GUJARAT TECHNOLOGICAL UNIVERSITY

MECHATRONICS ENGINEERING (20) BASICS OF MICRO COMPUTER SYSTEMS SUBJECT CODE: 2152006

B.E. 5thSEMESTER

Type of course: Engineering Science

Prerequisite: N.A.

Rationale: Architecture, instruction set and assembly level programming of microprocessor and microcontroller are covered in this course. Also the assembly level programming is explained with proper interfacing.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks					Total	
L	T	P	С	Theor	Theory Marks		Practical Marks		Marks	
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
4	0	2	6	70	20	10	20	10	20	150

Content:

Sr. No.	Content	Total	% Weightage
		Hrs	
1	Overview: From mainframe to microcomputers, from high level to machine languages.	1	-
2	Microprocessor Architecture and Microcomputer Systems: Microprocessor, Memory, I/Os and Bus Architecture, The 8085 Microprocessor architecture, buses, registers and flags.	2	5
3	Programming in 8085: Introduction to the 8085 instruction set, overview, op-code and operand; one-two-and three byte instructions, loops, indexing and memory reference	5	10
4	Memory and I/O interfacing: Memory interfacing, interfacing the 8155, Memory segment, Instruction and machine cycle, T-states and timings, I/O interfacing concepts, Interfacing output displays, Interfacing input Devices, Memory mapped I/O.	10	15
5	Advanced Instructions and Programming: Counters and Time Delays, Generating pulse waveforms: Stack Subroutine; Restart, Conditional Call and Return Instructions, Advanced subroutine concepts, Code conversion, BCD arithmetic and 16-bit data operations.	10	15
6	Interrupt of 8085: Polling and Interrupt method, Vectored and Non vectored interrupt, Interrupt priority	4	10

8	The 8051 Microcontroller:	2	5
	Microcontrollers and Embedded processors, Overview of the 8051		
	family		
9	8051 Assembly language programming:	10	20
	Inside the 8051, Introduction, Assembling and running program, the		
	program counter and ROM space, Data types and Directives, Flag bits		
	and PSW register, register banks and stack; Jump, Loop and Call		
	instructions, I/O port programming, Addressing Modes, Arithmetic		
	instructions, Logic Instructions, Single-Bit instructions and Programs.		
10	Advanced 8051 programming and Math Calculations:	2	10
	Fixed point numbers, addition of two 16-bit numbers, unsigned 32-bit		
	addition, subtraction of two 16-bit numbers, conversion of 8-bit signed		
	number into a 16-bit signed number, 16-bit signed addition, binary to		
	BCD conversion, square root calculations, Integration, Differentiation,		
	Floating point Arithmetic.		
11	8051 Timer /Counter:	3	5
	8/16 bit Timer, Timer modes, Timer control register, Programming based		
	on timer		
12	8051 Interrupt :	3	5
	Peripheral interrupt, External interrupt, Interrupt priority, Program based		
	on Interrupt		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
40	20	20	10	10	-			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- **1.** Microprocessor Architecture, Programming, and Applications with the 8085 –Ramesh S. Gaonkar, Penram International publications.
- 2. Microprocessor 8085 and its Interfacing, By Sunil Mathur, Second Edition, PHI Learning Pvt. Ltd
- **3.** 8085 Microprocessor And its Applications, By A. Nagoor Kani, Third Edition, TMH Education Pvt. Ltd
- **4.** The 8051 Microcontroller and Embedded Systems Using Assembly and C, 2/e by Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin McKinlay, Pearson Education
- **5.** The 8051 Microcontroller & Embedded Systems using Assembly and C By K. J. Ayala, D. V. Gadre, Cengage Learning, India Edition.

Course Outcome:

After learning the course the students should be able to:

1. Understanding the basic building blocks of a micro computing unit (MCU)

- 2. Understand the architecture, instruction set and assembly level programming of microprocessor and microcontroller
- 3. Interface memory and I/Os with 8085 and 8051
- 4. Design systems using microprocessors/microcontrollers

List of Experiments:

- 1. Introduction to 8085 simulator and 8085 trainer kit.
- 2. Programming based on data transfer in 8085
- 3. Programming based on arithmetic operations in 8085
- **4.** Programming based on logical operations in 8085
- **5.** Programming based on advanced operations in 8085
- **6.** Programming based on interrupts in 8085
- 7. Introduction to 8051 simulator and 8085 trainer kit and programming based on data transfer operations in 8051
- **8.** Programming based on arithmetic operations in 8051
- **9.** Programming based on logical operations in 8051
- 10. Programming based on timers in 8051
- 11. Programming based on interrupts in 8051

Design based Problems (DP)/Open Ended Problem:

- 1. Design of digital clock using microprocessors/microcontrollers
- 2. Implementation of interrupt mechanism in microprocessors
- 3. Study of traffic controlling syasstem using microprocessors/microcontrollers
- **4.** To study the interfacing of various sensors using microcontrollers.
- **5.** To study and interface input/output devices with microcontrollers.
- **6.** Wired and wireless communication using microcontrollers.

Major Equipment:

- 1. 8085 microprocessor and 8051 trainer kit
- 2. Different peripheral devices
- **3.** CRO, power supply

List of Open Source Software/learning website:

- **1.** 8085 simulator
- **2.** 8051 simulator
- 3. nptel.ac.in
- **4.** wikipedia.org/wiki.intel_8085
- **5.** wikipedia.org/wiki.intel_8051

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.