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Examples of control systems and notion of controllability

Control systems

A control system is usually a dynamical control system on which one can
act by using suitable controls.
Mathematically it often takes the form

ẏ = f(y, u),

where y is called the state and u is the control. The state can be in finite
dimension (then ẏ = f(y, u) is an ordinary differential equation) or in
infinite dimension (example: ẏ = f(y, u) is a partial differential equation).
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A first example: the cart-inverted pendulum
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Examples of control systems and notion of controllability Examples of control systems modeled by ODE

The Cart-inverted pendulum: The equations

Let
y1 := ξ, y2 := θ, y3 := ξ̇, y4 := θ̇, u := F,

The dynamics of the cart-inverted pendulum system is ẏ = f(y, u), with
y = (y1, y2, y3, y4)

tr and

f :=

















y3

y4

mly2
4 sin y2 − mg sin y2 cos y2

M + m sin2 y2
+

u

M + m sin2 y2
−mly2

4 sin y2 cos y2 + (M + m)g sin y2

(M + m sin2 y2)l
−

u cos y2

(M + m sin2 y2)l

















.
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The baby stroller
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The baby stroller: The model

y1

y2

y3

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2, n = 3, m = 2.
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The Euler/Navier-Stokes control system

(Suggested by J.-L. Lions)

bc

x
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A water-tank control system

(Suggested by P. Rouchon)

u := F



Examples of control systems and notion of controllability Controllability

Controllability

Given two states y0 and y1, does there exist a control t ∈ [0, T ] 7→ u(t)
which steers the control system from y0 to y1, i.e. such that

(

ẏ = f(y, u(t)), y(0) = y0
)

⇒
(

y(T ) = y1
)

?
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Finite dimensional control systems Controllability of linear control systems

Controllability of linear control systems

The control system is

ẏ = Ay + Bu, y ∈ R
n, u ∈ R

m,

where A ∈ R
n×n and B ∈ R

n×m.

Theorem (Kalman’s rank condition)

The linear control system ẏ = Ay + Bu is controllable on [0, T ] if and only
if

Span {AiBu;u ∈ R
m, i ∈ {0, 1, . . . , n − 1}} = R

n.

Remark

This condition does not depend on T . This is no longer true for nonlinear
systems and for systems modeled by linear partial differential equations.



Finite dimensional control systems Small time local controllability

Small time local controllability

We assume that (ye, ue) is an equilibrium, i.e., that f(ye, ue) = 0. Many
possible choices for natural definitions of local controllability. The most
popular one is Small-Time Local Controllability (STLC): the state remains
close to ye, the control remains to ue and the time is small.
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ye

ε

η

y0t = 0

y1

t = ε

|u(t) − ue| 6 ε



Finite dimensional control systems The linear test

The linear test

We consider the control system ẏ = f(y, u) where the state is y ∈ R
n and

the control is u ∈ R
m. Let us assume that f(ye, ue) = 0. The linearized

control system at (ye, ue) is the linear control system ẏ = Ay + Bu with

A :=
∂f

∂y
(ye, ue), B :=

∂f

∂u
(ye, ue).

If the linearized control system ẏ = Ay + Bu is controllable, then
ẏ = f(y, u) is small-time locally controllable at (ye, ue).



Finite dimensional control systems The linear test

Application to the cart-inverted pendulum

For the cart-inverted pendulum, the linearized control system around
(0, 0) ∈ R

4 × R is ẏ = Ay + Bu with

A =













0 0 1 0
0 0 0 1

0 −
mg

M
0 0

0
(M + m)g

Ml
0 0













, B =
1

Ml









0
0
l
−1









.

One easily checks that this linearized control system satisfies the Kalman
rank condition and therefore is controllable. Hence the cart-inverted
pendulum is small-time locally controllable at (0, 0) ∈ R

4 × R.



Finite dimensional control systems The linear test

Application to the baby stroller

Let us recall that the baby stroller control system is

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2, n = 3, m = 2.

The linearized control system at (0, 0) ∈ R3 × R2 is

ẏ1 = u1, ẏ2 = 0, ẏ3 = u2,

which is clearly not controllable. The linearized control system gives no
information on the small-time local controllability at (0, 0) ∈ R

3 × R
2 of

the baby stroller.



Finite dimensional control systems Iterated Lie brackets and controllability

What to do if linearized control system is not controllable?

Question: What to do if

ẏ =
∂f

∂y
(ye, ue)y +

∂f

∂u
(ye, ue)u

is not controllable?
In finite dimension: one uses iterated Lie brackets.
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Lie brackets and iterated Lie brackets

Definition (Lie brackets)

[X,Y ](y) := Y ′(y)X(y) − X ′(y)Y (y).

Iterated Lie brackets: [X, [X,Y ]], [[Y,X], [X, [X,Y ]]] etc.
Why Lie brackets are natural objects for controllability issues? For
simplicity, from now on we assume that

f(y, u) = f0(y) +

m
∑

i=1

uifi(y).

Drift: f0. Driftless control systems: f0 = 0.
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Lie bracket for ẏ = u1f1(y) + u2f2(y)

a



Finite dimensional control systems Iterated Lie brackets and controllability
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(u1, u2) = (η1, 0)

y(ε)
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Lie bracket for ẏ = u1f1(y) + u2f2(y)

a
(u1, u2) = (η1, 0)

y(ε)

(u1, u2) = (0, η2)

y(2ε)



Finite dimensional control systems Iterated Lie brackets and controllability

Lie bracket for ẏ = u1f1(y) + u2f2(y)

a
(u1, u2) = (η1, 0)

y(ε)

(u1, u2) = (0, η2)

y(2ε)

(u1, u2) = (−η1, 0)

y(3ε)
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Lie bracket for ẏ = u1f1(y) + u2f2(y)

a
(u1, u2) = (η1, 0)

y(ε)

(u1, u2) = (0, η2)

y(2ε)

(u1, u2) = (−η1, 0)

y(3ε)

(u1, u2) = (0,−η2)

y(4ε)
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Lie bracket for ẏ = u1f1(y) + u2f2(y)

a
(u1, u2) = (η1, 0)

y(ε)

(u1, u2) = (0, η2)

y(2ε)

(u1, u2) = (−η1, 0)

y(3ε)

(u1, u2) = (0,−η2)

y(4ε) ≃ a + η1η2ε
2[f1, f2](a)

(ε → 0+)



Finite dimensional control systems Iterated Lie brackets and controllability

Controllability of driftless control systems: Local

controllability

Theorem (P. Rashevski (1938), W.-L. Chow (1939))

Let O be a nonempty open subset of R
n and let ye ∈ O. Let us assume

that, for some f1, . . . , fm : O → R
n,

f(y, u) =

m
∑

i=1

uifi(y), ∀(y, u) ∈ O × R
m.

Let us also assume that

{

h(ye); h ∈ Lie {f1, . . . , fm}
}

= R
n.

Then the control system ẏ = f(y, u) is small-time locally controllable at
(ye, 0) ∈ R

n × R
m.



Finite dimensional control systems Iterated Lie brackets and controllability

The baby stroller system: Controllability

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2, n = 3, m = 2.

This system can be written as ẏ = u1f1(y) + u2f2(y), with

f1(y) = (cos y3, sin y3, 0)
tr, f2(y) = (0, 0, 1)tr .

One has [f1, f2](y) = (sin y3,− cos y3, 0)
tr. Hence f1(0), f2(0) and

[f1, f2](0) span all of R
3. This implies the small-time local controllability

of the baby stroller at (0, 0) ∈ R
3 × R

2.



Finite dimensional control systems Iterated Lie brackets and controllability

Controllability of driftless control systems: Global

controllability

Theorem (P. Rashevski (1938), W.-L. Chow (1939))

Let O be a connected nonempty open subset of R
n. Let us assume that,

for some f1, . . . , fm : O → R
n,

f(y, u) =

m
∑

i=1

uifi(y), ∀(y, u) ∈ O × R
m.

Let us also assume that

{

h(y); h ∈ Lie {f1, . . . , fm}
}

= R
n, ∀y ∈ O.

Then, for every (y0, y1) ∈ O ×O and for every T > 0, there exists u
belonging to L∞((0, T ); Rm) such that the solution of the Cauchy problem
ẏ = f(y, u(t)), y(0) = y0, satisfies y(t) ∈ O, ∀t ∈ [0, T ] and y(T ) = y1.
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Finite dimensional control systems Iterated Lie brackets and controllability

The Lie algebra rank condition

We consider the control affine system ẏ = f0(y) +
∑m

i=1 uifi(y) with
f0(0) = 0. One says that this control system satisfies the Lie algebra rank
condition at 0 ∈ R

n if

{

h(0); h ∈ Lie {f0, f1, . . . , fm}
}

= R
n.

One has the following theorem

Theorem (R. Hermann (1963) and T. Nagano (1966))

If the fi’s are analytic in a neighborhood of 0 ∈ R
n and if the control

system ẏ = f0(y) +
∑m

i=1 fi(y) is small-time locally controllable at
(0, 0) ∈ R

n × R
m, then this control system satisfies the Lie algebra rank

condition at 0 ∈ R
n.
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Lie bracket for ẏ = f0(y) + uf1(y), with f0(a) = 0

a

u = −η

y(ε)
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Lie bracket for ẏ = f0(y) + uf1(y), with f0(a) = 0

a

u = −η

y(ε)
u = η

y(2ε)



Finite dimensional control systems Iterated Lie brackets and controllability

Lie bracket for ẏ = f0(y) + uf1(y), with f0(a) = 0

a

u = −η

y(ε)
u = η

y(2ε) ≃ a + ηε2[f0, f1](a)
ε → 0+



Finite dimensional control systems Iterated Lie brackets and controllability

The Kalman rank condition and iterated Lie brackets

For k ∈ N, X : O ⊂ R
n → R

n and Y : O → R
n, one defines

adk
XY : O → R

n by

ad0
XY := Y, ad1

XY := [X,Y ], ad2
XY = [X, [X,Y ]], etc.

Let us write the linear control system ẏ = Ay + Bu as
ẏ = f0(y) +

∑m
i=1 uifi(y) with

f0(y) = Ay, fi(y) = Bi, Bi ∈ R
n, (B1, . . . , Bm) = B.

Then
adk

f0
fi = (−1)kAkBi.

Hence the Kalman rank condition can be written in the following way

Span {adk
f0

fi(0); k ∈ {0, . . . , n − 1}, i ∈ {1, . . . ,m}} = R
n.
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With a drift term: Not all the iterated Lie brackets are

good

We take n = 2 and m = 1 and consider the control system

Σ : ẏ1 = y2
2, ẏ2 = u,

where the state is y := (y1, y2)
tr ∈ R

2 and the control is u ∈ R. This
control system can be written as ẏ = f0(y) + uf1(y) with

f0(y) = (y2
2 , 0)

tr, f1(y) = (0, 1)tr.

One has [f1, [f1, f0]] = (2, 0)tr and therefore f1(0) and [f1, [f1, f0]](0)
span all of R

2. However Σ is clearly not small-time locally controllable at
(0, 0) ∈ R

2 × R.
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References for sufficient or necessary conditions for

small-time local controllability when there is a drift term

A. Agrachev (1991),

A. Agrachev and R. Gamkrelidze (1993),

R. M. Bianchini and Stefani (1986),

H. Frankowska (1987),

M. Kawski (1990),

H. Sussmann (1983, 1987),

A. Tret’yak (1990).

...
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Open problem

Let k be a positive integer. Let Pk be the set of vector fields in R
n whose

components are polynomials of degree k. Let

S := {(f0, f1) ∈ P2
k ; f0(0) = 0, ẏ = f0(y) + uf1(y) is STLC }.

Open problem

Is S a semi-algebraic subset of P2
k?

Theorem (J.-J. Risler, A. Gabrielov and F. Jean (1996 to 1999))

The set of (f0, f1) ∈ P2
k satisfying the Lie algebra rank condition at 0 is a

semi-algebraic subset of P2
k .
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Controllability of control systems modeled by PDE Controllability of control systems modeled by linear PDE

Controllability of control systems modeled by linear PDE

There are lot of powerful tools to study the controllability of linear control
systems in infinite dimension. The most popular ones are based on the
duality between observability and controllability (related to the J.-L. Lions
Hilbert uniqueness method). This leads to try to prove observability
inequalities. There are many methods to prove this observability
inequalities. For example:

Ingham’s inequalities and harmonic analysis: D. Russell (1967),

Multipliers method: Lop Fat Ho (1986), J.-L. Lions (1988),

Microlocal analysis: C. Bardos-G. Lebeau-J. Rauch (1992),

Carleman’s inequalities: A. Fursikov, O. Imanuvilov, G. Lebeau, L.
Robbiano (1993-1996).

However there are still plenty of open problems.



Controllability of control systems modeled by PDE The linear test

The linear test

Of course when one wants to study the local controllability around an
equilibrium of a control system in infinite dimension, the first step is to
again study the controllability of the linearized control system. If this
linearized control system is controllable, one can usually deduce the local
controllability of the nonlinear control system. However this might be
sometimes difficult due to some loss of derivatives issues. One needs to
use suitable iterative schemes.

Remark

If the nonlinearity is not too big, one can get a global controllability result
(E. Zuazua (1988) for a semilinear wave equation).
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The Euler control system

bc

x

y(t, x)

Ω

∂Ω

Γ0

R
n
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Controllability problem

We denote by ν : ∂Ω → R
n the outward unit normal vector field to Ω. Let

T > 0. Let y0, y1 : Ω → R
n be such that

div y0 = div y1 = 0, y0 · ν = y1 · ν = 0 on ∂Ω \ Γ0.

Does there exist y : [0, T ] × Ω → R
n and p : [0, T ] × Ω → R such that

yt + (y · ∇)y + ∇p = 0, div y = 0,

y · ν = 0 on [0, T ] × (∂Ω \ Γ0)

y(0, ·) = y0, y(T, ·) = y1?

For the control, many choices are in fact possible. For example, for n = 2,
one can take

1 y · ν on Γ0 with
∫

Γ0
y · ν = 0,

2 curl y := ∂y2

∂x1
− ∂y1

∂x2
at the points of [0, T ] × Γ0 where y · ν < 0.
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A case without controllability

Γ1

Ω

∂Ω

Γ0

R
2

Ω
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Proof of the noncontrollability

Let us give it only for n = 2. Let γ0 be a Jordan curve in Ω. Let, for
t ∈ [0, T ], γ(t) be the Jordan curve obtained, at time t ∈ [0, T ], from the
points of the fluids which, at time 0, were on γ0. The Kelvin law tells us
that, if γ(t) does not intersect Γ0,

∫

γ(t)
y(t, ·) ·

−→
ds =

∫

γ0

y(0, ·) ·
−→
ds, ∀t ∈ [0, T ],

We take γ0 := Γ1. Then γ(t) = Γ1 for every t ∈ [0, T ]. Hence, if
∫

Γ1

y1 ·
−→
ds 6=

∫

Γ1

y0 ·
−→
ds,

one cannot steer the control system from y0 to y1.
More generally, for every n ∈ {2, 3}, if Γ0 does not intersect every
connected component of the boundary ∂Ω of Ω, the Euler control system
is not controllable. This is the only obstruction to the controllability of the
Euler control system.
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Controllability of the Euler control system

Theorem (JMC for n = 2 (1996), O. Glass for n = 3 (2000))

Assume that Γ0 intersects every connected component of ∂Ω. Then the
Euler control system is globally controllable in every time: For every
T > 0, for every y0, y1 : Ω → R

n such that

div y0 = div y1 = 0, y0 · ν = y1 · ν = 0 on ∂Ω \ Γ0,

there exist y : [0, T ] × Ω → R
n and p : [0, T ] × Ω → R such that

yt + (y · ∇)y + ∇p = 0, div y = 0,

y · ν = 0 on [0, T ] × (∂Ω \ Γ0)

y(0, ·) = y0, y(T, ·) = y1.
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Sketch of the proof of the controllability result

One first studies (as usual) the controllability of the linearized control
system around 0. This linearized control system is the underdetermined
system

yt + ∇p = 0, div y = 0, y · ν = 0 on [0, T ] × (∂Ω \ Γ0).

For simplicity we assume that n = 2. Taking the curl of the first equation,

on gets, with curl y :=
∂y2

∂x1
−

∂y1

∂x2
,

(curl y)t = 0.

Hence curl y remains constant along the trajectories of the Euler control
system.
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Iterated Lie brackets and PDE control systems

Euler and Navier Stokes control systems: Andrei Agrachev and Andrei
Sarychev (2005); Armen Shirikyan (2006, 2007),

Schrödinger control system: Thomas Chambrion, Paolo Mason, Mario
Sigalotti and Ugo Boscain (2009).

However it does not seem to work here.
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Problems of the Lie brackets for PDE control systems

Consider the simplest PDE control system

Σ : yt + yx = 0, x ∈ [0, L], y(t, 0) = u(t).

It is a control system where, at time t, the state is y(t, ·) : (0, L) → R and
the control is u(t) ∈ R.
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Lie bracket for ẏ = f0(y) + uf1(y), with f0(a) = 0

a

u = −η

y(ε)
u = η

y(2ε) ≃ a + ηε2[f0, f1](a)
ε → 0+
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Problems of the Lie brackets for PDE control systems

(continued)

Let us consider, for ε > 0, the control defined on [0, 2ε] by

u(t) := −η for t ∈ (0, ε), u(t) := η for t ∈ (ε, 2ε).

Let y : (0, 2ε) × (0, L) → R be the solution of the Cauchy problem

yt + yx = 0, t ∈ (0, 2ε), x ∈ (0, L),

y(t, 0) = u(t), t ∈ (0, 2ε), y(0, x) = 0, x ∈ (0, L).

Then one readily gets, if 2ε 6 L,

y(2ε, x) = η, x ∈ (0, ε), y(2ε, x) = −η, x ∈ (ε, 2ε),

y(2ε, x) = 0, x ∈ (2ε, L).
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Problems of the Lie brackets for PDE control systems

(continued)

∣

∣

∣

∣

y(2ε, ·) − y(0, ·)

ε2

∣

∣

∣

∣

L2(0,L)

→ +∞ as ε → 0+.

For every φ ∈ H2(0, L), one gets after suitable computations

lim
ε→0+

1

ε2

∫ L

0
φ(x)(y(2ε, x) − y(0, x))dx = −ηφ′(0).

So, in some sense, we could say that [f0, f1] = δ′0. Unfortunately it is not
clear how to use this derivative of a Dirac mass at 0.
How to avoid the use of iterated Lie brackets?



Controllability of control systems modeled by PDE The return method

The return method (JMC (1992))
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The return method: An example in finite dimension

We go back to the baby stroller control system

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2.

For every ū : [0, T ] → R
2 such that, for every t in [0, T ],

ū(T − t) = −ū(t), every solution ȳ : [0, T ] → R
3 of

˙̄y1 = ū1 cos ȳ3, ˙̄y2 = ū1 sin ȳ3, ˙̄y3 = ū2,

satisfies ȳ(0) = ȳ(T ). The linearized control system around (ȳ, ū) is

ẏ1 = −ū1y3 sin ȳ3 + u1 cos ȳ3, ẏ2 = ū1y3 cos ȳ3 + u1 sin ȳ3, ẏ3 = u2,

which is controllable if (and only if) ū 6≡ 0. ...
We have got the controllability of the baby stroller system without using
Lie brackets. We have only used controllability results for linear control
systems.
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No loss with the return method

We consider the control system

ẏ = f0(y) +

m
∑

i=1

uifi(y), Σ

where the state is y ∈ R
n and the control is u ∈ R

m. We assume that
f0(0) = 0 and that the fi’s, i ∈ {0, 1, . . . ,m} are of class C∞ in a
neighborhood of 0 ∈ R

n. One has the following proposition.

Proposition (E. Sontag (1988), JMC (1994))

Let us assume that Σ satisfies the Lie algebra rank condition at 0 ∈ R
n

and is STLC at (0, 0) ∈ R
n × R

m. Then, for every ε > 0, there exists
ū ∈ L∞((0, ε); Rm) satisfying |u(t)| 6 ε, ∀t ∈ [0, T ], such that, if
ȳ : [0, ε] → R

n is the solution of ˙̄y = f(ȳ, ū(t)), ȳ(0) = 0, then

ȳ(T ) = 0,
the linearized control system around (ȳ, ū) is controllable.
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The return method and the controllability of the Euler

equations

One looks for (ȳ, p̄) : [0, T ] × Ω → R
n × R such that

ȳt + (ȳ · ∇ȳ) + ∇p̄ = 0, div ȳ = 0,

ȳ · ν = 0 on [0, T ] × (∂Ω \ Γ0),

ȳ(T, ·) = ȳ(0, ·) = 0,

the linearized control system around (ȳ, p̄) is controllable.



Controllability of control systems modeled by PDE The return method

Construction of (ȳ, p̄)

Take θ : Ω → R such that

∆θ = 0 in Ω,
∂θ

∂ν
= 0 on ∂Ω \ Γ0.

Take α : [0, T ] → R such that α(0) = α(T ) = 0. Finally, define
(ȳ, p̄) : [0, T ] × Ω → R

2 × R by

ȳ(t, x) := α(t)∇θ(x), p̄(t, x) := −α̇(t)θ(x) −
α(t)2

2
|∇θ(x)|2.

Then (ȳ, p̄) is a trajectory of the Euler control system which goes from 0
to 0.
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Controllability of the linearized control system around

(ȳ, p̄) if n = 2

The linearized control system around (ȳ, p̄) is

{

yt + (ȳ · ∇)y + (y · ∇)ȳ + ∇p = 0, div y = 0 in [0, T ] × Ω,
y · ν = 0 on [0, T ] × (∂Ω \ Γ0).

(1)

Again we assume that n = 2. Taking once more the curl of the first
equation, one gets

(curl y)t + (ȳ · ∇)(curl y) = 0. (2)

This is a simple transport equation on curl y. If there exists a ∈ Ω such
that ∇θ(a) = 0, then ȳ(t, a) = 0 and (curl y)t(t, a) = 0 showing that (2)
is not controllable. This is the only obstruction: If ∇θ does not vanish in
Ω, one can prove that (2) (and then (1)) is controllable if

∫ T
0 α(t)dt is

large enough.
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Construction of a good θ for n = 2
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n
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From local controllability to global controllability

A simple scaling argument: if (y, p) : [0, 1] × Ω :→ R
n × R is a solution of

our control system, then, for every ε > 0, (yε, pε) : [0, ε] × Ω → R
n × R

defined by

yε(t, x) :=
1

ε
y

(

t

ε
, x

)

, pε(t, x) :=
1

ε2
p

(

t

ε
, x

)

is also a solution of our control system.
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Return method: references

Stabilization of driftless systems in finite dimension: JMC (1992).

Euler equations of incompressible fluids: JMC (1993,1996), O. Glass
(1997,2000).

Control of driftless systems in finite dimension: E.D. Sontag (1995).

Navier-Stokes equations: JMC (1996), JMC and A. Fursikov (1996),
A. Fursikov and O. Imanuvilov (1999), S. Guerrero, O. Imanuvilov and
J.-P. Puel (2006), JMC and S. Guerrero (2009), M. Chapouly (2009).

Burgers equation: Th. Horsin (1998), M. Chapouly (2006), O.
Imanuvilov and J.-P. Puel (2009).

Saint-Venant equations: JMC (2002).

Vlasov Poisson: O. Glass (2003).
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Return method: references (continued)

Isentropic Euler equations: O. Glass (2006).

Schrödinger equation: K. Beauchard (2005), K. Beauchard and JMC
(2006).

Korteweg de Vries equation: M. Chapouly (2008).

Hyperbolic equations: JMC, O. Glass and Z. Wang (2009).

Ensemble controllability of Bloch equations: K. Beauchard, JMC and
P. Rouchon (2009).

Parabolic systems: JMC, S. Guerrero, L. Rosier (2010).
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Return method: Commercial break

JMC, Control and nonlinearity,
Mathematical Surveys and
Monographs, 136, 2007, 427 pp.
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The stabilizability problem

We consider the control system ẏ = f(y, u) where the state is y in R
n and

the control is u in R
m. We assume that f(0, 0) = 0.

Problem

Does there exist u : R
n → R

m vanishing at 0 such that 0 ∈ R
n is (locally)

asymptotically stable for ẏ = f(y, u(y))? (If the answer is yes, one says
that the control system is locally asymptotically stabilizable.)

Remark

The map u : y ∈ R
n 7→ R

m is called a feedback (or feedback law). The
dynamical system ẏ = f(y, u(y)) is called the closed loop system.

Remark

The regularity of u is an important point. Here, we assume that the
feedback laws are continuous.
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Obstruction to the stabilizability

Theorem (R. Brockett (1983))

If the control system ẏ = f(y, u) can be locally asymptotically stabilized
then

(B) the image by f of every neighborhood of (0, 0) ∈ R
n × R

m is a
neighborhood of 0 ∈ R

n.

Example: The baby stroller. The baby stroller control system

ẏ1 = u1 cos y3, ẏ2 = u1 sin y3, ẏ3 = u2

is small-time locally controllable at (0, 0). However (B) does not hold for
the baby stroller control system. Hence the baby stroller control system
cannot be locally asymptotically stabilized.
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A solution: Time-varying feedback laws

Instead of u(y), use u(t, y): E. Sontag and H. Sussmann (1980) for n = 1,
C. Samson (1990) for the baby stroller. Note that asymptotic stability for
time-varying feedback laws is also robust (there exists again a strict
Lyapunov function).
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Time-varying feedback laws for driftless control systems

Theorem (JMC (1992))

Assume that

{g(y); g ∈ Lie{f1, . . . , fm}} = R
n, ∀y ∈ R

n \ {0}.

Then, for every T > 0, there exists u in C∞(R × R
n; Rm) such that

u(t, 0) = 0, ∀t ∈ R,

u(t + T, y) = u(t, y), ∀y ∈ R
n, ∀t ∈ R,

0 is globally asymptotically stable for ẏ =
m

∑

i=1

ui(t, y)fi(y).
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Sketch of proof
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Construction of ū

In order to get periodic trajectories, one just imposes on ū the condition

ū(t, y) = −ū(T − t, y), ∀(t, y) ∈ R × R
n,

which implies that y(t) = y(T − t), ∀t ∈ [0, T ], for every solution of
ẏ = f(y, ū(t, y)), and therefore gives y(0) = y(T ).
Finally, one proves that for “generic” ū’s the linearized control systems
around all the trajectories of ẏ = f(y, u(t, y)) except the one starting from
0 are controllable on [0, T ] (this is the difficult part of the proof).
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The Navier-Stokes control system

The Navier-Stokes control system is deduced from the Euler equations by
adding the linear term −∆y: the equation is now

yt − ∆y + (y · ∇)y + ∇p = 0, div y = 0.

For the boundary condition, one requires now that

y = 0 on [0, T ] × (∂Ω \ Γ0).

For the control, one can take, for example, y on [0, T ] × Γ0.
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Smoothing effects and a new notion of (global)

controllability: A. Fursikov and O. Imanuvilov (1995)
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ŷ

y0



Controllability of control systems modeled by PDE The return method

Smoothing effects and a new notion of local controllability
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Local controllability

Theorem (A. Fursikov and O. Imanuvilov (1994), O. Imanuvilov
(1998, 2001), E. Fernandez-Cara, S. Guerrero, O. Imanuvilov and
J.-P. Puel (2004))

The Navier-Stokes control system is locally controllable.

The proof relies on the the controllability of the linearized control system
around ŷ (which is obtained by Carleman inequalities).
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Global controllability

Theorem (JMC (1996), JMC and A. Fursikov (1996))

The Navier-Stokes control system is globally controllable if Γ0 = ∂Ω.

Open problem

Does the above global controllability result hold even if Γ0 6= ∂Ω?
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Sketch of the proof of the global result
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Sketch of the proof of the global result
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Main difficulty for the return method

It is often easy to leave the initial state and get a trajectory such that
linearized control system around it is controllable. However it is then often
difficult to return to the initial state.
To overcome this difficulty in some cases: Quasi-static deformations (JMC
(2002)).
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A water-tank control system
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The model: Saint-Venant equations

Ht + (Hv)x = 0, t ∈ [0, T ], x ∈ [0, L],

vt +

(

gH +
v2

2

)

x

= −u (t) , t ∈ [0, T ], x ∈ [0, L],

v(t, 0) = v(t, L) = 0, t ∈ [0, T ],

ṡ(t) = u (t) , t ∈ [0, T ],

Ḋ(t) = s (t) , t ∈ [0, T ].

u (t) is the horizontal acceleration of the tank in the absolute
referential,

g is the gravity constant,

s is the horizontal velocity of the tank,

D is the horizontal displacement of the tank.
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State space

d

dt

∫ L

0
H (t, x) dx = 0,

Hx(t, 0) = Hx(t, L) (= −u(t)/g).

Definition

The state space (denoted Y) is the set of
Y = (H, v, s,D) ∈ C1([0, L]) × C1([0, L]) × R × R satisfying

v(0) = v(L) = 0, Hx(0) = Hx(L),

∫ L

0
H(x)dx = LHe.
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Main result

Theorem (JMC, (2002))

For T > 0 large enough the water-tank control system is locally
controllable in time T around (Ye, ue) := ((He, 0, 0, 0), 0).

Prior work: F. Dubois, N. Petit and P. Rouchon (1999): Steady state
controllability of the linearized control system.



Controllability of control systems modeled by PDE Quasi-static deformations

The linearized control system

Without loss of generality L = He = g = 1. The linearized control system
around (Ye, ue) := ((1, 0, 0, 0), 0) is

ht + vx = 0, t ∈ [0, T ], x ∈ [0, L],

vt + hx = −u (t) , t ∈ [0, T ], x ∈ [0, L],

v(t, 0) = v(t, L) = 0, t ∈ [0, T ],

Ṡ (t) = u (t) , t ∈ [0, T ],

Ḋ (t) = S (t) , t ∈ [0, T ].
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The linearized control system is not controllable

For a function w : [0, 1] → R, we denote by wev “the even part”of w and
by wod the odd part of w:

wev(x) :=
1

2
(w(x) + w(1 − x)), wod(x) :=

1

2
(w(x) − w(1 − x)).

Σ1







hod
t + vev

x = 0,
vev
t + hod

x = −u (t) ,

vev(t, 0) = vev(t, 1) = 0, Ṡ (t) = u (t) , Ḋ (t) = S (t) ,

Σ2







hev
t + vod

x = 0,
vod
t + hev

x = 0,
vod(t, 0) = vod(t, 1) = 0,



Controllability of control systems modeled by PDE Quasi-static deformations

Water tank control system: Towards a toy model

If h := H − 1,

Σ1







hod
t + vev

x = −(hevvev + hodvod)x,
vev
t + hod

x = −u (t) − (vevvod)x,

vev(t, 0) = vev(t, 1) = 0, ṡ (t) = u (t) , Ḋ (t) = s (t) ,

Σ2







hev
t + vod

x = −(hevvod + hodvev)x,
vod
t (t, x) + hev

x = −1
2((vev)2 + (vod)2)x,

vod(t, 0) = vod(t, 1) = 0.
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Toy model (continued)

T







T1

{

ẏ1 = y2, ẏ2 = −y1 + u,

ṡ = u, Ḋ = s,

T2

{

ẏ3 = y4, ẏ4 = −y3 + 2y1y2,

where the state is y = (y1, y2, y3, y4, s,D)tr ∈ R
6 and the control is u ∈ R.

The linearized control system of T around (ye, ue) := (0, 0) is

ẏ1 = ẏ1 = y2, ẏ2 = −y1 + u, ṡ = u, Ḋ = s, ẏ3 = y4, ẏ4 = −y3,

which is not controllable.
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Controllability of the toy model

If y(0) = 0,

y3(T ) =

∫ T

0
y2
1(t) cos(T − t)dt,

y4(T ) = y2
1(T ) −

∫ T

0
y2
1(t) sin(T − t)dt.

Hence T is not controllable in time T 6 π. Using explicit computations
one can show that T is (locally) controllable in time T > π.

Remark

For linear systems in finite dimension, the controllability in large time
implies the controllability in small time. This is no longer for linear PDE.
This is also no longer true for nonlinear systems in finite dimension.
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How to recover the large time local controllability of T

We forget about S and D for simplicity and try to use the return method.
The first point is at least to find a trajectory such that the linearized
control system around it is controllable. We try the simplest possible
trajectories, namely equilibrium points. Let γ ∈ R and define

((yγ
1 , yγ

2 , yγ
3 , yγ

4 )tr, uγ) := ((γ, 0, 0, 0)tr , γ).

Then ((yγ
1 , yγ

2 , yγ
3 , yγ

4 )tr, uγ) is an equilibrium of T . The linearized control
system of T at this equilibrium is

ẏ1 = ẏ1 = y2, ẏ2 = −y1 + u, ẏ3 = y4, ẏ4 = −y3 + 2γy2,

which is controllable if (and only if) γ 6= 0.
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How to recover the large time local controllability of T
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Construction of the blue trajectory

One uses quasi-static deformations. Let g ∈ C2([0, 1]; R) be such that

g(0) = 0, g(1) = 1.

Let ũ : [0, 1/ε] → R be defined by

ũ(t) := γg(εt), t ∈ [0, 1/ε].

Let ỹ := (ỹ1, ỹ2, ỹ3, ỹ4)
tr : [0, 1/ε] → R

4 be defined by requiring

˙̃y1 = ỹ2, ˙̃y2 = −ỹ1 + ũ, ˙̃y3 = ỹ4, ˙̃y4 = −ỹ3 + 2ỹ1ỹ2,

ỹ(0) = 0.

One easily checks that

ỹ(1/ε) → (γ, 0, 0, 0)tr as ε → 0.
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(yγ, uγ) for the water-tank

u(t) = γ, h = γ

(

1

2
− y

)

, v = 0.
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Difficulties

Loss of derivatives. Solution: one uses the iterative scheme inspired by
the usual one to prove the existence to yt + A(y)yx = 0, y(0, x) = ϕ(x),
namely

Σnlinear : yn+1
t + A(yn)yn+1

x = 0, yn+1(0, x) = ϕ(x).

However, I have only been able to prove that the control system
corresponding to Σnlinear is controllable for (hn, vn) satisfying some
resonance conditions. Hence one has also to insure that (hn+1, vn+1)
satisfies these resonance conditions. This turns out to be possible. (For
control system, resonance is good: when there is a resonance, with a small
action we get a strong effect).
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An open problem

What is the minimal time for the local controllability?

1 A simple observation on the speed of propagation shows that the time
for local controllability is at least 1.

2 For the linearized control system around h = γ ((1/2) − x) , v = 0
the minimal time for controllability tends to 2 as γ → 0.

3 For our toy model, there is no minimal time for the controllability
around ((γ, 0, 0, 0)tr , γ). However for the local the controllability of
the nonlinear system the minimal time is π > 0.

4 For a related problem (a quantum particle in a moving box), there is
again no minimal time for the controllability of the linearized control
system around the analogue of ((γ, 0, 0, 0)tr , γ) and there is a minimal
time for the local controllability of the nonlinear system (JMC
(2006)). Again the optimal time for the local controllability is not
known.
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Other references for quasi-static deformations

1 Semilinear heat equations: JMC and E. Trélat (2004),

2 Navier-Stokes equations for incompressible fluids: by M. Schmidt and
E. Trélat (2006),

3 A quantum particle in a moving box: K. Beauchard (2005), K.
Beauchard and JMC (2006),

4 Semilinear wave equations: JMC and E. Trélat (2006).
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Power series expansions: The KdV control system

yt + yx + yxxx + yyx = 0, t ∈ [0, T ], x ∈ [0, L],

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ].

where, at time t ∈ [0, T ], the control is u ∈ R and the state is
y(t, ·) ∈ L2(0, L).

Remark

Prior pioneer work on the controllability of the Korteweg-de Vries equation
(with periodic boundary conditions and internal controls): D. Russell and
B.-Y. Zhang (1996).
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Controllability of the linearized control system

The linearized control system (around 0) is

yt + yx + yxxx = 0, t ∈ [0, T ], x ∈ [0, L],

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ].

where, at time t ∈ [0, T ], the control is u ∈ R and the state is
y(t, ·) ∈ L2(0, L).

Theorem (L. Rosier (1997))

For every T > 0, the linearized control system is controllable in time T if
and only

L 6∈ N :=

{

2π

√

k2 + kl + l2

3
, k ∈ N

∗, l ∈ N
∗

}

.
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Application to the nonlinear system

Theorem (L. Rosier (1997))

For every T > 0, the KdV control system is locally controllable (around 0)
in time T if L 6∈ N .

Question: Does one have controllability if L ∈ N ?
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Controllability when L ∈ N

Theorem (JMC and E. Crépeau (2004))

If L = 2π (which is in N : take k = l = 1), for every T > 0 the KdV
control system is locally controllable (around 0) in time T .

Theorem (E. Cerpa (2007), E. Cerpa and E. Crépeau (2008))

For every L ∈ N , there exists T > 0 such that the KdV control system is
locally controllable (around 0) in time T .
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Strategy of the proof: power series expansion.

Example with L = 2π. For every trajectory (y, u) of the linearized control
system around 0

d

dt

∫ 2π

0
(1 − cos(x))y(t, x)dx = 0.

This is is the only “obstacle” to the controllability of the linearized control
system:

Proposition (L. Rosier (1997))

Let H := {y ∈ L2(0, L);
∫ L
0 (1 − cos(x))y(x)dx = 0}. For every

(y0, y1) ∈ H × H, there exists u ∈ L2(0, T ) such that the solution to the
Cauchy problem

yt + yx + yxxx = 0, y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ],

y(0, x) = y0(x), x ∈ [0, L],

satisfies y(T, x) = y1(x), x ∈ [0, L].
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We explain the method on the control system of finite dimension

ẏ = f(y, u),

where the state is y ∈ R
n and the control is u ∈ R

m. We assume that
(0, 0) ∈ R

n × R
m is an equilibrium of the control system ẏ = f(y, u), i.e.

that f(0, 0) = 0. Let

H := Span {AiBu; u ∈ R
m, i ∈ {0, . . . , n − 1}}

with

A :=
∂f

∂y
(0, 0), B :=

∂f

∂u
(0, 0).

If H = R
n, the linearized control system around (0, 0) is controllable and

therefore the nonlinear control system ẏ = f(y, u) is small-time locally
controllable at (0, 0) ∈ R

n × R
m.
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Let us look at the case where the dimension of H is n − 1. Let us make a
(formal) power series expansion of the control system ẏ = f(y, u) in (y, u)
around 0. We write

y = y1 + y2 + . . . , u = v1 + v2 + . . . .

The order 1 is given by (y1, v1); the order 2 is given by (y2, v2) and so on.
The dynamics of these different orders are given by

ẏ1 =
∂f

∂y
(0, 0)y1 +

∂f

∂u
(0, 0)v1,

ẏ2 =
∂f

∂y
(0, 0)y2 +

∂f

∂u
(0, 0)v2 +

1

2

∂2f

∂y2
(0, 0)(y1, y1)

+
∂2f

∂y∂u
(0, 0)(y1, v1) +

1

2

∂2f

∂u2
(0, 0)(v1, v1),

and so on.
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Let e1 ∈ H⊥. Let T > 0. Let us assume that there are controls v1
± and

v2
±, both in L∞((0, T ); Rm), such that, if y1

± and y2
± are solutions of

ẏ1
± =

∂f

∂y
(0, 0)y1

± +
∂f

∂u
(0, 0)v1

±,

y1
±(0) = 0,

ẏ2
± =

∂f

∂y
(0, 0)y2

± +
∂f

∂u
(0, 0)v2

± +
1

2

∂2f

∂y2
(0, 0)(y1

±, y1
±)

+
∂2f

∂y∂u
(0, 0)(y1

±, u1
±) +

1

2

∂2f

∂u2
(0, 0)(u1

±, u1
±),

y2
±(0) = 0,

then

y1
±(T ) = 0,

y2
±(T ) = ±e1.
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Let (ei)i∈{2,...n} be a basis of H. By the definition of H, there are
(ui)i=2,...,n, all in L∞(0, T )m, such that, if (yi)i=2,...,n are the solutions of

ẏi =
∂f

∂y
(0, 0)yi +

∂f

∂u
(0, 0)ui,

yi(0) = 0,

then, for every i ∈ {2, . . . , n},

yi(T ) = ei.

Now let

b =

n
∑

i=1

biei

be a point in R
n. Let v1 and v2, both in L∞((0, T ); Rm), be defined by

the following

- If b1 > 0, then v1 := v1
+ and v2 := v2

+.

- If b1 < 0, then v1 := v1
− and v2 := v2

−.
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Let u : (0, T ) → R
m be defined by

u(t) := |b1|
1/2v1(t) + |b1|v

2(t) +

n
∑

i=2

biui(t).

Let y : [0, T ] → R
n be the solution of

ẏ = f(y, u(t)), y(0) = 0.

Then one has, as b → 0,

y(T ) = b + o(b).

Hence, using the Brouwer fixed-point theorem and standard estimates on
ordinary differential equations, one gets the local controllability of
ẏ = f(y, u) (around (0, 0) ∈ R

n × R
m) in time T , that is, for every ε > 0,

there exists η > 0 such that, for every (a, b) ∈ R
n × R

n with |a| < η and
|b| < η, there exists a trajectory (y, u) : [0, T ] → R

n × R
m of the control

system ẏ = f(y, u) such that

y(0) = a, y(T ) = b,

|u(t)| 6 ε, t ∈ (0, T ).
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Bad and good news for L = 2π

• Bad news: The order 2 is not sufficient. One needs to go to the order
3

• Good news: the fact that the order is odd allows to get the local
controllability in arbitrary small time. The reason: If one can move in
the direction ξ ∈ H⊥ one can move in the direction −ξ. Hence it
suffices to argue by contradiction (assume that it is impossible to
enter in H⊥ in small time etc.)
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Open problems
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Open problems

1 Is there a minimal time for local controllability for some values of L?

2 Do we have global controllability? This is open even with three
boundary controls:

yt + yx + yxxx + yyx = 0,

y(t, 0) = u1(t), y(t, L) = u2(t), yx(t, L) = u3(t).

Note that one has global controllability for

yt + yx + yxxx + yyx = u4(t),

y(t, 0) = u1(t), y(t, L) = u2(t), yx(t, L) = u3(t).

(M. Chapouly (2009)). The proof uses the return method as for the
Navier-Stokes control system.
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