
Efficient Linear Array for Multiplication
in GF (2m) Using a Normal Basis
for Elliptic Curve Cryptography

Soonhak Kwon1, Kris Gaj2, Chang Hoon Kim3, and Chun Pyo Hong3

1 Inst. of Basic Science and Dept. of Mathematics, Sungkyunkwan University,
Suwon 440-746, Korea

shkwon@math.skku.ac.kr
2 Dept. of Electrical and Computer Engineering, George Mason University,

University Drive, Fairfax, VA 22030, USA
kgaj@gmu.edu

3 Dept. of Computer and Information Engineering, Daegu University,
Kyungsan 712-714, Korea

chkim@dsp.taegu.ac.kr,cphong@daegu.ac.kr

Abstract. We present a new sequential normal basis multiplier over
GF (2m). The gate complexity of our multiplier is significantly reduced
from that of Agnew et al. and is comparable to that of Reyhani-Masoleh
and Hasan, which is the lowest complexity normal basis multiplier of
the same kinds. On the other hand, the critical path delay of our multi-
plier is same to that of Agnew et al. Therefore it is supposed to have a
shorter or the same critical path delay to that of Reyhani-Masoleh and
Hasan. Moreover our method of using a Gaussian normal basis makes
it easy to find a basic multiplication table of normal elements. So one
can easily construct a circuit array for large finite fields, GF (2m) where
m = 163, 233, 283, 409, 571, i.e. the five recommended fields by NIST for
elliptic curve cryptography.

Keywords: Massey-Omura multiplier, Gaussian normal basis, finite
field, elliptic curve cryptography, critical path delay.

1 Introduction

Finite field multiplication finds various applications in many cryptographic areas
such as ECC and AES. Though one may design a finite field multiplier in a soft-
ware implementation, a hardware arrangement has a strong advantage when one
wants a high speed multiplier. Moreover arithmetic of GF (2m) is easily realized
in a circuit design using a few logical gates. A good multiplication algorithm
depends on the choice of a basis for a given finite field. Especially a normal ba-
sis is widely used [5,10,11] because it has some good properties such as simple
squaring. A multiplication in GF (2m) can be classified into two types, a paral-
lel (two dimensional) [4,5,8,10] and a sequential (linear) [1,3,9,11] architectures.

Though a parallel multiplier is well suited for high speed applications, ECC re-
quires large m for GF (2m) (at least m = 163) to support a sufficient security. In
other words, since the parallel architecture has an area complexity of O(m2), it
is not suited for this application. On the other hand, a sequential multiplier has
an area complexity of O(m) and therefore is applicable for ECC. Since it takes
m clock cycles to produce one multiplication result using a sequential multiplier,
it is slower than a parallel multiplier. Consequently reducing the total delay time
of a sequential multiplier is very important.

A normal basis multiplier of Massey and Omura [7] has a parallel-in, serial-
out structure and has a quite long critical path delay proportional to log2 m.
Agnew et al. [1] proposed a sequential multiplier which has a parallel-in, parallel-
out structure. It is based on the multiplication algorithm of Massey and Omura,
however the critical path delay of the multiplier of Agnew et al. is significantly
reduced from that of Massey and Omura. Recently, Reyhani-Masoleh and Hasan
[3] presented two sequential multipliers using a symmetric property of multipli-
cation of normal elements. Both multipliers in [3] have roughly the same area
complexity and critical path delay. These multipliers have the reduced area com-
plexity from that of Agnew et al. with a slightly increased critical path delay.
In fact, the exact critical path delay of the multipliers of Reyhani-Masoleh and
Hasan is difficult to estimate in terms of m and is generally believed to be slightly
longer or equal to that of Agnew et al. For example, for the case of a type II
ONB, the critical path delay of Reyhani-Masoleh and Hasan [3] is TA + 3TX

while that of Agnew et al. [1] is TA + 2TX , where TA, TX are the delay time of
a two input AND gate and a two input XOR gate, respectively. However since
we are dealing with a sequential (linear) multiplier, even a small increment of
critical path delay such as TX results in a total delay of mTX where m is the
size of a field.

Our aim in this paper is to present a sequential multiplier using a Gaussian
normal basis in GF (2m) for odd m. Since choosing an odd m is a necessary
condition for cryptographic purposes and since a low complexity normal basis
is frequently a Gaussian normal basis of type (m, k) for low k, our restriction
in this paper does not cause any serious problem for practical purposes. In fact
all the five recommended fields GF (2m) by NIST [16] for ECC where m =
163, 233, 283, 409, 571 can be dealt using our Gaussian normal basis, and the
corresponding circuits are easy to construct if one follows a simple arithmetic
rule of a Gaussian normal basis. We will show that the area complexity of our
sequential multiplier is reduced from that of the multiplier of Agnew et al. [1]
and thus comparable to that of the multiplier of Reyhani-Masoleh and Hasan
[3]. Moreover the critical path delay of our multiplier is same to that of Agnew
et al. and therefore is believed to be shorter or equal to that of Reyhani-Masoleh
and Hasan.

2 Review of the Multipliers of Agnew et al. and
Reyhani-Masoleh and Hasan

Let GF (2m) be a finite field with characteristic two. GF (2m) is a vector space of

dimension m over GF (2). A basis of the form {α, α2, α22

, · · · , α2m−1

} is called a

normal basis for GF (2m). It is well known [6] that a normal basis exists for all

m ≥ 1. Let {α0, α1, · · · , αm−1} be a normal basis in GF (2m) with αi = α2i

. Let

αiαj =

m−1∑

s=0

λ
(s)
ij αs, (1)

where λ
(s)
ij is in GF (2). Then for any integer t, we have

αiαj = (αi−tαj−t)
2t

=
m−1∑

s=0

λ
(s)
i−t,j−tαs+t =

m−1∑

s=0

λ
(s−t)
i−t,j−tαs, (2)

where the subscripts and superscripts of λ are reduced (mod m). Therefore
comparing the coefficients of αs, we find

λ
(s)
ij = λ

(s−t)
i−t,j−t. (3)

In particular, we have

λ
(s)
ij = λ

(0)
i−s,j−s. (4)

Letting A =
∑m−1

i=0 aiαi and B =
∑m−1

j=0 bjαj in GF (2m), we have the multipli-

cation C = AB =
∑m−1

s=0 csαs where

C =
∑

i,j

aibjαiαj =
∑

i,j

aibj

m−1∑

s=0

λ
(s)
ij αs =

m−1∑

s=0

(
∑

i,j

aibjλ
(s)
ij)αs. (5)

Fig. 1. A circuit of Agnew et al. in GF (25)

Therefore, using (4), we have the coefficients cs of C = AB as

cs =
∑

i,j

aibjλ
(s)
ij =

∑

i,j

aibjλ
(0)
i−s,j−s =

∑

i,j

ai+sbj+sλ
(0)
ij , (6)

where the subscripts of a, b and λ are reduced (mod m). The circuit of Agnew et
al. [1] is a straightforward realization of the above equation with the information

of the m by m matrix (λ
(0)
ij). When there is a type II ONB (optimal normal basis),

it is easy to find λ
(0)
ij as is explained in [1]. That is,

λ
(0)
ij = 1 iff 2i ± 2j ≡ ±1 (mod 2m + 1). (7)

Figure 1 shows the circuit of Agnew et al. for the case m = 5 where a type II

ONB is used. For arbitrary finite field, finding λ
(0)
ij may not be so easy. However

if we have a Gaussian normal basis, one can easily find λ
(0)
ij by following a simple

arithmetic rule. A Gaussian normal basis and a type II ONB will be discussed
briefly in the following sections.

Recently, Reyhani-Masoleh and Hasan [3] suggested a new normal basis mul-
tiplication algorithm which significantly reduces the area complexity compared
with the multiplier of Agnew et al. They used ααi instead of αiαj and wisely
utilized the symmetric property between ααi and ααm−i. In fact they proposed
two sequential multiplication architectures, so called XESMPO and AESMPO
[3]. Since the hardware complexity of AESMPO is higher than that of XESMPO
and both architectures have the same critical path delay, we will sketch the idea
in [3,4] for the case of XESMPO. In [3,4], the multiplication C = AB is expressed
as

∑

i,j

aibjαiαj =
m−1∑

i=0

aibiαi+1 +
m−1∑

i=0

∑

j 6=i

aibj(ααj−i)
2i

=

m−1∑

i=0

aibiαi+1 +

m−1∑

i=0

∑

j 6=0

aibj+i(ααj)
2i

.

(8)

When m is odd, the second term of the right side of the above equation is written
as

m−1∑

i=0

ν∑

j=1

aibj+i(ααj)
2i

+

m−1∑

i=0

m−1∑

j=m−ν

aibj+i(ααj)
2i

, (9)

and when m is even, it is written as

m−1∑

i=0

ν∑

j=1

aibj+i(ααj)
2i

+

m−1∑

i=0

m−1∑

j=m−ν

aibj+i(ααj)
2i

+

m−1∑

i=0

aibν+1+i(ααν+1)
2i

, (10)

where ν = ⌊m−1
2 ⌋, i.e. m = 2ν + 1 or m = 2ν + 2. Also the second term of (9)

and (10) is written as

m−1∑

i=0

m−1∑

j=m−ν

aibj+i(ααj)
2i

=

m−1∑

i=0

ν∑

j=1

aibm−j+i(ααm−j)
2i

=

m−1∑

i=0

ν∑

j=1

ai+jbi(ααm−j)
2i+j

=

m−1∑

i=0

ν∑

j=1

ai+jbi(ααj)
2i

,

(11)

where the first (resp. second) equality comes from the rearrangement of the sum-
mation with respect to j (resp. i) and all the subscripts are reduced to (mod m).
Therefore we have the basic multiplication formula of Reyhani-Masoleh and
Hasan depending on whether m is odd or m is even as

AB =

m−1∑

i=0

aibiαi+1 +

m−1∑

i=0

ν∑

j=1

(aibj+i + aj+ibi)(ααj)
2i

, (12)

or

AB =

m−1∑

i=0

aibiαi+1 +

m−1∑

i=0

ν∑

j=1

(aibj+i + aj+ibi)(ααj)
2i

+

m−1∑

i=0

aibν+1+i(ααν+1)
2i

.

(13)
Using these formulas, they derived a sequential multiplier where the gate com-
plexity is significantly reduced from that of [1]. The circuit of the multiplier is
shown in Figure 2 for m = 5 where a type II ONB is used.

Fig. 2. A circuit of Reyhani-Masoleh and Hasan in GF (25)

3 Gaussian Normal Basis of Type k in GF (2m)

We will briefly explain basic multiplication principle in GF (2m) with a Gaussian
normal basis of type k over GF (2) (See [6,12].). Let m, k be positive integers
such that p = mk+1 is a prime 6= 2. Let K = 〈τ〉 be a unique subgroup of order
k in GF (p)×. Let β be a primitive pth root of unity in GF (2mk). The following
element

α =

k−1∑

j=0

βτj

(14)

is called a Gauss period of type (m, k) over GF (2). Let ordp2 be the order of
2 (mod p) and assume gcd(mk/ordp2,m) = 1. Then it is well known [6] that

α is a normal element in GF (2m). That is, letting αi = α2i

for 0 ≤ i ≤ m − 1,
{α0, α1, α2, · · · , αm−1} is a basis for GF (2m) over GF (2). It is called a Gaussian
normal basis of type k or (m, k) in GF (2m). Since K = 〈τ〉 is a subgroup of
order k in the cyclic group GF (p)×, the quotient group GF (p)×/K is also a
cyclic group of order m and the generator of the group is 2K. Therefore we have
a coset decomposition of GF (p)× as a disjoint union,

GF (p)× = K0 ∪ K1 ∪ K2 · · · ∪ Km−1, (15)

where Ki = 2iK, 0 ≤ i ≤ m − 1, and an element in GF (p)× is uniquely written
as τs2t for some 0 ≤ s ≤ k − 1 and 0 ≤ t ≤ m − 1. For each 0 ≤ i ≤ m − 1, we
have

ααi =

k−1∑

s=0

βτs
k−1∑

t=0

βτt2i

=

k−1∑

s=0

k−1∑

t=0

βτs(1+τt−s2i) =

k−1∑

s=0

k−1∑

t=0

βτs(1+τt2i). (16)

From (15), there are unique 0 ≤ u ≤ k − 1 and 0 ≤ v ≤ m − 1 such that
1+ τu2v = 0 ∈ GF (p). If t 6= u or i 6= v, then we have 1+ τ t2i ∈ Kσ(t,i) for some

0 ≤ σ(t, i) ≤ m−1 depending on t and i. Thus we may write 1+τ t2i = τ t′2σ(t,i)

for some t′. Now when i 6= v,

ααi =
k−1∑

s=0

k−1∑

t=0

βτs(1+τt2i) =
k−1∑

s=0

k−1∑

t=0

βτs(τt′2σ(t,i))

=

k−1∑

t=0

k−1∑

s=0

βτs+t′2σ(t,i)

=

k−1∑

t=0

α2σ(t,i)

=

k−1∑

t=0

ασ(t,i).

(17)

Also when i = v,

ααv =

k−1∑

s=0

k−1∑

t=0

βτs(1+τt2v) =
∑

t6=u

k−1∑

s=0

βτs(τt′2σ(t,v)) +

k−1∑

s=0

βτs(1+τu2v)

=
∑

t6=u

k−1∑

s=0

βτs+t′2σ(t,v)

+

k−1∑

s=0

1 =
∑

t6=u

α2σ(t,v)

+ k =
∑

t6=u

ασ(t,v) + k.

(18)

Therefore ααi is computed by the sum of at most k basis elements in {α0, α1, · · · ,
αm−1} for i 6= v and ααv is computed by the sum of at most k−1 basis elements
and the constant term k ≡ 0, 1 ∈ GF (2).

4 New Multiplication Algorithm Using a Gaussian
Normal Basis in GF (2m) for m Odd

4.1 Symmetry of (λ
(s)
ij) and (λij)

Efficient implementation of ECC over a binary field GF (2m) requires that m is
odd, or more strongly m is prime. These conditions are necessary to avoid Pohlig-
Helllman type attacks. For example, all the five binary fields GF (2m), m =

163, 233, 283, 409, 571 suggested by NIST [16] for ECDSA have the property that
m = prime. Therefore it is not so serious restriction to assume that m is odd for
a fast multiplication algorithm if one is interested in this kind of applications.
For odd values of m, it is well known [15] that a Gaussian normal basis of type k
or (m, k) always exists for some k ≥ 1. Since mk +1 is a prime with m = odd, it
follows that k is even. Thus it is enough to study the multiplication in GF (2m)
for odd m with a Gaussian normal basis of type k for even k. To derive a low
complexity architecture, in view of the multiplication formulas (17) and (18),
one should choose a small k, i.e. low complexity Gaussian normal basis. The
least possible even k ≥ 1 is k = 2. This is so called a type II ONB (optimal
normal basis) or more specifically a type 2 Gaussian normal basis. Among the
five binary fields recommended by NIST, m = 233 is the only case where a type
II ONB exists. On the other hand, the lowest complexity Gaussian normal basis
for the rest of the fields are type 4 Gaussian normal basis when m = 163, 409,
type 6 Gaussian normal basis when m = 283, and type 10 Gaussian normal basis
when m = 571 (See [12]).

Let {α0, α1, · · · , αm−1} be any normal basis in GF (2m) with αi = α2i

and
let

ααi =

m−1∑

j=0

λijαj , (19)

where λij is in GF (2). Taking repeated powers of 2 for both sides of the above
equation, one finds

λ
(s)
ij = λi−j,s−j , (20)

where λ
(s)
ij is defined in (1). An explicit table of λ

(s)
ij is necessary for construc-

tion of the multipliers of Agnew et al. and also of Reyhani-Masoleh and Hasan.

Finding λ
(s)
ij may not be so easy unless one has a sufficient information on the

given normal basis. Also note that (λ
(s)
ij) is a symmetric matrix but (λij) is not

in general. However, it turns out that (λij) is a symmetric matrix if a Gaussian
normal basis of type k with k even is used. More precisely, we have the following.

Lemma 1. If {α0, α1, · · · , αm−1} is a Gaussian normal basis of type k where k
is even, then we have

λ
(0)
ij = λij .

Proof. From (20), it is enough to show that λij = λi−j,−j . From the formulas
(17) and (18), it is clear that λij = 1 if and only there exist odd pairs of (s, s′)
(mod k) such that

1 + τs2i = τs′

2j , (21)

where 〈τ〉 is a unique multiplicative subgroup of order k in GF (p)× with p =
mk + 1. Let S be the set of all pairs (s, s′) (mod k) satisfying (21) and same
way define T as the set of all pairs (t, t′) (mod k) satisfying 1+ τ t2i−j = τ t′2−j .
To prove λij = λi−j,−j , it suffices to show that the sets S and T have the same

cardinality. Dividing both sides of the equation (21) by τ s′

2j , we get

τ−s′

2−j + τs−s′

2i−j = 1. (22)

Since the order of τ is k where k is even, we have −1 = τ
k
2 and therefore

τ−s′

2−j = 1 + τ
k
2 +s−s′

2i−j . (23)

Since the map fS : S → T defined by fS(s, s′) = (k
2 + s − s′,−s′) and the map

fT : T → S defined by fT (t, t′) = (k
2 +t−t′,−t′) give one to one correspondence,

i.e. fS ◦ fT = id = fT ◦ fS , we are done. ⊓⊔

4.2 Construction of a sequential multiplier and complexity analysis

Now from (6) and also from Lemma 1, we have cs of C =
∑m−1

i=0 csαs = AB as

cs =
∑

i,j

ai+sbj+sλ
(0)
ij =

∑

i,j

ai+sbj+sλij =

m−1∑

j=0

(

m−1∑

i=0

ai+sλij)bj+s. (24)

Let us define an element xst, 0 ≤ s, t ≤ m − 1, in GF (2) as

xst = (

m−1∑

i=0

ai+sλit)bt+s, (25)

with corresponding matrix X = (xst). Then the tth column vector Xt of X is

Xt = (x0t, x1t, · · · , xm−1,t)
T , (26)

where (x0t, x1t, · · · , xm−1,t)
T is the transposition of the row vector (x0t, x1t, · · · ,

xm−1,t). Also the sum of all column vectors Xt, t = 0, 1, · · · ,m − 1, is exactly

(c0, c1, · · · , cm−1)
T , (27)

because
∑m−1

t=0 xst = cs. Our purpose is to reduce the gate complexity of our
multiplier by rearranging the column vectors Xt and reusing partial sums in
the computation. Let m − 1 = 2ν and define m by m matrix Y = (yst) by the
following permutation of the column vectors of X as follows; When ν is odd,
define Y as

(Xν , · · · , X3, X1, Xm−1, Xm−3, · · · , Xm−ν , Xν−1, · · · , X2, X0, Xm−2, · · · , Xm−ν+1),
(28)

and when ν is even, Y is defined as

(Xν , · · · , X2, X0, Xm−2, · · · , Xm−ν , Xν−1, · · · , X3, X1, Xm−1, Xm−3, · · · , Xm−ν+1).
(29)

Then the sum of all column vectors Yt, 0 ≤ t ≤ m − 1, of Y with Yt =
(y0t, y1t, · · · , ym−1,t)

T is same to the sum of all column vectors Xt, 0 ≤ t ≤ m−1,
of X which is (c0, c1, · · · , cm−1)

T .

To derive a parallel-in, parallel-out multiplication architecture, we will com-
pute the sum of shifted diagonal vectors of Y, instead of computing the sum of
column vectors of Y . This can be done from the following observations. In the
expression of the matrix Y , there are exactly t− 1 columns between the vectors
Xt and Xm−t. Also, sth entry of Xt and s + tth entry of Xm−t have the same
terms of ais in their summands. In other words, from (25), we have

xs+t,m−t = (

m−1∑

i=0

ai+s+tλi,−t)bs = (

m−1∑

i=0

ai+sλi−t,−t)bs = (

m−1∑

i=0

ai+sλit)bs, (30)

where the third expression comes from the rearrangement of the summation on
the subscript i and the last expression comes from Lemma 1 saying λij = λi−j,−j .

Thus xst and xs+t,m−t have the same term
∑m−1

i=0 ai+sλit in their expression and
this will save the number of XOR gates during the computation of AB.

Table 1. New multiplication algorithm

—————————————————————————————————–

1. A =
Pm−1

i=0
aiαi and B =

Pm−1

i=0
biαi are loaded in m-bit registers respectively.

Also intermediate values D0, D1, · · · , Dm−1 of the multiplication are all set to zero.
2. For t = 0 to m − 1, do the following;

ys,s+t + Ds+t −→ Ds+t+1, (31)

where the above computation is done in parallel for all 0 ≤ s ≤ m − 1.
3. After mth iteration, we have Di = ci for all 0 ≤ i ≤ m−1, where AB =

Pm−1

i=0
ciαi.

—————————————————————————————————–

Let us explain the above algorithm in detail. At the first cycle (t = 0), Ds+1 =
Ds + yss are simultaneously computed for all 0 ≤ s ≤ m− 1, i.e. D1 = y00,D2 =
y11, · · · ,D0 = ym−1,m−1. When t = 1, Ds+2 = Ds+1 + ys,s+1 are simultaneously
computed for all 0 ≤ s ≤ m−1, i.e. D2 = D1 +y01 = y00 +y01,D3 = D2 +y12 =
y11+y12, · · · ,D1 = D0+ym−1,0 = ym−1,m−1+ym−1,0. Finally, at mth (t = m−1)
cycle, Ds = Ds−1 + ys,s−1 are simultaneously computed. That is,

D0 = Dm−1 + y0,m−1 = y00 + y01 + · · · + y0,m−1 = c0,

D1 = D0 + y10 = y11 + y12 + · · · + y10 = c1,

· · · · · ·

· · · · · ·

Dm−1 = Dm−2 + ym−1,m−2 = ym−1,m−1 + ym−1,0 + · · · + ym−1,m−2 = cm−1.

(32)

In other words, for a fixed s, the final value Ds is sequentially computed in the
following order

Ds =

Ds+1
︷︸︸︷
yss +ys,s+1
︸ ︷︷ ︸

Ds+2

+ ys,s+2 + · · · + ys,s−1 =

m−1∑

i=0

ys,s+i = cs. (33)

Note that ys−1,s and yss, 0 ≤ s ≤ m − 1, in the equation (32), are from the
same column Ys of the matrix Y . Since Y is obtained by a column permutation
of a matrix X, we conclude that ys−1,s = xs−1,s′ and yss = xss′ for some s′

depending on s. Moreover from the equation (25), we get

xss′ = (

m−1∑

i=0

ai+sλis′)bs′+s, and xs−1,s′ = (

m−1∑

i=0

ai+s−1λis′)bs′+s−1, (34)

which implies that xs−1,s′ (= ys−1,s) is obtained by right cyclic shifting by one
position of the vectors ais and bis from the expression xs,s′ (= ys,s). Since this
can be done without any extra cost, all the necessary gates to construct a circuit
from the algorithm in Table 1 are the gates needed to compute the first (i.e.
t = 0) clock cycle of the step 2 of the algorithm,

Ds+1 = Ds + yss, 0 ≤ s ≤ m − 1. (35)

Recall that, for each s, there is a corresponding (because of a permutation) s′

such that

yss = xss′ = (

m−1∑

i=0

ai+sλis′)bs′+s. (36)

If s′ 6= 0, i.e. if xss′ is not in the 0th column of X, then from the equations (25)
and (30), we find that the necessary XOR gates to compute xss′ and xs+s′,m−s′

(which are the diagonal entries of the matrix Y) can be shared. Note that xss′ =

(
∑m−1

i=0 ai+sλis′)bs′+s can be computed by one AND gate and at most k−1 XOR
gates since the multiplication matrix (λij) of a Gaussian normal basis of type
k has at most k nonzero entries for each column (row) in view of the equation
(17). Thus the total number of necessary gates to compute all yss = xss′ with
s′ 6= 0 is m − 1 AND gates plus m−1

2 (k − 1) XOR gates.

Table 2. Comparison with previously proposed architectures

Critical path delay AND XOR flip-flop

(Type II ONB case) (Type II ONB case)

Massey ≤ TA + ⌈log2 (mk)⌉TX CN ≤ CN − 1 2m

and Omura [7] (TA + ⌈log2 (2m)⌉TX) (2m − 2)

Agnew et al. [1] ≤ TA + (1 + ⌈log2 k⌉)TX m ≤ CN 3m

(TA + 2TX) (2m − 1)

Reyhani-Masoleh ≤ TA + (1 + ⌈log2 (k + 2)⌉)TX m ≤ 1
2 (CN + 1) + ⌊m

2 ⌋ 3m

and Hasan [3] (TA + 3TX) (3m−1
2)

This paper ≤ TA + (1 + ⌈log2 k⌉)TX m ≤ m + m−1
2 (k − 1) 3m

(TA + 2TX) (3m−1
2)

When s′ = 0, then the number of nonzero entries of λi0, 0 ≤ i ≤ m − 1, is one
because αα0 = α2 = α1. Therefore we need one AND gate and no XOR gate to
compute xss′ with s′ = 0. Since the addition Ds + yss, 0 ≤ s ≤ m − 1, in (35)
needs one XOR gate for each 0 ≤ s ≤ m − 1, the total gate complexity of our
multiplier is m AND gates plus at most m+ m−1

2 (k−1) XOR gates. The critical
path delay can also be evaluated easily. It is clear from (35) and (36) that the

critical path delay is at most TA + (1 + ⌈log2 k⌉)TX . We compare our sequential
multiplier with other multipliers of the same kinds in Table 2. In the table, CN

denotes the number of nonzero entries in the matrix (λ
(0)
ij). It is well known [6]

that CN ≤ mk + m− k if k is odd and CN ≤ mk − 1 if k is even. In our case of
GF (2m) with m = odd, it is easy, from (17) and (18), to see that CN has a more
strong bound CN ≤ mk − k + 1. Thus the bounds ≤ CN+1

2 + ⌊m
2 ⌋ in [3] is same

to ≤ mk−k+2
2 + m−1

2 = 2m+mk−m−k+1
2 = m + m−1

2 (k − 1). Consequently the
circuit in [3] and our multiplier have more or less the same hardware complexity.

4.3 Gaussian normal basis of type 2 and 4 for ECC

Let p = 2m + 1 be a prime such that gcd(2m/ordp2,m) = 1, i.e. either 2
is a primitive root (mod p) or ordp2 = m and m = odd. Then the element
α = β +β−1 where β is a primitive pth root of unity in GF (22m) forms a normal
basis {α0, α1, · · · , αm−1} in GF (2m), which we call a Gaussian normal basis of
type 2 (or a type II ONB). A multiplication matrix (λij) of ααi has the following
property; λij = 1 if and only if 1 ± 2i ≡ ±2j (mod p) for any choice of ± sign.
This is obvious from the basic properties of Gaussian normal basis in Section 3.
Since m divides ordp2, i = 0 is a unique value (mod m) satisfying 1 ± 2i ≡ 0
(mod p). That is, αα0 = α1 and the 0th row of (λij) is (0, 1, 0, · · · , 0). If i 6= 0,
then 1 ± 2i 6≡ 0 (mod p) and thus ith (i 6= 0) row of (λij) contains exactly two
nonzero entries. Therefore for the case of a type II optimal normal basis, we need
m AND gates and m + m−1

2 = 3m−1
2 XOR gates. Also the critical path delay is

TA + 2TX , while that of [3] is TA + 3TX . Let us give a more explicit example for
the case m = 5.

Example 1. Let β be a primitive 11th root of of unity in GF (210) and let
α = β +β−1 be a type II optimal normal element in GF (25). The computations
of ααi, 0 ≤ i ≤ 4, are easily done from the following table. For each block
regarding K and K ′, (s, t) entry with 0 ≤ s ≤ 1 and 0 ≤ t ≤ 4 has the value τs2t

and 1 + τs2t respectively, where 〈τ〉 = 〈−1〉 is a unique multiplicative subgroup
of order 2 in GF (11)×.

Table 3. Computation of Ki and K′

i using a type II ONB in GF (2m) for m = 5

K0 K1 K2 K3 K4 K′

0 K′

1 K′

2 K′

3 K′

4

1 2 4 8 5 2 3 5 9 6
−1 −2 −4 −8 −5 0 −1 −3 −7 −4

From the above table, it can be found that αα0 = α1 and

αα1 = α0 + α3, αα2 = α3 + α4, αα3 = α1 + α2, αα4 = α2 + α4. (37)

For example, the computation of αα3 can be done as follows. See the block K ′
3

and find 9 ≡ −2 (mod 11) is in K1 and −7 ≡ 4 is in K2. Thus we have αα3 =
α1 + α2. In fact, for the case of type II ONB, there is a more regular expression
called a palindromic representation which enables us to find the multiplication

table more easily. However for the general treatments of all Gaussian normal
bases of type k for arbitrary k, we are following this rule. Note that for all other
type II ONB where m 6= 5, the multiplication table can be derived exactly the
same manner. From (37), the corresponding matrix (λij) for m = 5 is

(λij) =









0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 0
0 0 1 0 1









, (38)

and using (24),(25),(28),(29), we find that the multiplication C =
∑4

i=0 ciαi of

A =
∑4

i=0 aiαi and B =
∑4

i=0 biαi is written as follows.

c0 = (a3 + a4)b2 + a1b0 + (a1 + a2)b3 + (a0 + a3)b1 + (a2 + a4)b4

c1 = (a4 + a0)b3 + a2b1 + (a2 + a3)b4 + (a1 + a4)b2 + (a3 + a0)b0

c2 = (a0 + a1)b4 + a3b2 + (a3 + a4)b0 + (a2 + a0)b3 + (a4 + a1)b1

c3 = (a1 + a2)b0 + a4b3 + (a4 + a0)b1 + (a3 + a1)b4 + (a0 + a2)b2

c4 = (a2 + a3)b1 + a0b4 + (a0 + a1)b2 + (a4 + a2)b0 + (a1 + a3)b3

(39)

From this, one has the shift register arrangement of C = AB using a type II
ONB in GF (2m) for m = 5 and it is shown in Figure 3. Note that the underlined
entries are the first terms to be computed. Also note that the (shifted) diagonal
entries have the common terms of ais.

Fig. 3. A new multiplication circuit using a type II ONB in GF (2m) for m = 5

As is mentioned before, there exists only one field GF (2233) for which a type
II ONB exists in GF (2m) among the recommended five fields GF (2m), m =
163, 233, 283, 409, 571, by NIST. Though the circuits of multiplication using a
type II ONB are presented in many places [1,3,10,11], the authors could not
find an explicit example of a circuit design using a Gaussian normal basis of

type k > 2. Since there are two fields GF (2163), GF (2409) for which a Gaussian
normal basis of type 4 exists, it is worthwhile to study the multiplication and the
corresponding circuit for this case. For the clarity of exposition, we will explain
a Gaussian normal basis of type k = 4 in GF (2m) for m = 7. Note that the
general case can be dealt in the same manner as in the following example.

Example 2. Let p = 29 = mk + 1 with m = 7, k = 4 where a Gauss period α
of type (7, 4) exists in GF (27). In this case, the unique cyclic subgroup of order
4 in GF (29)× is K = {1, 27, 214, 221} = {1, 12, 28, 17}. Let β be a primitive 29th
root of unity in GF (228). Thus letting τ = 12, a normal element α is written
as α = β + β12 + β17 + β28 and {α0, α1, · · · , α6} is a normal basis in GF (27).
The computations of ααi, 0 ≤ i ≤ 6, are done from the following table. For each
block regarding K and K ′, (s, t) entry with 0 ≤ s ≤ 3 and 0 ≤ t ≤ 6 has the
value τs2t and 1 + τs2t respectively.

Table 4. Computation of Ki and K′

i using a Gaussian normal basis of type k = 4 in
GF (2m) for m = 7

K0 K1 K2 K3 K4 K5 K6 K′

0 K′

1 K′

2 K′

3 K′

4 K′

5 K′

6

1 2 4 8 16 3 6 2 3 5 9 17 4 7
12 24 19 9 18 7 14 13 25 20 10 19 8 15
28 27 25 21 13 26 23 0 28 26 22 14 27 24
17 5 10 20 11 22 15 18 6 11 21 12 23 16

From the above table, we find αα0 = α1 and

αα1 = α0 + α2 + α5 + α6, αα2 = α1 + α3 + α4 + α5, αα3 = α2 + α5,

αα4 = α2 + α6, αα5 = α1 + α2 + α3 + α6, αα6 = α1 + α4 + α5 + α6.
(40)

For example, see the block K ′
2 for the expression of αα2. The entries of K ′

2 are
5, 20, 26, 11. Now see the blocks of Kis and find 5 ∈ K1, 20 ∈ K3, 26 ∈ K5, 11 ∈
K4. Thus we get αα2 = α1 +α3 +α4 +α5. From (40), the multiplication matrix
(λij) is written as

(λij) =













0 1 0 0 0 0 0
1 0 1 0 0 1 1
0 1 0 1 1 1 0
0 0 1 0 0 1 0
0 0 1 0 0 0 1
0 1 1 1 0 0 1
0 1 0 0 1 1 1













, (41)

and again using the relations (24),(25),(28),(29), we get the following multiplica-

tion result C = AB =
∑6

i=0 ciαi. In the following table, aijkl is defined as aijkl =
ai +aj +ak +al. For example, we have c0 = (a2 +a5)b3 +(a0 +a2 +a5 +a6)b1 +
(a1+a4+a5+a6)b6+(a2+a6)b4+(a1+a3+a4+a5)b2+a1b0+(a1+a2+a3+a6)b5.

c0 = (a2 + a5)b3 + a0256b1 + a1456b6 + (a2 + a6)b4 + a1345b2 + a1b0 + a1236b5

c1 = (a3 + a6)b4 + a1360b2 + a2560b0 + (a3 + a0)b5 + a2456b3 + a2b1 + a2340b6

c2 = (a4 + a0)b5 + a2401b3 + a3601b1 + (a4 + a1)b6 + a3560b4 + a3b2 + a3451b0

c3 = (a5 + a1)b6 + a3512b4 + a4012b2 + (a5 + a2)b0 + a4601b5 + a3b3 + a4562b1

c4 = (a6 + a2)b0 + a4623b5 + a5123b3 + (a6 + a3)b1 + a5012b6 + a4b4 + a5603b2

c5 = (a0 + a3)b1 + a5034b6 + a6234b4 + (a0 + a4)b2 + a6123b0 + a6b5 + a6014b3

c6 = (a1 + a4)b2 + a6145b0 + a0345b5 + (a1 + a5)b3 + a0234b1 + a0b6 + a0125b4

(42)

The corresponding shift register arrangement of C = AB using a Gaussian
normal basis of type 4 in GF (2m) for m = 7 is shown in Figure 4. Also note
that the underlined entries are the first terms to be computed and the (shifted)
diagonal entries have the common terms of ais. The critical path delay of the
circuit using a type 4 Gaussian normal basis is only TA + 3TX and can be
effectively realized for the case GF (2163) and GF (2409) also.

Fig. 4. A new multiplication circuit using a Gaussian normal basis of type 4 in GF (2m)
for m = 7

5 Conclusions

In this paper, we proposed a low complexity sequential normal basis multiplier
over GF (2m) for odd m using a Gaussian normal basis of type k. Since, in many
cryptographic applications, m should be an odd integer or a prime, our assump-
tion on m is not at all restrictive for a practical purpose. We presented a general
method of constructing a circuit arrangement of the multiplier and showed ex-
plicit examples for the cases of type 2 and 4 Gaussian normal bases. Among
the five binary fields, GF (2m) with m = 163, 233, 283, 409, 571, recommended
by NIST [16] for ECC, our examples cover the cases m = 163, 233, 409 since

GF (2233) has a type II ONB and GF (2163), GF (2409) have a Gaussian normal
basis of type 4. Our general method can also be applied to other fields GF (2283)
and GF (2571) since they have a Gaussian normal basis of type 6 and 10, respec-
tively. Compared with previously proposed architectures of the same kinds, our
multiplier has a superior or comparable area complexity and delay time. Thus
it is well suited for many applications such as VLSI implementation of elliptic
curve cryptographic protocols.

References

1. G.B. Agnew, R.C. Mullin, I. Onyszchuk, and S.A. Vanstone, “An implementation
for a fast public key cryptosystem,” J. Cryptology, vol. 3, pp. 63–79, 1991.

2. G.B. Agnew, R.C. Mullin, and S.A. Vanstone, “Fast exponentiation in GF (2n),”
Eurocrypt 88, Lecture Notes in Computer Science, vol. 330, pp. 251–255, 1988.

3. A. Reyhani-Masoleh and M.A. Hasan, “Low complexity sequential normal basis
multipliers over GF (2m),” 16th IEEE Symposium on Computer Arithmetic, vol.
16, pp. 188–195, 2003.

4. A. Reyhani-Masoleh and M.A. Hasan, “A new construction of Massey-Omura par-
allel multiplier over GF (2m),” IEEE Trans. Computers, vol. 51, pp. 511–520, 2002.

5. A. Reyhani-Masoleh and M.A. Hasan, “Efficient multiplication beyond optimal
normal bases,” IEEE Trans. Computers, vol. 52, pp. 428–439, 2003.

6. A.J. Menezes, I.F. Blake, S. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian,
Applications of Finite Fields, Kluwer Academic Publisher, 1993.

7. J.L. Massy and J.K. Omura, “Computational method and apparatus for finite field
arithmetic,” US Patent No. 4587627, 1986.

8. C. Paar, P. Fleischmann, and P. Roelse, “Efficient multiplier architectures for Ga-
lois fields GF (24n),” IEEE Trans. Computers, vol. 47, pp. 162–170, 1998.

9. E.R. Berlekamp, “Bit-serial Reed-Solomon encoders,” IEEE Trans. Inform. The-

ory, vol. 28, pp. 869–874, 1982.
10. B. Sunar and Ç.K. Koç, “An efficient optimal normal basis type II multiplier,”

IEEE Trans. Computers, vol. 50, pp. 83–87, 2001.
11. H. Wu, M.A. Hasan, I.F. Blake, and S. Gao, “Finite field multiplier using redundant

representation,” IEEE Trans. Computers, vol. 51, pp. 1306–1316, 2002.
12. S. Gao, J. von zur Gathen, and D. Panario, “Orders and cryptographical applica-

tions,” Math. Comp., vol. 67, pp. 343–352, 1998.
13. J. von zur Gathen and I. Shparlinski, “Orders of Gauss periods in finite fields,”

ISAAC 95, Lecture Notes in Computer Science, vol. 1004, pp. 208–215, 1995.
14. S. Gao and S. Vanstone, “On orders of optimal normal basis generators,” Math.

Comp., vol. 64, pp. 1227–1233, 1995.
15. S. Feisel, J. von zur Gathen, M. Shokrollahi, “Normal bases via general Gauss

periods,” Math. Comp., vol. 68, pp. 271–290, 1999.
16. NIST, “Digital Signature Standard,” FIPS Publication, 186-2, February, 2000.

