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O. Forster: Analytic Number Theory

0. Notations and Conventions

Standard notations for sets

Z ring of all integers

N0 set of all integers ≥ 0

N1 set of all integers ≥ 1

P set of all primes = {2, 3, 5, 7, 11, . . .}
Q,R,C denote the fields of rational, real and complex numbers respectively

A∗ multiplicative group of invertible elements of a ring A

[a, b], ]a, b[ , [a, b[ , ]a, b] denote closed, open and half-open intervals of R
R+ = [0,∞[ set of non-negative real numbers

R∗
+ = R+ ∩ R∗ multiplicative group of positive real numbers

bxc greatest integer ≤ x ∈ R

Landau symbols O, o

For two functions f, g : [a,∞[ → C, one writes

f(x) = O(g(x)) for x→∞,

if there exist constants C > 0 and x0 ≥ a such that

|f(x)| ≤ C|g(x)| for all x ≥ x0.

Similarily,

f(x) = o(g(x)) for x→∞

means that for every ε > 0 there exists R ≥ a such that

|f(x)| ≤ ε|g(x)| for all x ≥ R.

For functions f, g : ]a, b[ → C the notions

f(x) = O(g(x)) for x↘ a,

and

f(x) = o(g(x)) for x↘ a,

are defined analogously.

f(x) = f0(x) +O(g(x))
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0. Notations and Conventions

is defined as f(x)− f0(x) = O(g(x)).

Asymptotic equality

Two functions f, g : [a,∞[ → C are said to be asymptotically equal for x → ∞, in
symbols

f(x) ∼ g(x) for x→∞,

if g(x) 6= 0 for x ≥ x0 and

lim
x→∞

f(x)

g(x)
= 1.

Analogously, for two sequences (an)n>n0 and (bn)n>n0 ,

an ∼ bn

means lim
n→∞

an
bn

= 1. A famous example for asymptotic equality is the Stirling formula

n! ∼
√

2πn
(n
e

)n
,

which we will prove in theorem 9.8.

Miscellaneous

We sometimes write ‘iff’ as an abbreviation for ‘if and only if’.
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1. Divisibility. Unique Factorization Theorem

1.1. Definition. Let x, y ∈ Z be two integers. We define

x | y (read: x divides y),

iff there exists an integer q such that y = qx. We write x - y, if this is not the case.

1.2. We list some simple properties of divisibility for numbers x, y, z ∈ Z.

i) (x | y ∧ y | z) =⇒ x | z.
ii) x | 0 for all x ∈ Z.

iii) 0 | x =⇒ x = 0.

iv) 1 | x and −1 | x for all x ∈ Z.

v) (x | y ∧ y | x) =⇒ x = ±y.

1.3. Definition. A prime number is an integer p ≥ 2 such that there doesn’t exist any
integer x with 1 < x < p and x | p.
So the only positive divisors of a prime number p are 1 and p. Note that by definition
1 is not a prime number.

Every integer x ≥ 2 is either a prime or a product of a finite number of primes. This can
be easily proved by induction on x. The assertion is certainly true for x = 2. Let now
x > 2, and assume that the assertion has already been proved for all integers x′ < x. If
x is a prime, we are done. Otherwise there exists a decomposition x = yz with integers
2 ≤ y, z < x. By induction hypothesis, y and z can be written as products of primes

y =
n∏
i=1

pi, z =
m∏
j=1

qj, (m,n ≥ 1, pi, qj prime)

Multiplying these two formulas gives the desired prime factorization of x.

Using the convention that an empty product (with zero factors) equals 1, we can state
that any positive integer x is a product of primes

x =
n∏
i=1

pi, n ≥ 0, pi primes.

We can now state and prove Euclid’s famous theorem on the infinitude of primes.

1.4. Theorem (Euclid). There exist infinitely many prime numbers.

Proof. Assume to the contrary that there are only finitely many primes and that

p1 := 2, p2 := 3, p3, . . . , pn

Chap. 1 last revised: 2003-04-14 3



1. Unique factorization theorem

is a complete list of all primes. The integer

x := p1 · p2 · . . . · pn + 1

must be a product of primes, hence must be divisible by at least one of the pi, i =
1, . . . , n. But this is impossible since

x

pi
= (integer) +

1

pi

is not an integer. Hence the assumption is false and there exist infinitely many primes.

Whereas the existence of a prime factorization was easy to prove, the uniqueness is
much harder. For this purpose we need some preparations.

1.5. Definition. Two integers x, y ∈ Z are called relatively prime or coprime (G.
teilerfremd) if they are not both equal to 0 and there does not exist an integer d > 1
with d | x and d | y.
This is equivalent to saying that x and y have no common prime factor.

In particular, if p is a prime and x an integer with p - x, then p and x are relatively
prime.

1.6. Theorem. Two integers x, y are coprime iff there exist integers n,m such that

nx+my = 1.

Proof. “⇐” If nx +my = 1, every common divisor d of x and y is also a divisor of 1,
hence d = ±1. So x and y are coprime.

“⇒” Suppose that x, y are coprime. Without loss of generality we may assume x, y ≥ 0.
We prove the theorem by induction on max(x, y).

The assertion is trivially true for max(x, y) = 1.

Let now N := max(x, y) > 1 und suppose that the assertion has already been proved
for all integers x′, y′ with max(x′, y′) < N . Since x, y are coprime, we have x 6= y,
so we may suppose 0 < x < y. Then (x, y − x) is a pair of coprime numbers with
max(x, y − x) < N . By induction hypothesis there exist integers n,m with

nx+m(y − x) = 1,

which implies (n−m)x+my = 1, q.e.d.

1.7. Theorem. Let x, y ∈ Z. If a prime p divides the product xy, then p | x or p | y.
Proof. If p | x, we are done. Otherwise p and x are coprime, hence there exist integers
n,m with np + mx = 1. Multiplying this equation by y and using xy = kp with an
integer k, we obtain

y = npy +mxy = npy +mkp = p(ny +mk).
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This shows p | y, q.e.d.

1.8. Theorem (Unique factorization theorem). Every positive integer can be written
as a (finite) product of prime numbers. This decomposition is unique up to order.

Proof. The existence of a prime factorization has already been proved, so it remains to
show uniqueness. Let

x = p1 · . . . · pn = q1 · . . . · qm (∗)

be two prime factorizations of a positive integer x. We must show that m = n and
after rearrangement pi = qi for all i. We may assume n ≤ m. We prove the assertion
by induction on n.

a) If n = 0, it follows x = 1 and m = 0, hence the assertion is true in this case.

b) Induction step n−1 → n, (n ≥ 1). We have p1 | q1 · . . . · qm, hence by theorem 1.7,
p1 must divide one of the factors qi and since qi is prime, we must have p1 = qi. After
reordering we may assume i = 1. Dividing equation (∗) by p1 we get

p2 · . . . · pn = q2 · . . . · qm.

By induction hypothesis we have n = m and, after reordering, pi = qi for all i, q.e.d.

If we collect multiple occurrences of the same prime, we can write every positive integer
in a unique way as

x =
n∏
i=1

pei
i , p1 < p2 < . . . < pn primes, n ≥ 0, ei > 0.

This is called the canonical prime factorization of x.

Sometimes a variant of this representation is useful. For an integer x 6= 0 and a prime
p we define

ordp(x) := sup{e ∈ N0 : pe | x}.

Then every nonzero integer x can be written as

x = sign(x)
∏
p

pordp(x)

where the product is extended over all primes. Note that ordp(x) = 0 for all but a finite
number of primes, so there is no problem with the convergence of the infinite product.

1.9. Definition (Greatest common divisor). Let x, y ∈ Z. An integer d is called greatest
common divisor of x and y, if the following two conditions are satisfied:

i) d ist a common divisor of x and y, i.e. d | x and d | y.
ii) If d1 is any common divisor of x and y, then d1 | d.
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1. Unique factorization theorem

If d1 and d2 are two greatest common divisors of x and y, then d1 | d2 and d2 | d1,
hence by 1.2.v) we have d1 = ±d2. Therefore the greatest common divisor is (in case
of existence) uniquely determined up to sign. The positive one is denoted by gcd(x, y).
The existence can be seen using the prime factor decomposition. For x 6= 0 and y 6= 0,

gcd(x, y) =
∏
p

pmin(ordp(x),ordp(y))

and gcd(x, 0) = gcd(0, x) = |x|, gcd(0, 0) = 0.

Two integers x, y are relatively prime iff gcd(x, y) = 1.

The following is a generalization of theorem 1.6.

1.10. Theorem. Let x, y ∈ Z. An integer d is greatest common divisor of x and y iff

i) d is a common divisor of x and y, and

ii) there exist integers n,m such that

nx+my = d.

Proof. The case when at least one of x, y equals 0 is trivial, so we may suppose x 6= 0,
y 6= 0.

“⇒” If d is greatest common divisor of x and y, then x/d and y/d are coprime, hence
by theorem 1.6 there exist integers n,m with

n
x

d
+m

y

d
= 1,

which implies ii).

The implication “⇐” is trivial.

1.11. Definition (Least common multiple). Let x, y ∈ Z. An integer m is called least
common multiple of x and y, if the following two conditions are satisfied:

i) m ist a common multiple of x and y, i.e. x | m and y | m.

ii) If m1 is any common multiple of x and y, then m | m1.

As in the case of the greatest common divisor, the least common multiple of x and y
is uniquely determined up to sign. The positive one is denoted by lcm(x, y). For x 6= 0
and y 6= 0 the following equation holds

lcm(x, y) =
∏
p

pmax(ord(x),ord(y))

and lcm(x, 0) = lcm(0, x) = lcm(0, 0) = 0.

The definitions of the greatest common divisor and least common multiple can be
extended in a straightforward way to more than two arguments. One has

gcd(x1, . . . , xn) = gcd(gcd(x1, . . . , xn−1), xn),

lcm(x1, . . . , xn) = lcm(lcm(x1, . . . , xn−1), xn).
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2. Congruences. Chinese Remainder Theorem

2.1. Definition. Let m ∈ Z. Two integers x, y are called congruent modulo m, in
symbols

x ≡ y mod m,

if m divides the difference x− y, i.e. x− y ∈ mZ.

Examples. 20 ≡ 0 mod 5, 3 ≡ 10 mod 7, −4 ≡ 10 mod 7.

x ≡ 0 mod 2 is equivalent to “x is even”,

x ≡ 1 mod 2 is equivalent to “x is odd”.

Remarks. a) x, y are congruent modulo m iff they are congruent modulo −m.

b) x ≡ y mod 0 iff x = y.

c) x ≡ y mod 1 for all x, y ∈ Z.

Therefore the only interesting case is m ≥ 2.

2.2. Proposition. The congruence modulo m is an equivalence relation, i.e. the fol-
lowing properties hold:

i) (Reflexivity) x ≡ x mod m for all x ∈ Z
ii) (Symmetry) x ≡ y mod m =⇒ y ≡ x mod m.

iii) (Transitivity) (x ≡ y mod m) ∧ (y ≡ z mod m) =⇒ x ≡ z mod m.

2.3. Lemma (Division with rest). Let x,m ∈ Z, m ≥ 2. Then there exist uniquely
determined integers q, r satisfying

x = qm+ r, 0 ≤ r < m.

Remark. The equation x = qm+ r implies that x ≡ r mod m. Therefore every integer
x ∈ Z is equivalent modulo m to one and only one element of

{0, 1, . . . ,m− 1}.

2.4. Definition. Let m be a positive integer. The set of all equivalence classes of Z
modulo m is denoted by Z/mZ or briefly by Z/m.

From the above remark we see that

Z/mZ = {0, 1, . . . ,m− 1},

where x = x mod m is the equivalence class of x modulo m. If there is no danger of
confusion, we will often write simply x instead of x.

Chap. 2 last revised: 2001-10-20 7



2. Congruences

Equivalence modulo m is compatible with addition and multiplication, i.e.

x ≡ x′ mod m and y ≡ y′ mod m =⇒
x+ y ≡ x′ + y′ mod m and xy ≡ x′y′ mod m.

Therefore addition and multiplication in Z induces an addition and multiplication in
Z/m such that Z/m becomes a commutative ring and the canonical surjection

Z −→ Z/m, x 7→ x mod m,

is a ring homomorphism.

Example. In Z/7 one has

3 + 4 = 7 = 0, 3 + 5 = 8 = 1, 3 · 5 = 15 = 1.

The following are the complete addition and multiplication tables of Z/7.

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 2 2
6 0 6 5 4 3 2 1

2.5. Theorem. Let m be a positive integer. An element x ∈ Z/m is invertible iff
gcd(x,m) = 1.

Proof. “⇐” Suppose gcd(x,m) = 1. By theorem 1.6 there exist integers ξ, µ such that

ξx+ µm = 1.

This implies ξx ≡ 1 mod m, hence ξ is an inverse of x in Z/m.

“⇒” Suppose that x is invertible, i.e. x ·y = 1 for some y ∈ Z/m. Then xy ≡ 1 mod m,
hence there exists an integer k such that xy − 1 = km. Therefore yx− km = 1, which
means by theorem 1.6 that x and m are coprime, q.e.d.

2.6. Corollary. Let m be a positive integer. The ring Z/m is a field iff m is a prime.

Notation. If p is a prime, the field Z/p is also denoted by Fp.
For any ring A with unit element we denote its multiplicative group of invertible ele-
ments by A∗. In particular we use the notations (Z/m)∗ and F∗p.

Example. For p = 7 we have the field F7 = Z/7 with 7 elements. From the above
multiplication table we can read off the inverses of the elements of F∗7 = F7 r {0}.
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x 1 2 3 4 5 6
x−1 1 4 5 2 3 6

2.7. Direct Products. For two rings (resp. groups) A1 and A2, the cartesian product
A1 × A2 becomes a ring (resp. a group) with component-wise defined operations:

(x1, x2) + (y1, y2) := (x1 + y1, x2 + y2)

(x1, x2) · (y1, y2) := (x1y1, x2y2).

If A1, A2 are two rings with unit element, then (0, 0) is the zero element and (1, 1) the
unit element of A1 × A2. For the group of invertible elements the following equation
holds:

(A1 × A2)
∗ = A∗1 × A∗2.

Note that if A1 and A2 are fields, the direct product A1 ×A2 is a ring, but not a field,
since there are zero divisors:

(1, 0) · (0, 1) = (0, 0).

2.8. Theorem (Chinese remainder theorem). Let m1,m2 be two positive coprime
integers. Then the map

φ : Z/m1m2 −→ Z/m1 × Z/m2, x 7→ (x mod m1, x mod m2)

is an isomorphism of rings.

Proof. It is clear that φ is a ring homomorphism. Since Z/m1m2 and Z/m1×Z/m2 have
the same number of elements (namely m1m2), it suffices to prove that φ is injective.

Suppose φ(x) = 0. This means that x ≡ 0 mod m1 and x ≡ 0 mod m1, i.e. m1 | x
and m2 | x. Since m1 and m2 are coprime, it follows that m1m2 | x, hence x = 0 in
Z/m1m2, q.e.d.

Remark. The classical formulation of the Chinese remainder theorem is the following
(which is contained in theorem 2.8):

Let m1,m2 be two positive coprime integers. Then for every pair a1, a2 of integers there
exists an integer a such that

a ≡ ai mod mi for i = 1, 2.

This integer a is uniquely determined modulo m1m2.

2.9. Definition (Euler phi function). Let m be a positive integer. Then ϕ(m) is defined
as the number of integers k ∈ {0, 1, . . . ,m−1} which are coprime to m. Using theorem
2.5, this can also be expressed as

ϕ(m) := #(Z/m)∗,

where #S denotes the number of elements of a set S.

For small m, the ϕ-function takes the following values

9
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m 1 2 3 4 5 6 7 8 9 10
ϕ(m) 1 1 2 2 4 2 6 4 6 4

It is obvious that for a prime p one has ϕ(p) = p−1. More generally, for a prime power
pk it is easy to see that

ϕ(pk) = pk − pk−1 = pk
(
1− 1

p

)
.

If m and n are coprime, it follows from theorem 2.8 that

(Z/mn)∗ ∼= (Z/m)∗ × (Z/n)∗,

hence ϕ(mn) = ϕ(n)ϕ(m). Using this, we can derive

2.10. Theorem. For every positive integer n the following formula holds:

ϕ(n) = n
∏
p|n

(
1− 1

p

)
,

where the product is extended over all prime divisors p of n.

Proof. Let n =
∏r

i=1 p
ei
i be the canonical prime decomposition of n. Then

ϕ(n) =
r∏
i=1

ϕ(pei
i ) =

r∏
i=1

pei
i

(
1− 1

pi

)
= n

r∏
i=1

(
1− 1

pi

)
, q.e.d.

2.11. Theorem (Euler). Let m be an integer ≥ 2 and a an integer with gcd(a,m) = 1.
Then

aϕ(m) ≡ 1 mod m.

Proof. We use some notions and elementary facts from group theory. Let G be a finite
group, written multiplicatively, with unit element e. The order of an element a ∈ G is
defined as

ord(a) := min{k ∈ N1 : ak = e}.

The order of the group is defined as the number of its elements,

ord(G) := #G.

Then, as a special case of a theorem of Lagrange, one has

ord(a) | ord(G) for all a ∈ G.

We apply this to the group G = (Z/m)∗. By definition ord((Z/m)∗) = ϕ(m). Let r be
the order of a ∈ (Z/m)∗. Then ϕ(m) = rs with an integer s and we have in (Z/m)∗

aϕ(m) = ars = (ar)s = 1
s
= 1, q.e.d.

2.12. Corollary (Little Theorem of Fermat). Let p be a prime and a an integer with
p - a. Then

ap−1 ≡ 1 mod p.

10
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3. Arithmetical Functions. Möbius Inversion Theorem

3.1. Definition. a) An arithmetical function is a map

f : N1 −→ C.

b) The function f is called multiplicative if it is not identically zero and

f(nm) = f(n)f(m) for all n,m ∈ N1 with gcd(n,m) = 1.

c) The function f is called completely multiplicative or strictly multiplicative if it is
not identically zero and

f(nm) = f(n)f(m) for all n,m ∈ N1 (without restriction).

Remark. A multiplicative arithmetical function a : N1 → C satisfies a(1) = 1. This can
be seen as follows: Since gcd(1, n) = 1, we have a(n) = a(1)a(n) for all n. Therefore
a(1) 6= 0, (otherwise a would be identically zero), and a(1) = a(1)a(1) implies a(1) = 1.

3.2. Examples

i) The Euler phi function ϕ : N1 → N1 ⊂ C, which was defined in (2.9), is a multi-
plicative arithmetical function. It is not completely multiplicative, since for a prime p
we have

ϕ(p2) = p2 − p = (p− 1)p 6= ϕ(p)2 = (p− 1)2.

ii) Let α ∈ C be an arbitrary complex number. We define a function

pα : N1 −→ C, n 7→ pα(n) := nα = eα log(n).

Then pα is a completely multiplicative arithmetical function.

iii) Let f : N1 → Z ⊂ C be defined by f(p) := 1 for primes p and f(n) = 0 if n is not
prime. This is an example of an arithmetical function which is not multiplicative.

Remark. A multiplicative arithmetical function f : N1 → C is completely determined
by its values at the prime powers: If n =

∏r
i=1 p

ei
i is the canonical prime decomposition

of n, then

f(n) =
r∏
i=1

f(pei
i ).

3.3. Divisor function τ : N1 → N1. This function is defined by

τ(n) := number of positive divisors of n.

Thus τ(p) = 2 and τ(pk) = 1 + k for primes p. (The divisors of pk are 1, p, p2, . . . , pk).

Chap. 3 last revised: 2001-11-21 11



3. Arithmetical functions

The divisor function is multiplicative. This can be seen as follows: Let m1,m2 ∈ N1 be
a pair of coprime numbers and m := m1m2. Looking at the prime decompositions one
sees that the product d := d1d2 of divisors d1 | m1 and d2 | m2 is a divisor of m and
conversely every divisor d | m can be uniquely decomposed in this way. This can be
also expressed by saying that the map

Div(m1)×Div(m2) −→ Div(m1m2), (d1, d2) 7→ d1d2

is bijective, where Div(n) denotes the set of positive divisors of n. This implies imme-
diately the multiplicativity of τ .

3.4. Divisor sum function σ : N1 → N1. This function is defined by

σ(n) := sum of all positive divisors of n.

Thus for a prime p we have σ(p) = 1 + p and

σ(pk) = 1 + p+ p2 + . . .+ pk =
pk+1 − 1

p− 1
.

The divisor sum function is also multiplicative.

Proof. Let m1,m2 ∈ N1 be coprime numbers. Then

σ(m1m2) =
∑

d|m1m2

d =
∑

d1|m1,d2|m2

d1d2 =
( ∑
d1|m1

d1

)( ∑
d2|m2

d2

)
= σ(m1)σ(m2).

3.5. Definition. A perfect number (G. vollkommene Zahl) is a number n ∈ N1 such
that σ(n) = 2n.

The condition σ(n) = 2n can also be expressed as∑
d|n,d<n

d = n,

i.e. a number n is perfect if the sum of its proper divisors equals n. The smallest perfect
numbers are

6 = 1 + 2 + 3,

28 = 1 + 2 + 4 + 7 + 14.

The next perfect numbers are 496, 8128. The even perfect numbers are characterized
by the following theorem.

Theorem. a) (Euclid) If q is a prime such that 2q− 1 is prime, then n := 2q−1(2q− 1)
is a perfect number.

12
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b) (Euler) Conversely, every even perfect number n may be obtained by the construction
in a).

The prove is left as an exercise.

The above examples correspond to q = 2, 3, 5, 7. For q = 11, 211 − 1 = 2047 = 23 · 89
is not prime.

It is not known whether there exist odd perfect numbers.

3.6. Möbius function µ : N1 → Z. This rather strange looking, but important
function is defined by

µ(n) :=


1, for n = 1,
0, if there exists a prime p with p2 | n,

(−1)r, if n is a product of r different primes.

This leads to the following table

n 1 2 3 4 5 6 7 8 9 10
µ(n) 1 −1 −1 0 −1 1 −1 0 0 1

It follows directly from the definition that µ is multiplicative.

3.7. Definition. Let f : N1 → C be an arithmetical function. The summatory function
of f is the function F : N1 → C defined by

F (n) :=
∑
d|n

f(d),

where the sum is extended over all positive divisors d of n.

3.8. Examples. i) The divisor sum function

σ(n) =
∑
d|n

d

is the summatory function of the identity map

ι : N1 −→ N1, ι(n) := n.

ii) The divisor function τ : N1 → N1 can be written as

τ(n) =
∑
d|n

1.

Therefore τ is the summatory function of the constant function

u : N1 −→ N1, u(n) := 1 for all n.

13



3. Arithmetical functions

3.9. Theorem (Summatory function of the Euler phi function). For all n ∈ N1∑
d|n

ϕ(d) = n.

This means that the summatory function of the Euler phi function is the identity map
ι : N1 → N1.

Proof. The set Mn := {1, 2, . . . , n} is the disjoint union of the sets

Ad := {m ∈Mn : gcd(m,n) = d}, d | n.

Therefore n =
∑

d|n #Ad. We have gcd(m,n) = d iff d | m, d | n and gcd(m/d, n/d) = 1.

It follows that #Ad = ϕ(n/d), hence

n =
∑
d|n

#Ad =
∑
d|n

ϕ(n/d) =
∑
d|n

ϕ(d), q.e.d.

3.10. Theorem (Summatory function of the Möbius function).∑
d|n

µ(d) =
{

1 for n = 1,
0 for all n > 1.

Therefore the summatory function of the Möbius function is the function

δ1 : N1 −→ Z, δ1(n) :=
{

1 for n = 1,
0 for all n > 1.

Proof. The case n = 1 is trival.

Now suppose n ≥ 2 and let n =
∏r

j=1 p
ej

j be the canonical prime factorization of n.
For 0 ≤ s ≤ r we denote by Ds the set of all divisors d | n which are the product of s
different primes ∈ {p1, . . . , pr}, (D0 = {1}). For all d ∈ Ds we have µ(d) = (−1)s; but
µ(d) = 0 for all divisors of n that do not belong to any of the Ds. Therefore

∑
d|n

µ(d) =
r∑
s=0

∑
d∈Ds

µ(d) =
r∑
s=0

(−1)s#Ds =
r∑
s=0

(−1)s
(
r

s

)
= (1 + (−1))r = 0,

where we have used the binomial theorem. This proves our theorem.

3.11. Definition (Dirichlet product). For two arithmetical functions f, g : N1 → C
one defines their Dirichlet product (or Dirichlet convolution) f ∗ g : N1 → C by

(f ∗ g)(n) :=
∑
d|n

f(d)g(n/d).

14
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This can be written in a symmetric way as

(f ∗ g)(n) =
∑
k`=n

f(k)g(`),

where the sum extends over all pairs k, ` ∈ N1 with k` = n. This shows that f ∗g = g∗f
and (f ∗ g)(n) =

∑
d|n f(n/d)g(d).

Example. (f ∗ g)(6) = f(1)g(6) + f(2)g(3) + f(3)g(2) + f(6)g(1).

Remark. Let f be an arbitrary arithmetical function and u the constant function u(n) =
1 for all n ∈ N1. Then

(u ∗ f)(n) =
∑
d|n

u(n/d)f(d) =
∑
d|n

f(d).

Thus the summatory function of an arithmetical function f is nothing else than the
Dirichlet product u ∗ f .

3.12. Theorem. If the arithmetical functions f, g : N1 → C are multiplicative, their
Dirichlet product f ∗ g is again multiplicative.

Example. Since the constant function u(n) = 1 is clearly multiplicative, the summatory
function of every multiplicative arithmetical function is multiplicative.

Proof. Let m1,m2 ∈ N1 be two coprime numbers. Then

(f ∗ g)(m1m2) =
∑

d|m1m2

f(d)g
(m1m2

d

)
=

∑
d1|m1,d2|m2

f(d1d2)g
(m1m2

d1d2

)
=

∑
d1|m1

∑
d2|m2

f(d1)f(d2)g
(m1

d1

)
g
(m2

d2

)
=

∑
d1|m1

f(d1)g
(m1

d1

) ∑
d2|m2

f(d2)g
(m2

d2

)
= (f ∗ g)(m1)(f ∗ g)(m2), q.e.d.

3.13. Theorem. The set F(N1,C) of all arithmetical functions f : N1 → C is a
commutative ring with unit element when addition is defined by

(f + g)(n) := f(n) + g(n) for all n ∈ N1

and multiplication is the Dirichlet product. The unit element is the function δ1 : N1 → C
defined by

δ1(1) := 1, δ1(n) = 0 for all n > 1.

15



3. Arithmetical functions

Remark. The notation δ1 is motivated by the Kronecker δ-symbol

δij =
{

1 for i = j,
0 otherwise.

Using this, one can write δ1(n) = δ1n.

Proof. That δ1 is the unit element is seen as follows

(δ1 ∗ f)(n) =
∑
d|n

δ1(d)f
(n
d

)
= δ1(1)f

(n
1

)
= f(n).

All ring axioms with exception of the associative law for multiplication are easily veri-
fied. Proof of associativity:

((f ∗ g) ∗ h)(n) =
∑
k,`

k`=n

(f ∗ g)(k)h(`) =
∑
k,`

k`=n

∑
i,j

ij=k

f(i)g(j)h(`)

=
∑
i,j,`

ij`=n

f(i)g(j)h(`) =
∑
i,m

im=n

∑
j,`

j`=m

f(i)g(j)h(`)

=
∑
i,m

im=n

f(i)(g ∗ h)(m) = (f ∗ (g ∗ h))(n), q.e.d.

3.14. Theorem (Möbius inversion formula). Let f : N1 → C be an arithmetical
function and F : N1 → C its summatory function,

F (n) =
∑
d|n

f(d) for all n ∈ N1. (∗)

Then f can be reconstructed from F by the formula

f(n) =
∑
d|n

µ
(n
d

)
F (d) for all n ∈ N1. (∗∗)

Conversely, (∗∗) implies (∗).

Proof. The formula (∗) can be written as

F = u ∗ f,

where u is the constant function u(n) = 1 for all n. Theorem 3.10 says that u is the
Dirichlet inverse of the Möbius function:

u ∗ µ = µ ∗ u = δ1.

Therefore

µ ∗ F = µ ∗ (u ∗ f) = (µ ∗ u) ∗ f = δ1 ∗ f = f,

16
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which is formula (∗∗). Conversely, from f = µ ∗ F one obtains

u ∗ f = u ∗ (µ ∗ F ) = (u ∗ µ) ∗ F = δ1 ∗ F = F,

that is formula (∗), q.e.d.

3.15. Examples. i) Applying the Möbius inversion formula to the summatory function
of the Euler phi function (theorem 3.9)

n = ι(n) =
∑
d|n

ϕ(d)

yields ϕ = µ ∗ ι, i.e.

ϕ(n) =
∑
d|n

µ(d) ι
(n
d

)
=

∑
d|n

n

d
µ(d).

This can also be written as

ϕ(n)

n
=

∑
d|n

µ(d)

d
.

ii) Example 3.8.i) says u ∗ ι = σ which implies ι = µ ∗ σ, i.e.∑
d|n

µ
(n
d

)
σ(d) = n.

iii) Example 3.8.ii) says u ∗ u = τ , hence u = µ ∗ τ , i.e.∑
d|n

µ
(n
d

)
τ(d) = 1 for all n ≥ 1.

We now state a second Möbius inversion formula for functions defined on the real
interval

I1 := {x ∈ R : x ≥ 1}.

3.16. Theorem. For a function f : I1 → C define F : I1 → C by

F (x) =
∑
k6x

f
(x
k

)
for all x ≥ 1, (�)

where the sum extends over all positive integers k ≤ x. Then

f(x) =
∑
k6x

µ(k)F
(x
k

)
for all x ≥ 1. (��)

Conversely, (��) implies (�).

17



3. Arithmetical functions

Example. If f is the constant function f(x) = 1 for all x ≥ 1, then F (x) = bxc =
greatest integer ≤ x. The theorem implies the remarkable formula∑

k6x

µ(k)
⌊x
k

⌋
= 1 for all x ≥ 1.

E.g. for x = 5 this reads

5µ(1) + 2µ(2) + µ(3) + µ(4) + µ(5) = 1.

To prove theorem 3.16, we put it first into an abstract context.

3.17. Let F(I1,C) denote the vector space of all functions f : I1 = [1,∞[ → C. We
define an operation of the ring of all arithmetical functions on this vector space

F(N1,C)×F(I1,C) −→ F(I1,C), (α, f) 7→ α . f,

where

(α . f)(x) :=
∑
k6x

α(k)f
(x
k

)
.

3.18. Theorem. With the above operation, F(I1,C) becomes a module over the ring
F(N1,C).

Proof. It is clear that F(I1,C) is an abelian group with respect to pointwise addition
(f+g)(x) = f(x)+g(x). So it remains to verify the following laws (for α, β ∈ F(N1,C)
and f, g ∈ F(I1,C)).

i) α . (f + g) = α . f + α . g,

ii) (α+ β) . f = α . f + β . f ,

iii) α . (β . f) = (α ∗ β) . f ,

iv) δ1 . f = f .

The assertions i) and ii) are trivial. The associative law iii) can be seen as follows

(α . (β . f))(x) =
∑
k6x

α(k)(β . f)
(x
k

)
=

∑
k6x

α(k)
∑
`6x/k

β(`)f
( x

k`

)
=

∑
k`6x

α(k)β(`)f
( x

k`

)
=

∑
n6x

∑
k`=n

α(k)β(`)f
(x
n

)
=

∑
n6x

(α ∗ β)(n)f
(x
n

)
= ((α ∗ β) . f)(x).

18
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Proof of iv):

(δ1 . f)(x) =
∑
k6x

δ1(k)f
(x
k

)
= δ1(1)f

(x
1

)
= f(x), q.e.d.

3.19. Now we take up the proof of theorem 3.16. Equation (�) can be written as

F = u . f

with the constant function u(n) = 1. Multiplying this equation by the Möbius function
yields

µ . F = µ . (u . F ) = (µ ∗ u) . f = δ1 . f = f,

which is equation (��). Conversly, from f = µ . F it follows

u . f = u . (µ . F ) = (u ∗ µ) . F = δ1 . F = F,

which is equation (�), q.e.d.

19



4. Zeta function

4. Riemann Zeta Function. Euler Product

4.1. Definition. For a complex s ∈ C with Re(s) > 1, the Riemann zeta function is
defined by the series

ζ(s) :=
∞∑
n=1

1

ns
.

Let us first study the convergence of this infinite series. Following an old tradition, we
denote the real and imaginary part of s by σ resp. t, i.e.

s = σ + it, σ, t ∈ R.

We have

1

ns
= n−s = e−s logn = e−σ log(n)−it logn =

1

nσ
e−it logn,

therefore∣∣∣ 1

ns

∣∣∣ =
1

nσ
.

Since
∞∑
n=1

1

nσ
converges for all real σ > 1, we see that the zeta series converges absolutely

and uniformly in every halfplane H(σ0), σ0 > 1, where

H(σ0) := {s ∈ C : Re(s) > σ0}.

It follows by a theorem of Weierstrass that ζ is a holomorphic (= regular analytic)
function in the halfplane

H(1) = {s ∈ C : Re(s) > 1}.

We will see later that ζ can be continued analytically to a meromorphic function in
the whole complex plane C, which is holomorphic in C r {1} and has a pole of first
order at s = 1. A weaker statement is

4.2. Proposition. lim
σ↘1

ζ(σ) = ∞.

Proof. Let R > 0 be any given bound. Since
∑∞

n=1
1
n

= ∞, there exists an N > 1 such
that

N∑
n=1

1

n
≥ R + 1.
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The function σ 7→
∑N

n=1
1
nσ is continuous on R, hence there exists an ε > 0 such that

N∑
n=1

1

nσ
≥ R for all σ with σ < 1 + ε.

A fortiori we have
∑∞

n=1
1
nσ ≥ R for all 1 < σ < 1 + ε. This proves the proposition.

4.3. Theorem (Euler product). For all s ∈ C with Re(s) > 1 one has

ζ(s) =
∏
p∈P

1

1− p−s
,

where the product is extended over the set P of all primes.

Proof. Since |p−s| < 1/p ≤ 1/2, we can use the geometric series

1

1− p−s
=

∞∑
k=0

1

pks
,

which converges absolutely. If P ⊂ P is any finite set of primes, the product

∏
p∈P

( ∞∑
k=0

1

pks

)
=

∏
p∈P

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ . . .

)
can be calculated by termwise multiplication and we obtain

∏
p∈P

( ∞∑
k=0

1

pks

)
=

∑
n∈N(P)

1

ns
,

where N(P) is the set of all positive integers n whose prime decomposition contains
only primes from the set P . (Here the unique prime factorization is used.) Letting
P = Pm be set of all primes ≤ m and passing to the limit m → ∞, we obtain the
assertion of the theorem.

Remark. The Euler product can be used to give another proof of the infinitude of
primes. If the set P of all primes were finite, the Euler product

∏
p∈P(1− p−s)−1 would

be continuous at s = 1, which contradicts the fact that limσ↘1 ζ(σ) = ∞.

4.4. We recall some facts from the theory of analytic functions of a complex variable
about infinite products. LetG ⊂ C be an open set. For a continuous function f : G→ C
and a compact subset K ⊂ G we define the maximum norm

‖f‖K := sup{|f(z)| : z ∈ K} ∈ R+.
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4. Zeta function

(The supremum is < ∞ since f is continous.) Let now fν : G → C, ν ≥ 1, be a
sequence of holomorphic functions. The infinite product

F (z) :=
∞∏
ν=1

(1 + fν(z))

is said to be normally convergent on a compact subset K ⊂ G, if

∞∑
ν=1

‖fν‖K <∞.

In this case, the product converges absolutely and uniformly on K. (The converse is not
true, as can be seen by taking the constant functions fν = −1

2
for all ν.) The product is

said to be normally convergent in G if it converges normally on any compact subset of
K ⊂ G. The limit F of a normally convergent infinite product of holomorphic functions
1 + fν is again holomorphic and F (z0) = 0 for a particular point z0 ∈ G if and only if
one of the factors vanishes in z0.

4.5. Theorem. The Riemann zeta function has no zeroes in the half plane

H(1) = {s ∈ C : Re(s) > 1}.

For its inverse one has

1

ζ(s)
=

∏
p∈P

(
1− 1

ps

)
=

∞∑
n=1

µ(n)

ns
,

where µ is the Möbius function.

Proof. The first assertion follows from the fact that the Euler product for the zeta
function converges normally in H(1) and all factors (1−p−s)−1 have no zeroes in H(1).
Inverting the product representation for 1/ζ(s) yields 1/ζ(s) =

∏
(1 − p−s). To prove

the last equation, let P a finite set of primes and N′(P) the set of all positive integers
n that can be written as a product n = p1p2 · . . . · pr of distinct primes pj ∈ P , (r ≥ 0).
Then, since (−1)r = µ(p1 · . . . · pr),∏

p∈P

(
1− 1

ps

)
=

∑
n∈N′(P)

µ(n)

ns
.

Letting P = Pm be set of all primes ≤ m and passing to the limit m→∞, we obtain
the assertion of the theorem. Note that µ(n) = 0 for all n ∈ N1 r

⋃
m N′(Pm).

4.6. We recall now some facts about the logarithm function. (By logarithm we always
mean the natural logarithm with basis e = 2.718 . . . .) We have the Taylor expansion

log(1 + z) =
∞∑
n=1

(−1)n−1 z
n

n
for all z ∈ C with |z| < 1.
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From this follows

log
( 1

1− z

)
=

∞∑
n=1

zn

n
for all z ∈ C with |z| < 1.

(Of course here the principal branch of the logarithm with log(1) = 0 is understood.)

If f : G → C is a holomorphic function without zeroes in a simply connected domain
G ⊂ C, then there exists a holomorphic branch of the logarithm of f , i.e. a holomorphic
function

log f : G→ C with e(log f)(z) = f(z) for all z ∈ G.

This function log f is uniquely determined up to an additive constant 2πin, n ∈ Z.

Since the zeta function has no zeroes in the simply connected halfplane H(1), we can
form the logarithm of the zeta function, where we select the branch of log ζ that takes
real values on the real half line ]1,∞[.

4.7. Theorem. For the logarithm of the zeta function in the halfplane H(1), the
following equation holds:

log ζ(s) =
∑
p∈P

1

ps
+

∞∑
k=2

1

k

∑
p∈P

1

pks
.

The function

F (s) :=
∞∑
k=2

1

k

∑
p∈P

1

pks

is bounded in H(1).

Remark. If one defines the prime zeta function by

P (s) :=
∑
p∈P

1

ps
for s ∈ H(1),

the formula of the theorem may be written as

log ζ(s) =
∞∑
k=1

P (ks)

k
= P (s) + F (s), where F (s) =

∞∑
k=2

P (ks)

k
.

Proof. Using the Euler product we obtain

log ζ(s) =
∑
p∈P

log
( 1

1− p−s

)
=

∑
p∈P

∞∑
k=1

1

kpks
=

∞∑
k=1

∑
p∈P

1

kpks

=
∑
p∈P

1

ps
+

∞∑
k=2

1

k

∑
p∈P

1

pks
.
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To prove the boundedness of

F (s) =
∞∑
k=2

1

k

∑
p∈P

1

pks
=

∞∑
k=2

P (ks)

k

in H(1), we use the estimate (with σ = Re(s) > 1)

|P (ks)| ≤ P (kσ) ≤ P (k) =
∑
p∈P

1

pk
≤

∞∑
n=2

1

nk

≤
∞∑
n=2

∫ n

n−1

dx

xk
=

∫ ∞

1

dx

xk
=

1

k − 1

and obtain for all s ∈ H(1)

|F (s)| ≤
∞∑
k=2

1

k(k − 1)
= 1, q.e.d.

4.8. Corollary (Euler).∑
p∈P

1

p
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ . . . = ∞.

Proof. Since the difference |P (s) − log ζ(s)| is bounded for Re(s) > 1 we get, using
proposition 4.2,

lim
σ↘1

P (σ) = lim
σ↘1

(∑
p∈P

1

pσ

)
= ∞.

This implies the assertion.

Remark. The corollary gives another proof that there are infinitely many primes, but
says more. Comparing with

∞∑
n=1

1

n2
<∞,

we can conclude that the density of primes is in some sense greater than the density
of square numbers.

The following theorem is a variant of theorem 4.7 and gives an interesting formula for
the difference between P (s) and log ζ(s).

4.9. Theorem. We have the following representation of the prime zeta function for
Re(s) > 1

P (s) =
∑
p∈P

1

ps
= log ζ(s) +

∞∑
k=2

µ(k)

k
log ζ(ks).
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Proof. We start from the formula of theorem 4.7

log ζ(s) =
∞∑
k=1

P (ks)

k
.

We have as in the proof of theorem 4.7 the estimate

|P (ks)| ≤ P (kσ) ≤ 1

kσ − 1
≤ 2

kσ
, (where σ = Re(s)),

which implies

| log ζ(s)| ≤
∞∑
k=1

2

k2σ
=

2

σ

∞∑
k=1

1

k2
=

2ζ(2)

σ
=:

c

σ

with the constant c = 2ζ(2). Therefore the series
∑∞

k=1(µ(k)/k) log ζ(ks) converges
absolutely:

∞∑
k=1

∣∣∣µ(k)

k
log ζ(ks)

∣∣∣ ≤ ∞∑
k=1

1

k
· c
kσ

=
cζ(2)

σ
<∞.

Substituting log ζ(ks) =
∑∞

`=1 P (k`s)/` we get

∞∑
k=1

µ(k)

k
log ζ(ks) =

∞∑
k,`=1

µ(k)P (k`s)

k`
=

∞∑
n=1

∑
k`=n

µ(k)
P (k`s)

k`

=
∞∑
n=1

∑
k|n

µ(k)
P (ns)

n
=

∞∑
n=1

δ1(n)
P (ns)

n

= P (s), q.e.d.

We conclude this chapter with an interesting application of therem 4.5.

4.10. Theorem. The probability that two random numbers m,n ∈ N1 are coprime is
6/π2 ≈ 61%, more precisely: For real x ≥ 1 let

Copr(x) := {(m,n) ∈ N1 × N1 : m,n ≤ x and m,n coprime}.

Then

lim
x→∞

#Copr(x)

x2
=

1

ζ(2)
=

6

π2
.

Proof. Let A(x) be the set of all pairs m,n of integers with 1 ≤ m,n ≤ x and

Ak(x) := {(n,m) ∈ A(x) : gcd(m,n) = k}.
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Then A(x) is the disjoint union of all Ak(x), k = 1, 2, . . . , bxc, and for every k we have
a bijection

Copr
(x
k

)
−→ Ak(x), (m,n) 7→ (km, kn).

Therefore∑
k6x

#Copr
(x
k

)
= bxc2.

Now we can apply the inversion formula of theorem 3.16 and obtain

#Copr(x) =
∑
k6x

µ(k)
⌊x
k

⌋2

.

Since 0 ≤ (x/k)− bx/kc < 1, it follows that (x/k)2 − bx/kc2 < 2x/k, hence∣∣∣∣#Copr(x)−
∑
k6x

µ(k)
(x
k

)2
∣∣∣∣ ≤ 2x

∑
k6x

1

k
≤ 2x(1 + log x) = O(x log x),

so we can write

#Copr(x)

x2
=

∑
k6x

µ(k)

k2
+O

( log x

x

)
.

On the other hand
∑∞

k=1 µ(k)/k2 = 1/ζ(2) by theorem 4.5, hence∣∣∣∣∑
k6x

µ(k)

k2
− 1

ζ(2)

∣∣∣∣ ≤ ∑
k>x

1

k2
= O

(1

x

)
.

Combining this with the previous estimate yields

#Copr(x)

x2
=

1

ζ(2)
+O

( log x

x

)
,

which implies the assertion of the theorem.

Remark. The fact ζ(2) =
π2

6
will be proven in the next chapter.
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5. The Euler-Maclaurin Summation Formula

5.1. We define a periodic function

saw : R −→ R

with period 1 by

saw(x) := x− bxc − 1
2

This is a kind of sawtooth function, see figure.

-

6

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1
2

−1
2

−2 −1 0 1 2 3

With this function, we can state a first form of the Euler-Maclaurin summation formula.
This formula shows how a sum can be approximated by an integral and gives an exact
error term.

5.2. Theorem (Euler-Maclaurin I). Let x0 be a real number and f : [x0,∞[ → C a
continuously differentiable function. Then we have for all integers n ≥ m ≥ x0

n∑
k=m

f(k) = 1
2
(f(m) + f(n)) +

∫ n

m

f(x)dx+

∫ n

m

saw(x)f ′(x)dx.

Proof. We have

n∑
k=m

f(k)− 1
2
(f(m) + f(n)) =

n−1∑
k=m

1
2
(f(k) + f(k + 1)).

On the other hand we get by partial integration∫ k+1

k

saw(x)f ′(x)dx =

∫ k+1

k

(x− k − 1
2
)f ′(x)dx

= (x− k − 1
2
)f(x)

∣∣∣k+1

k
−

∫ k+1

k

f(x)dx

= 1
2
(f(k + 1) + f(k))−

∫ k+1

k

f(x)dx.

Summing up from k = m to n− 1 yields the assertion of the theorem.
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5. Euler-Maclaurin summation

Using this theorem, we can construct an analytic continuation of the zeta function.

5.3. Theorem. The Riemann zeta function can be analytically continued to a mero-
morphic function in the halfplane H(0) = {s ∈ C : Re(s) > 0} with a single pole of
order 1 at s = 1. The continued function can be represented in H(0) as

ζ(s) =
1

2
+

1

s− 1
− s

∫ ∞

1

saw(x)

xs+1
dx.

Proof. Applying theorem 5.2 to the function f(x) = 1/xs we get

N∑
n=1

1

ns
= 1

2

(
1 +

1

N s

)
+

∫ N

1

dx

xs
− s

∫ N

1

saw(x)

xs+1
dx.

For Re(s) > 1 we have lim
N→∞

1/N s = 0 and

lim
N→∞

∫ N

1

dx

xs
= lim

N→∞

1

1− s

( 1

N s−1
− 1

)
=

1

s− 1
.

Therefore we can pass to the limit N →∞ in the formula above and get for Re(s) > 1

ζ(s) =
1

2
+

1

s− 1
− s

∫ ∞

1

saw(x)

xs+1
dx. (∗)

We will now show that the integral

F (s) :=

∫ ∞

1

saw(x)

xs+1
dx

exists for all s ∈ C with σ := Re(s) > 0 and represents a holomorphic function in the
halfplane H(0). This will then complete the proof of the theorem, since the right hand
side of the formula (∗) defines a meromorphic continuation of the zeta function to H(0)
with a single pole at s = 1.

The existence of the integral follows from the estimate∣∣∣saw(x)

xs+1

∣∣∣ ≤ 1

2
· 1

xσ+1
,

since
∫∞

1
(1/xσ+1) dx < ∞ for σ > 0. To prove the holomorphy of F it suffices by the

theorem of Morera to show that for all compact rectangles R ⊂ H(0)∫
∂R

F (s)ds = 0.

This can be seen as follows: Since ∂R ⊂ H(0) is compact, there exist a σ0 > 0 such
that Re(s) ≥ σ0 for all s ∈ ∂R. Therefore we have on ∂R× [1,∞[ the majorization∣∣∣saw(x)

xs+1

∣∣∣ ≤ 1

2
· 1

xσ0+1
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and we can apply the theorem of Fubini∫
∂R

F (s) ds =

∫
∂R

∫ ∞

1

saw(x)

xs+1
dx ds

=

∫ ∞

1

saw(x)
(∫

∂R

1

xs+1
ds︸ ︷︷ ︸

=0

)
dx = 0, q.e.d.

There exists also a proof of the holomorphy of F without recourse to Lebesgue inte-
gration theory: We write

F (s) =

∫ ∞

1

saw(x)

xs+1
dx =

∞∑
n=1

∫ n+1

n

saw(x)

xs+1
dx =

∞∑
n=1

fn(s)

with

fn(s) =

∫ n+1

n

saw(x)

xs+1
dx =

∫ n+1

n

x− n− 1
2

xs+1
dx.

The function fn is holomorphic in C (it is easily checked directly that g(z) =
∫ b

a
tz dt

is holomorphic in the whole z-plane) and satisfies an estimate

|fn(s)| ≤
1

2nσ0+1
for all s ∈ H(σ0)

Since
∑∞

n=1 1/nσ0+1 < ∞ for all σ0 > 0, the series F =
∑∞

n=1 fn converges uniformly
on every compact subset of H(0). By a theorem of Weierstraß, the limit function F is
holomorphic in H(0).

5.4. Definition. The Euler-Mascheroni constant is defined as the limit

C := lim
N→∞

( N∑
n=1

1

n
− logN

)
.

The existence of this limit can be proved using the Euler-Maclaurin summation formula
(5.2). This is left to the reader as an exercise.

5.5. Theorem. There exist uniquely determined functions

βk : R −→ R, k ∈ N1,

with the following properties:

i) All functions βk are periodic with period 1, i.e. βk(x + n) = βk(x) for all n ∈ Z,
and the functions βk with k ≥ 2 are continuous.

ii) β1 = saw.
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iii) βk is differentiable in ]0, 1[ and

β′k(x) = βk−1(x) for all 0 < x < 1 and k ≥ 2.

iv)

∫ 1

0

βk(x)dx = 0 for all k ≥ 1

Proof. By condition iii), the function βk is uniquely determined in the intervall ]0, 1[
by βk−1 up to an additive constant. This constant is uniquely determined by condition
iv). Thus by ii)-iv), all βk are uniquely determined in ]0, 1[, and by periodicity even
in R r Z. It remains to be shown that the definition of βk, k ≥ 2 can be extended
continuously across the integer points. This is equivalent with

lim
ε↘0

βk(ε) = lim
ε↘0

βk(1− ε).

For k ≥ 2 one has

βk(1− ε)− βk(ε) =

∫ 1−ε

ε

β′k−1(x)dx,

hence by iv)

lim
ε↘0

(βk(1− ε)− βk(ε)) =

∫ 1

0

β′k−1(x)dx = 0, q.e.d.

Example. Let us calculate β2. The condition

β′2(x) = β1(x) = x− 1
2

for 0 < x < 1

leads to β2(x) = 1
2
x2 − 1

2
x+ c with an integration constant c. Since∫ 1

0

(1
2
x2 − 1

2
x)dx = 1

6
− 1

4
= − 1

12
,

we have c = 1
12

, i.e.

β2(x) = 1
2
x2 − 1

2
x+ 1

12
= 1

2
x(x− 1) + 1

12
for 0 ≤ x ≤ 1.

-

6
1/12

−2 −1 0 1 2 3

Graph of β2
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5.6. Theorem. The functions βn have the following Fourier expansions

β2k(x) = (−1)k−12
∞∑
n=1

cos(2πnx)

(2πn)2k
, k ≥ 1, (1)

β2k+1(x) = (−1)k−12
∞∑
n=1

sin(2πnx)

(2πn)2k+1
, k ≥ 1, (2)

which converge uniformly on R.

Formula (2) is also valid for k = 0 and x ∈ R r Z.

Proof. a) We first calculate the Fourier series
∑

n∈Z cne
inx of β2. The coefficients cn are

given by the integral

cn =

∫ 1

0

β2(x)e
−2πinx dx.

By theorem 5.5.iv) we have c0 = 0. Let now n 6= 0. Using partial integration we get∫ 1

0

xe−2πinxdx = − 1

2πin
xe−2πinx

∣∣∣1
0
+

1

2πin

∫ 1

0

e−2πinxdx =
i

2πn

and ∫ 1

0

x2e−2πinxdx = − 1

2πin
x2e−2πinx

∣∣∣1
0
+

2

2πin

∫ 1

0

xe−2πinxdx =
i

2πn
+

2

(2πn)2
,

hence

cn =

∫ 1

0

(1
2
x2 − 1

2
x+ 1

12
) e−2πinxdx =

1

(2πn)2
.

Thus we have the Fourier series

β2(x) =
∑
n∈Zr0

e2πin

(2πn)2
=

∞∑
n=1

e2πinx + e−2πinx

(2πn)2
= 2

∞∑
n=1

cos(2πnx)

(2πn)2
.

By the general theory of Fourier series, the convergence is with respect to the L2-norm
‖f‖L2 = (

∫ 1

0
|f(x)|2dx)1/2, but since

∑∞
n=1 1/n2 < ∞ and β2 is continuous, we have

even uniform convergence.

b) Since the right hand sides of the formulae of the theorem satisfy the same recursion
and normalization relations (5.5.iii-iv) as the functions βk, it follows that the given
Fourier expansions are valid for all βk, k ≥ 2. To prove the formula for

β1(x) = saw(x) = −2
∞∑
n=1

sin(2πnx)

2πn
, x ∈ R r Z,
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it suffices to show that the series
∑∞

n=1
sin(2πnx)

2πn
converges uniformly on every interval

[δ, 1 − δ], 0 < δ < 1
2
, since then termwise differentiation of the Fourier series of β2 is

allowed. To simplify the notation we will prove the equivalent statement

∞∑
n=1

sinnx

n
converges uniformly on [δ, 2π − δ], (0 < δ < π).

Define

Sm(x) :=
m∑
n=1

sinnx = Im
( m∑
n=1

einx
)
.

For δ ≤ x ≤ 2π − δ we have

|Sm(x)| ≤
∣∣∣∣ m∑
n=1

einx
∣∣∣∣ =

∣∣∣eimx − 1

eix − 1

∣∣∣ ≤ 2

|eix/2 − e−ix/2|
=

1

sin x
2

≤ 1

sin δ
2

.

It follows for m ≥ k > 0∣∣∣∣ m∑
n=k

sinnx

n

∣∣∣∣ =

∣∣∣∣ m∑
n=k

Sn(x)− Sn−1(x)

n

∣∣∣∣
≤

∣∣∣∣ m∑
n=k

Sn(x)
( 1

n
− 1

n+ 1

)
+
Sm(x)

m+ 1
− Sk−1(x)

k

∣∣∣∣
≤ 1

sin δ
2

(1

k
− 1

m+ 1
+

1

m+ 1
+

1

k

)
≤ 2

k sin δ
2

,

hence also∣∣∣∣ ∞∑
n=k

sinnx

n

∣∣∣∣ ≤ 2

k sin δ
2

for all x ∈ [δ, 2π − δ],

which proves the asserted uniform convergence and thereby completes the proof of the
theorem.

5.7. Definition. It follows immediately from (5.5.iii-iv) that βn, restricted to the open
interval ]0, 1[, is a polynomial of degree n with rational coefficients. The n-th Bernoulli
polynomial Bn(X) ∈ Q[X] is defined by

Bn(x)

n!
= βn(x) for 0 < x < 1, n ≥ 1

and B0(X) = 1. The Bernoulli numbers1 Bk are defined by

Bn := Bn(0), n ≥ 0.

1Strictly speaking, it is not correct to use the same symbol Bk for the Bernoulli polynomials and
the Bernoulli numbers. However this notation is the usual one. To avoid confusion, we will always
indicate the variable when we are dealing with Bernoulli polynomials.
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We know already the first Bernoulli polynomials

B1(X) = X − 1
2

and B2(X) = X(X − 1) + 1
6
,

hence B0 = 1, B1 = −1
2
, B2 = 1

6
.

An easy consequence of theorem 5.6 is

5.8. Theorem. For the Bernoulli numbers the following relations hold:

i) B2k+1 = 0 for all k ≥ 1.

ii) B2k = (−1)k−1 2(2k)!

(2π)2k

∞∑
n=1

1

n2k
, hence

ζ(2k) =
(2π)2k

2(2k)!
|B2k| for all k ≥ 1.

iii) sign(B2k) = (−1)k−1 for all k ≥ 1.

Remarks. a) Formula ii) of the theorem says in particular

ζ(2) =
∞∑
n=1

1

n2
=
π2

6
,

which was already used in the previous chapter.

b) Since lim
σ→∞

ζ(σ) = 1, formula ii) shows the asymptotic growth of the Bernoulli

numbers B2k

|B2k| ∼
2(2k)!

(2π)2k
for k →∞.

5.9. Theorem (Generating function for the Bernoulli polynomials). For fixed x ∈ R,

the function
text

et − 1
is a complex analytic function of t with a removable singularity at

t = 0. The Taylor expansion at t = 0 of this function has the form

text

et − 1
=

∞∑
n=0

Bn(x)

n!
tn.

In particular, for x = 0 one has

t

et − 1
=

∞∑
n=0

Bn

n!
tn.

Proof. Define Bn(x) by the above Taylor expansions. We will show that
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5. Euler-Maclaurin summation

(a) B0(x) = 1, B1(x) = x− 1
2
,

(b) B′n(x) = nBn−1(x), (n ≥ 1),

(c)
∫ 1

0
Bn(x)dx = 0, (n ≥ 1).

Then theorem 5.5 implies
Bn(x)

n!
= βn(x) for 0 < x < 1 and all n ≥ 1.

Proof of (a)

text

et − 1
=
t(1 + xt+O(t2))

t+ 1
2
t2 +O(t3)

=
1 + xt+O(t2)

1 + 1
2
t+O(t2)

= (1 + xt)(1− 1
2
t) +O(t2) = 1 + (x− 1

2
)t+O(t2),

which shows B0(x) = 1 and B1(x) = x− 1
2
.

Proof of (b) We calculate
∂

∂x

text

et − 1
in two ways

∂

∂x

text

et − 1
=

∞∑
n=0

B′n(x)

n!
tn

and

∂

∂x

text

et − 1
=

t2ext

et − 1
=

∞∑
n=0

Bn(x)

n!
tn+1 =

∞∑
n=1

Bn−1(x)

(n− 1)!
tn

Comparing coefficients we get B′n(x) = nBn−1(x).

Proof of (c)∫ 1

0

text

et − 1
dx =

ext

et − 1

∣∣∣∣x=1

x=0

=
et

et − 1
− 1

et − 1
= 1.

On the other hand∫ 1

0

text

et − 1
dx =

∞∑
n=1

( 1∫
0

Bn(x)dx
) tn

n!
.

Comparing coefficients, we get
∫ 1

0
Bn(x)dx = 0 for all n ≥ 1, q.e.d.

5.10. Recursion formula. Theorem 5.9 can be used to derive a recursion formula for

the Bernoulli numbers. Since (et − 1)/t =
∞∑
n=1

tn−1/n!, we have

( ∞∑
k=0

Bk

k!
tk

)( ∞∑
`=0

1

(`+ 1)!
t`

)
= 1.
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The Cauchy product
∑∞

n=0 cnt
n of the two series has coefficients

cn =
n∑
k=1

Bk

k!(n− k + 1)!
=

1

(n+ 1)!

n∑
k=0

(
n+ 1

k

)
Bk.

Hence comparing coefficients we get B0 = 1 and

n∑
k=0

(
n+ 1

k

)
Bk = 0 for all n ≥ 1.

With this formula one can recursively calculate all Bn. The first non zero coefficients
are

k 0 1 2 4 6 8 10 12 14 16

Bk 1 −1
2

1
6

− 1
30

1
42

− 1
30

5
66

− 691
2730

6
7

−3617
510

5.11. Theorem (Euler-Maclaurin II). Let x0 be a real number and f : [x0,∞[ → C a
2r-times continuously differentiable function. Then we have for all integers n ≥ m ≥ x0

and all r ≥ 1

n∑
k=m

f(k) = 1
2
(f(m) + f(n)) +

∫ n

m

f(x)dx

+
r∑

k=1

B2k

(2k)!

(
f (2k−1)(n)− f (2k−1)(m)

)
−

∫ n

m

B̃2r(x)

(2r)!
f (2r)(x)dx

Here B̃2r(x) is the periodic function defined by B̃2r(x) := B2r(x− bxc) = (2r)!β2r(x).

Proof. We start with theorem 5.2

n∑
k=m

f(k) = 1
2
(f(m) + f(n)) +

∫ n

m

f(x)dx+

∫ n

m

saw(x)f ′(x)dx.

and evaluate the last integral by partial integration.

Since β′2(x) = saw(x) for k < x < k + 1 and β2 is continuous and periodic, we get∫ n

m

saw(x)f ′(x)dx =
n−1∑
k=m

∫ k+1

k

saw(x)f ′(x)dx

=
n−1∑
k=m

β2(x)f
′(x)

∣∣∣k+1

k
−

n−1∑
k=m

∫ k+1

k

β2(x)f
′′(x)dx

=
n−1∑
k=m

(β2(k+1)f ′(k+1)− β2(k)f
′(k))−

∫ n

m

β2(x)f
′′(x)dx

=
B2

2!
(f ′(n)− f ′(m))−

∫ n

m

β2(x)f
′′(x)dx.
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This proves the case r = 1 of the theorem. The general case is proved by induction.

Induction step r → r + 1.

−
∫ n

m

β2r(x)f
(2r)(x)dx = −β2r+1(x)f

(2r)(x)
∣∣∣n
m

+

∫ n

m

β2r+1(x)f
(2r+1)(x)dx

=

∫ n

m

β2r+1(x)f
(2r+1)(x)dx [since β2r+1(k) =

B2r+1

(2r + 1)!
= 0]

= β2r+2(x)f
(2r+1)(x)

∣∣∣n
m
−

∫ n

m

β2r+2(x)f
(2r+2)(x)dx

=
B2r+2

(2r + 2)!
(f (2r+1)(n)− f (2r+1)(m))−

∫ n

m

β2r+2(x)f
(2r+2)(x)dx.

This proves the assertion for r + 1.

Remark. If f is infinitely often differentiable and we pass to the limit r → ∞, the
“error term”∫ n

m

B̃2r(x)

(2r)!
f (2r)(x)dx

will in general not converge to 0. In case f is real and f (2r) does not change sign in the
interval [m,n], one has the following estimate∣∣∣∫ n

m

B̃2r(x)

(2r)!
f (2r)(x)dx

∣∣∣ ≤ |B2r|
(2r)!

∣∣∣∫ n

m

f (2r)(x)dx
∣∣∣ =

|B2r|
(2r)!

|f (2r−1)(n)− f (2r−1)(m)|,

which means that the error of the approximation
n∑

k=m

f(k) ≈ 1
2
(f(m) + f(n)) +

∫ n

m

f(x)dx+
r∑

k=1

B2k

(2k)!

(
f (2k−1)(n)− f (2k−1)(m)

)
is by absolute value not larger than the last term of the sum. Hence by increasing r one
gets better approximations as long as the absolute values of the added terms decrease.

5.12. Theorem. The Riemann zeta function can be analytically continued to a mero-
morphic function in the whole plane C with a single pole of order 1 at s = 1. For
Re(s) > 1− 2r, the continued function can be represented as

ζ(s) =
1

2
+

1

s− 1
+

r∑
k=1

B2k

(2k)!
s(s+ 1) · . . . · (s+ 2k − 2)

− s(s+ 1) · . . . · (s+ 2r − 1)

∫ ∞

1

B̃2r(x)

(2r)!
· 1

xs+2r
dx.

Proof. This is proved by applying theorem 5.11 to the sum
∑n

k=1 1/ks and passing to the
limit n→∞. That the last integral defines a holomorphic function for Re(s) > 1− 2r,

follows from the fact that the function B̃2r(x) is bounded and∣∣∣ 1

xs+2r

∣∣∣ ≤ 1

x1+δ
for all s ∈ C with Re(s) ≥ 1− 2r + δ.
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6. Dirichlet Series

6.1. Definition. A Dirichlet series is a series of the form

f(s) =
∞∑
n=1

an
ns
, (s ∈ C),

where (an)n>1 is an arbitrary sequence of complex numbers.

The abscissa of absolute convergence of this series is defined as

σa := σa(f) := inf{σ ∈ R :
∞∑
n=1

|an|
nσ

<∞} ∈ R ∪ {±∞}.

If
∑∞

n=1(|an|/nσ) does not converge for any σ ∈ R, then σa = +∞, if it converges for
all σ ∈ R, then σa = −∞.

An analogous argument as in the case of the zeta function shows that a Dirichlet series
with abscissa of absolute convergence σa converges absolutely and uniformly in every
halfplane H(σ), σ > σa.

Example. The Dirichlet series

g(s) :=
∞∑
n=1

(−1)n−1

ns

has σa(g) = 1. We will see however that the series converges for every s ∈ H(0). Of
course the convergence is only conditional and not absolute if 0 < Re(s) ≤ 1.

We need some preparations.

6.2. Lemma (Abel summation). Let (an)n>1 and (bn)n>1 be two sequences of complex
numbers and set

An :=
n∑
k=1

ak, A0 = 0 (empty sum).

Then we have for all n ≥ m ≥ 1

n∑
k=m

akbk = Anbn − Am−1bm −
n−1∑
k=m

Ak(bk+1 − bk).

Remark. This can be viewed as an analogon of the formula for partial integration∫ b

a

F ′(x)g(x)dx = F (b)g(b)− F (a)g(a)−
∫ b

a

F (x)g′(x)dx.
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Proof.

n∑
k=m

akbk =
n∑

k=m

(Ak − Ak−1)bk =
n∑

k=m

Akbk −
n−1∑

k=m−1

Akbk+1

= Anbn +
n−1∑
k=m

Akbk −
n−1∑
k=m

Akbk+1 − Am−1bm

= Anbn − Am−1bm −
n−1∑
k=m

Ak(bk+1 − bk), q.e.d.

6.3. Lemma. Let s ∈ C with σ := Re(s) > 0. Then we have for all m,n ≥ 1∣∣∣ 1

ns
− 1

ms

∣∣∣ ≤ |s|
σ
·
∣∣∣ 1

nσ
− 1

mσ

∣∣∣.
Proof. We may assume n ≥ m. Since

d

dx

( 1

xs

)
= −s · 1

xs+1
,

−s
∫ n

m

dx

xs+1
=

1

ns
− 1

ms
.

Taking the absolute values, we get the estimate∣∣∣ 1

ns
− 1

ms

∣∣∣ ≤ |s|
∫ n

m

dx

xσ+1
=
|s|
σ
·
∣∣∣ 1

nσ
− 1

mσ

∣∣∣, q.e.d.

Remark. For s0 ∈ C and an angle α with 0 < α < π/2, we define the angular region

Ang(s0, α) := {s0 + reiφ : r ≥ 0 and |φ| ≤ α}.

For any s ∈ Ang(s0, α) r {s0} we have

|s− s0|
Re(s− s0)

=
1

cosφ
≤ 1

cosα
,

hence the estimate in lemma 6.3 can be rewritten as∣∣∣ 1

ns
− 1

ms

∣∣∣ ≤ 1

cosα
·
∣∣∣ 1

nσ
− 1

mσ

∣∣∣ for all s ∈ Ang(0, α).

6.4. Theorem. Let

f(s) =
∞∑
n=1

an
ns
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be a Dirichlet series such that for some s0 ∈ C the partial sums
N∑
n=1

an
ns0

are bounded

for N →∞. Then the Dirichlet series converges for every s ∈ C with

Re(s) > σ0 := Re(s0).

The convergence is uniform on every compact subset

K ⊂ H(σ0) = {s ∈ C : Re(s) > σ0}.

Hence f is a holomorphic function in H(σ0).

Proof. Since

f(s) =
∞∑
n=1

1

ns0
· an
ns−s0

=
∞∑
n=1

ãn
ns−s0

where ãn :=
an
ns0

,

we may suppose without loss of generality that s0 = 0. By hypothesis there exists a
constant C1 > 0 such that

∣∣∣ N∑
n=1

an

∣∣∣ ≤ C1 for all N ∈ N.

The compact set K is contained in some angular region Ang(0, α) with 0 < α < π/2.
We define

Cα :=
1

cosα
and σ∗ := inf{Re(s) : s ∈ K} > 0.

Now we apply the Abel summation lemma 6.2 to the sum
∑
an · (1/ns), s ∈ K. Setting

AN :=
∑N

n=1 an, we get for N ≥M ≥ 1

N∑
n=M

an
ns

= AN
1

N s
− AM−1

1

M s
+

N−1∑
n=M

An

( 1

ns
− 1

(n+ 1)s

)
.

This leads to the estimate (with σ = Re(s))

∣∣∣ N∑
n=M

an
ns

∣∣∣ ≤ 2C1

∣∣∣ 1

M s

∣∣∣ + C1

N−1∑
n=M

∣∣∣ 1

ns
− 1

(n+ 1)s

∣∣∣
≤ 2C1

1

Mσ
+ C1Cα

N−1∑
n=M

( 1

nσ
− 1

(n+ 1)σ

)
= 2C1

1

Mσ
+ C1Cα

( 1

Mσ
− 1

Nσ

)
≤ C1

Mσ

(
2 + Cα

)
≤ C1(2 + Cα)

Mσ∗
.
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This becomes arbitrarily small if M is sufficently large. This implies the asserted uni-
form convergence on K of the Dirichlet series.

6.5. Theorem. Let

f(s) =
∞∑
n=1

an
ns

be a Dirichlet series which converges for some s0 ∈ C. Then the series converges
uniformly in every angular region Ang(s0, α), 0 < α < π/2. In particular

lim
s→s0

f(s) = f(s0),

when s approaches s0 within an angular region Ang(s0, α).

Proof. As in the proof of theorem 6.4 we may suppose s0 = 0. Set Cα := 1/ cosα. Let
ε > 0 be given. Since

∑∞
n=1 an converges, there exists an n0 ∈ N, such that

∣∣∣ N∑
n=M

an

∣∣∣ < ε1 :=
ε

1 + Cα
for all N ≥M ≥ n0.

With AMn :=
∑n

k=M ak, AM,M−1 = 0, we have by the Abel summation formula

N∑
n=M

an
ns

= AMN
1

N s
+

N−1∑
n=M

AMn

( 1

ns
− 1

(n+ 1)s

)
.

From this, we get for all s ∈ Ang(0, α), σ := Re(s), and N ≥M ≥ n0 the estimate

∣∣∣ N∑
n=M

an
ns

∣∣∣ ≤ ε1
1

|N s|
+ ε1

N−1∑
n=M

∣∣∣ 1

ns
− 1

(n+ 1)s

∣∣∣
≤ ε1 + ε1Cα

N−1∑
n=M

( 1

nσ
− 1

(n+ 1)σ

)
= ε1 + ε1Cα

( 1

Mσ
− 1

Nσ

)
≤ ε1 + ε1Cα = ε.

This shows the uniform convergence of the Dirichlet series in Ang(0, α). Therefore f is
continuous in Ang(0, α), which implies the last assertion of the theorem.

6.6. Definition. Let f(s) =
∞∑
n=1

an
ns

be a Dirichlet series. The abscissa of convergence

of f is defined by

σc := σc(f) := inf {Re(s) :
∞∑
n=1

an
ns

converges }.
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By theorem 6.4 this is the same as

σc = inf {Re(s) :
N∑
n=1

an
ns

is bounded for N →∞}

and it follows that the series converges to a holomorphic function in the halfplane
H(σc).

Examples. Consider the three Dirichlet series

ζ(s) =
∞∑
n=1

1

ns
, g(s) :=

∞∑
n=1

(−1)n−1

ns
,

1

ζ
(s) =

∞∑
n=1

µ(n)

ns
.

We have σa(ζ) = σa(g) = σa(1/ζ) = 1. Clearly σc(ζ) = 1 and σc(g) = 0, since the
partial sums

∑N
n=1(−1)n−1 are bounded. The abscissa of convergence σc(1/ζ) is not

known; of course σc(1/ζ) ≤ 1. One conjectures that σc(1/ζ) = 1
2
, which is equivalent

to the Riemann Hypothesis, which we will discuss in a later chapter.

Remark. Multiplying the zeta series by 2−s yields 2−sζ(s) =
∑∞

n=1
1

(2n)s . Hence

g(s) = (1− 21−s)ζ(s).

6.7. Theorem. If the Dirichlet series f(s) =
∞∑
n=1

an
ns

has a finite abscissa of con-

vergence σc, then for the abscissa of absolute convergence σa the following estimate
holds:

σc ≤ σa ≤ σc + 1.

Proof. Without loss of generality we may suppose σc = 0. Then
∞∑
n=1

an
nε

converges for

every ε > 0. We have to show that

∞∑
n=1

|an|
nσ∗

<∞ for all σ∗ > 1.

To see this, write σ∗ = 1 + 2ε, ε > 0. Then

|an|
nσ∗

=
|an|
nε

· 1

n1+ε

Since |an|/nε is bounded for n→∞ and
∑∞

n=1 1/n1+ε <∞, the assertion follows.

Remarks. a) It can be easily seen that σc = −∞ implies σa = −∞.

b) The above examples show that the cases σa = σc and σa = σc +1 do actually occur.
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c) That σa and σc may be different is quite surprising if one looks at the situation
for power series: If a power series

∑∞
n=0 anz

n converges for some z0 6= 0, it converges
absolutely for every z with |z| < |z0|.

6.8. Theorem (Landau). Let

f(s) =
∞∑
n=1

an
ns

be a Dirichlet series with non-negative coefficients an ≥ 0 and finite abscissa of absolute
convergence σa ∈ R. Then the function f , which is holomorphic in the halfplane H(σa),
cannot be continued analytically as a holomorphic function to any neighborhood of σa.

Proof. Assume to the contrary that there exists a small open disk D around σa such
that f can be analytically continued to a holomorphic function in H(σa) ∪ D, which
we denote again by f . Then the Taylor series of f at the point σ1 := σa + 1 has radius
of convergence > 1. Since

f (k)(σ1) =
∞∑
n=1

(− log n)kan
nσ1

,

the Taylor series has the form

f(s) =
∞∑
k=0

f (k)(σ1)

k!
(s− σ1)

k =
∞∑
k=0

∞∑
n=1

(− log n)kan
k!nσ1

(s− σ1)
k.

By hypothesis there exists a real σ < σa such that the Taylor series converges for s = σ.
We have

f(σ) =
∞∑
k=0

∞∑
n=1

(log n)kan(σ1 − σ)k

k!nσ1
=

∞∑
n=1

∞∑
k=0

(log n)k(σ1 − σ)k

k!
· an
nσ1

,

where the reordering is allowed since all terms are non-negative. Now

∞∑
k=0

(log n)k(σ1 − σ)k

k!
= e(logn)(σ1−σ) =

1

nσ−σ1
,

hence we have a convergent series

f(σ) =
∞∑
n=1

1

nσ−σ1
· an
nσ1

=
∞∑
n=1

an
nσ
.

Thus the abscissa of absolute convergence is ≤ σ < σa, a contradiction. Hence the
assumption is false, which proves the theorem.
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6.9. Theorem (Identity theorem for Dirichlet series). Let

f(s) =
∞∑
n=1

an
ns

and g(s) =
∞∑
n=1

bn
ns

be two Dirichlet series that converge in a common halfplane H(σ0). If there exists a
sequence sν ∈ H(σ0), ν ∈ N1, with limν→∞Re(sν) = ∞ and

f(sν) = g(sν) for all ν ≥ 1,

then an = bn for all n ≥ 1.

Proof. Passing to the difference f − g shows that it suffices to prove the theorem for
the case where g is identically zero. So we suppose that

f(sν) = 0 for all ν ≥ 1.

If not all an = 0, then there exists a minimal k such that ak 6= 0. We have

f(s) =
1

ks

(
ak +

∑
n>k

an
(n/k)s

)
.

It suffices to show that there exists a σ∗ ∈ R such that∣∣∣∑
n>k

an
(n/k)s

∣∣∣ ≤ |ak|
2

for all s with Re(s) ≥ σ∗,

for this would imply f(s) 6= 0 for Re(s) ≥ σ∗, contradicting f(sν) = 0 for all ν. The

sum
∑
n>k

an
(n/k)σ′

converges absolutely for some σ′ ∈ R. Therefore we can find an M ≥ k

such that∑
n>M

|an|
(n/k)σ′

≤ |ak|
4
.

Further there exists a σ′′ ∈ R such that∑
k<n6M

|an|
(n/k)σ′′

≤ |ak|
4
.

Combining the last two estimates shows∣∣∣∑
n>k

an
(n/k)s

∣∣∣ ≤ |ak|
2

for all s with Re(s) ≥ max(σ′, σ′′), q.e.d.

Remark. A similar theorem is not true for arbitrary holomorphic functions in halfplanes.
For example, the sine function satisfies

sin(πn) = 0 for all integers n,
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without being identically zero. This shows also that not every function holomorphic in
a halfplane H(σ) can be expanded in a Dirichlet series.

6.10. Theorem. Let a, b : N1 → C be two arithmetical functions such that the Dirichlet
series

f(s) :=
∞∑
n=1

a(n)

ns
and g(s) :=

∞∑
n=1

b(n)

ns

converge absolutely in a common halfplane H(σ0). Then we have for the product

f(s)g(s) =
∞∑
n=1

(a ∗ b)(n)

ns
.

This Dirichlet series converges absolutely in H(σ0).

Proof. Since the series for f(s) and g(s) converge absolutely for s ∈ H(σ0), they can
be multiplied term by term

f(s)g(s) =
∞∑
k=1

a(k)

ks

∞∑
`=1

b(`)

`s
=

∑
k,`>1

a(k)b(`)
1

ks`s

=
∞∑
n=1

∑
k`=n

a(k)b(`)
1

(k`)s
=

∞∑
n=1

(a ∗ b)(n)

ns
,

and the product series converges absolutely, q.e.d.

Examples. i) The zeta function ζ(s) =
∞∑
n=1

1

ns
is the Dirichlet series associated to the

constant arithmetical function u(n) = 1. Since u ∗ µ = δ1, it follows

( ∞∑
n=1

1

ns

)( ∞∑
n=1

µ(n)

ns

)
=

∞∑
n=1

δ1(n)

ns
= 1,

which gives a new proof of

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
(cf. theorem 4.5).

ii) The Dirichlet series associated to the identity map ι : N1 → N1 is

∞∑
n=1

n

ns
=

∞∑
n=1

1

ns−1
= ζ(s− 1),
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which converges absolutely for Re(s) > 2. For the divisor sum function σ we have
u ∗ ι = σ, cf. (3.15.iii), which implies

ζ(s)ζ(s− 1) =
∞∑
n=1

σ(n)

ns
for Re(s) > 2.

iii) In a similar way, the formula ϕ = µ ∗ ι for the Euler phi function, cf. (3.15.i), yields

ζ(s− 1)

ζ(s)
=

∞∑
n=1

ϕ(n)

ns
for Re(s) > 2.

6.11. Theorem (Euler product for Dirichlet series). Let a : N1 → C be a multiplicative
arithmetical function such that the Dirichlet series

f(s) =
∞∑
n=1

a(n)

ns

has abscissa of absolute convergence σa <∞.

a) Then we have in H(σa) the product representation

f(s) =
∏
p∈P

( ∞∑
k=0

a(pk)

pks

)
=

∏
p∈P

(
1 +

a(p)

ps
+
a(p2)

p2s
+
a(p3)

p3s
+ · · ·

)
,

where the product is extended over the set P of all primes.

b) If the arithmetical function a is completely multiplicative, this can be simplified to

f(s) =
∏
p∈P

(
1− a(p)

ps

)−1

.

Proof. Let P ⊂ P be a finite set of primes and N(P) the set of all positive integers whose
prime decomposition contains only primes from the set P . Since a is multiplicative, we
have for an integer n with prime decomposition n = pk11 p

k2
2 · . . . · pkr

r

a(n) = a(pk11 )a(pk22 ) · . . . · a(pkr
r ).

It follows by multiplying the infinite series term by term that

∏
p∈P

(
1 +

a(p)

ps
+
a(p2)

p2s
+
a(p3)

p3s
+ · · ·

)
=

∑
n∈N(P)

a(n)

ns
.

Letting P = Pm be set of all primes ≤ m and passing to the limit m→∞, we obtain
part a) the theorem.
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If a is completely multiplicative, then a(pk) = a(p)k, hence

∞∑
k=0

a(pk)

pks
=

∞∑
k=0

(a(p)
ps

)k
=

(
1− a(p)

ps

)−1

,

proving part b).

Examples. i) The Euler product for the zeta function

ζ(s) =
∏
p∈P

(
1− 1

ps

)−1

is a special case of this theorem.

ii) Since µ(p) = −1 and µ(pk) = 0 for k ≥ 2, the formula for the inverse of the zeta
function

∞∑
n=1

µ(n)

ns
=

∏
p∈P

(
1− 1

ps

)
=

1

ζ(s)

also follows from this theorem.
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7. Group Characters. Dirichlet L-series

7.1. Definition (Group characters). Let G be a group. A character of G is a group
homomorphism

χ : G −→ C∗.

If G is a finite group (written multiplicatively), then every element x ∈ G has finite
order, say r = ord(x). It follows that

χ(x)r = χ(xr) = χ(e) = 1,

hence χ(x) is a root of unity for all x ∈ G.

Example. Let G be a cyclic group of order r and g ∈ G a generator of G, i.e.

G = {e = g0, g = g1, g2, g3, . . . , gr−1} =: 〈g〉, (gr = e).

If χ : G→ C∗ is a character, χ(g) is an r-th root of unity, hence there exits an integer
k, 0 ≤ k < r, with χ(g) = e2πik/r. Conversely, for any such k,

χk(g
s) := e2πiks/r

defines indeed a group character of G.

7.2. Theorem. Let G be a group.

a) The set of all group characters χ : G → C∗ is itself a group if one defines the
multiplication of two characters χ1, χ2 by

(χ1χ2)(x) := χ1(x)χ2(x) for all x ∈ G.

This group is called the character group of G and is denoted by Ĝ.

b) If G is a finite abelian group, then the character group Ĝ is isomorphic to G.

Proof. a) The easy verification is left to the reader.

b) Consider first the case when G = 〈g〉 is a cyclic group of order r. Let

Er := {e2πik/r : 0 ≤ k < r}

be the group of r-th roots of unity. Er is itself a cyclic group of order r and the map

Ĝ −→ Er, χ 7→ χ(g),

is easily seen to be an isomorphism. To prove the general case, we use the fact that
every finite abelian group G is isomorphic to a direct product of cyclic groups:

G ∼= C1 × . . .× Cm.
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From Ĝ ∼= Ĉ1 × . . .× Ĉm the assertion follows.

7.3. Theorem. Let G be a finite abelian group of order r.

a) Let χ ∈ Ĝ be a fixed character. Then∑
x∈G

χ(x) =
{
r, if χ is the unit character χ ≡ 1,
0 else.

b) Let x ∈ G be a fixed element. Then∑
χ∈Ĝ

χ(x) =
{
r, if x = e,
0 else.

Proof. a) The formula is trivial for the unit character. If χ is any group character
different from the unit character, there exists an x0 ∈ G with χ(x0) 6= 1. If x runs
through all group elements, also x0x runs through all group elements. Therefore∑

x∈G

χ(x) =
∑
x∈G

χ(x0x) = χ(x0)
∑
x∈G

χ(x).

It follows

(1− χ(x0))
∑
x∈G

χ(x) = 0 =⇒
∑
x∈G

χ(x) = 0, q.e.d.

b) The formula is trivial for the unit element e. If x is a group element different from

e, there exists a group character ψ ∈ Ĝ with ψ(x) 6= 1. Otherwise all group characters
would be constant on the subgroup H ⊂ G generated by x, hence could be regarded
as characters of the quotient group G/H, which contradicts theorem 7.2.b). If χ runs

through all elements of Ĝ, so does ψχ. Hence∑
χ∈Ĝ

χ(x) =
∑
χ∈Ĝ

(ψχ)(x) = ψ(x)
∑
χ∈Ĝ

χ(x).

It follows

(1− ψ(x))
∑
χ∈Ĝ

χ(x) = 0 =⇒
∑
χ∈Ĝ

χ(x) = 0, q.e.d.

7.4. Definition (Dirichlet characters). Let m be an integer ≥ 2. An arithmetical
function χ : N1 −→ C is called a Dirichlet character modulo m, if χ is induced by a
group character

χ̃ : (Z/m)∗ −→ C∗,
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which means that

χ(n) =

{
χ̃(n), if gcd(n,m) = 1,

0, if gcd(n,m) > 1.

(Here n denotes the residue class of n modulo m).

The principal Dirichlet character modulo m is the Dirichlet character induced by the
unit character 1 : (Z/m)∗ → C. We denote this principal character by χ0m or briefly
by χ0, if the value of m is clear by the context. Hence we have

χ0m(n) =

{
1, if gcd(n,m) = 1,
0, if gcd(n,m) > 1.

It is clear that a Dirichlet character is completely multiplicative. It is easy to see that
an arithmetical function f : N1 → C is a Dirichlet character modulo m iff it has the
following properties:

i) f is completely multiplicative.

ii) f(n) = f(n′) whenever n ≡ n′ mod m.

iii) f(n) = 0 for all n with gcd(n,m) > 1.

7.5. Definition (Dirichlet L-series). Let χ : N1 → C be a Dirichlet character. The
L-series associated to χ is the Dirichlet series

L(s, χ) :=
∞∑
n=1

χ(n)

ns
.

This series converges absolutely for every s ∈ C with Re(s) > 1.

Examples. Let m = 4.

i) The principal Dirichlet character modulo 4 has χ0,4(n) = 1 for n odd and χ0,4(n) = 0
for n even. Therefore

L(s, χ0,4) =
∞∑
k=0

1

(2k + 1)s
= 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+ . . .

Since 2−sζ(s) =
∞∑
k=1

1

(2k)s
, we have

L(s, χ0,4) = (1− 2−s)ζ(s),

which shows that L(s, χ0,4) can be analytically continued to the whole plane C as a
meromorphic function with a single pole at s = 1.
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ii) Since (Z/4)∗ = {1, 3} has two elements, there is exactly one non-principal Dirichlet
character χ1 modulo 4, namely

χ1(n) =

{
0 for n even,
(−1)(n−1)/2 for n odd.

Therefore

L(s, χ1) =
∞∑
k=0

(−1)k

(2k + 1)s
= 1− 1

3s
+

1

5s
− 1

7s
+

1

9s
−+ . . .

This Dirichlet series converges to a holomorphic function for Re(s) > 0. For s = 1 one
gets the well known Leibniz series, hence

L(1, χ1) =
π

4
.

7.6. Theorem. Let χ : N1 → C be a Dirichlet character modulo m. Then

a) For Re(s) > 1 one has a product representation

L(s, χ) =
∏
p∈P

1

1− χ(p)p−s
.

b) If χ = χ0m is the principal character, then

L(s, χ0m) =
(∏
p|m

(1− p−s)
)
ζ(s),

where the product is extended over all prime divisors of m. Hence L(s, χ0m) can be
analytically continued to the whole plane C as a meromorphic function with a single
pole at s = 1.

c) If χ is not the principal character, the L-series L(s, χ) =
∑∞

n=1 χ(n)/ns has abscissa
of convergence σc = 0, hence represents a holomorphic function in the halfplane H(0).

Proof. a) This follows directly from theorem 6.11 since χ is completely multiplicative.

b) From part a) and the definition of the principal character one gets

L(s, χ0m) =
∏
p-m

1

1− p−s
=

∏
p|m

(1− p−s)
∏
p∈P

1

1− p−s
.

Since the last product is the Euler product of the zeta function, the assertion follows.

c) By theorem 6.4 it suffices to show that the partial sums
∑N

n=1 χ(n) remain bounded
as N →∞. This can be seen as follows: Write N = qm+r with integers q, r, 0 ≤ r < m.

By theorem 7.3.a) one has
qm∑
n=1

χ(n) = 0, hence

∣∣∣ N∑
n=1

χ(n)
∣∣∣ =

∣∣∣ qm+r∑
n=qm+1

χ(n)
∣∣∣ ≤ qm+r∑

n=qm+1

|χ(n)| ≤ ϕ(m), q.e.d.
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The next theorem is an analogon of theorem 4.7.

7.7. Theorem. Let m be an integer ≥ 2 and χ : N1 → C a Dirichlet character modulo
m. We define the following generalization of the prime zeta function:

P (s, χ) :=
∑
p∈P

χ(p)

ps
.

This series converges absolutely in the halfplane H(1) := {s ∈ C : Re(s) > 1} and one
has

P (s, χ) = logL(s, χ) + Fχ(s),

where Fχ(s) is a bounded function in H(1).

Proof. From the Euler product of the L-function we get for Re(s) > 1

logL(s, χ) =
∑
p∈P

log
1

1− χ(p)p−s
=

∑
p∈P

∞∑
k=1

χ(p)k

kpks

=
∑
p∈P

χ(p)

ps
+

∞∑
k=2

1

k

∑
p∈P

χ(p)k

pks
.

The theorem follows with

Fχ(s) = −
∞∑
k=2

1

k

∑
p∈P

χ(p)k

pks
,

since for Re(s) > 1 we have

∣∣∣∑
p∈P

χ(p)k

pks

∣∣∣ ≤ ∞∑
n=2

1

nk
≤ 1

k − 1
,

hence

|Fχ(s)| ≤
∞∑
k=2

1

k(k − 1)
= 1.
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8. Primes in Arithmetic Progressions

8.1. Definition (Dirichlet density). For any subset A ⊂ P of the set P of all primes,
we define the function

PA(s) :=
∑
p∈A

1

ps
.

The sum converges at least for Re(s) > 1 and defines a holomorphic function in the
halfplane H(1) = {s ∈ C : Re(s) > 1}. For A = P we get the prime zeta function P (s)
already discussed in (4.7). If the limit

δDir(A) := lim
σ↘1

PA(σ)

P (σ)

exists, it is called the Dirichlet density or analytic density of the set A. It is clear that,
if the Dirichlet density of A exists, one has

0 ≤ δDir(A) ≤ 1.

The Dirichlet density of the set of all primes is 1, and any finite set of primes has
density 0. Hence δDir(A) > 0 implies that A is infinite.

An equivalent definition of the Dirichlet density is

δDir(A) = lim
σ↘1

PA(σ)
/

log
( 1

σ − 1

)
.

This comes from the fact that

lim
σ↘1

P (σ)/ log ζ(σ) = 1

by theorem 4.7, and

lim
σ↘1

log ζ(σ)
/

log
( 1

σ − 1

)
= 1,

since ζ(s) = 1/(s− 1) + (holomorphic function).

8.2. Arithmetic progressions. Let m, a be integers, m ≥ 2. The set of all n ∈ N1

with

n ≡ a mod m

is called an arithmetic progression. We want to study the distribution of primes in
arithmetic progressions. Clearly if gcd(a,m) > 1, there exist only finitely many primes
in the arithmetic progression of numbers congruent a mod m. So suppose gcd(a,m) =
1. Dirichlet has proved that there exist infinitely many primes p ≡ a mod m, more
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precisely: The set of all such primes has Dirichlet density 1/ϕ(m), which means that
the Dirichlet density of primes in all arithmetic progressions a mod m, gcd(a,m) = 1,
is the same. To prove this, we have, according to definition 8.1, to study the functions

Pa,m(s) :=
∑

p≡a mod m

1

ps
,

where the sum is extended over all primes ≡ a mod m. It was Dirichlet’s idea to use
instead the functions

P (s, χ) :=
∑
p∈P

χ(p)

ps
,

where χ : N1 → C is a Dirichlet character modulo m. These functions were already
introduced in theorem 7.7. The relation between the functions Pa,m(s) and P (s, χ) is
given by the following lemma.

8.3. Lemma. Let m be an integer ≥ 2 and a an integer coprime to m. Then we have
for all s ∈ C with Re(s) > 1

Pa,m(s) =
1

ϕ(m)

∑
χ

χ(a)P (s, χ).

Here the sum is extended over all Dirichlet characters χ modulo m and χ(a) denotes
the complex conjugate of χ(a).

Proof. We have∑
χ

χ(a)P (s, χ) =
∑
p∈P

(∑
χ

χ(a)χ(p)
)
· 1

ps
=

∑
p∈P

αp
ps
,

where

αp :=
∑
χ

χ(a)χ(p).

Since a is coprime to m, there exists an integer b with ab ≡ 1 mod m, hence χ(a)χ(b) =
1. On the other hand |χ(a)| = 1, which implies χ(b) = χ(a). Therefore by theorem 7.3.b)

αp =
∑
χ

χ(b)χ(p) =
∑
χ

χ(bp) =
{
ϕ(m) if bp ≡ 1 mod m,
0 otherwise.

But bp ≡ 1 mod m is equivalent to p ≡ a mod m, hence∑
p∈P

αp
ps

= ϕ(m)
∑

p≡a mod m

1

ps
,

which proves the lemma.
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In the proof of the Dirichlet theorem on primes in arithmetic progressions, the following
theorem plays an essential role.

8.4. Theorem. Let m be an integer ≥ 2 and χ a non-principal Dirichlet character
modulo m. Then

L(1, χ) 6= 0.

Recall that for a non-principal character χ the function L(s, χ) is holomorphic for
Re(s) > 0 (theorem 7.6.c).

Example. For the non-principal character χ1 modulo 4 one has (cf. 7.4)

L(1, χ1) = 1− 1

3
+

1

5
+

1

7
− 1

9
± . . . =

π

4
.

Before we prove this theorem, we show how Dirichlet’s theorem can be derived from it.

8.5. Theorem (Dirichlet). Let a,m be coprime integers, m ≥ 2. Then the set of all
primes p ≡ a mod m has Dirichlet density 1/ϕ(m).

Proof. For the principal Dirichlet character χ0m it follows from theorem 7.6.b) that

lim
σ↘1

logL(σ, χ0m)/ log ζ(σ) = lim
σ↘1

logL(σ, χ0m)
/

log
( 1

σ − 1

)
= 1.

On the other hand, if χ is a non-principal character, then we have by theorem 8.4

lim
σ↘1

logL(σ, χ)
/

log
( 1

σ − 1

)
= 0.

By theorem 7.7 this implies

lim
σ↘1

P (σ, χ0m)
/

log
( 1

σ − 1

)
= 1

and

lim
σ↘1

P (σ, χ)
/

log
( 1

σ − 1

)
= 0

for all non-principal characters χ. Therefore

lim
σ↘1

(∑
χ

χ(a)P (σ, χ)
)/

log
( 1

σ − 1

)
= χ0m(a) = 1.

Now using lemma 8.3 we get

lim
σ↘1

Pa,m(σ)
/

log
( 1

σ − 1

)
=

1

ϕ(m)
,
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which proves our theorem.

8.6. Proof of theorem 8.4. We have to show that

L(1, χ) 6= 0

for every non-principal Dirichlet character χ modulo m.

Assume to the contrary that there exists at least one non-principal character χ with
L(1, χ) = 0. We define the function

ζm(s) :=
∏
χ

L(s, χ),

where the product is extended over all Dirichlet characters modulo m. For the principal
character the function L(s, χ0m) has a pole of order 1 at s = 1. This pole is canceled
by the assumed zero of one of the functions L(s, χ), χ 6= χ0m. Therefore, under the
assumption, ζm would be holomorphic everywhere in the halfplane H(0) = {s ∈ C :
Re(s) > 0}. We will show that this leads to a contradiction.

Using the Euler product for the L-functions (theorem 7.6), we get

ζm(s) =
∏
χ

∏
p∈P

1

1− χ(p)p−s
=

∏
p∈P

1∏
χ(1− χ(p)p−s)

.

By lemma 8.7 below, for every p - m there exist integers f(p), g(p) ≥ 1 with f(p)g(p) =
ϕ(m) such that∏

χ

(1− χ(p)p−s) = (1− p−f(p)s)g(p).

Therefore

1∏
χ(1− χ(p)p−s)

=
( ∞∑
k=0

1

pf(p)ks

)g(p)
is a Dirichlet series with non-negative coefficients and we have

( ∞∑
k=0

1

pf(p)ks

)g(p)
�

∞∑
k=0

1

pϕ(m)ks
,

where the relation
∑

n an/n
s �

∑
n bn/n

s between two Dirichlet series is defined as
an ≥ bn for all n. It follows that ζm(s) is a Dirichlet series with non-negative coefficients
and

ζm(s) �
∏
p-m

( ∞∑
k=0

1

pϕ(m)ks

)
=

∑
gcd(n,m)=1

1

nϕ(m)s
.
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The last Dirichlet series has abscissa of absolute convergence = 1/ϕ(m). Therefore
σa(ζm) ≥ 1/ϕ(m). But by the theorem of Landau (6.8) this contradicts the assumption
that ζm is holomorphic in the halfplane H(0). Therefore the assumption is false, which
proves L(1, χ) 6= 0 for all non-principal characters χ.

8.7. Lemma. Let G be a finite abelian group of order r and let g ∈ G be an element
of order k | r. Then we have the following identity in the polynomial ring C[T ]∏

χ∈Ĝ

(1− χ(g)T ) =
(
1− T k

)r/k
.

Proof. Let H ⊂ G be the subgroup generated by the element g. H is a cyclic group
of order k. For every character χ ∈ Ĝ, the restriction χ | H is a character of H. Two

characters χ1, χ2 ∈ Ĝ have the same restriction to H iff the character χ := χ1χ
−1
2 is

identically 1 on H, which implies that χ induces a character on the quotient group
G/H. Since G/H has r/k elements, there can be at most r/k characters of G which
restrict to the unit character on H. This means that the restriction of the r characters
of G yield at least k different characters of H. But we know that there are exactly k
characters of H. Hence every character ψ of H is the restriction of a character of G
and there are exactly r/k characters of G which restrict to ψ. Now

∏
ψ∈Ĥ

(1− ψ(g)T ) =
k−1∏
ν=0

(1− e2πiν/kT ) = 1− T k

and ∏
χ∈Ĝ

(1− χ(g)T ) =
( ∏
ψ∈Ĥ

(1− ψ(g)T )
)r/k

=
(
1− T k

)r/k
, q.e.d.
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9. The Gamma Function

9.1. Definition. The Gamma function is defined for complex z with Re(z) > 0 by the
Euler integral

Γ(z) :=

∫ ∞

0

tz−1e−tdt.

Since with x := Re(z) one has |tz−1e−t| = tx−1e−t, the convergence of this integral
follows from the corresponding fact in the real case (which we suppose known) and we
have the estimate

|Γ(z)| ≤ Γ(Re(z)) for Re(z) > 0.

Since the integrand depends holomorphically on z, it follows further that Γ is holomor-
phic in the halfplane H(0) = {z ∈ C : Re(z) > 0}. As in the real case one proves by
partial integration the functional equation

zΓ(z) = Γ(z + 1),

which together with Γ(1) = 1 shows that Γ(n + 1) = n! for all n ∈ N0. Applying the
functional equation n+ 1 times yields

Γ(z) =
Γ(z + n+ 1)

z(z + 1) · . . . · (z + n)
.

The right hand side of this formula, which was derived for Re(z) > 0, defines a mero-
morphic function in the halfplane H(−n−1) = {z ∈ C : Re(z) > −n−1} having poles
of first order at the points z = −k, k = 0, 1, . . . , n. Therefore we can use this formula
to continue the Gamma function analytically to a meromorphic function in the whole
plane C, with poles of first order at z = −n, n ∈ N0, and holomorphic elsewhere. From
now on, by Gamma function we understand this meromorphic function in C.

The Gamma function can be characterized axiomatically as follows:

9.2. Theorem. Let F be a meromorphic function in C with the following properties:

i) F is holomorphic in the halfplane H(0) = {z ∈ C : Re(z) > 0}.
ii) F satisfies the functional equation zF (z) = F (z + 1).

iii) F is bounded in the strip {z ∈ C : 1 ≤ Re(z) ≤ 2}.
Then there exists a constant c ∈ C such that

F (z) = cΓ(z).

Proof. It is clear that Γ satisfies the properties i) to iii). We set c := F (1) and

Φ(z) := F (z)− cΓ(z).

Chap. 9 last revised: 2001-12-01 57



9. Gamma function

Then Φ is also a function satisfying i) to iii) and Φ(1) = 0. From the functional equation
Φ(z) = Φ(z + 1)/z it follows that Φ is holomorphic at z = 0 and that Φ is bounded in
the strip {z ∈ C : 0 ≤ Re(z) ≤ 1}. Therefore the function

ϕ(z) := Φ(z)Φ(1− z)

is bounded in the same strip. We have

ϕ(z + 1) = Φ(z + 1)Φ(−z) = zΦ(z)Φ(−z) = −Φ(z)Φ(−z + 1) = −ϕ(z).

From this it follows that ϕ is periodic with period 2 and bounded everywhere, hence
holomorphic in C. By the theorem of Liouville ϕmust be constant. Since ϕ(1) = −ϕ(0),
this constant is 0. The equation 0 = Φ(z)Φ(1 − z) shows that also Φ is identically 0,
but this means F (z) = cΓ(z), q.e.d.

9.3. Theorem. a) For every z ∈ C r {n ∈ Z : n ≤ 0} we have

Γ(z) = lim
n→∞

n!nz

z(z + 1) · . . . · (z + n)

(Gauß representation of the Gamma function)

b) 1/Γ is an entire holomorphic function with product representation

1

Γ(z)
= eCzz

∞∏
n=1

(
1 +

z

n

)
e−z/n, (C = Euler-Mascheroni constant).

This product converges normally in C.

Proof.

9.4. Lemma. Let f : C → C be an entire holomorphic function and let ρ, C,R0 ∈ R+

be non-negative constants such that

Re(f(z)) ≤ C|z|ρ for |z| ≥ R0.

Then f is a polynomial of degree ≤ ρ.

Note that no lower bound for Re(f(z)) is required.

Proof. The Taylor series f(z) =
∑∞

n=0 anz
n converges for all z ∈ C. Setting z = Reit,

we get Fourier series

f(Reit) =
∞∑
n=0

anR
neint and f(Reit) =

∞∑
n=0

anR
ne−int,

hence

Re(f(Reit)) = Re(a0) + 1
2

∞∑
n=1

Rn(ane
int + ane

−int).
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Multiplying this equation by e−ikt and integrating from 0 to 2π yields

ak =
1

πRk

∫ 2π

0

Re
(
f(Reit)

)
e−iktdt for k > 0

and (for k = 0)

Re(a0) =
1

2π

∫ 2π

0

Re
(
f(Reit)

)
dt.

The hypothesis on the growth of Re(f(z)) implies

|Re(f(z))| ≤ 2C|z|ρ − Re(f(z)) for |z| ≥ R0,

(note this is true also if Re(f(z)) < 0). Therefore we get the estimate

|ak| ≤
1

πRk

∫ 2π

0

∣∣Re(f(reit))
∣∣ dt ≤ 1

Rk
(4CRρ − 2Re(a0)) .

Letting R→∞, we see that ak = 0 for k > ρ, q.e.d.

9.5. Theorem. The Gamma function satisfies the following relations:

a)
1

Γ(z)Γ(1− z)
=

sin(πz)

π
,

b) Γ
(z

2

)
Γ
(z + 1

2

)
= 21−z√π Γ(z).

Example. Setting z = 1
2

in formula a) yields

Γ(1
2
) =

√
π.

The same result can also be obtained from formula b) for z = 1.

Proof. a) We first consider the meromorphic function

Φ(z) := Γ(z)Γ(1− z).

It has poles of order 1 at the points z = n, n ∈ Z, and is holomorphic elsewhere. It
satisfies the relations

Φ(z + 1) = −Φ(z) and Φ(−z) = −Φ(z).

Since Γ(z) is bounded on 1 ≤ Re(z) ≤ 2 and

Γ(z) =
Γ(1 + z)

z
, Γ(1− z) =

Γ(2− z)

(1− z)
,
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it follows that Φ is bounded on the set

S1 := {z ∈ C : 0 ≤ Re(z) ≤ 1, |Im(z)| ≥ 1}.

As sin(πz) has zeroes of order 1 at z = n, n ∈ Z, the product

F (z) := sin(πz)Φ(z) = sin(πz)Γ(z)Γ(1− z)

is holomorphic everywhere in C and without zeroes. We can write

F (z) =
sin(πz)

z
Γ(1 + z)Γ(1− z),

hence F (0) = π. Furthermore F is periodic with period 1 and an even function, i.e.
F (−z) = F (z). From the boundedness of Φ on S1 we get an estimate

|F (z)| ≤ Ceπ|z| for z ∈ S1 and some constant C > 0.

Since F is continuous and periodic, such an estimate holds in the whole plane C.
We can write F as F (z) = ef(z) with some holomorphic function f : C → C. From
|F (z)| = eRe(z) we get an estimate

Re(f) ≤ C ′|z| for |z| ≥ R0 and some constant C ′ > 0.

By lemma 9.4, f must be a linear polynomial, hence

F (z) = ea+bz, (a, b ∈ C).

Since F is an even function, we have b = 0, so the function F is a constant, which must
be F (0) = π. This proves part a) of the theorem.

b) This is proved by applying theorem 9.2 to the function

F (z) := 2z Γ
(z

2

)
Γ
(z + 1

2

)
.

. . .

9.6. Corollary (Sine product). For all z ∈ C one has

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
.

9.7. Corollary (Wallis product).

a)
π

2
=

∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
,
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b)
√
π = lim

n→∞

1√
n
· 22n(n!)2

(2n)!
.

Proof. Formula a) follows directly from the sine product with z = 1
2
.

To prove formula b), we rewrite a) as

π = 2 lim
n→∞

n∏
k=1

(2k)2

(2k − 1)(2k + 1)

= lim
n→∞

2

2n+ 1
· 22n(n!)2

1 · 3 · 3 · 5 · 5 · . . . · (2n− 1)(2n− 1)

hence

√
π = lim

n→∞

√
2

2n+ 1
· 2nn!

1 · 3 · 5 · . . . · (2n− 1)

= lim
n→∞

√
2

2n+ 1
· 22n(n!)2

(2n)!
.

Since lim
n→∞

√
2n/

√
2n+ 1 = 1, the assertion follows.

9.8. Theorem (Stirling formula). We have the following asymptotic relation

n! ∼
√

2πn
(n
e

)n
.

Proof. We apply the Euler-Maclaurin summation formula to

log(n!) =
n∑
k=1

log k

and obtain

log(n!) = 1
2
log n+

∫ n

1

log x dx+

∫ n

1

saw(x)

x
dx

= 1
2
log n+ n(log n− 1) + 1 +

∫ n

1

saw(x)

x
dx.

Taking the exponential function of both sides we get

n! =
√
n
(n
e

)n
eαn ,

where

αn = 1 +

∫ n

1

saw(x)

x
dx = 1 +

B2

2
· 1

x

∣∣∣∣n
1

+

∫ n

1

B̃2(x)

2
· 1

x2
dx.
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This last representation shows that

α := lim
n→∞

αn = 1 +

∫ ∞

1

saw(x)

x
dx

exists and we have the asymptotic relation

n! ∼
√
n
(n
e

)n
eα.

It remains to prove that eα =
√

2π. This can be done as follows. Dividing the asymptotic
relations

(n!)2 ∼ n
(n
e

)2n

e2α and (2n)! ∼
√

2n
(2n

e

)2n

eα

yields

eα = lim
n→∞

(n!)2e2n

n2n+1
· (2n)2n+1/2

(2n)!e2n
= lim

n→∞

(n!)2 · 22n+1/2

(2n)!
√
n

= lim
n→∞

√
2

n
· 22n(n!)2

(2n)!
.

Now corollary 9.7 shows eα =
√

2π, q.e.d.

For later use we note that we have hereby proved

1 +

∫ ∞

1

saw(x)

x
dx = log

√
2π.

9.9. Theorem (Asymptotic expansion of the Gamma function). For every integer
r ≥ 1 and every z ∈ C r {x ∈ R : x ≤ 0} one has

log Γ(z) = (z − 1
2
) log z − z + log

√
2π +

r∑
k=1

B2k

(2k − 1)2k
· 1

z2k−1

+

∫ ∞

0

B̃2r(t)

2r
· 1

(z + t)2r
dt.

Here log Γ(z) and log z are those branches of the logarithm which take real values for
positive real arguments.

Example. For r = 5, the value of the sum is

5∑
k=1

B2k

(2k − 1)2k
· 1

z2k−1
=

1

12z
− 1

360z3
+

1

1260z5
− 1

1680z7
+

1

1188z9

Proof. We use the Gauß representation of the Gamma function (theorem 9.3.a) and
get

log Γ(z) = lim
n→∞

(
z log n+

n∑
k=1

log k −
n∑
k=0

log(z + k)
)
.
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By Euler-Maclaurin (theorem 5.2)

n∑
k=1

log k = 1
2
log n+

∫ n

1

log t dt+

∫ n

1

saw(t)

t
dt

= 1
2
log n+ n log n− n+ 1 +

∫ n

1

saw(t)

t
dt

and
n∑
k=0

log(z + k) = 1
2
(log z + log(z + n)) +

∫ n

0

log(z + t)dt+

∫ n

0

saw(t)

z + t
dt

= 1
2
(log z + log(z + n)) + (z + n) log(z + n)− z log z − n

+

∫ n

0

saw(t)

z + t
dt.

Therefore

z log n +
n∑
k=1

log k −
n∑
k=0

log(z + k)

= (z − 1
2
) log z − (z + n+ 1

2
) log

(
1 +

z

n

)
+ 1

+

∫ n

1

saw(t)

t
dt−

∫ n

0

saw(t)

z + t
dt.

Since

lim
n→∞

(z + n+ 1
2
) log

(
1 +

z

n

)
= z

and

lim
n→∞

(
1 +

∫ n

1

saw(t)

t
dt

)
= log

√
2π (see above),

we get

log Γ(z) = (z − 1
2
) log z − z + log

√
2π −

∫ ∞

0

saw(t)

z + t
dt.

The rest is proved as in theorem 5.11.
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10. Functional Equation of the Zeta Function

10.1. Theorem (Functional equation of the theta function).

The theta series is defined for real x > 0 by

θ(x) :=
∑
n∈Z

e−πn
2x.

It satisfies the following functional equation

θ
(1

x

)
=
√
xθ(x) for all x > 0,

i.e. ∑
n∈Z

e−πn
2x =

1√
x

∑
n∈Z

e−πn
2/x.

Remarks. a) The theta series, as well as its derivatives, converge uniformly on every
interval [ε,∞[, ε > 0; hence θ is a C∞-function on ]0,∞[.

b) In the theory of elliptic functions one defines more general theta functions of two
complex variables. For τ ∈ C with Im(τ) > 0 and z ∈ C one sets

ϑ(τ, z) :=
∑
n∈Z

eiπn
2τe2πinz.

For fixed τ this is an entire holomorphic function in z, which can be used to construct
doubly periodic functions with respect to the lattice Z + Zτ . As a function of τ , it is
holomorphic in the upper halfplane. The relation to the theta series of theorem 10.1 is

θ(t) = ϑ(it, 0).

Proof. For fixed x > 0, we consider the function F : R → R,

F (t) :=
∑
n∈Z

e−π(n−t)2x.

The series converges uniformly on R together with all its derivatives, hence represents
a C∞-function on R. It is periodic with period 1, i.e. F (t + 1) = F (t) for all t ∈ R.
Therefore we can expand F as a uniformly convergent Fourier series

F (t) =
∑
n∈Z

cne
2πint

where the coefficients cn are the integrals

cn =

∫ 1

0

F (t)e−2πintdt =
∑
k∈Z

∫ 1

0

e−π(k−t)2xe−2πintdt.
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Now
∫ 1

0
e−π(k−t)2xe−2πintdt =

∫ k+1

k
e−πt

2xe−2πintdt (substitution t̃ = t− k), hence

cn =

∫ ∞

−∞
e−πt

2xe−2πintdt.

For n = 0 this is the well known integral of the Gauss bell curve

c0 =

∫ ∞

−∞
e−πt

2xdt = 2

∫ ∞

0

e−πt
2xdt =

2√
πx

∫ ∞

0

e−t
2

dt

=
1√
πx

∫ ∞

0

u−1/2e−udu =
1√
πx

Γ
(1

2

)
=

1√
x
.

For general n we write

−πt2x− 2πint = −π
(
t
√
x+

in√
x

)2

− πn2

x
.

This leads to

cn = e−πn
2/x

∫ ∞

−∞
e−π(t

√
x+in/

√
x)2dt.

We will prove∫ ∞

−∞
e−π(t

√
x+in/

√
x)2dt =

1√
x

∫ ∞

−∞
e−πt

2

dt =
1√
x
. (∗)

Assuming this for a moment, we get

F (t) =
1√
x

∑
n∈Z

e−πn
2/xe2πint.

Setting t = 0, it follows

F (0) =
∑
n∈Z

e−πn
2x =

1√
x

∑
n∈Z

e−πn
2/x,

which is the assertion of the theorem.

It remains to prove the formula (∗). Using the substitution t̃ = t
√
x we see that∫ ∞

−∞
e−π(t

√
x+in/

√
x)2dt =

1√
x

∫ ∞

−∞
e−π(t+in/

√
x)2dt

With the abbreviation a := n/
√
x we have to show that∫ ∞

−∞
e−π(t+ia)2dt =

∫ ∞

−∞
e−πt

2

dt. (∗∗)

To this end we integrate the holomorphic function f(z) := e−πz
2

over the boundary of
the rectangle with corners −R,R,R+ ia,−R+ ia, where R is a positive real number.
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-

6

−R R

−R + ia R + ia

By the residue theorem the whole integral is zero, hence∫ R

−R
f(z)dz =

∫ R+ia

−R+ia

f(z)dz −
∫ R+ia

R

f(z)dz +

∫ −R+ia

−R
f(z)dz

Now ∫ R

−R
f(z)dz =

∫ R

−R
e−πt

2

dt,

∫ R+ia

−R+ia

f(z)dz =

∫ R

−R
e−π(t+ia)2dt,

∫ ±R+ia

±R
f(z)dz = i

∫ a

0

e−π(R2−t2)∓2πiRtdt = ie−πR
2

∫ a

0

eπt
2∓2πiRtdt.

We have the estimate∣∣∣∫ ±R+ia

±R
f(z)dz

∣∣∣ ≤ e−πR
2 |a|eπ|a|2 ,

which tends to 0 as R→∞. This implies

lim
R→∞

∫ R

−R
e−πt

2

dt = lim
R→∞

∫ R

−R
e−π(t+ia)2dt,

which proves (∗∗) and therefore (∗). This completes the proof of the functional equation
of the theta function.

10.2. Corollary. The theta function θ(x) :=
∑

n∈Z e
−πn2x defined in the preceding

theorem satifies

θ(x) = O
( 1√

x

)
as x↘ 0.

10.3. Proposition. For all s ∈ C with Re(s) > 1 one has

Γ
(s

2

)
ζ(s) = πs/2

∫ ∞

0

ts/2
( ∞∑
n=1

e−πn
2t
)dt
t
.
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Remark. The function

ψ(t) :=
∞∑
n=1

e−πn
2t

decreases exponentially as t→∞. One has θ(t) = 1 + 2ψ(t), hence ψ(t) = 1
2
(θ(t)− 1),

so corollary 10.2 implies

ψ(t) = O
( 1√

t

)
for t↘ 0.

This shows that the integral exists for Re(s) > 1.

Proof. We start with the Euler integral for Γ(s/2),

Γ
(s

2

)
=

∫ ∞

0

ts/2e−t
dt

t
,

and apply the substitution t̃ = πn2t, where n ∈ N1. Since dt̃/t̃ = dt/t, we get

Γ
(s

2

)
= nsπs/2

∫ ∞

0

ts/2e−πn
2tdt

t
.

For Re(s) > 1 we have

Γ
(s

2

)
ζ(s) =

∞∑
n=1

Γ
(s

2

) 1

ns
=

∞∑
n=1

πs/2
∫ ∞

0

ts/2e−πn
2tdt

t

= πs/2
∫ ∞

0

ts/2
( ∞∑
n=1

e−πn
2t
)dt
t
.

The interchange of summation and integration is allowed by the theorem of majorized
convergence for Lebesgue integrals.

10.4. Theorem (Functional equation of the zeta function).

a) The function

ξ(s) := π−s/2 Γ(s/2) ζ(s),

which is a meromorphic function in C, satisfies the functional equation

ξ(1− s) = ξ(s).

b) For the zeta function itself one has

ζ(1− s) = 21−sπ−s Γ(s) cos(πs
2

) ζ(s).
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Proof. By the preceding theorem

ξ(s) =

∫ ∞

0

ts/2ψ(t)
dt

t
with ψ(t) =

∞∑
n=1

e−πn
2t.

The functional equation of the theta function implies for ψ(t) = 1
2
(θ(t)− 1)

ψ(t) = t−1/2ψ(1/t)− 1
2
(1− t−1/2).

We substitute this expression in the integral from 0 to 1:∫ 1

0

ts/2ψ(t)
dt

t
=

∫ 1

0

t(s−1)/2ψ
(1

t

)dt
t

+ 1
2

∫ 1

0

(t(s−1)/2 − ts/2)
dt

t
.

The last integral can be evaluated explicitly (recall that Re(s) > 1):

1
2

∫ 1

0

(t(s−1)/2 − ts/2)
dt

t
=

1

s− 1
− 1

s
.

For the first integral on the right hand side we use the substitution t̃ = 1/t and obtain∫ 1

0

t(s−1)/2ψ
(1

t

)dt
t

=

∫ ∞

1

t(1−s)/2ψ(t)
dt

t
.

Putting everything together we get

ξ(s) =

∫ ∞

0

ts/2ψ(t)
dt

t
=

∫ ∞

1

(t(1−s)/2 + ts/2)ψ(t)
dt

t
+

( 1

s− 1
− 1

s

)
.

The integral on the right hand side converges for all s ∈ C to a holomorphic function
in C. Thus we have got a representation of the function ξ(s) valid in the whole plane.
This representation is invariant under the map s 7→ 1− s, proving ξ(1− s) = ξ(s), i.e.
part a) of the theorem.

To prove part b), we use the equation we just proved:

π−(1−s)/2Γ
(1− s

2

)
ζ(1− s) = π−s/2Γ

(s
2

)
ζ(s),

yielding

ζ(1− s) = π1/2−sΓ
(s

2

)
Γ
(1− s

2

)−1

ζ(s).

By theorem 9.5.a) we have

Γ
(1− s

2

)
Γ
(1 + s

2

)
=

π

sin(π 1+s
2

)
=

π

cos(πs
2

)
,
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therefore

ζ(1− s) = π−1/2−sΓ
(s

2

)
Γ
(1 + s

2

)
cos(πs

2
) ζ(s).

Now by theorem 9.5.b)

Γ
(s

2

)
Γ
(1 + s

2

)
= 21−s√π Γ(s),

which implies

ζ(1− s) = 21−sπ−sΓ(s) cos(πs
2

) ζ(s), q.e.d.

10.5. Corollary. a) For every integer k > 0

ζ(−2k) = 0.

These are the only zeroes of the zeta function in the halfplane Re(s) < 0.

b) ζ(0) = −1
2
.

c) For every integer k > 0

ζ(1− 2k) = −B2k

2k
.

Proof. a) We use the functional equation

ζ(1− s) = 21−sπ−sΓ(s) cos πs
2
ζ(s)

Re(1− s) < 0 is equivalent to Re(s) > 1. Since ζ(s) 6= 0 for Re(s) > 1 (theorem 4.5),
the only zeroes of the right hand side for Re(s) > 1 come from the cosine function.
Now

cos πs
2

= 0 ⇐⇒ s = 1 + 2k with k ∈ Z

This implies assertion a)

c) From the functional equation we get

ζ(1− 2k) = 21−2kπ−2kΓ(2k) cos(πk)ζ(2k) =
2

(2π)2k
(2k − 1)! (−1)kζ(2k).

By theorem 5.8.ii)

ζ(2k) = (−1)k−1 (2π)2k

2(2k)!
B2k.
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Substituting this in the equation above yields

ζ(1− 2k) = −B2k

2k
.

b) We write the functional equation in the form ζ(1− s) = f1(s)f2(s) with

f1(s) := 21−sπ−sΓ(s) and f2(s) := cos πs
2
ζ(s).

f1 is holomorphic in a neighborhood of s = 1 and f1(1) = 1/π. The function f2 is
likewise holomorphic in a neighborhood of s = 1, since the pole of the zeta function is
cancelled by the zero of the cosine. To calculate f2(1), we determine the first terms of
the Taylor resp. Laurent expansions of the factors.

cos πs
2

= cos (π
2
(s− 1) + π

2
) = − sin (π

2
(s− 1)) = −π

2
(s− 1) +O((s− 1)3),

ζ(s) =
1

s− 1
+ (holomorphic function).

Multiplying both expressions yields f2(s) = −π
2
+O(s−1), hence f2(1) = −π

2
. Therefore

ζ(0) = f1(1)f2(1) = −1
2
, q.e.d.

10.6. Theorem. For all t ∈ R

ζ(1 + it) 6= 0.

Proof. We use the inequality

3 + 4 cos t+ cos 2t ≥ 0 for all t ∈ R.

This is proved as follows: Since cos 2t = cos2 t− sin2 t = 2 cos2 t− 1, we have

3 + 4 cos t+ cos 2t = 2(1 + 2 cos t+ cos2 t) = 2(1 + cos t)2 ≥ 0.

Let now s = σ + it be a complex number with Re(s) = σ > 1. Then

log ζ(s) =
∑
p∈P

log
1

1− p−s
=

∑
p∈P

∞∑
k=1

1

k
· 1

pks
=

∞∑
n=1

an
ns
,

where

an =

{
1/k, if n = pk for some prime p,
0 otherwise.

Since log |z| = Re(log z) for every z ∈ C∗,

log |ζ(s)| =
∞∑
n=1

anRe(n−s) =
∞∑
n=1

an
nσ

cos(t log n).
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Using a trick of v. Mangoldt (1895) we form the expression

log
(
|ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)|

)
=

∞∑
n=1

an
nσ

(
3 + 4 cos(t log n) + cos(2t log n)︸ ︷︷ ︸

≥ 0

)
≥ 0.

Therefore∣∣ζ(σ)3ζ(σ + it)4ζ(σ + 2it)
∣∣ ≥ 1 for all σ > 1 and t ∈ R.

Assume that ζ(1 + it) = 0 for some t 6= 0. Then the function s 7→ ζ(s)3ζ(s + it)4 has
a zero at s = 1, since the pole of order 3 of the function ζ(s)3 is compensated by the
zero of order ≥ 4 of the function ζ(s+ it)4. Therefore

lim
σ↘1

∣∣ζ(σ)3ζ(σ + it)4ζ(σ + 2it)
∣∣ = 0,

contradicting the above estimate. Hence the assumption is false, which proves the
theorem.

10.7. Riemann Hypothesis. It follows from theorem 10.6 and the functional equation
that ζ(s) 6= 0 for all s ∈ C with Re(s) = 0. Therefore, besides the trivial zeroes of the
zeta function at s = −2k, k ∈ N1, all other zeroes of the zeta function must satisfy
0 < Re(s) < 1. It was conjectured by Riemann in 1859 that all non-trivial zeroes of the
zeta function actually have Re(s) = 1

2
. This is the famous Riemann hypothesis which

is still unproven today.
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11. Chebyshev functions theta and psi

11. The Chebyshev Functions Theta and Psi

11.1. Definition (Prime number function). For real x > 0 we denote by π(x) the
number of all primes p ≤ x. This can be also written as

π(x) =
∑
p6x

1.

π(x) is a step function with jumps of height 1 at all primes. Of course π(x) = 0 for all
x < 2. Some other values are

x 10 100 1000 104 105 106 107

π(x) 4 25 168 1229 9592 78498 664579

The prime number theorem, which we will prove in chapter 13, describes the asymptotic
behavior of π(x) for x→∞, namely

π(x) ∼ x

log x
,

meaning that the quotient π(x)/ x
log x

converges to 1 for x → ∞. For the proof of the
prime number theorem, some other functions, introduced by Chebyshev, are useful.

11.2. Definition (Chebyshev theta function). This function is defined for real x > 0
by

ϑ(x) =
∑
p6x

log p.

(Of course this has nothing to do with the theta series and theta functions considered
in the previous chapter.)

We will see that the prime number theorem is equivalent to the fact that the asymptotic
behavior of the Chebyshev theta function is ϑ(x) ∼ x for x→∞.

A first rough estimate is given by the following proposition.

11.3. Proposition. For all x > 0 one has

ϑ(x) < x log 4,

in particular ϑ(x) = O(x) for x→∞.

Proof. Of course it suffices to prove the assertion for x = n ∈ N1. The assertion is
equivalent to

F (n) :=
∏
p6n

p < 4n.
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We will prove this by induction on n. It is obviously true for n ≤ 3.

For the induction step let N ≥ 4 and assume that the assertion is true for all integers
n < N .

First case: N even. Obviously F (N) = F (N−1). For F (N−1) we can use the induction
hypothesis and obtain F (N) = F (N − 1) < 4N−1 < 4N .

Second case: N odd. We write N as N = 2n+ 1. Consider the binomial coefficient(
2n+ 1

n

)
=

(2n+ 1) · 2n · (2n− 1) · . . . · (n+ 2)

1 · 2 · 3 · . . . · n
.

Clearly, for every prime p with n+ 2 ≤ p ≤ 2n+ 1 one has

p
∣∣∣ (

2n+ 1

n

)
,

hence ∏
n+1<p62(n+1)

p ≤
(

2n+ 1

n

)
.

Now
(
2n+1
n

)
=

(
2n+1
n+1

)
are the two central terms in the binomial expansion of (1+1)2n+1,

therefore(
2n+ 1

n

)
< 1

2
(1 + 1)2n+1 = 4n.

By induction hypothesis
∏

p6n+1

p < 4n+1, hence

F (2n+ 1) =
∏

p62n+1

p < 4n+1

(
2n+ 1

n

)
< 4n+14n = 42n+1, q.e.d.

11.4. Lemma (Abel summation II). Let n0 be an integer, (an)n>n0 a sequence of
complex numbers and A : [n0,∞[ → C the function defined by

A(x) :=
∑

n06n6x

an.

Further let f : [n0,∞[ → C be a continuously differentiable function. Then for all real
x ≥ n0 the following formula holds∑

n06k6x

akf(k) = A(x)f(x)−
∫ x

n0

A(t)f ′(t)dt.

Proof. We consider first the case when x = n is an integer and prove the formula by
induction on n. For n = n0 both sides are equal to an0f(n0).
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Induction step n→ n+ 1. Denoting by L(x) the left hand side and by R(x) the right
hand side of the asserted formula we have

L(n+ 1)− L(n) = an+1f(n+ 1)

and

R(n+ 1)−R(n) = A(n+ 1)f(n+ 1)− A(n)f(n)−
∫ n+1

n

A(n)f ′(t)dt

= A(n+ 1)f(n+ 1)− A(n)f(n)− A(n)(f(n+ 1)− f(n))

= A(n+ 1)f(n+ 1)− A(n)f(n+ 1)

= an+1f(n+ 1) = L(n+ 1)− L(n).

This proves the induction step.

In the general case when x is not necessarily an integer, set n := bxc. Then

L(x)− L(n) = 0

and

R(x)−R(n) = A(x)f(x)− A(n)f(n)−
∫ x

n

A(n)f ′(t)dt

= A(n)f(x)− A(n)f(n)− A(n)(f(x)− f(n)) = 0, q.e.d.

11.5. Theorem. The following relations hold between the prime number function and
the Chebyshev theta function:

a) π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt =

ϑ(x)

log x
+O

( x

log2 x

)
,

b) ϑ(x) = π(x) log x−
∫ x

2

π(t)

t
dt = π(x) log x+O

( x

log x

)
.

Proof. a) Let (an)n>2 be the sequence defined by

an :=

{
1, if n is prime,
0 otherwise,

bn := an log n, and f(x) = 1/ log x. Then

π(x) =
∑

26n6x

an =
∑

26n6x

bnf(n).

Since
∑
n6x

bn = ϑ(x) and f ′(x) = −1/(x log2 x), Abel summation (lemma 11.4) yields

π(x) = ϑ(x)f(x)−
∫ x

2

ϑ(t)f ′(t)dt =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt.
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To estimate the integral, we use the result of theorem 11.3 that |ϑ(t)/t| ≤ log 4. Hence
it remains to show that∫ x

2

dt

log2 t
= O

( x

log2 x

)
.

This can be seen as follows (we may assume x > 4):∫ x

2

dt

log2 t
=

∫ √
x

2

dt

log2 t
+

∫ x

√
x

dt

log2 t

≤
√
x

(log 2)2
+

x

(log
√
x)2

= O(
√
x) +

4x

log2 x
= O

( x

log2 x

)
.

b) With an as defined in a) we have ϑ(x) =
∑

26n6x
an log(n). Abel summation yields

ϑ(x) = π(x) log(x)−
∫ x

2

π(t)

t
dt.

From ϑ(x) = O(x) and a) it follows that π(x) = O(x/ log x), hence∫ x

2

π(t)

t
dt = O

(∫ x

2

dt

log t

)
.

The last integral is estimated by the same trick as used in a)∫ x

2

dt

log t
=

∫ √
x

2

dt

log t
+

∫ x

√
x

dt

log t

≤
√
x

log 2
+

x

log
√
x

= O
( x

log x

)
.

11.6. Corollary. The asymptotic relation

π(x) ∼ x

log x
for x→∞ (prime number theorem)

is equivalent to the asymptotic relation

ϑ(x) ∼ x for x→∞.

11.7. Definition (Mangoldt function). The arithmetical function Λ : N1 → Z is
defined by

Λ(n) :=

{
log p, if n = pk is a prime power (k ≥ 1),
0 otherwise.
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11.8. Theorem. The Dirichlet series associated to the Mangoldt arithmetical function
satisfies for all s ∈ C with Re(s) > 1

∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
.

Proof. By theorem 4.7 one has for Re(s) > 1

log ζ(s) =
∞∑
k=1

1

k

∑
p∈P

1

pks
.

This can be written as

log ζ(s) =
∞∑
n=1

an
ns

with

an :=

{
1/k, if n = pk is a prime power (k ≥ 1)
0 otherwise

Since

d

ds

1

ns
=

d

ds
e−s logn = − log n e−s logn = − log n

ns

and an log n = Λ(n), we get

ζ ′(s)

ζ(s)
=

d

ds
log ζ(s) = −

∞∑
n=1

an log n

ns
= −

∞∑
n=1

Λ(n)

ns
, q.e.d.

11.9. Definition (Chebyshev psi function). This function is defined by

ψ(x) =
∑
n6x

Λ(n).

11.10. Theorem. The Chebyshev psi function and the Chebyshev theta function are
related in the following way.

a) ψ(x) =
∑
k>1

ϑ(x1/k) = ϑ(x) + ϑ(x1/2) + ϑ(x1/3) + . . . = ϑ(x) +O(x1/2 log x),

b) ϑ(x) =
∑
k>1

µ(k)ψ(x1/k) = ψ(x)− ψ(x1/2)− ψ(x1/3)− ψ(x1/5) + ψ(x1/6)−+ . . . .

Proof. a) By the definition of the Mangoldt function one has

ψ(x) =
∑
k>1

∑
pk6n

log p =
∑
k>1

∑
p6x1/k

log p =
∑
k>1

ϑ(x1/k).
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Since ϑ(t) = 0 for t < 2, we have ϑ(x1/k) = 0 for k > log x/ log 2, hence∑
k>2

ϑ(x1/k) ≤
⌊ log x

log 2

⌋
ϑ(x1/2) = O(x1/2 log x).

b) This is just another form of the Möbius inversion theorem∑
k>1

µ(k)ψ(x1/k) =
∑
k>1

µ(k)
∑
`>1

ϑ(x1/k`)

=
∑
n>1

∑
k|n

µ(k)ϑ(x1/n) =
∑
n>1

δ1,n ϑ(x1/n) = ϑ(x).

11.11. Corollary. The asymptotic relation

π(x) ∼ x

log x
for x→∞ (prime number theorem)

is equivalent to the asymptotic relation

ψ(x) ∼ x for x→∞.

Proof. Since by the preceding theorem ϑ(x) ∼ x is equivalent to ψ(x) ∼ x, this follows
from corollary 11.6.

Remark. We will indeed use this equivalence when we prove the prime number theorem
in chapter 13.

11.12. Lemma. The prime decomposition of n! is

n! =
∏
p

pαp , where αp =
∑
k>1

⌊ n
pk

⌋
.

Proof. . . .

11.13. Theorem (Bertrand’s postulate). For every positive integer n there is at least
one prime p with n < p ≤ 2n.

Proof. . . .

11.14. Theorem.∑
p6x

log p

p
= log x+O(1).

Proof. . . .

11.15. Theorem. There exists a real constant B such that∑
p6x

1

p
= log log x+B +O

( 1

log x

)
.

Proof. . . .
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12. Laplace and Mellin transform

12. Laplace and Mellin Transform

12.1. Laplace Transform. Let f : R+ → C be a measurable function such that
|f(x)|e−σ0x is bounded on R+ for some σ0 ∈ R. Then the integral

F (s) =

∫ ∞

0

f(x)e−sxdx

exists for all s ∈ C with Re(s) > σ0 and represents a holomorphic function in the
halfplane

H(σ0) = {s ∈ C : Re(s) > σ0}

F is called the Laplace transform of f .

Remark. Measurable here means Lebesgue measurable. In our applications, f will al-
ways be at least piecewise continuous. Hence the reader who does not feel confortable
with Lebesgue integration theory may assume f piecewise continuous.

The existence of the integral follows from the estimate

|f(x)esx| ≤ Ke−(σ−σ0)x, σ := Re(s) > σ0,

where K is an upper bound for |f(x)|eσ0x on R.

Example. Let f(x) = 1 for all x ∈ R+. The Laplace transform of this function is

F (s) =

∫ ∞

0

e−sxdx = lim
R→∞

[
−e

−sx

s

]x=R
x=0

= lim
R→∞

(1− e−sR) =
1

s
for Re(s) > 0.

12.2. Relation between Laplace and Fourier transform.

We set s = σ + it, σ, t ∈ R. Then the formula for the Laplace transform becomes

F (σ + it) =

∫ ∞

0

f(x)e−σxe−itxdx =

∫ ∞

−∞
g(x)e−itxdx,

where

g(x) =

{
f(x)e−σx for x ≥ 0,
0 for x < 0.

Therefore the function t 7→ F (σ+ it) can be regarded (up to a normalization constant)
as the Fourier transform of the function g.

12.3. Mellin Transform. The Mellin transform is obtained from the Laplace trans-
form by a change of variables. With the substitution

x = log t, dx =
dt

t
,
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the formula for the Laplace transform becomes

F (s) =

∫ ∞

1

f(log t) t−s
dt

t
.

This can be viewed as a transformation of the function g(t) := f(log t), t ≥ 1, and
leads to the following definition.

Definition. Let g : [1,∞[ → R a measurable function such that g(x)x−σ0 is bounded
on [1,∞[ for some σ0 ∈ R. Then the integral

G(s) =

∫ ∞

1

g(x)x−s
dx

x

exists for all s ∈ C with Re(s) > σ0. The function G is holomorphic in the halfplane
H(σ0) and is called the Mellin transform of g.

Remark. There exists a generalization of the Mellin transform where the integral is
extended from 0 to ∞. An example is the Euler integral for the Gamma function

Γ(s) =

∫ ∞

0

e−xx−s
dx

x
.

This generalized Mellin transform corresponds to the “two-sided” Laplace transform

F (s) =

∫ ∞

−∞
f(x)e−sxdx

12.4. Theorem. The Mellin transform of the Chebyshev ψ-function is∫ ∞

1

ψ(x)x−s
dx

x
= − ζ ′(s)

sζ(s)
for Re(s) > 1.

Proof. It follows from theorems 11.3 and 11.10 that ψ(x)/x is bounded, hence the
Mellin transform of ψ exists for Re(s) > 1. We apply the Abel summation theorem

11.4 to the sum
∑
n6x

Λ(n)

ns
. Since

d

dx

1

xs
= −s 1

xs+1
,

we obtain∑
n6x

Λ(n)

ns
=
ψ(x)

xs
+ s

∫ x

1

ψ(t)

ts+1
dt.
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12. Laplace and Mellin transform

Letting x→∞, we get ψ(x)/xs → 0 for Re(s) > 1, and using theorem 11.8

−ζ
′(s)

ζ(s)
=

∞∑
n=1

Λ(n)

ns
= s

∫ ∞

1

ψ(t)

ts+1
dt, q.e.d.

12.5. Theorem (Tauberian theorem of Ingham and Newman). Let f : R+ → C be a
measurable bounded function and

F (s) =

∫ ∞

0

f(x)e−sxdx, Re(s) > 0,

its Laplace transform. Suppose that F , which is holomorphic in

H(0) = {s ∈ C : Re(s) > 0},

admits a holomorphic continuation to some open neighborhood U of H(0). Then the
improper integral∫ ∞

0

f(x)dx = lim
R→∞

∫ R

0

f(x)dx

exists and one has

F (0) =

∫ ∞

0

f(x)dx,

where F (0) denotes the value at 0 of the continued function.

Proof. For a real parameter R > 0 define the function

FR(s) :=

∫ R

0

f(x)e−sxdx.

Since the integration interval [0, R] is compact, FR is holomorphic in the whole plane
C. The assertion of the theorem is equivalent to

lim
R→∞

(F (0)− FR(0)) = 0.

The function F − FR is holomorphic in U ⊃ H(0), therefore its value at the point 0
can be calculated by the Cauchy formula.

F (0)− FR(0) =
1

2πi

∫
γ

(F (s)− FR(s))
1

s
ds.

Here the curve γ = γ+ + γ− is chosen as indicated in the following figure. γ+ is a
semi-circle of radius r > 0 with center 0 in the right halfplane from −ir to ir, and γ−
consists of three straight lines from ir to −δ + ir, from −δ + ir to −δ − ir and from
−δ − ir to −ir. The constant δ > 0 has to be chosen (depending on r) sufficiently
small, such that γ and its interior are completely contained in U .
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The function s 7→ (F (s) − FR(s)) eRs is holomorphic in U and for s = 0 its value is
F (0)− FR(0). Therefore we have also

F (0)− FR(0) =
1

2πi

∫
γ

(F (s)− FR(s)) eRs
1

s
ds.

We still use another trick and write

F (0)− FR(0) =
1

2πi

∫
γ

(F (s)− FR(s)) eRs
(1

s
+

s

r2

)
ds. (∗)

This is true since the added function

s 7→ (F (s)− FR(s)) eRs
s

r2

is holomorphic in U , hence its integral over γ vanishes.

Note that for |s| = r one has(1

s
+

s

r2

)
=

s̄

ss̄
+

s

r2
=
s+ s̄

r2
=

2σ

r2
, where σ = Re(s).

For the proof of our theorem, we have to estimate the integral (∗).

Let ε > 0 be given. We choose r := 3/ε and a suitable δ > 0. We estimate the integral
in three steps.

1) Estimation of the integral over the curve γ+.
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12. Laplace and Mellin transform

Since by hypothesis f : R → C is bounded, we may suppose |f(x)| ≤ 1 for all x ≥ 0.
Then for σ = Re(s) > 0

|F (s)− FR(s)| =
∣∣∣∫ ∞

R

f(x)e−sxdx
∣∣∣ ≤ ∫ ∞

R

e−σxdx =
e−Rσ

σ
.

With the abbreviation

G1(s) := (F (s)− FR(s)) eRs
(1

s
+

s

r2

)
we get therefore on γ+

|G1(s)| ≤
e−Rσ

σ
eRσ

2σ

r2
=

2

r2
,

hence ∣∣∣ 1

2πi

∫
γ+

G1(s)ds
∣∣∣ ≤ 1

2π

∫
γ+

2

r2
|ds| = 1

2π
· 2

r2
· πr =

1

r
=
ε

3
.

2) Estimation of the integral

∫
γ−

FR(s)eRs
(1

s
+

s

r2

)
ds.

Since FR is holomorphic in the whole plane, we may replace the integration curve γ− by
a semicircle α of radius r in the halfplane Re(s) ≤ 0 from ir to −ir. For σ = Re(s) < 0
we have

|FR(s)| ≤
∫ R

0

e−xσdx =
1

σ
(1− e−Rσ) ≤ e−Rσ

|σ|
,

Therefore the integrand

G2(s) := FR(s)eRs
(1

s
+

s

r2

)
satisfies the following estimate on the curve α

|G2(s)| ≤
∣∣FR(s)eRs

∣∣ 2|σ|
r2

≤ 2

r2
,

hence ∣∣∣ 1

2πi

∫
α

G2(s)ds
∣∣∣ ≤ 1

2π

∫
α

2

r2
|ds| = 1

πr2

∫
α

|ds| = 1

r
=
ε

3
.

3) Estimation of the integral

∫
γ−

F (s)eRs
(1

s
+

s

r2

)
ds.
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The function s 7→ F (s)
(1

s
+

s

r2

)
is holomorphic in a neighborhood of the integration

path γ−. Therefore there exists a constant K > 0 such that∣∣∣F (s)
(1

s
+

s

r2

)∣∣∣ ≤ K for all s on the curve γ−.

Hence the integrand

G3(s) := F (s)eRs
(1

s
+

s

r2

)
satisfies the following estimate on γ−

|G3(s)| ≤ KeRσ, where σ = Re(s).

Let τ be some constant with

0 < τ < δ,

whose value will be fixed later. We split the integration curve γ− into two parts

γ′− := γ− ∩ {Re(s) ≥ −τ},
γ′′− := γ− ∩ {Re(s) ≤ −τ}.

γ′− consists of two line segments of length τ each. Let L be the length of γ−. Then∣∣∣ 1

2πi

∫
γ−

G3(s)ds
∣∣∣ ≤ 1

2π

{∫
γ′−

KeRσ|ds|+
∫
γ′′−

KeRσ|ds|
}

≤ K

2π

{∫
γ′−

|ds|+
∫
γ′′−

e−Rτ |ds|
}

≤ K

2π

(
2τ + Le−Rτ

)
.

We now fix a value of τ > 0 such that

K

2π
· 2τ < ε

6

and choose an R0 > 0 such that

K

2π
· Le−R0τ <

ε

6

Then we have∣∣∣ 1

2πi

∫
γ−

G3(s)ds
∣∣∣ < ε

3
for all R ≥ R0.

Putting the estimates of 1), 2) and 3) together we finally get

|F (0)− FR(0)| =
∣∣∣ 1

2πi

∫
γ

(F (s)− FR(s)) eRs
(1

s
+

s

r2

)
ds

∣∣∣ < ε

for all R ≥ R0, q.e.d.
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13. Proof of the Prime Number Theorem

13.1. In this chapter we will prove the prime number theorem

π(x) ∼ x

log x
for x→∞.

As we have seen in corollary 11.11, this is equivalent to the asymptotic relation

ψ(x) ∼ x for x→∞.

To prove this, we use the Mellin transform of ψ, calculated in theorem 12.4∫ ∞

1

ψ(x)x−s
dx

x
= − ζ ′(s)

sζ(s)
for Re(s) > 1.

A first step is

13.2. Proposition. The following improper integral exists:∫ ∞

1

(ψ(x)

x
− 1

) dx
x

= lim
R→∞

∫ R

1

(ψ(x)

x
− 1

) dx
x
.

Proof. We write the Mellin transform of ψ as a Laplace transform

− ζ ′(s)

sζ(s)
=

∫ ∞

0

ψ(ex)e−sxdx =

∫ ∞

0

ψ(ex)

ex
e−(s−1)xdx

Since ∫ ∞

0

e−(s−1)xdx =
1

s− 1
for Re(s) > 1,

we get for Re(s) > 1∫ ∞

0

(ψ(ex)

ex
− 1

)
e−(s−1)xdx = − ζ ′(s)

sζ(s)
− 1

s− 1
=: F (s).

The zeta function has a pole of order 1 at s = 1, hence ζ ′(s)/(sζ(s)) has a pole of
order 1 with residue −1 at s = 1. It follows that F is holomorphic at s = 1. We now
use the fact that the zeta function has no zeroes on the line Re(s) = 1 and get that
the function F can be continued holomorphically to some neighborhood of the closed
halfplane Re(s) ≥ 1. The Tauberian theorem 12.5 of Ingham/Newman can be applied
to the above Laplace transform (after a coordinate change s̃ = s − 1), yielding the
existence of the improper integral∫ ∞

0

(ψ(ex)

ex
− 1

)
dx.
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By the substitution x̃ = ex this is nothing else than the improper integral∫ ∞

1

(ψ(x)

x
− 1

) dx
x
,

which proves the proposition.

13.3. Lemma. Let g : [1,∞[ → R be a monotonically increasing function such that
the improper integral∫ ∞

1

(g(x)
x

− 1
) dx
x

exists. Then

lim
x→∞

g(x)

x
= 1.

Remark. In general, the existence of an improper integral
∫∞

1
f(x)dx

x
does not imply

lim
x→∞

f(x) = 0, as can be seen by the example

∫ ∞

1

sin x
dx

x
= lim

R→∞

∫ R

1

sin x

x
dx.

That this improper integral converges follows from the Leibniz criterion for the con-
vergence of alternating series.

Proof. lim
x→∞

g(x)/x = 1 is equivalent to the following two assertions

(1) lim sup
x→∞

g(x)

x
≤ 1,

(2) lim inf
x→∞

g(x)

x
≥ 1.

Proof of (1). If this is not true, there exists an ε > 0 and a sequence (xν) with xν →∞
such that

g(xν) ≥ (1 + ε)xν for all ν.

Since g is monotonically increasing, it follows that

(1+ε)xν∫
xν

(g(x)
x

− 1
) dx
x
≥

(1+ε)xν∫
xν

((1 + ε)xν
x

− 1
) dx
x

= [Subst. t = x
xν

]

=

1+ε∫
1

(1 + ε

t
− 1

) dt
t

= α(ε) > 0,
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where α(ε) is a positive constant independent of ν (the function 1+ε
t
− 1 is continuous

and positive on the interval [1, 1 + ε[). But this contradicts the Cauchy criterion for

the existence of the improper integral
∫∞

1
(g(x)

x
− 1) dx

x
.

Remark. The Cauchy criterion for the existence of the improper integral
∫∞
a
f(x)dx

can be formulated as follows: For every ε > 0 there exists an R0 ≥ a such that∣∣∣∫ R′

R

f(x)dx
∣∣∣ < ε for all R,R′ with R′ ≥ R ≥ R0.

Proof of (2). If this is not true, there exists an ε > 0 and a sequence (xν) with xν →∞
such that

g(xν) ≤ (1− ε)xν for all ν.

Since g is monotonically increasing, it follows that

xν∫
(1−ε)xν

(g(x)
x

− 1
) dx
x
≤

xν∫
(1−ε)xν

((1− ε)xν
x

− 1
) dx
x

= [Subst. t = x
xν

]

=

1∫
1−ε

(1− ε

t
− 1

) dt
t

= −β(ε) < 0,

where β(ε) is a positive constant independent of ν (the function 1−ε
t
− 1 is continuous

and negative on ]1− ε, 1]). This contradicts the Cauchy criterion for the existence of

the improper integral
∫∞

1
(g(x)

x
−1) dx

x
. Therefore (2) must be true, which completes the

proof of the lemma.

13.4. Theorem (Prime number theorem). The prime number function

π(x) := #{p ∈ N1 : p prime and p ≤ x}

satisfies the asymptotic relation

π(x) ∼ x

log x
for x→∞.

Proof. Lemma 13.3 applied to proposition 13.2 yields ψ(x) ∼ x, which is by corollary
11.11 equivalent to π(x) ∼ x/ log x, q.e.d.

The following corollary is a generalization of Bertrand’s postulate (theorem 11.13).

13.5. Corollary. For every ε > 0 there exists an x0 ≥ 1 such that for all x ≥ x0 there
is at least one prime p with

x < p ≤ (1 + ε)x.
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Proof. By the prime number theorem

lim
x→∞

π((1 + ε)x)

π(x)
= lim

x→∞

(1 + ε)x

log(1 + ε) + log x
· log x

x
= 1 + ε.

Therefore there exists an x0 such that π((1 + ε)x) > π(x) for all x ≥ x0, hence there
must be a prime p with x < p ≤ (1 + ε)x, q.e.d.

13.6. Corollary. Let pn denote the n-th prime (in the natural order by size). Then
we have the asymptotic relation

pn ∼ n log n for n→∞.

Proof. By the prime number theorem, we have the following asymptotic relation for
n→∞

π(n log n) ∼ n log n

log(n log n)
=

n log n

log n+ log log n
=

n

1 + log logn
logn

∼ n.

Since π(pn) = n by definition, the assertion follows immediately from the next lemma.

13.7. Lemma. Let f, g : N1 → R+ be two functions with lim
n→∞

f(n) = lim
n→∞

g(n) = ∞
and

π(f(n)) ∼ π(g(n)) for n→∞.

Then we have also

f(n) ∼ g(n) for n→∞.

Proof. We have to show

(1) lim sup
n→∞

f(n)

g(n)
≤ 1 and (2) lim sup

n→∞

g(n)

f(n)
≤ 1.

To prove (1), assume this is false. Then there exists an ε > 0 and a sequence (nν) with
nν →∞ such that

f(nν) ≥ (1 + ε)g(nν) for all ν.

Since

lim
ν→∞

π((1 + ε)g(nν))

π(g(nν))
= 1 + ε,

cf. the proof of corollary 13.5, this implies

lim sup
ν→∞

π(f(nν))

π(g(nν)
≥ 1 + ε,

contradicting the hypothesis π(f(n)) ∼ π(g(n)). Therefore (1) must be true. Assertion
(2) follows from (1) by interchanging the roles of f and g.
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