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I. INTRODUCTION 

Modern methods of calculation and design of chemical 

and petrochemical equipment require the use of 

mathematical models of corrosive destruction, allow to 

work off various options for the impact on the design of 

an aggressive environment, temperature, different load 

combinations, changing the properties of the material, 

etc. Analitical methods, used in computational practice 

for finding the extremum of optimized functions , for 

example, the method of least squares, are determine the 

extreme values of the control variables, regardless of the 

size of the area of permissible parameters. In the same 

case, if the area of permissible parameters has restrictions 

is limited, search of extreme control parameters is 

considerably complicated. 

Existing mathematical models of corrosion destruction 

of structures interacting with aggressive media, as a rule, 

include a set of empirical coefficients whose values are 

determined by identifying the model to experimental 

data. On the region of existence of these factors usually 

are imposed restrictions: physical, geometrical, etc. It is 

possible that the extreme values of the coefficients 

belong to the boundary of permissible solutions. Let us 

investigate this issue in detail on the example of optimal 

designing of design.  

II. THEOREM ON THE BELONGING OF OPTIMAL 

SOLUTIONS ONE OR MORE SURFACES OF THE AREA 

PERMISSIBLE DECISIONS 

Consider the following theorem: At the optimal 

designing of structures the extreme value of the objective 

function belongs of one or of more surfaces of 

restrictions of the region of permissible parameters. 

 

 

 

 

In the proof of the theorem, we'll refer to the 

manuscript work N.A. Alfutov and P.A. Zinovev "Some 

features of non-linear programming problems at the 

designing of structures of minimum weight", where the 

authors generalize the particular solutions given in [1], 

[7]. 

Let's formulate the problem of mathematical 

programming [3]: 

minimize the function: 

   nxxxFF ,.....,, 21X             (1) 

at the performance of restrictions  

  jnj bxxxg  ,,,....,, 21 ,         (2) 

where:  nxxx ,...,, 21X  −

parameters. The problem (1) − (2) is a problem of 

nonlinear programming, if at least one of the functions 

   XX gF ,  is non-linear. 

Let's imagine the optimized structure as a set of 

discrete elements and denote the linear dimensions of 

discrete elements, taken as independent variables in the 

problem of nonlinear programming through xik , where 

the subscript i denotes the number of the element, and k  

– the index of the linear dimension in the list of sizes, 

characterizing element i. 

The objective function which expresses the weight or 

volume of the material of construction, consisting of 

discrete elements, in this case takes the following form: 

 

    
i k

iki kmixcF 3,2,1;,...,2,1,X .       (3) 

Here: ci – the constant coefficients. 

0ikx .           (4) 

Restrictions (4) have a geometric meaning and reduce 

the problem of mathematical programming towards the 

search of extremum function (1) which satisfy the 

restrictions (2), in a non-negative octant space 
nE  

( kin  ).. 
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Consider the problem of nonlinear mathematical 

programming with inequality constraints: 

   mjbg jj ,...,2,1, X           (5) 

  And let's investigate the function (2.3) in the extreme 

state. For this purpose, we use a generalization of the 

classical method of Lagrange multipliers in the case 

where the restrictions are given by inequalities. 

Transform the restrictions (5) in equalities. To do this, we 

introduce in the expression (5) auxiliary variables zj. We 

get: 

   mjzbg jjj ,...,2,1;02 X .         (6) 

As a result the conditions (5) are tantamount to 

inequalities: 

 mjz j ,...,2,1;02  .             (7) 

The problem is reduced to the determination of the 

global minimum of the function  XF  in a non-negative 

octant 
mnE 

. We form the Lagrangian: 

 

     



m

j
jjjj zbgFz

1

2,,  XX        (8) 

 

where j – undetermined Lagrange multipliers. 

Equating partial derivatives on  ,, zx  of upon all 

the variables, we obtain the following equation: 

   



 







 m

j ik

j

jkikii

ik x

g
xxc

x

z

1
1,1, 0

,, XX



 ,                                                                                                  

                                                                                  (9) 

−1 = 1,2  at  k = 2,3; k− at  

k = 1; k + 1 = 2.3 when k = 1,2; k + 1 = 1 when k = 3: 

 
02

,,





jj

j

z
z

z


X
;       (10) 

 
  0

,, 2 



jjj

j

zbg
z

X
X




.      (11) 

Conditions (9) - (11) are performed in two cases. In 

the first of them all 0,0  jjz  , which means that 

all the restrictions (6) are fulfilled as equations.  

 

 

This case corresponds to the search for the minimum 

function F(X) in a non-negative octant space 
mE , at this 

the equality restrictions are not considered, since the 

system of equations (8) for 0j  has infinitely many 

solutions, belonging to a non-negative sites of coordinate 

axes of space 
nE , which as a rule does not satisfy the 

restrictions (5) and (11). In the second case the system of 

equations (9) − (11) has a solution if at least part jz  is 

zero. In this case the relevant restrictions (5) are satisfied 

with the equality sign. 

In the geometric sense this assertion means that the 

global minimum point of the function  XF  in the 

presence of restrictions determined by the inequalities, 

belongs at least to one of the surfaces of restrictions. 

This conclusion allows be recommended for finding of 

the extremum of nonlinear problems of mathematical 

programming the application of the zero-order methods 

that do not require the analysis of derivatives, for 

example, probabilistic methods. 

Consider the example of the identification of one of 

the mathematical models of corrosion destruction. We 

formulate the task of identifying the mathematical model 

as a mathematical programming problem. As the object 

of the identification we take the logistic model of 

Verhulst (MMLV) [4]. 

)exp(1 0

0

t





 ,         (12) 

where  ,,0  –coefficients taking into account the 

effe   the current value 

of the depth of corrosion damage; 0  – upper limit of the 

depth of corrosion damage; t – time of corrosion. 

Identification of the model is to determine the 

coefficients of the model  ,,0 , which would 

provide the best approximation of calculated curve 

described by equation (12), to the experimental curve. 

We write the expression for the objective function as 

functional: 

2

1 0

0

)exp(1

 















n

j j

ej
t

J



 .        (13) 

As the restrictions on the area of the changing of 

control variables, we take the condition of non-negativity 

of the coefficients of the model  ,,0 : 
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   ;;000 ,                                             

                                                                              (14) 

where 
  ,;,;, 00  the lower and 

upper limits of the values of the coefficients  ,0  and 

 . 

Introducing a vector of control variables 

 nxxx ,....,, 21X  and denoting them 

  3201 ,, xxx , we obtain the following 

mathematical programming problem: 

Find the minimum of the functional 

 
2

1 132

1

)exp(1
min)( 

 














n

j j

эj
txxx

x
F X       (15) 

  

at the performance of restrictions: 

0)(;0)(

;0)(;0)(

;0)(;0)(

336335

224223

112111













xxgxxg

xxgxxg

xxgxxg

XX

XX

XX

        (16) 

The formulated mathematical programming problem 

(15) − SGEF [5]. 

Restrictions on the area permitted by decisions taken by 

the following: 501,0 0    mm; 

0,10000,1  ; 0,1001,0  . The results of 

solution are shown in Table 1. 

Таble 1 

The results of the identification of the model MMLV of corrosive destruction by random search method 

 jt    (years) 
еj (mm) 

0 (mm)     

(1/mmyear) 

 jt , mm  , % 

 

0,1643 0,10 

2,141 514,0 4,054 

0,0179 +82,10 

0,5753 0,49 0,4770 +2,65 

1,0219 1,95 1,9966 -2,39 

1,4410 2,10 2,1369 -1,60 

2,0191 2,08 2,1410 -0,02 

3,2000 2,25 2,1410 +4,84 

Following are comparative assessments model 

identification MMLV and of some other models of 

corrosive destruction by random search method and by 

one of the analytical methods − by the least squares 

method. 

III. COMPARATIVE ASSESSMENTS OF IDENTIFICATION 

OF MATHEMATICAL MODELS OF CORROSION 

DESTRUCTION BY THE ANALYTICAL METHOD AND 

THE METHOD OF RANDOM SEARCH 

To mathematical modeling of corrosion destruction of 

designs in recent years devoted a large number of 

publications [4, 6, 7, 8-10, 11].  

 

 

 

 

As rightly pointed out in one of them [9], the 

construction of a mathematical model is to create a "...the 

aggregate of equations describing the deformation and 

the fracture of structures taking into account the mass 

transfer equations, of chemical interaction, of corrosive 

destruction and so on,. of the identification of these 

equations, i. e. the assessment of values of coefficients on 

the results of experiments, decision  of the aggregate of 

equations  and researching the behavior of structures. " 

Consider the definition of the coefficients of the 

mathematical model of corrosive destruction at the 

external parameter of damage. 

For researching we take the next mathematical 

models: 
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1) the fractional-linear model 

 Ttt  /0 ;        (17) 

2) the exponential model 

 Tte /
0 1   ;              (18) 

3) mathematical model in the form of corrosive wear 

in view of logistical curve of Verhulst (MMLV): 

 t
e 01

0









               (19) 

Here: 0   the maximum depth of corrosion damage; 

T    parameter of time;  ,   

(3); t  time. In these models (17) −  о, 

T,  ,    represent a sought coefficients. 

To evaluate their in [4] is suggested by the method of 

least squares (LS) with the help of expression 

  



n

j
jej tJ

1

2
 ,        (20) 

Where ej ,  jt   respectively experimental and 

calculated parameter of damage in time t. 

Table 2 

The results of the calculation of rates of corrosion deterioration models by least squares (LS)[4] and by the random search method (RS) 

Model minJ  0  (mm) t (years)    (1/mm year) 

LS RS LS RS LS RS LS RS LS RS 

Fractional-

linear 2,362 0,713 2,371 3,553 0,218 1,409 - - - - 

Exponential 
1,287 0,617 2,239 2,519 0,520 1,080 - - - - 

Logistical 
0,501 0,026 2,250 2,141 - - 34,00 514,1 1,649 4,054 

The coefficients of the model chosen, minimizing the 

expression (20), we determine, equating the partial 

derivatives from the functional J  over the values of 0, 

T  for models (17) and (18) and over the values of 0 ,  , 

  for the model (19). The result is a system of equations 

for determining the unknown coefficients. 

However, the apparent simplicity of such approach is 

deceptive . Firstly, this system of equations is time-

consuming and is complicated in the decision, for 

example, for an exponential model (18), and especially 

for the logistical model MMLV (19). Secondly, the 

coefficients, which were have been found by 

minimization of functional (20) by the method of least 

squares, not always correspond to the physical conditions 

of the problem. So, for example, in calculating the 

coefficients of a fractional-linear model (17) (Table 2)  

this model preliminary leads to linear form [4] 

00 //  Tty  .            (21) 

 

Here: 


t
y   . 

The functional (20) takes the form: 

 



n

j
jej TxyJ

1

2
00 //  ,          (22) 

where: jj /; ejejj tytx  . 

By minimizing the functional (22) over a1
0  and 

T/0 = b, we obtain the system of equations: 

 

  

 

  





n

j

n

j
jj

n

j

n

j

n

j
jjjj

ybnx

yxxbx

1 1

1 1 1

2

,a

a

         (23) 

After decision of this system we find: 
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j
jj xynT

1 1
0

1         (24) 

Calculation by the experimental data (Table 2) at 

number of observations 6n  gives such values of 

parameters: 653,3570  mm, 528,383T  

years, that not corresponds to the physical conditions of 

task. At the same time are known [4] the quite real 

results: 3713,20  mm, 218,0T years (Table 

2.1.). Obviously, these results have been received not 

across the entire spectrum of experimental data, but only 

by part of it. If for determination of the coefficients we 

take observations № 3, 4, 5 and 6 (Table 2), i.e. on the 

upper portion of the experimental curve (Fig.1), the 

model parameters 406,20  mm, 2471,0T years 

are quite close to values adduced in [4]. 

A similar pattern occurs in the calculation of the 

coefficients for the exponential model (18). Parameters 

0  and T  are determined on the points only № 3-

but were extended to the whole range of observations. As 

a result, we get a big error on the initial stage of corrosive 

destruction, which reaches 506% for the exponential 

model (Table 4) and 920% for fractional-linear model 

(Table 3). 

Table 3 

The coefficients of  fractional-linear model (RS method) 

№ 

Obser-

vations jt , years ej , mm 0  , mm Т,  years  jt , mm 

Error ,  %  

RS 

Error,  %  

LS 

1 0,1643 0,10 

3,553 1,409 

0,371 -210,00 -920,00 

2 0,5753 0,49 1,030 -110,20 -251,00 

3 1,0219 1,95 1,494 +24,41 0,00 

4 1,4410 2,10 1,796 +14,46 +1,90 

5 2,0191 2,08 2,03 -0,61 -2,88 

6 3,2000 2,25 2,467 -9,64 +1,33 

Table 4 

The coefficients of exponential model (RS method) 

№ 

Obser-

vations 
jt  , years  ej , mm 0  , mm Т, years   t ,   mm 

Error ,  %  

RS 

Error,  %  

LS 

1 0,1643 0,10 

2,519 1,08 

0,355 -255,00 -506,00 

2 0,5753 0,49 1,040 -112,30 -206,00 

3 1,0219 1,95 1,541 +29,97 0,00 

4 1,4410 2,10 1,856 +11,64 -0,20 

5 2,0191 2,08 2,131 -2,43 -4,30 

6 3,200 2,25 2,388 -6,17 +1,20 
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Analysis of the results of calculation of coefficients of 

fractional-linear  model throughout the spectrum of 

observations allows us to conclude the feasibility of 

imposing restrictions on the area of permissible 

parameters in order to avoid getting physically incorrect 

data. Introduction of restrictions casts doubt on the 

applicability of the method  of least squares to determine 

the coefficients selected mathematical model. The 

solution is offered to perform by one of the numerical 

methods of nonlinear programming − by random search 

method (RS). 

In this case, the problem of mathematical 

programming is formulated as follows: find a minimum 

of the functional 

    



n

j
jej njtJ

1

2
,1,       (25) 

at the performance of restrictions: 

   sqxxxxg iiiiq ,1,0;  
.      (26) 

Here:  jt   a function that takes the form (17) − 

(19); ix   coefficients of mathematical models (17) − 

(19) 0 , T ,  ,  ; 
x , 

x   accordingly the lower 

and upper limits of the sought coefficients. 

The solution of the task is performed by the method of 

random search SGEF described in [5]. 

Table 5 

The coefficients of logistical model (RS method) 

№ 

 jt  , years  ej , mm 0  , mm   
  

1/mm  year 
 t , 

mm 

Error ,  %  

RS 

Error,  %  

LS 

1 0,1643 0,10 

2,141 514,07 4,054 

0,0179 +82,10 -15,50 

2 0,5753 0,49 0,4770 +2,65 +8,45 

3 1,0219 1,95 1,9966 -2,39 +34,63 

4 1,4410 2,10 2,1369 -1,60 +7,73 

5 2,0191 2,08 2,1410 -2,93 -6,19 

6 3,200 2,25 2,1410 +4,84 0,00 

 

When calculating the coefficients of mathematical 

models (Tables 2−5) random search carried out under the 

following restrictions in the region permissible solutions: 

501,0 0  mm; 0,10000,1  ; 

0,10001,0 
yearmm 

1
. 

Along with the coefficients of fractional-linear, 

exponential and models and MLKF model are defined 

error of calculated results compared with the 

experimental data. The low percentage of error calculated 

curves corresponding to the fractional-linear and 

exponential models [4], is explained because the method 

least squares operated only with the upper portion of 

experimental curve.  

When taking into account all points of the 

experimental curve the method least squares does not 

provide the correct results. Application of the random 

search to the definition of the coefficients in the closed 

domain of permissible solutions leads to models whose 

graphs are shown below in the form of curves (Fig. 

1−  These curves are situated below the curves 

obtained earlier in [4], and more exactly  describe the 

average-quadratic deviation of the calculated values from  

experimental. From the logistic curves constructed by 

least square and by the random search method  the the 

last curve practically concurs with experimental curve. 

The еrror except the lowermost point does not exceed 5% 

(Table 5). 
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Fig.1. The graphs of  fractional-linear model. 

1 – experimental curve; 2 – calculated curve (method RS); 

3 –  calculated curve (method LS). 

 

 
Fig.2. The graphs of  exponential model. 

1 – experimental curve; 2 – calculated curve (method RS); 

3 –  calculated curve (method LS). 

 

 

Fig.3. The graphs of  logistical model (MMLV). 

1 – experimental curve; 2 – calculated curve (method RS); 

3 –  calculated curve (method LS). 
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Thus, the random search method proposed for 

estimation coefficients of mathematical models of 

corrosion damage is invariant to the type of model and 

allows to avoid serious mathematical difficulties 

encountered when using of determinative search 

methods, and provides solutions that enough accurately 

describe the actual processes of corrosive wear. 
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