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1. INTRODUCTION 

As usual, the Fibonacci sequence F = (F„) is defined by F0 = 0, Fx = 1, and by the second-
order linear recurrence sequence Fn+2 =Fn+l+Fn for n>0. This sequence has many important 
properties, and it has been investigated by many authors. In this paper we shall attempt to study 
the distribution problem of Dedekind sums for Fibonacci numbers and obtain some interesting 
results. For convenience, we first introduce the definition of the Dedekind sum S(h, q). For a 
positive integer q and an arbitrary integer h, we define 
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where «*»= 
[x -[*]-•£ if x is not an integer; 
lo ifxis an integer. 

The various arithmetical properties of S(h9 k) can be found in [3], [4], and [6]. About Dedekind 
sums and uniform distribution, Myerson [5] and Zheng [7] have obtained some meaningful 
conclusions. However, it seems that no one has yet studied the mean value distribution of 
$(FmFn+l), at least we have not found expressions such as HS(Fn,Fn+l) in the literature. The 
main purpose of this paper is to study the mean value distribution of S(Fn,Fn+l) and present a 
sharper asymptotic formula. That is, we shall prove the following main theorem. 

Theorem; Let m be a positive integer, then we have 
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where a = ^~-, C(m) is a constant depending only on the parity of m, i.e., 
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if m is an even number; 
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if m is an odd number. 

2* SOME LEMMAS 

To complete the proof of the theorem, we need the following two lemmas. 

Lemma 1: Let m be a positive integer, then we have 
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Proof: It is clear that (Fm, Fm+l) = 1, iw = 1,2,3,..., so, from the reciprocity formula of 
Dedekind sums (see [2] or [3]), we get 

$(Fm,Fm+d+S(Fm+hFm) = F™+F^ + l-± 
l2FmFm+l 

(1) 

By the recursion relationship Fm+l = Fm + Fm_l for /w>0, we have S(Fm+l,Fm) = S(Fm_uFm). 
Thus, 
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It is clear that S(Fl9 F2) = S(l, 1) = 0 and F0 = 0, so we obtain 

(-1) m-2 S(FUF2) + 12F2 

S(Fm,Fm+1) + Fm-i 1 1 

This concludes the proof of Lemma 1. 

Lemma 2: Let m be a positive integer, then we have 

• + • •• + (-!)' m-2 1 
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where a = ^^-. 

Proof: From the second recursion relationship for F„, we can easily deduce that 

1 ''i+V5Y fi-VT^ 

From these identities, we get 

and aFm = Fm+l + ® 
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This completes the proof of Lemma 2. 
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3. PROOF OF THE THEOREM 

In this section we shall complete the proof of-the theorem. First, let m b e a positive integer, 
then from (1) we have 

S(Fm> Fm+l) + S(Fm+h Fm) = 
F 1 

m+l I •* m . *_ 12 I F ' F ' F F 1 4 
or 

and 
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Id[S(Fn,F„+l) + S(F„_l,F„)] = ±Y, 
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Noting that 

so that 

hence, 

S(F0,Fl) = S(0,l) = 0 and F0 = 0 

m 1 m F 1 -m F 1 m 1 fti 
' w=2 * » ' w=i x w+l x ^ w=i -* n* n+l 

2ZS(F„,Fn+l) = S(Fm,Fm+l) + 
«=1 w+1 v «=1 J w+1 

Applying (2), Lemma 1, and Lemma 2, we obtain 
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Ifm is an even number, then from the above we have 
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If HI is an odd number, then 
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This completes the proof of the theorem. 

(2) 
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