un ensemble fini de valeurs absolues de Q, on pose:
I"=Iuvjo] et I =1I\|low].

Si I contient la valeur absolue archimédienne, on appelle I-adéle de Q
tout élément de I'anneau:

=R [] Q,;
pel ™
si I ne contient pas la valeur absolue archimédienne, nous désignons par A,
le sous-anneau de A4;+ formé des éléments dont la composante réelle est
nulle. L’élément unité de A+ est noté e, et pour tout élément x = (X,),.s+
de 4;, on note |x|, = |x,|,.
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