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0. Notations and Conventions

Standard notations for sets

Z  ring of all integers

Ny set of all integers > 0

N; set of all integers > 1

P set of all primes = {2,3,5,7,11,...}

Q,R,C denote the fields of rational, real and complex numbers respectively
A*  multiplicative group of invertible elements of a ring A

[a,b],]a, b, [a,b],]a,b] denote closed, open and half-open intervals of R

R4 =[0,00[ set of non-negative real numbers

R7 =R, NR* multiplicative group of positive real numbers

|x] greatest integer <z € R

Landau symbols O, o

For two functions f, g : [a,00] — C, one writes
f(z) = O(g(x)) for z — oo,

if there exist constants C' > 0 and xy > a such that
|f(z)] < Clg(x)| for all x > xo.

Similarily,
f(x) = o(g(x)) forx — o0

means that for every € > 0 there exists R > a such that
|f(x)] <elg(x)| for all x > R.

For functions f, g : |a,b] — C the notions

f(z) = O(g(x)) for z\ a,

and
f(z) =o(g(x)) forz\ a,

are defined analogously.

f(x) = folz) + O(g(x))
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is defined as f(x) — fo(z) = O(g(z)).

Asymptotic equality

Two functions f,g : [a,00[ — C are said to be asymptotically equal for z — oo, in
symbols

f@) ~ g(z) for v — oo,
if g(x) # 0 for x > ¢ and

lim le.

=00 g(z)

Analogously, for two sequences (ay)n>n, and (bn)n>ngs
a, ~ b,

a
means lim — = 1. A famous example for asymptotic equality is the Stirling formula

n—oo n

n n
n! ~ 27m<—> ,
e

which we will prove in theorem 9.8.

Miscellaneous

We sometimes write ‘iff” as an abbreviation for ‘if and only if’.
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1. Divisibility. Unique Factorization Theorem

1.1. Definition. Let x,y € Z be two integers. We define
x|y (read: x divides y),

iff there exists an integer ¢ such that y = gqz. We write z { y, if this is not the case.

1.2. We list some simple properties of divisibility for numbers x,y, z € Z.

1 (x|ly Nylz) = =]z

i) «]0 forallzeZ.

)
)
iii) 0|z = z=0.
)
)

iv) 1]z and —1 |z for all z € Z.

v (x|ly Nylz) = ===y

1.3. Definition. A prime number is an integer p > 2 such that there doesn’t exist any
integer x with 1 <z < p and = | p.

So the only positive divisors of a prime number p are 1 and p. Note that by definition
1 is not a prime number.

Every integer x > 2 is either a prime or a product of a finite number of primes. This can
be easily proved by induction on x. The assertion is certainly true for = 2. Let now
x > 2, and assume that the assertion has already been proved for all integers =’ < x. If
x is a prime, we are done. Otherwise there exists a decomposition x = yz with integers
2 <y, z < z. By induction hypothesis, y and z can be written as products of primes

Y= Hpi, z = qu, (m,n > 1, p;,q; prime)
i=1 j=1

Multiplying these two formulas gives the desired prime factorization of x.

Using the convention that an empty product (with zero factors) equals 1, we can state
that any positive integer x is a product of primes

n
T = Hpi, n > 0, p; primes.
i=1
We can now state and prove Euclid’s famous theorem on the infinitude of primes.

1.4. Theorem (Euclid). There exist infinitely many prime numbers.

Proof. Assume to the contrary that there are only finitely many primes and that
b= 27 b2 = 37 P3s---yPn
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is a complete list of all primes. The integer
T:=p1-pPa-...-pp+1

must be a product of primes, hence must be divisible by at least one of the p;, i =
1,...,n. But this is impossible since

x . 1
— = (integer) + —
Di Di

is not an integer. Hence the assumption is false and there exist infinitely many primes.

Whereas the existence of a prime factorization was easy to prove, the uniqueness is
much harder. For this purpose we need some preparations.

1.5. Definition. Two integers z,y € Z are called relatively prime or coprime (G.
teilerfremd) if they are not both equal to 0 and there does not exist an integer d > 1
with d | z and d | y.

This is equivalent to saying that x and y have no common prime factor.

In particular, if p is a prime and x an integer with p t z, then p and x are relatively
prime.

1.6. Theorem. Two integers x,y are coprime iff there exist integers n,m such that
nxr +my = 1.

Proof. “<=" If nx + my = 1, every common divisor d of x and y is also a divisor of 1,
hence d = £1. So x and y are coprime.

“=" Suppose that x,y are coprime. Without loss of generality we may assume x,y > 0.
We prove the theorem by induction on max(z,y).

The assertion is trivially true for max(z,y) = 1.

Let now N := max(z,y) > 1 und suppose that the assertion has already been proved
for all integers z’,y’ with max(z’,y’) < N. Since x,y are coprime, we have = # y,
so we may suppose 0 < x < y. Then (z,y — x) is a pair of coprime numbers with
max(z,y — x) < N. By induction hypothesis there exist integers n, m with

nr+m(y —z) =1,
which implies (n — m)x +my = 1, q.e.d.

1.7. Theorem. Let x,y € Z. If a prime p divides the product xy, then p |z orp|y.

Proof. If p | z, we are done. Otherwise p and x are coprime, hence there exist integers
n,m with np + mx = 1. Multiplying this equation by y and using zy = kp with an
integer k, we obtain

y = npy + mzy = npy + mkp = p(ny + mk).

4
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This shows p | y, q.e.d.

1.8. Theorem (Unique factorization theorem). FEvery positive integer can be written
as a (finite) product of prime numbers. This decomposition is unique up to order.

Proof. The existence of a prime factorization has already been proved, so it remains to
show uniqueness. Let
T=DP1 e Pn=q - Qm ()

be two prime factorizations of a positive integer x. We must show that m = n and
after rearrangement p; = ¢; for all 7. We may assume n < m. We prove the assertion
by induction on n.

a) If n =0, it follows z = 1 and m = 0, hence the assertion is true in this case.

b) Induction step n—1 — n, (n > 1). We have p; | ¢1 - ... - ¢m, hence by theorem 1.7,
p1 must divide one of the factors ¢; and since ¢; is prime, we must have p; = ¢;. After
reordering we may assume i = 1. Dividing equation (x) by p; we get

P2 "Pn=¢q2" ... Qm.

By induction hypothesis we have n = m and, after reordering, p;, = ¢; for all 7, q.e.d.

If we collect multiple occurrences of the same prime, we can write every positive integer
in a unique way as

n
x:pri, pr<ps <...<p,primes, n>0,¢e; > 0.
i=1

This is called the canonical prime factorization of x.

Sometimes a variant of this representation is useful. For an integer x # 0 and a prime
p we define

ord,(z) := sup{e € Ny : p° | z}.
Then every nonzero integer x can be written as

x = sign(z) Hpordp(x)
p

where the product is extended over all primes. Note that ord,(z) = 0 for all but a finite
number of primes, so there is no problem with the convergence of the infinite product.

1.9. Definition (Greatest common divisor). Let x,y € Z. An integer d is called greatest
common divisor of x and y, if the following two conditions are satisfied:

i) d ist a common divisor of z and y, i.e. d | z and d | y.

ii) If d; is any common divisor of x and y, then d; | d.

5
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If d; and dy are two greatest common divisors of z and y, then d; | dy and dy | dj,
hence by 1.2.v) we have d; = +d,. Therefore the greatest common divisor is (in case
of existence) uniquely determined up to sign. The positive one is denoted by ged(z, y).
The existence can be seen using the prime factor decomposition. For x # 0 and y # 0,

ng(Q?, y) _ Hpmin(ordp(z),ordp(y))
p

and ged(z,0) = ged(0,x) = |z|, ged(0,0) = 0.
Two integers x,y are relatively prime iff ged(z,y) = 1.
The following is a generalization of theorem 1.6.

1.10. Theorem. Let x,y € Z. An integer d is greatest common divisor of x and y iff

i) d is a common divisor of x and y, and

ii) there exist integers n,m such that
nxr +my = d.

Proof. The case when at least one of x,y equals 0 is trivial, so we may suppose = # 0,

y # 0.

“=" 1If d is greatest common divisor of x and y, then x/d and y/d are coprime, hence
by theorem 1.6 there exist integers n, m with

nz—kmg:l,

d d

which implies ii).
The implication “<” is trivial.
1.11. Definition (Least common multiple). Let x,y € Z. An integer m is called least
common multiple of x and y, if the following two conditions are satisfied:

i) m ist a common multiple of z and y, i.e. x | m and y | m.

ii) If m is any common multiple of z and y, then m | m;.
As in the case of the greatest common divisor, the least common multiple of z and y

is uniquely determined up to sign. The positive one is denoted by lem(z,y). For = # 0
and y # 0 the following equation holds

ICH](LC, y) _ Hpmax(ord(a:),ord(y))
p

and lem(z,0) = lem(0, z) = lem(0,0) = 0.

The definitions of the greatest common divisor and least common multiple can be
extended in a straightforward way to more than two arguments. One has

ged(zq, ..., x,) = ged(ged(zq, ...y Tpe1), Tn),
lem(xy, ..., x,) = lem(lem(zy, ..., Tpo1), Tn).
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2. Congruences. Chinese Remainder Theorem

2.1. Definition. Let m € Z. Two integers x,y are called congruent modulo m, in
symbols

xr =y mod m,

if m divides the difference x — y, i.e. © — y € mZ.

Examples. 20=0mod 5, 3=10mod7, —4=10mod7.
x =0 mod 2 is equivalent to “z is even”,

x =1 mod 2 is equivalent to “z is odd”.

Remarks. a) x,y are congruent modulo m iff they are congruent modulo —m.
b) x =y mod 0 iff x =y.
¢)z=ymod 1 forall z,y € Z.

Therefore the only interesting case is m > 2.

2.2. Proposition. The congruence modulo m s an equivalence relation, i.e. the fol-
lowing properties hold:

i) (Reflexivity) x =z mod m for all x € Z
ii) (Symmetry) x=ymodm = y = x mod m.
iii) (Transitivity) (r=ymodm) A (y=zmodm) = x =z modm.

2.3. Lemma (Division with rest). Let x,m € Z, m > 2. Then there exist uniquely
determined integers q,r satisfying

r=qgm+r, 0<r<m.

Remark. The equation x = gm + r implies that = r mod m. Therefore every integer
x € Z is equivalent modulo m to one and only one element of

{0,1,...,m—1}.

2.4. Definition. Let m be a positive integer. The set of all equivalence classes of Z
modulo m is denoted by Z/mZ or briefly by Z/m.

From the above remark we see that
Z/mZ ={0,1,...,m — 1},

where T = x mod m is the equivalence class of x modulo m. If there is no danger of
confusion, we will often write simply = instead of T.

Chap. 2 last revised: 2001-10-20 7
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Equivalence modulo m is compatible with addition and multiplication, i.e.
r=12"modm and y=9y modm —

r+y=2+9y modm and zy = 2’y mod m.

Therefore addition and multiplication in Z induces an addition and multiplication in
Z/m such that Z/m becomes a commutative ring and the canonical surjection

Z— 7Z/m, z— xmodm,

is a ring homomorphism.

Example. In Z/7 one has

3+45=8=1, 3.-5=15=1.

3+4=7=0,

The following are the complete addition and multiplication tables of Z/7.

O UL W N~ O+
— O O O W NN
O~ OO U Wl W
WK = OO U
B W~ O o gl
(e M el en M en i oo e M an) !
U W N = O
LW O N O
B =T O WOl w
WO N U~ O
RN O WUl Ol Lt
— N W Olo OO

ST W N = OO
O O UL W N |-
Tk WD~ O OO
O UL W N~ O X

2.5. Theorem. Let m be a positive integer. An element T € Z/m is invertible iff
ged(z,m) = 1.

Proof. “<” Suppose ged(z, m) = 1. By theorem 1.6 there exist integers &, u such that
Ex + pm = 1.

This implies £x = 1 mod m, hence € is an inverse of T in Z/m.

“=” Suppose that 7 is invertible, i.e. -7 = 1 for some § € Z/m. Then zy = 1 mod m,
hence there exists an integer k such that xy — 1 = km. Therefore yx — km = 1, which
means by theorem 1.6 that x and m are coprime, q.e.d.

2.6. Corollary. Let m be a positive integer. The ring Z/m is a field iff m is a prime.

Notation. If p is a prime, the field Z/p is also denoted by F,,.

For any ring A with unit element we denote its multiplicative group of invertible ele-
ments by A*. In particular we use the notations (Z/m)* and F;.

Example. For p = 7 we have the field F; = Z/7 with 7 elements. From the above
multiplication table we can read off the inverses of the elements of F; = F; ~\ {0}.

8
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z |1 2
l‘_l‘l 4

3 4 5 6

5 2 3 6

2.7. Direct Products. For two rings (resp. groups) A; and A,, the cartesian product
Ay x As becomes a ring (resp. a group) with component-wise defined operations:

(1, 22) + (Y1,52) = (21 + 41,22 + 42)
(z1,22) - (Y1, 92) = (T1Y1, T2Y2)-
If Ay, Ay are two rings with unit element, then (0, 0) is the zero element and (1, 1) the

unit element of A; x As. For the group of invertible elements the following equation
holds:

(Al X A2>* = AT X A;

Note that if A; and Aj are fields, the direct product A; x A, is a ring, but not a field,
since there are zero divisors:

(1,0)-(0,1) = (0,0).

2.8. Theorem (Chinese remainder theorem). Let my,my be two positive coprime
integers. Then the map

¢:Z/mimy — Z/my X Z/my, T+ (x mod my,x mod my)

15 an isomorphism of rings.

Proof. Tt is clear that ¢ is a ring homomorphism. Since Z/mymqy and Z/my X Z/ms have
the same number of elements (namely mims), it suffices to prove that ¢ is injective.

Suppose ¢(Z) = 0. This means that x = 0 mod m; and x = 0 mod my, i.e. my | z
and msy | x. Since m; and msy are coprime, it follows that myms | x, hence T = 0 in
Z/mimsy, q.e.d.

Remark. The classical formulation of the Chinese remainder theorem is the following
(which is contained in theorem 2.8):

Let mq, ms be two positive coprime integers. Then for every pair aq, as of integers there
exists an integer a such that

a =a; mod m; fori=1,2.
This integer a is uniquely determined modulo mims;.

2.9. Definition (Euler phi function). Let m be a positive integer. Then ¢(m) is defined
as the number of integers k € {0,1,...,m— 1} which are coprime to m. Using theorem
2.5, this can also be expressed as

p(m) == #(Z/m)",
where #S denotes the number of elements of a set .S.

For small m, the p-function takes the following values

9
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8 9 10
4 6 4

1 23 456 7
em)|1 1 2 2 4 2 6

It is obvious that for a prime p one has ¢(p) = p— 1. More generally, for a prime power
p" it is easy to see that

_ 1
p(p*) = p* —p*t zp’“(l - —).
p
If m and n are coprime, it follows from theorem 2.8 that
(Z/mn)" = (Z/m)" x (Z/n)",
hence p(mn) = ¢(n)p(m). Using this, we can derive
2.10. Theorem. For every positive integer n the following formula holds:

e =nJT(1- ).

pln
where the product is extended over all prime divisors p of n.

Proof. Let n = [];_, p;" be the canonical prime decomposition of n. Then

T ot = TToei (1 L : L
o) = [Tew) =TI (1- =) =n]I(1--).  aed
i=1 i=1 Di i—1 i
2.11. Theorem (Euler). Let m be an integer > 2 and a an integer with ged(a, m) = 1.
Then
a?™ =1 mod m.

Proof. We use some notions and elementary facts from group theory. Let GG be a finite
group, written multiplicatively, with unit element e. The order of an element a € G is
defined as

ord(a) := min{k € N; : a" = ¢}.

The order of the group is defined as the number of its elements,
ord(G) = #G.

Then, as a special case of a theorem of Lagrange, one has
ord(a) | ord(G) for all a € G.

We apply this to the group G = (Z/m)*. By definition ord((Z/m)*) = ¢(m). Let r be
the order of @ € (Z/m)*. Then ¢(m) = rs with an integer s and we have in (Z/m)*

=g =@)=1=1, qed

2.12. Corollary (Little Theorem of Fermat). Let p be a prime and a an integer with
pta. Then

a*' =1 mod p.

10
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3. Arithmetical Functions. Mobius Inversion Theorem

3.1. Definition. a) An arithmetical function is a map
Ny — C.

b) The function f is called multiplicative if it is not identically zero and
f(nm) = f(n)f(m) for all n,m € N; with ged(n,m) = 1.

c¢) The function f is called completely multiplicative or strictly multiplicative if it is
not identically zero and

f(nm) = f(n)f(m) for all n,m € N; (without restriction).

Remark. A multiplicative arithmetical function a : N; — C satisfies a(1) = 1. This can
be seen as follows: Since ged(1,n) = 1, we have a(n) = a(1)a(n) for all n. Therefore
a(1) # 0, (otherwise a would be identically zero), and a(1) = a(1)a(1) implies a(1) = 1.

3.2. Examples

i) The Euler phi function ¢ : Ny — N; C C, which was defined in (2.9), is a multi-
plicative arithmetical function. It is not completely multiplicative, since for a prime p
we have

p@*) =0 —p=(@-1p # ¢®)’=@-1)>"
ii) Let @ € C be an arbitrary complex number. We define a function
Pa: Ny — C, n pa(n) :=n" = eloel,

Then p, is a completely multiplicative arithmetical function.

iii) Let f: Ny — Z C C be defined by f(p) := 1 for primes p and f(n) = 0 if n is not
prime. This is an example of an arithmetical function which is not multiplicative.

Remark. A multiplicative arithmetical function f : Ny — C is completely determined
by its values at the prime powers: If n = []'_, p{* is the canonical prime decomposition
of n, then

£ = [T 76,

3.3. Divisor function 7 : N; — Nj. This function is defined by
7(n) := number of positive divisors of n.

Thus 7(p) = 2 and 7(p*) = 1 + k for primes p. (The divisors of p* are 1,p,p?, ..., p").

Chap. 3 last revised: 2001-11-21 11
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The divisor function is multiplicative. This can be seen as follows: Let my, ms € Ny be
a pair of coprime numbers and m := myms. Looking at the prime decompositions one
sees that the product d := dydy of divisors d; | my and ds | my is a divisor of m and
conversely every divisor d | m can be uniquely decomposed in this way. This can be
also expressed by saying that the map

Div(ml) X D1V<m2) — Div(mlmg), (dl, dg) — d1d2

is bijective, where Div(n) denotes the set of positive divisors of n. This implies imme-
diately the multiplicativity of 7.

3.4. Divisor sum function ¢ : N; — N;. This function is defined by
o(n) := sum of all positive divisors of n.

Thus for a prime p we have o(p) = 1+ p and

k 2 k pk+1—1
a(p):1+p+p +...+p :pT

The divisor sum function is also multiplicative.

Proof. Let mq, mo € N7 be coprime numbers. Then

olmmg) = > d= Y dldQ:(Z d1><z dQ)

dlmima di|m1,da|me di|m1 da|ma

= o(mq)o(msy).

3.5. Definition. A perfect number (G. vollkommene Zahl) is a number n € Ny such
that o(n) = 2n.

The condition o(n) = 2n can also be expressed as
> an
dln,d<n

i.e. a number n is perfect if the sum of its proper divisors equals n. The smallest perfect
numbers are

6=1+2+3,
2 =1+2+4+7+14.

The next perfect numbers are 496, 8128. The even perfect numbers are characterized
by the following theorem.

Theorem. a) (Euclid) If ¢ is a prime such that 29 —1 is prime, then n := 2971(29 —1)
15 a perfect number.

12
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b) (Euler) Conversely, every even perfect number n may be obtained by the construction
in a).

The prove is left as an exercise.

The above examples correspond to g = 2,3,5,7. For ¢ = 11, 21 — 1 = 2047 = 23 - 89
is not prime.

It is not known whether there exist odd perfect numbers.

3.6. Mobius function i : Ny — 7Z. This rather strange looking, but important
function is defined by

1, forn=1,
p(n) = 0, if there exists a prime p with p? | n,
(—=1)", if n is a product of r different primes.

This leads to the following table

n 1] 2345 ]6]7[8/9]|10]
p(n) [ 1[-1]-1]0[-1]1[-1[0[0] 1|

It follows directly from the definition that p is multiplicative.

3.7. Definition. Let f : Ny — C be an arithmetical function. The summatory function
of f is the function F': Ny — C defined by

F(n):=Y_ f(d),

dln
where the sum is extended over all positive divisors d of n.

3.8. Examples. i) The divisor sum function

o(n)=> d

din
is the summatory function of the identity map
t:Ny — Ny, «(n) :=n.

ii) The divisor function 7 : Ny — Nj can be written as

T(n) = Z L.

dln
Therefore 7 is the summatory function of the constant function

u:Ny — Ny, u(n):=1 for all n.

13
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3.9. Theorem (Summatory function of the Euler phi function). For all n € Ny
> pld) =
dln

This means that the summatory function of the Euler phi function is the identity map

t:N; — Nj.
Proof. The set M,, :={1,2,...,n} is the disjoint union of the sets
Ag:={me M, : gcd(m,n) =d}, d]|n.

Thereforen =3, #Aq. We have ged(m,n) = diff d | m,d [ n and ged(m/d, n/d) = 1.
It follows that #A,; = ¢(n/d), hence

n—Z#Ad—ng n/d) = ng(d), q.e.d.

dln din

3.10. Theorem (Summatory function of the Mdbius function).

1 forn=1
d) = 7
> wld) {o forallm > 1.

din
Therefore the summatory function of the Mobius function is the function

1 forn=1,

01: Ny — Z, (51(71) = {0 for all n > 1.

Proof. The case n =1 is trival.

Now suppose n > 2 and let n = H;zl p;-j be the canonical prime factorization of n.
For 0 < s < r we denote by D; the set of all divisors d | n which are the product of s
different primes € {p1,...,p}, (Do = {1}). For all d € Dy we have pu(d) = (—1)%; but
p(d) = 0 for all divisors of n that do not belong to any of the Dy. Therefore

() = Y 3 wd) = S (-1p#0. = 3o-17 ()
dn s=0 deDs s=0 s=0
~ (L+ (1)) =0,

where we have used the binomial theorem. This proves our theorem.

3.11. Definition (Dirichlet product). For two arithmetical functions f,g : Ny — C
one defines their Dirichlet product (or Dirichlet convolution) f * g : N; — C by

(f *g)(n Zf g(n/d).

14
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This can be written in a symmetric way as

(fxg)n) =Y _ f(k)g

ké=n

where the sum extends over all pairs k, ¢ € N; with £¢ = n. This shows that fxg = gx f
and (f * g)(n) = > g, f(n/d)g(d).
Example.  (f * g)(6) = f(1)g(6) + f(2)9(3) + f(3)9(2) + f(6)g(1).

Remark. Let f be an arbitrary arithmetical function and u the constant function u(n) =
1 for all n € N;. Then

(ux f)(n) = u(n/d)f §jf

dln

Thus the summatory function of an arithmetical function f is nothing else than the
Dirichlet product u * f.

3.12. Theorem. If the arithmetical functions f,qg : Ny — C are multiplicative, their
Dirichlet product f x g is again multiplicative.

Example. Since the constant function u(n) = 1 is clearly multiplicative, the summatory
function of every multiplicative arithmetical function is multiplicative.

Proof. Let mq, ms € Ny be two coprime numbers. Then

e = 3 fa(FE) = 3 s GE)

dlmima di|m1,d2|me

= 3 flanfae(5H)e(%2)

di|m1 da|ma

5~ san(3) 5 ()

di|m da|ma

= (f*xg)(m1)(f *g)(m2), q.ed.

3.13. Theorem. The set F(Ny,C) of all arithmetical functions f : Ny — C is a
commutative ring with unit element when addition is defined by

(f+g9)(n):=f(n)+g(n) forallnecN,

and multiplication is the Dirichlet product. The unit element is the function 6; : Ny — C
defined by

0(1):=1, 6(n)=0 foralln>1.

15



3. Arithmetical functions

Remark. The notation ¢; is motivated by the Kronecker d-symbol

H:{l for i = 7,
Y 0 otherwise.

Using this, one can write d§;(n) = dy,,.

Proof. That §; is the unit element is seen as follows
n
(01 % f)(n 251 1(5) =amf(3) = o).

All ring axioms with exception of the associative law for multiplication are easily veri-
fied. Proof of associativity:

((f*g)xh)(n) = > (f*g)(k) ZZf

k.l
kl=n kl n ’LJ k

= > fli)g(i)h Z:‘ Zf

i,5,€
ijl=n im=n gé m

Z f(@)(g*h)(m)=(f*(g*h))(n), qed

im=n

3.14. Theorem (Mobius inversion formula). Let f : Ny — C be an arithmetical
function and F : Ny — C its summatory function,

= Zf(d) for all n € Nj. (%)

dn

Then f can be reconstructed from F by the formula

f(n) = Zu<g>F(d) for all n € Nj. (%)
dn

Conversely, (xx) implies ().

Proof. The formula (%) can be written as

F=uxf,

where u is the constant function u(n) = 1 for all n. Theorem 3.10 says that u is the
Dirichlet inverse of the Mobius function:

Uk =[x u = 0.
Therefore
px F=px(uxf)=(uxu)xf=00xf=F,

16
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which is formula (xx). Conversely, from f = u * F' one obtains
uxf=ux(u+xF)=(uxp)xFF =0 %«F =F,
that is formula (%), q.e.d.

3.15. Examples. i) Applying the M&bius inversion formula to the summatory function
of the Euler phi function (theorem 3.9)

n=1n) =3 ¢(d)

din

yields ¢ = p* ¢, i.e.

pn) =Y u(d)e(5) = D% u(d).

din dn
This can also be written as
p(n) = pld)
n o ; d

ii) Example 3.8.1) says u * ¢ = ¢ which implies t = p % 0, i.e.

Zu(%) o(d) =n.

dln

iii) Example 3.8.ii) says u % u = 7, hence u = p * 7, i.e.

Zu(%) 7(d) =1 foralln>1.

dn

We now state a second Mobius inversion formula for functions defined on the real
interval

L ={zeR:z>1}
3.16. Theorem. For a function f:1; — C define F': Iy — C by

F(z) = Zf(%) for all z > 1, (o)

k<z

where the sum extends over all positive integers k < x. Then

X

flz) = Z“(k)F(E> for all x > 1. (00)

Conversely, (00) implies (©).

17



3. Arithmetical functions

Example. If f is the constant function f(x) = 1 for all x > 1, then F(x) = |z| =
greatest integer < x. The theorem implies the remarkable formula

3 (k) EJ —1 forallz> 1.

k<x

E.g. for x = 5 this reads
Sp(1) +2u(2) + p(3) + p(4) + u(5) = 1.

To prove theorem 3.16, we put it first into an abstract context.

3.17. Let F(I;,C) denote the vector space of all functions f : [; = [1,00] — C. We
define an operation of the ring of all arithmetical functions on this vector space

‘,’E‘(NDC)XF(IMC)—)JT(IDC)? (Ck,f)l—>al>f,

where

3.18. Theorem. With the above operation, F(I;,C) becomes a module over the ring
F (N, C).

Proof. 1t is clear that F([;,C) is an abelian group with respect to pointwise addition
(f+9)(x) = f(x)+g(x). So it remains to verify the following laws (for a, 5 € F(Ny,C)
and f,g € F(I;,C)).

i av(f+g)=a>f+arg,

)
i) (a+B)rf=arf+pr>f,
i) avc(Bef)=(axp)>f,

) aivf=f.

1v

The assertions i) and ii) are trivial. The associative law iii) can be seen as follows

(s (3> M) = Satm@-N(L) = a3 s07(5)
1<a/k

k<x k<x

18
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Proof of iv):

T

(&> f)(z) = Z(sl(k)f(%) - 51(1)f(1> — f(z), qed.

3.19. Now we take up the proof of theorem 3.16. Equation (¢) can be written as
F = Uu?b f

with the constant function u(n) = 1. Multiplying this equation by the M&bius function
yields

po F=po(ue F) = (uxu)s f =05 f = f.
which is equation (o). Conversly, from f = p» F' it follows
ur f=uv(u>vF)=(uxp)> F=46v>F=F,

which is equation (¢), q.e.d.

19



4. Zeta function

4. Riemann Zeta Function. Euler Product

4.1. Definition. For a complex s € C with Re(s) > 1, the Riemann zeta function is
defined by the series

o0

()=

ns’
n=1

Let us first study the convergence of this infinite series. Following an old tradition, we
denote the real and imaginary part of s by o resp. t, i.e.

s=o+1it, o,teR.

We have
1 —s —slogn —o log(n)—itlogn 1 —itlogn
— =N — — = —¢€ s
ns ne
therefore
1 1
nsl - no

x 1
Since — converges for all real o > 1, we see that the zeta series converges absolutely
n=1 M

and uniformly in every halfplane H(oy), o9 > 1, where
H(og) :={s € C: Re(s) > go}.

It follows by a theorem of Weierstrass that ¢ is a holomorphic (= regular analytic)
function in the halfplane

H(1) ={s € C:Re(s) > 1}.

We will see later that ¢ can be continued analytically to a meromorphic function in
the whole complex plane C, which is holomorphic in C \ {1} and has a pole of first
order at s = 1. A weaker statement is

4.2. Proposition. li\rri ((0) = 0.

Proof. Let R > 0 be any given bound. Since y 7, % = 00, there exists an N > 1 such
that

> R+ 1.

S|

N
n=1
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The function o — 22;1 = is continuous on R, hence there exists an e > 0 such that
al|
Z—UZ for all o with o < 1 + €.

A fortiori we have Y >, n%, > R for all 1 <o <1+ e. This proves the proposition.

4.3. Theorem (Euler product). For all s € C with Re(s) > 1 one has

(o) =]

pEIP’l_pi

where the product is extended over the set P of all primes.

Proof. Since [p~*| < 1/p < 1/2, we can use the geometric series

—s - — pks’

which converges absolutely. If P C P is any finite set of primes, the product

=1 1 1 1
H(ZPT) :I)H<1+E+ﬁ+ﬁ+...)

peEP k=0

can be calculated by termwise multiplication and we obtain

nx+)-> &

pks
pEP k=0 neN(P)

where N(P) is the set of all positive integers n whose prime decomposition contains
only primes from the set P. (Here the unique prime factorization is used.) Letting
P = P, be set of all primes < m and passing to the limit m — oo, we obtain the
assertion of the theorem.

Remark. The Euler product can be used to give another proof of the infinitude of
primes. If the set I of all primes were finite, the Euler product [, p(1 —p~*)~" would
be continuous at s = 1, which contradicts the fact that lim,\ ; ((o) = 0.

4.4. We recall some facts from the theory of analytic functions of a complex variable

about infinite products. Let G C C be an open set. For a continuous function f : G — C
and a compact subset K C GG we define the maximum norm

1|l == sup{|f(2)] : z € K} € R.

21



4. Zeta function

(The supremum is < oo since f is continous.) Let now f, : G — C, v > 1, be a
sequence of holomorphic functions. The infinite product

[e.e]

F(z) =[]+ fu(2)

v=1

is said to be normally convergent on a compact subset K C G, if

o
D lfllxe < oo
v=1
In this case, the product converges absolutely and uniformly on K. (The converse is not
true, as can be seen by taking the constant functions f, = —% for all v.) The product is

said to be normally convergent in G if it converges normally on any compact subset of
K C G. The limit F of a normally convergent infinite product of holomorphic functions
1 + f, is again holomorphic and F'(zy) = 0 for a particular point zy € G if and only if
one of the factors vanishes in zj.

4.5. Theorem. The Riemann zeta function has no zeroes in the half plane
H(1) ={s € C:Re(s) > 1}.
For its inverse one has

SRR

pEP

where p is the Mobius function.

Proof. The first assertion follows from the fact that the Euler product for the zeta
function converges normally in H (1) and all factors (1 —p~*)~! have no zeroes in H(1).
Inverting the product representation for 1/((s) yields 1/{(s) = [[(1 — p~*). To prove
the last equation, let P a finite set of primes and N'(P) the set of all positive integers
n that can be written as a product n = pips - .. .- p, of distinct primes p; € P, (r > 0).
Then, since (—1)" = u(py - ... pr),

[(-5)-

p(n)
ns
peP neN'(P)

Letting P = P,,, be set of all primes < m and passing to the limit m — oo, we obtain
the assertion of the theorem. Note that p(n) =0 for all n € Ny \ U, N'(Py,).

4.6. We recall now some facts about the logarithm function. (By logarithm we always
mean the natural logarithm with basis e = 2.718....) We have the Taylor expansion

log(1+2) = Z(—l)”_l% for all z € C with |2| < 1.
n=1
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From this follows

log<1iz> = i% for all z € C with |z| < 1.

(Of course here the principal branch of the logarithm with log(1) = 0 is understood.)

If f: G — C is a holomorphic function without zeroes in a simply connected domain
G C C, then there exists a holomorphic branch of the logarithm of f, i.e. a holomorphic
function

logf:G—C with 1)@ = f(2) for all z € G.

This function log f is uniquely determined up to an additive constant 27in, n € Z.

Since the zeta function has no zeroes in the simply connected halfplane H (1), we can
form the logarithm of the zeta function, where we select the branch of log ¢ that takes
real values on the real half line |1, co.

4.7. Theorem. For the logarithm of the zeta function in the halfplane H(1), the
following equation holds:

08 <(5) = 0+ > 7
2

peP k=

1
>

peP

The function

is bounded in H(1).

Remark. If one defines the prime zeta function by

P(s):= 3= for s e H(1),

peP p

the formula of the theorem may be written as

s = 3 E8) _ iy 4 P, where £ = 30 2

Proof. Using the Euler product we obtain

1 - 1 ¢ !
log ((s) = 210g<1—p—5> :sz_ - Z kpks
pEP pebE=




4. Zeta function

To prove the boundedness of

1 1
\P(ks)\gP(ka)gP(k):Zﬁg —
pEP n=2
> [" dw > dx 1
< — = =
_HZ:;/”_lxk /1 N |
and obtain for all s € H(1)
|F(s)|<§: L 1 qed
<D o p- b o«
k=2
4.8. Corollary (Euler).
Sholilililid
EE R AR TR

pEIP’

Proof. Since the difference |P(s) — log((s)| is bounded for Re(s) > 1 we get, using
proposition 4.2,

: : 1
lig P0) = (3 55) = o
peP
This implies the assertion.

Remark. The corollary gives another proof that there are infinitely many primes, but
says more. Comparing with

1
D <o
n=1
we can conclude that the density of primes is in some sense greater than the density
of square numbers.

The following theorem is a variant of theorem 4.7 and gives an interesting formula for
the difference between P(s) and log ((s).

4.9. Theorem. We have the following representation of the prime zeta function for

Re(s) > 1

1 = n(k)
P(S):Zp =log ((s +Z%log(ks
k=2
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Proof. We start from the formula of theorem 4.7

=, P(ks)
T

log ((s) =

k=1

We have as in the proof of theorem 4.7 the estimate

P(ks)] < P(ko) < kal

2
< ot (where o = Re(s)),
which implies
2 21 22 e
[log (s kz k*c o ; k? o o

with the constant ¢ = 2¢(2). Therefore the series > -, (u(k)/k)log((ks) converges
absolutely:

~—

WK

pu(k ‘ —1 ¢ «2
1 < — =
’ A og ((ks) _Zk’ o > < 00

T
I

Substituting log ((ks) = >",2, P(kls)/l we get

M;S

k P(kls) &
(k)logé“(kS)zzu =3 > ulk

k=1 k=1 n=1 kl=n
e P(ns > P(ns
= > (k) = di(n)
n=1 k|n n=1
= P(s), q.e.d.

We conclude this chapter with an interesting application of therem 4.5.

4.10. Theorem. The probability that two random numbers m,n € Ny are coprime is
6/72 ~ 61%, more precisely: For real v > 1 let

Copr(z) := {(m,n) € N; x Ny : m,n <z and m,n coprime}.
Then

lim #Copr(z) 1 6
T—00 1’2 N ((2) n 7TZ.

Proof. Let A(z) be the set of all pairs m,n of integers with 1 < m,n < x and

Ag(z) :={(n,m) € A(z) : ged(m,n) = k}.

25



4. Zeta function

Then A(z) is the disjoint union of all A(z), k =1,2,...,|z], and for every k we have
a bijection

Copr(%) — Ag(x), (m,n)— (km, kn).

Therefore

Z#Copr(%) = |z]>.

k<x

Now we can apply the inversion formula of theorem 3.16 and obtain

#Copr(r) = 3 (k)| 7]

Since 0 < (z/k) — |z/k] < 1, it follows that (z/k)* — |z/k|? < 2z/k, hence

X

econ(o) - X uli(7)

1
< 2$Z % < 2z(1+logx) = O(xlogz),
k<z

SO we can write

On the other hand Y 72, u(k)/k* = 1/¢(2) by theorem 4.5, hence
uk) 1 1 1
- —| < —=0(—).
) c gg; 2 (x)

Combining this with the previous estimate yields

k<z

#Copr(z) 1 log x
2 _qm+0<x>’

which implies the assertion of the theorem.

2
Remark. The fact ((2) = % will be proven in the next chapter.
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5. The Euler-Maclaurin Summation Formula

5.1. We define a periodic function
saw : R — R

with period 1 by
saw(z) =z — |z] — 3

This is a kind of sawtooth function, see figure.

A

1
2

With this function, we can state a first form of the Euler-Maclaurin summation formula.
This formula shows how a sum can be approximated by an integral and gives an exact
error term.

5.2. Theorem (Euler-Maclaurin I). Let zg be a real number and f : [xg,00] — C a
continuously differentiable function. Then we have for all integers n > m > xg

n n n

Z f(k) = 5(f(m) + f(n)) + / f(x)dx +/ saw(x) f'(z)dx.

=m m m

Proof. We have

[y

n—

D k) = 2(fm) + f(n) =D F(f(R) + f(k+1)).

=
]
3

On the other hand we get by partial integration

/:H saw (x) f'(x)dx = /:H(ﬂf — k= 3)f'(x)dx

=@ b-brw) - [ s
k) f) - [ S

k

Summing up from k£ = m to n — 1 yields the assertion of the theorem.
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5. Fuler-Maclaurin summation

Using this theorem, we can construct an analytic continuation of the zeta function.

5.3. Theorem. The Riemann zeta function can be analytically continued to a mero-
morphic function in the halfplane H(0) = {s € C : Re(s) > 0} with a single pole of
order 1 at s = 1. The continued function can be represented in H(0) as

1 1 > saw(x)
C(s):§+8_1—s/1 s dzx.

Proof. Applying theorem 5.2 to the function f(z) = 1/2° we get

N N N
1 1 dx saw ()
— =11+ ) = da.
n=1 ne 2< " N# +/1 x® 8/1 xs—i—l !

For Re(s) > 1 we have A}im 1/N* =0 and

im [ % L ( 1 1)— !
NLHIOO 1 xS_NLHéol—s Ns—1 s —1

Therefore we can pass to the limit N — oo in the formula above and get for Re(s) > 1

11 &
Cs) =5+ ——7~ 3/1 Sifff)dx. (%)

We will now show that the integral

F(s) = /1 Tsaw()

x8+1

exists for all s € C with o := Re(s) > 0 and represents a holomorphic function in the
halfplane H(0). This will then complete the proof of the theorem, since the right hand
side of the formula (x) defines a meromorphic continuation of the zeta function to H(0)
with a single pole at s = 1.

The existence of the integral follows from the estimate

1
rot+l )

‘ saw ()

<
xs—l—l ‘ -

N | —

since [7(1/x7%!) dz < oo for o > 0. To prove the holomorphy of F it suffices by the
theorem of Morera to show that for all compact rectangles R C H(0)

/8 s =0,

This can be seen as follows: Since 0R C H(0) is compact, there exist a oo > 0 such
that Re(s) > oy for all s € OR. Therefore we have on R X [1, co[ the majorization
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and we can apply the theorem of Fubini

o 1
= /1 saw () </8R pu ds) dr =0, q.e.d.
—_—

There exists also a proof of the holomorphy of F' without recourse to Lebesgue inte-
gration theory: We write

R S T

with

n+1 n+1 1
saw () T—n-—;
fu(s) = /n el /n e 0

The function f,, is holomorphic in C (it is easily checked directly that g(z f t* dt
is holomorphic in the whole z-plane) and satisfies an estimate

for all s € H(oy)

1
| fa(s)] < oo tl

Since > >7  1/n°* < oo for all op > 0, the series ' = > _°>° | f,, converges uniformly
on every compact subset of H(0). By a theorem of Weierstraf}, the limit function F is
holomorphic in H (0).

5.4. Definition. The Fuler-Mascheroni constant is defined as the limit

N
C = &&(Z%—logN).

The existence of this limit can be proved using the Euler-Maclaurin summation formula
(5.2). This is left to the reader as an exercise.

5.5. Theorem. There exist uniquely determined functions
B:R— R, keN,
with the following properties:

i) All functions fj are periodic with period 1, i.e. Sg(z + n) = Bx(z) for all n € Z,
and the functions (; with k& > 2 are continuous.

ii) [ = saw.
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5. Fuler-Maclaurin summation

iii) [ is differentiable in ]0, 1] and

Br(x) = fr_1(z) forall0 <z < 1andk > 2.

1
iv) / Br(x)dz =0 for all k > 1
0

Proof. By condition iii), the function f is uniquely determined in the intervall |0, 1]
by [Br_1 up to an additive constant. This constant is uniquely determined by condition
iv). Thus by ii)-iv), all 55 are uniquely determined in ]0,1[, and by periodicity even
in R \\ Z. It remains to be shown that the definition of 3y, £ > 2 can be extended
continuously across the integer points. This is equivalent with

lim Or(e) = lim Be(1—e).

For k£ > 2 one has

Br(1 —¢) — Brl(e) = / B By, (7)d,

hence by iv)

1
lin (A1 — ) — u(e)) = / B \(@)dz =0, qed.

Example. Let us calculate (5. The condition

By(x) = fi(x) =z —35 for0<z<1

leads to fa(x) = %xz — %:c + ¢ with an integration constant c. Since

Bo(z) =212 —Lto+ L =lo(xz—-1)+L for0<a<1.

1/12
) - 0 i 9 3
Graph of 3y
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5.6. Theorem. The functions (3, have the following Fourier expansions

COS 27mx
() = (1) 122 it k21, 1
sm 27rm;

which converge uniformly on R.

Formula (2) is also valid for k =0 and v € R\ Z.

Proof. a) We first calculate the Fourier series
given by the integral

1
cn:/ By(x)e 2™ dy.
0

By theorem 5.5.iv) we have ¢y = 0. Let now n # 0. Using partial integration we get

na .
ez C of (5. The coefficients ¢, are

' 2 1 omina | 1 ' i l
xe— ﬂlnaﬁdw - _ y xe— mTInT + y 6— Wlnxdm —
0 2min 0o 2min Jy 2mn
and
1 1 1 9 1 :
o o 7 2
1‘26 27rznacdl, - : 1’26 2minx : Te 27rmzd$ _ + =
0 2min o 2min J, 2t (2mn)
hence

1
: 1
1,..2 727rm:1:
n = —_ = d = .
c /o (32° —ix+ ) e x 22

Thus we have the Fourier series
27rm o0 27rin;t 4 67271'1'71:1:

2wnx
Balw) = Z (2w Z (2mn)? Z (27n)?

neZ~0 n=1 =1

By the general theory of Fourier series, the convergence is with respect to the L2-norm
I fllze = (fol |f(2)|?dz)'?, but since >°°°  1/n? < oo and [, is continuous, we have
even uniform convergence.

b) Since the right hand sides of the formulae of the theorem satisfy the same recursion
and normalization relations (5.5.iii-iv) as the functions [, it follows that the given
Fourier expansions are valid for all £, k > 2. To prove the formula for

2
B1(x) = saw(x __2251112 mnz) , TeERNZ,
™

31



5. Fuler-Maclaurin summation

. . in(2 . .
it suffices to show that the series >~ W converges uniformly on every interval

0,1 =9],0 <6 < %, since then termwise differentiation of the Fourier series of 35 is

allowed. To simplify the notation we will prove the equivalent statement

Z SR converges uniformly on [0,27 — 6], (0 < § < ).
n

n=1
Define
Spn(x) == Z sinnz = Im (Z ei”"’>.
n=1 n=1
For § < x <27 — § we have
L. emr — 1 2 1 1
S ()] < Z 1| S [P s S s

It follows for m > k > 0

" sinnz| Sn(z) — Sp-1(x)

P

n=~k n=~k

s 1 1 Sp(x)  Sp_1(z)
<[ty +
- ; (z) n n—+1 +m+1 k
< 1 <1_ 1 n 1 +1>< 2
_sin% k m+1 m-+1 k _ksing’
hence also

> sinnz 2

Z < —— forallz € [§,2m — 9],

~ n ksm§

which proves the asserted uniform convergence and thereby completes the proof of the
theorem.

5.7. Definition. It follows immediately from (5.5.iii-iv) that (3,, restricted to the open
interval |0, 1], is a polynomial of degree n with rational coefficients. The n-th Bernoulli
polynomial B,(X) € Q[X] is defined by

B (x)

n!

and By(X) = 1. The Bernoulli numbers' By, are defined by

=0u(z) for0<z<1l, n>1

B, == B,(0), n>0.

1Strictly speaking, it is not correct to use the same symbol By, for the Bernoulli polynomials and
the Bernoulli numbers. However this notation is the usual one. To avoid confusion, we will always
indicate the variable when we are dealing with Bernoulli polynomials.
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We know already the first Bernoulli polynomials
B (X) :X—% and Bo(X)=X(X—1)+1

67
hence By =1, B; = —%, By = %.

An easy consequence of theorem 5.6 is

5.8. Theorem. For the Bernoulli numbers the following relations hold:

i)  Bogr1 =0forall k > 1.

b1 228 = 1

i) By =(-1) (2rm)2k n2k’
n=1

hence

(27T)2k

C(2k) = 2(2k)!

| Boy| for all k > 1.

iii)  sign(Box) = (—1)¥1 forall k > 1.
Remarks. a) Formula ii) of the theorem says in particular

1 2

§(2) = S T T
— n? 6

which was already used in the previous chapter.

b) Since lim ((o) = 1, formula ii) shows the asymptotic growth of the Bernoulli

numbers Bsy,

2(2k)!

Bop| ~ —%+
| Ba| (2)2F

for k — oo.

5.9. Theorem (Generating function for the Bernoulli polynomials). For fized z € R,

xt

the function ] is a complex analytic function of t with a removable singularity at

et _
t = 0. The Taylor expansion at t = 0 of this function has the form

text o

et —1 n!
n=0

In particular, for x =0 one has

Proof. Define B,,(z) by the above Taylor expansions. We will show that
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5. Fuler-Maclaurin summation

(¢) [} Bu(z)dz =0, (n>1).
... By(x)
Then theorem 5.5 implies —— = Bn(z) for 0 <z <1 and all n > 1.
n!

Proof of (a)

te™  t(l+at+O0{?)  1+at+O(t?)

(
et—1 t+3i24+0()  1+it+0(8)
= (1+at)(1-2)+0() =1+ (z - 1)t +O0(?),

which shows By(z) =1 and By (z) =z — 3.

xt

Proof of (b) We calculate 9

e — in two ways
r el —

Or et — 1 n!

0 te* = B\(z) ,
:Z !
n=0

and

8 tez‘t tZGIt _ i B’VL(m) tn+1 _ Z Bn_l(x) tn

%et—lzet—l

Comparing coefficients we get Bl (z) = nB,_1(z).

Proof of (c)

/1 tea:t p emt
€T =
g et—1 et —1

On the other hand

1 tert 0 1 "
/0 i dr = ; <0an(a:)dx> ol

Comparing coefficients, we get fol Bp(x)dx =0 for all n > 1, q.e.d.

5.10. Recursion formula. Theorem 5.9 can be used to derive a recursion formula for
the Bernoulli numbers. Since (e! — 1)/t = >_ t"~!/n!, we have
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The Cauchy product ) 2, c,t" of the two series has coefficients

Cp = = Bk
;k!(n—kle)! (n—i—l)!kzzo k

Hence comparing coefficients we get By = 1 and

= 1
Z(n;— )Bk:() for all n > 1.

k=0

With this formula one can recursively calculate all B,,. The first non zero coefficients
are

klo|l 1 [2] 4 6] 8 |10] 12 |14] 16 |
Beltl-sldl-slal-slal-2ls -5

5.11. Theorem (Euler-Maclaurin II). Let zq be a real number and f : [zg,00[ — C a
2r-times continuously differentiable function. Then we have for all integers n > m > xg
and all r >'1

S 10) = m) + f) + [ Sy

Bk o(2k-1) (2k—1) /n By, () (2r)
_ " (2)d
+;@@U (1) = £V m) = [ 2 )
Here §2T<Qf) is the periodic function defined by Egr(a:) = By (x — |x]) = (2r)! G2 (7).
Proof. We start with theorem 5.2

Zf(k) s(f(m) + f(n)) + /nf(m)dx+/nsaw(:v)f’(x)dx.

k=m m m

and evaluate the last integral by partial integration.

Since f4(z) = saw(z) for k < x < k+ 1 and (3, is continuous and periodic, we get

/ " saw() f(2)do = nz /k " saw (@) f(z)dx

m k=m

= Z@
o

= " (Bolk+1)f (k+1) - 8 /52 7

k=m
:%WW—ﬂmwlﬁmwww
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5. Fuler-Maclaurin summation

This proves the case r = 1 of the theorem. The general case is proved by induction.

Induction step r — r + 1.
- [ @@ = ~Baale) @)+ [ B0 @)

= / 52r+1(x)f(2r+1) (x)dz [since fo,41(k) = % = 0]

= Borya(z) fFCT( / Borsa() ) (2)dz

n

<—£2f§>‘<f<2f“>< W) = 1) = [ o) )

This proves the assertion for r + 1.

Remark. If f is infinitely often differentiable and we pass to the limit r — oo, the
“error term”

will in general not converge to 0. In case f is real and f®") does not change sign in the
interval [m, n], one has the following estimate

Bor(2) Bol | [* o Bal  or- -
[ S < 5] [ s @e] = G515 - 1),

which means that the error of the approximation

Zf )~ 4+ o) + [ e d“Z o () = 7))

is by absolute value not larger than the last term of the sum. Hence by increasing r one
gets better approximations as long as the absolute values of the added terms decrease.

5.12. Theorem. The Riemann zeta function can be analytically continued to a mero-
morphic function in the whole plane C with a single pole of order 1 at s = 1. For
Re(s) > 1 — 2r, the continued function can be represented as

g(s):%—i-i—i—z(f;]; s(s+1)-...-(s+2k—2)

—s(s+1)-....(s+2r—1)/m327"($). L

@r)] e

Proof. This is proved by applying theorem 5.11 to the sum ) ,_, 1/k* and passing to the
limit n — oo. That the last integral defines a holomorphic function for Re(s) > 1 —2r,
follows from the fact that the function By, (x) is bounded and

1
xs—l—ZT

S i for all s € C with Re(s) > 1 —2r+ 4.
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6. Dirichlet Series

6.1. Definition. A Dirichlet series is a series of the form

o)
Qn

fe) =35 (se0),

n=1
where (a,,),>1 is an arbitrary sequence of complex numbers.

The abscissa of absolute convergence of this series is defined as
04 = 04(f) =inf{loc € R: Z’ an| < oo} € RU{£o0}.

If 7 (Jan|/n”) does not converge for any o € R, then o, = +o0, if it converges for
all 0 € R, then o, = —00.

An analogous argument as in the case of the zeta function shows that a Dirichlet series
with abscissa of absolute convergence o, converges absolutely and uniformly in every
halfplane H (o), o0 > 0,.

Example. The Dirichlet series

-y S

n=1

n 1

has 0,(g) = 1. We will see however that the series converges for every s € H(0). Of
course the convergence is only conditional and not absolute if 0 < Re(s) < 1.

We need some preparations.

6.2. Lemma (Abel summation). Let (a,)n>1 and (by,)n>1 be two sequences of complex
numbers and set

n

A, = Z g, Ay =0 (empty sum).
k=1

Then we have for alln >m > 1

Z apby, = Apby, — Ap_1bp, Z Ap(brgr — ).
k=m

Remark. This can be viewed as an analogon of the formula for partial integration
b b
| Fag@de = Fe)g®) - Flaygla) - [ Pla)g(a)ds.
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6. Dirichlet series

Proof.

n n—1
Z apby = Z Ak - Akfl)bk: = Z Agby — Z Apbiia
=m k=m

k=m—1
n—1 n—1
= Aubu+ ) Arbi— ) Arbirt — Anibm
k=m k=m

= Auby — Ap_1bm ZAk besr —bp),  q.e.d.

6.3. Lemma. Let s € C with 0 := Re(s) > 0. Then we have for all m,n > 1

1 1 |s] ‘ 1 1
ns ms o ne me
. d /1 1
Proof. We may assume n > m. Since —<—> =—5-—,
dx \ s rstl
/ " odx 1 1
-5 = — - —.
m $S+1 ns ms
Taking the absolute values, we get the estimate
1 1
— = = —], e.d.
ns x0+1 ne me q

Remark. For sy € C and an angle a with 0 < o < 7/2, we define the angular region
Ang(sg,a) := {sg +re'® :r >0 and |¢| < a}.
For any s € Ang(sg, @) \ {so} we have

|s—so| 1 < 1
Re(s —sy) cos¢ ~ cosa’

hence the estimate in lemma 6.3 can be rewritten as

11 111
— < _——’ for all s € Ang(0, a).
ns  ms cosa In? m?

6.4. Theorem. Let

Qn

ns
n=1
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be a Dirichlet series such that for some sy € C the partial sums Z — are bounded
n=1 N

for N — oo. Then the Dirichlet series converges for every s € C with
Re(s) > g := Re(sp).

The convergence is uniform on every compact subset
K C H(op) = {s € C: Re(s) > 0o}.

Hence f is a holomorphic function in H (o).

Proof. Since

oo o ~
1 a/n ~ an
5 g where a,, := ,
nso ns S0 ns— nso

n=1 n=1

we may suppose without loss of generality that so = 0. By hypothesis there exists a
constant C; > 0 such that

N
> a
n=1

The compact set K is contained in some angular region Ang(0, ) with 0 < o < 7/2.

We define

< (Cy forall NeN.

1
Co = and o, :=inf{Re(s) : s € K} > 0.
cos o

Now we apply the Abel summation lemma 6.2 to the sum ) a,-(1/n°), s € K. Setting
Ay = Ziv:l a,, we get for N > M >1

Y a 1 fl 1
I ( ——).
ns NN M~ Z s n+1)s

n=M n=M

This leads to the estimate (with o = Re(s))

N-1

Al 1 1 1
\;ﬁ SZOIM\*“%%‘—(HDS
< 20— 10 (! !
55+ 00 2 (5~ )
1 11
=200 +ClC°‘<MU - W)
C Ci(2+C.)
3 (2 Ca) < =7
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This becomes arbitrarily small if M is sufficently large. This implies the asserted uni-
form convergence on K of the Dirichlet series.

6.5. Theorem. Let

o0

fls) =3

n=1

an

be a Dirichlet series which converges for some sy € C. Then the series converges
uniformly in every angular region Ang(so,a), 0 < o < w/2. In particular

lim f(S) = f<30)7

s—8Q
when s approaches sy within an angular region Ang(sg, ).

Proof. As in the proof of theorem 6.4 we may suppose sq = 0. Set C,, := 1/ cosa. Let
e > 0 be given. Since ) ° | a, converges, there exists an ng € N, such that

e

With Ay, = ZZ:M ar, Anyram—1 = 0, we have by the Abel summation formula

= _fca for all N > M > n,.

N

> = v + 3 A~ )

n=M
From this, we get for all s € Ang(0, @), o := Re(s), and N > M > n, the estimate

N-1

1 1
< - -
—511N8|+5lz’ns (n+1)°

s atat Z(n"_ n—i—l))
1
:51+510a<MU NU)<51+510 =c.

This shows the uniform convergence of the Dirichlet series in Ang(0, ). Therefore f is
continuous in Ang(0, ), which implies the last assertion of the theorem.

e}

6.6. Definition. Let f(s) = > " he a Dirichlet series. The abscissa of convergence
n=1 n?
of f is defined by

o0

0. = 0.(f) := inf {Re(s) : Z% converges }.

n=1
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By theorem 6.4 this is the same as

N
o. =1inf {Re(s) : > % is bounded for N — oo}

n=1

and it follows that the series converges to a holomorphic function in the halfplane
H(o,).

Examples. Consider the three Dirichlet series

[e.e]

W= =X =i

We have 0,(¢) = 04(9) = 04(1/¢) = 1. Clearly 0.(¢) = 1 and o.(g) = 0, since the
partial sums Y. (—1)""! are bounded. The abscissa of convergence o.(1/¢) is not
known; of course o.(1/¢) < 1. One conjectures that o,(1/¢) = %, which is equivalent
to the Riemann Hypothesis, which we will discuss in a later chapter.

Remark. Multiplying the zeta series by 27 yields 275¢(s) = >~ , ﬁ Hence

g(s) = (1 =27°)¢(s).

o0

6.7. Theorem. If the Dirichlet series f(s) = > I has a finite abscissa of con-
nS

n=1

vergence o., then for the abscissa of absolute convergence o, the following estimate

holds:
0. <0, < 0.+ 1L

X a
Proof. Without loss of generality we may suppose 0. = 0. Then )’ —Z’ converges for
n=1"M

every € > (. We have to show that

g < oo forall g, > 1.
nox*
n=1

To see this, write o, =1+ 2¢, € > 0. Then

|an| _ |an| ) 1

no+ ne  nlte

Since |a,|/n® is bounded for n — oo and Y2 | 1/n'*® < oo, the assertion follows.

Remarks. a) It can be easily seen that 0, = —oo implies o, = —o0.

b) The above examples show that the cases o, = 0. and ¢, = 0.+ 1 do actually occur.
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6. Dirichlet series

¢) That o, and 0. may be different is quite surprising if one looks at the situation
for power series: If a power series ) a,2" converges for some z, # 0, it converges
absolutely for every z with |z| < |z

6.8. Theorem (Landau). Let

Qn
nS
n=1
be a Dirichlet series with non-negative coefficients a,, > 0 and finite abscissa of absolute
convergence o, € R. Then the function f, which is holomorphic in the halfplane H(o,),
cannot be continued analytically as a holomorphic function to any neighborhood of o,.

Proof. Assume to the contrary that there exists a small open disk D around o, such
that f can be analytically continued to a holomorphic function in H(o,) U D, which
we denote again by f. Then the Taylor series of f at the point oy := 0, 4+ 1 has radius
of convergence > 1. Since

e}

. k
oy = 3 B
not

n=1

the Taylor series has the form

By hypothesis there exists a real 0 < o, such that the Taylor series converges for s = o.
We have

f(a):if:(logn) an(oy — o)k _ Oof: log n)k Tl—a)k an’

kl not not

where the reordering is allowed since all terms are non-negative. Now

i (log n)k(gl B U)k _ e(logn)(al—a) — 1
|

noe—o1

)

k=0
hence we have a convergent series

o0
Qn

o
Yoy

n=1 n=1

Thus the abscissa of absolute convergence is < ¢ < o,, a contradiction. Hence the
assumption is false, which proves the theorem.
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6.9. Theorem (Identity theorem for Dirichlet series). Let

oobn

ns
n=1

“a
FO=3 0 ad gl)
be two Dirichlet series that converge in a common halfplane H(oy). If there exists a
sequence s, € H(op), v € Ny, with lim,_, Re(s,) = oo and
f(sy) =g(s,) forallv>1,

then a, = b, for alln > 1.

Proof. Passing to the difference f — g shows that it suffices to prove the theorem for
the case where ¢ is identically zero. So we suppose that

f(s,) =0 forallv>1.

If not all a,, = 0, then there exists a minimal k such that a; # 0. We have

Js) = %(a”; (n%s)

It suffices to show that there exists a o, € R such that
>
2 ity

for this would imply f(s) # 0 for Re(s) > o, contradicting f(s,) = 0 for all v. The

sum Y % converges absolutely for some ¢’ € R. Therefore we can find an M > k
n>k \1 7

such that

anl_ _ o
2 Tk <1

n>M

< |ax|
- 2

for all s with Re(s) > o,

Further there exists a ¢” € R such that

ol _ |
2 b S0

k<n<M

Combining the last two estimates shows
> i
2 Tn/Ry

Remark. A similar theorem is not true for arbitrary holomorphic functions in halfplanes.
For example, the sine function satisfies

|ax|

2

< for all s with Re(s) > max(o’,0”), q.e.d.

sin(rmn) =0 for all integers n,
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without being identically zero. This shows also that not every function holomorphic in
a halfplane H (o) can be expanded in a Dirichlet series.

6.10. Theorem. Leta,b: N; — C be two arithmetical functions such that the Dirichlet
series

:Za(n) and g(s
n=1 n® n=1

converge absolutely in a common halfplane H(oy). Then we have for the product
= (a*b)(n)
y=3 i)
n
n=1
This Dirichlet series converges absolutely in H(og).

Proof. Since the series for f(s) and g(s) converge absolutely for s € H(oy), they can
be multiplied term by term

F(s)a(s) :Z“,Ef W= S b

k=1 k,>1

a(k)b(é)(k—z)s _y lexbm),

8

=1 kl=n

n=1

3

and the product series converges absolutely, q.e.d.

> 1

Examples. i) The zeta function ((s) = ), — is the Dirichlet series associated to the
n=1 n®

constant arithmetical function u(n) = 1. Since u * u = 41, it follows

SRS - S

which gives a new proof of

1 [e.9]

Q_ E p(n) (cf. theorem 4.5).
nS

n=1

ii) The Dirichlet series associated to the identity map ¢ : Ny — Nj is

Znsll 8_1)

n=1

WE
%I:

3
I
—
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which converges absolutely for Re(s) > 2. For the divisor sum function o we have
ux = o, cf. (3.15.iil), which implies

o(n)

((s)¢(s—1) = Z for Re(s) > 2.

n=1

ns

iii) In a similar way, the formula ¢ = p ¢ for the Euler phi function, cf. (3.15.1), yields

—C(S_l)—oow or he(s
@ _nzl —— for Re(s) > 2

6.11. Theorem (Euler product for Dirichlet series). Let a : Ny — C be a multiplicative
arithmetical function such that the Dirichlet series

fis) =3 o

ns

n=1

has abscissa of absolute convergence o, < 00.

a) Then we have in H(o,) the product representation

1(s) = H(i ﬂ) ) (RSO aggf) )

ks S 2s
peP k=0 p peP p p

where the product is extended over the set P of all primes.

b) If the arithmetical function a is completely multiplicative, this can be simplified to

o =T10 -4

peP p ’
Proof. Let P C P be a finite set of primes and N(P) the set of all positive integers whose

prime decomposition contains only primes from the set P. Since a is multiplicative, we
have for an integer n with prime decomposition n = p’fl pSQ e

a(n) = a(pi)a(ps?) - ... - a(pyr).

It follows by multiplying the infinite series term by term that

H<1+a(p)+a(p2) L ar’) +> - a(n)

nS
peP neN(P)

Letting P = P,, be set of all primes < m and passing to the limit m — oo, we obtain
part a) the theorem.
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If a is completely multiplicative, then a(p*) = a(p)*, hence

> a(p*) _ i(a(p))k _ (1 B a(p))—l,

ks S s
p 1\ p p

)
k=0

proving part b).

Examples. i) The Euler product for the zeta function
1y -1
<) =11 (1 - —5>
peP p

is a special case of this theorem.

ii) Since p(p) = —1 and pu(p*) = 0 for k > 2, the formula for the inverse of the zeta
function

= u(n) Iy 1
> =0-5) =

n=1 peP

also follows from this theorem.
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7. Group Characters. Dirichlet L-series

7.1. Definition (Group characters). Let G be a group. A character of G is a group
homomorphism

x:G— C.

If G is a finite group (written multiplicatively), then every element x € G has finite
order, say r = ord(z). It follows that

x(@)" = x(z") = x(e) = 1,
hence x(x) is a root of unity for all z € G.

Example. Let G be a cyclic group of order r and g € G a generator of G, i.e.

‘s

G={e=4¢"9g=9"9"d" ..., "= {9), (¢ =e).

If x : G — C* is a character, x(g) is an r-th root of unity, hence there exits an integer
k, 0 <k < r, with x(g) = e™*/". Conversely, for any such k,
Xk(gs) — eQﬂ'iks/r

defines indeed a group character of G.

7.2. Theorem. Let G be a group.

a) The set of all group characters x : G — C* is itself a group if one defines the
multiplication of two characters x1, x2 by

(x1x2)(z) :== x1(z)x2(x) for all x € G.

This group is called the character group of G and is denoted by G.
b) If G is a finite abelian group, then the character group G is 1somorphic to G.

Proof. a) The easy verification is left to the reader.

b) Consider first the case when G = (g) is a cyclic group of order r. Let
E, = {¥*" . 0<k<r}

be the group of r-th roots of unity. E, is itself a cyclic group of order r» and the map
G— B, x+ x(9),

is easily seen to be an isomorphism. To prove the general case, we use the fact that
every finite abelian group G is isomorphic to a direct product of cyclic groups:

G=ZC x...xCy.
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From G = 61 X ... X @n the assertion follows.

7.3. Theorem. Let G be a finite abelian group of order r.
a) Let x € G be a fized character. Then

Z x(z) = {7“7 if x is the unit character y =1,

else.
zeG 0

b) Let x € G be a fived element. Then

ZX(I‘)Z{T’ if:E:e,
0 else.

xe@

Proof. a) The formula is trivial for the unit character. If x is any group character
different from the unit character, there exists an xy € G with x(zg) # 1. If z runs
through all group elements, also xgx runs through all group elements. Therefore

D x(@) =" x(zor) = x(w0) Y x(2).

zeG zeG zeG
It follows
(1—x(@) Y x(2)=0 = > x(z)=0, qed.
zeG zeG

b) The formula is trivial for the unit element e. If x is a group element different from

e, there exists a group character v € G with (x) # 1. Otherwise all group characters
would be constant on the subgroup H C G generated by x, hence could be regarded
as characters of the quotient group G/H, which contradicts theorem 7.2.b). If y runs
through all elements of é, so does ¥ y. Hence

D ox(@) = (x)(@) = ()Y x(w).

x€G xeG xeG
It follows
(1-9@)Y x@) =0 = > x(@)=0, qed
Xeé xeCAl

7.4. Definition (Dirichlet characters). Let m be an integer > 2. An arithmetical
function x : N; — C is called a Dirichlet character modulo m, if x is induced by a
group character

X:(2Z/m) — C,
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which means that

_ ] x(@m), if ged(n,m) =1,
x(n) = { 0, if ged(n,m) > 1.
(Here 7 denotes the residue class of n modulo m).

The principal Dirichlet character modulo m is the Dirichlet character induced by the
unit character 1 : (Z/m)* — C. We denote this principal character by xom, or briefly
by xo, if the value of m is clear by the context. Hence we have

|1, if ged(n,m) =1,
Xom(n) = {o, if ged(n, m) > 1.

It is clear that a Dirichlet character is completely multiplicative. It is easy to see that
an arithmetical function f : N; — C is a Dirichlet character modulo m iff it has the
following properties:

i)  fis completely multiplicative.
ii)  f(n) = f(n') whenever n = n’ mod m.

iii)  f(n) =0 for all n with ged(n,m) > 1.

7.5. Definition (Dirichlet L-series). Let x : Ny — C be a Dirichlet character. The
L-series associated to x is the Dirichlet series

L(s,x) == Z X(n)

nS

n=1
This series converges absolutely for every s € C with Re(s) > 1.

Examples. Let m = 4.
i) The principal Dirichlet character modulo 4 has xo4(n) = 1 for n odd and xp4(n) =0
for n even. Therefore

o0

1 1 1 1 1

L S N S I T
(s, X0.4) kZ:O<2k+1>S ottt t
1

(2k)*’

we have

Since 27%((s) = li

L(s, x04) = (1 = 27°)C(s),

which shows that L(s, xo4) can be analytically continued to the whole plane C as a
meromorphic function with a single pole at s = 1.
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ii) Since (Z/4)* = {1,3} has two elements, there is exactly one non-principal Dirichlet
character y; modulo 4, namely

0 for n even,
xi(n) = (—=1)»=/2 for n odd.

Therefore

= (=1 1 1 1 1
L =) - =l—-—f ==t ——+...
(s:x1) kz:% 2k +1)° 3 Tt T

This Dirichlet series converges to a holomorphic function for Re(s) > 0. For s = 1 one

gets the well known Leibniz series, hence

™

L1, x1) = 7

7.6. Theorem. Let x : Ny — C be a Dirichlet character modulo m. Then

a) For Re(s) > 1 one has a product representation

L(s,x) = H PR mm—

oo L x(pp

b) If x = Xom 1S the principal character, then

L(s.xom) = (TT(1=p™) ¢(s).

plm

where the product is extended over all prime divisors of m. Hence L(s,Xom) can be
analytically continued to the whole plane C as a meromorphic function with a single
pole at s = 1.

c) If x is not the principal character, the L-series L(s,x) = >, x(n)/n® has abscissa
of convergence o. = 0, hence represents a holomorphic function in the halfplane H(0).
Proof. a) This follows directly from theorem 6.11 since y is completely multiplicative.

b) From part a) and the definition of the principal character one gets

Lo = [T == = [T0-r 9 ][ =

ptm plm pEP

Since the last product is the Euler product of the zeta function, the assertion follows.

¢) By theorem 6.4 it suffices to show that the partial sums 3>~ | x(n) remain bounded
as N — oo. This can be seen as follows: Write N = gm+r with integers ¢, r, 0 < r < m.

qm
By theorem 7.3.a) one has >~ x(n) = 0, hence
n=1

N gm-+r gm—+r
Soxm|=| X x| X kI <em), qed
n=1 n=qgm+1 n=gm+1
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The next theorem is an analogon of theorem 4.7.

7.7. Theorem. Letm be an integer > 2 and x : Ny — C a Dirichlet character modulo
m. We define the following generalization of the prime zeta function:

X

peP

This series converges absolutely in the halfplane H(1) := {s € C: Re(s) > 1} and one
has

P(s,x) =log L(s, x) + F\(s),

where F\(s) is a bounded function in H(1).

Proof. From the Euler product of the L-function we get for Re(s) > 1

1 — x(p)*
o s, ) = Ylos = 3300
peP p)p=* pelP k=1 p
XP) | =1 x*
Y syl
pEP k=2 pEP

The theorem follows with

hence
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8. Primes in arithmetic progressions

8. Primes in Arithmetic Progressions

8.1. Definition (Dirichlet density). For any subset A C PP of the set P of all primes,
we define the function

Pa(s) = Z ]%

peEA

The sum converges at least for Re(s) > 1 and defines a holomorphic function in the
halfplane H(1) = {s € C : Re(s) > 1}. For A = P we get the prime zeta function P(s)
already discussed in (4.7). If the limit

o Palo)
5Dir(A) = lel\Hi P(U)

exists, it is called the Dirichlet density or analytic density of the set A. It is clear that,
if the Dirichlet density of A exists, one has

0 <dpi(A) < 1.

The Dirichlet density of the set of all primes is 1, and any finite set of primes has
density 0. Hence ép;,(A) > 0 implies that A is infinite.

An equivalent definition of the Dirichlet density is

Sore(4) = lim Palor) /o (=),

o—1
This comes from the fact that

lim P(0)/log (o) = 1

by theorem 4.7, and
. 1
lin log ((o) /log (=) =1
since ((s) = 1/(s — 1) + (holomorphic function).

8.2. Arithmetic progressions. Let m,a be integers, m > 2. The set of all n € N;
with

n = a mod m
is called an arithmetic progression. We want to study the distribution of primes in
arithmetic progressions. Clearly if ged(a, m) > 1, there exist only finitely many primes

in the arithmetic progression of numbers congruent a mod m. So suppose ged(a, m) =
1. Dirichlet has proved that there exist infinitely many primes p = a mod m, more
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precisely: The set of all such primes has Dirichlet density 1/¢(m), which means that
the Dirichlet density of primes in all arithmetic progressions a mod m, ged(a,m) = 1,
is the same. To prove this, we have, according to definition 8.1, to study the functions

1
Pa,m(s) = _s y
pzagdmp

where the sum is extended over all primes = a mod m. It was Dirichlet’s idea to use
instead the functions

P(SaX) = Z X(ZZ)’

peP p

where y : N; — C is a Dirichlet character modulo m. These functions were already
introduced in theorem 7.7. The relation between the functions P, ,,(s) and P(s, x) is
given by the following lemma.

8.3. Lemma. Let m be an integer > 2 and a an integer coprime to m. Then we have

for all s € C with Re(s) > 1
1 -
P,n(s) = ) ; X(a)P(s,x).

Here the sum is extended over all Dirichlet characters x modulo m and X(a) denotes
the complex conjugate of x(a).

Proof. We have

S x@)P(s ) = 3 (X xan) - = 3%,

peP X peP

where

Since a is coprime to m, there exists an integer b with ab = 1 mod m, hence x(a)x(b) =
1. On the other hand |y (a)| = 1, which implies x(b) = X(a). Therefore by theorem 7.3.b)

ap =Y x(0)x(p) =Y x(bp) = {g(m) if bp = 1 mod m,

otherwise.

But bp = 1 mod m is equivalent to p = a mod m, hence

SN —om) Y L

p* p*
peP p=a mod m

which proves the lemma.
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In the proof of the Dirichlet theorem on primes in arithmetic progressions, the following
theorem plays an essential role.

8.4. Theorem. Let m be an integer > 2 and x a non-principal Dirichlet character
modulo m. Then

L(1,x) # 0.

Recall that for a non-principal character x the function L(s,x) is holomorphic for
Re(s) > 0 (theorem 7.6.c).

Example. For the non-principal character y; modulo 4 one has (cf. 7.4)

1 1 1 1 T
Lly)=l—-d-ogo—-t =5
(1,x1) 5757779 4

Before we prove this theorem, we show how Dirichlet’s theorem can be derived from it.

8.5. Theorem (Dirichlet). Let a,m be coprime integers, m > 2. Then the set of all
primes p = a mod m has Dirichlet density 1/¢(m).

Proof. For the principal Dirichlet character xo,, it follows from theorem 7.6.b) that

. . 1
},l\ni log L(o, xom)/ log ((0) = il\Hfi log L(o, XOm)/10g<m> = 1.

On the other hand, if x is a non-principal character, then we have by theorem 8.4

hm log L(o, x /log< ) =0.

By theorem 7.7 this implies

1
lim P( m/l ( ) 1
lim P(0, Xom) /108 ( ~—

by P (1) =1

for all non-principal characters y. Therefore
tim (3" %(@)P(o.x)) 1og () = Fom(a) = 1.
o\1 N ’ o—1 m

Now using lemma 8.3 we get

i P“”(U)/log(a i 1) - gp(in)’

o4

and
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which proves our theorem.
8.6. Proof of theorem 8.4. We have to show that

L(1,x) #0

for every non-principal Dirichlet character y modulo m.

Assume to the contrary that there exists at least one non-principal character xy with
L(1,x) = 0. We define the function

=[] L6, x),

where the product is extended over all Dirichlet characters modulo m. For the principal
character the function L(s, xo,) has a pole of order 1 at s = 1. This pole is canceled
by the assumed zero of one of the functions L(s,x), X # Xom. Therefore, under the
assumption, (,, would be holomorphic everywhere in the halfplane H(0) = {s € C :
Re(s) > 0}. We will show that this leads to a contradiction.

Using the Euler product for the L-functions (theorem 7.6), we get

IIIIl— p)p IIH L—x(p)p~)

X peP peP

By lemma 8.7 below, for every p f m there exist integers f(p), g(p) > 1 with f(p)g(p) =
©(m) such that

H(l —x(p)p~*) = (1 — pFPs)),

X

Therefore

! N )
HJl—X@mﬂ):<§:5mﬁﬁ

k=0

is a Dirichlet series with non-negative coefficients and we have
oo

(> i) 2 e

where the relation ) a,/n® > > b,/n® between two Dirichlet series is defined as
a, > by, for all n. It follows that (,,(s) is a Dirichlet series with non-negative coefficients
and

NOES 1 ()P ) gl

ptm k= 0 ged(n,m)=1
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The last Dirichlet series has abscissa of absolute convergence = 1/¢p(m). Therefore
04(Gn) > 1/p(m). But by the theorem of Landau (6.8) this contradicts the assumption
that ¢, is holomorphic in the halfplane H(0). Therefore the assumption is false, which
proves L(1,x) # 0 for all non-principal characters .

8.7. Lemma. Let G be a finite abelian group of order r and let g € G be an element
of order k| r. Then we have the following identity in the polynomial ring C|T]

[t x(9)T) = (1 - 1"

xeG

Proof. Let H C G be the subgroup generated by the element g. H is a cyclic group
of order k. For every character xy € G, the restriction x | H is a character of H. Two
characters x1, x2 € G have the same restriction to H iff the character X 1= X1Xo s
identically 1 on H, which implies that x induces a character on the quotient group
G/H. Since G/H has r/k elements, there can be at most r/k characters of G which
restrict to the unit character on H. This means that the restriction of the r characters
of G yield at least k different characters of H. But we know that there are exactly k
characters of H. Hence every character ¢ of H is the restriction of a character of G
and there are exactly r/k characters of G which restrict to v. Now

k—1
[0 - wtom) = [T - iy = 1 - 1%
1l}€ﬁ v=0
and
[T x@n = (10 -wen)" =1 -19" qed
xeG peH
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9. The Gamma Function

9.1. Definition. The Gamma function is defined for complex z with Re(z) > 0 by the
Euler integral

I'(z) ::/ t*=te~tdt.
0

Since with = := Re(z) one has [t*"le™| = t*" e~  the convergence of this integral
follows from the corresponding fact in the real case (which we suppose known) and we
have the estimate

IT'(z)| < T'(Re(z)) for Re(z) > 0.

Since the integrand depends holomorphically on z, it follows further that I" is holomor-
phic in the halfplane H(0) = {z € C : Re(z) > 0}. As in the real case one proves by
partial integration the functional equation

20(2) =T(2+ 1),

which together with I'(1) = 1 shows that I'(n + 1) = n! for all n € Ny. Applying the
functional equation n + 1 times yields

['(z4+n+1)
2z+1)-...-(z+n)

[(z) =

The right hand side of this formula, which was derived for Re(z) > 0, defines a mero-
morphic function in the halfplane H(—n—1) = {z € C: Re(z) > —n — 1} having poles

of first order at the points z = —k, k = 0,1,...,n. Therefore we can use this formula
to continue the Gamma function analytically to a meromorphic function in the whole
plane C, with poles of first order at z = —n, n € Ny, and holomorphic elsewhere. From

now on, by Gamma function we understand this meromorphic function in C.

The Gamma function can be characterized axiomatically as follows:

9.2. Theorem. Let F' be a meromorphic function in C with the following properties:
i) F' is holomorphic in the halfplane H(0) = {z € C : Re(z) > 0}.

ii) F satisfies the functional equation zF(z) = F(z +1).

iii) F' is bounded in the strip {z € C:1 < Re(z) < 2}.

Then there exists a constant ¢ € C such that
F(z) =cT(2).
Proof. 1t is clear that I satisfies the properties i) to iii). We set ¢ := F'(1) and

O(2) = F(z) — cl(2).
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9. Gamma function

Then ® is also a function satisfying i) to iii) and ®(1) = 0. From the functional equation
O(2) = &(z +1)/z it follows that & is holomorphic at z = 0 and that ® is bounded in
the strip {z € C: 0 < Re(z) < 1}. Therefore the function

o(z) == D(2)P(1 — 2)
is bounded in the same strip. We have
P(z4+1) =Pz + 1)P(—2) = 20(2)P(—2) = —P(2)P(—2 + 1) = —p(2).

From this it follows that ¢ is periodic with period 2 and bounded everywhere, hence
holomorphic in C. By the theorem of Liouville ¢ must be constant. Since ¢(1) = —p(0),
this constant is 0. The equation 0 = ®(2)®(1 — z) shows that also ® is identically 0,
but this means F(z) = c¢I'(2), q.e.d.

9.3. Theorem. a) For every z € C~{n € Z:n <0} we have

nln?

F(Z>:7}i—>r§oz(z+1>‘-"'<z+n>

(Gauf$ representation of the Gamma function)

b) 1/T is an entire holomorphic function with product representation

1 [e.@]
e =e%%2 H (1 + %)e_z/”, (C = Euler-Mascheroni constant).

n=1
This product converges normally in C.

Proof.

9.4. Lemma. Let f: C — C be an entire holomorphic function and let p,C, Ry € R,
be non-negative constants such that

Re(f(z)) < C|z|? for |z| > Ry.
Then f is a polynomial of degree < p.
Note that no lower bound for Re(f(z)) is required.

Proof. The Taylor series f(z) = Y o, a,2" converges for all z € C. Setting z = Re",
we get Fourier series

f(Reit) = Z a,R"e™ and W = ZEnR”e_mt,
n=0 n=0

hence

Re(f(Re")) = Re(ag) + 1> R"(an,e™ +a,e™™).

n=1
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Multiplying this equation by e~** and integrating from 0 to 27 yields

1 2

=—— [ Re(f(Re"))e™dt fork>0
TR, e (f(Re"))e or k >

ag

and (for k = 0)

1

Re(ap) = %/0 ﬂRe (f(Re™)) dt.

The hypothesis on the growth of Re(f(z)) implies
[Re(f(2))| <2C2[” = Re(f(2)) for [z| = R,

(note this is true also if Re(f(z)) < 0). Therefore we get the estimate

2

1 Z. |
lag| < iR, |Re(f(re™))|dt < T (4CR? — 2Re(ay)) -

Letting R — o0, we see that ay = 0 for k > p, q.e.d.

9.5. Theorem. The Gamma function satisfies the following relations:

0) 1 _ sin(mz)
Iz)r(1-2) T
b) r(g)r(z;rl) — 2= /7 T(2).

Example. Setting z = § in formula a) yields
[(3) =
The same result can also be obtained from formula b) for z = 1.

Proof. a) We first consider the meromorphic function
O(z) =T()I1 - 2).

It has poles of order 1 at the points z = n, n € Z, and is holomorphic elsewhere. It
satisfies the relations

D(z4+1)=—-P(2) and P(—2z2) = —(2).
Since I'(z) is bounded on 1 < Re(z) < 2 and

re) =" ra-g =22,
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9. Gamma function

it follows that ® is bounded on the set
S1:={2€C:0<Re(z) <1, [Im(z2)| > 1}.

As sin(7z) has zeroes of order 1 at z = n, n € Z, the product
F(2) :=sin(m2)®(z) = sin(7z)'(2)['(1 — z)

is holomorphic everywhere in C and without zeroes. We can write

F(z) = Smim) P(1+ )1 - 2),

hence F(0) = m. Furthermore F' is periodic with period 1 and an even function, i.e.
F(—z) = F(z). From the boundedness of ® on S; we get an estimate

|F(2)] < Ce™! for z € S, and some constant C' > 0.

Since F' is continuous and periodic, such an estimate holds in the whole plane C.
We can write F' as F(z) = e/*) with some holomorphic function f : C — C. From
|F(2)] = e®(®) we get an estimate

Re(f) < C'|z| for |z| > Ry and some constant C" > 0.
By lemma 9.4, f must be a linear polynomial, hence
F(z) = e (a,beC).

Since F'is an even function, we have b = 0, so the function F is a constant, which must
be F(0) = w. This proves part a) of the theorem.

b) This is proved by applying theorem 9.2 to the function

F(z) = zzr<§>r<zgl>.

9.6. Corollary (Sine product). For all z € C one has
2

sin(mz) = 7z ﬁ(l - %)

9.7. Corollary (Wallis product).

T T (2n)?
2) E‘E(Qn—l)(QnH)’
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1 2n(pl)?
U VT T

Proof. Formula a) follows directly from the sine product with z = 3.

To prove formula b), we rewrite a) as

ey
7 =2 lim H
n—oo (2k —1)(2k 4+ 1)
2 221 (nl)?

= lim .
n—oo2n+1 1-3-3-5-5-...-(2n—1)(2n—1)

2 2"n!
VT ooV 2011 135 (2n—1)
2 22n !2
= lim 4/ : (n)
n—oo \ 2n + 1 (2”)'

Since lim v2n/v/2n + 1 =1, the assertion follows.

hence

9.8. Theorem (Stirling formula). We have the following asymptotic relation

n! ~ 27m<2> .
e

Proof. We apply the Euler-Maclaurin summation formula to

log(n!) = Z log k
k=1

and obtain
1 " " saw ()
log(n!) = 5logn + log x dx + ——2dx
1 1 x
= 1logn+n(logn — 1) + 1—1—/1 @dw.

Taking the exponential function of both sides we get
n n
nl=+vn (—) e,
e

where




9. Gamma function

This last representation shows that

a:=lima, =1 +/ saw(z) dx
n—oo 1 x

exists and we have the asymptotic relation

n! ~ \/ﬁ(ﬁylea.

e

It remains to prove that e = v/27. This can be done as follows. Dividing the asymptotic
relations

(n!)? ~ n(2>2n620‘ and (2n)! ~ \/%(2—71)2”6&

e e
yields

. (n!)2€2n . (2n)2n+1/2 . (n!)2 . 92n+1/2 . \/? 22n(n!)2

n—oo n2tl  (2n)le2r  n—oo  (2n)l/n n—oo ' n (2n)!

Now corollary 9.7 shows e* = v/27, q.e.d.
For later use we note that we have hereby proved

1+/ Mdac:log\/27r.
1

T

9.9. Theorem (Asymptotic expansion of the Gamma function). For every integer
r>1 and every z € C\ {x € R: 2 <0} one has

By, 1
2k —1)2k  2%+-1

logl'(z) = (2 — %)logz—z+log\/27r+z(
k=1

> B 1
+/ () - dt.
0 2r (24 t)*

Here logI'(z) and log z are those branches of the logarithm which take real values for
positive real arqguments.

Example. For r = 5, the value of the sum is

@k — D)2k 221 12: 36023 | 12602 168027 = 118829

i Boy 1 1 1 1 1 1

k=1

Proof. We use the Gaufl representation of the Gamma function (theorem 9.3.a) and
get

logI'(z) = lim (z logn + Z log k — Zlog(z + k))

k=1 k=0
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By Euler-Maclaurin (theorem 5.2)

n n n t
Zlogk = %logn—k/ logtdt—i—/ Sav:( )dt
k=1 1 1

" t
= %logn+nlogn—n+1+/1 %dt

and

Z log(z + k) = L(logz + log(z + n)) + / log(z + t)dt + / Mdt

— 0 o 2+t

= l(logz +log(z +n)) + (2 + n)log(z + n) — zlogz — n
[,
0o 2+t

Therefore

zlogn + Zlogk — Zlog(z + k)

k=1 k=0
= (z—1%)logz— (z+n+3)log <1+%> +1
N / saw (1) g / saw (1) gt
1t o 2ttt
Since
i 1 ) =

Jim -+ 5 log (14 1) =

and
, " saw(t)

lim (1 + ; dt) =log V21 (see above),

n—oo 1
we get

) > saw(t)
logT'(2) = (2 — 5)logz — 2 + log V21 — +tdt.
0o Z

The rest is proved as in theorem 5.11.
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10. Functional Equation of the Zeta Function

10.1. Theorem (Functional equation of the theta function).
The theta series is defined for real x > 0 by

0(z) = Z e ™
nez

It satisfies the following functional equation

1
9(5) = Va0(x) for all z > 0,

i.e.

e

nez neE”L

Remarks. a) The theta series, as well as its derivatives, converge uniformly on every
interval [, 00[, € > 0; hence 0 is a C*°-function on ]0, co.

b) In the theory of elliptic functions one defines more general theta functions of two
complex variables. For 7 € C with Im(7) > 0 and z € C one sets

L, .
’19(7', Z) — E el T€27rznz'
ne”L

For fixed 7 this is an entire holomorphic function in z, which can be used to construct
doubly periodic functions with respect to the lattice Z + Z7. As a function of 7, it is
holomorphic in the upper halfplane. The relation to the theta series of theorem 10.1 is

o(t) = 9(it, 0).

Proof. For fixed x > 0, we consider the function F': R — R,
F(t) =) e 0"
nez

The series converges uniformly on R together with all its derivatives, hence represents
a C>®-function on R. It is periodic with period 1, i.e. F((t + 1) = F(t) for all t € R.
Therefore we can expand F' as a uniformly convergent Fourier series

F(t) = Z ¢, e2mmt

neL

where the coefficients ¢, are the integrals

¢ = F( —27rzntdt / w(k— t T —27Tzntdt
A >

kEZ
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:H e~ Te=2mint gy (substitution ¢ = ¢t — k), hence

& 2
¢, = / e—7rt me—27rmtdt'
—00

For n = 0 this is the well known integral of the Gauss bell curve

o [o¢] 2 o
—mt2x — itz 42
00:/ e dt:2/ e dt:—/ e " dt
—c0 0 VTE Jo
1 1 1

1 Ry
= — Ydu=—=T(=) = —.
\/7‘(’513‘/0 w e tdu VT (2) NI

For general n we write

Now fol e~ (k—t)*z g—2mint gy —

—tix — 2mwint = —7r<t\/§ + —
This leads to

We will prove

o : 1 e 1
/_Oo e*ﬂ'(t\/erm/\/E)th — ﬁ/_ efﬂtht - (*)

o0

B

Assuming this for a moment, we get
1 2 -
F(t) - Z e~ /xe27rznt'
\/E nez
Setting t = 0, it follows
1 2
F(O) — Zefﬂn%g _ Z e~ /ac7
nez \/E neZ
which is the assertion of the theorem.
It remains to prove the formula (). Using the substitution ¢ = t\/z we see that
,/1 e—ﬂ@v%+nvviﬁdt::_}_t/i o—mltin/ Va2 gy
—00 \/E —00

With the abbreviation a := n/+/z we have to show that

/eﬂwwﬁz/eﬂ%t (%)

To this end we integrate the holomorphic function f(z) := e~™ over the boundary of

the rectangle with corners —R, R, R + 1a, — R + t1a, where R is a positive real number.
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—R+ia R+ ia

By the residue theorem the whole integral is zero, hence

R R+ia R+1ia —R+1a
dz = dz — d d
/ I / NG /R f(2)dz + / RO

oo [
/ ? F(2)d / g—lt-ia)?
.

+R+ia s o ) a ) )
/ f(Z)dZ — / —m(R?—t%) :FQmtht —7rR / 67rt :FQWZtht.
0 0

+R

Now

m:o

:U

We have the estimate
:tR+za ) 5
7R
‘/ )dz’ < e ™ g|emlal,

which tends to 0 as R — oo. This implies

R R

lim e ™ dt = lim e~ m(t+ia) gy
R—o0 _R R—o _R

Y

which proves (#x) and therefore (x). This completes the proof of the functional equation
of the theta function.

10.2. Corollary. The theta function 0(x) == ) _, ™% defined in the preceding
theorem satifies

0(z) = O(%) as x "\, 0.

10.3. Proposition. For all s € C with Re(s) > 1 one has

r(3)c =m [Tor (T2

n=1
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Remark. The function

bty = e
n=1

decreases exponentially as ¢ — oo. One has 0(t) = 1+ 2¢(t), hence ¥(t) = $(0(t) — 1),
so corollary 10.2 implies

W(t) = O(%) for t \, 0.

This shows that the integral exists for Re(s) > 1.

Proof. We start with the Euler integral for I'(s/2),

"G
2 0 t’

and apply the substitution ¢ = mn?t, where n € Ny. Since dt/t = dt/t, we get

F(f) _ TLS7TS/2 /OO tS/QG_Wn%@.
2 ; /

For Re(s) > 1 we have

s > s\ 1 > o 2, dt
z — °Y - s/2 s/2 —mnt "
F<2>C(S> ZF(z)ns ;W /0 ey

n=1

_ 5/2 t5/2<§ —7rn2t> )
" /O ‘ t

n=1

The interchange of summation and integration is allowed by the theorem of majorized
convergence for Lebesgue integrals.

10.4. Theorem (Functional equation of the zeta function).
a) The function

&(s) =72 (s/2) ((s),

which is a meromorphic function in C, satisfies the functional equation

§(1—s) =¢&(s).

b) For the zeta function itself one has

C(1—s) =2""77"T(s) cos(Z) {(s).
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Proof. By the preceding theorem
- s/2 dt : - —mn?t
£(s) = t 1[)(15)7 with  (t) = Ze :
0 n=1
The functional equation of the theta function implies for ¥ (t) = 3(0(¢) — 1)
w(t) =21/t — 5(1 -t

We substitute this expression in the integral from 0 to 1:

! ! 1\ dt ! dt
/ tS/Z@b(t)%:/ t(s_l)/2¢<z>?+%/ (t(5—1)/2_t5/2)?.
0 0 0

The last integral can be evaluated explicitly (recall that Re(s) > 1):

1
dt 1 1
1 (s—1)/2 s/2 _
5 t — 17— = - —.
2/0 ( ) t s—1 s

For the first integral on the right hand side we use the substitution # = 1/t and obtain

! 1\ dt > dt
p=0/2 (24 :/ H1=9)/2, 1) 28
/0 ¢<t> t ) (t) t

Putting everything together we get

(6= [ oo T = [Ta0r e e T+ (- 5):

t t s—1 S

The integral on the right hand side converges for all s € C to a holomorphic function
in C. Thus we have got a representation of the function £(s) valid in the whole plane.
This representation is invariant under the map s — 1 — s, proving £(1 — s) = &(s), i.e.
part a) of the theorem.

To prove part b), we use the equation we just proved:

1—s S

)c—s) =770 (3) CGs).

W—(l—s)/2F<

yielding

C(1—s) = W?—sr(f)r(l - S>_1C(s).

By theorem 9.5.a) we have

1-s 1+s T 7r
() () - aca)
2 2 sin(r$2)  cos(%)
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therefore

C(1—1s)= 7T1/25F<§>F<1 i S) cos(5) ((s).

Now by theorem 9.5.b)

r(3)e('57) =2

which implies

C(1—s)=2"""7"T'(s) cos(%) ((s), q.e.d.
10.5. Corollary. a) For every integer k > 0

¢(—2k) =0.

These are the only zeroes of the zeta function in the halfplane Re(s) < 0.
b) ¢(0) = —3.

Proof. a) We use the functional equation

C(1—s)=2"""7""T'(s) cos 2 ((s)

Re(1 — s) < 0 is equivalent to Re(s) > 1. Since ((s) # 0 for Re(s) > 1 (theorem 4.5),
the only zeroes of the right hand side for Re(s) > 1 come from the cosine function.
Now

cos’y =0 <= s=1+2k withkeZ

This implies assertion a)

¢) From the functional equation we get

C(1 — 2k) = 2" 272K (2k) cos(mk)((2k) = (2k — D)1 (=1)F¢(2k).

(272
By theorem 5.8.ii)

C(2k) = <—1>k—1%3%.
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Substituting this in the equation above yields

_ B
ok

b) We write the functional equation in the form ((1 — s) = fi(s) fa(s) with

fi(s) :==2"77°T(s) and fo(s) := cos B ().

f1 is holomorphic in a neighborhood of s = 1 and f;(1) = 1/7. The function f5 is
likewise holomorphic in a neighborhood of s = 1, since the pole of the zeta function is
cancelled by the zero of the cosine. To calculate fy(1), we determine the first terms of
the Taylor resp. Laurent expansions of the factors.

C(1—2k) =

cosZ =cos(3(s—1)+3)=—sin(5(s— 1) =—3(s— 1)+ O((s — 1)%),

1
((s) = . + (holomorphic function).
S —

Multiplying both expressions yields fy(s) = —=54+0O(s—1), hence f,(1) = —7F. Therefore

C0) = fi1)fo(1) = -1, qed.

10.6. Theorem. For allt € R
C(1+idt) #0.

Proof. We use the inequality
3+4cost+cos2t >0 for all ¢t € R.

This is proved as follows: Since cos 2t = cos?t — sin®t = 2cos’t — 1, we have
3+4cost+cos2t = 2(1 + 2cost + cos®t) = 2(1 + cost)* > 0.

Let now s = o + it be a complex number with Re(s) = ¢ > 1. Then

SR S S oot 1

peP cP k p

where

a — { 1/k, if n = p* for some prime p,
" 0 otherwise.

Since log|z| = Re(log 2) for every z € C*,

log [((s) f: a,R i Zz cos(tlogn).

n=1 n=1
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Using a trick of v. Mangoldt (1895) we form the expression

log (I¢(@)Flc(o -+ in) '|c(o -+ 21t)])

~~

= Z fn (3 + 4 cos(tlogn) + cos(2t log n)) > 0.
n=1 77 A ”
— >0

Therefore
1¢(0)*C(o + it)*¢(o+ 2it)] > 1 forallo>1andte€R.

Assume that (1 + it) = 0 for some ¢ # 0. Then the function s — ((s)3¢(s + it)* has
a zero at s = 1, since the pole of order 3 of the function ((s)? is compensated by the
zero of order > 4 of the function ((s + it)*. Therefore

li\rri ¢(0)3¢(0 + it)*¢ (o + 2it)| = 0,
contradicting the above estimate. Hence the assumption is false, which proves the
theorem.

10.7. Riemann Hypothesis. It follows from theorem 10.6 and the functional equation
that ((s) # 0 for all s € C with Re(s) = 0. Therefore, besides the trivial zeroes of the
zeta function at s = —2k, k € Ny, all other zeroes of the zeta function must satisfy
0 < Re(s) < 1. It was conjectured by Riemann in 1859 that all non-trivial zeroes of the
zeta function actually have Re(s) = 3. This is the famous Riemann hypothesis which
is still unproven today.
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11. The Chebyshev Functions Theta and Psi

11.1. Definition (Prime number function). For real x > 0 we denote by w(x) the
number of all primes p < x. This can be also written as

m(z) = Z 1.

pP<T

7(x) is a step function with jumps of height 1 at all primes. Of course m(z) = 0 for all
x < 2. Some other values are

z | 10]100 | 1000 | 10* | 10° | 10° | 107 |
m(x) | 4] 25 | 168 | 1229 | 9592 | 78498 | 664579 |

The prime number theorem, which we will prove in chapter 13, describes the asymptotic
behavior of 7(z) for + — oo, namely

X

meaning that the quotient m(z) 1o§ — converges to 1 for x — oo. For the proof of the

prime number theorem, some other functions, introduced by Chebyshev, are useful.

11.2. Definition (Chebyshev theta function). This function is defined for real x > 0
by

V(z) = Z log p.

p<T

(Of course this has nothing to do with the theta series and theta functions considered
in the previous chapter.)

We will see that the prime number theorem is equivalent to the fact that the asymptotic
behavior of the Chebyshev theta function is J(x) ~ x for x — oo.

A first rough estimate is given by the following proposition.
11.3. Proposition. For all x > 0 one has

Y(x) < xlog4,
in particular Y(z) = O(x) for x — 0.

Proof. Of course it suffices to prove the assertion for x = n € N;. The assertion is
equivalent to

F(n) ::Hp < 4"

p<n
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We will prove this by induction on n. It is obviously true for n < 3.

For the induction step let N > 4 and assume that the assertion is true for all integers
n < N.

First case: N even. Obviously F(N) = F(N—1). For F(N —1) we can use the induction
hypothesis and obtain F(N) = F(N — 1) < 4N¥71 < 4V,
Second case: N odd. We write N as N = 2n + 1. Consider the binomial coefficient

<2n+1) _@n+1)-2n-2n—-1)-...-(n+2)
1-2-3-...-n

n

Clearly, for every prime p with n + 2 < p < 2n + 1 one has

(2n+1)
S (),
n

H )p < (2n;1>.

n+1<p<L2(n+1

hence

Now (**1) = () are the two central terms in the binomial expansion of (14-1)*"**,

therefore
2 1
n

By induction hypothesis [] p < 4", hence
p<n+1

o2n + 1
F2n+1) = H p < 4“+1< m ) < 4rtign — g2+l q.e.d.

n
p<2n+1

11.4. Lemma (Abel summation II). Let ny be an integer, (an)n>n, @ Sequence of
complex numbers and A : [ng,o00[ — C the function defined by

Az) == Z .

nog<n<e
Further let f : [ng, 00 — C be a continuously differentiable function. Then for all real
x > ng the following formula holds

T

> ot =A@ - [ AW

no k< no

Proof. We consider first the case when x = n is an integer and prove the formula by
induction on n. For n = ngy both sides are equal to a,, f(no)-

73



11. Chebyshev functions theta and psi

Induction step n — n + 1. Denoting by L(z) the left hand side and by R(z) the right
hand side of the asserted formula we have

Lin+1)—L(n) =aps1f(n+1)

and

1
ani1f(n+1)=L(n+1) — L(n).

This proves the induction step.

In the general case when z is not necessarily an integer, set n := [z]. Then

and
—AWﬂm—flmwwﬁ
— A(n)f(z) — A(n)f(n) — A(n)(f() — f(n)) =0, qe.d.

11.5. Theorem. The following relations hold between the prime number function and
the Chebyshev theta function:

a) W(m)—ﬁ(x)Jr/; U0 dt—ﬁ(aj)—k()( - >7

~ logx tlog?t  logx log? z

b) 19(x):ﬂ(x)logx—Lx@dtzﬂ(x)logx%—O(lozx).

Proof. a) Let (an)n>2 be the sequence defined by

0 1, if n is prime,
"7 10 otherwise,

by, == aplogn, and f(z) = 1/logz. Then

m(x) = Z a, = Z bof(n).

2<n<x 2<n<x

Since Y b, = ¥(z) and f'(z) = —1/(xlog®x), Abel summation (lemma 11.4) yields

n<e

ﬂm:wmﬂm—L%@f@ﬂ=ﬂ9+lx

log

0(t)
tlog*t
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To estimate the integral, we use the result of theorem 11.3 that |9(t)/t| < log4. Hence
it remains to show that

Todt x
/ = 0( 2 )
o log~t log” x
This can be seen as follows (we may assume x > 4):
/x dt _/ﬁ dt +/$ dt
o log?t  Jy log’t Jz log?t

NS x B o T
< o2 gy~ OV o =i

b) With a, as defined in a) we have ¥(z) = > a,log(n). Abel summation yields
2<n<

t

To(t
I(x) = 7(x) log(x) — / ™) g
2
From J(z) = O(z) and a) it follows that m(z) = O(z/logx), hence
(t) Codt
—dt = — ).
/2 t O(/2 10gt>
The last integral is estimated by the same trick as used in a)
v dt _/ﬁdt+/x dt
, logt J, logt vz logt

< NG L :O< T )
log2  log+/z log ©

11.6. Corollary. The asymptotic relation

m(x)

~ for © — oo (prime number theorem)
log x

15 equivalent to the asymptotic relation
Y(x) ~x for x — oo.

11.7. Definition (Mangoldt function). The arithmetical function A : Ny — Z is
defined by

A(n) = {logp, if n = pk is a prime power (k > 1),
0 otherwise.
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11.8. Theorem. The Dirichlet series associated to the Mangoldt arithmetical function
satisfies for all s € C with Re(s) > 1

= Aln (s
3 (n)  ¢(s)

nt(s)

n=1

Proof. By theorem 4.7 one has for Re(s) > 1

lOgC Z Z ks'

= peIP’
This can be written as
oo an
log((s) =) —
n
n=1
with
0 = { 1/k, if n = p"* is a prime power (k > 1)
" 0 otherwise
Since
i i — i e—slogn — —10g7’L 6—slogn _ 10g77,
dsns ds ns

and a, logn = A(n), we get

(s d = a,logn = An
C((s)):£logC(s):—Z nsg :—Z <), q.e.d.

n=1 n=1

11.9. Definition (Chebyshev psi function). This function is defined by

= Z A(n)

n<e

11.10. Theorem. The Chebyshev psi function and the Chebyshev theta function are
related in the following way.

=> (') ) 4+ 9z ?) + 9 ?) + ... = 9(x) + Oz log ),

k>1

=D _ k(@) = ve) — (') — (@) = @) + @) =+
k>1

Proof. a) By the definition of the Mangoldt function one has

= Z Z logp = Z Z logp = Zﬁ(xl/k).

k>1 pkgn k>1 pgxl/k k>1
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Since 9(t) = 0 for t < 2, we have 9(z'/¥) = 0 for k > logz/log 2, hence

log =
1/ky < 1/2y _ 1/2
k§>2 I(z") < Log2J19(x ) =O(x*logz).

b) This is just another form of the M&bius inversion theorem

Do ulk)p(*)y =Y uk) Yy o)

k>1 k>1 >1
= S M) = 3 b 0 = o).
n>1 kln n>1

11.11. Corollary. The asymptotic relation
m(x)

15 equivalent to the asymptotic relation

xz

~ for © — oo (prime number theorem)
log x

Y(x) ~x for z — 0.

Proof. Since by the preceding theorem J(x) ~ z is equivalent to ¥ (x) ~ z, this follows
from corollary 11.6.

Remark. We will indeed use this equivalence when we prove the prime number theorem
in chapter 13.

11.12. Lemma. The prime decomposition of n! is

n! = Hpap, where a, = Z L%J
p

k>1 p
Proof. ...

11.13. Theorem (Bertrand’s postulate). For every positive integer n there is at least
one prime p with n < p < 2n.

Proof. ...

11.14. Theorem.

Z logp _ logz 4+ O(1).

P<T

Proof. ...

11.15. Theorem. There exists a real constant B such that

1 1
Z—zloglogaﬂ—B—{—O( >
P log =

pP<ZT

Proof. ...
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12. Laplace and Mellin Transform

12.1. Laplace Transform. Let f : R, — C be a measurable function such that
|f(x)]e=7°" is bounded on R, for some o € R. Then the integral

F(s) = /000 flz)e *dx

exists for all s € C with Re(s) > oo and represents a holomorphic function in the
halfplane

H(op) ={s € C: Re(s) > oo}
F is called the Laplace transform of f.

Remark. Measurable here means Lebesgue measurable. In our applications, f will al-
ways be at least piecewise continuous. Hence the reader who does not feel confortable
with Lebesgue integration theory may assume f piecewise continuous.

The existence of the integral follows from the estimate
|f(2)e| < Kem "7, g :=Re(s) > oy,
where K is an upper bound for |f(z)|e** on R.

Example. Let f(x) =1 for all x € R,. The Laplace transform of this function is

o0 —STqx=R 1
F(s) = / e *dr = lim [_e } = lim (1 —e*f) = = for Re(s) > 0.
0

R—o0 S =0 R—o0 S

12.2. Relation between Laplace and Fourier transform.

We set s = o +it, o,t € R. Then the formula for the Laplace transform becomes

o0

F(o+it) = / flz)e 7 e " dy = / g(x)e " dx,
0 —o0
where

_ ) f(w)em?® for x>0,
9(x) { 0 for x < 0.

Therefore the function ¢ — F'(0 +it) can be regarded (up to a normalization constant)
as the Fourier transform of the function g.

12.3. Mellin Transform. The Mellin transform is obtained from the Laplace trans-
form by a change of variables. With the substitution

dt

r=logt, dx= 7

Chap. 12 last revised: 2003-04-14 78



O. Forster: Analytic Number Theory

the formula for the Laplace transform becomes

> dt
F(s) :/ f(logt)t™® T
1
This can be viewed as a transformation of the function g(t) := f(logt), t > 1, and
leads to the following definition.

Definition. Let g : [1,00] — R a measurable function such that g(z)x~?° is bounded
on [1, 00| for some oy € R. Then the integral

6(5)= [ gty

X

exists for all s € C with Re(s) > 0p. The function G is holomorphic in the halfplane
H(op) and is called the Mellin transform of g.

Remark. There exists a generalization of the Mellin transform where the integral is
extended from 0 to co. An example is the Euler integral for the Gamma function

This generalized Mellin transform corresponds to the “two-sided” Laplace transform

F(s) = /_Z f(z)e **dx

12.4. Theorem. The Mellin transform of the Chebyshev 1-function is

/1001/1(x) x° df = _gé((fs)) for Re(s) > 1.

Proof. It follows from theorems 11.3 and 11.10 that ¢ (x)/x is bounded, hence the
Mellin transform of ¢ exists for Re(s) > 1. We apply the Abel summation theorem

A
11.4 to the sum (_n) Since
n<e n®
d 1 1
— — = —8§ —_—,
dx x° st
we obtain
A Tab(t
3 (n) :¢($)+8/ w?dt.
— ns xs 1 ts+
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Letting © — oo, we get 1(x)/xz* — 0 for Re(s) > 1, and using theorem 11.8

nS

¢'(s) A )
_ng—:s 1 tSTdt’ q.e.d.

12.5. Theorem (Tauberian theorem of Ingham and Newman). Let f: R, — C be a
measurable bounded function and

F(s) = / f(z)e™**dz, Re(s) >0,
0
its Laplace transform. Suppose that F', which is holomorphic in

H(0) ={s € C: Re(s) > 0},

admits a holomorphic continuation to some open neighborhood U of H(0). Then the
improper integral

00 R
/ f(z)dz = lim f(z)dx
0 R—o0 Jo
exists and one has
FO) = [ f)d
0
where F(0) denotes the value at 0 of the continued function.

Proof. For a real parameter R > 0 define the function

R
Fr(s) ::/0 f(z)e **dx.

Since the integration interval [0, R] is compact, Fg is holomorphic in the whole plane
C. The assertion of the theorem is equivalent to

lim (F(0) — Fr(0)) = 0.
The function F' — Fg is holomorphic in U D H(0), therefore its value at the point 0
can be calculated by the Cauchy formula.

1 1

FO) ~ Fal0) = 5 [ (F(5) = Fao) s

Here the curve v = 7, + 7_ is chosen as indicated in the following figure. v, is a
semi-circle of radius r > 0 with center 0 in the right halfplane from —ir to ir, and v_
consists of three straight lines from ir to —d + ir, from —¢§ + ir to — — ir and from
—§ —ir to —ir. The constant 0 > 0 has to be chosen (depending on r) sufficiently
small, such that v and its interior are completely contained in U.
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A

7'4

5. T+
T
: .
vy
—0—ir Y -

—ir

The function s — (F(s) — Fr(s)) e is holomorphic in U and for s = 0 its value is
F(0) — Fg(0). Therefore we have also

1 1
F - F - F - F Rs — )
0 = F0) = 5z [ (F(s) = Fafs)) ™ s
We still use another trick and write
B 1 Rs (1 s
FO) = Fr(0) = 5 [ (F(s) = Fa(o)) e (5 + 5 ) s (*

v

This is true since the added function

s (F(s) = F(s)) ™

is holomorphic in U, hence its integral over v vanishes.

Note that for |s| = r one has

1 S s 2
<_+S):i+5:m: g where o = Re(s).

s 72 s5 | 12 r2 2’
For the proof of our theorem, we have to estimate the integral (x).

Let £ > 0 be given. We choose r := 3 /e and a suitable 6 > 0. We estimate the integral
in three steps.

1) Estimation of the integral over the curve ;.
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Since by hypothesis f : R — C is bounded, we may suppose |f(z)| < 1 for all x > 0.
Then for o = Re(s) > 0

7 = Fals) = | [ pwpert| < [Teroran =€

With the abbreviation

—Ro

g

we get therefore on

—Ro
e Re 20 _ 2

|G1(s)] <

o 72 r

hence
1 1 2 1 2 1
‘_/ Gl(s)ds‘ S_/ _2|d5|:—'—2'ﬂ'7”:—:£_
211 - 2T v T 2 r T 3

1
2) Estimation of the integral / Fr(s)eft ( 2>ds
o s T
Since Fr is holomorphic in the whole plane, we may replace the integration curve v_ by
a semicircle « of radius 7 in the halfplane Re(s) < 0 from ir to —ir. For 0 = Re(s) < 0
we have

f —xo 1 —Ro
|Fr(s)| < e dr=—(1—e") <
0 g

Therefore the integrand

1 S

(%@%:Ph@km<g+_0

r2
satisfies the following estimate on the curve «

2|0
<|F Rs < =
‘G2(3)| > ‘ R( { r2 = Tz’

<_ _
bm/@ )ds / ds| = /m

1
3) Estimation of the integral / F(s)e’ (— + i)ds.

Y—

hence
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1
The function s +— F(s) (— + %
s T
path vy_. Therefore there exists a constant K > 0 such that

) is holomorphic in a neighborhood of the integration

1
‘F(s)(; + %)‘ < K for all s on the curve 7_.

Hence the integrand

Gs(s) := F(s)el® (1 + ;2)

S

satisfies the following estimate on v_
|Gs(s)] < Kef,  where 0 = Re(s).
Let 7 be some constant with
0< 1<,
whose value will be fixed later. We split the integration curve y_ into two parts

7=y N{Re(s) > —7},
7" = y_N{Re(s) < —7}.

~" consists of two line segments of length 7 each. Let L be the length of _. Then
1 1 P R
’—, Gs(s)ds| < —{ Ke*|ds|+ | Ke "|ds|}
2m ), 2 L) "

< %{/7 |ds|+/ﬂ e |ds|}

K —RT

We now fix a value of 7 > 0 such that

K 5 <5
— T —
2 6

and choose an Ry > 0 such that

K €
L Le Bom =
2T ¢ < 6

Then we have

1 €
‘% L G3(S)d8‘ <3 for all R > Ry.

Putting the estimates of 1), 2) and 3) together we finally get

(0) ~ Fa(0)] = | 5 / (F(s) ~ Fals)) e™ (* + ) ds

<e€
s r?

for all R > Ry, q.e.d.
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13. Proof of the Prime Number Theorem

13.1. In this chapter we will prove the prime number theorem

()

for z — oo.

- log x
As we have seen in corollary 11.11, this is equivalent to the asymptotic relation
Y(x) ~x for x — oo.

To prove this, we use the Mellin transform of 1, calculated in theorem 12.4

/1001/1(36) x° d?x = —i((ié for Re(s) > 1.

A first step is

13.2. Proposition. The following improper integral exists:

[T ) [ )

Proof. We write the Mellin transform of 1) as a Laplace transform

_C’(s): N amsm g Fp(e”) (o1
= e [ R

Since

/ ey = ! for Re(s) > 1,
0 S — ]_

we get for Re(s) > 1

/000 (@ - 1)6_(5_1)xd1‘ = —%(?) ~ i 7= F(s).

The zeta function has a pole of order 1 at s = 1, hence ('(s)/(s((s)) has a pole of
order 1 with residue —1 at s = 1. It follows that F' is holomorphic at s = 1. We now
use the fact that the zeta function has no zeroes on the line Re(s) = 1 and get that
the function F' can be continued holomorphically to some neighborhood of the closed
halfplane Re(s) > 1. The Tauberian theorem 12.5 of Ingham/Newman can be applied
to the above Laplace transform (after a coordinate change § = s — 1), yielding the
existence of the improper integral

/Om(@—l) dz.
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By the substitution & = e* this is nothing else than the improper integral

e

which proves the proposition.

13.3. Lemma. Let g : [1,00] — R be a monotonically increasing function such that
the improper integral

[y

exists. Then

lim _g(a:) =1.

rz—00 I

Remark. In general, the existence of an improper integral [ f(z)% does not imply
lim f(z) =0, as can be seen by the example

r—00

< dr ) Rging
sinx — = lim dzx.
1 T R—o0 1 X

That this improper integral converges follows from the Leibniz criterion for the con-
vergence of alternating series.

Proof. lim g(z)/x =1 is equivalent to the following two assertions

(1) lim sup 9(x) <1,
T—00 X
(2) lim inf 9(x) > 1.

T—00 €T

Proof of (1). If this is not true, there exists an ¢ > 0 and a sequence (z,) with z, — oo
such that

g(x,) > (14 ¢€)x, forall v.

Since ¢ is monotonically increasing, it follows that

(1+e)zy p (14+e)zy p
1 v
/ (42 _q) 2 / (L% ) 2 g ¢ = 2
T T T T v
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where a(e) is a positive constant independent of v (the function 4= — 1 is continuous
and positive on the interval [1,1+ ¢[). But this contradicts the Cauchy criterion for

the existence of the improper integral floo(@ —1) df.

Remark. The Cauchy criterion for the existence of the improper integral faoo f(z)dz
can be formulated as follows: For every € > 0 there exists an Ry > a such that

R/
‘/ f(x)da:( <¢ forall R,R with R > R > Ry
R

Proof of (2). If this is not true, there exists an ¢ > 0 and a sequence (z,) with z, — oo
such that
g(x,) < (1 —¢)x, forall v

Since ¢ is monotonically increasing, it follows that

7 <9(;)_1>d?$§ 7 <@—1>d§= [Subst. t = £]
(1-¢e)zy (1_16)%
1—¢

where ((¢) is a positive constant independent of v (the function 125 — 1 is continuous
and negative on |1 — ¢,1]). This contradicts the Cauchy criterion for the existence of

the improper integral floo(@ —1) 4. Therefore (2) must be true, which completes the
proof of the lemma.

13.4. Theorem (Prime number theorem). The prime number function
7(z) ;== #{p € Ny : p prime and p < z}
satisfies the asymptotic relation

()

~ for x — o0.
log x

Proof. Lemma 13.3 applied to proposition 13.2 yields ¢(x) ~ x, which is by corollary
11.11 equivalent to w(z) ~ z/logx, q.e.d.

The following corollary is a generalization of Bertrand’s postulate (theorem 11.13).

13.5. Corollary. For every e > 0 there exists an xo > 1 such that for all x > x( there
15 at least one prime p with

r<p<(l+e)x.
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Proof. By the prime number theorem

Lo L (+ee loga

= =1 .
T—00 71'(1’) T—00 10g(1 + 8) + 10gI X te

Therefore there exists an g such that 7((1 + ¢)z) > w(x) for all x > z(, hence there
must be a prime p with z < p < (1 4+ ¢)z, q.e.d.

13.6. Corollary. Let p, denote the n-th prime (in the natural order by size). Then
we have the asymptotic relation

pn ~ nlogn for n — oo.

Proof. By the prime number theorem, we have the following asymptotic relation for
n — oo

nlogn nlogn n

1 ~ = ~
m(nlogn) log(nlogn) logn + log logn 1 4 logloan "

logn

Since 7(p,) = n by definition, the assertion follows immediately from the next lemma.

13.7. Lemma. Let f,g:N; — Ry be two functions with lim f(n) = lim g(n) = oo

n—oo n—oo

and
7(f(n)) ~ 7(g(n)) for n — oo.

Then we have also
f(n) ~g(n) for n — oco.

Proof. We have to show

(1) limsmpM <1

g(n)
< and 2) limsup =—= < 1.
oo g(n) @

n—00 f( )

To prove (1), assume this is false. Then there exists an € > 0 and a sequence (n,) with
n, — 00 such that

f(ny) > (1+4¢)g(n,) for all v.

Since
(14 2)g(n,)
v=oo  m(g(ny))

cf. the proof of corollary 13.5, this implies

: m(f(n,))
hrfisogp m(g(n,)

=1+4¢,

> 1+e,

contradicting the hypothesis 7(f(n)) ~ m(g(n)). Therefore (1) must be true. Assertion
(2) follows from (1) by interchanging the roles of f and g.
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