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Vehicle Assumptions

B Midsize car platform

B Both non-hybrid and hybrid configurations considered

B All vehicles achieve similar performances (0-60mph, grade)

B All vehicles have same amount of onboard H2 (5kg)

B Component uncertainties taken into account

B UDDS and HWFET drive cycles considered

M Ratios based on fuel economy gasoline equivalent using 2008 EPA corrections

Parameter Unit | Midsize Car
Glider Mass kg 990 Parameter Unit Value
Frontal Area m2 2.1 0-60mph S 9+/-0.1
Drag Coefficient 0.29 0-30mph S 3
Wheel Radius m 0.317 Grade at 60 mph % 6
Rolling Resistance 0.008 Maximum Speed mph >100 @

(1) Two gear transmission used for series



Fuel Cell System Assumptions

Parameter Unit | Current Status | FreedomCAR
Goal
Specific Power W/kg 500 650
Peak Efficiency % 55 60
0.7 ‘ |
T FreedomCAR Model Limitation:
0-6 ? The efficiency curves used
_os are steady-state,
< underestimating the
E e parasitic load, which is much
goa higher in real-world driving
2 N because of transient and non
optimum control
0.1
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Hydrogen Engine Characteristics for
Current Technology Generated from

= Manufacturer Ford Motor Co.
= Model 2.3L Duratec
= Cylinders 4

= Bore 87.5 mm

= Stroke 94 mm

= Compression ratio 12
= Valve train 4V DOHC
= Speed range 6000 RPM

= Modifications
— Supercharger and intercooler

— Hydrogen port fuel injection
— After-market ECU

4-cylinder hydrogen engine setup
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Port Injected Maps Generated for Different

Air/Fuel Ratios
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Engine torque [Nm]

Final Port Injected Map Generated To
Maximize Brake Thermal Efficiency

1| Speed=1500 RPM
TIMBT Spark timing

Brake therrﬁal efficiency ‘[%]

225 2.50 2.75
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B Brake thermal efficiency
increases with increased
air/fuel ratio

B Maximum torque decreases
with increased air/fuel ratio

B Due to lean operation peak
efficiency is achieved at full
load



Direct Injection Hydrogen Engine Operation
Estimated from Single Cylinder Test Data

DI results in increased Increased compression ratio

peak torque & turbo charging
result in an increase in engine

efficiency

——————— = Turbo-charging will increase the
engine efficiency compared to
supercharging

| R = Lean part load operation will

\ Speed result in a further part load

Lean part load efficiency increase compared to

throttled operation

Torque
A

= Hydrogen Direct Injection will
Increase the peak torque curve

= Increased compression ratio will




Component Average Power
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Vehicle Mass
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Non-Hybrid Configurations Comparison

2.
> H2 ICE consumes between 1.7 and
2.1 times more than the fuel cell
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Current vs. current -> H2 ICE will consume 1.7 more than fuel cell
Future vs. future -> H2 ICE will consume 2.1 more than fuel cell

Current fuel cell vs. future ICE -> H2 ICE will consume 1.57 more than fuel cell



Hybrid Configurations Cdmparison

~ H2ICE consumes from 1.1 to 1.2 (Split) and 1.4 to 1.6
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Current fuel cell vs. future ICE -> H2 ICE Split will consume 0.8 less than fuel cell



All Configurations Comparison
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Fuel Economy Results Analysis

B All HEVs configuration capture similar amount of energy at the
wheel during deceleration (¥98% on UDDS). However, the series
configurations have more losses due to lower electric machine
efficiencies than the power split.

B Both HEV configurations using ICE have similar average efficiencies
(~¥31% for port injected and ~41.5% for direct injection on UDDS).

B The fuel cell system average efficiency remains higher (~47% for
current case and ~51% for future case on UDDS).

B |n addition, the series configuration with H2-ICE is penalized by the
driveline inefficiencies (both generator ¥90% and electric machine
~81%)



Conclusion

The DI H2-ICE has been defined based on a combination of four-cylinder
and single cylinder data generated for different A/F ratios.

H2-ICE powertrain should be hybridized to be competitive with fuel cell
systems vehicle fuel consumption.

Power split configuration offers the best fuel consumption when using
H2-ICE due to added inefficiencies in the series configuration.

If one considers that the current fuel cell system efficiencies will remain
constant in the future (most research is focused on cost and durability),
DI H2-ICE could provide an interesting option (up to 20% reduction in
fuel consumption).

If one considers both future technologies within an HEV, a 10 to 40%
increase in fuel consumption is noticed when using H2-ICE.



