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Abstract. Fourier analysis methods and techniques based on Littlewood-Paley de-
composition and paraproduct have known a growing interest in the last two decades
for the study of nonlinear evolutionary equations. After a short presentation, we
use these methods for proving a priori estimates for different types of linear PDEs.
From them, in the case of small initial data, we deduce global well-posedness re-
sults in a critical functional framework for models of incompressible or compressible
models viscous fluids. We end these notes with the study of the low Mach number
asymptotics.
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Introduction

This course aims at presenting elementary Fourier analysis methods that proved to be
particularly efficient and robust for investigating the Cauchy problem for nonlinear evolu-
tionary PDEs. These techniques are relevant in any context where a good notion of Fourier
transform is available. Here, for simplicity, we shall concentrate on the whole space case
Rd (that is the space variable of the PDEs that are considered will be in Rd ). However,
our approach may be easily adapted to periodic boundary conditions x ∈ Td and more
generally to x ∈ Td1 × Rd2 and so on.

We here chose to keep the course at an elementary level so as to give a general and as
less technical as possible overview of how those techniques work. The reader may find more
sophisticated results in e.g. [5], [17], [20] and in the references therein.

The first part of these notes is devoted to the presentation of the so-called Littlewood-
Paley decomposition (see the first section) with many examples of applications to the proof
of estimates for linear equations (second section). We chose to focus on the following types
of linear equations:

• the heat equation,
• linear symmetric systems,
• the transport equation,
• the transport-diffusion equation,
• dispersive equations,

which are frequently encountered when linearizing systems coming from fluid mechanics
(or, more generally, from mathematical physics).

Very often, solving a nonlinear PDE reduces to finding an appropriate functional frame-
work in which one may combine a priori estimates for the linearized equation, product
estimates for the nonlinear terms and a fixed point theorem (either the contracting map-
ping one or, if it is not possible, a Schauder-Tikhonoff type argument). In the second
part of these notes, we give such examples. More precisely, in the third section, we fo-
cus on global well-posedness results for models of incompressible viscous fluids with small
data. We first consider the case of homogeneous fluids – the celebrated incompressible
Navier-Stokes equations – and next slightly nonhomogeneous incompressible fluids (that is
the density may have small variations). In both case, we strive for a “critical functional
framework”.

In the fourth section, we tackle the study of the (barotropic, to simplify the presentation)
compressible Navier-Stokes equations. We first establish a local-in-time result (just by
noticing that the system is a coupling between a transport and a heat equation), and next
a global result for small perturbations of a stable constant state. This latter result requires
a fine analysis of the linearized system.

In the last section, we establish the convergence to the incompressible Navier-Stokes
equations for general ill-prepared data in the low Mach number regime. There, the dis-
persive properties of the linearized system in the whole space play a fundamental role. In
contrast with the results of the previous sections, those properties are specific to the whole
space case.

1. The Fourier analysis toolbox

Here we introduce the Littlewood-Paley decomposition, define Besov spaces, state prod-
uct estimates. More detailed proofs may be found in [5, 17].
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1.1. A primer on Littlewood-Paley theory. The Littlewood-Paley decomposition is
a localization procedure in the frequency space for tempered distributions. One of the
main motivations for introducing such a localization when dealing with PDEs is that the
derivatives act almost as homotheties on distributions with Fourier transform supported in
a ball or an annulus.

In the L2 framework, this noticeable property easily follows from Parseval’s formula.
The Bernstein inequalities below state that it is also true in the Lp framework:

Proposition 1.1 (Bernstein inequalities). Let 0 < r < R.

• Direct Bernstein inequality: a constant C exists so that, for any k ∈ N, any cou-
ple (p, q) in [1,∞]2 with q ≥ p ≥ 1 and any function u of Lp with Supp û ⊂
B(0, λR) for some λ > 0, we have

‖Dku‖Lq ≤ Ck+1λ
k+d( 1

p
− 1
q

)‖u‖Lp ;
• Reverse Bernstein inequality: there exists a constant C so that for any k ∈ N,
p ∈ [1,∞] and any function u of Lp with Supp û ⊂ {ξ ∈ Rd / rλ ≤ |ξ| ≤ Rλ} for
some λ > 0, we have

λk‖u‖Lp ≤ Ck+1‖Dku‖Lp .

Proof. Changing variables reduces the proof to the case λ = 1. For proving the first in-
equality, we fix some smooth φ with compact support, and value 1 over B(0, R). One may
thus write

û = φ û whence Dku = (DkF−1φ) ? u.
Therefore using convolution inequalities, one may write

‖Dku‖Lq ≤ ‖DkF−1φ‖L1‖u‖Lp
with 1 + 1/q = 1/p+ 1/r (here we need q ≥ p), and we are done.

For proving the second inequality, we now assume that φ is compactly supported away
from the origin and has value 1 over the annulus C(0, r, R). We thus have

û =
(
−i ξ
|ξ|2

φ(ξ)
)
· ∇̂u(ξ).

Therefore, denoting by g the inverse Fourier transform of the first term in the r.h.s.,

‖u‖Lp ≤ ‖g‖L1‖∇u‖Lp .
This gives the result for k = 1. The general case follows by induction. �

As solutions to nonlinear PDE’s need not be spectrally localized in annuli (even if we
restrict to initial data with this property), it is suitable to have a device which allows for
splitting any function into a sum of functions with this spectral localization. This is exactly
what Littlewood-Paley’s decomposition does.

To construct it, fix some smooth bump function χ with Suppχ ⊂ B(0, 4
3) and χ ≡ 1

on B(0, 3
4), then set ϕ(ξ) = χ(ξ/2)− χ(ξ) so that

χ(ξ) +
∑
j∈N

ϕ(2−jξ) = 1 and
∑
j∈Z

ϕ(2−jξ) = 1 if ξ 6= 0.

The homogeneous dyadic blocks ∆̇j are defined by

∆̇ju := ϕ(2−jD)u := F−1(ϕ(2−jD)Fu) := 2jdh(2j ·) ? u with h := F−1ϕ.
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We also define the low frequency cut-off operator Ṡj by

Ṡju := χ(2−jD)u := F−1(χ(2−jD)Fu) := 2jdȟ(2j ·) ? u with ȟ := F−1χ.

The nonhomogeneous dyadic blocks ∆j are defined by

∆j := ∆̇j if j ≥ 0, ∆−1 := Ṡ0 = χ(D) and ∆j = 0 if j ≤ −2,

and we set
Sj :=

∑
k≤j−1

∆k.

The homogeneous and nonhomogeneous Littlewood-Paley decomposition for u are

(1) u =
∑
j

∆̇ju and u =
∑
j

∆ju.

The second equality holds true in the set S ′ of tempered distributions.
This is not the case of the first one which holds true modulo polynomials only if no further

assumptions. A way to overcome this is to restrict to the set S ′h of tempered distributions
u such that

lim
j→−∞

‖Ṡju‖L∞ = 0 with Ṡj := χ(2−jD).

Note that loosely speaking, this condition on the low frequencies of u amounts to requiring
u to tend to 0 at infinity (in the sense of distributions). Then the first equality (1) holds
true whenever u is in S ′h.

Owing to Suppϕ ⊂ C(0, 3/4, 8/3) and Suppχ ⊂ B(0, 4/3) we have the following prop-
erties of quasi-orthogonality:

• ∆̇j∆̇k = 0 if |j − k| > 1;
• ∆̇k(Ṡj−1u ∆̇jv) ≡ 0 if |k − j| > 4.

1.2. Functional spaces. Many classical norms may be written in terms of the Littlewood-
Paley decomposition. This is e.g. the case of:

• the homogeneous Sobolev norm: ‖u‖2
Ḣs ≈

∑
j

(2js‖∆̇ju‖L2)2 ;

• the homogeneous Hölder norm: ‖u‖Ċr ≈ sup
j

2jr‖∆̇ju‖L∞ .

In effect, owing to Suppϕ(2−j ·) ∩ Supp(2−k·) = ∅ if |j − k| > 1, we have
1
2
≤
∑
j

ϕ2(2−jξ) ≤ 1 for ξ 6= 0.

Hence, using the definition of Sobolev norm, of ∆̇ju and Parseval equality,

‖u‖2Hs =
∫
|ξ|2|û(ξ)|2 dξ ≈

∑
j

∫
|ξ|2|ϕ(2−j)û(ξ)|2 dξ ≈

∑
j

22js‖∆̇ju‖2L2 .

As for the Hölder norm, we notice that because h has average 0,

∆̇ju(x) = 2jd
∫
h(2j(x− y)) (u(y)− u(x)) dy for all j ∈ Z.

Hence for all x ∈ Rd and j ∈ Z,

|∆̇ju(x)| ≤ 2−jr‖u‖Ċ0,r 2jd
∫
|h(2j(x− y))|(2j |x− y|)r dy ≤ 2−jr‖u‖Ċ0,r‖| · |rh‖L1 .
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Conversely, if Cr(u) := supj 2jr‖∆̇ju‖L∞ <∞ then we may write for any N ∈ Z,

u(y)− u(x) =
∑
j<N

(∆̇ju(y)− ∆̇ju(x)) +
∑
j≥N

(∆̇ju(y)− ∆̇ju(x)).

Hence
|u(y)− u(x)| ≤ |y − x|

∑
j<N

‖∇∆̇ju‖L∞ + 2
∑
j≥N
‖∆̇ju‖L∞ .

Therefore, taking advantage of Bernstein inequality for the terms in the first sum,

|u(y)− u(x)| ≤ Cr(u)
(
|y − x|

∑
j<N

2j(1−r)N + 2
∑
j≥N

2−jr
)
.

Then taking the “best” N yields ‖u‖Ċ0,r ≤ CCr(u).

If looking at those two characterizations, we see that three parameters come into play:
the “regularity” parameter s (or r ), the Lebesgue exponent that is used for ∆̇ju and
the type of summation that this done over Z. This observation motivates the following
definition:

Definition 1.1. For s ∈ R and 1 ≤ p, r ≤ ∞, we set

‖u‖Ḃsp,r :=
(∑

j

2rjs‖∆̇ju‖rLp
) 1
r

if r <∞ and ‖u‖Ḃsp,∞ := sup
j

2js‖∆̇ju‖Lp .

We then define the homogeneous Besov space Ḃs
p,r as the subset of distributions u ∈ S ′h

such that ‖u‖Ḃsp,r <∞.

Similarly we set

‖u‖Bsp,r :=
(∑

j

2rjs‖∆ju‖rLp
) 1
r

if r <∞ and ‖u‖Bsp,∞ := sup
j

2js‖∆ju‖Lp .

and define the nonhomogeneous Besov space Bs
p,r as the subset of distributions u ∈ S ′ such

that ‖u‖Bsp,r <∞.

With this definition, we see that Ḃs
2,2 coincides with the homogeneous Sobolev space Ḣs

and it is true that Ḃr
∞,∞ is the homogeneous Hölder space Ċ0,r if r ∈ (0, 1).

More generally, loosely speaking, having u in Ḃs
p,r means that u has s fractional deriva-

tives in Lp.

Here are some important embedding properties:

• For any p ∈ [1,∞] we have the following chain of continuous embedding: Ḃ0
p,1 ↪→

Lp ↪→ Ḃ0
p,∞ ;

• If s ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞, then Ḃs
p1,r1 ↪→ Ḃ

s−d( 1
p1
− 1
p2

)

p2,r2 ;

• the space Ḃ
d
p

p,1 is continuously embedded in L∞ (and even in the set of continuous
functions decaying to 0 at infinity if p <∞).
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Proof. The left embedding of the first property follows from the triangle inequality for the
Lp norm applied to

u =
∑
j

∆̇ju

whereas the right inequality is a consequence of the convolution property L1 ? Lp → Lp

which implies that

‖∆̇ju‖Lp ≤ ‖2jdh(2j ·)‖L1‖u‖Lp = ‖h‖L1‖u‖Lp .

As for the second property, we just have to use that, owing to Bernstein inequality,

‖∆̇ju‖Lp2 ≤ C2j(
d
p1
− d
p2

)‖∆̇ju‖Lp1 .

Finally, by combining the first two properties, we see that

Ḃ
d
p

p,1 ↪→ B0
∞,1 ↪→ L∞.

Note in particular that this implies that if u ∈ Ḃ
d
p

p,1 then the series
∑

j∈Z ∆̇ju converges
uniformly to u. In the case where p < ∞, each term ∆̇ju is continuous and goes to 0 at
infinity, hence so does u. �

Here is a nonexhaustive list of classical (and important properties) of Besov spaces:

• Ḃs
p,r is a Banach space whenever s < d/p or s ≤ d/p and r = 1, and so does Bs

p,r

without any condition on (s, p, r);
• the following real interpolation property is satisfied for all 1 ≤ p, r1, r2, r ≤ ∞,
s1 6= s2 and θ ∈ (0, 1):

[Ḃs1
p,r1 , Ḃ

s2
p,r2 ](θ,r) = Ḃθs2+(1−θ)s1

p,r and [Bs1
p,r1 , B

s2
p,r2 ](θ,r) = Bθs2+(1−θ)s1

p,r ;

• for any smooth homogeneous of degree m function F on Rd \ {0} the Fourier
multiplier F (D) maps Ḃs

p,r in Ḃs−m
p,r . In particular, the gradient operator maps

Ḃs
p,r in Ḃs−1

p,r .

The following lemma ensures that the definition of Besov spaces is independent of the choice
of (∆j)j∈Z or (∆̇j)j∈Z. It will be also very useful for proving nonlinear estimates (see the
next paragraph).

Lemma 1.1. Let 0 < r < R. Let s ∈ R and 1 ≤ p, r ≤ ∞. Let (uj)j≥−1 be such that
Supp û−1 ⊂ B(0, R) and Supp ûj ⊂ 2jC(0, r, R) for all j ∈ N. Then∥∥∥2js‖uj‖Lp(Rd)

∥∥∥
`r(N∪{−1})

<∞ =⇒ u :=
∑
j≥−1

uj is in Bs
p,r

and we have ‖u‖Bsp,r ≈
∥∥∥2js‖uj‖Lp(Rd)

∥∥∥
`r(N∪{−1})

.

If s > 0 then the result is still true under the weaker assumption that Supp ûj ⊂
B(0, 2jR).

A similar statement holds in the homogeneous setting.
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Proof. In the first case, we notice that one may find some integer N (depending only on r
and R) such that for all k ≥ −1,

∆ku =
∑

|j−k|≤N

∆kuj .

Therefore
‖∆ku‖Lp ≤

∑
|j−k|≤N

‖∆kuj‖Lp ≤ C
∑

|j−k|≤N

‖uj‖Lp

and we get the result.

If we only have Supp ûj ⊂ B(0, 2jR) then we just have for some integer N,

∆ku =
∑

j≥k−N
∆kuj .

Therefore
2ks‖∆ku‖Lp ≤

∑
j≥k−N

2(k−j)s 2js‖uj‖Lp

and the convolution inequality `1 ? `r → `r gives the result if s > 0. �

1.3. Nonlinear estimates. The basic question that we shall address in this subsection is:
let u and v belong to two different Besov spaces:

• Does uv make sense ?
• If so, where does uv lie ?

Formally, any product of two distributions u and v may be decomposed into

(2) uv = Tuv +R(u, v) + Tvu

with
Tuv :=

∑
j

Sj−1u∆jv and R(u, v) :=
∑
j

∑
|j′−j|≤1

∆ju∆j′v.

The above operator T is called “paraproduct” whereas R is called “remainder”. The
decomposition (2) has been first introduced by J.-M. Bony in [6].

Note that as Tuv involves product of functions with different spectral localizations, it is
always defined (in Fourier variables, the sum is locally finite). At the same time, it cannot
be smoother than what is given by high frequencies, namely v. As for the remainder, it
may be not defined (think of the product of two Dirac masses at the same point). However,
if it is defined then it is smoother than the paraproduct term. All this is detailed in the
proposition below.

Proposition 1.2. For any (s, p, r) ∈ R× [1,∞]2 and t < 0 we have1

‖Tuv‖Bsp,r . ‖u‖L∞‖v‖Bsp,r and ‖Tuv‖Bs+tp,r
. ‖u‖Bt∞,∞‖v‖Ḃsp,r .

For any (s1, p1, r1) and (s2, p2, r2) in R× [1,∞]2 we have
• if s1 + s2 > 0, 1/p := 1/p1 + 1/p2 ≤ 1 and 1/r := 1/r1 + 1/r2 ≤ 1 then

‖R(u, v)‖
B
s1+s2
p,r

. ‖u‖Bs1p1,r1‖v‖B
s2
p2,r2

;

• if s1 + s2 = 0, 1/p := 1/p1 + 1/p2 ≤ 1 and 1/r1 + 1/r2 ≥ 1 then

‖R(u, v)‖B0
p,∞
. ‖u‖Bs1p1,r1‖v‖B

s2
p2,r2

.

1The sign . means that the l.h.s. is bounded by the r.h.s. up to a harmless multiplicative constant.
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Similar results in homogeneous Besov spaces.

Proof. We just prove the first result of continuity for T and R. Both are consequences of
Lemma 1.1. We first notice that the general term of Tuv is supported in dyadic annuli
whereas that of R(u, v) is only supported in dyadic balls. Now, we see that

‖Sj−1u∆ju‖Lp ≤ ‖Sj−1u‖L∞‖∆ju‖Lp ≤ C‖u‖L∞‖∆jv‖Lp ,
and thus

‖(2js‖Sj−1u∆jv‖Lp)‖`r ≤ C‖u‖L∞‖(2js‖∆jv‖Lp)‖`r
hence Lemma 1.1 gives the result.

For proving the first continuity result for R, we may write that

2j(s1+s2)‖∆ju∆̃jv‖Lp ≤ (2js1‖∆ju‖Lp1 ) (2js2‖∆̃jv‖Lp2 )

and use the last part of Lemma 1.1. �

Putting together decomposition (2) and the above results of continuity, one may deduce
a number of continuity results for the product of two functions. For instance, one may get
the following tame estimate which depends linearly on the highest norm of u and v :

Corollary 1.1. Let u and v be in L∞ ∩ Bs
p,r for some s > 0 and (p, r) ∈ [1,∞]2. Then

there exists a constant C depending only on d, p and s and such that

‖uv‖Bsp,r ≤ C
(
‖u‖L∞‖v‖Bsp,r + ‖v‖L∞‖u‖Bsp,r

)
.

Proof. We proceed as follows:
1. Write Bony’s decomposition uv = Tuv + Tvu+R(u, v);
2. Use T : L∞ ×Bs

p,r → Bs
p,r ;

3. Use R : B0
∞,∞ ×Bs

p,r → Bs
p,r if s > 0;

4. Notice that L∞ ↪→ B0
∞,∞.

�

Remark 1.1. As a consequence of tame estimates and of the fact that Bn/p
p,1 and Ḃ

n/p
p,1

are embedded in L∞, we deduce that both spaces B
d/p
p,1 and Ḃ

d/p
p,1 are Banach algebra if

p <∞.

Finally, the following composition result will be needed for handling e.g. the pressure
term when studying the compressible Navier-Stokes equations.

Proposition 1.3. Let F : R → R be a smooth function with F (0) = 0. Then for all
(p, r) ∈ [1,∞]2 and all s > 0, there exists a constant C such that for all u ∈ Bs

p,r ∩ L∞
we have F (u) ∈ Bs

p,r and
‖F (u)‖Bsp,r ≤ C‖u‖Bsp,r

with C depending only on ‖u‖L∞ , F, s, p and d.

Proof. We use Meyers’s first linearization method:

F (u) =
∑
j

F (Sj+1u)− F (Sju) =
∑
j

∆ju

∫ 1

0
F ′(Sju+ τ∆ju) dτ︸ ︷︷ ︸

uj

.

We notice that
‖uj‖Lp ≤ C‖∆ju‖Lp .
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Unfortunately, Fuj is not localized in a ball of size 2j . However, after cumbersome com-
putations, we find out that

‖Dkuj‖Lp ≤ C2jk‖∆ju‖Lp .
Hence everything happens as if the Fuj were well localized. This suffices to complete the
proof. �

2. Linear estimates

2.1. A maximal regularity estimate for the heat equation. Consider the heat equa-
tion

(3) ∂tu−∆u = f, u|t=0 = u0

or, more generally2

(4) ∂tv + |D|σv = g, v|t=0 = v0.

We want to establish estimates of the form

‖∂tu,D2u‖L1(X) ≤ C
(
‖u0‖X + ‖f‖L1(X)

)
(5)

‖∂tv, |D|σv‖L1(X) ≤ C
(
‖v0‖X + ‖g‖L1(X)

)
.(6)

In the case of the heat equation, this gain of two derivatives compared to the source term
when performing a L1 -in-time integration is the key to a number of well-posedness results
in a critical functional framework for models arising in fluid mechanics.

Now, it is well known that if r ∈ (1,∞) and X = Lq or Ẇ s,q for some s ∈ R and
q ∈ (1,∞) then, for the heat equation,

‖∂tu,D2u‖Lr(X) ≤ C‖f‖Lr(X).

This type of inequalities fails for the endpoint case r = 1 for those spaces (and more
generally in any reflexive Banach space X ). However, it has been noticed by J.-Y. Chemin
in [9] that Inequality (5) is true for Besov spaces with third index 1. This is stated in the
following theorem.

Theorem 2.1. Estimates (5) hold true for any p ∈ [1,∞], σ ∈ R and s ∈ R if X = Ḃs
p,1.

Proving the theorem relies on the following:

Lemma 2.1. There exist two positive constants c and C such that for any j ∈ Z, p ∈
[1,∞] and λ ∈ R+, we have

‖e−λ|D|σ∆̇j‖L(Lp;Lp) ≤ Ce−cλ2σj .

Proof. If p = 2 this is a mere consequence of Parseval’s formula.
In the general case, one may first reduce the proof to the case j = 0 (just perform a

suitable change of variable) then consider a function φ in D(Rd \ {0}) with value 1 on a
neighborhood of the support of ϕ so as to write

eλ∆∆̇0u = F−1
(
φ(ξ)e−λ|ξ|

σ ̂̇∆0u(ξ)
)
,

= gλ ? u with gλ(x) := (2π)−d
∫
ei(x|ξ)φ(ξ)e−λ|ξ|

2
dξ.

2With the convention that F(|D|σu)(ξ) := |ξ|σFu(ξ).
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If it is true that

(7) ‖gλ‖L1 ≤ Ce−cλ

then the desired result follows just by using the convolution inequality L1 ? Lp → Lp.

Proving (7) follows from integration by parts: we have

gλ(x) = (1 + |x|2)−d
∫

Rd
ei(x|ξ)(Id −∆ξ)d

(
φ(ξ)e−λ|ξ|

σ
)
dξ.

So using Leibniz and Faá-di-Bruno’s formulae, we conclude that

|gλ(x))| ≤ C(1 + |x|2)−de−cλ.

Therefore
‖eλ∆∆̇0u‖Lp ≤ ‖gλ‖L1‖∆̇0u‖Lp ≤ Ce−cλ‖∆̇0u‖Lp ,

and we are done. �

Proof of Theorem (2.1) To simplify the presentation, we focus on the case σ = 2 (heat
equation). If u satisfies (3) then for any j ∈ Z,

∂t∆̇ju−∆∆̇ju = ∆̇jf.

Hence, according to Duhamel’s formula

∆̇ju(t) = et∆∆̇ju0 +
∫ t

0
e(t−τ)∆∆̇jf(τ) dτ.

According to the lemma, we thus have

(8) ‖∆̇ju(t)‖Lp . e−c2
2jt‖∆̇ju0‖Lp +

∫ t

0
e−c2

2j(t−τ)‖∆̇jf(τ)‖Lp dτ.

Multiplying by 2js and summing up over j yields∑
j

2js‖∆̇ju(t)‖Lp .
∑
j

e−c2
2jt2js‖∆̇ju0‖Lp +

∫ t

0
e−c2

2j(t−τ)
∑
j

‖∆̇jf(τ)‖Lp dτ

whence
‖u‖L∞t (Ḃsp,1) ≤ ‖u‖eL∞t (Ḃsp,1)

. ‖u0‖Ḃsp,1 + ‖f‖L1
t (Ḃ

s
p,1).

Note that combining (8) with convolution inequalities also yields

22j‖∆̇ju‖L1
t (L

p) .
(

1− e−c22jt
)(
‖∆̇ju0‖Lp + ‖∆̇jf‖L1

t (L
p)

)
.

Now, multiplying by 2js and summing over j yields

(9) ‖u‖L1
t (Ḃ

s+2
p,1 ) .

∑
j

(
1− e−c22jt

)
2js
(
‖∆̇ju0‖Lp + ‖∆̇jf‖L1

t (L
p)

)
,

which is slightly better than what we wanted to prove.3 �

Remark 2.1. Other maximal regularity estimates may be proved by the same token. For
instance these ones:

‖u‖eLρ1t (Ḃ
s+ 2

ρ1
p,r )

. ‖u0‖Ḃsp,1 + ‖f‖eLρ2t (Ḃ
s−2+ 2

ρ2
p,r )

for 1 ≤ ρ2 ≤ ρ1 ≤ ∞

with ‖v‖eLat (Ḃσb,c)
:=
∥∥∥2jσ‖v‖Lat (Lb)

∥∥∥
`c
.

3As obviously (1− e−c2
2jt) is bounded by 1 and tends to 0 when t goes to 0+.
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2.2. Hyperbolic symmetric systems. Hyperbolic symmetric systems arise naturally as
baby models in a number of PDEs coming from physics or fluid mechanics. One may cite
for instance the transport equation (see next paragraph) and the acoustic wave equation
(which occurs when linearizing equations for a compressible fluid) or the wave equation.
In this section, we focus on linear hyperbolic symmetric systems of the form:

(10) ∂tU +
∑
k

Ak∂kU +A0U = F, U|t=0 = U0

with F,U : [0, T ]→ RN and Ak : [0, T ]×Rd →MN (R) for 0 ≤ k ≤ d reasonably smooth.
The symmetry assumption means that matrices Ak for k ∈ {1, · · · , d} are symmetric.

Let us first derive the basic energy inequality associated to this system: taking the inner
product in L2(Rd; RN ) of (10) with U yields

1
2
d

t
‖U‖2L2 +

∑
i,j,k

∫
Rd
U iAki,j∂kU j dx+ (A0 | U) = (F | U).

Now, setting (divA)i,j :=
∑

k ∂kAki,j and integrating by parts, we see that∑
i,j,k

∫
Rd
U iAki,jU j dx = −

∑
i,j,k

∫
Rd
∂kU

iAki,jU j dx−
∑
i,j

∫
(divA)i,jU iU j dx

Owing to Aki,j = Akj,i the first term of the r.h.s. (with sign +) is equal to the l.h.s.
Therefore,

1
2
d

t
‖U‖2L2 −

1
2

(divAU | U) + (A0 | U) = (F | U).

Integrating and using Gronwall’s lemma thus implies that

‖U(t)‖2L2 ≤
(
‖U0‖2L2 +

∫ t

0
e−

R τ
0 a(τ ′) dτ ′‖F‖2L2 dτ

)
e

R t
0 a(τ ′) dτ ′

with a(t) := ‖divA‖L∞ + 2‖A0‖L∞ .

This allows to prove the existence and uniqueness in C([0, T ];L2) if the matrices Ak are
smooth enough (see e.g. Chap. 4 of [5]).

We now want to prove regularity estimates for linear symmetric systems. The strategy
is simple: we apply ∆j to (10) then use energy estimates for bounding each term ∆jU in
L2 then multiply by 2js and perform a `2 summation to get a Hs norm. In passing, let
us emphasize that performing instead a `r summation would yield a Bs

2,r estimate.
Let us give more details in the case A0 ≡ 0 (to simplify the presentation). The main

difficulty is that ∆̇j need not commute with the matrices Ak so we only get

∂t∆jU +
∑
k

Ak∂k∆jU = ∆jF +
∑
k

[Ak,∆j ]∂kU︸ ︷︷ ︸
Rkj

.

The above energy inequality implies that

‖∆jU(t)‖L2 ≤
(
‖∆jU0‖L2 +

∫ t

0
e−

1
2

R τ
0 a(τ ′) dτ ′

(
‖∆jF‖L2 +‖Rj‖L2

)
dτ

)
e

1
2

R t
0 a(τ ′) dτ ′.

Once Rj has been suitably bounded, in order to get Hs estimates, it suffices to multiply
the inequality by 2js and
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We claim that there exists (cj)j≥−1 in the unit sphere of `r such that

2js‖Rkj ‖L2 ≤ Ccj‖∇A‖
L∞∩B

d
2
2,∞

‖U‖Bs2,r if 0 < s < d/2 + 1.

Proof. It is based on Bony’s decomposition:

Rkj = [TAk ,∆j ]∂kU + T∂k∆jUA
k −∆jT∂kUA

k +R(Ak, ∂k∆jU)−∆jR(Ak, ∂kU).

Let us just explain how to bound the first term which is the only one where having a com-
mutator improves the estimates (bounding the other terms stems mostly from Proposition
1.2). Using quasi-orthogonality and definition by convolution of dyadic blocks yields

[TAk ,∆j ]∂kU(x) =
∑
|j′−j|≤4

2jd
∫

Rd
h(2j(x−y))

(
Sj′−1Ak(x)− Sj′−1Ak(y)

)
∂k∆j′U(y) dy.

Hence, according to the mean value formula,

[TAk ,∆j ]∂kU(x)

=
∑
|j′−j|≤4

2jd
∫

Rd

∫ 1

0
h(2j(x− y))

(
(x− y) · ∇Sj′−1Ak(y + τ(x− y))

)
∂k∆j′U(y) dτ dy.

So finally,

‖[TAk ,∆j ]∂kU‖L2 . 2−j ‖∇A‖L∞
∑
|j′−j|≤4

∥∥∂k∆j′U
∥∥
L2 . ‖∇A‖L∞

∑
|j′−j|≤4

∥∥∆j′U
∥∥
L2 .

�

Finally inserting the commutator estimate in the inequality for ∆jU, multiplying by 2js,
performing a `r summation and using Gronwall lemma eventually yields

‖U(t)‖Bs2,r ≤
(
‖U0‖Bs2,r+

∫ t

0
e−

R τ
0 as,r(τ ′) dτ ′‖F‖Bs2,r dτ

)
e

R t
0 as,r(τ

′) dτ ′

for any 0 < s < d/2 + 1 (more positive s or negative s may be achieved as well if using
stronger norms of A).

2.3. A priori estimates for transport equations. In general, proving estimates for
symmetric hyperbolic systems in spaces Bs

p,r with p 6= 2, is hopeless. Indeed taking
advantage of the antisymmetric character of the first order term requires some Hilbert
structure.

A noticeable exception is the following type of transport equation which plays a funda-
mental role in fluid mechanics:

(T )

{
∂ta+ v · ∇a = f

a|t=0 = a0.

Roughly, if v is a Lipschitz time-dependent vector-field and if a0 ∈ X and f ∈ L1(0, T ;X),
with X a Banach space then we expect (T ) to have a unique solution a ∈ C([0, T );X)
satisfying

‖a(t)‖X ≤ eCV (t)

(
‖a0‖X +

∫ t

0
e−CV (τ)‖f(τ)‖X dτ

)
with (say) V (t) :=

∫ t

0
‖∇v(τ)‖L∞ dτ.(11)
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This is quite obvious if X is the Hölder space C0,ε (with ε ∈ (0, 1)) as (in the case f ≡ 0
to simplify) the solution to (T ) is given by

a(t, x) = a0(ψ−1
t (x))

where ψt stands for the flow of v at time t.
Therefore,

|a(t, x)− a(t, y)| = |a0(ψ−1
t (x))− a0(ψ−1

t (y))|,
≤ ‖a0‖Ċ0,ε |ψ−1

t (x)− ψ−1
t (y)|ε,

≤ ‖a0‖Ċ0,ε‖∇ψ−1
t ‖εL∞ |x− y|ε.

As ‖∇ψ−1
t ‖L∞ ≤ exp(V (t)), we get the result in this particular case.

Littlewood-Paley’s decomposition will enable us to prove a similar result in a much more
general framework.

Theorem 2.2. The above inequality (11) holds true for X = Ḃs
p,r with

V (t) =
∫ t

0
‖∇v(τ)‖

Ḃ
d
p1
p1,1

dτ

whenever

1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞, −min
( d
p1
,
d

p′

)
< s < 1 +

d

p1
·

If r = 1 (resp. r =∞) then the case s = 1 + d/p1 (resp. s = −min
(
d
p1
, dp′
)

) also works.

Proof. Applying ∆̇j to (T ) gives

(12) ∂t∆̇ja+ v · ∇∆̇ja = ∆̇jf + Ṙj with Ṙj := [v · ∇, ∆̇j ]a.

In the case p ∈ (1,∞), multiplying both sides by |∆̇ja|p−2∆̇ja and integrating over Rd

yields

(13)
1
p

d

dt
‖∆̇ja‖pLp +

1
p

∫
v · ∇|∆̇ja|p dx =

∫ (
∆̇jf +Rj

)
|∆̇ja|p−2∆̇ja dx.

Therefore

(14) ‖∆̇ja(t)‖Lp ≤ ‖∆̇ja0‖Lp +
∫ t

0

(
‖∆̇jf‖Lp + ‖Ṙj‖Lp +

‖divv‖L∞
p

‖∆̇ja‖Lp
)
dτ.

Having p tend to 1 or ∞ implies that (14) also holds if p = 1 or p =∞.

Now, under the above conditions over s, p , the remainder term Ṙj satisfies

(15) ‖Ṙj(t)‖Lp ≤ Ccj(t)2−js‖∇v(t)‖
Ḃ

d
p1
p1,1

‖a(t)‖Ḃsp,r with ‖(cj(t))‖`r = 1.

The proof of this inequality is very similar to the corresponding one for general hyperbolic
symmetric systems (this is only a matter of changing L2 into Lp ), and is thus omitted.

At the end, using (14) and (15), multiplying by 2js then summing up over j yields

‖a‖L∞t (Ḃsp,r)
≤ ‖a0‖Ḃsp,r +

∫ t

0
‖f‖Ḃsp,r dτ + C

∫ t

0
V ′‖a‖Ḃsp,r dτ.

Then applying Gronwall’s lemma yields the desired inequality for a. �
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One may wonder if, for certain choices of norms, one may avoid the exponential term (due
to our using Gronwall lemma) in the estimates for the solution to the transport equation.
The answer is yes if X = Lp and, in addition divv = 0. Note indeed that starting from the
transport equation (T ) without any spectral localization and arguing exactly as for proving
(13) yields

‖a(t)‖Lp ≤ ‖a0‖Lp +
∫ t

0
‖f‖Lp dτ.

This is in fact due to the fact that if div v = 0 then the flow associated to v is measure
preserving.

Does this still work in the spaces Ḃ0
p,r which are very close to Lp ?

This question has been first answered by M. Vishik. Here we shall use the dynamic
interpolation method of T. Hmidi and S. Keraani [31]. The key idea is that the linearity of
the transport equation implies that a =

∑
j aj with

∂taj + v · ∇aj = 0, aj |t=0 = ∆̇ja0.

Even though aj is spectrally localized at time t = 0, there is no reason why this should be
still true for t 6= 0. Therefore (we focus on estimates in Ḃ0

p,1 for simplicity, Ḃ0
p,r works the

same) one may just write that

‖a(t)‖Ḃ0
p,1
≤
∑
j

‖aj(t)‖Ḃ0
p,1
≤
∑
j,k

‖∆̇kaj(t)‖Lp .

Fix some integer N. Then we may write

‖a‖Ḃ0
p,1
≤

∑
|j−k|≤N

‖∆̇kaj‖Lp +
∑

|j−k|>N

‖∆̇kaj‖Lp .

The first sum may be bounded by CN‖aj‖Lp and we know that ‖aj(t)‖Lp = ‖∆̇ja0‖Lp .
For the second sum, we use the fact that

‖aj(t)‖
Ḃ
± 1

2
p,1

≤ ‖∆̇ja0‖
Ḃ
± 1

2
p,1

eC
R t
0 ‖∇v‖L∞ dτ ·

Coming back to the definition of Ḃ0
p,1, this yields

‖∆̇kaj(t)‖Lp ≤ ck2±( j−k
2

)‖∆̇ja0‖LpeC
R t
0 ‖∇v‖L∞ dτ with

∑
ck = 1.

Therefore we finally have

‖a(t)‖Ḃ0
p,1
≤ C‖a0‖Ḃ0

p,1

(
N + 2−N/2eC

R t
0 ‖∇v‖L∞ dτ

)
.

Taking N so that C2−N/2eC
R t
0 ‖∇v‖L∞ dτ ≈ 1 implies

(16) ‖a(t)‖Ḃ0
p,1
≤ ‖a0‖Ḃ0

p,1

(
1 + C

∫ t

0
‖∇v‖L∞ dτ

)
.

Inequality (16) is of particular interest in the study of the lifespan of solutions to critical
nonlinear PDEs. It has been first used by Vishik in [36] for proving the global well-posedness
of the incompressible Euler equation in critical Besov spaces.
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2.4. A priori estimates for a convection-diffusion equation. In fluid mechanics, it
is frequent that both convection and diffusion have to be considered together. Typically,
we have to consider the following type of convection-diffusion equations:

(TDν) ∂tu+ v · ∇u− ν∆u = f.

The following theorem (see [18, 30] asserts that one may get a family of a priori estimates
in Besov spaces which are the optimal ones in the limit cases v ≡ 0 or ν = 0.

Theorem 2.3. Let 1 ≤ p ≤ p1 ≤ ∞ and 1 ≤ r ≤ ∞. Let s ∈ R satisfy

−min
( d
p1
,
d

p′

)
< s < 1 +

d

p1
·

Then for any smooth solution of (TDν) with ν ≥ 0, we have

‖u‖eL∞T (Ḃsp,r)
+ ν‖u‖eL1

T (Ḃs+2
p,r )
≤ CeCV (T )

(
‖u0‖Ḃsp,r + ‖f‖eL1

T (Ḃsp,r)

)
with V (T ) :=

∫ T

0
‖∇v(t)‖

Ḃ
d
p1
p1,1

dt.

Proof. Let us first localize the equation about the frequency 2j . We see that uj := ∆̇ju
satisfies

∂tuj + vj · ∇uj − ν∆uj = fj + Ṙj

with vj := Ṡj−1v, fj := ∆̇jf and Ṙj = (Ṡj−1v − v) · ∇uj + [v · ∇, ∆̇j ]u.
A slight variation over the proof of (15) yields

‖Ṙj‖Lp . cj2−js‖∇v‖
Ḃ

d
p1
p1,1

‖u‖Ḃsp,r with ‖(cj)‖`r = 1.

Next, perform the following Lagrangian change of coordinates (with ψj being the flow
of vj ):

ũj := uj ◦ ψj , f̃j := fj ◦ ψj , R̃j := Ṙj ◦ ψj .
We get

∂tũj − ν∆ũj = f̃j + R̃j + νTj with Tj := (∆uj) ◦ ψj −∆ũj .
From the chain rule and Hölder inequality, we infer that

‖Tj‖Lp .
(
1 + ‖∇ψj‖L∞

)
‖Id −∇ψj‖L∞‖D2uj ◦ ψj‖Lp + ‖∆ψj‖L∞‖∇uj ◦ ψj‖Lp .

The r.h.s. may be bounded according to the following classical flow estimates:

‖∇ψj(t)‖L∞ ≤ exp
(∫ t

0
‖∇vj‖L∞ dτ

)
,

‖Id −∇ψj(t)‖L∞ ≤ exp
(∫ t

0
‖∇vj‖L∞ dτ

)
− 1,

‖∇2ψj(t)‖L∞ ≤ exp
(

2
∫ t

0
‖∇vj‖L∞ dτ

)∫ t

0
‖∇2vj‖L∞ dτ.

Note that, according to Bernstein inequality,

‖∇kvj‖L∞ . 2j(k−1)‖∇v‖L∞ for all k ≥ 1.

Hence

(17) ‖Tj(t)‖Lp . 22j
(
eCV (t)−1

)
‖uj(t)‖Lp .
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If ũj were spectrally localized in an annulus of size 2j then the regularity estimates for
the heat equation would enable us to gain the factor 22j and we would be done for t small
as the term (eCV (t) − 1) goes to 0 when t tends to 0.

As the Lagrangian change of variable destroys the spectral localization, the next idea is
to localize again the equation for ũj , namely

∂tũj − ν∆ũj = f̃j + R̃j + νTj .

We may write

∂t∆̇j′ ũj − ν∆∆̇j′ ũj = ∆̇j′ f̃j + ∆̇j′R̃j + ν∆̇j′Tj for j′ ∈ Z

and use the smoothing properties of the heat equation for bounding each block, then sum
over j′ to bound ũj .

If we simply use that

‖∆̇j′ f̃j‖Lp . ‖f̃j‖Lp

then, after summation, the contribution given by the terms ∆̇j′ f̃j is infinite.

To overcome this, one may, in the light of Bernstein inequalities, write that

‖∆̇j′ f̃j‖Lp . 2−j
′‖∇∆̇j′ f̃j‖Lp = 2−j

′‖∆̇j′((∇fj ◦ ψj) · ∇ψj)‖Lp ,

. 2−j
′‖∇fj ◦ ψj‖Lp‖∇ψj‖L∞ ,

. eCV 2j−j
′‖fj‖Lp .

One may proceed in the same way for ∆̇j′R̃j and ν∆̇j′Tj . Therefore, using the smoothing
properties of the heat equation we get the following inequality for all (j, j′) ∈ Z2 :

‖∆̇j′ ũj‖L∞t (Lp) + ν22j′‖∆̇j′ ũj‖L1
t (L

p) . ‖∆̇j′∆̇ju0‖Lp + 2j−j
′
eCV (t)‖fj‖L1

t (L
p)

+22(j−j′)ν22j′
(
eCV (t) − 1

)
‖uj‖L1

t (L
p) + 2j−j

′
∫ t

0
cj2−jsV ′eCV ‖u‖Ḃsp,r dτ.

This inequality is suitable if j′ ≥ j − N0 (where N0 fixed integer). To handle the low
frequencies, one may merely bound Ṡj−N0 ũj according to the following lemma (see the
proof in [5, 36]):

Lemma 2.2. For any p ∈ [1,∞], N0 ∈ N and j ∈ Z, we have

‖Ṡj−N0(∆̇jv ◦ φ)‖Lp. ‖Jφ−1‖L∞‖∆̇jv‖Lp
(
2−j‖∇Jφ−1‖L∞‖Jφ‖L∞ + 2−N0‖∇φ‖L∞

)
.

Here we thus get

‖Ṡj−N0 ũj‖Lqt (Lp) . e
CV (t)

(
2−N0 + eCV (t) − 1

)
‖uj‖Lqt (Lp) for all 1 ≤ q ≤ ∞.

In order to bound uj we split it into (N0 is any fixed integer)

uj = Ṡj−N0 ũj ◦ ψ−1
j +

∑
j′≥j−N0

∆̇j′ ũj ◦ ψ−1
j .
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Then putting together the previous computations yields

2js‖uj‖L∞t (Lp) + ν22j2js‖uj‖L1
t (L

p) . e
CV (t)

(
2js‖∆̇ju0‖Lp + 23N02js‖fj‖L1

t (L
p)

+
(
2−N0 + 22N0

(
eCV (t) − 1

))(
2js‖uj‖L∞t (Lp) + ν22j2js‖uj‖L1

t (L
p)

))
+23N0

∫ t

0
cjV

′eCV ‖u‖Ḃsp,r dτ.

In order to conclude, it is only a matter of choosing N0 large enough (say such that
16C2−N0 ∈ [1, 2)) then t so small as the second line to be absorbed by the l.h.s. After
performing a `r summation and using Gronwall lemma, we end up with

‖u‖eL∞t (Ḃsp,r)
+ ν‖u‖eL1

t (Ḃ
s+2
p,r )
≤ C0

(
‖u0‖Ḃsp,r + ‖f‖eL1

t (Ḃ
s
p,r)

)
whenever t ∈ [0, T1] with T1 s. t.

∫ T1

0
V ′ dt ≈ ε with ε small enough.

Then one may split [0, T ] into

[0, T ] = [0, T1] ∪ · · · ∪ [Tk−1, T ] with
∫ Tj

Tj−1

V ′ dt ≈ ε

and repeat the argument on every subinterval. As kε ≈ V, this completes the proof. �

2.5. Dispersive equations and Strichartz estimates. Let (U(t))t∈R be a group of
unitary operators on L2(Rd) satisfying the dispersion inequality :

‖U(t)f‖L∞ ≤
C

|t|σ
‖f‖L1 for some σ > 0.

Interpolating between L2 7→ L2 and L1 7→ L∞, we deduce that

‖U(t)f‖Lr ≤
(
C

|t|σ

) 1
r′−

1
r

‖f‖Lr′ for all 2 ≤ r ≤ ∞.

The basic examples are the groups generated by the Schrödinger equation

i∂tu+ ∆u = 0 in Rd

for which σ = d/2, or the acoustic wave equations{
∂ta+ divu = 0
∂tu+∇a = 0 in Rd,

for which σ = d/2 − 1. The same holds for the classical wave equation ∂2
ttu − ∆u = 0 if

written as a system.

Definition 2.1. A couple (q, r) ∈ [2,∞]2 is admissible if 1/q + σ/r = σ/2 and (q, r, σ) 6=
(2,∞, 1).

Theorem 2.4 (Strichartz estimates). Let (U(t))t∈R satisfy the above hypotheses. Then
(1) For any admissible couple (q, r) we have ‖U(t)u0‖Lq(Lr) ≤ C‖u0‖L2 ;
(2) For any admissible couples (q1, r1) and (q2, r2) we have∥∥∥∫ t

0
U(t− τ)f(τ) dτ

∥∥∥
Lq1 (Lr1 )

. ‖f‖
Lq
′
2 (Lr

′
2 )
·
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Remarks: 1. Compared to Sobolev embedding Hd( 1
2
− 1
r

) ↪→ Lr, Strichartz estimates
provides a gain of d(1

2 −
1
r ) = d

qσ derivative.

2. The relation 1/q + σ/r = σ/2 may be guessed from a dimensional analysis.

Following the approach of Ginibre and Velo in [26], the proof of Strichartz estimates
relies mainly on two ingredients:

(1) The TT ? argument (see below);
(2) The Hardy-Littlewood inequality.

Lemma 2.3 (TT ? argument). Let T : H → B a bounded operator from the Hilbert space
H to the Banach space B and T ? : B′ → H the adjoint operator defined by

∀(x, y) ∈ B′ ×H, (T ?x | y)H = 〈x, Ty〉B′,B.
Then we have

‖TT ?‖L(B′;B) = ‖T‖2L(H;B) = ‖T ?‖2L(B′;H).

Proving the homogeneous Strichartz estimate: Let us introduce the operator T :
u0 7−→ U(t)u0. Hence, at least formally,

T ? : φ 7−→
∫

R
U(−t′)φ(t′) dt′ and TT ? : φ 7−→

[
t 7→

∫
R
U(t− t′)φ(t′) dt′

]
.

If we apply the TT ? argument with

H = L2(Rd), B = Lq(R;Lr(Rd)), B′ = Lq
′
(R;Lr

′
(Rd),

we see that proving ‖Tu0‖Lq(Lr) ≤ C‖u0‖L2 is equivalent to

(18) ‖TT ?φ‖Lq(Lr) ≤ C‖φ‖Lq′ (Lr′ ).

Now, we have

‖TT ?φ(t)‖Lr ≤
∫

R
‖U(t− t′)φ(t′)‖Lr dt.

So taking advantage of the dispersion inequality Lr
′ → Lr and of the relation σ( 1

r′−
1
r ) = 2

q ,
we get

‖TT ?φ(t)‖Lr ≤
∫

R

1

|t− t′|
2
q

‖φ(t′)‖Lr′ dt.

Applying the Hardy-Littlewood-Sobolev inequality gives (18) if 2 < q <∞. �

Remarks:
(1) The endpoint (q, r) = (∞, 2) is given by the fact that (U(t))t∈R is unitary on L2.

The endpoint (q, r) = (2, 2σ/(σ−1)) if σ > 1 is more involved (Keel & Tao [32]).
(2) The nonhomogeneous Strichartz inequality follows from similar arguments.
(3) In the case of the linear wave or Schrödinger equation, using (∆̇j)j∈Z allows to get

Strichartz estimates involving Besov norms.

3. Incompressible models

As first examples of application of the results of the previous sections, we here aim
at solving globally for small data two models for incompressible viscous fluids: first the
classical incompressible Navier-Stokes equations and next the density-dependent Navier-
Stokes equations.
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3.1. The incompressible Navier-Stokes equations. The incompressible Navier-Stokes
equations read:

(NS)

{
∂tu+ div(u⊗ u)− µ∆u+∇P = 0,

divu = 0.

Here u : [0, T [×Rd → Rd stands for the velocity field, and P : [0, T [×Rd → R, for the
pressure. The viscosity µ is a given positive number.

If we want to solve the Cauchy problem for (NS) then we have to prescribe some initial
divergence-free velocity field u0.

We shall see that, once a suitable functional framework has been found, System (NS)
may be solved by means of the following abstract lemma.

Lemma 3.1. Let X be a Banach space and B : X ×X → X a continuous bilinear map.
Then there exists a unique solution v in B(0, 2‖v0‖X) to

(E) v = v0 + B(v, v)

whenever

(19) 4‖B‖‖v0‖X < 1.

Proof. This is a straightforward consequence of Picard’s fixed point theorem in complete
metric spaces. Indeed, denoting F : v → v0 + B(v, v), we see that

‖F (v)− v0‖X ≤ ‖B‖X‖v‖2X .
Hence if (19) is satisfied and ‖v‖X ≤ 2‖v0‖X then F maps the closed ball B̄(0, 2‖v0‖X)
into itself.

Next, considering v1 and v2 in this closed ball, we see that

‖F (v2)− F (v1)‖X ≤ ‖B‖(‖v1‖X + ‖v2‖X)‖v2 − v1‖X ≤ 4‖B‖‖v0‖X‖v2 − v1‖X .
Hence Condition (19) ensures that F is strictly contracting. �

Assume in addition that there exists a one-parameter family (Tλ)λ>0 acting on X and
which leaves (E) invariant that is:

v = v0 + B(v, v) ⇐⇒ Tλv = Tλv0 + B(Tλv, Tλv) for all λ > 0.

Then the smallness condition (19) recasts in

4‖B‖‖Tλv0‖X < 1 for all λ > 0.

In other words, the norm in X has to be invariant (up to an irrelevant constant) by Tλ for
all λ. If so then we shall call X a scaling invariance space for (E).

In the applications, a dimension analysis often allows to find such a family (Tλ)λ>0.
This is the case for instance if considering evolutionary equations such as the nonlinear
Schrödinger, wave or heat equations.

Let us explain how to implement it on the incompressible Navier-Stokes equations. In-
troducing the Leray projector over divergence-free vector fields: P := Id +∇(−∆)−1div ,
(NS) recasts in

∂tu+ Pdiv(u⊗ u)− µ∆u = 0.
This equation enters in the class of generalized Navier-Stokes equations:

(GNS) ∂tu+Q(u, u)− µ∆u = 0
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with FQj(u, v) :=
∑

αj,m,n,pk,`

ξn ξp ξm
|ξ|2

F(uk v`). All the coefficients are supposed to be

constant. Hence the entries of Q(u, v) are first order homogeneous Fourier multipliers
applied to bilinear expressions. From the point of view of homogeneous Besov spaces, the
action of such multipliers is exactly the same as that of the gradient operator.

Let us now look for some scaling invariance for (GNS), if any. We notice that v is a
solution if and only if Tλv is a solution (for all λ > 0) with

Tλv(t, x) := λv(λ2t, λx).

Hence one may tempt to solve (NS) or (GNS) in spaces X with norm invariant by the
above transformation.

For (NS) this idea of combining the abstract lemma with dimensional analysis has been
first implemented by H. Fujita and T. Kato in [23] (see also the work by J.-Y. Chemin in
[8]). There

X =
{
v ∈ C(R+; Ḣ

d
2
−1) s. t. t

1
4 v ∈ C(R+; Ḣ

d
2
− 1

2 )
}
,

and the initial data is in the homogeneous Sobolev space Ḣ
d
2
−1

There are a number of critical functional spaces in which (NSI) may be globally solved
for small data, for instance:

• C(R+;Ld) (see Giga [25], Kato [27], Furioli-Lemarié-Terraneo [24]);

• C(R+; Ḃ
d
p
−1

p,1 ) ∩ L1(R+; Ḃ
d
p

+1

p,1 ) and more general Besov spaces (see the works by
Cannone-Meyer-Planchon in [7] and by H. Kozono and M. Yamazaki in [34]).

In these notes, we plan to prove the following statement.

Theorem 3.1. Let u0 ∈ Ḃ
d
p
−1

p,r with div u0 = 0. Assume that p is finite. There exists
c > 0 such that if

‖u0‖
Ḃ
d
p−1

p,r

≤ cµ

then (GNS) has a unique global solution u in the space4

X := L̃∞(R+; Ḃ
d
p
−1

p,r ) ∩ L̃1(R+; Ḃ
d
p

+1
p,r ).

Proof. We notice that solving (GNS) amounts to solving the equation (E) of the abstract
lemma with

v0 := et∆u0 and B(v, v)(t) = −
∫ t

0
e(t−τ)∆Pdiv(v ⊗ v) dτ

where (et∆)t>0 stands for the heat semi-group.

We want to apply the abstract lemma with X = L̃∞(R+; Ḃ
d
p
−1

p,r ) ∩ L̃1(R+; Ḃ
d
p

+1
p,r ),

v0(t) := eµt∆u0 and B(u, v)(t) := −
∫ t

0
eµ(t−τ)∆Q(u, v) dτ.

Heat estimates imply that

‖v0‖X := ‖v0‖eL∞(Ḃ
d
p−1

p,r )
+ µ‖v0‖eL1(Ḃ

d
p+1

p,r )
≤ C‖u0‖

Ḃ
d
p−1

p,r

.

4which corresponds to the norms defined in Remark 2.1.
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That B : X×X → X is a consequence of continuity results for paraproduct and remainder.
Indeed we have

‖Q(u, v)‖eL1(Ḃ
d
p−1

p,r )
≤ C‖u⊗ v‖eL1(Ḃ

d
p
p,r)
.

Now, using embedding and results of continuity for the paraproduct and remainder, we see
that5

‖R(u, v)‖eL1(Ḃ
d
p
p,r)

. ‖u‖eL∞(Ḃ
d
p−1

p,r )
‖v‖eL∞(Ḃ

d
p+1

p,r )

‖Tuv‖eL1(Ḃ
d
p
p,r)

. ‖u‖eL∞(Ḃ−1
∞,∞)
‖v‖eL∞(Ḃ

d
p+1

p,r )

and a similar inequality for Tvu. Note that for the remainder we need that (d/p − 1) +

(d/p + 1) > 0 hence p < ∞. Because Ḃ
d
p
−1

p,r ↪→ Ḃ−1
∞,∞, we eventually find that, for some

C = C(d, p,Q):
‖Q(u, v)‖eL1(Ḃ

d
p−1

p,r )
≤ Cµ−1‖u‖X‖v‖X .

Hence
‖B(u, v)‖X ≤ C ′µ−1‖u‖X‖v‖X .

Therefore 4‖B‖‖v0‖X < 1 provided ‖u0‖
Ḃ
d
p−1

p,r

≤ cµ with c small enough. �

Remark 3.1. The proof that we proposed is based on the abstract lemma and on product
laws in Besov spaces that do not use the very structure of the nonlinearity. Hence it is very
robust. This may be seen as an advantage as it applies indistinctly to any system (GNS)
(even for those which have no physical meaning and that do not possess any conserved
quantity), but also as an inconvenient because one cannot expect from this method much
more than global existence for small data (or local existence for large data).

Exercise: Adapt this approach to the following Keller-Segel model:

∂tρ−∆ρ = −χdiv(ρ∇(−∆)−1ρ).

3.2. The density-dependent incompressible Navier-Stokes equations. Let us now
look at a slightly more general model: the system for incompressible nonhomogeneous
viscous fluids:

(INS)


∂tρ+ u · ∇ρ = 0

ρ(∂tu+ u · ∇u)− µ∆u+∇P = 0

divu = 0.

We restrict our attention to the case where the density ρ of the fluid goes to some positive
constant ρ̄ at infinity. After renormalization, one may take ρ̄ = 1.

System (INS) is invariant by the rescaling

ρ(t, x)→ ρ(λ2t, λx), u(t, x)→ λu(λ2t, λx).

From the dimensional analysis point of view, this means that the velocity has the same
regularity as in the homogeneous case and that one more derivative is required for the
density. In the Besov spaces scale, this induces to take data (ρ0 = 1 + a0, u0) with

a0 ∈ Ḃ
d
p1
p1,r1 and u0 ∈ Ḃ

d
p2
−1

p2,r2 .

5One may easily check that the product laws for eLρ(Ḃσp,r) work the same as the usual ones, the time

Lebesgue exponent just behaves according to Hölder inequality.
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• To avoid vacuum (and loss of ellipticity), an L∞ bound on a is needed. Note that

Ḃ
d
p1
p1,r1 ↪→ L∞ if and only if r1 = 1. Hence we take r1 = 1.

• If r2 = 1 then (neglecting the nonlinear terms), regularity properties of the heat

equation give u ∈ L1
T (Ḃ

d
p2

+1

p2,1
). As Ḃ

d
p2

+1

p2,1
↪→ C0,1, this is exactly what we need to

transport the Besov regularity of a := ρ− 1.
• Finally, owing to the coupling between the density and velocity equations, it is

simpler (but not mandatory) to take p1 = p2 = p .
The rest of this section is devoted to proving the following global existence result for

small data with critical regularity.

Theorem 3.2 (Global existence for small data). Let a0 ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p
−1

p,1 with
divu0 = 0 and 1 ≤ p < 2d. If in addition

‖a0‖
Ḃ
d
p
p,1

+ µ−1‖u0‖
Ḃ
d
p−1

p,1

≤ c

for a small enough c > 0 then (INS) has a unique global solution (a, u) with

a ∈ C(R+; Ḃ
d
p

p,1) and u ∈ C(R+; Ḃ
d
p
−1

p,1 ) ∩ L1(R+; Ḃ
d
p

+1

p,1 ).

Proof. Before going further into the proof of existence, let us emphasize that one cannot
expect to reduce System (INS) to the model problem presented at the beginning of this
section. This is due to the hyperbolic nature of the density equation which entails a loss of
one derivative in the Lipschitz-type stability estimates. Hence, existence will rather stem
from bounds in high norm (that is in the space where we want to show the existence)
for the solution and stability in low norm (typically the space of existence with one less of
derivative). Proving existence may be alternately done by means of the Schauder-Tikhonoff
fixed point theorem. However the main steps are more or less the same. Here we shall
adopt the following scheme (that has to be slightly modified to provide a rigorous proof of
existence) giving the result if 1 ≤ p < d :

• 1) proving a priori estimates in high norm (that is in the space E of the statement)
for a solution;
• 2) proving stability estimates in low norm (that is with one less derivative);
• 3) Use functional analysis (Fatou property) to justify that the constructed solution

is in E ;
• 4) Uniqueness : for 1 ≤ p ≤ d this stems from stability estimates. For the full range

1 ≤ p < 2d, the system has to be considered in Lagrangian coordinates (recent joint
work with P.B. Mucha [22]).

Step 1. A priori estimates in high norm. Estimates for the transport equation imply that
‖a(t)‖L∞ = ‖a0‖L∞ and

‖a‖
L∞t (Ḃ

d
p
p,1)
≤ eCU(t)‖a0‖

Ḃ
d
p
p,1

with U(t) := ‖∇u‖
L1
t (Ḃ

d
p
p,1)
.

Hence if we have CU(t) ≤ log 2 then

(20) ‖a‖
L∞t (Ḃ

d
p
p,1)
≤ 2‖a0‖

Ḃ
d
p
p,1

.

For the velocity, we have:

∂tu− µ∆u = −P(a∂tu)− P((1+a)u · ∇u).
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Hence regularity estimates for the heat equation imply that

X(t) . ‖u0‖
Ḃ
d
p−1

p,1

+
∫ t

0

(
‖P(a∂tu)‖

Ḃ
d
p−1

p,1

+ ‖P((1 + a)u · ∇u)‖
Ḃ
d
p−1

p,1

)
dt

with X(t) := ‖u‖
L∞t (Ḃ

d
p−1

p,1 )
+ µ‖u‖

L1
t (Ḃ

d
p+1

p,1 )
+ ‖∂tu‖

L1
t (Ḃ

d
p−1

p,1 )
.

The l.h.s. may be bounded by using product laws (here we need 1 ≤ p < 2d because of
the remainder term R(a, ∂tu) coming from a ∂tu). We get

X(t) . ‖u0‖
Ḃ
d
p−1

p,1

+ (1 + ‖a‖
L∞t (Ḃ

d
p
p,1)

)‖u‖
L∞t (Ḃ

d
p−1

p,1 )
‖u‖

L1
t (Ḃ

d
p+1

p,1 )
+ ‖a‖

L∞t (Ḃ
d
p
p,1)
‖∂tu‖

L1
T (Ḃ

d
p−1

p,1 )
.

According to (20), the last term may be absorbed by the left hand-side if ‖a0‖
Ḃ
d
p
p,1

is small

enough. Under this smallness condition, the second term of the r.h.s. may be bounded by
Cµ−1X2(t).

From an easy induction (“bootstrap”) argument, we eventually get

‖a(t)‖
Ḃ
d
p
p,1

≤ 2‖a0‖
Ḃ
d
p
p,1

and X2(t) ≤ 2CX(0) for all t ≥ 0

provided ‖a0‖
Ḃ
d
p
p,1

+ µ−1‖u0‖
Ḃ
d
p−1

p,1

� 1.

Step 2. Stability estimates in small norm. Consider two solutions (a1, u1) and (a2, u2) of
(NSI) bounded in E as in the first step. The difference (δa, δu) := (a2−a1, u2−u1) satisfies{

∂tδa+ u2 · ∇δa = −δu · ∇a1,

∂tδu− µ∆δu = −P
(
(1+a1)(δu·∇u1 + u2 ·∇δu) + a1∂tδu+ δa(∂tu2+u2 ·∇u2)

)
.

Owing to the hyperbolic nature of the mass equation, one loses one derivative in the stability
estimates: the r.h.s of the first equation has at most the regularity of ∇a1 . This induces a
loss of one derivative for δu. Hence stability has to be proved in

FT := C([0, T ]; Ḃ
d
p
−1

p,1 )×
(
C([0, T ]; Ḃ

d
p
−2

p,1 ) ∩ L1(0, T ; Ḃ
d
p

p,1)
)d
.

Therefore, as e.g. δa ∈ C([0, T ]; Ḃ
d
p
−1

p,1 ) and ∂tu
2 ∈ L1(0, T ; Ḃ

d
p
−1

p,1 ), the product laws in
Besov spaces (see in particular the properties of continuity for the remainder in Theorem
2.1) enforce us to make stronger conditions on p and on d, namely

d > 2 and 1 ≤ p < d.

Then using the usual regularity estimates for the heat equation, one may conclude that

‖δa‖
L∞(Ḃ

d
p−1

p,1 )
+ µ‖δu‖

L∞(Ḃ
d
p−2

p,1 )
+ ‖δu‖

L1(Ḃ
d
p
p,1)
. ‖δa(0)‖

Ḃ
d
p−1

p,1

+ ‖δu(0)‖
Ḃ
d
p−2

p,1

.

We skip Step 3 (showing that the constructed solution belongs to the desired functional
space) which is a consequence of general properties of Besov spaces and Step 4 (uniqueness)
which is very similar to Step 2. �

Let us end this section with a few remarks concerning the above global existence theorem
for incompressible nonhomogeneous fluids:

• This global statement has been first proved by the author in [16] (in the case p = 2
only) and by H. Abidi [1] (for general p ∈ [1, 2d[ with uniqueness if p ≤ d, and
density dependent viscosity coefficients).
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• A local-in-time statement is available for large initial velocity u0 ∈ Ḃ
d
p
−1

p,1 with
1 ≤ p < 2d [1]. If p = 2, also a0 may be large provided infx(1 + a0) > 0 (no
vacuum) [16].
• The Lebesgue exponents for a and u may be taken different (see [2]).
• Rewriting the system in Lagrangian coordinates allows to solve it by means of

Picard’s fixed point theorem. This improves the conditions for uniqueness and also
allows to weaken the assumptions over the density: it may have jumps across an
interface (recent joint work with P.B. Mucha [22]).
• There are many recent works devoted to the longtime asymptotics for (INS), see in

particular the paper by Abidi-Gui-Zhang in [3].

4. The barotropic compressible Navier-Stokes equations

Proving in a similar result for compressible viscous fluids is the main goal of this section.
To simplify the presentation, we focus on the barotropic Navier-Stokes equations :{

∂tρ+ div(ρu) = 0,

∂t(ρu) + div (ρu⊗ u)− µ∆u− µ′∇div u+∇P = 0

where
• ρ = ρ(t, x) ∈ R+ (with t ∈ R+ and x ∈ Rd ) is the density,
• u = u(t, x) ∈ Rd is the velocity field,
• the viscosity coefficients µ and µ′ satisfy µ > 0 and ν := µ+ µ′ > 0.

In order to close the system, we assume the pressure P to be a given (suitably smooth)
function of ρ. This is the so-called barotropic assumption. In the viscous case that we
shall consider, this assumption is somewhat irrelevant from a physical viewpoint. However
the above system already contains many features of the full model as far as mathematical
results are concerned.

We supplement the system with the following boundary conditions:
• u decays to zero at infinity,
• ρ tends to some positive constant ρ̄ at infinity. We shall take ρ̄ = 1 for simplicity.

Denoting ρ = 1 + a and assuming that the density is positive everywhere the barotropic
system rewrites

(21)

{
∂ta+ u · ∇a = −(1 + a)divu,

∂tu−Au = −u · ∇u− J(a)Au−∇G(a)

where A := µ∆− µ′∇div , J(a) := a/(1 + a) and G is a smooth function with G(0) = 0.

This system has a number of similarities with (INS). The only difference is that divu
is not prescribed any longer and therefore the pressure function is given whereas, in the
incompressible case, ∇P was the Lagrange multiplier associated to the divergence free
condition.

Because P is given, strictly speaking, System (21) does not own any scaling invariance
property . However, up to a change of G into λ2G, it is invariant by the rescaling

(22) a(t, x)→ a(λ2t, λx), u(t, x)→ λu(λ2t, λx).

To some extent, the term G is lower order. Therefore, we expect the critical functional
spaces for the velocity to be the same ones as in the incompressible case whereas one more
derivative has to be taken for the density.
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4.1. The local existence theory. At first sight, (NSC) looks very similar to (INS)

hence we expect that it is globally well-posed if a0 and u0 are small in Ḃ
d
p

p,1 and Ḃ
d
p
−1

p,1 ,
respectively. The following computations show that whether such a statement may be true,
is not so obvious.

1. A priori estimates in high norm for the density. Let U(t) := ‖∇u‖
L1
t (Ḃ

d
p
p,1)
. Estimates

for the transport equation imply that

‖a‖
L∞t (Ḃ

d
p
p,1)
≤ eCU(t)

(
‖a0‖

Ḃ
d
p
p,1

+
∫ t

0
e−CU‖(1 + a)divu‖

Ḃ
d
p
p,1

dτ

)
.

From product laws in Besov spaces, we have:

‖(1 + a)divu‖
Ḃ
d
p
p,1

. (1 + ‖a‖
Ḃ
d
p
p,1

)‖∇u‖
Ḃ
d
p
p,1

.

Inserting this in the above inequality and applying Gronwall’s lemma, we thus get

‖a‖
L∞T (Ḃ

d
p
p,1)
≤ eCU(T )‖a0‖

Ḃ
d
p
p,1

+ eCU(T ) − 1.

Hence, for any η > 0, if U(T ) is small enough then

‖a‖
L∞T (Ḃ

d
p
p,1)
≤ 2‖a0‖

Ḃ
d
p
p,1

+ η.

2. A priori estimates in high norm for the velocity. Let us first observe that even though
A is not the Laplace operator, the associated regularity estimates are the same as if it
were. Indeed, if z satisfies

∂tz −Az = f

then we have, denoting ν := µ+ µ′,

∂tPz − µ∆Pz = Pf and ∂tQz − ν∆Qz = Qf.

At this point it is of course fundamental that µ > 0 and ν > 0.

Coming back to the problem of bounding the velocity field in (NSC) we thus have

‖u‖
L∞T (Ḃ

d
p−1

p,1 )∩L1
T (Ḃ

d
p+1

p,1 )
. ‖u0‖

Ḃ
d
p−1

p,1

+
∫ T

0
‖u · ∇u+ J(a)Au+∇(G(a))‖

Ḃ
d
p−1

p,1

dt.

Product and composition laws in Besov spaces yield if d > 1 and 1 ≤ p < 2d,

‖u · ∇u‖
Ḃ
d
p−1

p,1

. ‖u‖
Ḃ
d
p−1

p,1

‖∇u‖
Ḃ
d
p
p,1

,

‖J(a)Au‖
Ḃ
d
p−1

p,1

. ‖a‖
Ḃ
d
p
p,1

‖∇2u‖
Ḃ
d
p−1

p,1

,

‖∇(G(a))‖
Ḃ
d
p−1

p,1

. ‖a‖
Ḃ
d
p
p,1

.

Hence

‖u‖
L∞T (Ḃ

d
p−1

p,1 )
+ ‖u‖

L1
T (Ḃ

d
p+1

p,1 )
. ‖u0‖

Ḃ
d
p−1

p,1

+
∫ T

0
‖u‖

Ḃ
d
p−1

p,1

‖u‖
Ḃ
d
p+1

p,1

dt+ ‖a‖
L∞T (Ḃ

d
p
p,1)
‖u‖

L1
T (Ḃ

d
p+1

p,1 )
+ ‖a‖

L1
T (Ḃ

d
p
p,1)
.
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As in the incompressible case, the last but one term may be absorbed by the left hand-side
if ‖a0‖

Ḃ
d
p
p,1

is small enough, and the blue term is quadratic hence harmless if u is small.

From this, we get

‖u‖
L∞T (Ḃ

d
p−1
p,1 )

+ ‖u‖
L1
T (Ḃ

d
p+1

p,1 )
. ‖u0‖

Ḃ
d
p−1

p,1

+ T (‖a0‖
Ḃ
d
p
p,1

+ η).

At this point we see that the r.h.s. grows linearly in time hence we cannot expect to get any
global-in-time control on u. In fact, the main problem is that estimates for the transport
equation provide us with a bound for ‖a‖

L∞T (Ḃ
d
p
p,1)

while ‖a‖
L1
T (Ḃ

d
p
p,1)

is needed. Here we

only used that
‖a‖

L1
T (Ḃ

d
p
p,1)
. T‖a‖

L∞T (Ḃ
d
p
p,1)
.

It is not difficult to make the previous computations rigorous (at least if a0 is small), and
we end up with the following statement:

Theorem 4.1. Assume that a0 ∈ Ḃ
d
p

p,1 and that u0 ∈ Ḃ
d
p
−1

p,1 with 1 ≤ p < 2d. If in
addition 1 + a0 is bounded away from 0 then (NSC) has a local-in-time solution (a, u)
with

a ∈ C([0, T ]; Ḃ
d
p

p,1) and u ∈ C([0, T ]; Ḃ
d
p
−1

p,1 ) ∩ L1([0, T ]; Ḃ
d
p

+1

p,1 ).

Uniqueness holds true if p ≤ d.

Remarks:
• This statement has been first established by the author in [15] (there also the full

Navier-Stokes system is considered), under some smallness condition over a0 .
• The smallness condition over a0 has been relaxed by the author in the case p = 2

[19] and then for more general p by Chen-Miao-Zhang in [11] (in this latter work,
the viscosity coefficients may depend on the density).
• Using Lagrangian coordinates allows to prove uniqueness whenever 1 ≤ p < 2d and

to consider nonconstant density coefficients as well (see the recent work [21]).
• The Lebesgue exponents for a and u may be taken different (see the recent work

by B. Haspot [28]).

4.2. The global existence theory. The scaling invariance exhibited in (22) was imper-
fect inasmuch as it did not take the pressure term into consideration. This fact was quite
obvious when proving local a priori estimates for (NSC) in the previous section because
our estimates for the transport equation naturally provide bounds for ‖a‖

L∞T (Ḃ
d
p
p,1)

whereas

‖a‖
L1
T (Ḃ

d
p
p,1)

is needed when bounding u by means of parabolic estimates. So far, we used

that
‖∇(G(a))‖

L1
T (Ḃ

d
p−1

p,1 )
. T‖a‖

L∞T (Ḃ
d
p
p,1)
.

Of course this is a good estimate if T is small, but this is not so clever when T goes to
infinity. Hence it is very unlikely that one may get any global-in-time control on u by so
rough a device. In other words, while the pressure term may be “neglected” in the linear
analysis leading to local-in-time existence results, it has to be included in the linear analysis
for the global existence theory. This is what we aim to do now.
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4.2.1. The linearized equations. The linearized system about (a, u) = (0, 0) reads:

(23)

{
∂ta+ divu = 0,

∂tu−Au+ α∇a = 0
with α := P ′(1).

Let ν := µ + µ′. Applying operators P and Q to the second equation, the above system
translates into

(24)


∂ta+ divQu = 0,

∂tQu− ν∆Qu+ α∇a = 0,

∂tPu− µ∆Pu = 0.

In the homogeneous Besov spaces setting, it is equivalent to bound Qu or v := |D|−1divu ,
the advantage of the latter quantity being that it is real valued. So we are led to considering

(25)


∂ta+ |D|v = 0,

∂tv − ν∆v − α|D|a = 0,

∂tPu− µ∆Pu = 0.

Note that the last equation (that is the linearized equation for the vorticity part of the
velocity field) is a mere heat equation with constant diffusion. So we have to concentrate
on the linearized system for the density and the potential part of the velocity, namely

(26)

{
∂ta+ |D|v = 0,

∂tv − ν∆v − α|D|a = 0.

Taking the Fourier transform with respect to the space variable yields

d

dt

(
â
v̂

)
= A(ξ)

(
â
v̂

)
with A(ξ) :=

(
0 −|ξ|
α|ξ| −ν|ξ|2

)
.

The characteristic polynomial of A(ξ) is X2 + ν|ξ|2X +α|ξ|2 , the discriminant of which is

δ(ξ) := |ξ|2(ν2|ξ|2 − 4α).

If α < 0 then there is one positive eigenvalue hence the linear system is unstable.

Therefore we assume from now that α > 0 (i.e. P ′(1) > 0), that is we focus on the
case where the pressure law is increasing in some neighborhood of the reference density.
Note also that a convenient change of variable reduces the study to the case α = 1, an
assumption that we shall make from now on.

The low frequency regime ν|ξ| < 2. There are two distinct complex conjugated eigenvalues:

λ±(ξ) = −ν|ξ|
2

2
(1± iS(ξ)) with S(ξ) :=

√
4

ν2|ξ|2
− 1,

and we find that

â(t, ξ) = etλ−(ξ)

(
1
2

(
1 +

i

S(ξ)

)
â0(ξ)− i

ν|ξ|S(ξ)
v̂0(ξ)

)
+etλ+(ξ)

(
1
2

(
1− i

S(ξ)

)
â0(ξ) +

i

ν|ξ|S(ξ)
v̂0(ξ)

)
,
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v̂(t, ξ) = etλ−(ξ)

(
i

ν|ξ|S(ξ)
â0(ξ) +

1
2

(
1− i

S(ξ)

)
v̂0(ξ)

)
+etλ+(ξ)

(
− i

ν|ξ|S(ξ)
â0(ξ) +

1
2

(
1 +

i

S(ξ)

)
v̂0(ξ)

)
.

For ξ → 0, we have

â(t, ξ) ∼ 1
2e
tλ−(ξ) (â0(ξ)− iv̂0(ξ)) + 1

2e
tλ+(ξ) (â0(ξ) + iv̂0(ξ)) ,

v̂(t, ξ) ∼ 1
2e
tλ−(ξ) (iâ0(ξ) + v̂0(ξ)) + 1

2e
tλ+(ξ) (−iâ0(ξ) + v̂0(ξ)) .

Hence, the low frequencies of a and v have a similar behavior.

Note that |etλ±(ξ)| = e−νt|ξ|
2/2 and that

Reλ±(ξ) = −ν|ξ|
2

2
, Imλ±(ξ) ∼ ∓|ξ| for ξ → 0.

Hence we expect the system to have both parabolic and wave-like behavior.

For the time being, we just take advantage of the parabolic behavior. More precisely,
we use the fact that, according to Parseval’s formula,

(27) ‖(∆̇ja, ∆̇jv)(t)‖L2 ≤ Ce−cνt22j‖(∆̇ja0, ∆̇jv0)‖L2 whenever 2jν ≤ 1.

The high frequency regime ν|ξ| > 2. There are two distinct real eigenvalues:

λ±(ξ) := −ν|ξ|
2

2
(1±R(ξ)) with R(ξ) :=

√
1− 4

ν2|ξ|2

and after a lengthy computation, we find that

â(t, ξ) = etλ−(ξ)

(
1
2

(
1 +

1
R(ξ)

)
â0(ξ)− 1

ν|ξ|R(ξ)
v̂0(ξ)

)
+etλ+(ξ)

(
1
2

(
1− 1

R(ξ)

)
â0(ξ) +

1
ν|ξ|R(ξ)

v̂0(ξ)
)
,

v̂(t, ξ) = etλ−(ξ)

(
1

ν|ξ|R(ξ)
â0(ξ) +

1
2

(
1− 1

R(ξ)

)
v̂0(ξ)

)
+etλ+(ξ)

(
− 1
ν|ξ|R(ξ)

â0(ξ) +
1
2

(
1 +

1
R(ξ)

)
v̂0(ξ)

)
.

For |ξ| → ∞, we have R(ξ) → 1 and 1 − R(ξ) ∼ 2/(νξ)2. Hence λ+(ξ) ∼ −ν|ξ|2 and
λ−(ξ) ∼ − 1

ν . In other words, a parabolic and a damped mode coexist and the asymptotic
behavior of (a, v) for |ξ| → ∞ is given by

â(t, ξ) ∼ e−
t
ν
(
â0(ξ)− (ν|ξ|)−1v̂0(ξ)

)
+ e−νt|ξ|

2 (−(ν|ξ|)−2â0(ξ) + (ν|ξ|)−1v̂0(ξ)
)
,

v̂(t, ξ) ∼ e−
t
ν
(
(ν|ξ|)−1â0(ξ)− (ν|ξ|)−2v̂0(ξ)

)
+ e−νt|ξ|

2 (−(ν|ξ|)−1â0(ξ) + v̂0(ξ)
)
.

At first, one would expect the damped mode to dominate as e−νt|ξ|
2

is negligible com-
pared to e−

t
ν for ξ going to infinity. This is true as far as a is concerned. This is not quite

the case for v however owing to the negative powers of ν|ξ| in the formula. More precisely,
by taking advantage of Parseval formula, we easily get
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Lemma 4.1. There exist two positive constants c and C such that for any j ∈ Z satisfying
2jν ≥ 3 and t ∈ R+, we have

‖∆̇ja(t)‖L2 ≤ Ce−
t
2ν

(
‖∆̇ja0‖L2 + (2jν)−1‖∆̇jv0‖L2

)
,

‖∆̇jv(t)‖L2 ≤ C
(

(2jν)−1e−
t
2ν ‖∆̇ja0‖L2 +

(
e−cνt2

2j
+(ν2j)−2e−

t
2ν

)
‖∆̇jv0‖L2

)
.

In fact, the same inequalities hold true for any p ∈ [1,∞]. Indeed, following the proof of
Lemma 2.1 yields

∆̇ja(t) = hj1(t)∗∆̇ja0 +hj2(t)∗(ν|D|)−1∆̇jv0 +hj3(t)∗(|ν|D|)−2∆̇ja0 +hj4(t)∗(ν|D|)−1∆̇jv0,

∆̇jv(t) = kj1(t) ∗ (|νD|−1∆̇ja0) + kj2(t) ∗ (ν|D|)−2∆̇jv0 + kj3(t) ∗ (|νD|−1∆̇ja0) + kj4(t) ∗ ∆̇jv0

with

‖hj1(t)‖L1 + ‖hj2(t)‖L1 + ‖kj1(t)‖L1 + ‖kj2(t)‖L1 ≤ Ce−
t
2ν ,

‖hj3(t)‖L1 + ‖hj4(t)‖L1 + ‖kj3(t)‖L1 + ‖kj4(t)‖L1 ≤ Ce−cνt2
2j
.

This implies that

‖∆̇ja‖L∞t (Lp) + ν‖∆̇ja‖L1
t (L

p) . ‖∆̇ja0‖Lp + ‖(ν|D|)−1∆̇jv0‖Lp ,

‖∆̇ju‖L∞t (Lp) + ν22j‖∆̇ju‖L1
t (L

p) . ‖ν|D|∆̇ja0‖Lp + ‖∆̇jv0‖Lp .

Hence, we recover that for high frequencies it is suitable to work at the same level of
regularity for ∇a and v. At the same time, according to (27), one has to work at the
same level of regularity for low frequencies, a fact which does not follow from our scaling
considerations for (NSC).

Putting together all the estimates for the dyadic blocks and using Duhamel’s formula,
we conclude that whenever (a, u) satisfies

(LPH)

{
∂ta+ divu = F,

∂tu−Au+∇a = G,

we have for the low frequencies:

‖(a, u)‖`eL∞t (Ḃs
′

2,r)∩eL1
t (Ḃ

s′+2
2,r )

. ‖(a0, u0)‖`
Ḃs
′

2,r

+ ‖(F,G)‖`eL1
t (Ḃ

s′
2,r)

and for the high frequencies,

‖a‖h
(eL∞t ∩eL1

t )(Ḃ
s+1
p,r )

+ ‖u‖heL∞t (Ḃsp,r)∩eL1
t (Ḃ

s+2
p,r )

. ‖a0‖hḂs+1
p,r

+ ‖u0‖hḂsp,r + ‖F‖heL1
t (Ḃ

s+1
p,r )

+ ‖G‖heL1
t (Ḃ

s
p,r)
,

where the index ` (resp. h) means that only low (resp. high) frequencies have been taken
into account when computing the norm6.

6We mean that ‖z‖`
Ḃσp,r

=
“P

2jν≤1 2jrσ‖∆̇jz‖rLp
” 1
r

and that ‖z‖h
Ḃσp,r

=
“P

2jν>1 2jrσ‖∆̇jz‖rLp
” 1
r

.
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4.2.2. The linearized system with convection terms. In order to take advantage of the above
a priori estimates for (LPH), let us rewrite the barotropic Navier-Stokes equations as
follows: {

∂ta+ divu = −div(au),

∂tu−Au+∇a = −u · ∇u− J(a)Au−∇(aK(a)) with K(0) = 0.

As point out before, no gain of regularity is expected for the first equation. Hence the
convection term may cause a loss of one derivative. This motivates our including it in our
“linear analysis”. So we consider:

(PL)

{
∂ta+ v · ∇a+ divu = F,

∂tu+ v · ∇u−Au+∇a = G.

Then a new difficulty arises: the solution is not explicit any longer.

Now, keeping in mind that approach that we used for symmetric hyperbolic system, it
is more or less clear that if the estimates for (LPH) may be proved by means of an energy
method (which induces to consider only L2 type Besov spaces) then the convection terms
may be handled just by using suitable commutator estimates.

So we plan to prove estimates for

(PL)

{
∂ta+ v · ∇a+ divu = F,

∂tu+ v · ∇u−Au+∇a = G,

by means of an energy method. At this point, we realize that the convection terms satisfy
exactly the same commutator estimates as in our study of linear symmetric systems, so
one may restrict our study to the case v ≡ 0. We also take F ≡ 0 and G ≡ 0 to simplify
the presentation.

Then localizing the system by means of ∆̇j and setting aj := ∆̇ja and uj := ∆̇ju, we
get

(PLj)

{
∂taj + divuj = 0,

∂tuj −Auj +∇aj = 0.

Step 1. The basic energy equality.

Taking the L2 inner product of (PLj) with (aj , juj) yields

1
2
d

dt
‖(aj , uj)‖2L2 + µ‖∇Puj‖2L2 + ν‖∇Quj‖2L2 = 0.

This is good for u but does not give any decay for a.

Step 2. A second Lyapunov functional.

Set Y 2
j := ‖aj‖2L2 + ‖Quj‖2L2 + αν(∇aj |uj) and

H2
j :=

αν

2
‖∇aj‖2L2 + ν

(
1− α

2

)
‖∇Quj‖2L2 −

αν2

2
(∆Quj |∇aj).

Then we have
1
2
d

dt
Y 2
j +H2

j = 0.

This is good for low frequencies 2jν . 1 because if we take α small enough then

Y 2
j ≈ ‖(aj ,Quj)‖2L2 and H2

j ≈ ν22j‖(aj ,Quj)‖2L2 .
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Step 3. A third Lyapunov functional.

Set Z2
j := ‖ν∇aj‖2L2 + 2‖Quj‖2L2 + 2ν(∇aj |uj) and

K2
j := ν‖∇aj‖2L2 + ν‖∇Quj‖2L2 + 2(∇aj |uj).

Then we have
1
2
d

dt
Z2
j +K2

j = 0.

This is good for high frequencies 2jν & 1 because

Z2
j ≈ ‖(ν∇aj ,Quj)‖2L2 and K2

j & ν
−1‖(ν∇aj ,Quj)‖2L2 .

Putting all this together and integrating, we get

‖(aj ,Quj)(t)‖L2 + ν22j

∫ t

0
‖(aj ,Quj)‖L2 dτ . ‖(aj ,Quj)(0)‖L2 for 2jν . 1,

‖(ν∇aj ,Quj)(t)‖L2 +ν−1

∫ t

0
‖(ν∇aj ,Quj)‖L2 dτ. ‖(ν∇aj ,Quj)(0)‖L2 for 2jν & 1.

In low frequency, this is what we want. In order to recover the expected parabolic smoothing
for Qu in high frequency, we use the fact that

∂tQuj − µ∆Quj = −∇aj .
Hence, taking the L2 inner product:

1
2
d

dt
‖Quj‖2L2 + ν‖∇Quj‖2L2 ≤ |(∇aj |Quj)|,

whence, integrating and using the decay for ∇aj that we have just proved,

‖Quj(t)‖L2 + ν22j

∫ t

0
‖Quj‖L2 dτ . ‖Quj(0)‖L2 +

∫ t

0
‖∇aj‖L2 dτ

. ‖(aj ,Quj)(0)‖L2 .

The case with convection term may be handled by writing that{
∂taj + v · ∇aj + divuj = F +Rj(a, v),

∂tuj + v · ∇uj −Auj +∇a = G+Rj(u, v).

The remainder terms Rj(a, v) and Rj(u, v) are exactly the same as for symmetric hyper-
bolic systems, so that we easily end up with:

Proposition 4.1. Let s ∈]− d
2 ,

d
2 ] and (a, u) be a solution of (PL). We have the following

estimate with V (t) :=
∫ t

0
‖∇v(τ)‖

Ḃ
d
2
2,1

dτ :

‖a‖`
L∞t (Ḃs2,1)∩L1

t (Ḃ
s+2
2,1 )

+ ‖a‖h
L∞t (Ḃs+1

2,1 )∩L1
t (Ḃ

s+1
2,1 )

+‖u‖L∞t (Ḃs2,1)∩L1
t (Ḃ

s+2
2,1 )

. eCV (t)

(
‖a0‖`Ḃs2,1 + ‖a0‖hḂs+1

2,1
+ ‖u0‖Ḃs2,1 +

∫ t

0

(
‖F‖`

Ḃs2,1
+ ‖F‖h

Ḃs+1
2,1

+ ‖G‖Ḃs2,1
)
dt

)
.

Combining this statement with product estimates allows to prove global well-posedness
in any dimension d ≥ 2 for data (a0, u0) such that

‖a0‖`
Ḃ
d
2−1

2,1

+ ‖a0‖h
Ḃ
d
2
2,1

+ ‖u0‖
Ḃ
d
2−1

2,1

≤ c.

More precisely, we get the following statement (see [13]):
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Theorem 4.2. Assume that P ′(1) > 0, a0 ∈ Ḃ
d
2
2,1 and u0 ∈ Ḃ

d
2
−1

2,1 and that in addition

a`0 is in Ḃ
d
2
−1

2,1 . There exist two constants c and M depending only on d, and on the
parameters of the system such that if

‖a0‖`
Ḃ
d
2−1

2,1

+ ‖a0‖h
Ḃ
d
2
2,1

+ ‖u0‖
Ḃ
d
2−1

2,1

≤ c

then (NSC) has a unique global-in-time solution (a, u) with

a` ∈ Cb(Ḃ
d
2
−1

2,1 ) ∩ L1(Ḃ
d
2

+1

2,1 ), ah ∈ Cb(Ḃ
d
2
2,1) ∩ L1(Ḃ

d
2
2,1),

u ∈ Cb(Ḃ
d
2
−1

2,1 ) ∩ L1(Ḃ
d
2

+1

2,1 ).

4.2.3. Global existence in a Lp framework. We now aim at extending the above statement

to a Lp type framework: we have in mind assumptions of the type a0 and u0 small in Ḃ
d
p

p,1

and Ḃ
d
p
−1

p,1 , respectively with an additional condition on low frequencies, if the case may
be.

Preliminary remark: we have to keep in mind that the spectral analysis of (LPH): in
low frequency, some eigenvalues have nonzero imaginary part. Hence it is hopeless to take
a Lp framework with p 6= 2: we are stuck to the L2 framework for the low frequencies of
the solution.

We here follow the recent work by B. Haspot in [29]. In high frequency, the fundamental
observations are that, at the linear level:

• Pu satisfies a heat equation (hence parabolic smoothing in any Besov space);
• The “compressible” parabolic mode tends to be collinear to Qu+ ν−1(−∆)−1∇a ;
• The “damped” mode tends to be collinear to ν∇a+Qu .

Recall that
∂ta+ u · ∇a+ (1 + a)divQu = 0,

∂tQu+Q(u · ∇u)− ν∆Qu+∇(G(a)) = −Q(J(a)Au) with g′(0) = 1,

∂tPu+ P(u · ∇u)− µ∆Pu = −P(J(a)Au).

The last equation is a heat equation with quadratic terms. Hence one may expect that
parabolic smoothing for Pu holds in any Besov space.

As regards the second equation, we shall introduce a modified velocity field in order to
express −ν∆Qu + ∇(G(a)) as a Laplacian. This will enable us to exhibit the parabolic
smoothing for the velocity.
Step 1. The effective velocity.

Let us introduce the effective velocity w := u+ ν−1(−∆)−1∇(G(a)). It satisfies the heat
equation:

∂tQw − ν∆Qw = −Q(u · ∇u)−Q(J(a)Au)
−ν−1(−∆)−1∇(G′(a)div(au) +∇(G′(a)−G′(0))divu)− ν−1(−∆)−1∇divu.

All the terms of the right-hand side (but the last one) are at least quadratic hence expected
to be small if we start with small data. The last term is linear, but turns out to be lower
order. Now, using regularity estimates for the heat equation yields for any p,

‖Qw‖
L∞(Ḃ

d
p−1

p,1 )
+ν‖Qw‖

L1(Ḃ
d
p+1

p,1 )
. ‖Qw0‖

Ḃ
d
p−1

p,1

+ ν−1‖Qu‖
L1(Ḃ

d
p−1

p,1 )
+ quadratic.
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The term involving Qu has not the right scaling. It has two more derivatives, hence it is
good in high frequencies: if we put the threshold between low and high frequencies at j0
s.t. 1� 2j0ν then

(28) ν−1‖Qu‖h
L1(Ḃ

d
p−1

p,1 )

≤ ν−12−2j0‖Qu‖h
L1(Ḃ

d
p+1

p,1 )

� ν‖Qu‖h
L1(Ḃ

d
p+1

p,1 )

.

Hence, because Qu = Qw − ν−1(−∆)−1∇(G(a)),

‖Qw‖h
L∞(Ḃ

d
p−1

p,1 )

+ν‖Qw‖h
L1(Ḃ

d
p+1

p,1 )

. ‖Qw0‖h
Ḃ
d
p−1

p,1

+ ν−2‖G(a)‖h
L1(Ḃ

d
p−2

p,1 )

+ small,

and arguing as in (28), we see that the term involving G(a) is very small compared to
‖G(a)‖h

L1(Ḃ
d
p
p,1)

.

Step 2. Parabolic estimates for Pu. Because

∂tPu+ P(u · ∇u)− µPu = −P(J(a)Au),

we readily have

‖Pu‖
L∞(Ḃ

d
p−1

p,1 )
+ν‖Pu‖

L1(Ḃ
d
p+1

p,1 )
. ‖Pu0‖

Ḃ
d
p−1

p,1

+ quadratic.

Step 3. Decay estimates for a .
We notice that

∂ta+ u · ∇a+G′(0)a = −divQw − (divu+ ν−1(G′(a)−G′(0)))a.

Given that G′(0) = 1 > 0, we deduce that

(29) ‖a‖h
L∞t ∩L1

t (Ḃ
d
p
p,1)

. ‖a0‖h
Ḃ
d
p
p,1

+ ‖divQw‖h
L1(Ḃ

d
p
p,1)

+ quadratic.

Recall that

(30) ‖Qw‖h
L∞(Ḃ

d
p−1

p,1 )

+ν‖Qw‖h
L1(Ḃ

d
p+1

p,1 )

. ‖Qw0‖h
Ḃ
d
p−1

p,1

+ (ν2j0)−2‖a‖h
L1(Ḃ

d
p
p,1)

+ small.

Hence plugging (29) in (30) and taking j0 large enough, we deduce that

‖Qw‖h
L∞(Ḃ

d
p−1

p,1 )

+ν‖Qw‖h
L1(Ḃ

d
p+1

p,1 )

+ ‖a‖h
L∞t ∩L1

t (Ḃ
d
p
p,1)

. ‖Qw0‖h
Ḃ
d
p−1

p,1

+ ‖a0‖h
Ḃ
d
p
p,1

+ quadratic,

Of course, as Qu = Qw − ν−1(−∆)−1∇g, one may replace Qw by Qu in the above
inequality.
Step 4. Low frequency estimates.

As explained before, we have to restrict to Besov spaces Ḃs
2,1 . By taking advantage of

the previous energy method, we get:

‖(a, u)‖`
L∞t (Ḃ

d
2−1

2,1 )
+ ‖(a, u)‖`

L1
t (Ḃ

d
2 +1

2,1 )
. ‖(a0, u0)‖`

Ḃ
d
2−1

2,1

+ quadratic.

Step 5. Putting everything together. Let

X(t) := ‖(a, u)‖`
L∞t (Ḃ

d
2−1

2,1 )∩L1
t (Ḃ

d
2+1

2,1 )
+ ‖a‖h

L∞t ∩L1
t (Ḃ

d
p
p,1)

+‖u‖h
L∞t (Ḃ

d
p−1

p,1 )∩L1
t (Ḃ

d
p+1

p,1 )

.
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We use the previous steps and split all the nonlinear terms into low and high frequencies
so has to bound them by X2(t). At this point, p < 2d and p ≤ 4 is needed. Then we
eventually get

(31) X ≤ C
(
X(0) +X2).

Now it is clear that as long as

(32) 2CX(t) ≤ 1,

the Inequality (31) ensures that

(33) X(t) ≤ 2CX(0).

Using a bootstrap argument, one may conclude that if X(0) is small enough then (32)
is satisfied as long as the solution exists. Hence the (33) holds globally in time.

Let us state the result that we proved.

Theorem 4.3. Let p ∈ [2, 2d[∩[2, 4]. Assume that P ′(1) > 0, a0 ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p
−1

p,1

and that in addition a`0 and u`0 are in Ḃ
d
2
−1

2,1 . There exist two constants c and M depending
only on d, and on the parameters of the system such that if

‖(a0, u0)‖`
Ḃ
d
2−1

2,1

+ ‖a0‖h
Ḃ
d
p
p,1

+ ‖u0‖h
Ḃ
d
p−1

p,1

≤ c

then (NSC) has a unique global-in-time solution (a, u) with

(a, u)` ∈ Cb(Ḃ
d
2
−1

2,1 ) ∩ L1(Ḃ
d
2

+1

2,1 ), ah ∈ Cb(Ḃ
d
p

p,1) ∩ L1(Ḃ
d
p

p,1),

uh ∈ Cb(Ḃ
d
p
−1

p,1 ) ∩ L1(Ḃ
d
p

+1

p,1 ).

• The above statement has been first proved independently in a joint work with F.
Charve [10] and by Q. Chen, C. Miao and Z. Zhang [12] in 2009.
• In these notes, we used Haspot’s method [29].
• Uniqueness for the full range p < 2d follows from Lagrangian approach [21].
• The smallness condition is satisfied for small densities and large highly oscillating

velocities: take uε0 : x 7→ φ(x) sin(ε−1x ·ω)n with ω and n in Sd−1 and φ ∈ S(Rd).
Then

‖uε0‖
Ḃ
d
p−1

p,1

≤ Cε1− d
p if p > d.

Hence such data with small enough ε generate global unique solutions.

5. On the incompressible limit

We now want to study the convergence of the barotropic Navier-Stokes equations when
the Mach number ε tends to 0.

Given that the Mach number is the ratio of the typical velocity over the sound speed, in
the small Mach number regime, we expect the relevant time scale to be 1/ε. Therefore it
is natural to set

(ρ, u)(t, x) = (ρε, εuε)(εt, x).
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With these new variables, the original system (NSC) recasts in ∂tρ
ε + div(ρεuε) = 0,

∂t(ρεuε) + div(ρεuε ⊗ uε)− µ∆uε−(λ+µ)∇div uε +
∇P ε

ε2
= 0.

In the case of well-prepared data:

ρε0 = 1 +O(ε2) and uε0 with div uε0 = O(ε),

the time derivatives may be bounded independently of ε for ε going to 0. Hence no acoustic
waves have to be taken into account and one may prove that the solution tends to the
incompressible Navier-Stokes equations when ε goes to 0 by a standard approach. Besides,
asymptotic expansions may be derived if one has more information on the asymptotic
expansions of the data.

Here, we shall rather consider ill-prepared data, namely

ρε0 = 1 + εbε0 and uε0.

Initially, for such data, the time derivative of the solution is of order ε−1 and highly
oscillating acoustic waves do have to be considered. Whether they may interact or not is
the main problem. This is the question that we want to address now in the whole space
framework.

To simplify, we take (bε0, u
ε
0) = (b0, u0) independent of ε. Note that it is not assumed

that divu0 = 0. We still assume that P ′(1) = 1.
Denoting ρε = 1 + εbε , it is found that (bε, uε) satisfies

(NSCε)


∂tb

ε +
div uε

ε
= −div(bεuε),

∂tu
ε + uε · ∇uε − Auε

1 + εbε
+ (1+k(εbε))

∇bε

ε
= 0,

(bε, uε)|t=0 = (b0, u0),

with A := µ∆ + (λ+µ)∇div and k a smooth function satisfying k(0) = 0.

According to the previous parts, System (NSCε) is locally well-posed for all small enough
ε > 0. We want to study whether:

(1) we have lim infε→0 Tε ≥ T where Tε stands for the lifespan of (bε, uε) and T stands
for the lifespan of the solution v to the incompressible Navier-Stokes equation:

(NS)
{
∂tv + P(v · ∇v)− µ∆v = 0,
v|t=0 = Pu0.

(2) Tε = +∞ for small ε if T = +∞,
(3) uε tends to v and bε converges to 0.

To simplify the presentation, in these notes, we only consider the case where the data are
so small that the solution to (NSCε) as well as that of (NS) are global. The reader may
find results concerning large data in [14].

5.1. Back to the linearized equations. With the above scaling, the linearized com-
pressible Navier-Stokes equations in terms of (bε, uε) read

∂tb
ε +

divuε

ε
= −div(bεuε),

∂tu
ε + uε · ∇uε − Auε

1 + εbε
+ (1+k(εbε))

∇bε

ε
= 0
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and the linearized equations about (0, 0) are
∂tb

ε +
divQuε

ε
= 0,

∂tQuε − ν∆Quε +
∇bε

ε
= 0,

∂tPuε − µ∆Puε = 0.

As pointed out in the previous section, the last equation is the heat equation whereas
denoting vε := |D|−1divQuε, the first two equations are equivalent to

(BMε)


∂tb

ε +
|D|vε

ε
= 0,

∂tv
ε − ν∆vε − |D|v

ε

ε
= 0.

This latter system may be solved explicitly by using the Fourier transform:

d

dt

(
b̂ε(ξ)
v̂ε(ξ)

)
=
(

0 −ε−1|ξ|
ε−1|ξ| −ν|ξ|2

)(
b̂ε(ξ)
v̂ε(ξ)

)
.

As in the previous section, we discover that there are two regimes: in the high frequency
regime νε|ξ| > 2, the eigenvalues read

λ±(ξ) = −ν|ξ|
2

2

(
1±

√
1− 4

ε2ν2|ξ|2

)
whereas in the low frequency regime νε|ξ| < 2, one has

λ±(ξ) = −ν|ξ|
2

2

(
1± i

√
4

ε2ν2|ξ|2
− 1
)
.

Therefore

λ+(ξ) ∼ −ν|ξ|2 and λ−(ξ) ∼ − 1
ε2ν

for ξ →∞,

and

λ± (ξ) ∼ −ν |ξ|
2

2
∓ i |ξ|

ε
for ξ → 0.

Hence, in high frequency we expect to have
• one parabolic mode with diffusion ν ;
• one damped mode with coefficient 1

ε2ν
.

whereas, in low frequency (BMε) should behave like

d

dt
z − ν

2
∆z ∓ i |D|

ε
z = 0.

The important fact is that the low frequency regime tends to invade the whole Rd when
ε → 0 as the threshold between the two regimes is at |ξ| = 2(νε)−1. Hence it has to be
studied with more care than in the previous section. In Rd, taking advantage of the large
imaginary part of the eigenvalues for low frequencies turns out to be the key to proving
convergence for ε tending to 0 as it supplies dispersion. Note that as our global existence
theorem was based on L2 type estimates as far as low frequencies were concerned, the
imaginary part of the eigenvalues was not used so far.
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5.2. About dispersion. In the whole space, the following Strichartz estimates are avail-
able for the acoustic wave system:

Proposition 5.1. Let (bε, vε) solve

{
∂tb

ε + ε−1|D|vε = F,

∂tv
ε − ε−1|D|bε = G.

Then we have the inequality

‖(bε, vε)‖eLrT (Ḃ
s+d( 1

p−
1
2 )+1

r
p,1 )

. ε
1
r

(
‖(b0, v0)‖Ḃs2,1 + ‖(F,G)‖L1

T (Ḃs2,1)

)
whenever

p ≥ 2,
2
r
≤ min

(
1, (d− 1)

(1
2
− 1
p

))
and (r, p, d) 6= (2,∞, 3).

Proof. Performing a suitable change of variables, one may assume that ε = 1 with no loss
of generality. Now, as pointed out in Subsection 2.5, the acoustic wave equation generates
a unitary group on L2(Rd) which satisfies the dispersion inequality with σ = (d − 1)/2.
Therefore, localizing the system by means of ∆̇0 and using Strichartz estimates, we see
that in the case ε = 1,

‖(∆̇0b, ∆̇0v)‖LrT (Lp) . ‖(∆̇0b0, ∆̇0v0)‖L2 + ‖(∆̇0F, ∆̇0G)‖L1
T (L2).

In fact, a simple scaling argument combined with this inequality gives also for all j ∈ Z,

2j(d( 1
p
− 1

2
)+ 1

r
)‖(∆̇jb, ∆̇jv)‖LrT (Lp) . ‖(∆̇jb, ∆̇jv)‖L2 + ‖(∆̇jF, ∆̇jG)‖L1

T (L2),

from which one easily deduces the wanted inequality. �

The fundamental fact that we shall use for proving convergence is that the above state-
ment implies that, compared to Sobolev embedding, dispersion gives a gain of 1/r derivative
and the small factor ε

1
r . For instance, if the dimension is d ≥ 4 then one may take p =∞

and r = 2 so that, by virtue of functional embedding, one gets

‖(bε, vε)‖L2
T (L∞) . ε

1
2

(
‖(b0, v0)‖

Ḃ
d
2−

1
2

2,1

+ ‖(F,G)‖
L1
T (Ḃ

d
2−

1
2

2,1 )

)
.

Similar gains may be obtained in dimension d = 2, 3. They are slightly more complicated
to state, though.

5.3. A global convergence statement for small critical data. Let us now state our
result of convergence for global small solutions.

Theorem 5.1. There exist two positive constants η and M depending only on d and G,
such that if

(34) C0 := ‖b0‖
Ḃ
d
2−1

2,1 ∩B
d
2
2,1

+ ‖u0‖
Ḃ
d
2
2,1

≤ η

then the following results hold:
(1) System (NSCε) has a unique global solution (bε, uε) with

‖bε‖
L∞(Ḃ

d
2−1

2,1 )∩L2(Ḃ
d
2
2,1)

+ ε‖bε‖
L∞(Ḃ

d
2
2,1)

+ ‖uε‖
L∞(Ḃ

d
2−1

2,1 )∩L1(Ḃ
d
2 +1

2,1 )
≤MC0
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(2) the incompressible Navier-Stokes equations (NS) with data Pu0 have a unique
solution v with

‖v‖
L∞(Ḃ

d
2−1

2,1 )∩L1(Ḃ
d
2 +1

2,1 )
≤MC0

(3) for any α ∈]0, 1/2] if d ≥ 4, α ∈]0, 1/2[ if d = 3, α ∈]0, 1/6] if d = 2, Puε tends
to v in C(R+; Ḃ−1−α

∞,1 ) when ε goes to 0.
(4) (bε,Quε) tends to 0 in some space Lr(Ḃσ

p,1) (the value of r and p depending on
the dimension) with an explicit rate of decay.

Proof. Step 1. Uniform estimates.

Making the change of functions

cε(t, x) := εbε(ε2t, εx), vε(t, x) := εuε(ε2t, εx)

we notice that (bε, uε) solves (NSCε) if and only if (cε, vε) solves (NSC) with rescaled
data εbε0(ε·), εuε0(ε·) and hε. Hence the global existence theorem for (NSC) (in the L2

framework) ensures the first part of the theorem. We get a global solution (bε, uε) such
that

‖bε‖`
L∞(Ḃ

d
2−1

2,1 )∩L1(Ḃ
d
2 +1

2,1 )
+ ε‖bε‖h

L∞(Ḃ
d
2
2,1)

+ ε−1‖bε‖h
L1(Ḃ

d
2
2,1)

+‖uε‖
L∞(Ḃ

d
2−1

2,1 )∩L1(Ḃ
d
2 +1

2,1 )
≤M

(
‖b0‖`

Ḃ
d
2−1

2,1

+ ε‖b0‖h
Ḃ
d
2
2,1

+ ‖u0‖
Ḃ
d
2−1

2,1

)
.

Let us emphasize that in the above inequality the barrier between low and high frequencies
is at ε−1.

Step 2. Convergence to zero for the compressible modes (bε,Quε).

We use the dispersive inequalities for the acoustic wave operator, given that

(35)

{
∂tb

ε + ε−1divQuε = F ε,

∂tQuε + ε−1∇bε = Gε,

with F ε := −div(bεuε) and

G: = −Q
(
uε · ∇uε +

1
1+εbε

Auε +
K(εbε)∇bε

ε

)
.

Taking s = d/2−1,
• p ∈ [2(d− 1)/(d− 3),∞] and r = 2 if d ≥ 4,
• p ∈ [2,∞[ and r = 2p/(p−2) if d = 3,
• p ∈ [2,∞] and r = 4p/(p−2) if d = 2,

and using the fact that, according to product laws in Besov spaces and of the uniform
estimates of the previous step we have

‖(F ε, Gε)‖
L1(Ḃ

d
2−1

2,1 )
≤ CC0,

one may conclude that
‖(bε,Quε)‖eLr(Ḃ d

p−
3
2+1

r
p,1 )

≤ CC0ε
1
r .

Step 3. Convergence of the incompressible part.



FOURIER ANALYSIS METHODS FOR MODELS IN FLUID MECHANICS 39

The vector-field wε := Puε − v satisfies

(36) ∂tw
ε − µ∆wε = Hε, wε|t=0 = 0,

with

Hε := −P(wε ·∇v)− P(uε ·∇wε)− P(Quε · ∇v)− P(uε · ∇Quε)− P (J(εbε)Auε) .

There are three types of (quadratic) terms in Hε :
• The first two terms are linear in wε, and their coefficient is small as uε and v are

small. Hence one expect them to be negligible.
• Owing to Quε, the next two terms decay like some power of ε (previous step).
• The last term is small because J(εbε) is of order εbε.

In order to make all this rigorous, one has to use appropriate norms. For instance, in the
(nonphysical !) case d ≥ 4, maximal regularity estimates for the heat equation ensure that

(37) ‖wε‖
L1(Ḃ

d
p+1

2
p,1 )

+ ‖wε‖
L∞(Ḃ

d
p−

3
2

p,1 )
. ‖wε0‖

Ḃ
d
p−

3
2

p,1

+ ‖Hε‖
L1(Ḃ

d
p−

3
2

p,1 )

and the above heuristics combined with product laws in Besov spaces leads to

‖wε‖
L1(Ḃ

d
p+1

2
p,1 )

+ ‖wε‖
L∞(Ḃ

d
p−

3
2

p,1 )
≤ CC0ε

1
2 for all p ∈ [2(d− 1)/(d− 3),∞].

�
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