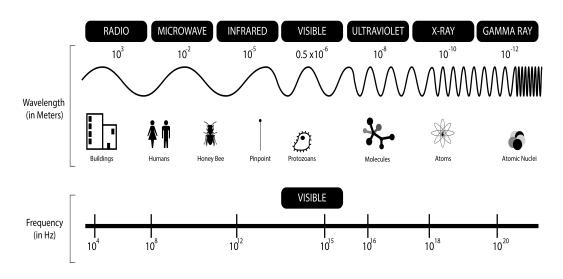
CARDIFF UNIVERSITY

School of Physics and Astronomy

MATHEMATICAL FORMULAE AND PHYSICAL CONSTANTS

THE ELECTROMAGNETIC SPECTRUM



Contents

1	\mathbf{EL}	EMENTARY ALGEBRA AND TRIGNOMETRY	5
	1.1	Logarithms and exponentials	5
	1.2	Trigonometric functions	5
	1.3	Compound formulae: sines, cosines and tangents	5
	1.4	Double-angle formulae	5
	1.5	"Tan of half-angle" formulae	5
	1.6	Triangle sine and cosine formulae	6
	1.7	Hyperbolic functions	6
	1.8	Stirling's approximation	6
2	SEI	RIES FORMULAE	7
	2.1	Sums of progressions to n terms	7
	2.2	Binomial series	7
	2.3	Taylor's Theorem	7
	2.4	Power series in algebra and trigonometry	8
3	DERIVATIVES AND INTEGRALS		
	3.1	Derivatives	9
	3.2	Partial differentiation	9
	3.3	Indefinite integrals	9
	3.4	Indefinite integrals involving sines, cosines and exponentials	10
	3.5	Integration by parts	10
	3.6	Definite integrals involving sines and cosines	10
	3.7	Definite integrals involving exponentials	11
	3.8	Numerical integration	11
		3.8.1 Trapezoidal rule	12
		3.8.2 Simpson rule	12
	3.9	Newton-Raphson Method for Finding the Root of an Equation	12
4	CO	MPLEX NUMBERS	13
	4.1	Definitions etc.	13
	4.2	De Moivre's theorem	13

	4.3	Formulae involving $e^{i\theta}$ etc	13	
5	SPECIAL FUNCTIONS			
	5.1	Spherical harmonics	14	
	5.2	The gamma function	14	
	5.3	Bessel functions	15	
6	DET	TERMINANTS AND MATRICES	16	
	6.1	Definition of a determinant	16	
	6.2	Consistency of n simultaneous equations with n variables and no constants.	16	
	6.3	Solutions of n simultaneous equations with n variables and with constants.	17	
	6.4	Matrices: basic equations	17	
	6.5	Rules of matrix algebra	18	
	6.6	Trace of a square matrix	18	
	6.7	Transpose of matrix	18	
	6.8	Inverse of a matrix	18	
	6.9	Special matrices	18	
	6.10	Eigenvalues and eigenvectors of a square matrix	19	
	6.11	Similarity transform	19	
	6.12	Diagonalisation of a matrix A with different eigenvalues	19	
	6.13	Representation of a rotation by a matrix R	19	
7	VEC	CTORS	20	
	7.1	Definition of the scalar (or dot) product of two vectors	20	
	7.2	Properties of the scalar product	20	
	7.3	Definition of the vector (or cross) product of two vectors	20	
	7.4	Properties of the vector product	20	
	7.5	Scalar triple product	21	
	7.6	Vector triple product	21	
	7.7	The del operator ∇	21	
	7.8	The gradient of a scalar function $\phi(x,y,z)$	21	
	7.9	The divergence of a vector function $\mathbf{F}(x,y,z) = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$	21	

	7.10	The curl of a vector function $\mathbf{F}(x,y,z) = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k} \dots \dots$	22
	7.11	Compound operations	22
	7.12	Operations on sums and products	22
	7.13	Gauss's (divergence) theorem	23
	7.14	Stokes's theorem	23
8	CYLINDRICAL AND SPHERICAL POLAR COORDINATES		
	8.1	Cylindrical coordinates	24
	8.2	Spherical polar coordinates	24
	8.3	$ abla^2$ in cylindrical polar coordinates (r, ϕ, z)	24
	8.4	$ abla^2$ in spherical polar coordinates (r, θ, ϕ)	25
	8.5	Line area and volume elements	25
		8.5.1 Cylindrical	25
		8.5.2 Spherical	25
9 FOURIER SERIES AND TRANSFORMS		URIER SERIES AND TRANSFORMS	26
	9.1	Fourier Series	26
	9.2	Fourier transforms	26
	9.3	Shift theorems in Fourier transforms	27
	9.4	Convolutions	27
	9.5	Some common Fourier mates	27
	9.6	Diffraction at a circular aperture	29
10	LAF	PLACE TRANSFORMS	30
	10.1	Definition and table of transforms	30
11	PRO	DBABILITY, STATISTICS AND DATA INTERPRETATION	31
	11.1	Mean and variance	31
	11.2	Binomial distribution	31
	11.3	Poisson distribution	32
	11.4	Normal (Gaussian) distribution	32
	11.5	Statistics	32
	11.6	Data interpretation: least squares fitting of a straight line	33
12	SON	ME PHYSICS FORMULAE	34

12.1 Newton's laws and conservation of energy and momentum	34					
12.2 Rotational motion and angular momentum	34					
12.3 Gravitation and Planetary motion	34					
12.4 Oscillations - Simple harmonic motion, Springs	34					
12.5 Thermodynamics, gases and fluids	35					
12.6 Waves	35					
12.7 Electricity and Magnetism	36					
12.8 Maxwell's equations	36					
12.9 Special Relativity	36					
12.10 Photons, atoms and quantum mechanics	37					
12.11 Nuclear Physics	38					
13 PHYSICAL CONSTANTS AND CONVERSIONS 39						
13.1 Physical constants	39					
13.2 Astronomical constants	40					
13.3 Conversions	40					

1 ELEMENTARY ALGEBRA AND TRIGNOMETRY

1.1 Logarithms and exponentials

$$\ln x = \log_e x = \int_1^x \frac{dt}{t}, \quad x > 0, \quad e = 2.718281828...$$

$$\log_a x = (\log_b x)(\log_a b)$$

$$\log_a b = \frac{1}{\log_b a}$$

$$a^x = \exp(x \ln a)$$

1.2 Trigonometric functions

$$\sec \theta = 1/\cos \theta \qquad \csc \theta = 1/\sin \theta \qquad \cot \theta = 1/\tan \theta$$
$$\sin(-\theta) = -\sin \theta \qquad \cos(-\theta) = \cos \theta \qquad \tan(-\theta) = -\tan \theta$$
$$\sin^2 \theta + \cos^2 \theta = \sec^2 \theta - \tan^2 \theta = \csc^2 \theta - \cot^2 \theta = 1$$

1.3 Compound formulae: sines, cosines and tangents

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin(A + B) + \sin(A - B)$$

$$2 \cos A \cos B = \cos(A + B) + \cos(A - B)$$

$$2 \sin A \sin B = -\cos(A + B) + \cos(A - B) \quad \text{note minus sign of first term}$$

$$\sin A + \sin B = 2 \sin \frac{1}{2}(A + B) \cos \frac{1}{2}(A - B)$$

$$\sin A - \sin B = 2 \cos \frac{1}{2}(A + B) \sin \frac{1}{2}(A - B)$$

$$\cos A + \cos B = 2 \cos \frac{1}{2}(A + B) \cos \frac{1}{2}(A - B)$$

$$\cos A - \cos B = -2 \sin \frac{1}{2}(A + B) \sin \frac{1}{2}(A - B) \quad \text{(note minus signs)}$$

1.4 Double-angle formulae

$$\sin 2\theta = 2\sin \theta \cos \theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$$

$$\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$$

$$\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$$

1.5 "Tan of half-angle" formulae

If
$$t = \tan \theta/2$$
, then

$$\sin \theta = \frac{2t}{1+t^2}$$
 $\cos \theta = \frac{1-t^2}{1+t^2}$ $\tan \theta = \frac{2t}{1-t^2}$

1.6 Triangle sine and cosine formulae

If in a triangle A, B and C are the angles opposite sides of lengths a, b and c respectively,

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

1.7 Hyperbolic functions

$$\cosh \theta = \frac{1}{2} (e^{\theta} + e^{-\theta}) \qquad \sinh \theta = \frac{1}{2} (e^{\theta} - e^{-\theta})$$

$$\tanh \theta = \frac{\sinh \theta}{\cosh \theta} = \frac{e^{\theta} - e^{-\theta}}{e^{\theta} + e^{-\theta}}$$

$$\coth \theta = \frac{\cosh \theta}{\sinh \theta} = \frac{1}{\tanh \theta} = \frac{e^{\theta} + e^{-\theta}}{e^{\theta} - e^{-\theta}}$$

$$\operatorname{sech} \theta = \frac{1}{\cosh \theta} \qquad \operatorname{cosech} \theta = \frac{1}{\sinh \theta}$$

$$\cosh^{2} \theta - \sinh^{2} \theta = 1$$

$$\operatorname{sech}^{2} \theta - \operatorname{cosech}^{2} \theta = 1$$

1.8 Stirling's approximation

$$\ln{(n!)} \approx n \ln{n} - n$$
 for $n \gg 1$
An even closer approximation is
$$\ln{n!} \approx n \ln{n} - n + \frac{1}{2} \ln{(2\pi n)}$$

2 SERIES FORMULAE

2.1 Sums of progressions to n terms

(i) Arithmetic Progression (A.P.):

$$\sum_{m=0}^{n-1} (a+md) = a + (a+d) + (a+2d) + \dots + (a+(n-1)d)$$
$$= (n/2) [2a + (n-1)d] = (n/2) (\text{first term} + \text{last term})$$

(ii) Geometric Progression (G.P.):

$$S_n = \sum_{m=0}^{n-1} (ar^m) = a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(1-r^n)}{1-r} = \frac{a(r^n-1)}{r-1}$$

For an infinite number of terms, if |r| < 1

$$S_{\infty} = \frac{a}{1 - r}$$

2.2 Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\cdots(n-r+1)}{r!}x^r + \dots$$

(Note that 0! = 1).

If n is a positive integer, the series terminates.

Otherwise, the series converges so long as |x| < 1.

$$(a+x)^n = a^n \left(1 + \frac{x}{a}\right)^n$$

2.3 Taylor's Theorem

(i) Single Variable:

The value of a function f(x) given the value of the function and its relevant derivatives at x = a, is

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} (x-a)^n f^{(n)}(a) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!} f''(a) + \frac{(x-a)^3}{3!} f'''(a) + \cdots$$

If a=0, this series expansion is often called a Maclaurin Series.

(ii) Two Variables:

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2!} \left[\frac{\partial^2 f}{\partial x^2} \Delta x^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} \Delta y^2 \right] + \cdots$$
where $\Delta x = x - x_0, \Delta y = y - y_0$
and all the derivatives are evaluated at (x_0, y_0) .

2.4 Power series in algebra and trigonometry

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \cdots \quad \text{for } |x| < 1$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

$$\sinh x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \frac{x^{7}}{7!} + \cdots$$

$$\cosh x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \cdots$$

$$\frac{1}{1+x} = 1 - x + x^{2} - x^{3} + \cdots \quad \text{for } |x| < 1.$$

$$\frac{1}{1-x} = 1 + x + x^{2} + x^{3} + \cdots \quad \text{for } |x| < 1.$$

3 DERIVATIVES AND INTEGRALS

3.1 Derivatives

$$\frac{d}{dx}\tan x = \sec^2 x \qquad \frac{d}{dx}\cot x = -\csc^2 x$$

$$\frac{d}{dx}\sec x = \sec x \tan x \qquad \frac{d}{dx}\csc x = -\csc x \cot x$$

Product rule:

Given f(x) = u(x)v(x) then

$$\frac{df}{dx} = u \frac{dv}{dx} + \frac{du}{dx} v$$

Chain rule:

Given u(x) and f(u), then

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$$

3.2 Partial differentiation

The total differential df of a function f(x, y) is

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

The chain rule for partial differentiation.

If f(x,y) and x and y are functions of another variable, so that x(u) and y(u), then

$$\frac{df}{du} = \frac{\partial f}{\partial x}\frac{dx}{du} + \frac{\partial f}{\partial y}\frac{dy}{du}$$

3.3 Indefinite integrals

The constant of integration is omitted. Where the logarithm of a quantity is given, that quantity is taken as positive. a is a positive constant.

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} \quad \text{or} \quad -\cos^{-1} \frac{x}{a} \quad \text{(principal value)}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} \quad \text{(principal value)}$$

$$\int \frac{dx}{a^2 - x^2} = \begin{cases} \frac{1}{2a} \ln \frac{a + x}{a - x} = \frac{1}{a} \tanh^{-1} \frac{x}{a} \quad \text{(if } |x| < a) \\ \frac{1}{2a} \ln \frac{x + a}{x - a} = \frac{1}{a} \coth^{-1} \frac{x}{a} \quad \text{(if } |x| > a) \end{cases}$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \frac{x}{a} \quad \text{or} \quad \ln (x + \sqrt{a^2 + x^2})$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1} \frac{x}{a} \quad \text{or} \quad \ln (x + \sqrt{x^2 - a^2})$$

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{-1} \frac{x}{a} \quad \text{(principal value)}$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \ln (x + \sqrt{x^2 \pm a^2})$$

3.4 Indefinite integrals involving sines, cosines and exponentials

$$\int \cot x \, dx = \ln(\cos x) = \ln(\sec x)$$

$$\int \cot x \, dx = \ln(\sin x)$$

$$\int \sec x \, dx = \ln(\sec x + \tan x) = \ln\left(\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right) = \frac{1}{2}\ln\left(\frac{1 + \sin x}{1 - \sin x}\right)$$

$$\int \csc x \, dx = \ln(\csc x - \cot x) = \ln\left(\tan\frac{x}{2}\right) = \frac{1}{2}\ln\left(\frac{1 - \cos x}{1 + \cos x}\right)$$

$$\int \sin^{-1}\frac{x}{a} \, dx = x \sin^{-1}\frac{x}{a} + \sqrt{a^2 - x^2}$$

$$\int \cos^{-1}\frac{x}{a} \, dx = x \cos^{-1}\frac{x}{a} - \sqrt{a^2 - x^2}$$

$$\int a^x \, dx = \frac{a^x}{\ln a}$$

$$\int x^n e^{-ax} \, dx = -e^{-ax}\left(\frac{x^n}{a} + \frac{nx^{n-1}}{a^2} + \frac{n(n-1)x^{n-2}}{a^3} + \cdots + \frac{n!x^n}{a^n} + \frac{n!}{a^{n+1}}\right) (n \text{ a non-negative integer})$$

$$\int e^{ax} \sin bx \, dx = e^{ax}\frac{a \sin bx - b \cos bx}{a^2 + b^2}$$

$$\int e^{ax} \cos bx \, dx = e^{ax}\frac{a \cos bx + b \sin bx}{a^2 + b^2}$$

$$\int x \sin ax \, dx = \frac{\sin ax}{a^2} - \frac{x \cos ax}{a}$$

$$\int \ln x \, dx = x \ln x - x$$

$$\int \sinh x \, dx = \cosh x \int \cosh x \, dx = \sinh x$$

$$\int \tanh x \, dx = \ln(\cosh x)$$

3.5 Integration by parts

If u and v are functions of x,

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

3.6 Definite integrals involving sines and cosines

If m and n are positive integers

$$\int_0^{\pi} \sin mx \sin nx \ dx = \frac{\pi}{2} \delta_{mn} \qquad \qquad \int_0^{\pi} \cos mx \cos nx \ dx = \frac{\pi}{2} \delta_{mn}$$

where

$$\delta_{mn} = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

is the Kronecker delta.

$$\int_{-\pi/2}^{\pi/2} \sin mx \cos nx \ dx = 0$$

3.7 Definite integrals involving exponentials

$$\int_0^\infty x e^{-\alpha x} dx = \frac{1}{\alpha^2}$$

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

$$\int_0^\infty x e^{-\alpha x^2} dx = \frac{1}{2\alpha}$$

$$\int_0^\infty x^2 e^{-\alpha x^2} dx = \frac{1}{4} \sqrt{\frac{\pi}{\alpha^3}}$$

$$\int_0^\infty x^3 e^{-\alpha x^2} dx = \frac{1}{2\alpha^2}$$

$$\int_0^\infty x^4 e^{-\alpha x^2} dx = \frac{3}{8} \sqrt{\frac{\pi}{\alpha^5}}$$

$$\int_0^y e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \operatorname{erf}(y)$$

$$\int_{0}^{\infty} x^{2} e^{-\alpha x} dx = \frac{2}{\alpha^{3}}$$

$$\int_{-\infty}^{\infty} e^{-\alpha x^{2}} dx = \sqrt{\frac{\pi}{\alpha}}$$

$$\int_{-\infty}^{\infty} x e^{-\alpha x^{2}} dx = 0$$

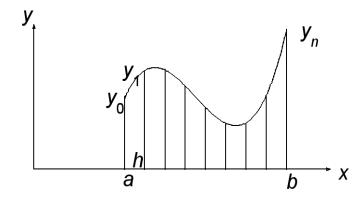
$$\int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha^{3}}}$$

$$\int_{-\infty}^{\infty} x^{3} e^{-\alpha x^{2}} dx = 0$$

$$\int_{-\infty}^{\infty} x^{4} e^{-\alpha x^{2}} dx = \frac{3}{4} \sqrt{\frac{\pi}{\alpha^{5}}}$$

$$\int_{0}^{y} e^{-\alpha x^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}} \operatorname{erf}(\sqrt{\alpha} y)$$

3.8 Numerical integration



The interval between a and b is divided into equal intervals h. y has values $y_0, y_1, y_2 \cdots y_n$.

3.8.1 Trapezoidal rule

$$\int_{a}^{b} y dx = h\left(\frac{y_0}{2} + y_1 + y_2 + \dots + \frac{y_n}{2}\right)$$

3.8.2 Simpson rule

If there is an odd number of y-values (an even number of intervals),

$$\int_{a}^{b} y dx = \frac{h}{3} \left\{ y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n \right\}.$$

3.9 Newton-Raphson Method for Finding the Root of an Equation

The root is found by successive approximations.

If the equation is f(x) = 0 and x_j is the jth approximation of the root

$$x_j = x_{j-1} - \frac{f(x_{j-1})}{f'(x_{j-1})}$$
 where $f' = \frac{df}{dx}$

4 COMPLEX NUMBERS

4.1 Definitions etc.

$$z=x+iy=r(\cos\theta+i\sin\theta)=re^{i\theta}$$
 Complex conjugate of z is $z^*=x-iy=re^{-i\theta}$ Modulus or amplitude of z is $|z|=\sqrt{x^2+y^2}=r=\sqrt{zz^*}$ Argument of z is $\arg z=\tan^{-1}\frac{y}{x}=\theta$ Real part of z is $\operatorname{Re}(z)=x=r\cos\theta=\frac{z+z^*}{2}$ Imaginary part of z is $\operatorname{Im}(z)=y=r\sin\theta=\frac{z-z^*}{2i}$

4.2 De Moivre's theorem

$$(\cos \theta + i \sin \theta)^n = \cos (n\theta) + i \sin (n\theta)$$

4.3 Formulae involving $e^{i\theta}$ etc.

$$\begin{split} e^{\pm i\theta} &= \cos\theta \pm i\sin\theta \\ &\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) \\ &\sin\theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta}) \\ &i\tan\theta = \frac{e^{i\theta} - e^{-i\theta}}{e^{i\theta} + e^{-i\theta}} = \frac{e^{2i\theta} - 1}{e^{2i\theta} + 1} = \frac{1 - e^{-2i\theta}}{1 + e^{-2i\theta}} \end{split}$$

5 SPECIAL FUNCTIONS

5.1 Spherical harmonics

A general equation which gives the 'right' phase factors (as used in quantum mechanics) is

$$Y_l^m = \left\{ \frac{(2l+1)(l-m)!}{4\pi(l+m)!} \right\}^{1/2} \frac{1}{2^l l!} e^{im\phi} (-\sin\theta)^m \left\{ \frac{d}{d(\cos\theta)} \right\}^{l+m} (\cos^2\theta - 1)^l$$

which can also be expressed

$$Y_l^m(\theta,\phi) = P_l^m(\cos\theta) \frac{1}{\sqrt{2\pi}} e^{im\phi},$$

where $P_l^m(\cos\theta)$ is a normalised associated Legendre polynomial.

$$Y_0^0 = \frac{1}{\sqrt{4\pi}}$$

$$Y_2^0 = \sqrt{\frac{5}{16\pi}} \left(2\cos^2 \theta - \sin^2 \theta \right)$$

$$Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos \theta$$

$$Y_2^{\pm 1} = \mp \sqrt{\frac{15}{8\pi}} \cos \theta \sin \theta e^{\pm i\phi}$$

$$Y_1^{\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi}$$

$$Y_2^{\pm 2} = \mp \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{\pm 2i\phi}$$

5.2 The gamma function

This is defined as

$$\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt$$
$$= \int_0^1 \left(\ln \frac{1}{t} \right)^{n-1} dt$$

where n > 0 (n can be an integer or a non-integer)

$$\Gamma(n+1) = n\Gamma(n)$$

If n is an integer ≥ 0 , $\Gamma(n+1) = n!$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi} \text{ for } n \text{ a non-integer}$$

5.3 Bessel functions

$$J_{n}(x) = \sum_{\lambda=0}^{\infty} \frac{(-1)^{\lambda}}{\Gamma(\lambda+1)\Gamma(\lambda+n+1)} \left(\frac{x}{2}\right)^{n+2\lambda}$$

$$\frac{d}{dx} \left\{ x^{-n} J_{n}(x) \right\} = -x^{-n} J_{n+1}(x) \qquad \qquad \frac{d}{dx} \left\{ x^{n} J_{n}(x) \right\} = x^{n} J_{n-1}(x)$$

$$J_{0}(x) = \frac{1}{2\pi} \int_{0}^{2\pi} \exp\left(ix \cos\phi\right) d\phi \qquad \qquad z J_{1}(z) = \frac{1}{2\pi} \int_{0}^{z} x J_{0}(x) dx$$

6 DETERMINANTS AND MATRICES

6.1 Definition of a determinant

$$|A| = \begin{vmatrix} A_{11} & A_{12} & A_{13} & \dots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \dots & A_{2n} \\ A_{31} & A_{32} & A_{33} & \dots & A_{3n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & A_{n3} & \dots & A_{nn} \end{vmatrix}$$

$$= \sum_{j} (-1)^{k+j} A_{kj} M_{kj} = \sum_{i} (-1)^{k+i} A_{ik} M_{ik}$$

where M_{ij} is the minor of A_{ij} in A, the determinant of the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*th row and the *j*th column passing through A_{ij} . The number $(-1)^{i+j}M_{ij}$ is called the cofactor of A_{ij} . By repeating this process the determinant of A can be found.

Properties of Determinants

- |A| is unaltered if rows and columns are interchanged.
- |A| is unaltered if any row (or constant any row) is added to or subtracted from another row.
- |A| is unaltered if any column (or constant any column) is added to or subtracted from another column.
- |A| = 0 if any row or column is zero.
- |A| = 0 if the matrix has two identical rows or columns.
- If all the elements of any two rows, or any two columns, are interchanged, |A| changes sign.
- If all the elements of any row or column are multiplied by a constant λ , |A| is multiplied by λ .
- |AB| = |A| |B| the determinant of the product is the product of the determinants.
- If a $n \times n$ matrix is nultiplied by a scalar a, then its determinant is increaseed by factor a^n .

6.2 Consistency of n simultaneous equations with n variables and no constants.

If the equations

$$A_{11}x_1 + A_{12}x_2 + A_{13}x_3 + \dots + A_{1n}x_n = 0$$

$$A_{21}x_1 + A_{22}x_2 + A_{23}x_3 + \dots + A_{2n}x_n = 0$$

$$\dots$$

$$A_{n1}x_1 + A_{n2}x_2 + A_{n3}x_3 + \dots + A_{nn}x_n = 0$$

are consistent, then

$$\begin{vmatrix} A_{11} & A_{12} & A_{13} & \dots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \dots & A_{2n} \\ A_{31} & A_{32} & A_{33} & \dots & A_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & A_{n3} & \dots & A_{nn} \end{vmatrix} = 0$$

6.3 Solutions of n simultaneous equations with n variables and with constants.

The equations

$$A_{11}x_1 + A_{12}x_{2+}A_{13}x_3 + \dots + A_{1n}x_n + C_1 = 0$$

$$A_{21}x_1 + A_{22}x_{2+}A_{23}x_3 + \dots + A_{2n}x_n + C_2 = 0$$

$$\dots \dots$$

$$A_{n1}x_1 + A_{n2}x_{2+}A_{n3}x_3 + \dots + A_{nn}x_n + C_n = 0$$

have a solution

$$\frac{x_1}{\begin{vmatrix} A_{12} & A_{13} & \dots & C_1 \\ A_{22} & A_{23} & \dots & C_2 \\ \dots & \dots & \dots \\ A_{n2} & A_{n3} & \dots & C_n \end{vmatrix}} = \frac{-x_2}{\begin{vmatrix} A_{11} & A_{13} & \dots & C_1 \\ A_{21} & A_{23} & \dots & C_2 \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n3} & \dots & C_n \end{vmatrix}} = \dots = \frac{(-1)^n}{\begin{vmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n3} & \dots & C_n \end{vmatrix}}$$

6.4 Matrices: basic equations

Linear equations like:

$$y_{1} = A_{11}x_{1} + A_{12}x_{2} + A_{13}x_{3} + \dots + A_{1n}x_{n}$$

$$y_{2} = A_{21}x_{1} + A_{22}x_{2} + A_{23}x_{3} + \dots + A_{2n}x_{n}$$

$$\dots \dots$$

$$y_{n} = A_{n1}x_{1} + A_{n2}x_{2} + A_{n3}x_{3} + \dots + A_{nn}x_{n}$$

can be expressed in matrix form as:

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} & \dots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \dots & A_{2n} \\ A_{31} & A_{32} & A_{33} & \dots & A_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & A_{n3} & \dots & A_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

x and y are column vectors, A is a n by n matrix. Usually the matrices to be considered are square.

6.5 Rules of matrix algebra

Given matrices A and B,

$$(A+B)_{ij} = A_{ij} + B_{ij}$$
$$(\lambda A)_{ij} = \lambda A_{ij}$$
$$(AB)_{ij} = \sum_{l} A_{il} B_{lj}$$

You must remember that matrix algebra is not commutative in general; in other words we generally have:

$$AB \neq BA$$
.

6.6 Trace of a square matrix

$$\operatorname{Tr}(A) = \sum_{i} A_{ii}$$

$$Tr(AB) = Tr(BA)$$

6.7 Transpose of matrix

The transpose of a matrix A is written as A^T and is obtained by interchanging rows and columns.

$$A_{ij}^T = A_{ji}$$

The complex conjugate transpose of a matrix A is denoted by A^{\dagger} . It is also called the Hermitian conjugate.

$$A_{ij}^{\dagger} = A_{ji}^{*}$$

6.8 Inverse of a matrix

 A^{-1} is the inverse of the matrix A if $AA^{-1}=A^{-1}A=I$ where I is the unit matrix.

An explicit expression for A^{-1} is:

$$(A^{-1})_{ij} = \frac{(-1)^{j+i} M_{ji}}{|A|}$$

where $(-1)^{i+j}M_{ij}$ is called the cofactor of A_{ij} .

$$(ABC..X)^{-1} = X^{-1}...B^{-1}A^{-1}$$

6.9 Special matrices

If a square matrix is equal to its transpose, ie, $A = A^T$, it is said to be *symmetric*. If $A = -A^T$, it is anti-symmetric. Any real, square matrix can be written as the sum of a symmetric and an anti-symmetric matrix.

An orthogonal matrix is one such that $A^T = A^{-1}$, ie, its inverse is its transpose. This implies that A is non-singular and as $A^T A = I$, its determinant is ± 1 .

A Hermitian matrix satisfies the relation $A = A^{\dagger}$. Any complex n by n matrix can be written as a sum of a Hermitian and an anti-Hermitian matrix.

Unitary matrices have the special property that $A^{\dagger} = A^{-1}$. Finally, normal matrices are ones that commute with their Hermitian conjugates.

6.10 Eigenvalues and eigenvectors of a square matrix

For a square $n \times n$ matrix A there are n eigenvalues λ with associated eigenvalues x which satisfy:

$$Ax = \lambda x$$

x is a vector, which when operated on by A is simply scaled. The eigenvalues are determined by finding the non-trivial solutions of

$$|A - \lambda I| = 0.$$

The left-hand side is a polynomial of order n, so this equation – the characteristic equation – has n roots giving the n eigenvalues (which are not necessarily distinct).

6.11 Similarity transform

The operation on a matrix A to produce a matrix $B = Q^{-1}AQ$ is called a similarity transformation. Under a similarity transform,

$$\operatorname{Tr} B = \operatorname{Tr} A$$

 $|B| = |A|$

6.12 Diagonalisation of a matrix A with different eigenvalues

If Q is a matrix whose columns are the eigenvectors of a matrix A, then $Q^{-1}AQ$ is diagonal and has elements which are the eigenvalues of A.

6.13 Representation of a rotation by a matrix R

A real orthogonal 3×3 matrix R with determinant = 1 represents a rotation in 3-dimensional space.

The angle of implied rotation θ is given by $\text{Tr}R = 1 + 2\cos\theta$.

The axis of implied rotation is a column vector u which is the solution of Ru = u.

7 VECTORS

Throughout, i, j and k are unit vectors parallel to Ox, Oy and Oz respectively.

7.1 Definition of the scalar (or dot) product of two vectors

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ (with $0 \le \theta \le \pi$) where θ is the angle between \mathbf{a} and \mathbf{b} .

7.2 Properties of the scalar product

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1.$$

$$\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0.$$

If $\mathbf{a} \cdot \mathbf{b} = 0$, and the moduli of \mathbf{a} and \mathbf{b} are non-zero, then \mathbf{a} is perpendicular (orthogonal) to \mathbf{b} .

If
$$\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$$
 and $\mathbf{b} = b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k}$,

$$\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z$$

$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 = a_x^2 + a_y^2 + a_z^2$$

$$\mathbf{a} = (\mathbf{a} \cdot \mathbf{i})\mathbf{i} + (\mathbf{a} \cdot \mathbf{j})\mathbf{j} + (\mathbf{a} \cdot \mathbf{k})\mathbf{k}$$

7.3 Definition of the vector (or cross) product of two vectors

 $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \hat{\mathbf{n}}$ (with $0 \le \theta \le \pi$) where θ is the angle between \mathbf{a} and \mathbf{b} , and where $\hat{\mathbf{n}}$ is the unit vector perpendicular to the plane of \mathbf{a} and \mathbf{b} and such that \mathbf{a} , \mathbf{b} and $\hat{\mathbf{n}}$ form a right-handed system.

7.4 Properties of the vector product

$$\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0$$

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}, \quad \mathbf{j} \times \mathbf{k} = \mathbf{i}, \quad \mathbf{k} \times \mathbf{i} = \mathbf{j}$$

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

If
$$\mathbf{a} = a_x \mathbf{i} + a_u \mathbf{j} + a_z \mathbf{k}$$
 and $\mathbf{b} = b_x \mathbf{i} + b_u \mathbf{j} + b_z \mathbf{k}$,

$$\mathbf{a} imes \mathbf{b} = \left| egin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{array}
ight|$$

 $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta$ is the area of a parallelogram with sides \mathbf{a} and \mathbf{b} , having an angle θ between the adjacent sides.

 $\mathbf{a} \times \mathbf{b} = 0$ and the moduli of \mathbf{a} and \mathbf{b} are both non-zero, then \mathbf{a} and \mathbf{b} are parallel or anti-parallel.

7.5 Scalar triple product

 $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ which also equals $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$.

$$[a b c] = [b c a] = [c a b] = -[a c b] = -[b a c] = -[c b a].$$

If \mathbf{a} , \mathbf{b} and \mathbf{c} are coplanar, then $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 0$.

The volume of a parallelopiped with edges \mathbf{a} , \mathbf{b} and \mathbf{c} is $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$.

7.6 Vector triple product

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

(Note that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$, ie the vector product is not associative.)

7.7 The del operator ∇

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}.$$

7.8 The gradient of a scalar function $\phi(x, y, z)$

grad
$$\phi = \nabla \phi = \mathbf{i} \frac{\partial \phi}{\partial x} + \mathbf{j} \frac{\partial \phi}{\partial y} + \mathbf{k} \frac{\partial \phi}{\partial z}.$$

 $\nabla \phi$ gives the magnitude and direction of the maximum (spatial) rate of change of ϕ .

7.9 The divergence of a vector function $\mathbf{F}(x, y, z) = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$

div
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

div $\mathbf{F} = \mathbf{i} \cdot \frac{\partial \mathbf{F}}{\partial x} + \mathbf{j} \cdot \frac{\partial \mathbf{F}}{\partial y} + \mathbf{k} \cdot \frac{\partial \mathbf{F}}{\partial z}$

7.10 The curl of a vector function $\mathbf{F}(x, y, z) = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}$

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \mathbf{i} \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) + \mathbf{j} \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) + \mathbf{k} \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right).$$

$$\operatorname{curl} \mathbf{F} = \mathbf{i} \times \frac{\partial \mathbf{F}}{\partial x} + \mathbf{j} \times \frac{\partial \mathbf{F}}{\partial y} + \mathbf{k} \times \frac{\partial \mathbf{F}}{\partial z} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

7.11 Compound operations

div grad
$$\phi = \nabla \cdot (\nabla \phi) = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$

 $(\nabla^2 \text{ is the Laplacian}).$

div curl
$$\mathbf{F} = \nabla \cdot (\nabla \times \mathbf{F}) = [\nabla \nabla \mathbf{F}] = 0.$$

curl grad
$$\phi = \nabla \times (\nabla \phi) = 0$$

curl curl
$$\mathbf{F} = \nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F} = \text{grad div} \mathbf{F} - \nabla^2 \mathbf{F}$$

where

$$\nabla^2 \mathbf{F} = \frac{\partial^2 \mathbf{F}}{\partial x^2} + \frac{\partial^2 \mathbf{F}}{\partial y^2} + \frac{\partial^2 \mathbf{F}}{\partial z^2}$$

These equations can 'deduced' by regarding ∇ as a vector

7.12 Operations on sums and products

$$\nabla(\phi + \psi) = \nabla\phi + \nabla\psi$$

$$\nabla \cdot (\mathbf{a} + \mathbf{b}) = \nabla \cdot \mathbf{a} + \nabla \cdot \mathbf{b}$$

$$\nabla \times (\mathbf{a} + \mathbf{b}) = \nabla \times \mathbf{a} + \nabla \times \mathbf{b}$$

$$\nabla(\phi \ \psi) = \phi \ \nabla \psi + \psi \ \nabla \phi$$

$$\nabla(\mathbf{a} \cdot \mathbf{b}) = (\mathbf{b} \cdot \nabla)\mathbf{a} + (\mathbf{a} \cdot \nabla)\mathbf{b} + \mathbf{b} \times (\nabla \times \mathbf{a}) + \mathbf{a} \times (\nabla \times \mathbf{b})$$

$$\nabla \cdot (\phi \ \mathbf{a}) = \phi \ \nabla \cdot \mathbf{a} + (\nabla \phi) \ \mathbf{a}$$

$$\nabla \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot \nabla \times \mathbf{a} - \mathbf{a} \cdot \nabla \times \mathbf{b}$$

$$\nabla \times (\phi \mathbf{a}) = \phi \nabla \times \mathbf{a} + (\nabla \phi) \times \mathbf{a}$$

$$\nabla \times (\mathbf{a} \times \mathbf{b}) = (\mathbf{b} \cdot \nabla)\mathbf{a} - (\mathbf{a} \cdot \nabla)\mathbf{b} + \mathbf{a} \ (\nabla \cdot \mathbf{b}) - \mathbf{b} \ (\nabla \cdot \mathbf{a})$$

7.13 Gauss's (divergence) theorem

Let V be a region, completely bounded by a closed surface S with outward drawn unit normal **n**. Then, for a well-behaved vector function $\mathbf{F}(x, y, z)$

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{V} \nabla \cdot \mathbf{F} \, dV$$

where $d\mathbf{S} = \hat{\mathbf{n}}dS$ and dS is an element of the surface.

7.14 Stokes's theorem

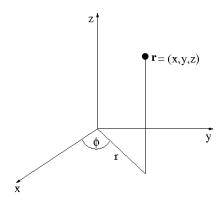
Let S be a surface with unit normal \mathbf{n} , bounded by a closed curve C. Then, for a "well-behaved" vector function $\mathbf{F}(x, y, z)$,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$$

where $d\mathbf{r} = \mathbf{i} dx + \mathbf{j} dy + \mathbf{k} dz$ and $d\mathbf{S} = \hat{\mathbf{n}} dS$.

8 CYLINDRICAL AND SPHERICAL POLAR COORDINATES

8.1 Cylindrical coordinates



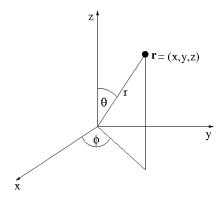
$$x = r \cos \phi, \quad y = r \sin \phi, \quad z = z$$

where $r \ge 0, \quad 0 \le \phi \le 2\pi, \quad -\infty \le z \le \infty$

The inverse relations are $r = \sqrt{(x^2 + y^2)}$, $\phi = \tan^{-1}(y/x)$, z = z

Note: The polar coordinates in two dimensions are the same as those for the cylindrical systems with z = 0.

8.2 Spherical polar coordinates



 $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$. where $r \ge 0$, $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$.

The inverse relations are $r = \sqrt{(x^2 + y^2 + z^2)}$, $\phi = \tan^{-1}(y/x)$, $\theta = \cos^{-1}(z/r)$

8.3 ∇^2 in cylindrical polar coordinates (r, ϕ, z)

$$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

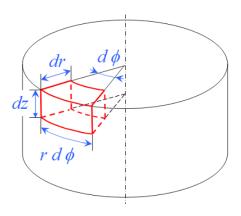
8.4 ∇^2 in spherical polar coordinates (r, θ, ϕ)

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

8.5 Line area and volume elements

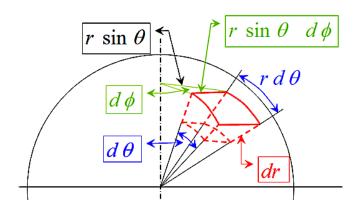
The line element $ds = |d\mathbf{r}|$ and volume element dV in cylindrical and spherical polar coordinates are

8.5.1 Cylindrical



line element: $ds = \sqrt{(dr)^2 + r^2(d\phi)^2 + (dz)^2}$ volume element: $dV = r \ dr \ d\phi \ dz$

8.5.2 Spherical



line element: $ds = \sqrt{(dr)^2 + r^2(d\theta)^2 + r^2\sin^2\theta(d\phi)^2}$ volume element: $dV = r^2\sin\theta \ dr \ d\theta \ d\phi$

9 FOURIER SERIES AND TRANSFORMS

A function f(t) which is periodic in t with period T satisfies f(t+T) = f(t). It can be expanded in an infinite series of exponentials or of sines and cosines.

9.1 Fourier Series

(a) Complex expansion

$$f(t) = \sum_{n = -\infty}^{\infty} F_n e^{-i\omega_n t},$$
where $\omega_n = \frac{2\pi n}{T}$ $(n = 0, \pm 1, \pm 2.....\infty)$
and $F_n = \frac{1}{T} \int_T e^{i\omega_n t} f(t) dt$

Here, the integral is taken over one complete period (e.g. from 0 to T or from -T/2 to T/2). Note the orthogonality relation

$$\frac{1}{T} \int_{T} e^{-i\omega_{n}t} e^{i\omega_{m}t} dt = \delta_{nm}$$

where δ_{nm} is the Kronecker delta.

(b) Real expansion

By separating the above result into real and imaginary parts, for real f(t),

$$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos \omega_n t + b_n \sin \omega_n t$$
where $a_n = \frac{2}{T} \int_T f(t) \cos \omega_n t \ dt$

$$b_n = \frac{2}{T} \int_T f(t) \sin \omega_n t \ dt$$
and $a_0 = \frac{1}{T} \int_T f(t) \ dt$

9.2 Fourier transforms

By letting $T \to \infty$ and replacing sums by integrals, one finds that (suitably restricted) functions f(t) can be expressed as a 'superposition' of exponential functions.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega t} d\omega$$
 where
$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt$$

The functions f(t) and $F(\omega)$ are 'Fourier mates', and the results can be viewed as a consequence of the fact that

$$\int_{-\infty}^{\infty} e^{-i\omega t} e^{i\omega' t} dt = 2\pi \delta(\omega - \omega')$$

9.3 Shift theorems in Fourier transforms

(a) If f(t) is replaced by f(t-a) (ie. a translation in time by a),

$$F(\omega)$$
 is replaced by $F(\omega)e^{i\omega a}$

(b) If f(t) is multiplied by $e^{i\omega't}$

$$F(\omega)$$
 is 'translated' into $F(\omega + \omega')$

9.4 Convolutions

If f(t) and g(t) are two functions, their convolution (with respect to t) h(t), is defined by

$$h(t) = f(t) * g(t) = \int_{-\infty}^{\infty} f(u)g(t - u)du$$
$$= \int_{-\infty}^{\infty} f(t - u)g(u)du$$

The Fourier transform of h(t) is $H(\omega) = F(\omega)G(\omega)$, where $F(\omega)$ and $G(\omega)$ are the Fourier transforms of f(t) and g(t).

Similarly, $H(\omega) = F(\omega) * G(\omega)$ is the Fourier transform of h(t) = f(t)g(t)

9.5 Some common Fourier mates

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega t} d\omega \qquad F(\omega) = \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt$$

$$f(t) = e^{-i\omega_0 t} \qquad F(\omega) = 2\pi \delta(\omega - \omega_0)$$

$$f(t) = \sin \omega_0 t \qquad F(\omega) = \frac{\pi}{i} \left[\delta(\omega + \omega_0) - \delta(\omega - \omega_0) \right]$$

$$f(t) = \cos \omega_0 t \qquad F(\omega) = \pi \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$$

$$f(t) = \delta(t - t_0) \qquad F(\omega) = e^{i\omega t_0}$$

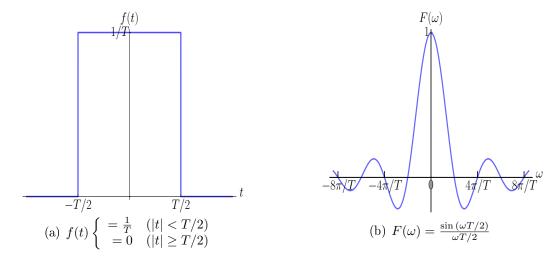


Figure 9.1: The slit function

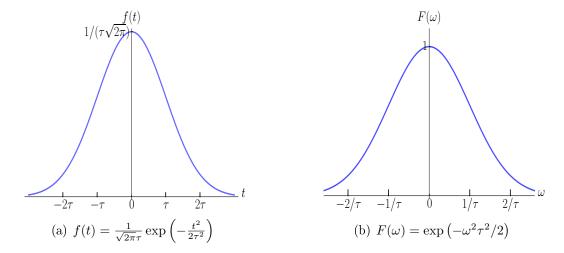


Figure 9.2: The Gaussian function

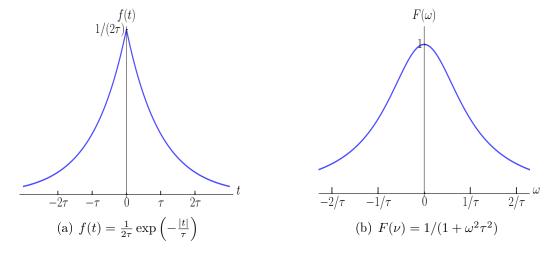
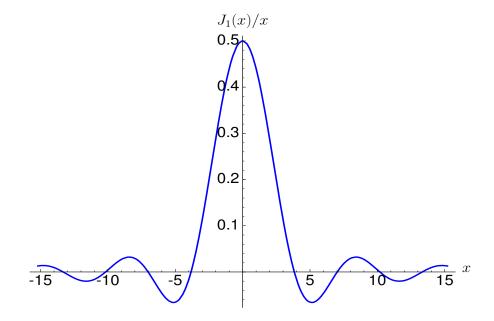


Figure 9.3: The exponential function

9.6 Diffraction at a circular aperture

The integral of $e^{2\pi i Sr\cos\phi}$ over the area of a circle is

$$\int_{\phi=0}^{2\pi} \int_{r=0}^{a} e^{2\pi i Sr\cos\phi} r dr d\phi = \frac{aJ_1(2\pi Sa)}{S}$$



$$\frac{J_1(x)}{x} = \text{ when } |x| = 1.22\pi (= 3.3833), 2.233\pi (= 7.016), 3.238\pi (= 10.174), \dots$$

$$= \text{ max. when } |x| = 0, 2.679\pi (= 8.417), \dots$$

$$= \text{ min. when } |x| = 1.635\pi (= 5.136), 3.699\pi (= 11.620), \dots$$

10 LAPLACE TRANSFORMS

10.1 Definition and table of transforms

The Laplace transform F(s) of f(t) is defined by

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

Function $f(t)$	Laplace transform $F(x)$
$c_1 f_1(t) + c_2 f_2(t)$	$c_1F_1(s) + c_2F_2(s)$
f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
$e^{at}f(t)$	$a \land a$ $F(s-a)$
$f(t) = \begin{cases} (t-a) & t > a \\ 0 & t < a \end{cases}$	$e^{-as}F(s)$
$\frac{df(t)}{dt}$	sF(s) - f(0)
$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0) - \frac{df}{dt}(0)$
$\int_0^t f(u)du$	$\frac{F(s)}{s}$
$\int_0^t \frac{(t-u)^{n-1}}{(n-1)!} f(u) du$	$\frac{F(s)}{s^n}$
$\int_0^t f(u)g(t-u)du$	F(s)G(s)
$t^n f(t)$ $(n = 0, 1, 2, 3, \text{ etc})$	$(-1)^n \frac{d^s F}{ds^n}(s)$
$t^{-1}f(t)$	$\int_{s}^{\infty} F(u)du$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$\sin at$	
$\cos at$	$\frac{a}{s^2 + a^2}$ $\frac{s}{s^2 + a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$\delta(t)$	1
$\delta(t-T)$	e^{-sT}

11 PROBABILITY, STATISTICS AND DATA INTERPRETATION

11.1 Mean and variance

(a) Discretely distributed random variables (variates)

For a variate x which can take on the N values, x_i (i = 1, ..., N) with respective probabilities f_i ,

$$\sum_{i=1}^n f_i = 1$$
 Mean of x is $\overline{x} = \sum_{i=1}^n f_i x_i$ Variance of x is $\sigma^2 = \operatorname{Var}(x) = \overline{(x-\overline{x})^2} = \overline{x^2} - \overline{x}^2 = \sum_{i=1}^n f_i x_i^2 - \overline{x}^2$

where σ is the standard deviation.

(b) Continuously distributed variates

For a continuously distributed variate x, with probability density function f(x), normalised as

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

$$\overline{x} = \int_{-\infty}^{\infty} x f(x)dx$$

$$\operatorname{Var}(x) = \int_{-\infty}^{\infty} (x - \overline{x})^2 f(x)dx = \int_{-\infty}^{\infty} x^2 f(x)dx - \overline{x}^2 = \overline{x^2} - \overline{x}^2$$

(c) Scale factor and change of origin

If y = k(x - a), where k and a are constants, then

$$\overline{y} = k(\overline{x} - a)$$
 and
 $Var(y) = k^2 Var(x)$

11.2 Binomial distribution

In n identical independent trials with probability, p, of success (and q = 1 - p of failure) at each trial, the probability of exactly r successes is

$${}^{n}C_{r}p^{r}q^{n-r} = \frac{n!}{r!(n-r)!}p^{r}q^{n-r}$$

Mean number of successes, $\overline{r} = np$.

Variance of number of successes Var(r) = npq.

Variance of proportion successes = $\operatorname{Var}\left(\frac{r}{n}\right) = \frac{pq}{n}$.

11.3 Poisson distribution

For a non-negative integer variate x (ie. x = 0, 1, 2,r,)

Probability that x = r is

$$P_r = \frac{\mu^r e^{-\mu}}{r!}$$

where μ is a constant.

$$\overline{x} = \mu$$

$$\operatorname{Var}(x) = \mu$$
If $\mu \gg 1$, $P_r \to \frac{1}{\sqrt{2\pi\mu}} \exp\left(\frac{-(r-\mu)^2}{2\mu}\right)$

11.4 Normal (Gaussian) distribution

If the continuous variate x is distributed normally with mean μ and standard deviation σ , then its probability density function f(x) is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

The standard normal variate $X = (x - \mu)/\sigma$ has mean zero, variance unity and a probability density function $\phi(X)$ given by

$$\phi(X) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-X^2}{2}\right)$$
Probability $(-\infty \le X \le u) = \int_{-\infty}^{u} \phi(X) dX$

Error function erf
$$u = \frac{2}{\sqrt{\pi}} \int_0^u \exp(-t^2) dt$$

In particular, $\operatorname{erf}(\infty) = 1$.

11.5 Statistics

Suppose n statistically independent measurements, $x_1, x_2, x_3, \dots, x_i, \dots x_n$ are made of a certain quantity which are 'samplings' of a variate x with a variance σ^2 . The sample variance is

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

(where μ is the mean of the x_i).

Mean of the sample variance
$$S^2 = \left(\frac{n-1}{n}\right)\sigma^2$$

The standard error of the mean $s = \frac{S}{\sqrt{n}}$

11.6 Data interpretation: least squares fitting of a straight line

The best straight line y = ax + b through n points (x_i, y_i) (where i = 1, 2, ... n) has for the best estimate of slope and intercept

$$a = \frac{n \sum xy - \sum x \sum y}{\Delta}, \qquad b = \frac{\sum x^2 \sum y - \sum x \sum xy}{\Delta}$$
 where $\Delta = n \sum x^2 - \left(\sum x\right)^2$

The standard errors are

$$S(a) = \frac{n\sigma(y)}{\sqrt{(n-2)\Delta}}$$
, $S(b) = \sigma(y)\sqrt{\frac{n\sum x^2}{(n-2)\Delta}}$

where
$$n^2 \sigma^2(y) = n \sum y^2 - \left(\sum y\right)^2 - \frac{(n \sum xy - \sum x \sum y)^2}{\Delta}$$
.

In all of the above,

$$\sum A = \sum_{i=1}^{n} A_i$$

.

12 SOME PHYSICS FORMULAE

12.1 Newton's laws and conservation of energy and momentum

The frictional force $f = \mu F_N$ where F_N is the normal force.

The centripetal force is $mv^2/r = m\omega^2 r$.

The work done by a force: $\int F dx$ or force \times dist for a constant force.

The mechanical energy = K + U is conserved.

Conservation of momentum: $(\sum_i m_i v_i)_{init} = (\sum_i m_i v_i)_{final}$.

For rocket motion: $v_f - v_i = v_{rel} \ln (m_i/m_f)$.

12.2 Rotational motion and angular momentum

Angular speed $\omega = v/r$.

The rotational inertia is $I = \sum m_i r_i^2$.

For mass M rotating about an axis distance R away, $I = MR^2$.

Newton's second (angular) law is net torque, $\tau_{net} = I\alpha$ and $\tau = \mathbf{r} \times \mathbf{F}$.

For a rolling ball, $K = K_{rot} + K_{trans} = 0.5I\omega^2 + 0.5mv_{com}^2$.

For a wheel (radius R) rolling smoothly: $v_{com} = \omega R$.

Angular momentum $\mathbf{L} = m\mathbf{r} \times \mathbf{v}$.

Angular momentum $L = I\omega$ is conserved.

12.3 Gravitation and Planetary motion

Gravitational force: $\mathbf{F} = GmM\mathbf{r}/r^3$

Gravitational law in differential form: $\nabla \cdot \mathbf{g} = -4\pi G \rho$

Gravitational potential energy is U = -GMm/r.

Escape speed : $v = \sqrt{2GM/R}$.

Kepler's second law: $\dot{A} = L/2M = \text{constant}$.

Kepler's third law: $T^2 = (4\pi^2/GM)r^3$.

12.4 Oscillations - Simple harmonic motion, Springs

Spring restoring force: F = -kx.

Displacement : $x = x_m \cos(\omega t + \phi)$, where $\omega^2 = k/m$.

Period $T = 2\pi \sqrt{m/k} = 2\pi/\omega$

Energy: $K = m\dot{x}^2/2$, $U = kx^2/2$.

12.5 Thermodynamics, gases and fluids

Change in heat energy is $\Delta Q = mc\Delta T$.

Heat of transformation $\Delta Q = Lm$.

Ideal gas equation of state: pV = nRT.

1st law of thermodynamics : $dE_{\text{int}} = dQ - dW$.

Also $\Delta E_{\text{int}} = \Delta E_{\text{int,f}} - \Delta E_{\text{int,i}} = Q - W$.

For cyclical processes: $\Delta E_{\text{int}} = 0$, Q = W.

Work done: $W = \int dW = \int pdV$

For an isothermal process $W = nRT \ln V_f/V_i$.

root mean square velocity is $v_{rms} = \sqrt{(3RT/M)}$ where M is the molecular mass.

Maxwell-Boltzmann distribution

$$f(v) = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 \exp{-\left(\frac{mv^2}{2k_B T}\right)}$$

where v is the velocity and m the mass of the each particle.

Bernoulli's equation for the flow of an ideal fluid

$$\frac{p}{\rho} + \frac{1}{2}v^2 + gz = \text{constant}$$

12.6 Waves

Wave equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$$

The speed of the wave $v = f\lambda$ where λ is the wavelength and f is the frequency. The angular frequency $\omega = 2\pi f$.

Energy of one photon: $E = hf = hc/\lambda$

Photoelectric effect equation: $eV_0 = hf - \phi$.

 ϕ is the work function of the surface and V_0 is the applied voltage.

Speed of electromagnetic waves: $c = 1/\sqrt{\epsilon_0 \mu_0}$

Index of refraction: n = c/v

Snell's law of refraction between media a and b: $n_a \sin \theta_a = n_b \sin \theta_b$

Constructive interference: $d \sin \theta = m\lambda$

Destructive interference: $d \sin \theta = (m + 1/2)\lambda$

Transverse wave in a string of tension T and mass/length μ : $v = \sqrt{T/\mu}$

Longitudinal wave in a fluid of density ρ and bulk modulus B: $v = \sqrt{B/\rho}$

12.7 Electricity and Magnetism

Coulomb's Law

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

Electric field

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

Potential difference

$$V_a - V_b = \int_a^b \mathbf{E} \cdot d\mathbf{r}$$

12.8 Maxwell's equations

12.9 Special Relativity

Lorentz contraction : $L = L_0/\gamma$ where $\gamma = 1/\sqrt{(1-v^2/c^2)}$.

time dilation : $\Delta t = \gamma \Delta t_0$.

Lorentz transformation eqns:

$$x' = \gamma(x - vt), t' = \gamma(t - vx/c^2), y' = y \text{ and } z' = z.$$

Relativistic momentum $p = \gamma mv$.

Relativistic energy $E = mc^2 + K = \gamma mc^2$.

Relativistic energy equation: $E^2 = (pc)^2 + (mc^2)^2$.

12.10 Photons, atoms and quantum mechanics

Photons: E = hf, $p = h/\lambda$.

Photoelectric equation: $hf = K_{max} + \Phi$, where Φ is the work function.

Compton scattering: $\Delta \lambda = h(1 - \cos \phi)/mc$.

Heisenberg uncertainty principle: $\Delta p_x \Delta x \geq \hbar/2$

A particle with momentum p has de Broglie wavelength: $\lambda = h/p$

The Schrödinger equation

One-dimension:
$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$
 Three dimension:
$$-\frac{\hbar^2}{2m}\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right]\psi(\mathbf{r}) + V(\mathbf{r})\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
 Hyrogen atom:
$$-\frac{\hbar^2}{2m}\nabla^2 u(\mathbf{r}) - \frac{e^2}{4\pi\epsilon_0 r}u(\mathbf{r}) = Eu(\mathbf{r})$$

The energy levels of a particle (mass m) in an infinite square well of width L are given by

$$E_n = \frac{h^2}{8mL^2}n^2.$$

The electron energy levels in the hydrogen atom are:

$$E_n = -\frac{13.6}{n^2} eV.$$

The probability of finding a particle, described by a wavefunction $\psi(x)$, between positions x = a and x = b is $P = \int_a^b |\psi(x)|^2 dx$.

The wavelength of radiation absorbed/emitted by an electron going from energy level E_i to E_f is

$$\frac{1}{\lambda} = R_{\infty} \left[\frac{1}{n_i^2} - \frac{1}{n_f^2} \right]$$

where R_{∞} is the Rydberg constant.

The transmission coefficient for a particle of mass m tunnelling across a barrier of height V and width L is

$$T = e^{-2bL}$$
 where $b = \sqrt{\frac{8\pi^2 m(V - E)}{\hbar^2}}$

Fermi-Dirac distribution: $f(E) = \left[\exp\left\{(E - \mu)/k_B T\right\} + 1\right]^{-1}$

Bose-Einstein distribution: $f(E) = \left[\exp\left\{(E - \mu)/k_B T\right\} - 1\right]^{-1}$

12.11 Nuclear Physics

Rutherford scattering: For α -particle of kinetic energy K, the distance of closest approach to a gold nucleus is

$$d = \frac{q_{\alpha}q_{Au}}{4\pi\epsilon_0 K}$$

Mass excess: $\Delta = M - A$.

Binding energy: $\Delta E_{be} = \sum mc^2 - Mc^2$. BE per nucleon: $\Delta E_{ben} = \Delta E_{be}/A$.

Radioactive decay:

$$R = -\frac{dN}{dt} = \lambda N$$
 $\rightarrow N(t) = N_0 \exp(-\lambda t)$

Half-life: $T_{1/2} = \ln 2/\lambda$.

 α -decay:

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}X' + {}_{2}^{4}He$$

 β -decay: $p \to n + e^+ + \nu$ and $n \to p + e^- + \bar{\nu}$.

13 PHYSICAL CONSTANTS AND CONVERSIONS

13.1 Physical constants

speed of light in vacuum $c = 3.00 \times 10^8 \text{m s}^{-1} = 3.00 \times 10^{10} \text{cm s}^{-1}$

elementary charge $e = 1.6 \times 10^{-19} \text{C}$

(elementary charge)² $e^2 = 2.31 \times 10^{-28} \text{J m} = 2.31 \times 10^{-19} \text{erg cm}$

(e in esu not Coulombs)

Planck constant $h = 6.63 \times 10^{-34} \text{J s} = 6.63 \times 10^{-27} \text{erg cm}$ $h/2\pi = 1.055 \times 10^{-34} \text{J s} = 1.055 \times 10^{-27} \text{erg cm}$

unified atomic mass constant $m_u = 1.66 \times 10^{-27} \text{kg} = 931 \text{ MeV/c}^2$

mass of proton $m_p = 1.67 \times 10^{-27} \text{kg} = 1.67 \times 10^{-24} \text{g}$

mass of electron $m_e = 9.11 \times 10^{-31} \text{kg} = 9.11 \times 10^{-28} \text{g}$

ratio of proton to electron mass $m_p/m_e = 1836$

Bohr radius $a_0 = 5.29 \times 10^{-11} \mathrm{m}$

Rydberg constant $R_{\infty} = 1.097 \times 10^7 \text{m}^{-1}$

Rydberg energy of hydrogen $R_H = 13.6 \text{ eV}$

Bohr magneton $\mu_B = 9.27 \times 10^{-24} \text{J T}^{-1}$

Fine structure constant $\alpha = 1/137.0$

permeability of a vacuum $\mu_0 = 4\pi \times 10^{-7} \mathrm{H~m^{-1}}$

permittivity of a vacuum $\epsilon_0 = 8.85 \times 10^{-12} \mathrm{F} \ \mathrm{m}^{-1}$

Avogadro constant $N_A = 6.02 \times 10^{23} \text{mol}^{-1}$

Faraday constant $F = 9.65 \times 10^4 \text{C mol}^{-1}$

Boltzmann constant $k_B = 1.38 \times 10^{-23} \text{J K}^{-1} = 1.38 \times 10^{-16} \text{erg K}^{-1}$

$$R = 8.31 \text{ J K}^{-1} \text{mol}^{-1}$$

$$\sigma_{SB} = 5.67 \times 10^{-8} \text{J s}^{-1} \text{m}^{-2} \text{K}^{-4} = 5.67 \times 10^{-5} \text{erg s}^{-1} \text{cm}^{-2} \text{K}^{-4}$$

$$7 \times 10^{-5} \mathrm{erg \ s^{-1} cm^{-2} K^{-4}}$$

$$G = 6.67 \times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$$
 = $6.67 \times 10^{-8} \text{cm}^3 \text{g}^{-1} \text{s}^{-2}$

$$=6.67 \times 10^{-8} \text{cm}^3 \text{g}^{-1} \text{s}^{-2}$$

$$q = 9.81 \text{m s}^{-2}$$

$$a = 7.56 \times 10^{-16} \text{J m}^{-3} \text{K}^{-4}$$

radiant energy density const
$$a = 7.56 \times 10^{-16} \text{J m}^{-3} \text{K}^{-4} = 7.56 \times 10^{-15} \text{erg cm}^{-3} \text{K}^{-4}$$

13.2 **Astronomical constants**

Mass associated with one hydrogen
$$m = 2.38 \times 10^{-24} \text{g} = 2.38 \times 10^{-27} \text{kg}$$

nucleus for cosmic composition

Solar mass
$$M_{\odot} = 1$$

$$M_{\odot} = 1.99 \times 10^{33} \text{g} = 1.99 \times 10^{30} \text{kg}$$

$$R_{\odot} = 6.96 \times 10^{10} \text{cm} = 6.96 \times 10^8 \text{m}$$

$$M_{\oplus} = 6.0 \times 10^{27} \text{g}$$
 = $6.0 \times 10^{24} \text{kg}$

$$R_{\oplus} = 6.4 \times 10^8 \text{cm} = 6.4 \times 10^6 \text{m}$$

Solar luminosity

$$L_{\odot} = 3.83 \times 10^{33} \text{erg s}^{-1} = 3.83 \times 10^{26} \text{J s}^{-1}$$

Astronomical unit

$$AU = 1.50 \times 10^{13} \text{cm} = 1.50 \times 10^{11} \text{m}$$

Parsec

$$pc = 3.09 \times 10^{18} \text{cm} = 3.09 \times 10^{16} \text{m}$$

13.3 Conversions

$$1 \mathrm{\ km}$$

$$= 10^3 \text{ m}$$

$$= 10^5 \text{ cm}$$

$$= 10^{-10} \text{ m}$$

$$= 10^{-8} \text{ cm}$$

$$= 3.16 \times 10^7 \text{ s}$$

$$= 1.6 \times 10^{-19} \text{ J}$$

Celsius temperature = thermodynamic temperature - 273.15