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Preface i

Preface

As cardiovascular disease is a major cause of death in the western world, knowledge

of cardiovascular pathologies, including heart valve failure and atherosclerosis is of

great importance. This knowledge can only be gathered after well understanding

the circulation of the blood. Also for the development and usage of diagnostic tech-

niques, like ultrasound and magnetic resonance assessment of blood 
ow and vessel

wall displacement, knowledge of the 
uid mechanics of the circulatory system is in-

dispensable. Moreover, awareness of cardiovascular 
uid mechanics is of great help

in endovascular treatment of diseased arteries, the design of vascular prostheses that

can replace these arteries when treatment is not successful, and in the development

of prosthetic heart valves. Finally, development and innovation of extra-corporal

systems strongly relies on insight into cardiovascular 
uid mechanics. The lecture

notes focus on 
uid mechanical phenomena that occur in the human cardiovascular

system and aim to contribute to better understanding of the circulatory system.



ii Cardiovascular Fluid Mechanics - lecture notes

In the introductory part of these notes a short overview of the circulatory system

with respect to blood 
ow and pressure will be given. In chapter 1 a simple model

of the vascular system will be presented despite the fact that the 
uid mechanics of

the cardiovascular system is complex due to the non-linear and non-homogeneous

rheological properties of blood and arterial wall, the complex geometry and the

pulsatile 
ow properties.

After this introduction, in chapter 2, a short review of the equations governing 
uid

mechanics is given. This includes the main concepts determining the constitutive

equations for both 
uids and solids. Using limiting values of the non-dimensional

parameters, simpli�cations of these equations will be derived in subsequent chapters.

A chapter on the 
uid mechanics of the heart (chapter 3), which is an important

topic with respect to cardiac diseases and heart valve dynamics, is not yet written

and will be provided in a future version of this manuscript.

An important part, chapter 4, is dedicated to the description of Newtonian 
ow

in straight, curved and bifurcating, rigid tubes. With the aid of characteristic di-

mensionless parameters the 
ow phenomena will be classi�ed and related to speci�c

physiological phenomena in the cardiovascular system. In this way di�erence be-

tween 
ow in the large arteries and 
ow in the micro-circulation and veins and the

di�erence between 
ow in straight and curved arteries will be elucidated. It will be

shown that the 
ow in branched tubes shows a strong resemblance to the 
ow in

curved tubes.

Although 
ow patterns as derived from rigid tube models do give a good approx-

imation of those that can be found in the vascular system, they will not provide

information on pressure pulses and wall motion. In order to obtain this informa-

tion a short introduction to vessel wall mechanics will be given and models for wall

motion of distensible tubes as a function of a time dependent pressure load will be

derived in chapter 5.

The 
ow in distensible tubes is determined by wave propagation of the pressure

pulse. The main characteristics of the wave propagation including attenuation and

re
ection of waves at geometrical transitions are treated in chapter 6, using a one-

dimensional wave propagation model.

As blood is a 
uid consisting of blood cells suspended in plasma its rheological

properties di�er from that of a Newtonian 
uid. In chapter 7 constitutive equations

for Newtonian 
ow, generalized Newtonian 
ow, viscoelastic 
ow and the 
ow of

suspensions will be dealt with. It will be shown that the viscosity of blood is shear

and history dependent as a result of the presence of deformation and aggregation of

the red blood cells that are suspended in plasma. The importance of non-Newtonian

properties of blood for the 
ow in large and medium sized arteries will be discussed.

Finally in chapter 8 the importance of the rheological (non-Newtonian) properties of

blood, and especially its particulate character, for the 
ow in the micro-circulation

will be elucidated. Velocity pro�les as a function of the ratio between the vessel

diameter and the diameter of red blood cells will be derived.

In order to obtain a better understanding of the physical meaning, many of the

mathematical models that are treated are implemented in MATLAB. Descriptions

of these implementations are available in a separate manuscript: 'Cardiovascular

Fluid Mechanics - computational models'.
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Chapter 1

General introduction

1.1 Introduction

The study of cardiovascular 
uid mechanics is only possible with some knowledge

of cardiovascular physiology. In this chapter a brief introduction to cardiovascular

physiology will be given. Some general aspects of the 
uid mechanics of the heart,

the arterial system, the micro-circulation and the venous system as well as the

most important properties of the vascular tree that determine the pressure and 
ow

characteristics in the cardiovascular system will be dealt with. Although the 
uid

mechanics of the vascular system is complex due to complexity of geometry and

pulsatility of the 
ow, a simple linear model of this system will be derived.

1
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1.2 The cardiovascular system

The cardiovascular system takes care of convective transport of blood between the

organs of the mammalian body in order to enable di�usive transport of oxygen,

carbon oxide, nutrients and other solutes at cellular level in the tissues. Without this

convective transport an appropriate exchange of these solutes would be impossible

because of a too large di�usional resistance. An extended overview of physiological

processes that are enabled by virtue of the cardiovascular system can be found in

standard text books on physiology like Guyton (1967).

The circulatory system can be divided into two parts in series, the pulmonary cir-

culation and the systemic circulation (see �gure 1.1). Blood received by the right

atrium (RA) from the venae cavae is pumped from the right ventricle (RV) of the

heart into the pulmonary artery which strongly bifurcates in pulmonary arterioles

transporting the blood to the lungs. The left atrium (LA) receives the oxygenated

blood back from the pulmonary veins. Then the blood is pumped via the left ven-

tricle (LV) into the systemic circulation. As from 
uid mechanical point of view the

main 
ow phenomena in the pulmonary circulation match the phenomena in the

systemic circulation, in the sequel of this course only the systemic circulation will

be considered.

pulmonary

circulationsystemic

circulation

aorta

a. pulmonaris

RA LA
v.cava

RV LV

v.pulmonaris

aortic valve

mitral valve

tricuspid valve

pulmonary valve

Figure 1.1: Schematic representation of the heart and the circulatory system.

RA = right atrium, LA = left atrium, RV = right ventricle, LV = left ventricle.

1.2.1 The heart

The forces needed for the motion of the blood are provided by the heart, which

serves as a four-chambered pump that propels blood around the circulatory system



General Introduction 3

(see �gure 1.1). Since the mean pressure in the systemic circulation is approximately

13[kPa], which is more than three times the pressure in the pulmonary system (�
4[kPa]), the thickness of the left ventricular muscle is much larger then that of the

right ventricle.

The ventricular and aortic pressure and aortic 
ow during the cardiac cycle are

given in �gure 1.2. Atrial contraction, induced by a stimulus for muscle contraction

of the sinoatrial node, causes a �lling of the ventricles with hardly any increase

of the ventricular pressure. In the left heart the mitral valve is opened and o�ers

very low resistance. The aortic valve is closed. Shortly after this, at the onset of

systole the two ventricles contract simultaneously controlled by a stimulus generated

by the atrioventricular node. At the same time the mitral valve closes (mc) and a

sharp pressure rise in the left ventricle occurs. At the moment that this ventricular

pressure exceeds the pressure in the aorta, the aortic valve opens (ao) and blood is

ejected into the aorta. The ventricular and aortic pressure �rst rise and then fall

as a result of a combined action of ventricular contraction forces and the resistance

and compliance of the systemic circulation. Due to this pressure fall (or actually the

corresponding 
ow deceleration) the aortic valve closes (ac) and the pressure in the

ventricle drops rapidly, the mitral valve opens (mo), while the heart muscle relaxes

(diastole).

Since, in the heart, both the blood 
ow velocities as well as the geometrical length

scales are relatively large, the 
uid mechanics of the heart is strongly determined by

inertial forces which are in equilibrium with pressure forces.
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Figure 1.2: Pressure in the left atrium, left ventricle and the aorta (left) and 
ow

through the mitral valve and the aorta (right) as a function of time during one

cardiac cycle (after Milnor, 1989). With times: mc = mitral valve closes, ao =

aortic valve opens, ac = aortic valve closes and mo = mitral valve opens.
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Figure 1.3: Rough estimates of the diameter, length and number of vessels, their

total cross-section and volume and the pressure in the vascular system.

1.2.2 The systemic circulation

The systemic circulation can be divided into three parts: the arterial system, the

capillary system and the venous system. The main characteristics of the systemic

circulation are depicted schematically in �gure 1.3.

From �gure 1.3 it can be seen that the diameter of the blood vessels strongly decrease

from the order of 0:5�20[mm] in the arterial system to 5�500[�m] in the capillary

system. The diameters of the vessels in the venous system in general are slightly

larger then those in the arterial system. The length of the vessels also strongly de-

creases and increases going from the arterial system to the venous system but only

changes in two decades. Most dramatic changes can be found in the number of ves-

sels that belong to the di�erent compartments of the vascular system. The number

of vessels in the capillary system is of order O(106) larger then in the arterial and

venous system. As a consequence, the total cross section in the capillary system is

about 1000 times larger then in the arterial and the venous system, enabeling an

e�cient exchange of solutes in the tissues by di�usion. Combination of the di�erent
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dimensions mentioned above shows that the total volume of the venous system is

about 2 times larger then the volume of the arterial system and much larger then

the total volume of the capillary system. As can be seen from the last �gure, the

mean pressure falls gradually as blood 
ows into the systemic circulation. The pres-

sure amplitude, however, shows a slight increase in the proximal part of the arterial

system.

The arterial system is responsible for the transport of blood to the tissues. Be-

sides the transport function of the arterial system the pulsating 
ow produced by

the heart is also transformed to a more-or-less steady 
ow in the smaller arteries.

Another important function of the arterial system is to maintain a relatively high

arterial pressure. This is of importance for a proper functioning of the brain and

kidneys. This pressure can be kept at this relatively high value because the distal

end of the arterial system strongly bifurcates into vessels with small diameters (ar-

terioles) and hereby forms a large peripheral resistance. The smooth muscle cells in

the walls are able to change the diameter and hereby the resistance of the arterioles.

In this way the circulatory system can adopt the blood 
ow to speci�c parts in

accordance to momentary needs (vasoconstriction and vasodilatation). Normally

the heart pumps about 5 liters of blood per minute but during exercise the heart

minute volume can increase to 25 liters. This is partly achieved by an increase of

the heart frequency but is mainly made possible by local regulation of blood 
ow

by vasoconstriction and vasodilatation of the distal arteries (arterioles). Unlike the

situation in the heart, in the arterial system, also viscous forces may become of

signi�cant importance as a result of a decrease in characteristic velocity and length

scales (diameters of the arteries).

Leaving the arterioles the blood 
ows into the capillary system, a network of small

vessels. The walls consist of a single layer of endothelial cells lying on a basement

membrane. Here an exchange of nutrients with the interstitial liquid in the tissues

takes place. In physiology, capillary blood 
ow is mostly referred to as micro circu-

lation. The diameter of the capillaries is so small that the whole blood may not be

considered as a homogeneous 
uid anymore. The blood cells are moving in a single

�le (train) and strongly deform. The plasma acts as a lubrication layer. The 
uid

mechanics of the capillary system hereby strongly di�ers from that of the arterial

system and viscous forces dominate over inertia forces in their equilibrium with the

driving pressure forces.

Finally the blood is collected in the venous system (venules and veins) in which

the vessels rapidly merge into larger vessels transporting the blood back to the heart.

The total volume of the venous system is much larger then the volume of the arterial

system. The venous system provides a storage function which can be controlled by

constriction of the veins (venoconstriction) that enables the heart to increase the

arterial blood volume. As the diameters in the venous system are of the same order

of magnitude as in the arterial system, inertia forces may become in
uential again.

Both characteristic velocities and pressure amplitudes, however, are lower than in

the arterial system. As a consequence, in the venous system, instationary inertia
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forces will be of less importance then in the arterial system. Moreover, the pressure

in the venous system is that low that gravitational forces become of importance.

The geometrical dimensions referred to above and summarized in �gure 1.3 show

that the vascular tree is highly bifurcating and will be geometrically complex. Flow

phenomena related with curvature and bifurcation of the vessels (see chapter 4) can

not be neglected. As in many cases the length of the vessels is small compared to

the length needed for fully developed 
ow, also entrance 
ow must be included in

studies of cardiovascular 
uid mechanics.

1.3 Pressure and 
ow in the cardiovascular system

1.3.1 Pressure and 
ow waves in arteries

The pressure in the aorta signi�cantly changes with increasing distance from the

heart. The peak of the pressure pulse delays downstream indicating wave propaga-

tion along the aorta with a certain wave speed. Moreover, the shape of the pressure

pulse changes and shows an increase in amplitude, a steepening of the front and

only a moderate fall of the mean pressure (see �gure 1.4).

0 0.5 1
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17

18
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abdominal

ascending

Figure 1.4: Typical pressure waves at two di�erent sites in the aorta

This wave phenomenon is a direct consequence of the distensibility of the arterial

wall, allowing a partial storage of the blood injected from the heart due to an

increase of the pressure and the elastic response of the vessel walls. The cross-

sectional area of the vessels depend on the pressure di�erence over the wall. This

pressure di�erence is called the transmural pressure and is denoted by ptr. This

transmural pressure consists of several parts. First, there exists a hydrostatic part

proportional to the density of the blood inside �, the gravity force g and the height

h. This hydrostatic part is a result of the fact that the pressure outside the vessels

is closely to atmospheric. Next, the pressure is composed of a time independent
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part p0 and a periodic, time dependent part p. So the transmural pressure can be

written as:

ptr = �qh+ p0 + p (1.1)

Due to the complex nonlinear anisotropic and viscoelastic properties of the arterial

wall, the relation between the transmural pressure and the cross sectional area A

of the vessel is mostly nonlinear and can be rather complicated. Moreover it varies

from one vessel to the other. Important quantities with respect to this relation, used

in physiology, are the compliance or alternatively the distensibility of the vessel.

The compliance C is de�ned as:

C =
@A

@p
(1.2)

The distensibilityD is de�ned by the ratio of the compliance and the cross sectional

area and hereby is given by:

D =
1

A

@A

@p
=
C

A
(1.3)

In the sequel of this course these quantities will be related to the material properties

of the arterial wall. For thin walled tubes, with radius a and wall thickness h,

without longitudinal strain, e.g., it can be derived that:

D =
2a

h

1� �2

E
(1.4)

Here � denotes Poisson 's ratio and E Young 's modulus. From this we can see that

besides the properties of the material of the vessel (E;�) also geometrical properties

(a; h) play an important role.

The value of the ratio a=h varies strongly along the arterial tree. The veins are more

distensible than the arteries. Mostly, in some way, the pressure-area relationship,

i.e. the compliance or distensibility, of the arteries or veins that are considered, have

to be determined from experimental data. A typical example of such data is given

in �gure 1.5 where the relative transmural pressure p=p0 is given as a function of the

relative cross-sectional area A=A0. As depicted in this �gure, the compliance changes

with the pressure load since at relatively high transmural pressure, the collagen �bres

in the vessel wall become streched and prevent the artery from further increase of

the circumferential strain.

The 
ow is driven by the gradient of the pressure and hereby determined by the

propagation of the pressure wave. Normally the pressure wave will have a pulsating

periodic character. In order to describe the 
ow phenomena we distinguish between

steady and unsteady part of this pulse. Often it is assumed that the unsteady part

can be described by means of a linear theory, so that we can introduce the concept

of pressure and 
ow waves which be superpositions of several harmonics:

p =
NX
n=1

pne
ni!t q =

NX
n=1

qne
ni!t (1.5)
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1.1

p=p0 [-]

A=A0 [-]

elastin determined

collagen determined

Figure 1.5: Typical relation between the relative transmural pressure p=p0 and the

relative cross-sectional area A=A0 of an artery.

Here pn and qn are the complex Fourier coe�cients and hereby p and q are the

complex pressure and the complex 
ow, ! denotes the angular frequency of the

basic harmonic. Actual pressure and 
ow can be obtained by taking the real part

of these complex functions. Normally spoken 6 to 10 harmonics are su�cient to

describe the most important features of the pressure wave. Table 1.3.1 is adopted

from Milnor (1989) and represents the modulus and phase of the �rst 10 harmonics

of the pressure and 
ow in the aorta. The corresponding pressure and 
ow are given

in �gure 1.6.

q in ml=s p in mmHg

harmonic modulus phase modulus phase

0 110 0 85 0

1 202 -0.78 18.6 -1.67

2 157 -1.50 8.6 -2.25

3 103 -2.11 5.1 -2.61

4 62 -2.46 2.9 -3.12

5 47 -2.59 1.3 -2.91

6 42 -2.91 1.4 -2.81

7 31 +2.92 1.2 +2.93

8 19 +2.66 0.4 -2.54

9 15 +2.73 0.6 -2.87

10 15 +2.42 0.6 +2.87

Table 1.1: First 10 harmonics of the pressure and 
ow in the aorta (from Milnor,

1989).
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Figure 1.6: Pressure and 
ow in the aorta based on the data given in table 1.3.1
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1.3.2 Pressure and 
ow in the micro-circulation

The micro-circulation is a strongly bifurcating network of small vessels and is re-

sponsible for the exchange of nutrients and gases between the blood and the tissues.

Mostly blood can leave the arterioles in two ways. The �rst way is to follow a

metarteriole towards a speci�c part of the tissue and enter the capillary system.

This second way is to bypass the tissue by entering an arterio venous anastomosis

that shortcuts the arterioles and the venules. Smooth muscle cells in the walls of the

metarterioles, precapillary sphincters at the entrance of the capillaries and glomus

bodies in the anastomoses regulate the local distribution of the 
ow. In contrast

with the arteries the pressure in the micro-vessels is more or less constant in time

yielding an almost steady 
ow. This steadiness, however, is strongly disturbed by

the 'control actions' of the regulatory system of the micro-circulation. As the di-

mensions of the blood cells are of the same order as the diameter of the micro-vessels

the 
ow and deformation properties of the red cells must be taken into account in

the modeling of the 
ow in the micro-circulation (see chapter 4).

1.3.3 Pressure and 
ow in the venous system

The morphology of the systemic veins resemble arteries. The wall however is not

as thick as in the arteries of the same diameter. Also the pressure in a vein is

much lower than the pressure in an artery of the same size. In certain situations

the pressure can be so low that in normal functioning the vein will have an elliptic

cross-sectional area or even will be collapsed for some time. Apart from its di�erent

wall thickness and the relatively low pressures, the veins distinguish from arteries

by the presence of valves to prevent back 
ow.

1.4 Simple model of the vascular system

1.4.1 Periodic deformation and 
ow

In cardiovascular 
uid dynamics the 
ow often may be considered as periodic if

we assume a constant duration of each cardiac cycle. In many cases, i.e. if the

deformation and the 
ow can be described by a linear theory, the displacements and

velocity can be decomposed in a number of harmonics using a Fourier transform:

v =
NX
n=0

v̂ne
in!t (1.6)

Here v̂n are the complex Fourier coe�cients, ! denotes the angular frequency of the

basic harmonic. Note that a complex notation of the velocity is used exploiting the

relation:

ei!t = cos(!t) + i sin(!t) (1.7)

with i =
p
�1. The actual velocity can be obtained by taking the real part of the

complex velocity. By substitution of relation (1.6) in the governing equations that

describe the 
ow, often an analytical solution can be derived for each harmonic.
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Superposition of these solution then will give a solution for any periodic 
ow as long

as the equations are linear in the solution v.

1.4.2 The windkessel model

Incorporating some of the physiological properties described above several models for

the cardiovascular system has been derived in the past. The most simple model is the

one that is known as the windkessel model. In this model the aorta is represented

by a simple compliance C (elastic chamber) and the peripheral blood vessels are

assumed to behave as a rigid tube with a constant resistance (Rp) (see left hand

side of �gure 1.7). The pressure pa in the aorta as a function of the left ventricular


ow qa then is given by:

qa = C
@pa

@t
+
pa

Rp

(1.8)

or after Fourier transformation:

q̂a = (i!C +
1

Rp

)p̂a (1.9)

In the right hand side of �gure 1.7 experimental data ((Milnor, 1989) of the 
ow in

the aorta (top �gure) is plotted as a function of time. This 
ow is used as input for

the computation of the pressure from (1.8) and compared with experimental data

(dotted resp. solid line in �gure 1.7). The resistance Rp and compliance C were

obtained from a least square �t and turned out to be Rp = 0:18[kPa � s=ml] and
C = 11:5[ml=kPa].
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Figure 1.7: Windkessel model of the cardiovascular system (left). Aortic 
ow and

pressure (data from Milnor, 1989) as function of time with pressure obtained from

the windkessel model indicated with the dotted line.

During the diastolic phase of the cardiac cycle the aortic 
ow is relatively low and

(1.8) can be approximated by:

@pa

@t
� 1

RpC
pa during diastole (1.10)
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with solution pa � pase
�t=RpC with pas peak systolic pressure. This approximate

solution resonably corresponds with experimental data.

During the systolic phase of the 
ow the aortic 
ow is much larger then the peripheral


ow (qa � pa=Rp) yielding:

@pa

@t
� 1

C
qa during systole (1.11)

with solution pa � pad+(1=C)
R
qadt with pad the diastolic pressure. Consequently a

phase di�erence between pressure and 
ow is expected. Experimental data, however,

show pa � pad + kqa, so pressure and 
ow are more or less in-phase (see �gure

1.7). Notwithstanding the signi�cant phase error in the systolic phase, this simple

windkessel model is often used to derive the cardiac work at given 
ow. Note that for

linear time-preiodic systems, better �ts can be obtained using the complex notation

(1.9) with frequency dependent resistance (Rp(!)) and compliance C(!)).

In chapter 6 of this course we will show that this model has strong limitations and

is in contradiction with important features of the vascular system.

1.4.3 Vascular impedance

As mentioned before the 
ow of blood is driven by the force acting on the blood

induced by the gradient of the pressure. The relation of these forces to the resulting

motion of blood is expressed in the longitudinal impedance:

ZL =
@p̂

@z
=q̂ (1.12)

The longitudinal impedance is a complex number de�ned by complex pressures and

complex 
ows. It can be calculated by frequency analysis of the pressure gradient

and the 
ow that have been recorded simultaneously. As it expresses the 
ow induced

by a local pressure gradient, it is a property of a small (in�nitesimal) segment of

the vascular system and depends on local properties of the vessel. The longitudinal

impedance plays an important role in the characterization of vascular segments.

It can be measured by a simultaneous determination of the pulsatile pressure at

two points in the vessel with a known small longitudinal distance apart from each

other together with the pulsatile 
ow. In the chapter 6, the longitudinal impedance

will be derived mathematically using a linear theory for pulsatile 
ow in rigid and

distensible tubes. A second important quantity is the input impedance de�ned as

the ratio of the pressure and the 
ow at a speci�c cross-section of the vessel:

Zi = p̂=q̂ (1.13)

The input impedance is not a local property of the vessel but a property of a speci�c

site in the vascular system. If some input condition is imposed on a certain site in

the system, than the input impedance only depends on the properties of the entire

vascular tree distal to the cross-section where it is measured. In general the input

impedance at a certain site depends on both the proximal and distal vascular tree.

The compliance of an arterial segment is characterized by the transverse impedance

de�ned by:

ZT = p̂=
@q̂

@z
� �p̂=i!Â (1.14)
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This relation expresses the 
ow drop due to the storage of the vessel caused by the

radial motion of its wall (A being the cross-sectional area) at a given pressure (note

that i!Â represents the partial time derivative @A=@t). In chapter 6 it will be shown

that the impedance-functions as de�ned here can be very useful in the analysis of

wave propagation and re
ection of pressure and 
ow pulses traveling through the

arterial system.

1.5 Summary

In this chapter a short introduction to cardiovascular 
uid mechanics is given. A

simple (windkessel) model has been derived based on the knowledge that the car-

diovascular systems is characterized by an elastic part (large arteries) and a 
ow

resitance (micro circulation) In this model it is ignored that the 
uid mechanics of

the cardiovascular system is characterized by complex geometries and complex con-

stitutive behavior of the blood and the vessel wall. The vascular system, however,

is strongly bifurcating and time dependent (pulsating) three-dimensional entrance


ow will occur. In the large arteries the 
ow will be determined by both viscous

and inertia forces and movement of the nonlinear viscoelastic anisotropic wall may

be of signi�cant importance. In the smaller arteries viscous forces will dominate

and non-Newtonian viscoelastic properties of the blood may become essential in the

description of the 
ow �eld.

In the next chapter the basic equations that govern the 
uid mechanics of the car-

diovascular system (equations of motion and constitutive relations) will be derived.

With the aid of characteristic dimensionless numbers these equations often can be

simpli�ed and solved for speci�c sites of the vascular system. This will be the subject

of the subsequent chapters.
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Chapter 2

Basic equations

2.1 Introduction

In this section the equations that govern the deformation of a solid and motion of a


uid will be given. For isothermal systems these can be derived from the equations

of conservation of mass and momentum. For non-isothermal systems the motion is

also determined by the conservation of energy. Using limiting values of the non-

dimensional parameters, simpli�cations of these equations can be derived that will

be used in subsequent chapters. For a detailed treatment of general 
uid dynamics

and boundary layer 
ow the reader is referred to Batchelor (1967) and Schlichting

(1960) respectively. More details concerning non-Newtonian and viscoelastic 
uid


ow can be found in chapter 7 and in Bird et al. (1960, 1987).

15
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2.2 The state of stress and deformation

2.2.1 Stress

If an arbitrary body with volume 
(t) is in mechanical equilibrium, then the sum of

all forces acting on the body equals zero and the body will neither accelerate, nor

deform. If we cut the body with a plane �c with normal n, we need a surface force

in order to prevent deformation and acceleration of the two parts (see �gure 2.1).

In each point this surface force can be represented by the product of a stress vector

s and an in�nitesimal surface element d�c. The stress vector s will vary with the

location in and the normal direction of the cutting plane and can be de�ned according

to:

s = n � � (2.1)

The tensor � is the Cauchy stress tensor and completely determines the state of

stress of the body and ,di�erent from s, does not depend on the orientation of the

cutting plane. Note that at the boundary of the volume 
 the Cauchy stress tensor

de�nes the surface force or surface stress acting on the the body. This surface stress

can be decomposed in a normal stress acting in normal direction of the surface and

a shear stress acting in tangential direction.

Ω

Γ

n

s

Figure 2.1: Volume 
 cut by a plane �c with normal n.

2.2.2 Displacement and deformation

In the previous section the state of stress of a body is de�ned by introducing a stress

tensor. Also a measure for the deformation of the body can be de�ned by a tensor:

the deformation gradient tensor F . If a continuous body deforms from one state 
0

to another 
, this deformation is determined by the displacement vector of all

material points x0 of the body:

u(x0; t) = x(x0; t)� x0: (2.2)

Note that we have identi�ed each material point � of the body with its position vector

x(�) at time t = t0 (i.e. x(�; 0) = x
0(�)). So the position vector x of a material

point depends on the initial position x0 and the time t. For convenience, from now

on we will omit the �-dependency in the notation and will denote with x = x(x0; t)

the position vectors of all material points � at time t (note: x(x0; 0) = x
0).
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t = 0
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dx02
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u
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dx1

θ

t = t

dx2

O

Figure 2.2: Volume 
 before and after deformation.

Each in�nitesimal material vector dx0 in the reference state 
0 will stay in�nitesimal

after deformation but will stretch and rotate to a new vector dx (see �gure 2.2 where

the in�nitesimal vectors dx1 and dx2 are given). The relation between dx0 and dx

can be de�ned by the deformation gradient tensor F de�ned by:

dx = (r0
x)c � dx0 � F � dx0 (2.3)

Remark :

The operator r0 is the gradient operator with respect to the initial reference

frame. In Cartesian coordinates this yields:

F = (r0
x)c =

2
666666666664

@x1

@x01

@x1

@x02

@x1

@x03

@x2

@x01

@x2

@x02

@x2

@x03

@x3

@x01

@x3

@x02

@x3

@x03

3
777777777775

(2.4)

Also the notation F =
@x

@x0
is often used yielding dx =

@x

@x0
� dx0.

If we want to construct constitutive equations , we want to relate the state of de-

formation F to the state of stress �. If we would simply take � = �(F ) then in

general a simple rotation of the whole body 
 would introduce a change of state

of the stress �. This of course is physical nonsense. True deformation consists of

stretch and shear and should not contain translation and rotation. The stretch of

the material vector dx0 is given by:

� =
jjdxjj
jjdx0jj =

s
dx � dx

jjdx0jjjjdx0jj =
s
F � dx0 � F � dx0
jjdx0jjjjdx0jj

=

s
dx0 � F c � F � dx0
jjdx0jjjjdx0jj =

p
e0 � F c � F � e0

(2.5)
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with e0 = dx0=jjdx0jj the unit vector in the direction of dx0 and F c the transpose

of F . The shear deformation between two initially perpendicular material vectors

dx01 and dx02 is determined by the angle � between the vectors after deformation

(see �gure 2.2):

cos(�) =
dx1 � dx2p

dx1 � dx1
p
dx2 � dx2

=
e
0
1 � F c � F � e02q

e
0
1 � F c � F � e01

q
e
0
2 � F c � F � e02

(2.6)

Equations (2.5) and (2.6) show that true deformation can be described by the

Cauchy-Green deformation tensor C given by:

C = F
c � F (2.7)

Note that in the derivation of the stretch � and the shear � the vectors dx, dx1 and

dx2 are eliminated using the de�nition of the deformation gradient tensor F . This

means that the stretch and shear is de�ned with respect to the initial geometry 
0.

This is common in solid mechanics where the initial state is mostly well known and

free of stress.

In a similar way one can derive:

� =
jjdxjj
jjdx0jj =

p
e � F � F c � e (2.8)

and:

cos(�) =
e1 � F � F c � e2p

e1 � F � F c � e1
p
e2 � F � F c � e2

(2.9)

Note that now the stretch and shear is de�ned with respect to the new (deformed)

geometry, which is more suitable for 
uids but also commonly used for rubber-like

solids.

The tensor product

B = F � F c (2.10)

is called the Finger tensor.

Remark :

The Finger tensor can also be derived by decomposing the deformation gradi-

ent tensor into a stretching part U and a rotation R:

F = U �R (2.11)

By multiplying F with its transpose (F �F c = U �R�(U �R)c = U �R�Rc �U c =

U �U c), the rotation is removed since for rotation R �Rc = I must hold.

Unlike the deformation gradient tensor F the Cauchy-Green deformation tensorC =

F
c �F and the Finger tensor B = F �F c both can be used to construct constitutive

relations relating the state of deformation with the state of stress without introducing

spurious stresses after simple rotation.
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2.2.3 Velocity and rate of deformation

In 
uid mechanics not only the deformation but also the rate of deformation is of

importance. The rate of deformation depends on the relative velocity dv between two

points de�ned by the material vector dx. The velocity of material points x = x(x0; t)

is de�ned by the rate of displacement:

v(x0; t) = _u(x0; t)

= lim
�t!0

u(x0; t+�t)� u(x0; t)
�t

(2.12)

Together with the de�nition of the displacement (2.2) this yields:

v(x0; t) = lim
�t!0

x(x0; t+�t)� x(x0; t)
�t

= _x(x0; t)

(2.13)

The rate of change of a in�nitesimal material vector dx follows from (2.3) and reads:

dv = d _x = _F � dx0 (2.14)

The in�nitesimal velocity can also be related to the in�nitesimal material vector

according to:

dv =
@v

@x
� dx+

@v

@t
dt (2.15)

and for a �xed instant of time (dt = 0):

dv =
@v

@x
� dx � L � dx (2.16)

L is called the velocity gradient tensor.

Using (2.16) this yields L � dx = dv = d _x = _F � dx0 = _F � F�1dx, showing that the
tensor _F is de�ned by the tensor product of the velocity gradient tensor and the

deformation gradient tensor:

_F = L � F (2.17)

The velocity gradient tensor L is often written as the dyadic product of the gradient

vector r and the velocity vector v:

L =
@v

@x
= (rv)c (2.18)

If we want to relate the rate of deformation to the state of stress we must decompose

L into a part that describes the rate of deformation and a part that represents the

rate of rotation. This is achieved by the following decomposition:

L =D +
 (2.19)

with:

D = _U = 1
2
(L+L

c) = 1
2
(rv + (rv)c) (2.20)



20 Cardiovascular Fluid Mechanics - lecture notes


 = _R = 1
2
(L�Lc) = 1

2
(rv � (rv)c) (2.21)

2D (also written as _
) is the rate of deformation or rate of strain tensor and 


is the vorticity or spin tensor. This can be derived readily if we realize that in

(2.14) we are only interested in the instantaneous rate of separation of points, i.e.

we consider a deformation that takes place in an in�nitesimal period of time dt so

x
0 ! x. In that case we have after combination of (2.11) and (2.17):

lim
x0
!x

L � F = lim
x0
!x

( _U �R+U � _R) (2.22)

Since L, _U and _R are de�ned in the current reference state they only depend on x

and t and do not depend on x0 we get:

L � lim
x0
!x

F = _U � lim
x0
!x

R+ lim
x0
!x

U � _R (2.23)

and thus by virtue of lim
x0
!x

F = lim
x0
!x

U = lim
x0
!x

R = I :

L = _U + _R (2.24)

So, the velocity gradient tensor L is the sum of the rate of stretching tensor _U and

the rate of rotation tensor _R.

2.2.4 Constitutive equations

For later use in deriving constitutive equations the following relations are given:

_B = _F � F c + F � _F c

= L � F � F c + F � F c �Lc

= L �B +B �Lc

(2.25)

from which it follows that

_B = 2D (2.26)

Constitutive equations for solids are oftenly constructed using a relation between the

stress tensor � and the Finger tensor B: � = �(B). Fluids are mostly described by

a relation between the stress tensor � and the time derivative of the Finger tensor
_B or by virtue of (2.26): � = �(D). Incompressible media (
uid or solid) on which

to a constant pressure force is exerted will not deform. Still the state of stress will

change whenever the external pressure changes. This property can incorporated in

the constitutive equations by taking:

� = �pI + � (B) and � = �pI + � (D) resp. (2.27)

The tensor � is called the extra stress tensor.

The most simple versions are found for incompressible linear elastic solids that can be

described � = �pI+GB and incompressible Newtonian 
uids where � = �pI+2�D
with p the pressure, G the shear modulus and � the dynamic viscosity.

Viscoelastic materials (
uids or solids) in general are characterized by a constitutive

equation of the form: � = � (B; _B; �B; :::). In the sections that follow these relations

between stress and strain will be used in di�erent forms.
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2.3 Equations of motion

The equations needed for the determination of the variables pressure (p) and velocity

(v) can be derived by requiring conservation of mass, momentum and energy of


uid moving through a small control volume 
. A general procedure to obtain these

equations is provided by the transport theorem of Reynolds.

2.3.1 Reynolds' transport theorem

Consider an arbitrary volume 
 = 
(t) with boundary surface � = �(t) not neces-

sarily moving with the 
uid and let 	(x; t) be a scalar, vector or tensor function of

space and time de�ned in 
(t). The volume integral:

Z

(t)

	(x; t)d
 (2.28)

is a well de�ned function of time only. The rate of change of 	 in 
(t) is given by:

d

dt

Z

(t)

	(x; t)d
 =

lim
�t!0

1

�t

2
64 Z

(t+�t)

	(x; t+�t)d
�
Z


(t)

	(x; t)d


3
75 :

(2.29)

If the boundary �(t) moves with velocity v� this will introduce a 
ux of 	 propor-

tional to v� � n. As a consequence:Z

(t+�t)

	(x; t+�t)d
 =

Z

(t)

	(x; t+�t)d
+�t

Z
�(t)

	(x; t+�t)v� �nd�(2.30)

The rate of change of 	 then can be written as:

d

dt

Z

(t)

	d
 = lim
�t!0

1

�t

2
64 Z

(t)

	(x; t+�t)d
 +

�t

Z
�(t)

	(x; t+�t)v� � nd��
Z


(t)

	(x; t)d


3
75

=

Z

(t)

lim
�t!0

1

�t
[	(x; t+�t)d
�	(x; t)d
]+

Z
�(t)

lim
�t!0

	(x; t+�t)v� � nd�

(2.31)
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or equivalently:

d

dt

Z

(t)

	d
 =

Z

(t)

@	(x; t)

@t
d
+

Z
�(t)

	(x; t)v� � nd� (2.32)

In order to derive di�erential forms of the conservation laws the transport theorem

(also called the Leibnitz formula) is often used in combination with the Gauss-

Ostrogradskii theorem:

Z

(t)

(r � v)d
 =

Z
�(t)

(v � n)d� (2.33)

Z

(t)

(a(r � v) + (v � r)a)d
 =

Z
�(t)

a(v � n)d� (2.34)

Z

(t)

(r � � c)d
 =

Z
�(t)

(� � n)d� (2.35)

2.3.2 Continuity equation

Consider an arbitrary control volume 
(t) with boundary �(t) and outer normal

n(x; t) (see �gure 2.3). This control volume is placed in a velocity �eld v(x; t).

�(t)


(t)

n(x; t)

v(x; t)

Figure 2.3: Control volume 
(t) with boundary �(t) and outer normal n(x; t).

Conservation of mass requires that the rate of change of mass of 
uid within the

control volume 
(t) is equal to the 
ux of mass across the boundary �(t):

d

dt

Z

(t)

�d
+

Z
�(t)

�(v � v�) � nd� = 0 (2.36)
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The �rst term can be rewritten with Leibnitz formula. Applying the Gauss-Ostrogradskii

divergence theorem this yields:

Z

(t)

�
@�

@t
+r � (�v)

�
d
 = 0 (2.37)

Since this equation must hold for all arbitrary control volumes 
(t), the following

di�erential form can be derived:

@�

@t
+r � (�v) = 0 (2.38)

This di�erential form of the equation for conservation of mass is called the continuity

equation.

2.3.3 The momentum equation

Consider again the control volume 
(t) with boundary �(t) and outer normal n(x; t)

placed in a velocity �eld v(x; t). The rate of change of linear momentum summed

with the 
ux of momentum through the boundary �(t) is equal to the sum of the

external volume and boundary forces.

d

dt

Z

(t)

�vd
+

Z
�(t)

�v(v � v�) � nd� =

Z

(t)

�fd
+

Z
�(t)

sd� (2.39)

Here f denotes the body force per unit of mass and s denotes the stress vector acting

on the boundary � of 
. If again the control volume is considered to be �xed in

space one can apply the Gauss-Ostrogradskii divergence theorem. Then, making use

of the Cauchy stress tensor � de�ned by (see (2.1):

s = n � � (2.40)

equation (2.39) yields:

Z

(t)

�
@�v

@t
+ �v(r � v) + (v � r)�v

�
d
 =

Z

(t)

[�f +r � �] d
 (2.41)

After substitution of the continuity equation (2.38) the di�erential form of (2.41)

will be the momentum equation:

�
@v

@t
+ �(v � r)v = �f +r � � (2.42)
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2.3.4 Initial and boundary conditions

Without going into the mathematics needed to prove that a unique solution of

the equations of motion (2.38) and (2.42) exists, the boundary conditions that are

needed to solve these equations can be deduced from the integral formulation of

the continuity and momentum equations (2.36) and (2.39) respectively. From the

momentum equation (2.39) it can be seen that both the velocity and the stress vector

could be prescribed on the boundary. Since these quantities are related by virtue

of a constitutive equation, only one of them (for each coordinate direction) should

be used. So for each local boundary coordinate direction one can describe either its

velocity v or its stress vector s. De�ning n as the outer normal and ti (i = 1; 2) the

tangential unit vectors to the boundary � this yields:

in normal direction:

the Dirichlet condition:

(v � n) = vn�
or Neumann condition:

(� � n) � n = (s � n)
in tangential directions:

the Dirichlet conditions:

(v � ti) = vti� i = 1; 2

or Neumann conditions:

(� � n) � ti = (s � ti)

(2.43)

For time-dependent problems initial conditions for velocity and stress must be given

as well.

2.4 Summary

In this chapter the basic equations that govern incompressible solid deformation and


uid 
ow are derived. After introducing the deformation tensor F it has been shown

that the Finger tensor B = F � F c can be used to construct physically permitted

constitutive equations for both solids and 
uids. For incompressible media, these

constitutive equations then are of the form � = �pI + � (B;D) with � the Cauchy

stress tensor, p the pressure, � the extra stress tensor and D = 1
2
_B the rate of

deformation tensor. The equations of motion have been derived.



Chapter 3

Fluid mechanics of the heart

3.1 Introduction

This chapter will be added in a future version of these lecture notes.

3.2 Summary

25
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Chapter 4

Newtonian 
ow in blood vessels

4.1 Introduction

In this section the 
ow patterns in rigid straight, curved and branching tubes will be

considered. First, fully developed 
ow in straight tubes will be dealt with and it will

be shown that this uni-axial 
ow is characterized by two dimensionless parameters,

the Reynolds number Re and the Womersley number �, that distinguish between


ow in large and small vessels. Also derived quantities, like wall shear stress and

vascular impedance, can be expressed as a function of these parameters.

For smaller tube diameters (micro-circulation), however, the 
uid can not be taken

to be homogeneous anymore and the dimensions of the red blood cells must be taken

into account (see chapter 8). In the entrance regions of straight tubes, the 
ow is

more complicated. Estimates of the length of these regions will be derived for steady

and pulsatile 
ow.

The 
ow in curved tubes is not uni-axial but exhibits secondary 
ow patterns per-

pendicular to the axis of the tube. The strength of this secondary 
ow �eld depends

on the curvature of the tube which is expressed in another dimensionless parameter:

the Dean number. Finally it will be shown that the 
ow in branched tubes shows a

strong resemblance to the 
ow in curved tubes.

27
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4.2 Incompressible Newtonian 
ow in general

4.2.1 Incompressible viscous 
ow

For incompressible isothermal 
ow the density � is constant in space and time and

the mass conservation or continuity equation is given by:

r � v = 0 (4.1)

In a viscous 
uid, besides pressure forces also viscous forces contribute to the stress

tensor and in general the total stress tensor can be written as (see chapter 2):

� = �pI+ � ( _B): (4.2)

In order to �nd solutions of the equations of motion the viscous stress tensor �

has to be related to the kinematics of the 
ow by means of a constitutive equation

depending on the rheological properties of the 
uid. In this section only Newtonian


uids will be discussed brie
y.

Newtonian 
ow

In Newtonian 
ow there is a linear relation between the viscous stress � and the

rate of deformation tensor _
 according to:

� = 2�D = � _
 (4.3)

with � the dynamic viscosity and the rate of deformation tensor de�ned as:

_
 = rv + (rv)c: (4.4)

Substitution in the momentum equation yields the Navier-Stokes equations:8>><
>>:
�
@v

@t
+ �(v � r)v = �f �rp+ �r2

v

r � v = 0

(4.5)

After introduction of the non-dimensional variables: x� = x=L, v� = v=V , t� = t=�,

p� = p=�V 2 and f� = f=g, the dimensionless Navier-Stokes equations for incom-

pressible Newtonian 
ow become (after dropping the superscript �):8>><
>>:
Sr
@v

@t
+ (v � r)v =

1

Fr2
f �rp+ 1

Re
r2
v

r � v = 0

(4.6)

With the dimensionless parameters:

Sr =
L

�V
Strouhal number

Re =
�V L

�
Reynolds number

Fr =
Vp
gL

Froude number

(4.7)
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4.2.2 Incompressible in-viscid 
ow

For incompressible isothermal 
ow the density � is constant in space and time and

the mass conservation or continuity equation is given by:

r � v = 0 (4.8)

In an in-viscid 
uid, the only surface force is due to the pressure, which acts normal

to the surface. In that case the stress tensor can be written as:

� = �pI (4.9)

The momentum and continuity equations then lead to the Euler equations:8>><
>>:
�
@v

@t
+ �(v � r)v = �f �rp

r � v = 0

(4.10)

If the Euler equations are rewritten using the vector identity (v �r)v = 1
2
r(v �v)+

! � v with the rotation ! = r� v, an alternative formulation for the momentum

equations then is given by:

�
@v

@t
+ 1

2
�r(v � v) + ! � v = �f �rp (4.11)

It can readily derived that v � (!�v) = 0 so taking the inner product of (4.11) with

v yields:

v � (�@v
@t

+ 1
2
�r(v � v)� �f +rp) = 0 (4.12)

v3

dx2

dx3

v2

dx1

v1

 = c

v

Figure 4.1: De�nition of a streamline  = c.

Streamlines are de�ned as a family of lines that at time t is a solution of:

dx1

v1(x; t)
=

dx2

v2(x; t)
=

dx3

v3(x; t)
(4.13)
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As depicted in �gure 4.1 the tangent of these lines is everywhere parallel to v.

If the 
ow is steady and only potential body forces f = �rF , like the gravity force

g, are involved, equation (4.12) yields

v � r(1
2
�(v � v) + �F + p) � rH = 0 (4.14)

As, by virtue of this, rH?v, along streamlines this results in the Bernoulli equation:

1
2
�(v � v) + p+ �F = const (4.15)

Irotational 
ow

For irotational 
ow (! = r � v = 0) Bernoulli's equation holds for the complete


ow domain. Moreover, since v can be written as:

v = r and thus due to incompressibility r2 = 0 (4.16)

it follows that:

�
@ 

@t
+ 1

2
�(v � v) + p+ �F = const (4.17)

Boundary conditions

Using the constitutive equation (4.9) the boundary conditions described in section

2.3.4 reduce to:

in normal direction:

the Dirichlet condition: (v � n) = vn�
or Neumann condition: (� � n) � n = p

in tangential directions:

the Dirichlet conditions: (v � ti) = vti
�

i = 1; 2

or Neumann conditions: (� � n) � ti = 0

(4.18)

4.2.3 Incompressible boundary layer 
ow

Newtonian boundary layer 
ow

The viscous stress for incompressible 
ow

� = � _
 (4.19)

is only large if velocity gradients are large especially if the viscosity is not too high.

For 
ow along a smooth boundary parallel to the 
ow direction the viscous forces

are only large in the boundary layer (see �gure 4.2).

If the boundary layer thickness � is small compared to a typical length scale of the


ow an estimate of the order of magnitude of the terms and neglecting O(�=L) gives
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u

u

τ
τ

Figure 4.2: Velocity and stress distribution in a boundary layer.

the equations of motion:

8>>>>>>>>>>><
>>>>>>>>>>>:

@v1

@x1
+
@v2

@x2
= 0

�
@v1

@t
+ �v1

@v1

@x1
+ �v2

@v1

@x2
= � @p

@x1
+ �

@2v1

@x22

@p

@x2
= 0

(4.20)

Outside the boundary layer the 
ow is assumed to be in-viscid and application of

Bernoulli in combination with the second equation of (4.20) gives:

� @p

@x1
= �V

@V

@x1
(4.21)

Initial and boundary conditions

This set of equations requires initial conditions:

v1(x10 ; x2; 0) = v01(x1; x2) (4.22)

and boundary conditions:

v1(x10 ; x2; t) = v10(x2; t)

v1(x1; 0; t) = 0

v1(x1; �; t) = V (x1; t)

(4.23)

The boundary layer thickness � can often be estimated by stating that at x2 = � the

viscous forces O(�V=��2) are of the same magnitude as the stationary inertia forces

O(V 2=L) or in-stationary inertia forces O(V=�).
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4.3 Steady and pulsatile Newtonian 
ow in straight tubes

4.3.1 Fully developed 
ow

Governing equations

To analyze fully developed Newtonian 
ow in rigid tubes consider the Navier-Stokes

equations in a cylindrical coordinate system:8>>>>>>>>>>>><
>>>>>>>>>>>>:

@vr

@t
+ vr

@vr

@r
+ vz

@vr

@z
= �1

�

@p

@r
+ �

 
@

@r

�
1

r

@

@r
(rvr)

�
+
@2vr

@z2

!

@vz

@t
+ vr

@vz

@r
+ vz

@vz

@z
= �1

�

@p

@z
+ �

 
1

r

@

@r

�
r
@

@r
(vz)

�
+
@2vz

@z2

!

1

r

@

@r
(rvr) +

@vz

@z
= 0

(4.24)

Since the velocity in circumferential direction equals zero (v� = 0), the momentum

equation and all derivatives in �-direction are omitted. For fully developed 
ow the

derivatives of the velocity in axial direction @

@z
and the velocity component in radial

direction vr are zero and equations (4.24) simplify to:

@vz

@t
= �1

�

@p

@z
+
�

r

@

@r
(r
@vz

@r
) (4.25)

Now a dimensionless velocity can be de�ned as v�z = vz=V , the coordinates can be

made dimensionless using the radius of the tube, i.e. r� = r=a and z� = z=a, the

pressure can be scaled as p� = p=�V 2 and the time can be scaled using t� = !t.

Dropping the asterix, the equation of motion reads:

�2
@vz

@t
= �Re@p

@z
+
1

r

@

@r
(r
@vz

@r
) (4.26)

with Re the Reynolds number given by

Re =
aV

�
(4.27)

and � the Womersley number de�ned as:

� = a

r
!

�
(4.28)

So two dimensionless parameters are involved : the Womersley number � de�ning

the ratio of the instationary inertia forces and the viscous forces and the Reynolds

number Re that is in this case nothing more then a scaling factor for the pressure

gradient. The pressure could also be scaled according to p� = p=(a2=�V ) yielding

one single parameter �.

In table 4.3.1 the Womersley numbers for several sites in the arterial system are

given. These values show that in the aorta and in the largest arteries inertia domi-

nated 
ow and in arterioles and capillaries friction dominated 
ow may be expected.
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a [mm] � [-]

aorta 10 10

large arteries 4 4

small arteries 1 1

arterioles 0.1 0.1

capillaries 0.01 0.01

Table 4.1: Estimated Womersley number at several sites of the arterial system based

on the �rst harmonic of the 
ow. A kinematic of 5 � 10�3[Pa � s], a density of

103[kg �m�3] and a frequency of 1[Hz] are assumed.

In most part of the arteries an intermediate value of � is found and both inertia and

viscous friction are important.

For the venous system a similar dependence of the Womersley number is found but

it must be noted that inertia is less important due to the low amplitude of the �rst

and higher harmonics with respect to the mean 
ow.

Velocity pro�les

For 
ow in a rigid tube (see �gure 4.3) with radius a the boundary condition v(a; t) =

0 is used to impose a no slip condition.

r

zv

r

r = a
v

z

Figure 4.3: Rigid tube with radius a

We will assume a harmonic pressure gradient and will search for harmonic solutions:

@p

@z
=
@p̂

@z
ei!t (4.29)

and

vz = v̂z(r)e
i!t (4.30)

The solution of an arbitrary periodic function then can be constructed by superpo-

sition of its harmonics. This is allowed because the equation to solve (4.26) is linear

in vz.

Now two asymptotic cases can be de�ned. For small Womersley numbers there is an

equilibrium of viscous forces and the driving pressure gradient. For large Womersley

numbers, however, the viscous forces are small compared to the instationary inertia

forces and there will be an equilibrium between the inertia forces and the driving

pressure gradient. Both cases will be considered in more detail.
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Small Womersley number 
ow. If �� 1 equation (4.26) (again in dimension-

full form) yields:

0 = �1

�

@p

@z
+
�

r

@

@r
(r
@vz

@r
) (4.31)

Substitution of (4.29) and (4.30) yields:

�
@2v̂z(r)

@r2
+
�

r

@v̂z(r)

@r
=

1

�

@p̂

@z
(4.32)

with solution:

vz(r; t) = �
1

4�

@p̂

@z
(a2 � r2)ei!t (4.33)

So, for low values of the Womersley number a quasi-static Poiseuille pro�le is found.

It oscillates 180o out of phase with the pressure gradient. The shape of the velocity

pro�les is depicted in the left graph of �gure 4.4.

Large Womersley number 
ow. If the �� 1 equation (4.26) yields:

@vz

@t
= �1

�

@p

@z
(4.34)

Substitution of (4.29) and (4.30) yields:

i!v̂z(r) = �
1

�

@p̂

@z
(4.35)

with solution:

vz(r; t) =
i

�!

@p̂

@z
ei!t (4.36)

Now, for high values of the Womersley number, an oscillating plug 
ow is found

which is 90o out of phase with the pressure gradient (right graph of �gure 4.4). The


ow is dominated by inertia.

0 0.25 0.5 0.75 1
−1

0

1

t/T

r/
a

0 0.25 0.5 0.75 1
−1

0

1

t/T
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/d

z

0 0.25 0.5 0.75 1
−1

0

1

t/T

r/
a

0 0.25 0.5 0.75 1
−1

0

1

t/T

dp
/d

z

Figure 4.4: Pressure gradient (top) and corresponding velocity pro�les (bottom) as

a function of time for small (left) and large (right) Womersley numbers.
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Arbitrary Womersley number 
ow. Substitution of (4.29) and (4.30) in equa-

tion (4.25) yields:

�
@2v̂z(r)

@r2
+
�

r

@v̂z(r)

@r
� i!v̂z(r) =

1

�

@p̂

@z
(4.37)

Substitution of

s = i3=2�r=a (4.38)

in the homogeneous part of this equation yields the equation of Bessel for n = 0:

@2v̂z

@s2
+
1

s

@v̂z

@s
+ (1� n2

s2
)v̂z = 0 (4.39)

with solution given by the Bessel functions of the �rst kind:

Jn(s) =
1X
k=0

(�1)k
k!(n+ k)!

�
s

2

�2k+n
(4.40)

so:

J0(s) =
1X
k=0

(�1)k
k!k!

�
s

2

�2k
= 1� (

s

2
)2 +

1

1222
(
z

2
)4 � 1

122232
(
z

2
)6 + ::: (4.41)

(see Abramowitz and Stegun, 1964).

Together with the particular solution :

v̂pz =
i

�!

@p̂

@z
(4.42)

we have:

v̂z(s) = KJ0(s) + v̂pz (4.43)

Using the boundary condition v̂z(a) = 0 then yields:

K = � v̂pz
J0(�i3=2)

(4.44)

and �nally:

v̂z(r) =
i

�!

@p̂

@z

"
1� J0(i

3=2�r=a)

J0(i3=2�)

#
(4.45)

These are the well known Womersley pro�les (Womersley, 1957) displayed in �gure

4.5. As can be seen from this �gure, the Womersley pro�les for intermediate Wom-

ersley numbers are characterized by a phase-shift between the 
ow in the boundary

layer and the 
ow in the central core of the tube. Actually, in the boundary layer

viscous forces dominate the inertia forces and the 
ow behaves like the 
ow for small

Womersley numbers. For high enough Womersley numbers, in the central core, in-

ertia forces are dominant and 
attened pro�les that are shifted in phase are found.

The thickness of the instationary boundary layer is determined by the Womersley

number. This will be discussed in more detail in section 4.3.2.
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Figure 4.5: Womersley pro�les for di�erent Womersley numbers (� = 2; 4; 8; 16)

Wall shear stress

Using the property of Bessel functions (see Abramowitz and Stegun, 1964)

@J0(s)

@s
= �J1(s) (4.46)

and the de�nition of the Womersley function

F10(�) =
2J1(i

3=2�)

i3=2�J0(i3=2�)
(4.47)

the wall shear stress de�ned as:

�w = ��@vz
@r
jr=a (4.48)

can be derived as:

�w = �a
2
F10(�)

@p

@z
= F10(�)�

p

w (4.49)

with �pw the wall shear stress for Poiseuille 
ow. In �gure 4.6 the function F10(�)

and thus a dimensionless wall shear stress �w=�
p
w is given as a function of �.

remark :

J1(s) =
1X
k=0

(�1)k
k!(1 + k)!

�
s

2

�2k+1
= (

s

2
)� 1

122
(
z

2
)3+

1

12223
(
z

2
)5 + :::(4.50)
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In many cases, for instance to investigate limiting values for small and large values

of �, it is convenient to approximate the Womersley function with:

F10(�) �
(1 + �)1=2

(1 + �)1=2 + 2�
with � =

i�2

16
(4.51)

This approximation is plotted with dotted lines in �gure 4.6. For small values of the

Womersley number (� < 3) the following approximation derived from (4.51) can be

used:

F10(�) �
1

1 + 2�
=

1

1 + i�2=8
(4.52)

whereas for large values (� > 15) one may use:

F10(�) �
1

2
��1=2 =

(1� i)
p
2

�
(4.53)

These two approximations are plotted with dashed lines in �gure 4.6. Note that the

dimensionless wall shear stress for large values of � approximates zero and not 1
that one could conclude from the steep gradients in the velocity pro�les in �gure

4.5.
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Figure 4.6: Modulus (left) and argument (right) of the function F10(�) or �w=�
p
w as

a function of �. The approximations are indicated with dotted and dashed lines.

The mean 
ow q can be derived using the property (Abramowitz and Stegun, 1964):

s
@Jn(s)

@s
= �nJn(s) + sJn�1(s) (4.54)

For n = 1 it follows that:

sJ0(s)ds = d(sJ1(s)) (4.55)



38 Cardiovascular Fluid Mechanics - lecture notes

and together with J1(0) = 0 the 
ow becomes:

q =

aZ
0

v̂z2�rdr = i
�a2

�!
[1� F10(�)]

@p

@z

= [1� F10(�)] q̂1

=
8i

�2
[1� F10(�)] q̂p

(4.56)

with

q̂
1
=
i�a2

�!

@p̂

@z
and q̂p =

�a4

8�

@p̂

@z
(4.57)

Combining equation (4.49) with equation (4.56) by elimination of @p

@z
�nally yields:

�w =
a

2A
i!�

F10(�)

1� F10(�)
q (4.58)

With A = �a2 the cross-sectional area of the tube. In the next chapter this expres-

sion for the wall shear stress will be used to approximate the shear forces that the


uid exerts on the wall of the vessel.

Vascular impedance

The longitudinal impedance de�ned as:

ZL = �@p
@z
=q (4.59)

can be derived directly from equation (4.56) and reads:

ZL = i!
�

�a2
1

1� F10(�)
(4.60)

For a Poiseuille pro�le the longitudinal impedance is de�ned by integration of (4.33)

and is given by:

Zp =
8�

�a4
(4.61)

From this it can be derived that the impedance of a rigid tube for oscillating 
ow re-

lated to the impedance for steady 
ow (Poiseuille resistance) is given by the following

equation:

ZL

Zp
=
i�2

8

1

1� F10(�)
(4.62)

In �gure 4.7 the relative impedance is plotted as a function of the Womersley number

�. The relative longitudinal impedance is real for � � 1 and becomes imaginary

for � ! 1. This expresses the fact that for low frequencies (or small diameters)
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Figure 4.7: The relative impedance for oscillating 
ow in a tube (linear scale at the

top and logarithmic scale at the bottom) as a function of �.

the viscous forces are dominant, whereas for high frequencies (or large diameters)

inertia is dominant and the 
ow behaves as an inviscid 
ow.

For small values of � the relative impedance results in (see 4.52):

ZL(� < 3)

Zp
� 1 +

i�2

8
(4.63)

Viscous forces then dominate and the pressure gradient is in phase with the 
ow

and does not (strongly) depend on alpha. For large values of � (4.53) gives:

ZL(� > 15)

Zp
� i�2

8
(4.64)

indicating that the pressure gradient is out of phase with the 
ow and increases

quadratically with �.

4.3.2 Entrance 
ow

In general the 
ow in blood vessels is not fully developed. Due to transitions and

bifurcations the velocity pro�le has to develop from a certain pro�le at the entrance

of the tube (see �gure 4.8).

In order to obtain an idea of the length needed for the 
ow to develop, the 
ow with

a characteristic velocity V along a smooth boundary with characteristic length L is



40 Cardiovascular Fluid Mechanics - lecture notes

V
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Figure 4.8: Development of a boundary layer

.

considered. Viscous forces only play an important role in the small boundary layer

with thickness �. Outside the boundary layer the 
ow is assumed to be inviscid

so that Bernoulli's law can be applied. From this con�guration simpli�ed Navier-

Stokes equations can be derived by assuming that � � L (see 4.20) and the order

of magnitude of its terms can be estimated:8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

@v1

@x1
+
@v2

@x2
= 0

O(
V

L
) O(

v

�
)

�
@v1

@t
+�v1

@v1

@x1
+�v2

@v1

@x2
= � @p

@x1
+�

@2v1

@x12
+�

@2v1

@x22

O(!V ) O(
V 2

L
) O(

V 2

L
) O(

1

�

@p

@x
) O(

�V

L2
) O(

�V

�2
)

(4.65)

This shows clearly that the di�usive forces are determined by second order deriva-

tives of the velocity normal to the boundary. Moreover it can be seen that the

stationary inertia forces are of the same order of magnitude as the viscous forces

(which is the case at the boundary layer x2 = �) as long as:

O(
�V

�2
) = O(

V 2

L
) (4.66)

Steady 
ow

If the entrance length of the 
ow in a tube is de�ned as the length needed for the

boundary layer to contain the complete cross section, i.e. � = a, then the ratio of

the entrance length and the radius of the tube follows from the equation above as:

Le

a
= O(

aV

�
) (4.67)

Or with the de�nition of the Reynolds number Re = 2aV=� the dimensionless en-

trance length Le=2a is found to be proportional to the Reynolds number:

Le

2a
= O(Re) (4.68)
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In Schlichting (1960) one can �nd that for laminar 
ow, for Le : v(Le; 0) = 0:99 �2V :
Le

2a
= 0:056Re (4.69)

For steady 
ow in the carotid artery, for instance, Re = 300, and thus Le � 40a.

This means that the 
ow will never become fully developed since the length of the

carotid artery is much less than 40 times its radius. In arterioles and smaller vessels,

however, Re < 10 and hereby Le < a, so fully developed 
ow will be found in many

cases.

Oscillating 
ow

For oscillating 
ow the inlet length is smaller as compared to the inlet length for

steady 
ow. This can be seen from the following. The unsteady inertia forces are of

the same magnitude as the viscous forces when:

O(V !) = O(
�V

�2
) (4.70)

and thus:

� = O(

r
�

!
) (4.71)

This means that for fully developed oscillating 
ow a boundary layer exists with a

relative thickness of:

�

a
= O(��1) (4.72)

If, for oscillating 
ow, the inlet length is de�ned as the length for which the viscous

forces still are of the same magnitude as the stationary inertia forces, i.e.:

O(
�V

�2
) = O(

V 2

Le
) (4.73)

then together with (4.72) the inlet length is of the order

Le = O(
V �2

�
) = O(

a

�2
Re) (4.74)

Note that this holds only for � > 1. For � < 1 the boundary layer thickness

is restricted to the radius of the tube and we obtain an inlet length of the same

magnitude as for steady 
ow.

4.4 Steady and pulsating 
ow in curved and branched

tubes

4.4.1 Steady 
ow in a curved tube

Steady entrance 
ow in a curved tube

The 
ow in a curved tube is determined by an equilibrium of convective forces,

pressure forces and viscous forces. Consider, the entrance 
ow in a curved tube
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Figure 4.9: Axial velocity pro�les, secondary velocity streamlines and helical motion

of particles for entrance 
ow in a curved tube.

with radius a and a radius of curvature R0. With respect to the origin O we can

de�ne a cylindrical coordinate system (R, z, �). At the entrance (A: R0 � a < R <

R0 + a, �a < z < a, � = 0) a uniformly distributed irotational (plug) 
ow v� = V

(see �gure 4.9) is assumed. As long as the boundary layer has not yet developed

(R0� << 0:1aRe) the viscous forces are restricted to a very thin boundary layer and

the velocity is restricted to one component, v�. The other components (vR and vz)

are small compared to v�. In the core the 
ow is inviscid so Bernoulli's law can be

applied:

p+ 1
2
�v2� = constant (4.75)

With p the pressure, and � the density of the 
uid. The momentum equation in

R-direction shows an equilibrium of pressure forces and centrifugal forces:

@p

@R
=
�v2

�

R
(4.76)

As a consequence, the pressure is largest at the outer wall and smallest at the inner

wall. Together with Bernoulli's law it follows that the velocity will become largest

at the inner wall and lowest at the outer wall of the tube (see �gure 4.9 location

(B)). Indeed, elimination of the pressure from (4.75) and (4.76) yields:

@v�

@R
= �v�

R
(4.77)

and thus:

v� =
k1

R
(4.78)
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The constant k1 can be determined from the conservation of mass in the plane of

symmetry (z = 0):

2aV =

R0+aZ
R0�a

v�(R
0)dR0 = k1 ln

R0 + a

R0 � a
(4.79)

and thus:

k1 =
2aV

ln 1+�
1��

(4.80)

with � = a=R0. So in the entrance region (� << 0:1�Re) initially the following

velocity pro�le will develop:

v�(R) =
2aV

R ln 1+�
1��

(4.81)

It is easy to derive that for small values of � this reduces to v�(R) = (R0=R)V .

Note that the velocity pro�le does only depend on R and does not depend on the

azimuthal position � in the tube. In terms of the toroidal coordinate system (r; �; �)

we have:

R(r; �) = R0 � r cos � (4.82)

and the velocity pro�le given in (4.81) is:

v�(r; �) =
2aV

(R0 � r cos �) ln 1+�
1��

=
2�V

(1� �(r=a) cos �) ln 1+�
1��

(4.83)

Again for small values of � this reduces to v�(r; �) = V=(1� �(r=a) cos �).

Going more downstream, due to viscous forces a boundary layer will develop along

the walls of the tube and will in
uence the complete velocity distribution. Finally

the velocity pro�le will look like the one that is sketched at position C. This pro�le

does depend on the azimuthal position. In the plane of symmetry it will have a

maximum that is shifted to the outer wall. In the direction perpendicular to the

plane of symmetry an M-shaped pro�le will be found (see �gure 4.9). This velocity

distribution can only be explained if we also consider the secondary 
ow �eld, i.e.

the velocity components in the plane of a cross-section (� =constant) of the tube

perpendicular to the axis.

Viscous forces will diminish the axial velocity in the boundary layer along the wall

of the curved tube. As a result, the equilibrium between the pressure gradient in R-

direction and the centrifugal forces will be disturbed. In the boundary layers we will

have �V
2

R
< @p

@R
and in the central core �V

2

R
> @p

@R
. Consequently the 
uid particles

in the central core will accelerate towards the outer wall, whereas 
uid particles in

the boundary layer will accelerate in opposite direction. In this way a secondary
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vortex will develop as indicated in �gure 4.9. This motion of 
uid particles from the

inner wall towards the outer wall in the core and along the upper and lower walls

back to the inner wall will have consequences for the axial velocity distribution.

Particles with a relatively large axial velocity will move to the outer wall and due to

convective forces, the maximum of the axial velocity will shift in the same direction.

On the other hand, particles in the boundary layer at the upper and lower walls will

be transported towards the inner wall and will convect a relatively low axial velocity.

In this way in the plane of symmetry an axial velocity pro�le will develop with a

maximum at the outer wall, and a minimum at the inner wall. For large curvatures

or large Reynolds numbers even negative axial velocity at the inner wall can occur

due to boundary layer separation.

Once the maximum of the axial velocity is located near the outer wall, the secondary


ow will transport particles with a relatively large axial velocity along the upper and

lower walls and a C-shaped axial velocity contour will develop. This can clearly be

seen in �gure 4.10 where for di�erent curvatures of the tube contour plots of the

axial velocity and streamlines of the secondary velocity are given. Note that the

combination of the axial and secondary 
ow results in a helical movement of the


uid particles (see �gure 4.9). While moving in downstream direction the particles

move from the inner wall towards the outer wall and back to the inner wall along

the upper (or lower) wall.

Dn = 5000 Dn = 5000

axialDn = 600 Dn = 600secondary

Dn = 2000 Dn = 2000

Figure 4.10: Contour plots of axial (left) and streamline plots of secondary (right)

fully developed steady 
ow in a curved tube for Dean numbers of 600 (top), 2000

(middle) and 5000 (bottom) as computed by (Collins and Dennis, 1975).
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Steady fully developed 
ow in a curved tube

In order to obtain a more quantitative description of the 
ow phenomena it is conve-

nient to use the toroidal coordinate system (r; �; �) as is depicted in �gure 4.9. The

corresponding velocity components are vr, v� and v�. The Navier-Stokes equations

in toroidal coordinates read (Ward-Smith, 1980):

in r-direction:

@vr

@t
+

1

rB

�
@

@r
(rBv2r) +

@

@�
(Bvrv�) +

@

@�
(�rv�vr)�Bv2� � �r cos �v2�

�
=

�@p
@r

+
1

Re

(
1

rB

"
@

@r
(rB

@vr

@r
) +

@

@�
(
B

r

@vr

@�
) +

@

@�
(
�2r

B

@vr

@�
)

#
�

1

r2
(2
@v�

@�
+ vr) +

� sin �v�

rB
+
�2 cos �

B2
(v� sin � � vr cos � � 2

@v�

@�
)

)
(4.84)

in �-direction:

@v�

@t
+

1

rB

�
@

@r
(rBvrv�) +

@

@�
(Bv2�) +

@

@�
(�rv�v�) +Bvrv� + �r sin �v2�

�
=

�@p
@�

+
1

Re

(
1

rB

"
@

@r
(rB

@v�

@r
) +

@

@�
(
B

r

@v�

@�
) +

@

@�
(
�2r

B

@v�

@�
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#
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1
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(2
@vr

@�
� v�)�

� sin �vr

rB
� �2 sin �

B2
(v� sin � � vr cos � � 2

@v�

@�
)

)
(4.85)

in �-direction:

@v�

@t
+

1

rB

�
@

@r
(rBv�vr) +

@

@�
(Bv�v�) +

@

@�
(�rv2�) + �rv�(vr cos � � v� sin �)

�
=

� �

B

@p

@�
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1

Re

(
1

rB
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(rB
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@

@�
(
B
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@�
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@
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�2r
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2
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(4.86)

continuity:

@

@r
(rBvr) +

@

@�
(Bv�) +

@

@�
(�rv�) = 0 (4.87)

with

� =
a

R0

and B = 1 + �r cos �

For fully developed 
ow all derivatives in � direction are zero ( @

@�
= 0). This of

course does not hold for the driving force @p

@�
. If we scale according to:

r� =
r

a
; p� =

p

�V 2
; v�r =

vr

V
; v�� =

v�

V
; v�� =

v�

V
(4.88)
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the continuity equation and the momentum equation in r-direction read after drop-

ping the asterix:

@vr

@r
+
vr

r

�
1 + 2�r cos �

1 + �r cos �

�
+
1

r

@v�

@�
� �v� sin �

1 + �r cos �
= 0 (4.89)

and

vr
@vr

@r
+
v�

r

@vr

@�
� v2

�

r
� �

v2
�
cos �

1 + �r cos �
=

�@p
@r

+
1

Re

��
1

r

@

@�
� � sin �

1 + �r cos �

��
1

r

@vr

@�
� @v�

@r
� v�

r

�� (4.90)

The two important dimensionless parameters that appear are the curvature ratio �

and the Reynolds number Re de�ned as:

� =
a

R0
and Re =

2aV

�
(4.91)

with a the radius and R0 the curvature of the tube. If we restrict ourselves to the

plane of symmetry (� = 0; � , cos � = �1 and v� = 0) we have for the momentum

equation:

vr
@vr

@r
� �

�v2
�

1� �r
= �@p

@r
+

1

Re

��
1

r

@

@�

��
1

r

@vr

@�
� @v�

@r

��
(4.92)

If we consider small curvatures (� � 1) only, knowing that v� = O(1) and r is

already scaled and in the interval [0; 1], the momentum equation yields vr
@vr

@r
=

O(�v2
�
) = O(�) and thus O(vr) = �1=2. From the continuity equation (4.89) it can

be seen that vr and v� scale in the same way, i.e. O(vr) = O(v�), and thus also

O(v�) = �1=2. If instead of using (4.88) we would use:

r� =
r

a
; p� =

p

��V 2
; v�r =

vr

�1=2V
; v�� =

v�

�1=2V
; v�� =

v�

V
(4.93)

The continuity equation and momentum equation in r-direction for � � 1 would be

(again after dropping the asterix):

@vr

@r
+
vr

r
+
1

r

@v�

@�
= 0 (4.94)

and

vr
@vr

@r
+
v�

r

@vr

@�
� v2

�

r
� v2� cos � =

�@p
@r

+
1

�1=2Re

�
1

r

@

@�

�
1

r

@vr

@�
� @v�

@r
� v�

r

�� (4.95)

From this we can see that for small curvature another dimensionless parameter, the

Dean number, can be de�ned as:

Dn = �1=2Re: (4.96)
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The secondary 
ow depends on two important parameters, the Reynolds number

Re and the curvature � or the Dean number Dn and the curvature �. The last

combination is often used because for small curvature only the Dean number is of

importance.

For large Dean numbers the viscous term in (4.95) can be neglected in the core of

the secondary 
ow �eld and one can talk about a boundary layer of the secondary


ow. The thickness �s of this boundary layer can be derived from the momentum

equation in �-direction:

vr
@v�

@r
+
v�

r

@v�

@�
� vrv�

r
+ �

v2
�
sin �

1 + �r cos �
=

�1

r

@p

@�
+

1

�1=2Re

��
@

@r
+

� cos �

1 + �r cos �

��
@v�

@r
+
v�

r
� 1

r

@vr

@r

�� (4.97)

If we assume that at r = a� �s the viscous and inertia forces are of the same order

of magnitude we have:

�s

a
= O(Dn�1=2) (4.98)

In �gure 4.10 the boundary layer of the secondary 
ow is indicated with a dashed

line and indeed decreases with increasing Dean numbers.

4.4.2 Unsteady fully developed 
ow in a curved tube

In unsteady 
ow in a curved tube the secondary 
ow will have the same orientation

as in stationary 
ow. The reason for this is that the centrifugal forces are not

sensitive for the direction of the axial velocity (fc / v2
�
). For high frequencies, or

better large Womersley numbers, like in the case for straight tubes an instationary

boundary layer will develop such that in the central core the 
ow will behave more

or less inviscid whereas at the boundary viscous forces are dominant. For oscillatory


ow this may lead to a secondary 
ow �eld as is depicted in �gure 4.11. In the core

the secondary vortex will have an opposite direction as in the boundary layer where

the direction corresponds with the one in steady 
ow. In contradiction to the 
ow

in a straight tube, however, for 
ow in a curved tube the superposition of several

harmonics is not allowed because the governing equations are strongly non-linear.

inner wall outer wall inner wall outer wall

oscillatorysteady

Figure 4.11: Streamline patterns of fully developed secondary 
ow in steady (left)

and oscillatory (right) 
ow in a curved tube.
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Figure 4.12: Computational (FEM) and experimental (LDA) results of pulsatile


ow in a curved tube: end diastolic (top), peak systolic (middle) and end systolic

(bottom).
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In pulsating 
ow this second vortex will not be that pronounced as in oscillating


ow but some in
uence can be depicted. This is shown in the �gure 4.12 where the

results of a �nite element computation of pulsating 
ow in a curved tube are given

together with experimental (laser Doppler) data.

4.4.3 Flow in branched tubes

The 
ow in branched tubes (bifurcations) shows the same phenomena as in curved

tubes. Actually the bifurcation can be considered as a two joined curved tubes. Of

course there are also di�erences with curved tube 
ow due to the bifurcation point

(apex) which will induce an extra asymmetry (see �gure 4.13).

Figure 4.13: Axial velocity and streamline patterns of 
ow in a bifurcation.

Detailed knowledge about the 
ow phenomena in curved and branched tubes is of

great physiological and clinical importance. The prediction of areas of high and

low shear rates and wall shear stress, the prediction of 
ow instabilities related to

high shear rates as occur at the interface between the areas with high and low axial

velocity can help to interpret clinical data from ultra-sound Doppler measurements

and MRI images and can help to get insight in the development of atherosclerosis. In

many case advanced methods in computational 
uid dynamics (CFD) are needed to

obtain more then the qualitative information as is given in this section. An example

of this is given in �gure 4.14 where the results of computations of the 
ow in the

internal carotid artery is given together with experimental results obtained with

laser Doppler anemometry.

4.5 Summary

Flow patterns in rigid straight, curved and branched tubes have been treated in this

chapter. The velocity pro�les of fully developed Newtonian 
ow in a straight circular
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Figure 4.14: Computational (FEM) and experimental (LDA) velocity distributions

of a steady 
ow in a model of the carotid artery bifurcation.

tube can easily be derived by integration of the Navier-Stokes equations in cylindrical

coordinates using superposition of harmonics of the pressure pulse. Apart from a

scale factor for the pressure, only one single parameter, the Womersley number

� = a
p
!=�, determines the character of the 
ow. For large values of this parameter

the 
ow is dominated by inertia and 
at velocity pro�les are found oscillating 90o

out of phase with the pressure gradient. For low values of � the 
ow is dominated by

viscous forces and a quasi static Poiseuille 
ow is found that is 180o out of phase with

the pressure gradient. For arbitrary values of � the velocity pro�les are solutions of

Bessel's function and can be interpreted as a composition of a viscosity dominated


ow in the boundary layer and an inertia dominated 
ow in the core. The thickness

of the boundary layer appears to depend on � according to �=a = O(��1).

The 
ow in curved tubes with curvature ratio � di�ers from that in straight tubes

because also centrifugal forces are of importance. Due to these centrifugal forces,

the pressure gradients in the bulk 
ow are not in equilibrium with the 
ow in the

viscous boundary layers and a secondary 
ow is induced, resulting in a strongly

disturbed axial 
ow. A new dimensionless parameter, the Dean number, de�ned

as Dn = (a=R0)
1
2Re, determines the importance of this secondary 
ow. The main

features of the 
ow in branched tubes strongly resemble those of the 
ow in curved

tubes.



Chapter 5

Mechanics of the vessel wall

5.1 Introduction

In the arterial system, the amplitude of the pressure pulse is that large that the ar-

teries signi�cantly deform during the cardiac cycle. This deformation is determined

by the mechanical properties of the arterial wall. In this section an outline of the

mechanical properties of the main constituents of the vessel wall and the wall as a

whole is given taking the morphology as a point of departure. A simple linear elastic

model for wall displacement due to change in transmural pressure will be derived.

51
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5.2 Morphology

The vessel wall consists of three layers: the intima, the media and the adventitia.

The proportions and composition of the di�erent layers vary in di�erent type of blood

vessels. In �gure 5.1 these layers and their composition are depicted schematically

showing transversal sections through di�erent kind of blood vessels.

Figure 5.1: Morphology of principle segments of blood vessels in mammals (from

Rhodin, 1980) .
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The intimal layer. The intimal layer is the innermost layer of all blood vessels.

This layer is composed of two structures, a single layer of endothelial cells and a

thin subendothelial layer, separated by a thin basal lamina. The endothelial cells

are 
at and elongated with their long axis parallel to that of the blood vessel. They

have a thickness of � 0.2 -0.5 �m, except in the area of the nucleus, which protrudes

slightly into the vessel. The endothelium covers all surfaces that come into direct

contact with blood. It is important in regeneration and growth of the artery which

is controlled by variations of wall shear stress and strain distributions induced by

the blood 
ow and the wall deformation respectively. The subendothelium layer

consists of a few collagenous bundles and elastic �brils. Due to its relatively small

thickness and low sti�ness the intimal layer does not contribute to the overall me-

chanical properties of the vessel wall. An exception to this is found in the micro-

circulation, where the intimal layer is relatively large. Here, however, mechanical

properties are mainly determined by the surrounding tissue of the vessel.

The tunica media. The media is the thickest layer in the wall and shows large

variation in contents in di�erent regions of the circulation. It consists of elastic

lamina and smooth muscle cells. In the human aorta and in large arteries, 40-60

of these lamina exist and almost no smooth muscle cells are found. These arteries

therefor are often referred to as elastic arteries. Toward the periphery the number

of elastic lamina decreases gradually and a larger amount of smooth muscle cells

are found (muscular arteries). The elastic lamina (average thickness 3 �m) are

concentric and equidistantly spaced. They are interconnected by a network of elastic

�brils. Thus structured, the media has great strength and elasticity. The smooth

muscle cells are placed within the network of elastic �brils and have an elongated,

but irregular shape.

The tunica adventitia. The tunica adventitia of elastic arteries generally com-

prises only 10 % of the vascular wall. The thickness, however, varies considerably

in di�erent arteries and may be as thick as the media. The adventitia is composed

of a loose connective tissue of elastin and collagen �bres in mainly longitudinal di-

rection. The adventitia serves to connect the blood vessels to its surrounding tissue

and in large arteries it harbors the nutrient vessels (arterioles, capillaries, venules

and lymphatic vessels) referred to as vaso vasorum.

5.3 Mechanical properties

As described in the previous section, the main constituents of vascular tissue are

elastin, collagen �bers and smooth muscle cells.

Elastin is a biological material with an almost linear stress-strain relationship (�g.

5.2). It has a Young 's modulus of � 0.5 MPa and remains elastic up to stretch ratios

of � 1.6 (Fung, 1993a). As can be seen from the stress-strain curves the material

shows hardly any hysteresis.
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Figure 5.2: Left: Stress-strain relationships of elastin from the ligamentum nuchae

of cattle. Right: Typical stress-strain relationship of collagen from the rabbit limb

tendon. (Both after Fung, 1993a).

Collagen is a basic structural protein in animals. It gives strength and stability

and appears in almost all parts of the body. The collagen molecule consists of three

helically wound chains of amino-acids. These helices are collected together in micro-

�brils, which in their turn form sub�brils and �brils. The �brils have a diameter

of 20-40 nm, depending on species and tissue. Bundles of �brils form �bers, with

diameters ranging from 0.2 to 12 �m. The �bers are normally arranged in a wavy

form, with typical "wavelengths" of 200 �m (Fung, 1993a). Due to this waviness

the stress-strain relationship shows a very low sti�ness at small stretch ratios (�g.

5.2). The sti�ness increases fast once the �bers are deformed to straight lines, the

Young 's modulus of the material then reaches � 0.5 GPa. At further stretching,

the material �nally fails at 50-100 MPa longitudinal stress.

Smooth muscle cells appear in the inner part of the tunica media and are oriented

longitudinally, circumferentially or helically. The Young's modulus is in the order

of magnitude of the one of elastine (� 0.5 MPa). When relaxed it is about 0.1 MPa

and when activated it can increase to 2 MPa. Especially in the smaller arteries and

arterioles they strongly determine the mechanical properties of the arterial wall and

are responsible for the ability to regulate local blood 
ow.

Elastic and Viscoelastic behavior

Due to the properties of its constituents, its speci�c morphology and its geometry,

the arterial wall exhibits a non-isotropic nonlinear response to cyclic pressure loads.

An important geometrical parameter is the ratio between diameter and thickness of

the arterial wall. This ratio depends on the type of artery but is O(0.1) in many cases.
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Moreover the vessels are thetered mainly longitudinal by the surrounding tissue. Due

to these complex properties it formally is not possible to de�ne a Young's modulus

as can be done in linear elasticity theory. Still in order to obtain a global idea of

the elastic behavior it is possible to lump all properties together as if the vessel wall

was homogeneous. This can be done by measuring the stress strain relationship and

use the result to de�ne an e�ective Young's modulus. In �gure 5.3 a typical stress

strain relationship of a large artery is shown. The sti�ness in longitudinal direction

is higher then in circumferential direction especially at larger stretch ratios yielding

a di�erent e�ective incremental Young's modulus. Still the relation is non-linear due

to the wavy form of the collagen �bres that consequently contribute to the sti�ness

only at higher stretch ratios. It will be clear that linear elasticity can not be applied

straight forward. Linearization, however, about an equilibrium state (for instance

the mean or diastolic pressure) yields a linearized or incremantal e�ective Young's

modulus that in many cases is approriate the use in linear elasticity analysis.
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Figure 5.3: Typical stress-strain relationship (broken line = longitudinal, solid line

= circumferential) of aortic wall material (after Kasyanov and Knet-s, 1974) .

Vascular tissue normally is viscoelastic. When a cyclic load is applied to it in

an experiment, the load-displacement curve for loading di�ers from the unloading

curve: hysteresis due to viscoelasticity is found ( see �gure 5.2). Moreover, the

curves change after several repetitions of the same loading/unloading cycle. After a

certain number of repetitions, the loading-unloading curve doesn't change anymore,

and the loading/unloading curves almost coincide. The state of the specimen then is

called preconditioned (Fung et al., 1979; Fung, 1993a). How well this state resembles
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the in-vivo situation is not reported.

5.4 Incompressible elastic deformation

In section 2.2.4 it has been shown that in general elastic solids can be described

by the constitutive equation � = �pI + � (B). The most simple version of such a

relation will be the one in which the extra stress � linearly depends on the Finger

tensor. Materials that obey such a relation are referred to as linear elastic or neo-

Hookean solids. Most rubber like materials but also to some extend biological

tissues like the arterial wall are reasonably described by such a neo-Hookean model.

5.4.1 Deformation of incompressible linear elastic solids

The equations that describe the deformation of incompressible linear elastic solids

are given by the continuity equation (2.38) and the momentum equation (2.39)

together with the constitutive equation:

� = �pI +G(B � I) (5.1)

with p the pressure and G the shear modulus. Note that the linear relation between

the extra stress and the strain is taken such that if there is no deformation (B = I)

the strain measure B� I = 0. The momentum and continuity equations then read:8>><
>>:
�
@v

@t
+ �(v � r)v = �f �rp+Gr � (B � I):

r � v = 0

(5.2)

After introduction of the non-dimensional variables x� = x=L, t� = t=� and char-

acteristic strain 
, the characteristic displacement is U = 
L and the characteris-

tic velocity is V = U=� = 
L=�. Using a characteristic pressure p� = p=p0, the

dimensionless equations for elastic deformation then become (after dropping the

superscript �):8>><
>>:

�
L

�2
@v

@t
+
�
2L

�2
(v � r)v = �gf � p0

L
rp+ 
G

L
r � (B � I)

r � v = 0

(5.3)

Unfortunately in the solid mechanics community it is not common to use dimen-

sionless parameters and we have to introduce them ourselves or use an example to

show which of the terms are of importance in this equation. If we assume that we

deform a solid with density � = O(103)[kg=m3], shear modulus G = O(105)[Pa]

and characteristic length L = O(10�2)[m] with a typical strain 
 = O(10�1) in a

characteristic time � = O(1)[s], the terms at the left hand side have an order of

magnitude of O(1)[Pa=m] and O(10�2)[Pa=m]. The deformation forces at the right

hand side, however, have an order of magnitude O(104)[Pa=m]. As a consequence

the terms at the left hand side can be neglected. Gravity forces can not be neglected

automatically but are often not taken into account because they work on the body
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as a whole and do not induce extra deformation unless large hydrostatic pressure

gradients occur. The momentum equation then reads:8><
>:
r � � = �rp+Gr � (B � I) = 0

det(F ) = 1

(5.4)

Note that the continuity equation is expressed in terms of the deformation tensor

F (see below). Equations (5.4) can be solved after applying boundary conditions of

the form (see (2.43)):

in normal direction:

prescribed displacement:

(u � n) = un�
or prescribed stress:

(� � n) � n = (s � n)
in tangential directions:

prescribed displacemnet:

(u � ti) = uti� i = 1; 2

or prescribed stress:

(� � n) � ti = (s � ti)

(5.5)

In linear elasticity the incompressibility constraint (det(F ) = 1) is oftenly circum-

vented by assuming the material to be (slightly) compressible. In that case it is

convenient to decompose the deformation in a volumetric part and an isochoric part

according to:

F = J1=3 ~F (5.6)

with J the volume ratio de�ned by:

J = det(F ) =
dV

dV0
(5.7)

Consequently det( ~F ) = det(J�1=3I) � det(F ) = 1 and an equivalent neo-Hookean

model can be taken according to:

� = �(J � 1)I +G( ~B � I) (5.8)

with � the compression modulus and ~B = ~F � ~F c
= J�2=3F � F c.

5.4.2 Approximation for small strains

For small strains 
 (i.e. jjrujj � jjr0
ujj << 1) the deformation tensor F can be

written as:

F = (r0
x)c = (r0(x0 + u))c = I + (r0

u)c � I + (ru)c (5.9)

The volume ratio for small deformations then yields:

J = det( ~F ) � det(I + (ru)c) � 1 + tr(ru) (5.10)
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The isochoric part of the deformation then is given by:

~F = J�1=3F

� (1 + tr(ru))�1=3(I + (ru)c)

� (1� 1

3
tr(ru))(I + (ru)c)

(5.11)

This �nally yields the isochoric Finger tensor:

~B = J�2=3F � F c

� (1� 2

3
tr(ru)(I + (ru)c)(I + (ru)c)c

� I + (ru)c +ru� 2

3
tr(ru)I

(5.12)

The constitutive relation for compressible elastic deformation for small strains then

reads:

� = �tr(ru)I +G((ru)c +ru� 2
3
tr(ru)I)

= (�� 2
3
G)tr(ru)I +G(ru+ (ru)c)

(5.13)

Together with the de�nition of in�nitesimal strain:

� =
1

2
(ru+ (ru)c) (5.14)

we �nally obtain:

� = (�� 2

3
G)tr(�)I + 2G� (5.15)

It can readily be veri�ed that consequently

� =
(1 + �)

E
� � �

E
tr(�)I (5.16)

with :

� =
E

3(1 � 2�)
G =

E

2(1 + �)

or

� =
3�� 2G

6�+ 2G
E =

9�G

3�+G

(5.17)
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Note that the Young's modulus E and Poisson ratio � can be determined by a

tensile test. Using the expression for the strain given by (5.16) it follows that:

�zz =
�l

l0
=

1

E
�zz

�xx = �yy =
�h

h0
= � �

E
�zz

and consequently:

E =
�zz

�zz

� = ��xx
�zz

h0 h0 +�h

l0 +�ll0

�zz

5.5 Wall motion

Consider a linear elastic thin walled tube with constant wall thickness h , density

�w, Young's modulus E and Poisson's ratio � (see �gure 5.4).

z

r

u

r=a
h

r

v z

v

r

o

Figure 5.4: Distensible tube with radius a(z; t), wall thickness h

If the thickness of the wall is assumed to be that small that �rr = 0, the momentum

equation in z-direction is given by:

"zz =
@uz

@z
=

1

E
(�zz � ����) (5.18)

with uz the wall displacement in axial direction. Assuming again axial restraint

(uz = 0) then "zz = 0 and thus:

�zz = ���� (5.19)
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In circumferential direction the strain "�� is given by:

"�� =
(a0 + ur)d�� a0d�

rd�
� ur

a0

=
1

E
(��� � ��zz) =

���

E
(1� �2)

(5.20)

with ur the wall displacement in radial direction. This implies the following expres-

sion for the circumferential stress:

��� =
E

1� �2
ur

a0
(5.21)

�z+dz

�z
��

��

p(z; t)

a

d� dz

Figure 5.5: Stresses in tangential and circumferential direction.

If the tube is loaded with an internal (transmural) pressure p(z; t) the momentum

equation in radial direction reads (see �gure 5.5):

�wa0d�hdz
@2ur

@t2
= p(z; t)a0d�dz � 2��� sin(

1
2
d�)hdz (5.22)

Since sin(d�) � d� this yields together with (5.21):

�wh
@2ur

@t2
= p� hE

(1� �2)

ur

a20
(5.23)

If we neglect inertia forces we obtain

ur =
(1� �2)a20

hE
p (5.24)

The cross-sectional area of the tube is given by:

A = �(a0 + ur)
2 = �a20 + 2�a0ur + �u2r � �a20 + 2�a0ur (5.25)

This yields the compliance of the tube to be:

C =
@A

@p
=

2�a30
h

(1� �2)
E

(5.26)
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Oftenly instead of the compliance C the distensibility

D =
1

A0

C =
2a0

h

(1� �2)

E
(5.27)

is used. In the next chapter D will be used to derive expressions for the propagation

of pressure waves in distensible tubes.

5.6 Summary

A short introduction to vessel wall mechanics based on morphology and material

properties of the main constitutents (elastine and collagen) is given. Although the

constitutive behavior of vessel wall is anisotropic and visco-elastic simple linear

elastic models based on thin walled tubes can be valuable. To this end, simple

expressions for the compliance and distensibility of thin walled tubes are derived

and related to parameters that can be derived from tensile tests.
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Chapter 6

Wave phenomena in blood

vessels

6.1 Introduction

In this chapter we will show that traveling pressure and 
ow waves are the result of

the distensibility (or compliance) of the arteries (see chapter 1 equations (1.2),(1.3)

and (1.4) or chapter 5 equations (5.26) and (5.27)) and the pulsatile character of

the pressure. A typical relation between the pressure and cross-sectional area of an

artery is given in �gure 1.5 and shows that the compliance normally does not have a

constant value but strongly depends on the pressure. In this chapter, however, only

small area variations will be considered and a linear relation between the pressure

amplitude and the vessel diameter will be assumed. Apart from wave propagation

and the importance of viscous forces expressed in the value of the Womersley number

�, also wave re
ection from arterial bifurcations or transitions in mechanical or

geometrical properties will be dealt with. Moreover, attenuation of waves as a result

of 
uid viscosity and wall visco-elasticity will be discussed.

63
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6.2 Pressure and 
ow

In the physiological introduction of this course (chapter 1) it is mentioned that the

heart is a four-chambered pump that generates a pulsating pressure and 
ow (see

�gure 1.2). The frequency contents of the pressure and 
ow in the aorta is given in

table 1.3.1 and shows that the pulsatile character of the pressure and 
ow can be

described very well with the �rst 8 to 10 harmonics (see also �gure 1.6). Moreover, in

chapter 1 a simple (windkessel) model was introduced to describe the pressure/
ow

relation or impedance of the arterial system using the compliance Ce = dV=dp of

the elastic arteries and the resistance Rp of the periferal arteries (see also equation

1.8):

qa = Ce

@pa

@t
+
pa

Rp

(6.1)

and with pa = p̂ae
i!t, qa = q̂ae

i!t:

Z =
pa

qa
=
Rp(1� i!RpCe)

1 + !2R2
pC

2
e

(6.2)

In �gure 6.1 the absolute value and argument of the impedance given by (6.2) is

shown as a function of the harmonics. Experimental data (indicated with lines

(Milnor, 1989)) show that the windkessel model does not predict accurate results

especially for the phase of the higher harmonics. Moreover, as illustrated in �gure

(1.4), the pressure and 
ow waves change their shape with increasing distance from

the heart. This is a result of traveling waves and never can be described by the

windkessel model.

In order to describe the pressure and 
ow in terms of traveling waves (i.e. p = p(z; t)

and q = q(z; t)) the following complex notation will be used:

p(z; t) = p̂ei(!t�kz) and q(z; t) = q̂ei(!t�kz) (6.3)

here ! is the angular frequency, k = kr + iki is the complex wave number and

p̂ = jp̂jei� denotes the complex amplitude. The actual pressure (c.q. 
ow) is de�ned

as the real part of (6.3):

Re [p(z; t)] = jp̂jekizcos(!t� krz + �) (6.4)

It will be clear that (�ki) is a measure for the attenuation of the wave and that

kr = 2�=� with � the wavelength.



Wave phenomena in blood vessels 65

0 0.5 1
−500

0

500

0 0.5 1
10

15

20

0 5 10
0

50

100

0 5 10
−4

−2

0

0 5 10
0

10

20

0 5 10
−4

−2

0

0 5 10
0

0.1

0.2

0 5 10
−0.5

0

0.5

arg(q̂a)

arg(p̂a)

aortic 
ow

abs(q̂a)

aortic pressure

abs(p̂a)

abs(Z) arg(Z)

Figure 6.1: Absolute value and argument of the arterial impedance as computed

with a windkessel model (o) and from experimental data ({).

6.3 Fluid 
ow

To analyze fully developed Newtonian 
ow in distensible tubes we consider the

Navier-Stokes equations in a cylindrical coordinate system:8>>>>>>>>>>>><
>>>>>>>>>>>>:

@vr

@t
+ vr

@vr

@r
+ vz

@vr

@z
= �1

�

@p

@r
+ �

 
@

@r

�
1

r

@

@r
(rvr)

�
+
@2vr

@z2

!

@vz

@t
+ vr

@vz

@r
+ vz

@vz

@z
= �1

�

@p

@z
+ �

 
1

r

@

@r

�
r
@

@r
(vz)

�
+
@2vz

@z2

!

1

r

@

@r
(rvr) +

@vz

@z
= 0

(6.5)

Since the velocity in circumferential direction equals zero (v� = 0), the momentum

equation and all derivatives in �-direction are omitted. Due to the distensibility of
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the tube, pressure and 
ow waves will propagate with a �nite wave speed c = !=kr
and a typical wavelength � = 2�=kr. First a properly scaled dimensionless form of

the Navier-Stokes equations will be derived. To this end the radial coordinates are

made dimensionless using the mean radius of the tube, i.e. r0 = r=a0. The axial

coordinates, however, must be scaled with the real part of the wave number kr:

z0 = zkr (see (6.3)). The axial velocity is made dimensionless with its characteristic

value over a cross-section: v0z = vz=V . From the continuity equation it can be derived

that the radial velocity then must be made dimensionless as: v0r = (vr=V )(1=kra).

The characteristic time t0 = !t can be written as t0 = (krc)t with c the wave speed.

Together with a dimensionless pressure p0 = p=(�V c) the dimensionless Navier-

Stokes equations read:8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

@v0r
@t0

+
V

c

�
v0r
@v0r
@r0
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@v0z
@t0

+
V

c

�
v0r
@v0z
@r0

+ v0z
@v0z
@z0

�
=

�@p
0

@z0
+

1

�2

 
1

r0
@

@r0

�
r0
@

@r0
(v0z)

�
+ a20k

2
r

@2v0z

@z02

!

1

r0
@

@r0
(r0v0r) +

@v0z
@z0

= 0

(6.6)

Besides the Womersley parameter � = a0
p
!=� the dimensionless parameters that

play a role in this equation are the speed ratio S = V=c and the circumference-to-

wavelength ratio G = a0kr = 2�a0=�. Under the assumptions that the wave velocity

c is much larger then the 
uid velocity V , the wavelength � is much larger then the

tube radius a0 ,i.e.:

S =
V

c
� 1; G2 = (kra0)

2 = (
2�a0

�
)2 � 1 (6.7)

it can readily be shown that the equations of motion reduce to:8>>>>>>>>>><
>>>>>>>>>>:

@p

@r
= 0

@vz

@t
= �1

�

@p

@z
+ �

1

r

@

@r

�
r
@vz

@r

�

1

r

@

@r
(rvr) +

@vz

@z
= 0

(6.8)

If we search for harmonic solutions with angular frequency ! and wave number k:

p = p̂ei(!t�kz) (6.9)
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and

vz = v̂z(r)e
i(!t�kz) (6.10)

substitution in equation (6.8) yields exactly the same di�erential equation for v̂z as

in the case of a rigid tube given in equation (4.45). If we further assume that the

wall motion is axially restrained, which is thought to be relevant in vivo (Pedley,

1980), also the boundary condition for v̂z is not di�erent from the one in rigid tubes

but now must be applied in a linearized way at r = a0. It will be clear that in

that case we obtain exactly the same Womersley solution given by equation (4.45).

Substitution of:

@p̂

@z
= �ikp̂ (6.11)

yields:

v̂z(r) =
k

�!

"
1� J0(i

3=2�r=a0)

J0(i3=2�)

#
p̂ (6.12)

In Womersley (1957) a relation similar to (6.12) is derived, however without the

assumption of axial constraint. In that case the second term in the brackets is

multiplied with an extra parameter that only slightly di�ers from unity. The wall

shear stress is equal to the wall shear stress for rigid tubes and is de�ned by equation

(4.58). The wave number k still has to be determined and depends on the properties

of the arterial wall. In the next section the wall motion will be analyzed, again

assuming axial restraint.

6.4 Wave propagation

6.4.1 Derivation of a quasi one-dimensional model

In order to obtain an expression for the wave number introduced in the previous

section, a quasi one-dimensional wave propagation model for pressure and 
ow waves

will be derived. To this end the Leibnitz formulae (or Reynolds transport theorem)

will be used to integrate the equations of motion given in (6.8). This formulae was

derived in chapter 2 (equation 2.32). A more suitable form for the application in

this chapter is:

d

dz

a(z)Z
0

s(r; z)dr =

a(z)Z
0

@s(r; z)

@z
dr + s(a; z)

@a

@z
ja (6.13)

See also �gure 6.2.

Application to the second term of the continuity equation in (6.8) integrated over

the radius:

2�

2
64
a(z)Z
0

1

r

@

@r
(rvr)rdr +

a(z)Z
0

@vz

@z
rdr

3
75 = 0 (6.14)
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z

r

q(z; t)

v�

a(z; t)

�(t)

A(z; t)

Figure 6.2: Flow q(z; t) in a distensible tube with moving wall �(t) and cross-

sectional area A(z; t).

yields:

2�

a(z)Z
0

@rvr

@r
dr + 2�

@

@z

a(z)Z
0

vzrdr � 2�vzr
@a

@z
ja = 0 (6.15)

or:

2�rvrja0 +
@q

@z
� 2�vz(a; t)a

@a

@z
ja = 0 (6.16)

and thus:

2�a

�
vr(a; t)� vz(a; t)

@a

@z
ja
�
+
@q

@z
= 0 (6.17)

with q = q(z; t) the 
ow through the cross-section. Rewriting the �rst term in

terms of the cross-sectional area A(z; t) = �a2(z; t), �nally the integrated continuity

equation reads:

@A

@t
+
@q

@z
= 0 (6.18)

This equation is formally derived but will be clear immediately from �gure 6.2 if we

write [A(z; t+ dt)�A(z; t)]dz + [q(z + dz; t)� q(z; t)]dt = 0.

In a similar way the momentum equation in axial direction can be integrated:

2�

a(z;t)Z
0

@vz

@t
rdr = �2�

a(z;t)Z
0

1

�

@p

@z
rdr + 2��

a(z;t)Z
0

@

@r
(r
@vz

@r
)dr (6.19)

Application of the Leibnitz formulae to the �rst term yields:

2�
@

@t

a(z;t)Z
0

vzrdr � 2�vzvrrja0 = �
A

�

@p

@z
+ 2��r

@vz

@r
ja0 (6.20)

The second term in the left hand side of this equation vanishes if a longitudinal

restraint of the wall motion (vz(a) = 0) is assumed. The second term in the right
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hand side can be written in terms of the wall shear stress de�ned in equation (4.48).

The integrated momentum equation then reads:

�
@q

@t
+A

@p

@z
= �2A�

a
(6.21)

Together with the expression for the wall shear stress given in (4.58) and linearisation

of the A@p

@z
term we �nally obtain:

�
@q

@t
+A0

@p

@z
= �f0q (6.22)

with f0 a friction function de�ned as:

f0(!) = i!�
F10(!)

1� F10(!)
(6.23)

The linearized one-dimensional equations that describe the pressure and 
ow in

distensible tubes under the assumption that V=c� 1, (2�a=�)2 � 1 and under the

assumption that the wall motion is longitudinally constrained thus are given by:

8>>><
>>>:
C0
@p

@t
+
@q

@z
= 0

�
@q

@t
+A0

@p

@z
= �f0q

(6.24)

with C0 the linearized compliance given by:

C0 = (
@A

@p
)p=p0 (6.25)

Alternatively using the mean velocity �v instead of the 
ow q = A�v:

8>>><
>>>:
D0

@p

@t
+
@�v

@z
= 0

�
@�v

@t
+
@p

@z
= �f0�v

(6.26)

with D0 a linearized distensibility given by:

D0 =
1

A0
(
@A

@p
)p=p0 (6.27)

In the next section we will derive the wave number k for inviscid, viscosity domi-

nated and general 
ow (i.e. large, small and intermediate values of the Womersley

parameter �).
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6.4.2 Wave speed and attenuation constant

The linearized one-dimensional mass and momentum equations for unsteady viscous


ow through a distensible tube has been derived by integrating the continuity and

momentum equations over a cross-section of the tube assuming the wave-length to

be large compared to the diameter of the tube and the phase velocity of the wave

to be large compared to the mean 
uid velocity. Moreover it is assumed that the

motion of the tube wall is restrained longitudinally. Due to the linearity assumed,

the resulting equations (6.18) and (6.22) can be solved in the frequency domain by

substituting harmonic solutions

p(!; z; t) = p̂(!; 0)ei(!t�kz) (6.28)

q(!; z; t) = q̂(!; 0)ei(!t�kz) (6.29)

A(!; z; t) = Â(!; 0)ei(!t�kz) (6.30)

where p̂(!; 0), q̂(!; 0) and Â(!; 0) are the complex amplitudes representing both the

amplitude and the phase of the waves measured at location z = 0, ! is the angular

frequency and k(!) is the wave number ; a complex number de�ned by:

k(!) =
!

c
� i


(!)

�
(6.31)

Here c denotes the phase velocity of the waves and the wave length is given by

� = 2�c=!. The exponential decrease of the amplitude of the waves is described by

the attenuation constant 
(!) = �2�ki=kr.
Viscoelastic wall behavior is described by an experimentally determined constitutive

relationship between the cross-sectional area Â and the complex amplitude p̂:

Â = C(!)p̂ (6.32)

where C(!) is the dynamic compliance. For thin walled visco-elastic tubes this

relationship can also be derived from equations (5.26) using a complex Young's

modulus E = Er + iEi.

Large Womersley number 
ow

For large Womersley parameters the 
ow will be inviscid and the friction function

f0 can be neglected. Substitution of (6.28-6.30) in (6.24) yields:8><
>:
i!C(!)p̂� ik(!)q̂ = 0

�ik(!)A0p̂+ i!�q̂ = 0

(6.33)

with solution:

k0(!) = �
s
!2�C(!)

A0
= � !

c0
(6.34)
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where the positive (negative) sign holds for waves traveling in the positive (negative)

z-direction and c0 denotes the Moens-Korteweg wave speed given by:

c0(!) =

s
A0

�C(!)
=

s
1

�D0(!)
: (6.35)

Note that the subscript 0 is used in k0 and c0 in order to obey conventions in

literature despite the fact that k
1

and c
1

would be more meaningful since �!1.

For thin walled tubes the Moens-Korteweg wave speed can be derived from 5.26)

and reads:

c0 =

s
1

�

hE

2a0(1� �2)
(6.36)

Note that the wave number k0 = !=c0 is a real number expressing that the phase

velocity c equals the Moens-Korteweg wave speed and that the attenuation constant


 equals zero:

�!1 : c(!) = c0; 
(!) = 0: (6.37)

As there is no friction and the compliance is assumed to be real (no visco-elasticity),

no attenuation (
(!) = 0) of the wave will occur. The corresponding wave equation

can be derived form (6.24): after elimination of the 
ow and keeping in mind that

the friction function is neglected we obtain the di�erential equation:

@2p

@t2
� 1

�D0

@2p

@z2
= 0 (6.38)

This is a wave equation with wave speed c0 =
p
1=�D0 . So for large � and real values

for the distensibility D0 the pressure wave travels without damping in z-direction.

Equation (6.33) can also be solved with respect to the ratio q̂=p̂ between the 
ow

and the pressure:

Y0 =
q̂

p̂
= C(!)

!

k(!)
= �A0

�c0
(6.39)

This ratio is referred to as the admittance Y0 and is equal to the reciprocal value of

the impedance:

Y � 1

Z
� q̂

p̂
(6.40)

As k(!) represents two waves (one wave traveling in positive z-direction (k > 0)

and one wave traveling in negative z-direction (k < 0)) there are two 
ow and

pressure waves: forward traveling waves qf = +Y pf and backward traveling waves

qb = �Y pb. The total pressure and 
ow is the sum of these waves p(z; t) = pf (z; t)+

pb(z; t) resp. q(z; t) = qf (z; t) + qb(z; t).
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Small Womersley number 
ow

For small Womersley parameters the 
ow will be dominated by viscous forces and

the friction function f0 can be approximated by its Poiseuille value f0 = 8�=a20
whereas the instationary inertia forces in the momentum equation can be neglected.

Substitution of (6.28-6.30) in (6.24) yields:

8>><
>>:
i!C(!)p̂� ik(!)q̂ = 0

�ik(!)A0p̂+
8�

a20
q̂ = 0

(6.41)

and has a non-trivial solution if:

k(!) = �
s
�8i�!C(!)

A0a
2
0

= � !
c0

s
�8i
�2

= �2(1� i)

�
k0 (6.42)

where the positive (negative) sign now holds for waves traveling in the positive

(negative) z-direction and c0 denotes the Moens-Korteweg wave speed.

Now the wave number is a complex number and the phase velocity c and attenuation

constant 
 are given by:

�! 0 : c(!) = 1
2
�c0; 
(!) = 2�: (6.43)

As the real and imaginary part of the wave number are equal, the wave is damped

critically. This can also be seen from (6.24): after elimination of the 
ow and

keeping in mind that the instationary inertia forces can be neglected we obtain the

di�erential equation:

@p

@t
=
A0a

2
0

8�C0

@2p

@z2
=

a20
8�D0

@2p

@z2
(6.44)

This is a di�usion equation with di�usion coe�cient D = a20=8�D0. So for small �

the wave equation reduces to a di�usion equation showing critical damping of the

pressure in z-direction. This phenomena is responsible for the large pressure drop

that is found in the micro-circulation where the Womersley parameter is low as a

result of the small diameters of the vessels.

The admittance Y now is a complex number given by:

Y = �A0

�c0

i+ 1

4
� =

i+ 1

4
�Y0 (6.45)

Arbitrary Womersley number 
ow

Substitution of equations (6.28-6.30), (6.32) and (6.23) in equations (6.18) and (6.22)

yields:8><
>:
i!C(!)p̂� ik(!)q̂ = 0

�ik(!)A0p̂+ (i!�+ f0)q̂ = 0

(6.46)
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After putting the determinant of the resulting set to zero the following expression

for the wave number k is found:

k(!) = � !
c0

s
1

1� F10(!)
= �k0

s
1

1� F10(!)
(6.47)

Note that the wave number is again complex due to the friction function f0 as de-

�ned in equation (6.23) or due to the visco-elasticity of the tube expressed in a

complex value for the compliance C(!). The phase velocity c = !=kr and attenu-

ation constant 
 = �2�ki=kr = ��ki can be derived from (6.47) and are given in

�gure 6.3.
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Figure 6.3: Phase velocity c=c0 and attenuation constant 
=2� as a function of �

It has been mentioned that viscoelastic tubes will yield a complex compliance. From

experiments it is shown that the viscous part of the modulus is about 0.1 to 0.2 times

the elastic part so E = Er(1 + ifv) with the fraction fv � 0:15. For large alpha the

visco-elasticity then will give a imaginary part in the wave number according to:

k =
!

c0

1p
1 + ifv

� k0(1� 1
2
ifv) (6.48)

This line is indicated in �gure 6.3 and shows that for larger � (high frequencies

and large arteries) the visco-elastic properties of the wall are the main cause for the

attenuation of the pressure waves.

Finally the admittance can be derived as:

Y =
k0

k
Y0 (6.49)

and is given in �gure 6.4.
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Figure 6.4: Absolute value and argument of Y=Y0 as a function of �.

Propagation of a pressure pulse in homogeneous tubes

As an example in �gure 6.5 the propagation of pressure waves in an elastic (left)

and a visco-elastic (right) tube are computed. For this computation the following

characteristic data for the carotid artery are used:

� 3:5 � 10�3 Pa � s viscosity

a0 3 � 10�3 m radius

h a0=10 m wall thickness

� 103 kg �m�3 density of 
uid

E 4:5 � 105 N �m�2 Young's modulus

� 0:5 - Poisson's ratio

For the viscoelastic tube, the Young's modulus was taken to be E(1 + 0:2i). Using

equation (5.27) the distensibility and thus the compliance is determined. The wave

number then was computed using equations (6.47) and (6.35). The incident pressure

pulse is given as:

p(0; t) = e�(
t�0:25

0:1
)
2

(6.50)

Clearly the damping of the wave due to viscous forces (i.e. wall shear stress) and

viscoelastic properties of the wall can be distinguished.
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Figure 6.5: Propagation of pressure waves in an elastic tube (left) and a visco-elastic

(E = E(1 + i � 0:2)) tube (right).

6.5 Wave re
ection

6.5.1 Wave re
ection at discrete transitions

We will refer to transitions which are highly compact as discrete transitions. In

these cases the length of the transition is so small compared to the wave length of

the waves so that there is no di�erence in pressure or rate of 
ow between both

ends of the transition, and the re
ection phenomena can be described based on the

equations of continuity of pressure and rate of 
ow across the transition. Figure 6.6

shows a discrete transition as might be formed by an increase or decrease in wall

thickness at z = L. If the incident pressure and 
ow wave are represented by pi and

qi respectively, the re
ected waves by pr and qr, and the transmitted waves by pt
and qt, continuity of pressure and rate of 
ow at a transition at location z = L can

be expressed as:

pi(!;L; t) + pr(!;L; t) = pt(!;L; t) (6.51)

qi(!;L; t) + qr(!;L; t) = qt(!;L; t) (6.52)

The ratio between a single traveling pressure wave and its corresponding 
ow waves

is dependent on the impedance Z or admittance Y of the tube. An expression for

the impedance or admittance can be obtained by substituting equations (6.28-6.30)

and (6.32) in equation (6.18):

Y (!) =
1

Z(!)
=
q̂(!; z)

p̂(!; z)
=
!C(!)

k(!)
(6.53)
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Note that normally the admittance is de�ned for waves traveling in positive z-

direction i.e. k > 0. In that case the 
ow amplitude is given by q̂ = +Y p̂. For

k < 0 the wave is traveling in negative z-direction and for an admittance de�ned for

positive k we have a 
ow amplitude q̂ = �Y p̂.
Substitution of equation (6.53) in equations (6.51) and (6.52) results in expressions

for the re
ection coe�cient �0 and the transmission coe�cient T01:

�0(!) =
p̂r(!;L)

p̂i(!;L)
=
Y0(!)� Y1(!)

Y0(!) + Y1(!)
(6.54)

T01(!) =
p̂t(!;L)

p̂i(!;L)
=

2Y0(!)

Y0(!) + Y1(!)
(6.55)

where Y0 is the admittance of the tube proximal to the transition, and Y1 the ad-

mittance of the tube distal to the transition. The propagation of an incident wave

pi = p̂i(!; 0)e
i(!t�k0z) in a tube with a discrete transition at z = L can be expressed

as:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

z < L :

p(!; z; t) = pi(!; z; t) + pr(!; z; t)

= p̂i(!; 0)e
�ik0(!)z

h
1 + �0(!)e

�2ik0(!)(L�z)
i
ei!t

z > L :

p(!; z; t) = pt(!; z; t)

= p̂i(!; 0)e
�ik0(!)LT01(!)e

�ik1(!)(z�L)ei!t

(6.56)

As an example we consider the wave re
ection of a transition formed by a sudden

increase and a sudden decrease of the wall thickness (h(z < L) = a=10 while h(z >

L) = a=5 and h(z > L) = a=20 respectively. The resulting wave propagation for

L = 0:5 is given in �g 6.6.

From these �gures it can be seen that a sudden decrease in wall thickness and thus a

sudden increase of the distensibility or sti�ness (Eh) of the wall leads to a negative

re
ection of the incident wave and a transmitted wave with a decreased pressure

amplitude and a decreased wave speed. For a sudden decrease of the sti�ness the

opposite phenomena occur.

In a similar way as in equation (6.56) expressions can be obtained for the re
ection

and transmission coe�cient of a bifurcation of uniform tubes (see �gure 6.7) at

z = L, here referred to as a discrete bifurcation. In that case continuity of pressure

and 
ow yields:

pi(!;L; t) + pr(!;L; t) = pt1(!;L; t) = pt2(!;L; t) (6.57)

qi(!;L; t) + qr(!;L; t) = qt1(!;L; t) + qt2(!;L; t) (6.58)
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Figure 6.6: Wave re
ection and propagation at discrete transitions formed by a

sudden increase (left) and decrease (right) of the wall thickness.

resulting in:

�0(!) =
p̂r(!;L)

p̂i(!;L)
=

Y0(!)� (Y1(!) + Y2(!))

Y0(!) + (Y1(!) + Y2(!))
(6.59)

T01(!) =
p̂t1(!;L)

p̂i(!;L)
=

2Y0(!)

Y0(!) + (Y1(!) + Y2(!))
(6.60)

T02(!) =
p̂t2(!;L)

p̂i(!;L)
= T01(!) (6.61)

Here pt1 and pt2 are the waves transmitted into the daughter tubes, and Y1 and Y2
are the impedances of these daughter tubes. Expressions for the pressure waves are

similar to the ones given for the discrete transition in equations (6.56).

In �gure 6.7 the wave re
ection caused by a bifurcation of a tube with radius a0 into

two tubes with respectively radius a1 and a2 is given for a0 : a1 : a2 = 1 : 1 : 1 (left)

and a0 : a1 : a2 = 3 : 2:1 : 1:8 (right). One can observe a negative and a positive

re
ection of the incident wave due to the fact that a20 < a21 + a22 and a
2
0 > a21 + a22

respectively and a wave speed which is slightly higher in the branch with the smallest

radius.

Note that the transmission and re
ection coe�cients given in equations (6.54-6.55)

and (6.60-6.61) are special cases of a general N-way junction with:

pi(!;L; t) + pr(!;L; t) = ptj (!;L; t) (j = 1; :::; N) (6.62)

qi(!;L; t) + qr(!;L; t) =
NX
j=1

qtj (!;L; t) (6.63)
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Figure 6.7: Wave re
ection and propagation at a discrete bifurcation.

resulting in:

�0(!) =
p̂r(!;L)

p̂i(!;L)
=

Y0(!)�
NP
j=1

Yj(!)

Y0(!) +
NP
j=1

Yj(!)

(6.64)

T0j(!) =
p̂tj (!;L)

p̂i(!;L)
=

2Y0(!)

Y0(!) +
NP
j=1

Yj(!)

(j = 1; :::; N) (6.65)

6.5.2 Multiple wave re
ection: e�ective admittance

Consider two N-way junctions at a distance Lmn apart from each other as given in

�gure 6.8.

At junction n we have:

�n =

Ymn �
NnP
j=1

Y e
nj

Ymn +
NnP
j=1

Y e
nj

Tnj =
2Ymn

Ymn +
NnP
j=1

Y e
nj

(6.66)

where Y e
nj

is the e�ective admittance of section nj at location n. If there are no

re
ected waves in section nj then Y e
nj

= Ynj .



Wave phenomena in blood vessels 79

m n

1

Nm

1

j

Nn

Figure 6.8: Multiple junctions.

At junction m we have:

�m =

Ym �
NmP
n=1

Y e
mn

Ym +
NmP
n=1

Y e
mn

Tmn =
2Ym

Ym +
NmP
j=1

Y e
mn

(6.67)

with:

Y e

mn =
q̂(!;L1)

p̂(!;L1)
= Ymn

eikmnLmn � �ne
�ikmnLmn

eikmnLmn + �ne�ikmnLmn

(6.68)

In this way it is possible to compute the pressure and 
ow in a complete transmission

line network, starting from a distal impedance going back to the aorta. An example

of such a computation is given in �gure 6.9 where the input impedance at the aorta

is given as a function of the frequency. A minimum of jZj is found corresponding

with a phase angle of zero. In (Milnor, 1989) this is attributed to a re
ection from

the aorta bifurcation.

The re
ection mentioned above can be explained from the expression we obtain after

substitution of (6.66) in (6.68) yields:

Y e

mn = Ymn

NnP
j=1

Y e
nj
+ iYmn tan(kmnLmn)

Ymn + i
NnP
j=1

Y e
nj
tan(kmnLmn)

(6.69)

For kmnLmn = 0;��;�2�; ::: we �nd Y e
mn =

NnP
j=1

Y e
nj

and the section mn has no

in
uence. These phenomena are illustrated in �gure 6.10 showing the impedance

Ze
mn=Z0 in a tube with characteristic impedance Z0 = Zmn as a function of the

frequency and distance from a termination with impedance Ze
T
= 4Z0. Also the

e�ect of attenuation is shown.

From expression (6.68) (or 6.69) we can see that for kmnLmn � 1 we simply have

e�ikL = 1 and after substitution of (6.66):

Y e

mn = Ymn

1� �n

1 + �n
=

NnX
j=1

Y e

nj if kmnLmn � 1 (6.70)
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Figure 6.9: Input impedance at the aorta as a function of the frequency Milnor

(1989).

as if the sectionmn did not exist. If, however, kmnLmn is small but still large enough

that �rst order terms can not be neglected (i.e. k2mnL
2
mn � 1) we have:

Y e

mn = Ymn

1 + ikmnLmn � �n(1� ikmnLmn)

1 + ikmnLmn + �n(1� ikmnLmn)
(6.71)

and after substitution of (6.66):

Y e

mn = Ymn

ikmnLmnYmn +
NnP
j=1

Y e
nj

Ymn + ikmnLmn

NnP
j=1

Y e
nj

if k2mnL
2
mn � 1 (6.72)

If we neglect terms of O(k2L2) we obtain:

Y e

mn =

NnX
j=1

Ynj + ikmnLmnYmn

2
666641�

0
BBB@

NnP
j=1

Y e
nj

Ymn

1
CCCA
2377775 (6.73)

From this we can see that for intermediate long transitions only the phase of the

admittance and not its absolute value is changed (see also Pedley, 1980).

So far, no attention was paid to re
ections originating from peripheral vascular beds.

However, these re
ection phenomena might play an important role and can easily

be taken into account. In the presence of re
ected waves in the distal parts of a
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Figure 6.10: E�ective impedance as a function of the frequency (left) and distance

from termination (right) with (...) and without ({) attenuation Milnor (1989).

discrete transition, the re
ection and transmission coe�cient at an N-way junction

read:

�0(!) =

Y0 �
NP
j=1

1��d
j

1+�d
j

Yj

Y0 +
NP
j=1

1��d
j

1+�d
j

Yj

(6.74)

T0j(!) =
2Y0

Y0 +
NP
j=1

1��d
j

1+�d
j

Yj

(j = 1; :::; N) (6.75)

This result can directly be derived from the results for distal sections without re-


ection by replacing the admittance by its e�ective admittance using the re
ection

coe�cients �d
j
of the distal sections at the junction (see 6.70). So the re
ection from

the distal vascular system is represented by the re
ection coe�cients �d
j
. These have

to be determined from experimental data or can be estimated by modeling the distal

part as a transition to an appropriate output impedance.

6.5.3 Vascular impedance and cardiac work

The importance of wave phenomena in the vascular system and the corresponding

vascular impedance is clearly illustrated if we want to investigate the mechanical

work done by the left ventricle. For each cardiac cycle this work is the integral over

time of the pressure 
ow product:

W =

t0+TZ
t0

pqdt (6.76)

This integral consists of two parts. The �rst part is the steady 
ow power Ws which

is determined by the resistance R0 of the vascular system (mainly the peripheral
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resistance) de�ned as the ratio between the mean pressure and the mean 
ow R0 =

p0=q0. The second part is the oscillatory 
ow power W0 following from (6.76) and

the vascular impedance for each harmonic n (Zn = jZnjexp(i�n)). So:

W = 1
2

NX
n=1

q2njZnj cos �n + q20R0 (6.77)

In Milnor (1989) the following values can be found:

q20R0

P
n

left ventricle 1400 200

right ventricle 155 73

For the systemic circulation the contribution of the higher harmonics to the total

work is relatively low. This is due to the fact that cos �n � 1. As the value of

Zn directly in
uences the work that has to be done by the heart, knowledge of the

in
uence of age, medicine and other factors on the value of Zn is of great clinical

importance.

6.6 Summary

In this chapter, linearized wave equations that govern the pressure and 
ow trav-

eling through the arterial system are derived. For large values of the Womersley

parameter these equations yield the Moens-Korteweg wave speed. For small values

of the Womersley parameter a di�usion equation can be derived expressing perfusion


ow in small arteries. For intermediate (arbitrary) values of the Womersley param-

eter wave speed and admittance can be expressed in terms of those derived for the

Moens-Korteweg waves. Re
ection of waves at discrete transitions are derived from

continuity of pressure and rate of 
ow and allow determination of multiple wave

re
ection and the de�nition of e�ective admittance in order to determine vascular

impedance and cardiac work.



Chapter 7

Non-Newtonian 
ow in blood

vessels

7.1 Introduction

After a brief introduction to methods to measure 
uid properties, in this chapter

sequentially constitutive equations for Newtonian 
ow, generalized Newtonian 
ow,

viscoelastic 
ow and the 
ow of suspensions will be dealt with. It will be shown

that the viscosity of blood is shear and history dependent as a result of the presence

of deformation and aggregation of the red blood cells that are suspended in plasma.

The consequence of this non-Newtonian behavior on the velocity pro�les in steady

and pulsatile 
ow will be illustrated.

83
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7.2 Mechanical properties of blood

Blood is a complex 
uid consisting of blood cells suspended in plasma. The rheolog-

ical behavior strongly depends in the properties of the suspended particles. In this

section some of the main aspects of blood rheology are given starting from a short

description of the morphology.

7.2.1 Morphology

Plasma is the continuous liquid medium in which the blood cells are suspended.

It is an aqueous saline solution with proteins. The outline of the composition of

the plasma is given in table 7.1. The density of plasma is 1:03 � 103 kg=m3. If

denaturisation of the proteins is avoided, plasma behaves like a Newtonian 
uid

with a dynamic viscosity of � = 1:2 � 10�3Pa � s.
The inorganic constituents of the plasma are a governing factor in various transport

processes and generate an osmotic pressure of about 8�105 Pa (equivalent to a 0:9%
sodium chlorine solution by weight). The proteins have various functions and can

be divided into three groups:

�brinogen : a large, asymmetric molecule which is intimately concerned with the

coagulation of blood. Although the concentration of �brinogen is low, due to

its asymmetry, it attributes signi�cantly to the elevated viscosity of plasma.

albumin : a small molecule which is important for the osmotic pressure of the

proteins.

globulins : a relatively symmetric molecule which is involved in transport of lipids

and antibody reactions.

Apart from the bu�ering function of all the proteins, both �brinogen and the glob-

ulins are involved in the aggregation of the erythrocytes.

An outline of the composition of suspended blood cells is given in table 7.2.

The red blood cells, or erythrocytes, occupy 45 % of the blood volume and dominate

the rheological behavior of blood.

erythrocytes : form the dominant particulate matter of blood. The volume con-

centration of the erythrocytes, called haematocrite, is about 45 %. The density

of the erythrocytes is 1.08 �103 kg=m3. The erythrocyte is a biconcave dis-

coid and the main dimensions are given in �gure 7.2.1. The membrane of the

erythrocytes has a thickness of 80 nm and consists of a phospholipid bilayer.

This bilayer is covered with albumin at the outside and with another layer of

protein, spectrin, at the inside. The spectrin layer is a skeletal protein and

supports the lipid bilayer. The liquid interior of the erythrocyte is a saturated

solution of hemoglobin (32 % by weight), behaving like a Newtonian 
uid with

a dynamic viscosity of � = 6�10�3Pa�s. The hemoglobin (MW = 68:000) is a

protein complex, consisting of an Fe2+ complex, the haem group, surrounded

by amino acid molecules. The haem group is essential for transport processes
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material concentration molecular molecular

weight dimension

g=100ml �10�3 nm

water 90-92

proteins

albumin 3.3-4.0 69 15x4

�1-globulins 0.31-0.32 44-200

�2-globulins 0.48-0.52 150-300

�-globulins 0.78-0.81 90-1300 20-50


-globulins 0.31-0.32 160-320 23x4

�brinogen 0.34-0.43 400 50-60x3-8

inorganic

constituents

cations

sodium 0.31-0.34

potassium 0.016-0.021

calcium 0.009-0.011

magnesium 0.002-0.003

anions

chloride 0.36-0.39

bicarbonate 0.20-0.24

phosphate 0.003-0.004

Table 7.1: Composition of plasma.

cells number unstressed shape volume %

and dimension in blood

per mm3 �m %

erythrocytes 4� 6 � 106 biconcave disc 45

8x1-3

leucocytes 4� 11 � 103 roughly spherical

7-22

1

platelets 2:5� 5 � 105 rounded or oval

2-4

Table 7.2: blood cells
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2:8�m1:2�m

7:8�m

Figure 7.1: Size and dimension of the erythrocytes.

for it can bind oxygen and carbon dioxide and gives blood its red color. The

origin of the biconcave shape of the erythrocytes is a source of dispute. For

a review of possible explanations, one is referred to Fung (1993b). An impor-

tant consequence of the biconcave shape is the ability of the erythrocytes to

change shape without changing the surface area. This enables the erythrocyte

to pass through capillaries with a diameter smaller than 8 �m. Another phe-

nomena, closely linked to the deformability of the erythrocyte, is the rotation

of the membrane around the liquid interior in a shear 
ow (tank-threading

movement, Schmid-Sch�onbein et al. (1971)). The erythrocytes aggregate face

to face if they are brought in contact with each other at low shear rates (�g-

ure 7.2.2). These aggregates are known as rouleaux and are formed under the

in
uence of bridging macromolecules, especially �brinogen. At near zero shear

rates, secondary aggregation of the rouleaux occurs, leading to formation of a

rouleaux network.

leucocytes : are far less numerous than the erythrocytes (1 to 1000) and hereby

they have only a marginal in
uence on the rheological properties of blood.

The shape is spherical with a diameter of 7� 22�m.

platelets : The volume concentration of the platelets is 0.3 % and there is one

platelet for every 10 erythrocytes. The platelets are small oval bodies with a

phospholipid membrane and an interior that resembles the interior of regular

cells. This includes a cytoskeleton, giving the platelet a much higher rigidity

than the erythrocyte. If the platelets are brought in contact with adenosine

diphosphate (ADP) they aggregate and a thrombus can be formed. The pro-

cess of thrombus formation is very complex and various agents are involved.

7.2.2 Rheological properties of blood

The composition of blood, as well as the properties of the constituents, lead to a

complex macroscopic behavior of blood. The research on the 
ow behavior of blood

can be divided into two classes: one involved with the viscometric 
ow of blood

and another dealing with blood 
ow in tubes. The viscometric studies are mainly

focused on obtaining constitutive equations for blood. Generally, these constitutive
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equations can be used to relate stresses to deformation rates. In viscometry however,

homogeneity the 
uid and a constant shear rate is assumed and from several studies

it can be concluded that this assumption does not hold for blood or concentrated

suspensions in general. The studies of blood and blood analog 
uids in tube 
ow

show that the concentration distribution is inhomogeneous and that the velocity

distribution is governed by the non-Newtonian properties of blood.

Rheometry

The properties of 
uids can be measured in a rheometer. In a rheometer, a well

de�ned 
ow is generated and the forces, exerted by the 
uid, are used to characterize

its properties. The most commonly used 
ow is one in which the stress and shear is

homogeneous. This simple shear can be generated by sliding one plate over another.

The gap between the plates is �lled with the 
uid under investigation (see �gure 7.2).

In practice, a viscometer may consist of two rotating co-axial cylinders of which the

radii Ri and Ro di�er slightly such that h = Ro �Ri � Ri (Couette device). If the

outer cylinder rotates, say with a steady angular velocity 
c the forces of viscosity

in the 
uid will exert a moment M on the inner cylinder that can be measured. The

velocity V = 
cRo locally can be considered to be unidirectional and

is given by:

v1 =
@v1

@x2
x2 � _
x2 (7.1)

with _
 = V=h the shear rate. For this con�guration the following expressions for

the velocity gradient, rate of deformation and vorticity tensor can be found easily:

L =

0
B@ 0 _
 0

0 0 0

0 0 0

1
CA = D +
 (7.2)

with

D =
1

2

0
B@ 0 _
 0

_
 0 0

0 0 0

1
CA and 
 =

1

2

0
B@ 0 _
 0

� _
 0 0

0 0 0

1
CA ; (7.3)
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V

Figure 7.2: Simple shear 
ow as will be generated by a Couette device
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Viscosity measurements of blood

The deformability and the aggregation of the erythrocytes induce the complex be-

havior of blood in simple shear 
ow. At low shear rates, the erythrocytes tend to

aggregate. These trains of rouleaux will increase the viscosity of the blood. Decreas-

ing the shear rate even further , the rouleaux will form three dimensional structures,

inducing an additional increase of the viscosity. If the shear rate is increased, the

rouleaux break up and the erythrocytes align with the 
ow. Eventually, the shear

rates will be high enough to deform the erythrocytes, thus decreasing the viscosity.

The deformability and aggregation of the erythrocytes result in shear thinning be-

havior of blood in simple shear (�gure 7.2.2). The deformability and the orientation

of the rouleaux and the individual erythrocytes lead to the viscoelastic behavior of

blood. They provide a mean of storing energy during 
ow. Thurston (1973) in-

vestigated the viscoelastic properties of blood in the linear viscoelastic regime and

measured a signi�cant elastic component in oscillatory blood 
ow.

Figure 7.3: Aggregation (rouleaux), disaggregation and orientation of erythrocytes

(top). Viscosity in steady shear of normal blood, blood with hardened erythrocytes

(no deformation) and blood in a Ringer solution (no aggregation). From (Chien

et al., 1969).
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7.3 Newtonian models

7.3.1 Constitutive equations

As indicated in the chapter 2, a constitutive equation for 
uids may have the form

� = �( _B) = �(2D): (7.4)

A general way to construct an arbitrary function �(2D) is to expand the function

in a power series. This yields:

� = f0D
0 + f1D

1 + f2D
2 + f3D

3 + ::: (7.5)

The Cayley Hamilton theorem (Chadwick, 1976) states that for (any symmetric)

tensor D it can be shown that:

D
3 � IDD2 + IIDD � IIIDI = 0 (7.6)

Here ID; IID and IIID are the invariants of D de�ned as:

ID = trD

= D11 +D22 +D33

(7.7)

IID = 1
2
(I2
D
� trD2)

=

����� D11 D12

D21 D22

�����+
����� D22 D23

D32 D23

�����+
����� D33 D31

D13 D11

�����
(7.8)

IIID = detD

=

�������
D11 D12 D13

D21 D22 D33

D31 D32 D33

�������
(7.9)

As a consequence any power series of D can be written as:

KX
k

fkD
k = g0D

0 + g1D
1 + g2D

2 (7.10)

With gi scalar functions of the invariants of D. 1

Using this result in (7.5) yields

� = g0D
0 + g1D

1 + g2D
2 (7.11)

If there is no deformation, for an incompressible 
uid the Cauchy stress tensor must

reduce to a hydrostatic pressure �pI. As D0 = I , it follows that g0 = �p. For

Newtonian 
uids g1 is found to be a constant and g2 = 0. If the dynamic viscosity

is de�ned as � = g1=2, the constitutive equation reads:

� = �pI + 2�D (7.12)

1Note that for incompressible 
ows ID = 0.
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7.3.2 Viscometric results

If we substitute the expression for D that was derived for simple shear (7.3) we

obtain the following normal and shear stress for Newtonian 
uid in a Couette 
ow

device:

�11 = �22 = �33 = �p (7.13)

� = �12 = �21 = � _
 (7.14)

There will be a linear relation between shear stress � and shear rate _
. The viscosity

is de�ned as the slope of the line. If the velocity V of the Couette device would

vary in time but not that fast that inertia forces should be taken into account, then

relation (7.14) indicates that for Newtonian 
uids, the shear stress would follow

instantaneously. This is in contradiction with viscoelastic 
uids where a history

dependent response would be found.

7.4 Generalized Newtonian models

7.4.1 Constitutive equations

One of the most striking properties of 
uids that di�er from Newtonian 
ow is the

shear rate dependency of the viscosity. This shear rate dependency of the viscosity

is generally found for polymeric liquids, emulsions and concentrated suspensions. In

order to characterize such 
uids a non-Newtonian scalar viscosity, dependent on the

rate-of-strain tensor _
 can be introduced. The dependency on _
 must be such that

the resulting constitutive equation does not depend on the coordinate system used.

It has been shown that this is achieved if the three independent scalar invariants of

D are used (see equation 7.11).

Since tr(D) = r � u, for incompressible 
uids ID = 0. Further, experimental obser-

vations show that dependency on D2 is rarely found (Macosko, 1994) so g2 in (7.11)

is taken to be zero. Finally, data to �t these constitutive equations are obtained

from simple shearing 
ows like in plane Couette 
ow. Therefore only for simple

shear valuable forms for � can be found in literature. In that case from (7.3) it can

be derived that det(D) = 0. The generalized Newtonian constitutive equations then

get the form:

� = �pI + 2�(IID)D (7.15)

From equation (7.9) it follows that for incompressible 
ows

IID = �1
2
(tr(D2)) = �j _
j2: (7.16)

In other words, if we de�ne the shear rate as the magnitude of the rate-of-strain

tensor _
 = j _
j the constitutive equations for incompressible generalized Newtonian


uids reduce to:

� = �pI + 2�( _
)D (7.17)

The most important generalized Newtonian models are:
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Power-law model :

In a power-law model the viscosity is assumed to depend on the shear rate according

to:

� = �0(� _
)
n�1 (7.18)

with �0 the viscosity for _
 = 1=�, � a time constant and n the power-law constant.

If n > 1 the 
uid is called shear thickening and if n < 1 the 
uid is said to be

shear thinning. Examples of shear thinning 
uids are all kinds of polymer solu-

tions and melts but also yogurt and blood. Shear thickening can be found in some

concentrated suspensions of small particles. Note that the power-law model cannot

describe the viscosity at very low and at very high shear rates as it goes to physically

unrealistic values of 0 and 1 respectively.

Carreau-Yasuda model :

A more realistic model is given by:

� � �
1

�0 � �
1

= [1 + (� _
)a](n�1)=a (7.19)

With �0 the viscosity at low shear rate, �
1
the viscosity at high shear rate, � a time

constant and n the power-law constant. The parameter a determines the transition

between the low-shear-rate region and the power-law region.

Casson model :

Bingham (1922) proposed a model in which a certain yield-stress � 0 is needed

in order to break networks of polymer chains (in polymer solutions and melts) or

rouleaux (in blood) and induce any deformation at all. This can be expressed by

the following equation:

�
1

m = �

1

m

0 + (�
1
_
)

1

m (7.20)

For m = 1 the model is called a Bingham model and for m = 2 a Casson model. In

terms of a shear dependent viscosity this can also be written as:

� = �
1
[1 + (

�0

�
1
_

)
1

m ]m (7.21)

Where �0 is some measure of � 0 ( i.e. �0 = j� 0j like _
 = j _
j). Originally, this model

has been proposed for suspensions of spherical particles like paints but it has proven

to be useful for blood 
ow as well.

7.4.2 Viscometric results

Equivalent to Newtonian 
uids the following normal and shear stress for generalized

Newtonian 
uids is found in a Couette rheometer:

�11 = �22 = �33 = �p (7.22)
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� = �12 = �21 = �( _
) _
 (7.23)

As the stress must change sign if the viscometer rotates in the other direction, �

must be an odd function of _
 and thus �( _
) must be an even function. This is clear

from (7.16) where IID = �j _
j2.
The viscosity may increase (shear thickening or dilatant) or decrease (shear thinning

or pseudo-plast) with decreasing shear rate (see �gure 7.4). As can be depicted from

this �gure several viscosity characteristics can be found and so the model that must

be used to describe the shear rate dependency.
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Figure 7.4: Relation between shear stress (�) and shear rate _
) (left) and the viscosity

(�) as a function of the shear rate ( _
) (right) for generalized Newtonian 
uids.

The shear thinning e�ect will be illustrated on a tube 
ow with a small value of

the Womersley parameter. Consider a 
uid that obeys the power-law constitutive

equation:

� = �0(� _
)
n�1 (7.24)


owing through a rigid straight tube with its axis in z-direction. The momentum

equation for fully developed 
ow then reads (see also (4.31)):

0 = �@p
@z

+
1

r

@

@r
(r�rz) (7.25)

Integration over the radius yields:

�rz =
1
2

@p

@z
r +

C1

r
(7.26)
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The integration constant C1 must be zero to avoid that �rc(0) ! 1. On the other

hand we know:

�rz = �
@vz

@r
= �0(�

@vz

@r
)n�1

@vz

@r
= �0�

n�1(
@vz

@r
)n (7.27)

Substitution in (7.26) yields

@vz

@r
=

�
@p

@z

r

�0�n�1

�1=n
(7.28)

Again integration over r results in:

vz(r) =

�
1

�0�n�1
@p

@z

�1=n r1=n+1

1=n+ 1
+ C2 (7.29)

The constant C2 follows from the boundary condition vz(a) = 0 and reads:

C2 = �
�

1

�0�n�1
@p

@z

�1=n a1=n+1

1=n+ 1
(7.30)

The velocity pro�le for a power-law 
uid in a straight tube thus reads:

vz(r) =

�
@p

@z

a

�0�n�1

�1=n a

1=n+ 1

�
1� (

r

a
)1=n+1

�
(7.31)

For shear thinning 
uids this result in velocity pro�les that are 
attened compared

to the pro�les for Newtonian (n=1) 
ow. In �gure 7.5 the velocity pro�les are given

for di�erent values of n.
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Figure 7.5: Velocity pro�le for several values of n of the power-law.
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7.5 Viscoelastic models

7.5.1 Constitutive equations

If instationary inertia forces can be neglected, for (generalized) Newtonian 
uids the

momentary stress at a �xed location x, �(t) is determined by a momentary shear

rate _
(t) and is found to be �(t) = �(IID) _
(t). Generalized Newtonian models can

describe the shear rate dependency of viscosity quite well but can not describe time

dependence in the response to deformation. This time dependency is illustrated

clearly by the fact that some 
uids return to their original form when the applied

stress is released. These 
uids do not only have viscous properties (�(t) = �( _
(t)))

but show also elastic properties (�(t0; t) = �(
(t0; t))). This can be the result of

the presence of long molecular chains or deformable particles which show an elastic

relaxation after deformation. Note that the elastic response at a �xed location x not

only depends on the time but also on a reference time t0. This, of course, originates

from the fact that unlike the shear and strain rate, the shear and strain are de�ned

with respect to a reference state. The relation between shear and shear rate can be

expressed as:

_
(t) =
@
(t0; t)

@t
(7.32)

and


(t0; t) =

tZ
t0

_
(t00)dt00 (7.33)

Constitutive equations for viscoelastic materials are often based on Boltzmann's su-

perposition principle. Each increment in shear �
n at time tn that is experienced

by the material will induce a shear stress �n which will be a function of time but

will be independent of the shear stress that is induced by other increments in shear.

So, like in�nitesimal strains, also in�nitesimal stresses are additive. The time de-

pendence of the response to a shear rate increment at time t = tn can be de�ned by

a relaxation function G(t � tn). The relaxation function G(t � tn) mostly is taken

to be an exponential decay with time constant or characteristic relaxation time �0
according to:

G(t� tn) = G0e
�

1

�0
(t�tn)

(7.34)

Following Boltzmann's superposition principle, the total shear stress at time t then

is given by:

�(t) =
X
n

�
nG0e
�

1

�0
(t�tn)

(7.35)

If we write

�
n(t) =
�
(tn; t)

�t
�t � _
(tn)�t (7.36)
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the following expression is found:

�(t) =

tZ
�1

_
(t0)G0e
�

1

�0
(t�t0)

dt0 (7.37)

Partial integration yields:

�(t) = G0e
�

1

�0
(t�t0)


(t; t0)jt
�1

+

tZ
�1

G0

�0
e
�

1

�0
(t�t0)


(t; t0)dt0 (7.38)

Here the following de�nition has been used:


(t; t0) =

tZ
t0

_
(t00)dt00 (7.39)

Note that 
(t; t0) expresses the shear that is experienced in the period of time between

t0 and t (t0 < t00 < t) and thus 
(t; t) = 0. As a consequence the �rst term in (7.38)

vanishes. The shear stress then reduces to:

�(t) =

tZ
�1

G0

�0
e
�

1

�0
(t�t0)


(t; t0)dt0 (7.40)

A three-dimensional analog is known as the Lodge integral equation. It provides a

general integral constitutive equation for viscoelastic 
uids (see Macosko, 1994) and

reads:

�(t) =

tZ
�1

G0

�0
e
�

1

�0
(t�t0)

B(t; t0)dt0 (7.41)

In (7.40) the one-dimensional shear stress �(t) is replaced by the Cauchy stress �(t)

and the shear 
(t; t0) is replaced by the general measure B(t; t0).

A corresponding di�erential form can be derived by di�erentiation of the Lodge

integral equation (7.41). As the upper bound of the integral depends on t the

Leibnitz formula is used:

d�(t)

dt
=

G0

�0
e
�

1

�0
(t�t0)

B(t; t0)jt
�1

+

tZ
�1

G0

�0
e
�

1

�0
(t�t0)

�
� 1

�0
B(t; t0) + _B(t; t0)

�
dt0

(7.42)

The �rst term vanishes for t0 = �1 and yields (G0=�0)B(t; t) = (G0=�0)I for t
0 = t.

The second part of the second term can be simpli�ed with the aid of relation (2.25).

So (7.42) reduces to:

d�

dt
=
G0

�0
I � 1

�0
� +L � � + � �Lc (7.43)
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or:

�0

�
d�

dt
�L � � � � � Lc

�
+ � = G0I (7.44)

Elimination of the hydrostatic part G0I by substitution of � = � +G0I yields:

�0( _� �L � � � � �Lc �G0L � I �G0I � Lc) + � = 0 (7.45)

and �nally with

L = (rv)c; (7.46)

L � I + I �Lc = 2D; (7.47)

�0 = G0�0 and (7.48)

d�

dt
=
@�

@t
+ v � r� (7.49)

the di�erential form of the Lodge integral equation (7.41) is obtained and reads:

�0

�
@�

@t
+ v � r� � [(rv)c � � + � � (rv)]

�
+ � = 2�0D (7.50)

The term in between the brackets fg is called the upper convected time derivative

of � . The constitutive model is called the upper convected Maxwell (UCM) model

and forms the basis of many other models that are proposed in literature.

After introduction of the non-dimensional variables: x� = x=L, v� = v=V , t� = t=�

and � � = �L=�0V a dimensionless form of this equation is given by:

De
@�

@t
+We [v � r� � (rv)c � � � � � (rv)] + � = _
 (7.51)

With the dimensionless numbers:

De =
�0

�
Deborah number

We =
�0V

L
Weissenberg number

(7.52)

with De the Deborah number de�ned as the ratio of a characteristic relaxation

time of the 
uid �0 to a characteristic time of the 
ow � and We the Weissenberg

number de�ned as the ratio of a characteristic relaxation time of the 
uid �0 and a

characteristic time measure of shear rate L=V .

If the Weissenberg number is small a linear viscoelastic (Maxwell) model is found

according to:

De
@�

@t
+ � = _
 (7.53)
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or in dimensionfull form:

�0
@�

@t
+ � = �0 _
 (7.54)

with �0 the viscosity and �0 a time constant (for deformation of red blood cells

�0 = O(0:1s) ). The presence of the time derivative term introduces an elastic

contribution with elastic modulus �0=�0. For large Deborah numbers this equation

yields a constitutive equation for a simple Hookean solid with elastic modulus G =

�0=�0:

� = G
 (7.55)

which only holds for small strains 
 � 1

Generalized upper convected Maxwell models use more then one relaxation time:

G(t� tn) =
KX
k=0

Gke
�

1

�
k

(t�tk)
(7.56)

Note that for viscoelastic solids at least one time constant �k =1 must exist.

7.5.2 Viscometric results

The material behavior of viscoelastic 
uids can be illustrated clearly by two experi-

mental observations:

Response to a step input in the shear rate :

If we de�ne the function S(t) as:

S(t) =

8><
>:

0 t < 0

1 t � 0

(7.57)

and a shear rate according to:

_
(t) = _
oS(t) (7.58)

The corresponding stress then is found to be:

�(t) = � _
0(1� e�t=�) for t > 0 (7.59)

This indeed consists of two contributions:

elastic : � = (�=�) _
0t for t� �

viscous : � = � _
0 for t� �
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Response to a sinusoidal oscillation in the shear rate :

Consider a shear rate according to:

_
(t) = _
0e
i!t (7.60)

The corresponding stress then is found to be:

�(t) = �0e
�i�ei!t (7.61)

We can de�ne a complex viscosity:

� = �v � i�e = (�0= _
0)e
�i� (7.62)

with a viscous part �v = (�0= _
0) cos(�) and an elastic part �e = (�0= _
0) sin(�).

The phase shift � between the shear rate and shear stress is a measure for the

importance of the elastic part of the response.

Both experimental observations are also illustrated in �gure 7.6.
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Figure 7.6: Response to steps in shear, steps in shear rate and sinusoidal shear rate

Fully developed viscoelastic 
ow in a tube is described by the momentum equation

in z-direction:

�2
@vz

@t
= �@p

@z
+
1

r

@

@r
(r�rz) (7.63)



Non-Newtonian 
ow in blood vessels 99

With the aid of:

v =

2
64 0

0

vz

3
75 rv =

2
64 0 0 _


0 0 0

0 0 0

3
75 (7.64)

with _
 = @vz

@r
. It can easily be veri�ed that v �r� = 0 and that the upper convected

Maxwell model reduces to:

De @

@t

2
64 �rr �r� �rz
��r ��� ��z
�zr �z� �zz

3
75�We

2
64 0 0 �rr _


0 0 ��r _


�rr _
 �r� _
 2�zr _


3
75+

+

2
64 �rr �r� �rz
��r ��� ��z
�zr �z� �zz

3
75 =

2
64 0 0 _


0 0 0

_
 0 0

3
75

(7.65)

Making use of symmetry of � and assuming a stress free initial condition, this yields:

De
@�rz

@t
+ �rz = _
 (7.66)

and

De
@�zz

@t
� 2We _
�rz + �zz = 0 (7.67)

We search for harmonic solutions:

vz(r) = v̂z(r)e
i!t;

@p

@z
=
@p̂

@z
ei!t; �rz(r) = �̂rz(r)e

i!t (7.68)

Equation (7.66) in dimensionfull form then can be solved and yields the following

relation between the shear stress and the shear rate:

�̂rz =
�

1 + i!�
_
 (7.69)

This shows that the solution of (7.63) for viscoelastic 
ow is exactly the same as

the one for Newtonian 
ow except for the viscosity that in the viscoelastic case is a

complex function according to:

�� =
�

1 + i!�
(7.70)

The two dimensionless parameters thus are:

De = !� (7.71)

and

�� = a

s
!(1 + iDe)

�
= (1 + iDe)1=2� (7.72)

The solution of the velocity �eld will again be (see (4.45)):

v̂z(r) =
i

�!

@p̂

@z

"
1� J0(i

3=2��r=a)

J0(i3=2��)

#
(7.73)
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Figure 7.7: Velocity pro�les for several values of De and �.

but now with a complex value of �. In �gure 7.7 the velocity pro�les are given for

di�erent values of De and �.

Note that equation (7.67 shows that for viscoelastic 
uids there will be a normal

stress di�erence �rr� �zz that will be non-zero. This however does not in
uence the
velocity pro�les for fully developed 
ow.

7.6 Rheology of suspensions

7.6.1 Constitutive equations

A suspension can be considered as a homogeneous 
uid if the dimension of the

suspended particles is small with respect to the dimension of the 
ow channel. The

viscosity of this homogeneous suspension will be a function of the concentration

of suspended particles expressed in the volume fraction of particles �. If we bring

particles in a Newtonian 
uid with viscosity �0, the e�ective viscosity �s will increase.

If we assume that the particles move with the 
uid and do not deform, the shear

rate in between the particles will be larger then the shear rate in a 
uid without

particles (see �gure 7.8).

The way in which the viscous properties of the 
uid change strongly depends on the

concentration, shape and mechanical properties of the particles. A short overview

of viscosity changes that are found for suspensions of particles in a Newtonian 
uid

will be given below:

Rigid spheres - low concentration :

A suspension of rigid spheres with a particle volume fraction � which is so low
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that there is no interaction between the spheres will have a viscosity given by

the Einstein relation:

�s(�) = �0(1 + 2:5�) (7.74)

If the volume fraction � is larger then 0:01 the particles will interact and the

viscosity will increase even more and the following modi�cation appears to be

useful for volume fractions up to � = 0:3 (Batchelor, 1977):

�s(�) = �0(1 + 2:5� + 6:25�2) (7.75)

For volume fractions larger then 0:3 the suspension becomes non-Newtonian.

Deformable spheres - low concentration :

Also for suspensions of deformable spheres (f.i. droplets that keep their spher-

ical shape due to surface tension) the viscosity will increase with the concen-

tration. This increase, however, will be less then in a suspension with rigid

spheres because the particles are able to deform due to the shear. The shear

between the particles will be less. If �d is the viscosity of the droplets that are

suspended, the following relation has been derived by Taylor (Macosko, 1994):

�s(�) = �0

�
1 + �

�
1 + 2:5�d=�0

1 + �d=�0

��
(7.76)

Note that for rigid spheres (�d ! 1) this relation reduces to the relation of

Einstein. Due to elastic properties of the spheres, at large deformations the

suspension may show viscoelastic properties.

Rigid asymmetric particles - low concentration :

The viscosity of suspensions of asymmetric rigid particles increases with in-

creasing volume fraction and increasing asymmetry. The reason for this is

that due to a competition of Brownian motion and shear stresses the particles

will rotate and occupy all larger volume. For low concentrations the following

relation is found:

�s(�) = �0(1 +K�) (7.77)

V V

Figure 7.8: Simple shear in a homogeneous 
uid and in a suspension
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with K a number expressing the degree of asymmetry of the particles. If the

shear rate increases it will be able to orient the particles and the viscosity

decreases again. The suspension then will behave as a shear-thinning 
uid.

Quemada (1978) proposed the following model that combines the shear thin-

ning properties with the volume fraction dependency:

�s(�; _
) = �0

�
1� �

2

�
k
1
+

k0 � k
1

1 + ( _
= _
c)q

��
�2

(7.78)

with parameters �0,k0,k1, _
c and q.

Deformable asymmetric particles - low concentration :

Also deformable asymmetric particles will rotate in a shear 
ow but they will be

able to change their shape in such a way that they will experience less friction.

The viscosity, hereby, will be lower then for rigid asymmetric particles. Also

here at large deformations the suspension may exhibit viscoelasticity.

Rigid or deformable particles - high concentration :

At higher concentration the particles may form a more or less continuous

structure like trees 
owing in a river. Often a yield stress is needed to break

this structure. For rigid particles this yield stress is determined by the volume

fraction �.

As the rheological properties of suspensions of deformable and asymmetric particles,

especially at high concentrations, are shear thinning and viscoelastic, they are mostly

described by a viscoelastic model adopted from polymer liquids. If the particle

concentration is relatively constant, i.e. the 
uid is homogeneous, measurement of

rheological properties as a function of the particle concentration can be used to �t

these models.

If the particle size is not small compared to the 
ow channel (blood 
ow in the

micro-circulation) particle migration and inhomogeneous viscosity must be taken

into account. In the next chapter examples of such 
ows will be given.

7.6.2 Viscometric results

The in
uence of particles suspended in the 
uid is summarized in �gure 7.9

7.7 Rheology of whole blood

7.7.1 Experimental observations

Coagulation

Measurement of the rheological properties of blood are very di�cult because of its

coagulation properties. Almost all measurements are performed after addition of

anticoagulants. Most important anticoagulants are heparin, sequestrine (EDTA)

and acid-citrate-dextrose (ACD). It is assumed that these products do not alter the

rheology of blood or at least have little e�ect.
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Figure 7.9: The in
uence of particles suspended in a Newtonian 
uid

Rheology of plasma

As mentioned in the �rst chapter of this course plasma behaves like a Newtonian


uid, with a dynamic viscosity of � = 1:2 �10�3Pa �s. To measure this value, contact

with air resulting in denaturation of the proteins must be avoided.

Hardened blood cells

Red blood cells can be hardened with aldehyde. A suspension of hardened cells in

an albumin-Ringer solution, that does not show aggregation because of the absence

of globulins and �brinogen, shows a Newtonian behavior with a viscosity that varies

with the hematocrit in a way as is found for rigid particles (see �gure 7.10 broken

line). For a hematocrit of 45% this solution has a viscosity of about � = 3�10�2Pa�s.

Deformable blood cells

If we allow the blood cells to deform but still suppress aggregation, the viscosity

decreases with respect to the viscosity of hardened cells according to the dotted line

in �gure (7.10). As mentioned in the previous section the suspension now shows

shear thinning due to deformation and orientation of the cells at higher shear rates.

Aggregation of blood cells

If also aggregation of the blood cells is possible, at very low shear rates formation

of rouleaux will signi�cantly increase the viscosity and will even result in a yield
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stress with an order of magnitude equal to 1� 5 � 10�3Pa. At higher shear rates the
rouleaux will break down and a behavior as is found for the albumin-Ringer solution

will be found.
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Figure 7.10: Viscosity in steady shear of normal blood, blood with hardened ery-

throcytes (no deformation) and blood in a Ringer solution (no aggregation). From

(Chien et al., 1969).

Viscoelastic properties of blood

The deformability and the orientation of the rouleaux and the individual erythro-

cytes lead to the viscoelastic behavior of blood. They provide a mean of storing en-

ergy during 
ow. Thurston (1973) investigated the viscoelastic properties of blood

in the linear viscoelastic regime and measured a signi�cant elastic component in

oscillatory blood 
ow (�gure 7.11).

McMillan et al. (1987) investigated the transient properties of blood in viscometric


ow. They measured the shear stress generated by blood, subjected to a number of

sequential steps in the shear rate. The overshoot in the shear stress was attributed

to orientation of erythrocytes and aggregates. The delayed relaxation of the shear

stress can be related to the viscoelastic properties of blood. The transient data can

be used to compute time scales for the formation and break-up of rouleaux.

7.7.2 Constitutive equations

The constitutive equation (7.50) is a relation between � and _
. More complex

relations can be obtained using more then one time constant and superposition of

simple models. Also non-linear relations letting e.g. _
 = _
(� � � ), � = �( _
) or
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Figure 7.11: The elastic (�00) and the viscous (�0) component of the complex viscosity

of blood as a function of frequency in oscillatory shear.

non-constant structure dependent time scales � = �( _
) are used (see e.g. Bird et al.

(1987)). For blood Rosenblatt (1988) proposed the constitutive equation:

�(P )

�
d�

dt
� [(rv)c � � + � � (rv)]

�
+ � = �0(P ) _
 (7.79)

with P a structure parameter de�ned as the fraction of red cells that are aggregated

satisfying the structure kinetics:

@P

@t
+ v � rP = k(1� P )� � _
P (7.80)

Here k represents the formation of aggregates and � _
 represents a shear dependent

loss of aggregates. A challenge for the future will be to evaluate this kind of models

experimentally for complex 
ows and to incorporate them into numerical methods

for time-dependent three-dimensional 
ow simulations.

7.8 Summary

In this chapter the basic equations that have been derived in the chapter 2 to con-

struct constitutive relations of non-Newtonian and viscoelastic 
uids have been used

to describe the rheological properties that can be derived from rheometrical mea-

surements. It has been shown that the shear-thinning behavior that is found for

blood can be well described by a generalized Newtonian model where the shear

stress is generally related to the rate of deformation tensor. Using the Cayley-

Hamilton theorem it follows that for shear 
ow of incompressible 
uids the general

dependency of shear stress and the rate of deformation reduces to a simple shear
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Figure 7.12: Transient behavior of blood after step in shear rate.

dependency of the viscosity that for Newtonian 
uids is taken to be a constant.

Power-law, Carreau-Yasuda and Casson models have been mentioned as examples

of generalized Newtonian models. Viscoelasticity has been introduced using a simple

exponential relaxation function and a shear dependency of the stress based on Boltz-

mann's superposition principle. From this the upper-convected Maxwell di�erential

model for viscoelastic 
uids is derived and two important dimensionless numbers

are de�ned: the Deborah number, de�ned as the ratio between the relaxation time

and the characteristic time of the 
uid motion, and the Weissenberg number, de-

�ned as the product of the relaxation time and the characteristic shear rate. Finally

it has been shown that suspensions may show non-Newtonian viscoelastic proper-

ties depending on the volume fraction, shape and deformability of the suspended

particles.

Non-Newtonian shear-thinning properties of blood are most important in tubes with

small diameters and result in 
attened velocity pro�les as compared to the Newto-

nian pro�les. For fully developed 
ow viscoelastic properties can be incorporated

by introduction of a complex Womersley number de�ned by �� =
p
1 + iDe�, De

being the Deborah number.



Chapter 8

Flow patterns in the

micro-circulation

8.1 Introduction

The circulatory system with vessels of a diameter Dv smaller then 500�m is denoted

as the micro-circulation. The 
ow in the micro-circulation is relatively simple from

geometrical point of view since the entrance lengths are relatively short (see table

8.1) and almost everywhere the 
ow may be considered as a fully developed 
ow.

Moreover, the Womersley number is relatively low (see table 8.1) so that the 
ow

may be considered to be quasi-static. Finally the steady component is relatively

large compared to the higher harmonics of the 
ow and hereby the diameter of the

tubes may be considered to be constant in time. It must be noted that vasodilata-

tion and vasoconstriction is not considered and beyond the scope of this section.

D[�m] L[mm] V [mm=s] Re[�] Le=D[�] �[�]
small arteries 70-500 10 40 5 0.25 1

arterioles 10-70 2 5 0.1 0.005 0.1

capillaries 4-10 1 1 0.005 0.0003 0.01

venules 10-110 2 4 0.1 0.005 0.15

small veins 110-500 10 20 3 0.15 1

Table 8.1: Dimensions and dimensionless numbers in the micro-circulation

Taking in account the consideration given above the governing equations that de-

scribe the 
ow are given by the steady Stokes equations:

�

r

@

@r
(r
@v

@r
) =

@p

@z
(8.1)

Still the 
ow is more complex then Poiseuille 
ow as a result of the fact that the

diameter Dc of the red blood cells suspended in the plasma is that large that the


uid can not be considered as a homogeneous 
uid anymore. As will be elucidated in

107
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the next sections, the 
ow in the micro-circulation can be divided into three regimes:

small arteries and small veins (Dv > 2Dc), arterioles and venules (Dc < Dv < 2Dc)

and capillaries (Dv < Dc).

8.2 Flow in small arteries and small veins: Dv > 2Dc

If the ratio of the vessel diameterDv and the cell diameterDc is large, we may assume

that the 
uid in the core of the vessel is a homogeneous suspension of particles. The

concentration of the particles in the core is constant and hereby the core will have

a viscosity �c. At the vessel wall, however, the concentration of particles will be

lower due to the fact that they can not penetrate through the wall. A possible

concentration pro�le then will look like the one depicted in �gure 8.1. At a distance

smaller then half the cell diameter 1
2
Dc the concentration is assumed to be zero

c(a � 1
2
Dc < r < a) = 0. The concentration in the core is assumed to be constant

c(r < a� 1
2
Dc) = cc. With the de�nition ac = a� 1

2
Dc this yields:

c =

(
cc 0 < r < ac
0 ac < r < a

(8.2)

The viscosity then will be also a function of the radius according to:

� =

(
�c 0 < r < ac
�p ac < r < a

(8.3)

a

cc

0

ep

ec

et

c

ac

z

r

0

Figure 8.1: Particle concentration c and viscosity � in a tube with diameter Dv >

2Dc.
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8.3 Velocity pro�les

The velocity pro�les can be computed from the momentum equations:8>><
>>:

@

@r

�
r�c

@v

@r

�
= r

@p

@z
0 < r < ac

@

@r

�
r�p

@v

@r

�
= r

@p

@z
ac < r < a

(8.4)

Integration from 0 to r assuming the stress to be constant over the interface r = ac,

again integration from 0 to r assuming the velocity to be constant over the interface

and substitution of the boundary conditions at r = a yields:8>>><
>>>:
v(r) =

r2 � a2c
4�c

@p

@z
+
a2c � a2
4�p

@p

@z
0 < r < ac

v(r) =
r2 � a2

4�p

@p

@z
ac < r < a

(8.5)

or with the dimensionless radius � = r=a and the dimensionless core diameter �c =

ac=a: 8>>><
>>>:
v(�) = � a2

4�c
(�2c � �2)

@p

@z
+

a2

4�p
(�2c � 1)

@p

@z
0 < � < �c

v(�) = � a2

4�p
(1� �2)

@p

@z
�c < � < 1

(8.6)

This function is plotted in �gure 8.2 for several values of the dimensionless core

radius �c. The pro�les consist of two parts, one part (in the core) is a parabolic

pro�le with a curvature that coincides with the pro�le of a 
uid with a viscosity

equal to the viscosity of the core 
uid. The layer (� < � < 1) at the boundary

corresponds with a pro�le that coincides with the pro�le of a 
uid with plasma

viscosity � = �p. This combination results in a velocity pro�le that is 
attened in

the core with respect to the pro�le of pure plasma (see �gure 8.2).

8.3.1 Flow

The 
ow can easily be computed from the velocity pro�le by integration over the

tube diameter and yields:

q = qc + qp = �
�a4

8�p

�
1� (1� �p

�c
)�4c

�
@p

@z
(8.7)

8.3.2 E�ective viscosity

If we compare the 
ow (8.7) with the 
ow of a homogeneous 
uid with viscosity �e
yielding the same longitudinal impedance, we have:

�e = �p
1

1� (1� �p

�c
)�4c

(8.8)

In �gure 8.3 the relative e�ective viscosity �e=�p is given as a function of the relative

core diameter �c and the vessel radius a.
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Figure 8.2: Velocity pro�le for several �c in a tube with diameter Dv > 2Dc

.

8.3.3 Concentration

If we assume that the blood that 
ows through the vessel that is considered is

supplied by a bu�er with hematocrit c0, then the concentration in the core cc can

be derived from:

coq = ccqc (8.9)

and thus:

cc

c0
=

q

qc
= 1 +

1 + �4c � 2�2c
�p

�c
�4c � 2�4c + 2�2c

(8.10)

As can be seen from �gure 8.3 the concentration in the core increases with decreasing

�c or radius a.

The mean concentration, however, will decreases with decreasing �c according to:

�c =
1

�a2

aZ
o

2�rc(r)dr =
2

a2

acZ
0

ccrdr = cc�
2
c (8.11)

This shows us that if we want to measure the hematocrit by counting the particles

that move with an 
ow through a small tube, the concentration will be underesti-

mated. Actually �gure 8.3 shows that the fraction of plasma in the core decreases

with decreasing �c or diameter a.
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relative cell velocity vcell=vplasma (bottom) as a function of the relative core diameter

�c (left) and tube radius a (right) in a tube with diameter Dv > 2Dc

.

8.3.4 Cell velocity

In order to determine the velocity of the cells relative to the velocity of the sur-

rounding plasma we compute the volume 
ow of cells:

qcell = 2�

aZ
0

vcrdr = �vcell�c�a
2 (8.12)

The volume 
ow of plasma is:

qplasma = 2�

aZ
0

v(1� c)dr = �vplasma(1� �c)�a2 (8.13)

The ratio between both 
ows is given by the hematocrit c0 according to:

qplasma

qcell
=

1� c0

c0
(8.14)

This yields (see also �gure 8.3):

�vcell

�vplasma

=
c0

1� c0

1� �c

�c
(8.15)
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8.4 Flow in arterioles and venules : Dc < Dv < 2Dc

If the vessel diameter is in between 1 and 2 times the cell diameter, the cells have

to move in a single train (see �gure 8.4). The velocity in the core hereby will be

constant. Similar to what has been shown in the previous section for vessels with a

diameter larger then 2Dc the velocity, 
ow, e�ective viscosity, e�ective concentration

and cell velocity can be computed. As the central core behaves as a solid cylinder,

it can be seen as a 
uid with an in�nite viscosity. The equations that are derived

in the previous section can be simpli�ed for the case that �c ! 1. Note that

in the previous section with decreasing diameter the in
uence of the plasma layer

increased. In this section, for smaller diameters, decreasing the diameter will also

decrease the in
uence of the plasma layer.

0

a

cc

0

ep

ec

et

c

z

r

ac

Figure 8.4: Particle concentration c and viscosity � in a tube with diameter Dc <

Dv < 2Dc.

8.4.1 Velocity pro�les

The velocity can be derived from (8.6) using �c !1.

8>>><
>>>:
v(�) =

a2

4�p
(�2c � 1)

@p

@z
0 < � < �c

v(�) = � a2

4�p
(1� �2)

@p

@z
�c < � < 1

(8.16)
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8.4.2 Flow

The 
ow again can be derived from the velocity pro�les are can be computed from

(8.7) using �c !1.

q = qc + qp = �
�a4

8�p

�
1� �4c

� @p
@z

(8.17)

8.4.3 E�ective viscosity

The e�ective viscosity then will be:

�e = �p
1

1� �4c
(8.18)

8.4.4 Concentration

cc

c0
= 1 +

1 + �4c � 2�2c
�2�4c + 2�2c

= 1 +
1 + �2c
2�2c

(8.19)

and

�c = cc�
2
c (8.20)
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8.4.5 Cell velocity

�vcell

�vplasma

=
c0

1� c0

1� �c

�c
(8.21)
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(left) and tube radius a (right) in a tube with diameter Dv > 2Dc
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8.5 Flow in capillaries: Dv < Dc

In the capillaries, both the vessel wall and the red blood cells deform in order enable

a 
ow: the diameter of the undeformed capillaries is smaller then the diameter of

the undeformed red cells. This deformation and some important parameters that

are used in models that describe the 
ow in capillaries are given in �gure 8.5. If

it is assumed that the deformation of the cell and the deformation of the wall are

proportional to the local pressure, a cell with a parabolic shape is de�ned by:

ac(p) = ac(p0)� 1
2
kz2 � �(p� p0) (8.22)

The location of the wall then will be given by:

a(p) = a(p0) + �(p� p0) (8.23)

If we de�ne h to be the thickness of the �lm in between the cell and the wall, it will

be given by:

h(p) = a(p)� ac(p) = (�� �)(p� p0) +
1
2
kz2 (8.24)
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Figure 8.7: Particle movement in a tube with diameter Dv < Dc.

For a small �lm-thickness (h� ac) a local Cartesian coordinate system can be used

and the momentum equation reduces to:8>>>>>>><
>>>>>>>:

@p

@z
= �

@2v

@r2

v(0) = �vc

v(h) = 0

(8.25)

This restricts the velocity to a function that is quadratic in r:

v = ar2 + br + c (8.26)

Together with the boundary conditions and the continuity equation:

hZ
o

vdr = �vp � h =
1

3
ah3 +

1

2
bh2 + �vch = �uph (8.27)

This yields:

v = �vc(3
r2

h2
� 2

r

h
) + �vp(�6

r2

h2
+ 6

r

h
) (8.28)

The pressure gradient then is given by:

@p

@z
=

6�p

h2
�vc +

12�p

h3
�vp (8.29)

It will be clear that the e�ective viscosity will increase enormously with decreasing

artery diameter.
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8.6 Summary

In the micro-circulation, the size of the red blood cells is not small compared to the

radius of the tube and models can be derived where the di�erence in concentration

and motion of the individual cells are incorporated by intoducing a jump in the vis-

cosity. Also in these cases 
attened velocity pro�les are found even if non-Newtonian

properties are not included as a result of the lower viscosity at the wall.
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viscosity

dynamic, 20

e�ective viscosity, 109, 113

vorticity tensor, 20

wall shear stress

rigid tubes, 36

wave attenuation, 70

wave number, 70

wave re
ection, 75

wave speed, 65, 70

Moens Korteweg, 71

waves

angular frequency, 64

attenuation constant, 70

complex amplitude, 64, 70

complex notation, 64


ow, 6

phase velocity, 70

pressure, 6
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wave attenuation, 70

wave length, 64

wave number, 64, 70

wave speed, 70

Weissenberg number, 96

windkessel model, 11, 64

impedance, 64

Womersley function

approximation, 37

de�nition, 36

Womersley number

de�nition, 32

values in arteries, 33

Womersley pro�les, 35, 67

Young's modulus, 58

complex modulus, 70


