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Abstract

Questions on parities play a central role in analytic number theory. Properties of the

partial sums of parities are intimate to both the prime number theorem and the Riemann

hypothesis.

This thesis focuses on investigations of Liouville’s parity function and related completely

multiplicative parity functions. We give results about the partial sums of parities as well

as transcendence of functions and numbers associated to parities. For example, we show

that the generating function of Liouville’s parity function is transcendental over the ring of

rational functions with coefficients from a finite field. Within the course of investigation,

relationships to finite automata are also discussed.
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In memory of Michael and William
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“A boundary between arithmetic and analytic

areas of mathematics cannot be drawn.”

— Neuer Beweis der Gleichung
∑∞

k=1
µ(k)
k = 0,

Edmund Landau

“If you want to climb the Matterhorn

you might first wish to go to Zermatt

where those who have tried are buried.”

— A note to a student working on

the Riemann hypothesis,

György Pólya
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Preface

As the title would hopefully lead people to believe, this thesis is dedicated to developing

some of the aspects of analytic number theory dealing with parity, transcendence, and

multiplicative functions.

By parity, we mean just that, even or odd. We focus on the parity of the number of prime

divisors of an integer. This idea is embodied, or enfunctioned, in the Liouville λ–function,

which given an integer n, is defined to be 1 if the number of prime divisors of n, counting

multiplicity, is even, and −1 if odd. By design, λ is completely multiplicative; that is, for

all m,n ∈ N we have λ(mn) = λ(m)λ(n).

Liouville’s function is related to some very interesting theorems from prime number the-

ory. Furthermore, the prime number theorem is equivalent to the statement that
∑

n≤x λ(n)

= o(x), and the Riemann hypothesis is equivalent to the statement that for every ε > 0, we

have
∑

n≤x λ(n) = O(x1/2+ε).

Since an improvement on the asymptotic behaviour of
∑

n≤x λ(n) is beyond our grasp,

we dwell upon some questions that we can answer, like “what about the partial sums of

functions that are similar to Liouville’s function?,” where “similar” will be determined later.

We also address questions concerning the algebraic character of power series
∑

n≥1 f(n)zn

and special values of these series, where f is one of these “similar” functions.

To this end, this thesis is organized as follows.

Chapter 1 contains an introduction to the theory surrounding Liouville’s function by

providing a link to the classical theory of the distribution of primes. Included in this

chapter is a new proof of a theorem of Landau and von Mangoldt, which states that the

prime number theorem is equivalent to
∑

n≥1
λ(n)
n = 0. We also give a new proof of the

statement
∑

n≤x λ(n) = o(x) by providing a connection between the asymptotic density of

a sequence and the residue of the zeta function associated to this sequence.
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In Chapter 2 we broaden our focus by considering generalized versions of λ. In particular,

define the Liouville function for A, a subset of the primes P , by λA(n) = (−1)ΩA(n) where

ΩA(n) is the number of prime factors of n coming from A counting multiplicity. For the

traditional Liouville function, A is the set of all primes. Denote

LA(n) :=
∑
k≤n

λA(k) and RA := lim
n→∞

LA(n)
n

.

Granville and Soundararajan [51] have shown that for every α ∈ [0, 1] there is an A ⊂ P

such that RA = α. Given certain restrictions on A, asymptotic estimates for LA(n) are

also given. For character–like functions λp (λp agrees with a Dirichlet character χ when

χ(n) 6= 0) exact values and asymptotics are given; in particular∑
k≤n

λp(k)� log n.

Within the course of discussion, the ratio ϕ(n)/σ(n) is considered.

Chapter 3 contains an excursion into Mahler’s method of proving transcendence which

will be used heavily in Chapter 4. This method is used to prove the transcendence of

power series which satisfy certain functional equations. This chapter is divided into two

sections which deal with two canonically different types of functional equations. In the first

section of this chapter, we give various transcendence results regarding functions related

to the Stern sequence. In particular, we prove that the generating function of the Stern

sequence is transcendental. Transcendence results are also proven for the generating function

of the Stern polynomials and for power series whose coefficients arise from some special

subsequences of the Stern sequence. In the second section, we prove that a non–zero power

series F (z) ∈ C[[z]] satisfying

F (zd) = F (z) +
A(z)
B(z)

,

where d ≥ 2, A(z), B(z) ∈ C[z] with A(z) 6= 0 and degA(z),degB(z) < d is transcendental

over C(z). Using this result and Mahler’s Theorem, we extend results of Golomb and

Schwarz on transcendental values of certain power series. In particular, we prove that for

all k ≥ 2 the series Gk(z) :=
∑

n≥0 z
kn

(1−zkn
)−1 is transcendental for all algebraic numbers

z with |z| < 1. We give a similar result for Fk(z) :=
∑

n≥0 z
kn

(1 + zk
n
)−1.

In Chapter 4 we give a new proof of Fatou’s theorem: if an algebraic function has a power

series expansion with bounded integer coefficients, then it must be a rational function. This
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result is used to show that for any non–trivial completely multiplicative function f : N →
{−1, 1}, the series

∑
n≥1 f(n)zn is transcendental over Z(z). For example,

∑
n≥1 λ(n)zn is

transcendental over Z(z), where λ is Liouville’s function. The transcendence of
∑

n≥1 µ(n)zn

is also proved. We continue by considering values of similar series. The Liouville number,

denoted l, is the binary number

l := 0.100101011101101111100 . . . ,

where the nth bit is given by 1
2(1 +λ(n)); here, as before, λ is Liouville’s function. Presum-

ably the Liouville number is transcendental, though at present, we know of no methods to

approach proof. Similarly, define the Gaussian Liouville number by

γ := 0.110110011100100111011 . . .

where the nth bit reflects the parity of the number of rational Gaussian primes dividing n,

1 for even and 0 for odd. In the second part of this chapter, using the methods developed in

Chapter 3, we prove that the Gaussian Liouville number and its relatives are transcendental.

One such relative is the number∑
k≥0

23k

23k2 + 23k + 1
= 0.101100101101100100101 . . . ,

where the nth bit is determined by the parity of the number of prime divisors that are

equivalent to 2 modulo 3.

In Chapter 5, using a theorem of Allouche, Mendès France, and Peyrière and many

classical results from the theory of the distribution of prime numbers, we prove that λ(n) is

not k–automatic for any k > 2. This yields that
∑

n≥1 λ(n)Xn ∈ Fp[[X]] is transcendental

over Fp(X) for any prime p > 2. Similar results are proven (or reproven) for many common

number–theoretic functions, including ϕ, µ, Ω, ω, ρ, and others.

Throughout Chapters 4 and 5, relationships to finite automata are discussed.

The sixth and final chapter of this thesis contains a collection of questions and conjectures

for further study.

All of the results of this thesis have been published or submitted for publication. We

have taken without hesitation from articles to which the author has been a major contributor

([13], [16], and [15]) or the sole author ([28], [29], [30], and [31]).
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Chapter 1

Introduction

“Introduisons maintenant une fonction numérique nouvelle λ(m), dont la valeur

soit 1 ou −1, suivant que le nombre total des facteurs premiers, égaux ou inégaux,

de m est pair ou impair. En d’autres termes, soit λ(1) = 1, et généralement,

pour m décomposé en facteurs premiers sous la forme m = aαbβ . . . cγ , soit

λ(m) = (−1)α+β+...+γ . Cette fonction λ(m), prise isolément ou jointe à celles

dont il a été question plus haut, donnera lieu à des théorèmes curieux.” [72]

1.1 Primes and parity

Recall that the Liouville λ–function is the unique completely multiplicative function for

which λ(p) = −1 for all primes p. This function was already considered by Euler, 130 years

before Liouville introduced the λ–notation.

In 1737, Euler stated the following theorems.

Theorem 1.1 (Euler [47]). If we take to infinity the continuation of these fractions

2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · · ·
1 · 2 · 4 · 6 · 10 · 12 · 16 · 18 · · ·

,

where the numerators are all the prime numbers and the denominators are the numerators

less one unit, the result is the same as the sum of the series

1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+ · · ·

which is certainly infinity.

1



CHAPTER 1. INTRODUCTION 2

Theorem 1.2 (Euler [47]). If we assign a − sign to all the prime numbers and composite

numbers are assigned the sign that correspond to them according to the rule of signs in the

product and with all the numbers we form the series

1− 1
2
− 1

3
+

1
4
− 1

5
+

1
6
− 1

7
− 1

8
+

1
9

+
1
10
− 1

11
− 1

12
− · · ·

will have, once infinitely continued, sum 0.

In modern language, these theorems translate as follows.

Theorem 1.3. In some infinite sense, one has that

∏
p prime

(
1− 1

p

)−1

=
∑
n≥1

1
n
,

and this series diverges.

Theorem 1.4. Let n = pk11 · · · pkr
r be the prime factorization of n (n ≥ 2), Ω(n) =

∑r
j=1 kj,

and λ(n) = (−1)Ω(n) (using the convention that Ω(1) = 0). In some infinite sense∑
n≥1

λ(n)
n

= 0.

The words “in some infinite sense” are very important to the interpretations of these

theorems. Indeed, as we will see later, one version of Theorem 1.4 is quite trivial and another

is equivalent to the prime number theorem. We give modern proofs of both versions later

in this chapter.

Theorem 1.1 introduces us to a very fundamental discovery in the theory of numbers:

the zeta function with product formula. Although this was given by Euler (1737) many

years before Riemann (1859), the zeta function is usually attributed to the latter, and the

product formula to the former. In modern notation, we denote by ζ(s), the Riemann zeta

function as a function of a complex variable, which for <s > 1 we have the representation,

ζ(s) =
∑
n≥1

1
ns

=
∏
p

(
1− 1

ps

)−1

, (1.1)

where the product is taken over all primes p.

Much is known about ζ(s). First we need to be able to view this function in a larger

sense, in the whole complex plane. The standard way to analytically continue ζ(s) is to
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begin with continuing ζ(s) to <s > 0 and then use a functional equation to complete the

continuation to all of C except for the point s = 1. For <s > 1 we have

ζ(s) =
∑
n≥1

1
ns

=
∑
n≥1

n

(
1
ns
− 1

(n+ 1)s

)
= s

∑
n≥1

n

∫ n+1

n
x−s−1dx.

Recall that x = [x] + {x}, where [x] and {x} are the integer and fractional parts of x,

respectively. Since [x] is always the constant n for any x in the interval [n, n+ 1), we have

ζ(s) = s
∑
n≥1

∫ n+1

n
[x]x−s−1dx = s

∫ ∞
1

[x]x−s−1dx.

Writing [x] = x− {x} we have

ζ(s) = s

∫ ∞
1

x−sdx− s
∫ ∞

1
{x}xs−1dx

=
s

s− 1
− s

∫ ∞
1
{x}x−s−1dx.

We now observe that since 0 ≤ {x} < 1, the improper integral in the last equation converges

when <s > 0 because the integral
∫∞

1 x−<s−1dx converges. Thus this integral defines an

analytic function of s in the region <s > 0. Therefore the meromorphic function on the

right-hand side of the last equation gives an analytic continuation of ζ(s) to the region

<s > 0, and the s
s−1 term gives the simple pole of ζ(s) at s = 1 with residue 1.

We note the definition of the Γ-function.

Definition 1.5. For <s > 0,

Γ(s) =
∫ ∞

0
ts−1e−tdt. (1.2)

For s ∈ C \ Z the general Γ-function is given by

Γ(s) =
−1

2i sin(πs)

∫
C
(−t)s−1e−tdt, (1.3)

where the contour C is oriented counter–clockwise and contains the nonnegative real axis.

The functions Γ(s) and ζ(s) are related via a functional equation which completes the

analytic continuation of ζ(s) to all of C with the exception of s = 1.

Theorem 1.6 (Riemann [85]). The function ζ(s) satisfies the functional equation

π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).
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As a function of a complex variable, ζ(s) is analytic everywhere except at s = 1. Now

consider the zeros of ζ(s), and let us focus on the line <s = 1 away from the point s = 1;

that is, the line 1 + it for t 6= 0. Since ζ(s) is analytic here, let us suppose that there is a

zero on this line of order r ≥ 1. Using Taylor series, we have that ζ(1 + ε+ it) ≈ cεr for |ε|
sufficiently small. Since ζ(s) has a pole of order 1 at s = 1, we know that ζ(1 + ε) ≈ 1

ε .

We continue in the standard manner, using Mertens’ simple identity

3 + 4 cos(θ) + cos(2θ) ≥ 0.

Since

< log ζ(σ + it) =
∑
p

∑
n≥1

cos(t log pn)
n · pnσ

,

replacing t by 0, t, 2t in the above, one has that

3 log ζ(σ) + 4< log ζ(σ + it) + < log ζ(σ + 2it) ≥ 0,

so that for all real σ > 1 and t 6= 0,

ζ3(σ)|ζ4(σ + it)ζ(σ + 2it)| ≥ 1.

Substituting our ε–estimates in this equation we have

|c4ε4r−1ζ(1 + ε+ 2it)| ≥ 1.

Taking the limit as ε → 0 implies that ζ(s) has a pole of order 4r − 1 ≥ 1 at s = 1 + 2it,

contradicting the fact that ζ(s) is analytic there. Hence we have shown

Theorem 1.7 (Hadamard and de la Vallée Poussin, 1896). ζ(s) 6= 0 on the line <s = 1.

1.2 The prime number theorem

The prime number theorem states that

lim
x→∞

π(x)
x/ log x

= 1 (1.4)

where π(x) denotes the number of primes less than or equal to x. This was Gauss’ original

formulation, which was proved independently by Hadamard [53] and de la Vallée Poussin

[32] in 1896. They proved this by showing that ζ(s) 6= 0 in the region <s ≥ 1, where ζ(s) is

the Riemann zeta function. Indeed, one has that
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Theorem 1.8 (Hadamard [53], de la Vallée Poussin [32]). The prime number theorem is

equivalent to the non–vanishing of ζ(s) in the region <s ≥ 1.

One may also read the prime number theorem, as given by Landau, in the following way:

asymptotically there is an equal probability that a given number is the product of an even or

an odd number of primes, with multiple factors counted with multiplicity [67, p. 630].

To formalize this statement, consider the following theorem of von Mangoldt. But first,

recall that the Möbius function µ : N→ {−1, 0, 1} is given by

µ(n) :=


1 n = 1,

0 if k2 | n for some k ≥ 2,

(−1)r n = p1p2 · · · pr.

Theorem 1.9 (von Mangoldt [94]). The prime number theorem implies that∑
n≥1

µ(n)
n

= 0.

Landau [65] gave a new proof of von Mangoldt’s result, again using the prime number

theorem, and also proved the converse of Theorem 1.9 [66]. Included in these works, he

showed that

Theorem 1.10 (Landau [65, 66]). The prime number theorem gives∑
n≤x

µ(n) = o(x). (1.5)

In his “Handbuch” [67], Landau gave proofs of these theorems with the Liouville function

in place of the Möbius function.

The traditional way to prove the prime number theorem is via Theorem 1.8. The state-

ments in Theorems 1.9 and 1.10 are much less widely known, though they are of a more

intuitive nature. For the remainder of this introduction, we provide new proofs of the

λ–analogues of Theorems 1.8 and 1.9. More formally, we prove the following theorems.

Theorem 1.11. The following are equivalent:

(i) ζ(s) 6= 0 when <s ≥ 1,

(ii)
∑

n≥1
λ(n)
n = 0.
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Theorem 1.12. Let λ denote Liouville’s function. Then
∑

n≤x λ(n) = o(x).

To emphasize Landau’s quote (see page v of this thesis), the theorems, proofs, and

methods contained in this chapter are intended to highlight the rich interplay between the

arithmetic and analytic areas of mathematics.

1.2.1 A useful equivalence

Let A be a subset of N and denote by A(n) the number of elements in A that are less than

or equal to n. When it exists, the asymptotic density of A in N, denoted d(A), is given by

d(A) := lim
n→∞

A(n)
n

.

For each εi ∈ {−,+} denote by Lεi the set Lεi := {n ∈ N : λ(n) = εi1}. We make use

of the following equivalence.

Lemma 1.13.
∑

n≤x λ(n) = o(x) if and only if d(L+) = d(L−) = 1
2 .

Proof. This statement is easily realized by the fact that

d(L+)− d(L−) = lim
N→∞

L+(N)− L−(N)
N

= lim
N→∞

1
N

∑
n≤N

λ(n). (1.6)

If d(L+) = d(L−) = 1
2 , using (1.6), limn→∞

1
n

∑
k≤n λ(k) = 0 trivially.

Conversely, if limN→∞
1
N

∑
n≤N λ(n) = 0, again appealing to (1.6), it must be the case

that d(L+) = d(L−). Noting that

lim
n→∞

L+(n) + L−(n)
n

= 1,

requires the common value of d(L+) and d(L−) to be 1
2 .

To establish Theorem 1.12, we prove an amazingly simple link between the concept of

density in elementary number theory and the asymptotic behavior of certain zeta functions.

1.2.2 A density–residue theorem

For A a subset of N we define the zeta function associated to A, denoted ζA(s), as

ζA(s) :=
∑
a∈A

1
as
,

where s is taken to be in the half plane of convergence. Using these definitions we have the

following theorem.
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Theorem 1.14. Let A be a subset of N and s = 1 be the right-most pole of ζA(s). If s = 1 is

a simple pole of ζA(s) and ζA(s) can be analytically continued to a region R which contains

the half–plane <(s) ≥ 1 (s 6= 1), then d(A) exists and is equal to Res
s=1
{ζA(s)} .

Proof. Following [7, p. 243 Lemma 4], we define

F (x) :=
1

2πi

∫ c+i∞

c−i∞
xs
ds

s
=


1 if x > 1

1
2 if x = 1

0 if 0 < x < 1.

(c > 0)

Sending x 7→ x/a and summing over all a ∈ A with a ≤ x gives, for ε > 0 some arbitrarily

small quantity, we have

A(x) =
1

2πi

∫ 1+ε+i∞

1+ε−i∞

∑
a≤x−1
a∈A

1
as
xs
ds

s
+ c · F (1), (1.7)

where c = 1 if x ∈ A and c = 0 if x /∈ A. In either case, clearly c · F (1) = o(x). Since

F (x/a) = 0 when x < a, we may extend the sum in (1.7) to all of A. Hence

A(x) =
1

2πi

∫ 1+ε+i∞

1+ε−i∞
ζA(s) · xsds

s
+ c · F (1).

Since ζA(s) is analytically continuable to a region R containing <(s) ≥ 1 (s 6= 1) and the

right-most pole of ζA(s) is simple, and occurs at s = 1, we gain

A(x) = x · Res
s=1
{ζA(s)}+

1
2πi

∫
∂R
ζA(s) · xsds

s
+ c · F (1),

so that
A(x)
x

= Res
s=1
{ζA(s)}+

1
x
· 1

2πi

∫
∂R
ζA(s) · xsds

s
+

1
x
· c · F (1), (1.8)

where ∂R denotes the boundary of R. Since R is a region of analyticity of a function, R is

open, and so R contains the right half–plane <(s) ≥ 1; thus the integral in (1.8) is o(x). To

make this explicit, one may take the boundary of this region to be the contour

C :=
{

1− f(t)
2

+ it : t ∈ R
}
,

where f(t) is the distance from the point 1 + it to the nearest pole of ζA(s) in the right

half–plane <s < 1. Since ζA(s) can be analytically continued to a region R which contains

the half–plane <(s) ≥ 1 (s 6= 1), the distance from each point on the line <s = 1 to C
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is necessarily positive, and hence so is the distance to ∂R. Hence we have shown that C
bounds a region R which contains the half–plane <s ≥ 1.

Thus the limit of the right-hand side as x→∞ of (1.8) exists and is equal to Res
s=1
{ζA(s)}.

Hence the limit of the left-hand side of (1.8) exists and is equal to Res
s=1
{ζA(s)}; that is, d(A)

exists and

d(A) = lim
x→∞

A(x)
x

= Res
s=1
{ζA(s)} ,

which is the desired result.

The proof of Theorem 1.14 is new, though the result is not. Indeed, Theorem 1.14

contains special cases of both the Wiener–Ikehara Theorem [60, 95] and the Halász–Wirsing

Mean Value Theorem [54, 97], the proofs of which, in full generality, are much more involved

than the special case given above.

1.2.3 Proofs of Theorems 1.11 and 1.12

Proof of Theorem 1.11. Noting that (1 − z2) = (1 + z)(1 − z), using the Euler product

formula we have for <s > 1

∑
n≥1

λ(n)
ns

=
∏
p

(
1− λ(p)

ps

)−1

=
∏
p

(
1 +

1
ps

)−1

=
∏
p

(
1− 1

p2s

)−1

(
1− 1

ps

)−1 =
ζ(2s)
ζ(s)

.

Since ζ(s) has a pole at s = 1, and converges at s = 2, we have that

lim
s→1+

ζ(2s)
ζ(s)

= 0.

To construct an analytic continuation of
∑

n≥1
λ(n)
ns to the region <s ≥ 1, we define

Z(s) :=


ζ(2s)
ζ(s) in the region <s ≥ 1, s 6= 1,

0 on the line s = 1.

Now if Z(s) is analytic in the region <s ≥ 1 we have found the unique analytic continuation

of
∑

n≥1
λ(n)
ns to this region. Note here that Z(s) is analytic in the region <s ≥ 1 if and only

if ζ(s) is non–vanishing in this region; this gives the equivalence of (i) and (ii) of Theorem

1.11.
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Proof of Theorem 1.12. Consider the function ζL+(s) =
∑

n∈L+
n−s. For <(s) > 1 we have

ζL+(s) =
∑

n∈N l(n)n−s where l : N→ {0, 1} is defined by

l(i) :=
1 + λ(i)

2
.

Also for <(s) > 1,

ζL+(s) =
1
2

∑
n∈N

1 + λ(n)
ns

=
1
2

(
ζ(s) +

ζ(2s)
ζ(s)

)
=
ζ(s)2 + ζ(2s)

2 · ζ(s)
. (1.9)

Since ζ(s) is analytically continuable to a meromorphic function on all of C, the relation

in (1.9) implies the same for ζL+(s). Again using (1.9), since ζ(s) is non-zero in the region

<s ≥ 1, the function ζL+(s) has no poles in the region <s ≥ 1, except at s = 1. Furthermore,

Res
s=1

{
ζL+(s)

}
=

1
2
· Res
s=1
{ζ(s)} .

Hence ζL+(s) is analytic at s = 1 + it for all real t 6= 0, since at these s, ζ(s) is non-

zero and analytic. Thus, the existence of a meromorphic continuation of ζL+(s) to all of

C, implies the existence of a region of analyticity of ζL+(s) containing the right half–plane

<s ≥ 1 with the exception of the pole at s = 1.

Using (1.9), the definition of Z(s) in the proof of Theorem 1.11, and the region R

described in the preceding paragraph, the function ζL+(s) satisfies all of the assumptions of

Theorem 1.14. Applying Theorem 1.14 gives both the existence of d(L+) and the value

d(L+) = Res
s=1

{
ζL+(s)

}
=

1
2
· Res
s=1
{ζ(s)} =

1
2
.

An application of Lemma 1.13 yields
∑

n≤x λ(n) = o(x).



Chapter 2

Generalized Liouville functions

This chapter contains results which were found in collaboration with Peter Borwein and

Stephen K.K. Choi (see [13] for details).

2.1 Introduction

Let Ω(n) be the number of distinct prime factors in n (with multiple factors counted mul-

tiply). Recall that the Liouville λ–function is defined by

λ(n) := (−1)Ω(n).

So λ(1) = λ(4) = λ(6) = λ(9) = λ(10) = 1 and λ(2) = λ(5) = λ(7) = λ(8) = −1.

In particular, λ(p) = −1 for any prime p. It is well-known [55, Section 22.10] that Ω is

completely additive, i.e, Ω(mn) = Ω(m) + Ω(n) for any m and n and hence λ is completely

multiplicative, i.e., λ(mn) = λ(m)λ(n) for all m,n ∈ N. It is interesting to note that on

the set of square-free positive integers λ(n) = µ(n), where µ is the Möbius function. In this

respect, the Liouville λ–function can be thought of as a modification of the Möbius function.

Similar to the Möbius function, many investigations surrounding the λ–function concern

the summatory function of initial values of λ; that is, the sum

L(x) :=
∑
n≤x

λ(n).

Historically, this function has been studied by many mathematicians, including Liouville,

Landau, Pólya, and Turán. Recent attention to the summatory function of the Möbius

10
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function has been given by Ng [80, 81]. Larger classes of completely multiplicative functions

have been studied by Granville and Soundararajan [50, 51, 52].

One of the most important questions is that of the asymptotic order of L(x); more

formally, the question is to determine the smallest value of ϑ for which

lim
x→∞

L(x)
xϑ

= 0.

It is known that the value of ϑ = 1 is given by the prime number theorem [65, 66] and that

ϑ = 1
2 +ε for any arbitrarily small positive constant ε is equivalent to the Riemann hypothesis

[14]. The value of 1
2 + ε is best possible, as lim supx→∞ L(x)/

√
x > .061867; see Borwein,

Ferguson, and Mossinghoff [19]. Indeed, any result asserting a fixed ϑ ∈
(

1
2 , 1
)

would give

an expansion of the zero-free region of the Riemann zeta function, ζ(s), to <s ≥ ϑ.

Unfortunately, a closed form for L(x) is unknown. This brings us to the motivating

question behind the investigation of this chapter: are there functions similar to λ, so that

the corresponding summatory function does yield a closed form?

Throughout this investigation P denotes the set of all primes. As an analogue to the

traditional λ and Ω consider the following definition.

Definition 2.1. Define the Liouville function for A ⊂ P by

λA(n) = (−1)ΩA(n)

where ΩA(n) is the number of prime factors of n, counting multiplicity, coming from A. The

set of all of these functions is denoted F({−1, 1}); this notation is introduced by Granville

and Soundararajan in [51].

Alternatively, one can define λA as the completely multiplicative function with λA(p) =

−1 for each prime p ∈ A and λA(p) = 1 for all p /∈ A. Every completely multiplicative

function taking only ±1 values is built this way. Also, denote

LA(x) :=
∑
n≤x

λA(n) and RA := lim
n→∞

LA(x)
n

.

In this chapter, we first consider questions regarding the properties of the function λA

by studying the limit RA. The structure of RA is determined and it is shown that for

each α ∈ [0, 1] there is a subset A of primes such that RA = α. The rest of this chapter

considers an extended investigation on those functions in F({−1, 1}) that are character–

like in nature, meaning that there is a real Dirichlet character χ such that λA(n) = χ(n)

whenever χ(n) 6= 0. Within the course of discussion, the ratio ϕ(n)/σ(n) is considered.
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2.2 Properties of LA(x)

Define the generalized Liouville sequence as

LA := (λA(1), λA(2), . . .).

Theorem 2.2. If A 6= ∅, then the sequence LA is not eventually periodic.

Proof. Towards a contradiction, suppose that LA is eventually periodic, say the sequence is

periodic after the M–th term and has period k. Now there is an N ∈ N such that for all

n ≥ N , we have nk > M . Since A 6= ∅, pick p ∈ A. Then

λA(pnk) = λA(p) · λA(nk) = −λA(nk).

But pnk ≡ nk(mod k), a contradiction to the eventual k–periodicity of LA.

Corollary 2.3. If A ⊂ P is nonempty, then λA is not a Dirichlet character.

Proof. This is a direct consequence of the non–periodicity of LA.

To get more acquainted with the sequence LA, we study the partial sums LA(x) of LA,

and to study these, we consider the Dirichlet series with coefficients λA(n).

Starting with singleton sets {p} of the primes, a nice relation becomes apparent; for

<s > 1 we have
(1− p−s)
(1 + p−s)

ζ(s) =
∑
n≥1

λ{p}(n)
ns

, (2.1)

and for sets {p, q}, the following identity holds:

(1− p−s)(1− q−s)
(1 + p−s)(1 + q−s)

ζ(s) =
∑
n≥1

λ{p,q}(n)
ns

. (2.2)

Since λA is completely multiplicative, for any subset A of primes, for <s > 1 we have

LA(s) :=
∑
n≥1

λA(n)
ns

=
∏
p

∑
l≥0

λA(pl)
pls


=
∏
p∈A

∑
l≥0

(−1)l

pls

∏
p 6∈A

∑
l≥0

1
pls

 =
∏
p∈A

(
1

1 + 1
ps

)∏
p6∈A

(
1

1− 1
ps

)

= ζ(s)
∏
p∈A

(
1− p−s

1 + p−s

)
. (2.3)
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This relation leads us to our next theorem, but first let us recall a piece of notation from

the last section.

Definition 2.4. For A ⊂ P denote

RA := lim
n→∞

λA(1) + λA(2) + . . .+ λA(n)
n

.

The existence of the limit RA is guaranteed by Wirsing’s Theorem. In fact, Wirsing [97]

showed more generally that every real multiplicative function f with |f(n)| ≤ 1 has a mean

value, i.e, the limit

lim
x→∞

1
x

∑
n≤x

f(n)

exists. Furthermore, Wintner [96] showed that

lim
x→∞

1
x

∑
n≤x

f(n) =
∏
p

(
1 +

f(p)
p

+
f(p2)
p2

+ · · ·
)(

1− 1
p

)
6= 0

if and only if
∑

p |1 − f(p)|/p converges. Otherwise the mean value is zero. This gives the

following theorem.

Theorem 2.5. For the completely multiplicative function λA(n), the limit RA exists and

RA =


∏
p∈A

p−1
p+1 if

∑
p∈A p

−1 <∞,

0 otherwise.
(2.4)

Example 2.6. For any prime p, R{p} = p−1
p+1 .

Let us make some notational comments. Denote by P(P ) the power set of the set of

primes. Note that
p− 1
p+ 1

= 1− 2
p+ 1

.

Recall from above that R : P(P )→ R is defined by

RA :=
∏
p∈A

(
1− 2

p+ 1

)
.

It is immediate that R is bounded above by 1 and below by 0, so that we need only consider

that R : P(P )→ [0, 1]. It is also immediate that R∅ = 1 and RP = 0.
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Remark 2.7. For n ∈ N, let pn be the smallest prime larger than n3; i.e. pn := minq>n3{q ∈
P}. Since there is always a prime in the interval (x, x+ x5/8] (see [61]), we have pn+1 > pn

for all n ∈ N. Let

K := {pn : n ∈ N} = {11, 29, 67, 127, 223, 347, 521, 733, 1009, 1361, . . .}.

Note that
pn − 1
pn + 1

>
n3 − 1
n3 + 1

,

so that

RK =
∏
p∈K

(
p− 1
p+ 1

)
>
∏
n≥2

(
n3 − 1
n3 + 1

)
=

2
3
.

Also RK < (11− 1)/(11 + 1) = 5/6, so that

2
3
< RK <

5
6
,

and RK ∈ (0, 1).

There are some very interesting and important examples of sets of primes A for which

RA = 0. Indeed, results of von Mangoldt [94] and Landau [65, 66] give the following

equivalence.

Theorem 2.8. The prime number theorem is equivalent to RP = 0.

We may be a bit more specific regarding the values of RA, for A ∈ P(P ). For each

α ∈ (0, 1), there is a set of primes A such that

RA =
∏
p∈A

(
p− 1
p+ 1

)
= α.

This result is a special case of some general theorems of Granville and Soundararajan [51].

Theorem 2.9 (Granville and Soundararajan [51]). The function R : P(P ) → [0, 1] is

surjective. That is, for each α ∈ [0, 1] there is a set of primes A such that RA = α.

Proof. This follows from Corollary 2 and Theorem 4 (ii) of [51] with S = {−1, 1}, though

in this special case, a much more elementary argument can yield the result.

To this end, not first that RP = 0 and R∅ = 1. To prove the statement for the remainder

of the values, let α ∈ (0, 1). Then since

lim
p→∞

R{p} = lim
p→∞

(
1− 2

p+ 1

)
= 1,
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there is a minimal prime q1 such that

R{q1} =
(

1− 2
q1 + 1

)
> α,

i.e.,
1
α
·R{q1} =

1
α

(
1− 2

q1 + 1

)
> 1.

Similarly, for each N ∈ N, we may continue in the same fashion, choosing qi > qi−1 (for

i = 2 . . . N) minimally, we have

1
α
·R{q1,q2,...,qN} =

1
α

N∏
i=1

(
1− 2

qi + 1

)
> 1.

Now consider

lim
N→∞

1
α
·R{q1,q2,...,qN} =

1
α

∏
i≥1

(
1− 2

qi + 1

)
,

where the qi are chosen as before. Denote A = {qi : i ∈ N}. We know that

1
α
·RA =

1
α

∏
i≥1

(
1− 2

qi + 1

)
≥ 1.

We claim that RA = α. To this end, let us suppose to the contrary that

1
α
·RA =

1
α

∏
i≥1

(
1− 2

qi + 1

)
> 1.

Note that P\A is infinite (here P is the set of all primes). As earlier, since

lim
p→∞
p∈A\P

R{p} = lim
p→∞

(
1− 2

p+ 1

)
= 1,

there is a minimal prime q ∈ A\P such that

1
α
·RA ·R{q} =

1
α

∏
i≥1

(
1− 2

qi + 1

) · (1− 2
q + 1

)
> 1.

Since q is a prime and q /∈ A, there is an i ∈ N with qi < q < qi+1. This contradicts that

qi+1 was a minimal choice. Hence

1
α
·RA =

1
α

∏
i≥1

(
1− 2

qi + 1

)
= 1,

and there is a set A of primes such that RA = α.
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In fact, let S denote a subset of the unit disk and let F(S) be the class of totally

multiplicative functions such that f(p) ∈ S for all primes p. Granville and Soundararajan

[51] prove very general results concerning both the Euler product spectrum Γθ(S) and the

spectrum Γ(S) of the class F(S).

The following theorem gives asymptotic formulas for the mean value of λA if certain

conditions on the density of A in P are assumed.

Theorem 2.10. Let A be a subset of primes and suppose∑
p≤x
p∈A

log p
p

=
1− κ

2
log x+O(1) (2.5)

with −1 ≤ κ ≤ 1.

If 0 < κ ≤ 1, then we have∑
n≤x

λA(n)
n

= cκ(log x)κ +O(1)

and ∑
n≤x

λA(n) = (1 + o(1))cκκx(log x)κ−1,

where

cκ =
1

Γ(κ+ 1)

∏
p

(
1− 1

p

)κ(
1− λA(p)

p

)−1

. (2.6)

In particular,

RA = lim
x→∞

1
x

∑
n≤x

λA(n) =

c1 =
∏
p∈A

(
p−1
p+1

)
if κ = 1,

0 if 0 < κ < 1.

Furthermore, LA(s) =
∑

n≥1
λA(n)
ns has a pole of order κ at s = 1 with residue cκΓ(κ + 1);

that is,

LA(s) =
cκΓ(κ+ 1)

(s− 1)κ
+ ψ(s), <s > 1,

for some function ψ(s) analytic in the region <s ≥ 0. If −1 ≤ κ < 0, then LA(s) has zero

of order −κ at s = 1 and

LA(s) =
ζ(2s)

c−κΓ(−κ+ 1)
(s− 1)−κ(1 + ϕ(s))
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for some function ϕ(s) analytic in the region <s ≥ 1 and hence

LA(1) =
∑
n≥1

λA(n)
n

= 0

and

RA = lim
x→∞

1
x

∑
n≤x

λA(n) = 0.

If κ = 0, then LA(s) has neither pole nor zero at s = 1. In particular, we have∑
n≥1

λA(n)
n

= α 6= 0

and

RA = lim
x→∞

1
x

∑
n≤x

λA(n) = 0.

The proof of Theorem 2.10 requires the following result.

Theorem 2.11 (Wirsing [97]). Suppose f is a completely multiplicative function which

satisfies ∑
n≤x

Λ(n)f(n) = κ log x+O(1) (2.7)

and ∑
n≤x
|f(n)| � log x (2.8)

with 0 ≤ κ ≤ 1 where Λ(n) is the von Mangoldt function. Then we have∑
n≤x

f(n) = cf (log x)κ +O(1) (2.9)

where

cf :=
1

Γ(κ+ 1)

∏
p

(
1− 1

p

)κ( 1
1− f(p)

)
(2.10)

where Γ(κ) is the Gamma function.

Proof of Theorem 2.10. Suppose first that 0 < κ ≤ 1. We choose f(n) = λA(n)
n in Wirsing’s

Theorem. Since ∑
n≤x

Λ(n)
n

=
∑
p≤x

log p
p

+O(1) = log x+O(1),
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we have

∑
n≤x

Λ(n)
λA(n)
n

=
∑
p≤x

log p
λA(p)
p

+O

∑
pl≤x
l≥2

log p
pl


=
∑
p≤x

log p
λA(p)
p

+O

∑
n≤x

Λ(n)
n
−
∑
p≤x

log p
p


=
∑
p≤x

log p
λA(p)
p

+O(1).

On the other hand, from (2.5) we have∑
p≤x

log p
λA(p)
p

=
∑
p≤x

log p
p
− 2

∑
p≤x
p∈A

log p
p

= κ log x+O(1).

Hence ∑
n≤x

Λ(n)
λA(n)
n

= κ log x+O(1)

and condition (2.7) is satisfied.

It then follows from (2.9) and (2.6) that∑
n≤x

λA(n)
n

= cκ(log x)κ +O(1).

From (2.5),

LA(s+ 1) =
∑
n≥1

λA(n)
ns+1

=
∫ ∞

1
y−sd

∑
n≤y

λA(n)
n

=
∫ ∞

1
y−sd (cκ(log y)κ +O(1))

= cκκ

∫ ∞
1

(log y)κ−1

ys+1
dy +

∫ ∞
1

y−sdO(1)

= cκΓ(κ+ 1)s−κ + ψ(s)

for <s > 0, because ∫ ∞
1

(log y)κ−1

ys+1
dy = Γ(κ)s−κ.
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Here ψ(s) is an analytic function on <s ≥ 0.

Therefore, LA(s) has a pole at s = 1 of order 0 < κ ≤ 1. Now from a generalization of

the Wiener-Ikehara theorem [9, Theorem 7.7], we have∑
n≤x

λA(n) = (1 + o(1))cκκx(log x)κ−1

and hence

RA = lim
x→∞

1
x

∑
n≤x

λA(n) =

c1 if κ = 1,

0 if 0 < κ < 1,

where

c1 =
∏
p

(
1− 1

p

)(
1− λA(p)

p

)−1

=
∏
p∈A

(
1− p−1

1 + p−1

)
.

Denote the complement of A by A. If −1 ≤ κ < 0, then we have

LA(s) =
∑
n≥1

λA(n)
ns

= ζ(s)
∏
p 6∈A

(
1− p−s

1 + p−s

)

=
ζ(2s)
ζ(s)

∏
p∈A

(
1 + p−s

1− p−s

)
=

ζ(2s)
LA(s)

for <s > 1. Hence, for <s > 1, we have

LA(s)LA(s) = ζ(2s). (2.11)

From (2.5), we have∑
p≤x
p 6∈A

log p
p

=
∑
p≤x

log p
p
−
∑
p≤x
p∈A

log p
p

=
1 + κ

2
log x+O(1)

and ∑
n≤x

Λ(n)
λA(n)
n

= −κ log x+O(1).

We then apply the above case to LA(s) and deduce that LA(s) has a pole at s = 1 of

order −κ, then in view of (2.11), LA(s) has a zero at s = 1 of order −κ; that is,

LA(s) =
ζ(2s)

c−κΓ(−κ+ 1)
(s− 1)−κ(1 + ϕ(s))

for some function ϕ(s) analytic on the region <s ≥ 1. In particular, we have

LA(1) =
∑
n≥1

λA(n)
n

= 0. (2.12)

This completes the proof of Theorem 2.10.
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Recall that Theorem 2.9 tells us that any α ∈ [0, 1] is a mean value of a function in

F({−1, 1}). The functions in F({−1, 1}) can be put into two natural classes: those with

mean value 0 and those with positive mean value.

Asymptotically, those functions with mean value zero are more interesting, and it is

in this class which the Liouville λ–function resides, and in that which concerns the prime

number theorem and the Riemann hypothesis. We consider an extended example of such

functions in Section 2.4. Before this consideration, we ask some questions about those

functions f ∈ F({−1, 1, }) with positive mean value.

2.3 One question twice

It is obvious that if α /∈ Q, then RA 6= α for any finite set A ⊂ P . We also know that if

A ⊂ P is finite, then RA ∈ Q.

Question 2.12. For α ∈ Q is there a finite subset A of P , such that RA = α?

The above question can be posed in a more interesting fashion. Indeed, note that for

any finite set of primes A, we have that

RA =
∏
p∈A

p− 1
p+ 1

=
∏
p∈A

ϕ(p)
σ(p)

=
ϕ(z)
σ(z)

where z =
∏
p∈A p, ϕ is Euler’s totient function, and σ is the sum of divisors function.

Alternatively, we may view the finite set of primes A as determined by the square–free

integer z. In fact, the function f from the set of square–free integers to the set of finite

subsets of primes, defined by

f(z) = f(p1p2 · · · pr) = {p1, p2, . . . , pr}, (z = p1p2 · · · pr)

is bijective, giving a one–to–one correspondence between these two sets.

In this terminology, we ask the question as:

Question 2.13. Is the image of ϕ(z)/σ(z) : {square–free integers} → Q∩(0, 1) a surjection?

That is, for every rational q ∈ (0, 1), is there a square–free integer z such that ϕ(z)
σ(z) = q ?

As a start, we have Theorem 2.9, which gives a nice corollary.
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Corollary 2.14. If S is the set of square–free integers, thenx ∈ R : x = lim
k→∞
{nk}⊂S

ϕ(nk)
σ(nk)

 = [0, 1];

that is, the set {ϕ(s)/σ(s) : s ∈ S} is dense in [0, 1].

Proof. Let α ∈ [0, 1] and A be a subset of primes for which RA = α. If A is finite we are

done, so suppose A is infinite. Write

A = {a1, a2, a3, . . .}

where ai < ai+1 for i = 1, 2, 3, . . . and define nk =
∏k
i=1 ai. The sequence (nk) satisfies the

needed limit.

2.4 The functions λp(n)

We now turn our attention to those functions F({−1, 1}) with mean value 0; in particular,

we wish to examine functions for which a sort of Riemann hypothesis holds: functions for

which LA(s) =
∑

n≥1
λA(n)
ns has a large zero–free region. These are functions for which∑

n≤x λA(n) grows slowly.

To this end, let p be a prime number. Recall that the Legendre symbol modulo p is

defined as (
q

p

)
=


1 if q is a quadratic residue modulo p,

−1 if q is a quadratic non-residue modulo p,

0 if q ≡ 0 (mod p).

Here q is a quadratic residue modulo p provided q ≡ x2 (mod p) for some x 6≡ 0 (mod p).

Define the function Ωp(n) to be the number of prime factors q, of n with
(
q
p

)
= −1;

that is,

Ωp(n) = #
{
q : q is a prime, q | n, and

(
q
p

)
= −1

}
.

Definition 2.15. The Liouville function for quadratic non-residues modulo p is defined as

λp(n) := (−1)Ωp(n).

The function Ωp(n) is completely additive since it counts primes with multiplicities.

Thus λp(n) is completely multiplicative.
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Lemma 2.16. The function λp(n) is the unique completely multiplicative function defined

by λp(p) = 1, and for primes q 6= p by

λp(q) =
(
q

p

)
.

Proof. Let q be a prime with q | n. Now Ωp(q) = 0 or 1 depending on whether
(
q
p

)
= 1 or

−1, respectively. If
(
q
p

)
= 1, then Ωp(q) = 0, and so λp(q) = 1.

On the other hand, if
(
q
p

)
= −1, then Ωp(q) = 1, and so λp(q) = −1. Note that using

the given definition λp(p) =
(
p
p

)
= 1, so that in either case, we have

λp(q) =
(
q

p

)
.

Hence if n = pkm with p - m, then we have

λp(pkm) =
(
m

p

)
. (2.13)

Similarly, we may define the function Ω′p(n) to be the number of prime factors q of n

with
(
q
p

)
= 1; that is,

Ω′p(n) = #
{
q : q is a prime, q | n, and

(
q
p

)
= 1
}
.

Analogous to Lemma 2.16 we have the following lemma for λ′p(n) and theorem relating

these two functions to the traditional Liouville λ-function.

Lemma 2.17. The function λ′p(n) is the unique completely multiplicative function defined

by λ′p(p) = 1 and for primes q 6= p, as

λ′p(q) = −
(
q

p

)
.

Theorem 2.18. If λ(n) is the standard Liouville λ–function, then

λ(n) = (−1)k · λp(n) · λ′p(n)

where pk‖n, i.e., pk | n and pk+1 - n.
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Proof. It is clear that the theorem is true for n = 1. Since all functions involved are

completely multiplicative, it suffices to show the equivalence for all primes. Note that

λ(q) = −1 for any prime q. Now if n = p, then k = 1 and

(−1)1 · λp(p) · λ′p(p) = (−1) · (1) · (1) = −1 = λ(p).

If n = q 6= p, then

(−1)0 · λp(q) · λ′p(q) =
(
q

p

)
·
(
−
(
q

p

))
= −

(
q2

p

)
= −1 = λ(q),

and so the theorem is proved.

To mirror the relationship between L and λ, denote by Lp(n), the summatory function

of λp(n); that is, define

Lp(n) :=
n∑
k=1

λp(n).

It is quite immediate that Lp(n) is not positive for all n and p. To find an example we need

only look at the first few primes. For p = 5 and n = 3, we have

L5(3) = λ5(1) + λ5(2) + λ5(3) = 1− 1− 1 = −1 < 0.

Indeed, the next few theorems are sufficient to show that there is a positive proportion (at

least 1/2) of the primes for which Lp(n) < 0 for some n ∈ N. For the traditional L(n), it

was conjectured by Pólya that L(n) ≥ 0 for all n, though this was proven to be a non-trivial

statement and ultimately false (see Haselgrove [57]).

Theorem 2.19. Let

n = a0 + a1p+ a2p
2 + . . .+ akp

k

be the base p expansion of n, where aj ∈ {0, 1, 2, . . . , p− 1}. Then we have

Lp(n) :=
n∑
l=1

λp(l) =
a0∑
l=1

λp(l) +
a1∑
l=1

λp(l) + . . .+
ak∑
l=1

λp(l). (2.14)

Here the sum over l is regarded as empty if aj = 0.

Instead of giving a proof of Theorem 2.19 in this specific form, we will prove a more

general result to which Theorem 2.19 is a direct corollary. Let χ be a non-principal Dirichlet
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character modulo p and for any prime q let

f(q) :=

1 if q = pq,

χ(q) if q 6= p.
(2.15)

We extend f to be a completely multiplicative function and get

f(plm) = χ(m) (2.16)

for l ≥ 0 and p - m.

Definition 2.20. Define N(n, l) to be the number of times that l occurs in the base p

expansion of n.

Theorem 2.21. For N(n, l) as above

n∑
j=1

f(j) =
p−1∑
l=0

N(n, l)

∑
m≤l

χ(m)

 .

Proof. We write the base p expansion of n as

n = a0 + a1p+ a2p
2 + . . .+ akp

k (2.17)

where 0 ≤ aj ≤ p− 1. We then observe that, by writing j = plm with p - m,

n∑
j=1

f(j) =
k∑
l=0

n∑
j=1
pl‖j

f(j) =
k∑
l=0

∑
m≤n/pl

(m,p)=1

f(plm).

For simplicity, we write

A := a0 + a1p+ . . .+ alp
l and B := al+1 + al+2p+ . . .+ akp

k−l−1

so that n = A+Bpl+1 in (2.17). It now follows from (2.16) and (2.17) that

n∑
j=1

f(j) =
k∑
l=0

∑
m≤n/pl

(m,p)=1

χ(m) =
k∑
l=0

∑
m≤A/pl+Bp

χ(m) =
k∑
l=0

∑
m≤A/pl

χ(m)

because χ(p) = 0 and
∑a+p

m=a+1 χ(m) = 0 for any a. Now since

al ≤ A/pl = (a0 + a1p+ . . .+ alp
l)/pl < al + 1,
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we have
n∑
j=1

f(j) =
k∑
l=0

∑
m≤al

χ(m) =
p−1∑
l=0

N(n, l)

∑
m≤l

χ(m)

 .

This proves the theorem.

In this language, Theorem 2.19 can be stated as follows.

Corollary 2.22. We have

Lp(n) =
n∑
j=1

λp(j) =
p−1∑
l=0

N(n, l)

∑
m≤l

(
m

p

) . (2.18)

As an application of this theorem consider p = 3.

Application 2.23. The value of L3(n) is equal to the number of ones in the base 3 expansion

of n.

Proof. Since
(

1
3

)
= 1 and

(
1
3

)
+
(

2
3

)
= 0, if n = a0 + a13 + a232 + . . . + ak3k is the base

3 expansion of n, then the right-hand side of (2.14), or equivalently the right-hand side of

(2.18), is equal to N(n, 1). The result then follows from either of Theorem 2.19 or Corollary

2.22.

Note that L3(n) = k for the first time when n = 30 + 31 + 32 + . . . + 3k and is never

negative. This is in stark contrast to the traditional L(n), which is often negative. Indeed,

we may classify all p for which Lp(n) ≥ 0 for all n ∈ N.

Theorem 2.24. The function Lp(n) ≥ 0 for all n exactly for those odd primes p for which(
1
p

)
+
(

2
p

)
+ . . .+

(
k

p

)
≥ 0

for all 1 ≤ k ≤ p.

Proof. We first observe from (2.13) that if 0 ≤ r < p, then

r∑
l=1

λp(l) =
r∑
l=1

(
l

p

)
.
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Let n = a0 + a1p+ · · ·+ akp
k be the base p expansion of n. From Theorem 2.19,

n∑
l=1

λp(l) =
a0∑
l=1

λp(l) +
a1∑
l=1

λp(l) + . . .+
ak∑
l=1

λp(l)

=
a0∑
l=1

(
l

p

)
+

a1∑
l=1

(
l

p

)
+ . . .+

ak∑
l=1

(
l

p

)
because all aj are between 0 and p− 1. The result then follows.

Corollary 2.25. For n ∈ N, we have

0 ≤ L3(n) ≤ [log3 n] + 1.

Proof. This follows from Theorem 2.24, Application 3.21, and the fact that the number of

1’s in the base three expansion of n is ≤ [log3 n] + 1.

As a further example, let p = 5.

Corollary 2.26. The value of L5(n) is equal to the number of 1’s in the base 5 expansion

of n minus the number of 3’s in the base 5 expansion of n. Also for n ≥ 1,

|L5(n)| ≤ [log5 n] + 1.

Recall from above, that L3(n) is always nonnegative, but L5(n) isn’t. Also L5(n) = k

for the first time when n = 50 + 51 + 52 + . . .+ 5k and L5(n) = −k for the first time when

n = 3 · 50 + 3 · 51 + 3 · 52 + . . .+ 3 · 5k.

Remark 2.27. The reason for specification of the primes p in the preceding two corollaries

is that, in general, it’s not always the case that |Lp(n)| ≤ [logp n] + 1.

We now return to our classification of primes for which Lp(n) ≥ 0 for all n ≥ 1.

Definition 2.28. Denote by L+, the set of primes p for which Lp(n) ≥ 0 for all n ∈ N.

We have found by computation that the first few values in L+ are

L+ = (3, 7, 11, 23, 31, 47, 59, 71, 79, 83, 103, 131, 151, 167, 191, 199, 239, 251 . . .).

By inspection, L+ doesn’t seem to contain any primes p, with p ≡ 1 (mod 4). This is not

a coincidence, as demonstrated by the following theorem.



CHAPTER 2. GENERALIZED LIOUVILLE FUNCTIONS 27

Theorem 2.29. If p ∈ L+, then p ≡ 3 (mod 4).

Proof. Note that if p ≡ 1 (mod 4), then(
a

p

)
=
(
−a
p

)
for all 1 ≤ a ≤ p− 1, so that

p−1
2∑

a=1

(
a

p

)
= 0.

Consider the case that
(

(p−1)/2
p

)
= 1. Then

p−1
2∑

a=1

(
a

p

)
=

p−1
2
−1∑

a=1

(
a

p

)
+
(

(p− 1)/2
p

)
=

p−1
2
−1∑

a=1

(
a

p

)
+ 1,

so that
p−1
2
−1∑

a=1

(
a

p

)
= −1 < 0.

On the other hand, if
(

(p−1)/2
p

)
= −1, then since

(
(p−1)/2

p

)
=
(

(p−1)/2+1
p

)
, we have

p−1
2∑

a=1

(
a

p

)
=

p−1
2

+1∑
a=1

(
a

p

)
−
(

(p− 1)/2 + 1
p

)
=

p−1
2

+1∑
a=1

(
a

p

)
+ 1,

so that
p−1
2

+1∑
a=1

(
a

p

)
= −1 < 0.

2.5 A bound for |Lp(n)|

Above we were able to give exact bounds on the function |Lp(n)|. As explained in Remark

2.27, this is not always possible, though an asymptotic bound is easily attained with a few

preliminary results.

Lemma 2.30. For all r, n ∈ N we have Lp(prn) = Lp(n).
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Proof. For i = 1, . . . , p − 1 and k ∈ N, λp(kp + i) = λp(i). For k ∈ N, this relation

immediately gives that Lp(p(k + 1)− 1)− Lp(pk) = 0, since Lp(p− 1) = 0. Thus

Lp(prn) =
prn∑
k=1

λp(k) =
pr−1n∑
k=1

λp(pk) =
pr−1n∑
k=1

λp(p)λp(k) =
pr−1n∑
k=1

λp(k) = Lp(pr−1n).

The lemma follows immediately.

Theorem 2.31. The maximum value of |Lp(n)| for n < pk occurs at n = k · σ(pk−1) with

value

max
n<pk

|Lp(n)| = k ·max
n<p
|Lp(n)|,

where σ(n) is the sum of the divisors of n.

Proof. This follows directly from Lemma 2.30.

Corollary 2.32. If p is an odd prime, then |Lp(n)| � log n; furthermore,

max
n≤x
|Lp(x)| � log x.

This last corollary begs the question: what can be said about the growth of
∣∣∣∑n≤x f(n)

∣∣∣
for any function f ∈ F({−1, 1})? Presumably this quantity is unbounded for all such f ,

though this is presently unknown.
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Mahler’s method via two examples

Before considering values and power series of more general functions in F({−1, 1}), we

present two detailed examples using Mahler’s transcendence methods. The proofs here were

inspired by Dekking’s proof of the transcendence of the Thue–Morse number [34].

The two examples discussed here concern power series, F (z) ∈ C[[z]], which satisfy two

very different types of functional equations similar to

(k ≥ 2) F (zk) = R(z)F (z) and F (zk) = F (z) +R(z),

where R(z) ∈ Z(z).

3.1 Stern’s diatomic sequence

The Stern sequence, sometimes called Stern’s diatomic sequence, (a(n))n≥0 is given by

a(0) = 0, a(1) = 1, and when n ≥ 1, by

a(2n) = a(n) and a(2n+ 1) = a(n) + a(n+ 1).

Properties of this sequence have been studied by many authors; for references see [36]. The

Stern sequence is A002487 in Sloane’s list (see http://www.research.att.com/∼njas/
sequences/A000108). In the article cited above, Dilcher and Stolarsky introduced and

studied a polynomial analogue of the Stern sequence, defined by a(0;x) = 0, a(1;x) = 1,

and when n ≥ 1, by

a(2n;x) = a(n;x2) and a(2n+ 1;x) = x a(n;x2) + a(n+ 1;x2).

29
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We call a(n;x) the nth Stern polynomial. Denote by A(z) and A(x, z) the generating

functions of the Stern sequence and Stern polynomials, respectively.

In this section, we prove that these generating functions are transcendental.

There are some special subsequences of (a(n))n≥0 of interest. It is known (see Lehmer

[70] and Lind [71]) that the maximum value of a(m) in the interval 2n−2 ≤ m ≤ 2n−1 is the

nth Fibonacci number Fn and that this maximum occurs at

m =
1
3

(2n − (−1)n) and m =
1
3

(5 · 2n−2 + (−1)n).

Dilcher and Stolarsky [35] set

αn :=
1
3

(2n − (−1)n) (n ≥ 0), βn :=
1
3

(5 · 2n−2 + (−1)n) (n ≥ 2),

and define for n ≥ 0

fn(q) := a(αn; q)

and for n ≥ 2

f̄n(q) := a(βn; q).

Throughout the paper [35] the authors study properties of fn and f̄n, finding functional

equations and other such relationships. They are particularly concerned with the functions

F and G defined as follows.

Definition 3.1. For complex q with |q| < 1 we define

F (q) : = lim
n→∞

f2n(q) = lim
n→∞

f̄2n+1(q)

= 1 + q + q2 + q5 + q6 + q8 + q9 + q10 + q21 + q22 + q24 + · · · ,

G(q) : = lim
n→∞

f2n+1(q) = lim
n→∞

f̄2n(q)

= 1 + q + q3 + q4 + q5 + q11 + q12 + q13 + q16 + q17 + q19 + · · · .

In a remark in [35], Dilcher and Stolarsky ask about the transcendence of F and G but

make no conclusions. We resolve this question: these functions are transcendental.
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3.1.1 Transcendence of A(z)

Recall that A(z) :=
∑

n≥0 a(n)zn. Using the definition of the Stern sequence, we have

A(z) =
∑
n≥0

a(2n)z2n +
∑
n≥0

a(2n+ 1)z2n+1

=
∑
n≥0

a(n)z2n +
∑
n≥0

a(n)z2n+1 +
∑
n≥0

a(n+ 1)z2n+1

= A(z2) + zA(z2) +
∑
n≥0

a(n)z2n−1

= A(z2)
(

1 + z +
1
z

)
,

which gives the following lemma (this result can also be derived from (2.9) in [36]).

Lemma 3.2. If A(z) is the generating function of the Stern sequence, then

A(z2) = A(z)
(

z

z2 + z + 1

)
.

Theorem 3.3. The function A(z) is transcendental over C(z).

Proof. Towards a contradiction, suppose that A(z) is algebraic and satisfies, say,

qn(z)A(z)n + qn−1(z)A(z)n−1 + · · ·+ q0(z) = 0 (3.1)

where qi(z) ∈ C[z], gcd(qn(z), qn−1(z), . . . , q0(z)) = 1, and n is chosen minimally. Using the

functional equation, we have

0 =
n∑
k=0

qk(z2)A(z2)k =
n∑
k=0

qk(z2)A(z)k
(

z

z2 + z + 1

)k
,

and upon multiplying by (z2 + z + 1)n we obtain

0 =
n∑
k=0

qk(z2)(z2 + z + 1)n−kzkA(z)k.

Thus

0 = znqn(z2)
n∑
k=0

qk(z)A(z)k − qn(z)
n∑
k=0

qk(z2)(z2 + z + 1)n−kzkA(z)k

=
n∑
k=0

[
qn(z2)qk(z)zn − qn(z)qk(z2)(z2 + z + 1)n−kzk

]
A(z)k. (3.2)
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The coefficient of A(z)n in (3.2) is

qn(z2)qn(z)zn − qn(z)qn(z2)zn = 0,

so that

0 =
n−1∑
k=0

[
qn(z2)qk(z)zn − qn(z)qk(z2)(z2 + z + 1)n−kzk

]
A(z)k.

The minimality of n gives

qn(z2)qk(z)zn = qn(z)qk(z2)(z2 + z + 1)n−kzk (3.3)

for k = 0, 1, . . . , n− 1.

Recall that gcd(qn(z), qn−1(z), . . . , q0(z)) = 1, so that gcd(qn(z2), qn−1(z2), . . . , q0(z2)) =

1. Denote the primitive cube roots of unity by ω and ω2. We have (z−ω)(z−ω2) = z2+z+1.

Equation (3.3) gives for all i = 0, 1, . . . , n that both

z − ω | qi(z) ⇐⇒ z − ω2 | qi(z2) (3.4)

and

z − ω2 | qi(z) ⇐⇒ z − ω | qi(z2). (3.5)

Denote by Na(p(z)) the multiplicity of the root z = a of p(z). Also note that for all

i = 0, 1, . . . , n the equations (3.4) and (3.5) give

Nω(qi(z)) = Nω2(qi(z2)) and Nω(qi(z2)) = Nω2(qi(z)).

Then (3.3), (3.4) and (3.5) give the system of equations

Nω(qn(z2)) +Nω(qk(z)) = Nω(qn(z)) +Nω(qk(z2)) + n− k (3.6)

Nω(qn(z)) +Nω(qk(z2)) = Nω(qn(z2)) +Nω(qk(z)) + n− k. (3.7)

Substitution of (3.5) into (3.4) gives n = k, a contradiction. Therefore, A(z) is transcen-

dental.

We proceed to show that the values of A(z) at algebraic z ∈ C are transcendental. We

use a theorem of Mahler [73], as taken from Nishioka’s book [83]. For completeness, a full

proof of this theorem is contained in Appendix A. Here I is the set of algebraic integers over
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Q, K is an algebraic number field, IK = K ∩I, and f(z) ∈ K[[z]] with radius of convergence

R > 0 satisfying the functional equation for an integer d > 1,

f(zd) =
∑m

i=0 bi(z)f(z)i∑m
i=0 ci(z)f(z)i

, m < d, bi(z), ci(z) ∈ IK [z],

and ∆(z) := Res(B,C) is the resultant of B(u) =
∑m

i=0 bi(z)u
i and C(u) =

∑m
i=0 ci(z)u

i as

polynomials in u.

Theorem 3.4 (Mahler [73]). Assume that f(z) is not algebraic over K(z). If α is an

algebraic number with 0 < |α| < min{1, R} and ∆(αd
k
) 6= 0 (k ≥ 0), then f(α) is transcen-

dental.

Using Mahler’s Theorem we prove

Theorem 3.5. If α 6= 0 is an algebraic number with 0 < |α| < 1, then A(α) is transcendental

over Q.

Proof. Let α 6= 0 be an algebraic number with 0 < |α| < 1. Lemma 3.2 gives

A(z2) =
zA(z)

z2 + z + 1
,

so that the resultant (in the variable u) is

∆(α2k
) = Res(zu, z2 + z + 1)

∣∣∣
z=α2k

= α2k+1
+ α2k

+ 1,

which is non–zero for every k ≥ 0. The result follows.

3.1.2 Transcendence of A(x, z)

Theorem 3.6. The function A(x, z) is transcendental.

To prove Theorem 3.6 we need the following straightforward lemma concerning values

of algebraic functions.

Lemma 3.7. If f is a power series expansion of an algebraic function, and α 6= 0 is an

algebraic number within the radius of convergence of f , then f(α) is algebraic.

Proof. Suppose that f is a power series expansion of an algebraic function of degree n with∑n
k=0 qk(z)f(z)k = 0, and α 6= 0 is an algebraic number within the radius of convergence

of f . Since the qk(z) are polynomials, qk(α) is an element in the required ring/field and so

f(α) satisfies the algebraic equation
∑n

k=0 qk(α)f(α)k = 0. Thus f(α) is algebraic.
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Proof of Theorem 3.6. From the definitions of the Stern sequence and Stern polynomials,

we have a(n; 1) = a(n) so that

A(1, z) = A(z).

Lemma 3.7 tells us that to prove the transcendence of A(x, z) we need only find algebraic

values of x and z so that at this value of A(x, z) is not algebraic.

Consider x = 1 and z = 1
2 . Then

A

(
1,

1
2

)
= A

(
1
2

)
,

which by Theorem 3.5 is not algebraic, and we have proven the desired result.

3.1.3 Transcendence of F (q) and G(q)

We now turn to the functions F (q) and G(q) as introduced in Definition 3.1.

Theorem 3.8. The functions F (q) and G(q) defined above are transcendental over Q(z).

To prove this theorem we will need a couple of results from elsewhere. The first is a

theorem of Fatou [48] and the second from Dilcher and Stolarsky [35].

Theorem 3.9 (Fatou, 1906). A power series whose coefficients take only finitely many

values that belong to Q is either rational or transcendental.

Proposition 3.10 (Dilcher and Stolarsky [35]). The coefficients of fn(q) and f̄n(q) are 0

or 1, and for k ≥ 1 we have

deg f2k(q) = α2k−1 − 1, deg f2k+1(q) = α2k,

deg f̄2k(q) = β2k−1, deg f̄2k+1(q) = β2k − 1,

where αn and βn are as defined previously.

Fatou’s theorem is very useful in transcendence proofs. Many different proofs have been

given, the first by Fatou in 1906 [48], Allouche in 1999 [3] and again by Borwein and Coons

in 2009 [16], whose proof is presented in Chapter 4 of this thesis.

Proof of Theorem 3.8. Recall that G(q) = limn→∞ f2k+1(q). Proposition 5.3 gives

deg f2k+1(q) = α2k =
1
3

(22k − 1).
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The number of terms of f2k+1 is

f2k+1(1) = F2k+1 = [ϕ2k+1],

where the second equality is true for k ≥ 2, [x] represents the greatest integer less than or

equal to x, and ϕ is the golden ratio. It is important to note that the degree is growing

much faster than the number of terms; this property along with Fatou’s theorem is enough

to give the result.

Consider the degree of f2k+1 as k grows. We have

deg f2k+3(q)− deg f2k+1(q) = α2k+2 − α2k = 22k.

If we write the polynomial

f2k+3(q)− f2k+1(q) = εα2k+1q
α2k+1 + εα2k+2q

α2k+2 + · · ·+ εα2k+2
qα2k+2 ,

then the proportion of εis that are 1 is

[ϕ2k+2]
22k

which approaches 0 as k goes to infinity.

Let h be a given positive integer. Then there exists a k := k(h) for which

[ϕ2k+2]
22k

<
1
h2
.

Thus, for this k, the polynomial f2k+3(q)− f2k+1(q) contains at least h consecutive εis with

εi = 0.

Now pick q = 1
2 . Then G(1/2) is a binary number with (in binary notation)

G(1/2) = ε0.ε1ε2ε3ε4ε5 . . . = 1.1100110111 . . . .

The previous paragraph tells us that there are arbitrarily long runs of zeros in the binary

expansion of G(1/2). Since deg f2k+1(q)→∞ with k, there are infinitely many ones in the

binary expansion of G(1/2) and so G(1/2) is an irrational number. Hence G(q) is not a

rational function. Application of Fatou’s theorem gives the desired result.
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3.2 Golomb’s series

Golomb proved in [49] that the values of the functions∑
n≥0

z2n

1 + z2n and
∑
n≥0

z2n

1− z2n

are irrational at z = 1
t for t = 2, 3, 4, . . . , the interesting special case of which is that the

sum of the reciprocals of the Fermat numbers is irrational. Schwarz [88] has given results

on series of the form

Gk(z) :=
∑
n≥0

zk
n

1− zkn .

In particular, he proved that if k, t and b are integers satisfying

k ≥ 2, t ≥ 2, and 1 ≤ b < t1−1/k,

then the number

Gk(bt−1) =
∑
n≥0

bk
n

tkn − bkn

is irrational. Schwarz also showed that for k, t, b ∈ N with k > 2, t ≥ 2 and 1 ≤ b < t1−5/2k

the number Gk(bt−1) is transcendental. The case k = 2 proved to be more difficult, though

he was able to show that for an integer t ≥ 2 the number G2(t−1) is not algebraic of the

second degree.

Schwarz also remarks in [88] that, “the irrationality of∑
n≥0

bk
n
(tk

n
+ bk

n
)−1

for k > 2 is unsettled.” In our notation, this is Fk(bt−1).

Recently, Duverney [38] has proven the transcendence of G2(t−1) for integers t ≥ 2

and extended Schwarz’s transcendence results for the case k = 2. He proved the following

theorem.

Theorem 3.11 (Duverney [38]). Let a ≥ 2 be an integer and let bn be a sequence of integers

satisfying |bn| = O(η−2n
) for every η ∈ (0, 1). Suppose that a2n

+ bn 6= 0 for every n ∈ N.
Then the number

S =
∑
n≥0

1
a2n + bn

is transcendental.
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We extend Schwarz’s results further (to the best possible); in particular, we prove that

for all k ≥ 2 the series Gk(z) =
∑

n≥0 z
kn

(1 − zk
n
)−1 is transcendental for all algebraic

numbers z with |z| < 1. We also prove the same result for Fk(z) =
∑

n≥0 z
kn

(1 + zk
n
)−1

which settles the irrationality question of Schwarz’s remark. These results were known to

Mahler (see [73, 74, 75, 76]), though our proofs of the function’s transcendence are new

and elementary, coming from the proof of our main result; no linear algebra or differential

calculus is used.

The main result of this section is that a non–zero power series F (z) ∈ C[[z]] satisfying

F (zd) = F (z) +
A(z)
B(z)

,

where A(z), B(z) ∈ C[z] with A(z) 6= 0 and degA(z),degB(z) < d is transcendental over

C(z). This extends a theorem of Nishioka [82] that states that F (z) is either transcendental

or rational.

3.2.1 A general transcendence theorem

Nishioka [82] has shown

Theorem 3.12 (Nishioka [82]). Suppose that F (z) ∈ C[[z]] satisfies one of the following for

an integer d > 1.

(i) F (zd) = ϕ(z, F (z)),

(ii) F (z) = ϕ(z, F (zd)),

where ϕ(z, u) is a rational function in z, u over C. If F (z) is algebraic over C(z), then

F (z) ∈ C(z).

Nishioka’s proof of Theorem 3.12 relies on deep ideas from algebraic number theory.

In this section we provide an elementary proof of a special case of Theorem 3.12. In this

special case, we are able to refine the conclusion by eliminating the possibility of F (z) being

a rational function.

Theorem 3.13. If F (z) is a power series in C[[z]] satisfying

F (zd) = F (z) +
A(z)
B(z)

,

where d ≥ 2, A(z), B(z) ∈ C[z] with A(z) 6= 0 and degA(z),degB(z) < d, then F (z) is

transcendental over C(z).



CHAPTER 3. MAHLER’S METHOD VIA TWO EXAMPLES 38

Proof. Suppose that the power series F (z) is algebraic, and satisfies

n∑
r=0

qr(z)F (z)r ≡ 0 (3.8)

where the qr(z) are rational functions with qn(z) = 1 and n ≥ 1 is chosen minimally. The

notation ≡ is used to mean identically equal.

Substituting zd into (3.8) and using the functional relation gives

0 ≡
n∑
r=0

qr(zd)F (zd)r =
n∑
r=0

qr(zd)
(
F (z) +

A(z)
B(z)

)r
.

Without loss of generality, suppose B(z) is monic. Multiplying by B(z)n to clear fractions

as well as an application of the binomial theorem yields

0 ≡
n∑
r=0

qr(zd)B(z)n−r
(
B(z)F (z) +A(z)

)r
=

n∑
r=0

qr(zd)B(z)n−r
r∑
j=0

(
r

j

)
B(z)jF (z)jA(z)r−j . (3.9)

Taking the difference between (3.9) and B(z)n times (3.8) gives

Q(z) :=
n∑
r=0

qr(zd)B(z)n−r
r∑
j=0

(
r

j

)
B(z)jF (z)jA(z)r−j −B(z)n

n∑
r=0

qr(z)F (z)r ≡ 0. (3.10)

Note that we may also write

Q(z) =
n∑

m=0

hm(z)F (z)m ≡ 0,

for some polynomials h0(z), . . . , hn(z) ∈ C[z].

We determine hn(z). The only term in Q(z) that can contribute to the coefficient of

F (z)n is the term with r = n of the sum (3.10), which recalling that qn(z) = 1 is

n∑
j=0

(
n

j

)
B(z)jF (z)jA(z)n−j −B(z)nF (z)n,

and only the j = n term here contributes. Hence

hn(z) =
(
n

n

)
B(z)nA(z)n−n −B(z)n = 0,
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so that Q(z) =
∑n−1

m=0 hm(z)F (z)m ≡ 0. Since n was chosen minimally, hm(z) ≡ 0 for all

m = 0, 1, . . . , n− 1.

Using (3.10) we have that

hm(z) =
n∑

r=m

(
r

m

)
qr(zd)B(z)n−r+mA(z)r−m −B(z)nqm(z).

Since hn−1(z) ≡ 0 this gives

n∑
r=n−1

(
r

n− 1

)
qr(zd)B(z)n−r+(n−1)A(z)r−(n−1) = B(z)nqn−1(z)

so that with the removal of shared factors, recalling qn(z) = 1, we have the identity

qn−1(zd)B(z) + nA(z) = B(z)qn−1(z). (3.11)

Write qn−1(z) = α(z)
β(z) where α(z), β(z) ∈ C[z] with gcd(α(z), β(z)) = 1 and β(z) monic.

Denote g(z) := gcd(β(z), β(zd)), so that β(z)
g(z) ,

β(zd)
g(z) ∈ C[z] and hence gcd

(
β(z)
g(z) ,

β(zd)
g(z)

)
= 1.

Then (3.11) becomes(
β(z)
g(z)

)
α(zd)B(z) + n

(
β(z)
g(z)

)
β(zd)A(z) =

(
β(zd)
g(z)

)
B(z)α(z). (3.12)

Thus β(z)
g(z)

∣∣B(z). Also, since β(z)
g(z)β(zd) = β(z)β(zd)

g(z) we have β(zd)
g(z)

∣∣B(z).

Equation (3.11) yields β(zd) | β(z)α(zd)B(z), which implies that

d · deg β(z) ≤ deg β(z) + degB(z) < deg β(z) + d.

Hence

0 ≤ deg β(z) < 1 +
1

d− 1
.

Since d ≥ 2, either deg β(z) = 0 or deg β(z) = 1.

Suppose deg β(z) = 0. Hence β(z) = β(zd) ∈ C; write β := β(z). Now (3.12) becomes

α(zd)B(z) + nβA(z) = B(z)α(z). (3.13)

Thus B(z) | nβ which gives degB(z) = 0. Write B := B(z). Thus (3.13) becomes

α(zd)B + nβA(z) = Bα(z), (3.14)

which implies that d · degα(z) = degA(z) < d so that degα(z) = 0. Eq. (3.14) and

degα(z) = 0 imply that A(z) = 0 which is impossible.
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Now suppose deg β(z) = 1 and write β(z) = z− β. Comparing degrees in (3.12) implies

that degα(z) ≤ 1.

Recall that both β(z)
g(z)

∣∣B(z) and β(zd)
g(z)

∣∣B(z). Since gcd
(
β(z)
g(z) ,

β(zd)
g(z)

)
= 1, we have that(

β(z)
g(z) ·

β(zd)
g(z)

) ∣∣B(z). The bound degB(z) < d and deg g(z) = 1 give g(z) = β(z). Since
β(zd)
g(z) = β(zd)

β(z)

∣∣B(z) and both β(z) and B(z) are monic with degB(z) < d, we have

β(zd)
β(z)

= B(z).

Suppose that degα(z) = 1. Write α(z) = δ(z − α) and note that β 6= α. In this case,

solving (3.12) for A(z) gives

A(z) =
δ(β − α)z(zd−1 − 1)

n(z − β)2
∈ C[z].

Since A(z) ∈ C[z] we have that (z − β)2|(zd−1 − 1), which we may rewrite as

(z − β)2

∣∣∣∣∣
d−2∏
k=0

(
z − e2πi k

d−1

)
.

This is not possible since e2πi l
d−1 6= e2πi m

d−1 for any l,m with 0 ≤ l < m ≤ d − 2 (that is,

(d− 1)–th roots of unity are distinct); hence degα(z) = 0.

If degα(z) = 0, write α := α(z). Then writing β(z) = z − β and solving (3.12) for A(z)

we have that

A(z) =
αz(zd−1 − 1)
n(z − β)2

/∈ C[z],

which contradicts that A(z) ∈ C[z].

Corollary 3.14. There is no rational function F (z) in C(z) satisfying

F (zd) = F (z) +
A(z)
B(z)

,

where d ≥ 2, A(z), B(z) ∈ C[z] with A(z) 6= 0 and degA(z),degB(z) < d.

3.2.2 The series Gk(z) and Fk(z)

To prove the transcendence results surrounding Gk(z) and Fk(z), we apply Theorem 3.13

as well as Theorem 3.4.
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Consider the functional equation f(zk) = f(z)− z
1−z with k ≥ 2. Repeated application

yields

f(zk
m

) = f(zk
m−1

)− zk
m−1

1− zkm = f(z)−
m∑
n=1

zk
m−n

1− zkm−n .

Changing the index and setting Wm(z) :=
∑m−1

n=0
zkn

1−zkn gives

f(z) = f(zk
m

) +Wm(z).

In the region |z| < 1, we have

f(z) = lim
m→∞

[
f(zk

m
) +Wm(z)

]
=
∑
n≥0

zk
n

1− zkn = Gk(z).

This proves the following lemma.

Lemma 3.15. For |z| < 1, the function Gk(z) satisfies the functional equation

Gk(zk) = Gk(z) +
z

z − 1
.

As a corollary of Theorem 3.13, we have

Corollary 3.16. For k ≥ 2, the function Gk(z) is transcendental over C(z).

To get the transcendence of the associated numbers, we use Mahler’s Theorem.

Proposition 3.17. If k ≥ 2 and α is algebraic with 0 < |α| < 1, then Gk(α) is transcen-

dental over Q.

Proof. Lemma 3.15 gives the functional equation

Gk(zk) =
(1− z)Gk(z)− z

1− z
,

so that, in the language of Theorem 3.4, we have

A(u) = (1− z)u− z and B(u) = 1− z,

m = 1 < k = d, and ai(z), bi(z) ∈ IK [z]. Since B(u) is a constant polynomial in u,

∆(z) := Res(A,B) = 1− z.
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Let |α| < 1 be algebraic; it is immediate that

∆(αk
n
) = 1− αkn 6= 0 (n ≥ 0).

Since Gk(z) is not algebraic over C(z) (as supplied by Corollary 3.16), applying Theorem

3.4, we have that Gk(α) is transcendental over Q.

Corollary 3.18. If k, b, t ∈ N with k ≥ 2 and 0 < b < t, then the number Gk(bt−1) is

transcendental over Q.

Proof. Set α = b/t in Theorem 3.17.

We turn now to the series

Fk(z) =
∑
n≥0

zk
n

1 + zkn .

Similar to Gk(z), the function Fk(z) satisfies a functional equation,

Fk(zk) = Fk(z)−
z

z + 1
.

Theorem 3.13 yields

Corollary 3.19. The function Fk(z) is transcendental over C(z).

As before, Mahler’s Theorem gives

Proposition 3.20. For k ≥ 2 and z = α an algebraic number with 0 < |α| < 1, Fk(α) is

transcendental over Q.

Corollary 3.21. If k, b, t ∈ N with k ≥ 2 and 1 ≤ b < t, then the number Fk(bt−1) is

transcendental over Q.

Remark 3.22. For some more recent work concerning results like Nishioka’s Theorem

3.12, for more general algebraic number fields, see [40]; this paper also contains a number

of current references to results in this area. Also, concerning functions similar to Gk(z)

and Fk(z) above, Duverney, Kanoko, and Tanaka [39] have given a complete classification

of those series

f(z) :=
∑
k≥0

akzd
k

1 + bzdk + cz2dk ∈ C[[z]]

that are transcendental over C(z) where C is a field of characteristic 0, d ≥ 2, and a, b, c ∈ C
with a 6= 0.



Chapter 4

Irrationality and transcendence

In this chapter we return to our investigation of functions f ∈ F({−1, 1}) by considering

formal power series with coefficients f(n) as well as the values of power series whose coeffi-

cients come from a certain subset of F({−1, 1}). The results of this chapter are taken from

two joint publications ([15] and [16]) with Peter Borwein.

4.1 Formal power series

In 1945, Duffin and Schaeffer [37] proved that

Theorem 4.1 (Duffin and Schaeffer [37]). A power series that is bounded in a sector and

has coefficients from a finite subset is a rational function.

Their proof is relatively indirect. In [17], Borwein, Erdélyi, and Littman gave a shorter

direct proof.

The theorem of Duffin and Schaeffer is a generalization of a result of Szegő who proved

in 1922 that a power series whose coefficients assume only finitely many values and which

can be extended analytically beyond the unit circle is a rational function.

In 1906, Fatou [48] proved, and in 1999, Allouche [3] reproved using a deep result of

Cobham [25], that

Theorem 4.2 (Fatou [48]). A power series whose coefficients take only finitely many ra-

tional values is either rational or transcendental.

In this section, we give a new proof of Fatou’s theorem and apply it to show that if

f ∈ F({−1, 1}) and f is not identically 1, then
∑

n≥1 f(n)zn is transcendental over Z(z).

43
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As a specific example, we show the transcendence of the series
∑

n≥1 λ(n)zn. We also use

Fatou’s theorem to show that
∑

n≥1 µ(n)zn. Here λ and µ are the Liouville and Möbius

functions, respectively.

We will need the following quantitative version of the Fundamental Theorem of Algebra

[18, Theorem 1.2.1].

Lemma 4.3. The polynomial

p(z) := anz
n + an−1z

n−1 + · · ·+ a0 ∈ C[z], an 6= 0

has exactly n zeros in C. These all lie in the open disk of radius r centered at the origin,

where

r := 1 + max
0≤k≤n−1

|ak|
|an|

.

Proof of Theorem 4.2. Suppose that f(z) is a power series with coefficients that take only

finitely many rational values, and satisfies

an(z)f(z)n + an−1(z)f(z)n−1 + · · ·+ a0(z) = 0

where each ai(z) is a polynomial with integer coefficients. Since the leading coefficient

an(z) of this polynomial equation is a polynomial, it has finitely many zeros. Hence there

is a sector S of the open unit disk where |an(z)| is bounded away from zero uniformly. The

modulus of each other coefficient ak(z) is clearly uniformly bounded above on S. Now apply

Lemma 4.3 to conclude that |f(z)| is bounded on S, so the result of Duffin and Schaeffer

applies.

As before, denote by µ the Möbius function, and by λ the Liouville function. Recall that

λ is the unique completely multiplicative function defined by λ(p) = −1 for all primes p.

In [8], it is shown that the formal power series
∑

n≥1 λ(n)zn,
∑

n≥1 µ(n)zn ∈ Z[[z]] are

irrational over Z(z) (along with various other multiplicative functions). We proceed by

proving that these two power series are transcendental over Z(z). The transcendence of∑
n≥1 λ(n)zn is stated as a corollary to the following general theorem.

Theorem 4.4. Let f : N→ {−1, 1} be a completely multiplicative function with the property

that for some prime p, f(p) = −1. Then
∑

n≥1 f(n)zn ∈ Z[[z]] is transcendental over Z(z).
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Proof. In light of Theorem 4.2, we need only demonstrate that for a completely multiplica-

tive function f : N→ {−1, 1} such that there is a prime p for which f(p) = −1, the sequence

of values of f is not eventually periodic. This would show that
∑

n≥1 f(n)2−n is irrational.

Denote the sequence of values of f by F.

Towards a contradiction, suppose that F is eventually periodic, say the sequence is

periodic after the M–th term and has period k. Now there is an N ∈ N such that for all

n ≥ N , we have nk > M . Let p be a prime for which f(p) = −1. Then

f(pnk) = f(p)f(nk) = −f(nk).

But pnk ≡ nk (mod k), a contradiction to the eventual k–periodicity of F.

Corollary 4.5. If λ is the Liouville function, then the series
∑

n≥1 λ(n)zn ∈ Z[[z]] is

transcendental over Z(z).

Note that Theorem 4.4 does not apply directly to the Möbius function because µ is not

completely multiplicative. Recall from the definition that if p2 | n for any prime p, then

µ(n) = 0. From this fact alone one may use the Chinese Remainder Theorem to show that

sequence of values of the Möbius function contains arbitrarily long runs of zeroes. This in

turn gives the irrationality of
∑

n≥1 µ(n)zn at z = 1
3 , and hence the following corollary to

Theorem 4.2.

Corollary 4.6. If µ is the Möbius function, then the series
∑

n≥1 µ(n)zn ∈ Z[[z]] is tran-

scendental over Z(z).

The transcendence of the series
∑

n≥1 f(z)zn over Z(z) for f equal to each of the multi-

plicative functions τk, σk, and ϕ was shown by Yazdani [98]; the case f = µ was previously

treated by Allouche [3] using a deep result of Cobham [26].

While transcendence results on power series are readily available, there are many open

questions concerning their special values. Erdős [43] was interested in the transcendence

and irrationality of both
∑

n≥1 τ(n)2−n and
∑

n≥1 ϕ(n)2−n. The irrationality of the first

sum was shown by Borwein [11]; the transcendence is not yet known. Questions regarding

the algebraic character of
∑

n≥1 ϕ(n)2−n remain open. Nesterenko [79] has shown that the

number ∑
n≥1

λ(n)
2n − 1
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is transcendental, but the transcendence of its close relative,
∑

n≥1 λ(n)2−n remains elusive.

Using Mahler’s method, as described in Chapter 3, in the next section we approach the

transcendence of values of power series whose coefficients are given by certain functions in

F({−1, 1}).

4.2 Values of power series

Denote the sequence of λ values by L and recall that the Liouville number l is the binary

number

l :=
∑
n≥1

(
1 + λ(n)

2

)
1
2n

= 0.100101001100011100001 . . . .

Properties of the number l are properties of the sequence L. One noteworthy property is

that l is irrational.

Theorem 4.7. The Liouville number is not rational.

Proof. See the proof of Theorem 4.4.

The irrationality of l tells us that the sequence L is not eventually periodic. A fun-

damental question arises, which at present we are unable to answer. We believe that l is

transcendental, though this seems currently unapproachable. For other completely multi-

plicative functions like λ, we can decide transcendence.

In this section, we consider a subset of F({−1, 1}).
As an example, let g be the completely multiplicative function defined on primes p by

gp =

−1 if p ≡ 3(mod 4)

1 otherwise.

As the function g takes the value −1 on those primes which are rational Gaussian primes,

we call g the Gaussian Liouville function. Denote by G the sequence of values of g, and

define

γ :=
∑
n≥1

(
1 + gn

2

)
1
2n

as the Gaussian Liouville number. One can show that gn = (−1/n) where (·/n) is the Jacobi

symbol modulo n. The Gaussian Liouville number is easily seen to be irrational. Indeed, it

is a corollary to the following generalization of Theorem 4.7.
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Theorem 4.8. Suppose that f : N → {−1, 1} is a completely multiplicative function, with

f(p) = −1 for at least one prime p, and F its sequence of values. If ϕ :=
∑

n≥1

(
1+f(n)

2

)
1

2n ,

then ϕ /∈ Q.

Proof. See the proof of Theorem 4.4.

Though a proof of transcendence of the Liouville number seems unattainable, it is possi-

ble to establish the transcendence of the Gaussian Liouville number and many of its relatives.

The proof of this result is contained in Subsection 4.2.2, and rests on the fact that the gen-

erating function of the sequence G satisfies a useful functional equation (see Lemma 4.12).

In addition to providing a nice connection to the theory of finite automata, this functional

equation leads to a striking power series representation of the functional equation. It is of

interest (an example of such a series representation is given in Subsection 4.2.1), and may

lead to a quick transcendence result.

As an example of the usefulness of such a representation, we prove in Subsection 4.2.2

that the generating function G(z) of the Gaussian Liouville sequence is

G(z) =
∑
k≥0

z2k

1 + z2k+1 .

An ingredient to the proof of the transcendence of the Gaussian Liouville number is the

transcendence of the generating function of the sequence G. This is easily accomplished

using Theorem 4.8 and Fatou’s theorem.

The method used in our proof can be used to prove more general results regarding other

completely multiplicative functions. Subsection 4.2.3 contains these results. For an account

of the properties of these functions see [13].

A few historical remarks are in order. The irrationality of the values of power series

similar to those of our investigation have been studied by, among others, Erdős, Golomb,

Mahler, and Schwarz. Erdős [43] proved that the series∑
n≥1

zn

1− zn
=
∑
n≥1

d(n)zn,

where d(n) is the divisor counting function, gives irrational values at z = 1
t for t = 2, 3, 4, . . .,

and Allouche [3] has shown this function to be transcendental, but the transcendence of any

value is still open. For example, z = 1
2 presumably gives a transcendental value. Indeed

Erdős writes [44],
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“It is very annoying that I cannot prove that
∑

n≥1
1

2n−3 and
∑

n≥2
1

n!−1 are both

irrational (one of course expects that
∑

n≥1
1

2n+t and
∑

n≥2
1

n!+t are irrational

and in fact transcendental for every integer t.)”

Partially answering Erdős’ question, Borwein [12] has shown that for q ∈ Z with |q| > 1 and

c ∈ Q with c 6= 0 and c 6= −qn (n ∈ N),∑
n≥1

1
qn + c

and
∑
n≥1

(−1)n

qn + c

are irrational; the special values c = −1 and q = 2 give that the sum of the reciprocals of

the Mersenne numbers is irrational. Later, Golomb proved in [49] that the values of the

functions ∑
n≥0

z2n

1 + z2n and
∑
n≥0

z2n

1− z2n

are irrational at z = 1
t for t = 2, 3, 4, . . . . As a special case we obtain that the sum of the

inverses of the Fermat numbers is irrational. Transcendence of the sum of the inverses of

the Fermat numbers is implied by Duverney’s theorem (Theorem 3.11). Schwarz [88] has

given results on series of the form ∑
n≥0

zk
n

1− zkn .

In particular, he showed that this function is transcendental at certain rational values of z

when k ≥ 2 is an integer. These series are discussed in more detail in Section 3.2 where

complete transcendence results are given. We take these results further and prove that

for f ∈ F({−1, 1}) satisfying the recursive relations fp = ±1 and fpk+i = fi for i =

1, 2, . . . , p− 1, the series ∑
k≥0

f(n)zn =
∑
k≥0

fkpΦ(z)

1− zpk+1 ,

where Φ(z) =
∑p−1

i=1 fiz
pki, is transcendental provided f is not identically 1 (see Theorem

4.18 and Proposition 4.19). It is interesting to note that when fi = (i/p) (for p - i) is the

Legendre symbol, the polynomial Φ(z) is the pth degree Fekete polynomial. Patterns in the

sequence of values of such f have been studied by Hudson [58, 59].

Mahler’s results are too numerous to mention, and it seems likely that at least some of the

historical results mentioned here were known to him as early as the 1920s; see [76]. Mahler

was one of the first to consider the links between functional equations and transcendence

(see [83]).
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4.2.1 The Liouville function for primes 2 modulo 3

As an example of a power series representation of a generating function consider the com-

pletely multiplicative function tn where

t3 = 1 and tp =

−1 if p ≡ 2(mod 3)

1 if p ≡ 1(mod 3).

We have the relations

t3n = tn, t3n+1 = 1, and t3n+2 = −1.

Denote the generating function of (tn)n∈N as T (z) =
∑

n≥1 tnz
n. Then

T (z) =
∑
n≥1

t3nz
3n +

∑
n≥0

t3n+1z
3n+1 +

∑
n≥0

t3n+2z
3n+2 = T (z3) + (z − z2)

1
1− z3

,

which gives the following result.

Lemma 4.9. If T (z) =
∑

n≥1 tnz
n, then

T (z3) = T (z)− z

1 + z + z2
.

Using this lemma we have

T (z3m
) = T (z)−

m−1∑
k=0

z3k

1 + z3k + z3k2
.

Denote the sum by Um(z); that is,

Um(z) =
m−1∑
k=0

z3k

1 + z3k + z3k2
.

If |z| < 1, taking the limit as m→∞, gives the desired series expression.

Proposition 4.10. If |z| < 1, then the generating function of (tn)n∈N has the closed form

T (z) =
∑
k≥0

z3k

1 + z3k + z3k2
.

Application of the general results proved in Subsection 4.2.3 gives the following result.

Theorem 4.11. The function T (z) is transcendental over C(z); furthermore, T (α) is tran-

scendental over Q for all non–zero algebraic numbers α with |α| < 1.
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4.2.2 The Gaussian Liouville function

As before, the Gaussian Liouville function g is the completely multiplicative function defined

on the primes by

gp =

−1 if p ≡ 3(mod 4)

1 otherwise.

Also, denote by G the sequence of values of g, and by

γ :=
∑
n≥1

(
1 + gn

2

)
1
2n
,

the Gaussian Liouville number.

The first few values of g are

G = (1, 1,−1, 1, 1,−1,−1, 1, 1, 1,−1,−1, 1,−1,−1, 1, 1, 1,−1, 1, 1,−1, . . .).

Elementary observations tell us that the occurrence of primes that are 3 modulo 4 in

prime factorizations are fairly predictable. One has the following implications:

n ≡ 1(mod 4) ⇒ gn = 1

n ≡ 3(mod 4) ⇒ gn = −1

n ≡ 0(mod 2) ⇒ g2n = gn,

which give the recurrence relations for the sequence G as

g1 = 1, g2n = gn, g4n+1 = −g4n+3. (4.1)

This is not so surprising recalling that gn = (−1/n) where (·/n) is the Jacobi symbol modulo

n.

Let G(z) =
∑

n≥1 gnz
n be the generating function for the sequence G. Note that G(z)

is holomorphic inside the unit disk. The recurrence relations in (4.1) lead to a functional

equation for G(z).

Lemma 4.12. If G(z) =
∑

n≥1 gnz
n, then

G(z2) = G(z)− z

1 + z2
.
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Proof. This is directly given by the recurrences for G. We calculate that

G(z) =
∑
n≥1

gnz
n =

∑
n≥1

g2nz
2n +

∑
n≥1

g4n+1z
4n+1 +

∑
n≥1

g4n+3z
4n+3

=
∑
n≥1

gnz
2n + z

∑
n≥1

g4n+1z
4n + z3

∑
n≥1

g4n+3z
4n

=
∑
n≥1

gnz
2n + z

∑
n≥1

g4n+1z
4n − z3

∑
n≥1

g4n+1z
4n

= G(z2) + (z − z3)
∑
n≥1

z4n

= G(z2) +
z − z3

1− z4
.

A little arithmetic and rearrangement gives the desired result.

Remark 4.13. A functional equation like the one in the above lemma offers a deep interplay

with the theory of finite automata. Indeed, if we consider G(z) ∈ F2[[z]], then since G(z2) =

G(z)2, this function is algebraic over F2(z); more specifically,

G(z)2 −G(z) +
z

1 + z2
= 0.

Since this function is algebraic over F2(z), by a classical theorem of Christol [22], the se-

quence (g(n))n≥1 can be produced by a 2–automaton. For ease of explanation, if we read

the base 2 expansion of n backwards and use the output mapping 2qi − 1 where qi is the

final state, then the 2–automaton in Figure 4.1 generates G. The relationship between mul-

tiplicative functions and finite automata will be discussed in more detail in Chapter 5.

Write

Wm(z) =
m−1∑
k=0

z2k

1 + z2k+1 .

Using the functional equation from Lemma 4.12, we have

G(z2m
) = G(z)−

m−1∑
k=0

z2k

1 + z2k+1

so that

G(z2m
) = G(z)−Wm(z). (4.2)
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Figure 4.1: The 2–automaton that produces the sequence G.

Proposition 4.14. If |z| < 1, then the generating function of G has the closed form

G(z) =
∑
k≥0

z2k

1 + z2k+1 .

Proof. Take the limit as m→∞ in relation (4.2).

Note that

γ = G

(
1
2

)
= lim

m→∞

[
G(2−2m

) +Wm

(
1
2

)]
=
∑
k≥0

1
22k + 2−2k .

Theorem 4.15. The function G(z) is transcendental over C(z).

Proof. Towards a contradiction, suppose that G(z) is algebraic over C[z]; that is, there is

an n ≥ 1 and rational functions q0(z), q1(z), . . . , qn−1(z) such that

G(z)n + qn−1(z)G(z)n−1 + · · ·+ q0(z) = 0 (|z| < 1).

Choose n minimally. By the functional equation of Lemma 4.12 we obtain
n∑
k=0

qk(z2)
[
G(z)− z

1 + z2

]k
= 0 (|z| < 1),
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so that for |z| < 1

P (z) : =
n∑
k=0

qk(z2)[(1 + z2)G(z)− z]k[1 + z2]n−k

=
n∑
k=0

qk(z2)[1 + z2]n−k
k∑
j=0

(
k

j

)
(1 + z2)jG(z)j(−z)k−j = 0.

Thus

Q(z) := qn(z)P (z)− (1 + z2)nqn(z2)
n∑
k=0

qk(z)G(z)k = 0. (4.3)

Inspection of Q(z) gives the k = n term as

qn(z)qn(z2)

 n∑
j=0

(
n

j

)
(1 + z2)jG(z)j(−z)n−j − (1 + z2)nG(z)n

 .

The coefficient of Gn(x) is given when we set j = n in the preceding line, and is

qn(z)qn(z2)
((

n

n

)
(1 + z2)nG(z)n(−z)n−n − (1 + z2)nG(z)n

)
= 0.

Hence (4.3) defines polynomials h1(z), . . . , hn−1(z) such that

Q(z) =
n−1∑
k=0

hk(z)G(z)k = 0.

The minimality of n implies that hk(z) = 0 for k = 0, . . . , n− 1.

Let us now determine hk(z) using the definition of Q(z) from (4.3). We have

Q(z) =
n−1∑
k=0

hk(z)G(z)k

=
n∑
k=0

{
k∑
j=0

(
k

j

)
qn(z)qk(z2)(1 + z2)n−k+jG(z)j(−z)k−j

− (1 + z2)nqn(z2)qk(z)G(z)k.

}

From here we can read off the coefficient of G(z)m as

hm(z) =
n∑

k=m

(
k

m

)
qk(z2)(1 + z2)n−k+m(−z)k−m − (1 + z2)nqm(z).
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Since hn−1(z) = 0, we have

n∑
k=n−1

(
k

n− 1

)
qk(z2)(1 + z2)n−k+n−1(−z)k−(n−1) = (1 + z2)nqn−1(z).

Hence,

qn−1(z2)(1 + z2)n − nz(1 + z2)n−1 = (1 + z2)nqn−1(z),

so that we may focus on the equation

(1 + z2)qn−1(z2)− nz = (1 + z2)qn−1(z).

Write qn−1(z) = a(z)
b(z) , where a(z) and b(z) are polynomials with no common factors. Sub-

stituting and clearing denominators, we obtain

(1 + z2)a(z2)b(z)− nzb(z)b(z2) = (1 + z2)a(z)b(z2). (4.4)

Using simple divisibility rules, (4.4) gives the following two conditions:

(i)
b(z)
G(x)

∣∣∣∣ (1 + z2)
b(z2)
G(x)

and (ii)
b(z2)
G(x)

∣∣∣∣ (1 + z2)
b(z)
G(x)

,

where G(x) = gcd(b(z), b(z2)). Recall that (1 + z2) = (1 + iz)(1− iz).
A side note on determining properties of b(z): condition (ii) indicates the degree rela-

tionship, 2 deg b(z) ≤ 2 + deg b(z), and equation (4.4) implies that (z2 + 1) | b(z)b(z2) which

gives 2 ≤ 3 deg b(z). Together this yields a degree condition on b(z) of 1 ≤ deg b(z) ≤ 2,

since the degree must be a positive integer. In light of conditions (i) and (ii), we have

deg b(z) = 2.

Now conditions (i) and (ii) imply that either

(1 + iz) | b(z) and (1− iz)
∣∣ b(z2), (4.5)

or

(1− iz) | b(z) and (1 + iz)
∣∣ b(z2). (4.6)

Given the above conditions, we have two options for b(z):

condition (4.5) =⇒ b(z) = (z + 1)(z − i),

or

condition (4.6) =⇒ b(z) = (z + 1)(z + i).
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Let us assume that condition (4.5) holds and that b(z) = (z + 1)(z − i). Then (4.4)

becomes

(1 + z2)(z + 1)(z − i)a(z2)− nz(z + 1)(z − i)(z2 + 1)(z2 − i) = (1 + z2)(z2 + 1)(z2 − i)a(z).

Removing common factors, the last equation becomes

(z + 1)a(z2)− nz(z + 1)(z2 − i) = (z + i)(z2 − i)a(z). (4.7)

Equation (4.7) implies that (z+ 1) | a(z), and so (z2 + 1) | a(z2). Thus there exist k(z), l(z)

such that

a(z) = k(z)(z + 1) and a(z2) = l(z)(z2 + 1) = l(z)(z + i)(z − i).

Equation (4.7) becomes

(z + 1)l(z)(z + i)(z − i)− nz(z + 1)(z2 − i) = (z + i)(z2 − i)k(z)(z + 1),

implying that

(z + i) | nz(z + 1)(z2 − 1),

which is not possible. Hence it must be the case that b(z) 6= (z+ 1)(z− i), and so condition

(4.5) is not possible.

It must now be the case that condition (4.6) holds, that b(z) = (z + 1)(z + i). Then

(4.4) becomes

(1 + z2)(z + 1)(z + i)a(z2)− nz(z + 1)(z + i)(z2 + 1)(z2 + i) = (1 + z2)(z2 + 1)(z2 + i)a(z).

Removal of common factors yields

(z + 1)a(z2)− nz(z + 1)(z2 + i) = (z − i)(z2 + i)a(z). (4.8)

Similar to the previous case, (4.8) implies that (z + 1) | a(z), and so (z2 + 1) | a(z2). Thus

there exist k(z), l(z) such that

a(z) = k(z)(z + 1) and a(z2) = l(z)(z2 + 1) = l(z)(z + i)(z − i).

Equation (4.8) becomes

(z + 1)l(z)(z + i)(z − i)− nz(z + 1)(z2 + i) = (z − i)(z2 + i)k(z)(z + 1),
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implying that

(z + i) | nz(z + 1)(z2 + i),

which is impossible. Since one of conditions (4.5) or (4.6) must hold, we arrive at our final

contradiction, and the theorem is proved.

We proceed to show that γ is transcendental over Q, by again using Mahler’s method.

Lemma 4.12, Theorem 4.15, and Theorem 3.4 give our next theorem.

Theorem 4.16. The Gaussian Liouville number

γ = G

(
1
2

)
=
∑
k≥0

1
22k + 2−2k

is transcendental over Q.

Proof. Lemma 4.12 gives the functional equation

G(z2) =
(1 + z2)G(z)− z

1 + z2
,

so that, in the language of Theorem 3.4, we have

A(u) = (1 + z2)u− z and B(u) = 1 + z2,

m = 1 < 2 = d, and ai(z), bi(z) ∈ IK [z]. Since B(u) is a constant polynomial in u, we have

∆(z) := Res(A,B) = 1 + z2.

Set α = 1
2 . It is immediate that α = 1

2 is algebraic, 0 < |α| = 1
2 < min{1, R} (R = 1), and

∆(α2k
) = ∆(2−2k

) = 1 + 2−2k+1 6= 0 (k ≥ 0).

Since G(z) is not algebraic over C[z] (as supplied by Theorem 4.15), applying Theorem 3.4,

we have that γ is transcendental over Q.

4.2.3 Transcendence related to character–like functions

A character–like function f associated to p is a completely multiplicative function from N
to {−1, 1} defined by f1 = 1, fp = ±1 (your choice), and fkp+i = fi. As an example, the

completely multiplicative function defined by

fn =

±1 if n = p(
n
p

)
if p - n,
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where
(
n
p

)
is the Legendre symbol modulo p, is a character–like function.

If we let f be a character–like function associated to p, then for F (z) =
∑

n≥1 fnz
n

the generating function of the sequence F := (fn) we have a lemma similar to the previous

subsections.

Lemma 4.17. The generating function F (z) of the sequence F satisfies the functional equa-

tion

F (z) = fpF (zp) +
Φ(z)

1− zp
,

where Φ(z) =
∑p−1

i=1 fiz
i.

Proof. We have

F (z) =
∑
k≥0

p−1∑
i=1

fpk+iz
pk+i +

∑
k≥1

fpkz
pk

=
p−1∑
i=1

fiz
i
∑
k≥0

zpk + fp
∑
k≥1

fkz
pk

=
∑p−1

i=1 fiz
i

1− zp
+ fpF (zp).

Theorem 4.18. The function F (z) is transcendental.

Proof. Note that since z = 1 is a root of 1 − zp and Φ(1) =
∑p−1

i=1 (i/p) = 0, the rational

function Φ(z)
1−zp may be written as the ratio of two polynomials, both of which have degree

strictly less than p. Hence an application of Theorem 3.13 gives the result.

Using the functional equation, we yield

F (zp) = fpF (z)− fp
Φ(z)

1− zp
.

We can build a series for the number as before. The functional equation gives

F (zp
m

) = fpF (zp
m−1

)− fp
Φ(zp

m−1
)

1− zpm

= f2
pF (zp

m−2
)− f2

p

Φ(zp
m−2

)
1− zpm−1 − fp

Φ(zp
m−1

)
1− zpm

= fmp F (z)−
m∑
k=1

fkp
Φ(zp

m−k
)

1− zpm−k+1 ,
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which when rearranged leads to

F (z) = fmp F (zp
m

) +
m∑
k=1

fm−kp

Φ(zp
m−k

)
1− zpm−k+1 .

We change the index and set

Vm(z) :=
m−1∑
k=0

fkp
Φ(zp

k
)

1− zpk+1

to give

F (z) = fmp F (zp
m

) + Vm(z).

Proposition 4.19. The generating function F (z) has the closed form

F (z) =
∑
k≥0

fkp
Φ(zp

k
)

1− zpk+1 .

Proof. Take the limit as m→∞ in the equation F (z) = fmp F (zp
m

) + Vm(z).

At z = 1/2 we have

F

(
1
2

)
= lim

m→∞

[
fmp F (2−p

m
) + Vm

(
1
2

)]
=
∑
k≥0

fkpΦ(2−p
k
)

1− 2−pk+1 .

Theorem 4.20. For each odd prime p, the number ϕp := F
(

1
2

)
is transcendental.

Proof. Lemma 4.17 gives

F (zp) =
fp(1− zp)F (z)− fpΦ(z)

1− zp
,

where Φ(z) =
∑p−1

i=1 fiz
i. Similar to the specific case of the previous section, using the

language of Mahler’s Theorem, we have

A(u) = fp(1− zp)u− fpΦ(z) and B(u) = 1− zp,

m = 1 < p = d, and ai(z), bi(z) ∈ IC[z]. Again, B(u) is a constant polynomial in u, so that

∆(z) := Res(A,B) = 1− zp.

Set α = 1
2 ; α = 1

2 is algebraic, 0 < |α| = 1
2 < min{1, R} (R = 1), and

∆(αp
k
) = ∆(2−p

k
) = 1− 2−p

k+1 6= 0 (k ≥ 0).

Theorem 4.18 gives that F (z) is not algebraic over C[z] and we may apply Theorem 3.4 to

give the desired result.
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Remark 4.21. Mahler’s Theorem tells us that the values of the power series G(z) and F (z)

are transcendental for any algebraic value of z within their radii of convergence. The special

value of z = 1
2 is focused on only for its relation to the sequences G and F.

Remark 4.22. There is a very powerful theorem of Adamczewski and Bugeaud [1] which

states that if β =
∑

n a(n)b−n is a base b automatic irrational, then β is transcendental.

Their proof uses the Schmidt Subspace Theorem, and avoids Mahler theory. Mahler’s theory

still yields a more complete result, as it gives transcendence of a series at not just the values
1
b for b ≥ 2, but for all algebraic values in the region of convergence. Indeed, it is not known

whether a Mahler–theoretic proof of Adamczewski and Bugeaud’s result is possible.



Chapter 5

(Non)Automaticity

5.1 Automaticity

The general theory of automaticity is not a well–known area to many number theorists.

This section contains background results for those who are not well acquainted with this

theory. Unless otherwise noted, the definitions, theorems, and proofs in this section have

been taken from Allouche and Shallit [6].

Definition 5.1. A k–deterministic finite automaton with output (k-DFAO) is defined to be

a 6–tuple

M = (Q,Σk, δ, q0,∆, τ)

where Q is a finite set of states, Σk = {0, 1, . . . , k − 1} is the finite input alphabet, δ :

Q×Σk → Q is the transition function, q0 ∈ Q is the initial state, ∆ is the output alphabet,

and τ : Q→ ∆ is the output function.

Definition 5.2. We say that the sequence (a(n))n≥0 over a finite alphabet ∆ is k–automatic

if there exists a k–DFAO M = (Q,Σk, δ, q0,∆, τ) such that a(n) = τ(δ(q0, w)) for all n ≥ 0

and all w with [w]k = n.

While the definition of a k–DFAO has a computational appeal, from a theoretical point

of view, for the types of results we are interested in, the setting of Definition 5.2 is more

tractable.

Theorem 5.3. The sequence (a(n))n≥0 is k–automatic if and only if there exists a k–DFAO

M such that a(n) = τ(δ(q0, (n)k)) for all n ≥ 0. Moreover, we may choose M such that

60
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δ(q0, 0) = q0.

Proof. The first direction is clear from the definition. For the other, let M = (Q,Σk, δ, q0,∆,

τ) and define M ′ = (Q′,Σk, δ
′, q′0,∆, τ

′) by

Q′ = Q ∪ {q′0},

δ′(q, b) = δ(q, b) for all q ∈ Q, b ∈ Σk,

δ(q′0, b) =

δ(q0, q) if a 6= 0,

q′0 if a = 0,

τ ′(q′0) = τ(q0),

t′(q) = τ(q) for all q ∈ Q.

For n 6= 0, we have

δ′(q′0, 0
i(n)k) = δ′(q0, (n)k) = δ(q0, (n)k).

Hence

τ ′(δ′(q′0, 0
i(n)k)) = τ(δ(q0, (n)k)).

If we allow the k–DFAO to take the base k expansion of an integer n as input, starting

with the least significant digit, we have the following theorem (see Theorem 5.2.3 of [6]).

Theorem 5.4. The following three conditions are equivalent:

(i) (a(n))n≥0 is a k–automatic sequence.

(ii) There exists a k–DFAO M = (Q,Σk, δ, q0,∆, τ) such that a(n) = τ(δ(q0, w
R)) for all

n ≥ 0 and all finite words w from the alphabet Σk such that [w]k = n.

(iii) There exists a k–DFAO M ′ = (Q′,Σk, δ
′, q′0,∆, τ

′) such that a(n) = τ(δ(q0, (n)Rk )) for

all n ≥ 0.

For those of us are not comfortable with the k–DFAO terminology, the above definition

of a k–automatic sequence can be confusing. Fortunately, there is an equivalent way to view

this concept which, in our opinion, is more intuitive.

Definition 5.5. Let a = (a(n))n≥1 be a sequence with values from a finite set. Define the

k–kernel of a as the set

Kk(a) = {(a(kln+ r))n≥0 : l ≥ 0 and 0 ≤ r < kl}.
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Theorem 5.6. Let k ≥ 2. The sequence a = (a(n))n≥0 is k–automatic if and only if Kk(a)

is finite.

Proof. Let k ≥ 2. Suppose that a = (a(n))n≥0 is k–automatic sequence. Then it follows

from Theorem 5.4 that there is a k–DFAO M = (Q,Σk, δ, q0,∆, τ) such that

a(n) = τ(δ(q0, (n)Rk 0t)) ∀t ≥ 0.

Now let q = δ(q0, w
R) where |w| = i and [w]k = j. Since

(kin+ j)k = (n)kw

expect possibly when n = 0, it follows that, for n > 0, we have

δ(q0, (kinj)Rk ) = δ(δ(q0, w
R), (n)Rk ) = δ(q, (n)Rk ).

In the case when n = 0 we have

(kin+ j)k = (j)k,

and w = 0t(j)k for some t ≥ 0. Then

δ(q0, (kinj)Rk ) = δ(q0, (j)Rk ) = δ(q0, (j)Rk 0t) = δ(q0, w
R) = q = δ(q, (0)Rk ).

It follows that the subsequence (a(kin+ j))n≥0 is generated by the k–DFAO (Q,Σk, δ, q,

∆, τ). Since there are only finitely many choices for q, the finiteness of Kk(a) follows.

Now suppose that Kk(a) is finite. Then the set of finite words on Σk is partitioned into

a finite number of disjoint equivalence classes under the equivalence relation

w ≡ x if and only if a(k|w|n+ [w]k) = a(k|x|n+ [x]k)

for all n ≥ 0.

We make a k–DFAO as follows:

Q = {[x] : x is a finite word on Σk}, δ([x], b) = [bx], τ([w]) = a([w]k), q0 = [ε],

where [x] is the equivalence class containing x. We need to see that this definition is

meaningful, that is, if [x] = [w], then δ([x], b) = δ([w], d) and τ([x]) = τ([w]). For the first,

we need [bx] = [bw]. Now if [x] = [w] then

a(k|w|n+ [w]k) = a(k|x|n+ [x]k)
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for all n ≥ 0. Setting n = km+ b it follows that

a(k|aw|m+ [aw]k) = a(k|ax|m+ [ax]k)

for all m ≥ 0.

For the second assertion we need to see that if

a(k|w|n+ [w]k) = a(k|x|n+ [x]k)

then

a([w]k) = a([x]k).

To do this, set n = 0. We now claim that τ(δ(q0, w
R)) = a([w]k) for all finite words w on Σk.

By induction on |w| we have δ(q0, w
R) = [w]. By the definition of τ the result follows.

Connecting automaticity to transcendence, we have the following beautiful and crucial

theorem of Christol et al. which is essential to the results of this chapter. The proof given

here is our translation from the original French [23].

Theorem 5.7 (Christol et al. [23]). Let Σ be a finite nonempty alphabet, t = (tn) ∈ ΣN ,

and p be a prime number. Then the sequence t is p–automatic if and only if there exists a

field K of characteristic p and an injection α : Σ→ K such that α(t) = (α(tn)) is algebraic

over K(X).

Proof. Suppose that t ∈ ΣN is a p–automatic sequence. Also, let K be a finite field of

characteristic p having at least as many elements as Σ. Thus Σ can be embedded in K.

After renaming the elements of Σ, we may consider t ∈ KN . We show that t is algebraic

over K(X).

Denote the number of elements of K by q := ps.

For r ∈ [q], we consider the application Ar : K[[X]]→ K[[X]] defined by

Ar

(∑
n

vnX
n

)
=
∑
n

vqn+rX
n.

Let N be the semigroup generated by the identity and the Ar under composition. For all

v =
∑

n vnX
n ∈ K[[X]] we associate its orbit

N (v) = {A(v) : A ∈ N}.
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By Theorem 5.6, we know that N (v) is finite if and only if v is q–automatic, that is to say

p–automatic (see [41, Proposition 3.3, p. 107]). Thus N (t) is finite.

Let E be the vector space over K(X) generated by N (t) and F the vector space over

K(X) generated by the gq, where g ∈ N (t). We show initially that E = F . Indeed, if

g1, g2, . . . , gN are a basis of E, then for all g ∈ E we have

g =
N∑
k=1

ckgk

thus

gq =
N∑
k=1

cqkg
q
k

which shows that gq1, g
q
2, . . . , g

q
N is a system of generators of F . Thus

dimF ≤ dimE ≤ cardN (t).

In addition, for all g ∈ N (t), we have

g =
q−1∑
r=0

Xr(Ar(g))q.

However (Ar(g))q ∈ (N (t))q ⊂ F, thus E ⊂ F , so that the preceding inequality gives E = F .

Now let G be the vector space over K(X) generated by products of the type∏
g∈N (t)

gβ(g),

where β : N (t) → N is not identically zero. Then t ∈ G, where G is a ring with tG ⊂ G.

However, a classical result [69, p. 2] gives the implication

dimG <∞ ⇒ t is algebraic

and the degree of t is bounded by dimG. Thus to establish that t is algebraic is suffices to

show that G has finite dimension.

Let g ∈ N (t). Then since E = F , we have that gq is a linear combination of h ∈ N (t)

with coefficients in K(X). Consequently, G is generated by the products∏
g∈N (t)

gβ(g) where β(g) < q.
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It follows that

dimG ≤ qcardN (t) − 1.

This gives the first implication of the theorem.

For the other direction let K be a finite field of characteristic p of q = ps elements,

f = (fn) a sequence algebraic overK(X), α an injection of Σ intoK, and t = (tn) = (α−1fn).

We show below that t is q–automatic, and hence by [41] t is p–automatic, which gives that

f is q–automatic.

We use the same notations as above. As we have already seen, it suffices to show that

N (f) is finite.

Since f is algebraic over K(X), the vector space generated by the fn (n ∈ N) has finite

dimension over K(X), and thus there exist a0, . . . , ak in K[X] not all zero such that

k∑
i=0

aif
qi

= 0.

Let j be the least integer for which there is a relation of the preceding type with aj 6= 0.

We show that j = 0. Indeed, since

aj =
q−1∑
r=0

Xr(Ar(aj))q,

there exists an r with Ar(aj) 6= 0.

From the relation
∑k

i=j aif
qi

= 0, we deduce that
∑k

i=j Ar(aif
qi

) = 0, and taking into

account that for g and h in K(X) we have Ar(gqh) = gAr(h), and supposing j 6= 0, we have

k∑
i=j

Ar(ai)f q
i−1

= 0

which is a relation of the preceding type where the coefficient of f q
j−1

is different from 0,

which is in contradiction to the hypothesis made on j.

Thus we have the relation
k∑
i=0

aif
qi

= 0 with a0 6= 0.

Writing g = f/a0, we have

g =
k∑
i=1

big
qi

where bi = −aiaq
i−2

0 ∈ K[X].
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Let N = sup(deg a0, supi=1,...,k deg bi), and let H be the set of h ∈ K[[X]] of the form

h =
k∑
i=0

cig
qi
, ci ∈ K[X], deg ci ≤ N,

H is a finite set, and f = a0g belongs to h. It suffices to show that H is stable under

applications Ar.

However, if h belongs to H, we have

Ar(h) = Ar

(
c0g +

k∑
i=1

cig
qi

)
= Ar

(
k∑
i=1

(c0bi + ci)gq
i

)
=

k∑
i=1

Ar(c0bi + ci)gq
i−1
.

Since deg(c0bi + ci) ≤ 2N , we have that degAr(c0bi + ci) ≤ 2N/q ≤ N and consequently

Ar(h) belongs to H, which finishes the proof of the theorem.

For the remainder of this chapter, we rely heavily on the following corollary of the

previous theorem of Christol et al.

Corollary 5.8. Let Fp be a finite field and (a(n))n≥0 be a sequence with values in Fp. Then,

the sequence (a(n))n≥0 is p–automatic if and only if the formal power series
∑

n≥0 a(n)Xn

is algebraic over Fp(X).

5.2 (Non)Automaticity of arithmetic functions

In Banks, Luca, and Shparlinski [8], it is shown that the series∑
n≥1

f(n)Xn ∈ Z[[X]] (5.1)

is not a rational function with coefficients in Z when f is taken to be any of the number–

theoretic functions

ϕ, τ, σ, λ, µ, ω,Ω, p, or ρ. (5.2)

Here ϕ(n), the Euler totient function, is the number of positive integers m ≤ n with

gcd(m,n) = 1, τ(n) is the number of positive integer divisors of n, σ(n) is the sum of

those divisors, ω(n) is the number of distinct prime divisors of n, Ω(n) is the number of

total prime divisors of n, λ(n) = (−1)Ω(n) is Liouville’s function, µ(n) is the Möbius function
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defined by

µ(n) =


1 if n = 1,

0 if k2 | n for some k ≥ 2,

(−1)ω(n) if k2 - n for all k ≥ 2,

p(n) is the n–th prime number, and ρ(n) = 2ω(n) counts the number of square–free positive

divisors of n.

In the course of this investigation we give, or give reference to, results showing that the

series
∑

n≥1 f(n)Xn ∈ Z[[X]] is transcendental over Z(X), for all of the functions f in (5.2).

In most cases, the stronger result of transcendence of the series in Fp[[X]] over Fp(X) is

shown. To get at these stronger results we rely upon Corollary 5.8.

Since any algebraic relation in Z(X) is an algebraic relation in Fp(X), we have

Lemma 5.9. Let p be a prime. If a series F (X) ∈ Z[[X]] and its termwise reduction

F̄ (X) ∈ Fp[[X]] is transcendental over Fp(X), then F (X) ∈ Z[[X]] is transcendental over

Z(X).

Between Allouche [3] and Yazdani [98] we have that for any prime p, the series (5.1) is

transcendental over Fp(X) (and so over Z(X) by the lemma) for f = ϕ, τk, σk, and µ. Recall

that

τk(n) := #{(a1, a2, . . . , ak) : a1a2 · · · ak = n, ai ∈ N for i = 1, . . . , k}

and σk(n) is the sum of the kth powers of the divisors of n (note that τ2(n) = τ(n) and

σ1(n) = σ(n)). In the previous chapter we showed that the series (5.1) is transcendental

over Z(X) for any completely multiplicative function f : N→ {−1, 1} that is not identically

1; this includes f = λ. We summarize in the following two theorems.

Theorem 5.10 (Allouche [3], Yazdani [98]). The series
∑

n≥1 f(n)Xn is transcendental

over Fp(X) for f = (g mod v) with g = ϕ, τm, σm, and µ where m ≥ 1 and v ≥ 2.

Theorem 5.11. The series
∑

n≥1 f(n)Xn is transcendental over Z(X) for any nontrivial

completely multiplicative function taking values in {−1, 1} (this includes f = λ).

In Section 5.3, answering a question of Yazdani [98], we give the main result of this

chapter is an improvement of Theorem 5.11.

Theorem 5.12. Liouville’s function λ is not k–automatic for any k ≥ 2, and hence∑
n≥1 λ(n)Xn ∈ Fp[[X]] is transcendental over Fp(X) for all p > 2.
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We can use Theorem 5.12 to prove a similar result for Ω(n). We also use the following

direct consequence of the definition of automaticity.

Remark 5.13. Let t : N → Y and Φ : Y → Z be mappings. If (t(n))n≥1 is k–automatic

for some k ≥ 2, then (Φ(t(n)))n≥1 is also k–automatic.

Note that the values of Ω(n) viewed modulo 2 satisfy

(Ω(n) mod 2) =
1− λ(n)

2
.

Using this relationship, Remark 5.13 and Theorem 5.12 give the following corollary.

Corollary 5.14. The function (Ω(n) mod 2) is not 2–automatic. Furthermore, the series∑
n≥1 Ω(n)Xn is transcendental over both F2(X), and Z(X).

Ritchie [86] showed that the characteristic function of the squares is not 2–automatic.

Combining this result with Remark 5.13 gives a nice corollary regarding τ(n).

Corollary 5.15. The sequence (τ(n) mod 2) is not 2–automatic. Hence
∑

n≥1 τ(n)Xn is

transcendental over both F2(X) and Z(X).

Proof. The function τ(n) taken modulo 2 is the characteristic function of the squares.

One of the nicest results in this area is that of Hartmanis and Shank on the non–

automaticity of the characteristic function of the primes.

Theorem 5.16 (Hartmanis and Shank [56]). The characteristic function of the primes, χP ,

is not k–automatic for any k ≥ 2.

In Section 5.3, we give new (short and analytic) proofs of Theorem 5.16, as well as its

extension to all prime powers, and Corollary 5.14. Many other functions, such as ρ, are

also considered in this section. In Section 5.4, we also address unbounded multiplicative

functions using the generalization of k–automatic sequences to k–regular sequences.

The differences in transcendence over Z(X) and Fp(X) are quite pronounced. Theo-

rem 5.11 gives transcendence over Z(X) of a very large class of functions, many of which

are k–automatic for some k ≥ 2 and hence their reduction over some finite field is alge-

braic. For those (f(n))n≥0 that are automatic, one can use the theory of Mahler [73, 83]

to give transcendence results regarding the values of the series
∑

n≥1 f(n)Xn ∈ Z[[X]]. For

non–automatic sequences almost no progress has been made. For example, the following

conjecture is still open.
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Conjecture 5.17. Let f : N → {−1, 1} be a completely multiplicative function for which

f(p) = −1 for at least one prime p. Then the number
∑

n≥1 f(n)2−n is transcendental over

Q.

Remark 5.18. As some support for this conjecture, we may focus on those sequences

here which are automatic. By Theorem 4.8, all of the numbers described in Conjecture

5.17 are irrational. A theorem of Adamczewski and Bugeaud [1], implies that if (f(n))n≥1

from Conjecture 5.17 is k–automatic for some k ≥ 2, then the number
∑

n≥1 f(n)2−n is

transcendental over Q.

5.3 Dirichlet series and (non)automaticity

We rely heavily on a theorem of Allouche, Mendès France, and Peyière [5], and also on the

details of its proof. Before preceding to this theorem, we need some additional properties

of k–automatic sequences (see [5] for details).

Let k ≥ 2 and (u(n))n≥1 be a k–automatic sequence with values in C. Then there exist

an integer t ≥ 1 and a sequence (Un)n≥1 with values in Ct (which we denote as a column

vector) as well as k matrices of size t× t denoted by A1, A2, . . . , Ak, with the property that

each row of each Ai has exactly one entry equal to 1 and the rest equal to 0 (he fact that these

are ones and zeros comes from the finiteness of the k–kernel of (u(n))n≥1), such that the

first component of the vector (Un)n≥1 is the sequence (u(n))n≥1 and for each i = 1, 2, . . . , k,

and for all n ≥ 1, we have

Ukn+i = AiUn.

Theorem 5.19 (Allouche, Mendès France, and Peyière, [5]). Let k ≥ 2 be an integer

and let (u(n))n≥0 be a k–automatic sequence with values in C. Then the Dirichlet series∑
n≥1 u(n)n−s is the first component of a Dirichlet vector (i.e., a vector of Dirichlet series)

G(s), where G has an analytic continuation to a meromorphic function on the whole complex

plane, whose poles (if any) are located on a finite number of left semi–lattices.

Proof. We follow the proof in [5], but with some slight modifications. Define a Dirichlet

vector G(s) for <s > 1 by

G(s) =
∑
n≥1

Un
ns
.
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Since Ukn+j = AjUn, we have

G(s) =
k−1∑
j=1

∑
n≥1

AjUn
(kn+ j)s

+
∑
n≥1

AkUn
(kn)s

.

Writing I as the t× t identity matrix, we have

(I − k−sAk)G(s) =
k−1∑
j=1

∑
n≥1

AjUn
(kn+ j)s

=
k∑
j=1

Aj
∑
n≥1

k−sn−sUn

(
1 +

j

kn

)−s

=
k∑
j=1

Aj
∑
m≥0

(
s+m− 1

m

)
(−j)mG(s+m)

ks+m
,

and so

(I − k−s(A0 +A1 + · · ·+Ak))G(s) =
k∑
j=1

Aj
∑
m≥1

(
s+m− 1

m

)
(−j)mG(s+m)

ds+m
. (5.3)

Denote A := k−1
∑k

j=1Aj and byM(X) the transpose of the comatrix of (A−XI), so that

M(X)(A−XI) = (A−XI)M(X) = det(A−XI)I.

Multiplying (5.3) by M(ks−1), we have

det(A− ks−1I)G(s) = −M(ks−1)
k∑
j=1

Aj
∑
m≥1

(
s+m− 1

m

)
(−j)mG(s+m)

ks+m
. (5.4)

For a given s ∈ C, the function G(s + m) is bounded for m large enough. Thus the right–

hand side of (5.4) converges for <s > 0, so that this gives a meromorphic continuation

to <s ∈ (0, 1] with possible poles at points s for which ks−1 is an eigenvalue of A. If

<s ∈ (−1, 0], the right-hand side of (5.4) converges with the possible exception of those

s for which ks is an eigenvalue of A. This gives a meromorphic continuation of G to this

region with possible poles at points s for which either ks−1 or ks is an eigenvalue of A.

Continuing this process gives an analytic continuation of G to a meromorphic function on

all of C with possible poles at points

s =
logα
log k

+
2πi

log k
m− l + 1,

where α is an eigenvalue ofA, m ∈ Z, l ∈ N and log is a branch of the complex logarithm.
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Remark 5.20. A one–dimensional version of Theorem 5.19 for the Thue–Morse Dirichlet

series was given by Allouche and Cohen [4]. It is also worth noting that such an infinite

functional equation is classical for ζ(s), the Riemann zeta function, though it is much less

deep than the usual functional equation for ζ(s).

The beauty of the above proof is in the details, which is why we have chosen to reproduce

it here. Note that the possible poles are explicitly given, as is the meromorphic continuation.

This leads to a few nice classifications regarding Dirichlet series.

Proposition 5.21. If the Dirichlet series
∑

n≥1 f(n)n−s is not meromorphically continuable

to the whole complex plane then (f(n))n≥1 is not k–automatic for any k ≥ 2.

Our first application of this is a new proof of the well–known result of Hartmanis and

Shank about the non–automaticity of the characteristic function of the primes.

Proof of Theorem 5.16. In 1920, Landau and Walfisz [68] proved that the Dirichlet series

P (s) :=
∑

p p
−s is not continuable past the line <s = 0. This is a consequence of the identity

P (s) =
∑
n≥1

µ(n)
n

log ζ(ns).

Since ζ(s) has a pole at s = 1, this relationship shows that s = 1/n is a singular point for

all square–free positive integers n. This sequence limits to s = 0. Indeed, all points on the

line <s = 0 are limit points of the poles of P (s) (see [92, pages 215–216] for details) so that

the line <s = 0 is a natural boundary for P (s).

Minsky and Papert [77] were the first to address this question, showing that the char-

acteristic function of the primes is not 2–automatic. Hartmanis and Shank [56] gave the

complete result. Similar to our proof of Theorem 5.16, denoting by

χΠ(n) :=

1 if n is a prime power

0 otherwise,

and using the relationship ∑
n≥1

χΠ(n)
ns

=
∑
k≥1

∑
n≥1

µ(n)
n

log ζ(kns),

we have the corresponding result for prime powers.
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Proposition 5.22. The sequence (χΠ(n))n≥1 is not k–automatic for any k ≥ 2.

Proposition 5.23. Define the function r(n) by 2 · r(n) = ρ(n). The sequence (r(n) mod 2)

is not 2–automatic; hence
∑

n≥1 ρ(n)Xn is transcendental over Z(X).

Proof. This follows from the the fact that (r(n) mod 2) = χΠ(n) and an application of

Proposition 5.22.

As alluded to, the proof of Theorem 5.19 reveals much in the way of details. Indeed, due

to the explicit determination of the poles, we can can provide a very useful classification,

but first, a definition.

Definition 5.24. Denote by R(a, b;T ) the rectangular subset of C defined by <s ∈ [a, b]

and =s ∈ [0, T ], by N∞(F (s), R(a, b;T )) the number of poles of F (s) in R(a, b;T ), and by

N0(F (s), R(a, b;T )) the number of zeros of F (s) in R(a, b;T ).

Proposition 5.25. Let k ≥ 2, (f(n))n≥1 be a k–automatic sequence and let F (s) denote

the Dirichlet series with coefficients (f(n))n≥1. If a, b ∈ R with a < b, then

N∞(F (s), R(a, b;T )) = O(T ).

Hence, if G(s) =
∑

n≥1 g(n)n−s (<s > α for some α ∈ R) is meromorphically continu-

able to a region containing a rectangle R(a, b, T ) for which

lim
T→∞

1
T
N∞(F (s), R(a, b, T )) =∞,

then (g(n))n≥1 is not k–automatic for any k ≥ 2.

Proof. This is a direct consequence of the poles of F being located on a finite number of

left semi–lattices.

From here on, we make systematic use of a classical result by von Mangoldt.

Theorem 5.26 (von Mangoldt [94]). The number of zeros of the function ζ(s) in the

rectangle R(0, 1;T ) is N0(ζ(s), R(0, 1;T )) � T log T .

As a consequence of von Mangoldt’s theorem, we have a new proof of the following

theorem of Allouche [2] (see also [3]).
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Theorem 5.27 (Allouche [2]). The sequence (µ(n))n≥1 is not k–automatic for any k ≥ 2.

Hence the series
∑

n≥1 µ(n)Xn is transcendental over both Fp(X), for all primes p, and

Z(X).

Proof. From the relationship ∑
n≥1

µ(n)
ns

=
1
ζ(s)

(<s > 1),

for the result, we need only show that

lim
T→∞

1
T
N∞

(
1
ζ(s)

, R(0, 1 : T )
)

=∞.

This is given by Theorem 5.26. Application of Proposition 5.25 proves the theorem.

It is note–worthy that our proof for µ(n), and the proof for |µ(n)| below, does not use

Cobham’s theorem [26] on rational densities: if a sequence is k–automatic for some k ≥ 2,

then the density, provided it exists, of the occurrence of any value of that sequence is rational.

In a similar fashion to the above results, using the extention to Dirichlet L–functions of

von Mangoldt’s theorem, we may generalize this result further.

Lemma 5.28. We have N0(L(s, χ), R(0, 1;T )) � T log T .

Corollary 5.29. Let χ be a Dirichlet character. Then (µ(n)χ(n))n≥1 is not k–automatic

for any k ≥ 2.

Proof. This follows directly from the fact that the sequence (µ(n)χ(n))n≥1 is the sequence

of coefficients of the series 1
L(s,χ) . Application of Lemma 5.28 and Proposition 5.25 gives

the desired result.

The proof of Theorem 5.12 rests on substantially more than the previous results of this

investigation; it requires both the Prime Number Theorem in the form below as well as a

very deep result of Selberg.

Theorem 5.30 (Hadamard [53], de la Vallée Poussin [32]). The Riemann zeta function has

no zeros on the line <s = 1.

Theorem 5.31 (Selberg [89]). A positive proportion of the zeros of the Riemann zeta func-

tion lie on the line <s = 1
2 .
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Proof of Theorem 5.12. We use the identity

L(s) :=
∑
n≥1

λ(n)
ns

=
ζ(2s)
ζ(s)

(<s > 1).

Using this identity, the poles of L(s) are precisely the zeros of ζ(s) that are not cancelled by

the zeros of ζ(2s) as well as the pole of ζ(2s) at s = 1
2 . Selberg’s theorem gives a positive

proportion of zeros of ζ(s) on the critical line and the Prime Number Theorem tells us that

there are no zeros on the line <s = 1. By Theorem 5.26, we have

N∞

(
ζ(2s)
ζ(s)

, R

(
1
2
,
1
2

;T
))
� T log T.

Application of Proposition 5.25 gives the result.

Invoking a stronger form of Selberg’s theorem, we may include many more number–

theoretic functions in our investigation.

Theorem 5.32 (Conrey [27]). More than two–fifths of the zeros of the Riemann zeta func-

tion lie on the critical line.

Conrey’s theorem gives the following corollary.

Corollary 5.33. Less than three–tenths of the zeros of the Riemann zeta function lie on

any line <s = α when α 6= 1
2 .

Proof. Recall that if ζ(s) = 0, then by the functional equation ζ(1− s) = 0. The corollary

then follows from the elementary observation that 2 · 3
10 + 2

5 = 1.

Recall that for m ≥ 2

qm(n) =

0 if pm | n for any prime p

1 otherwise.

Hence q2(n) = |µ(n)|.

Theorem 5.34. For k ≥ 2, the functions qm(n) (m ≥ 2) are not k–automatic, and hence

for each m ≥ 2 the series
∑

n≥1 qm(n)Xn is transcendental over both Fp(X), for all primes

p, and Z(X).
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Proof. Note the identities for <s > 1:∑
n≥1

qm(n)
ns

=
ζ(s)
ζ(ms)

(m ≥ 2).

Our result relies on ζ(s)/ζ(mz) for each m ≥ 2 having more than O(T ) poles in some

rectangle. Corollary 5.33 gives

N∞

(
ζ(s)
ζ(ms)

, R

(
1

2m
,

1
2m

;T
))
� T log T.

Application of Proposition 5.25 finishes the proof.

Note that the result for |µ(n)| is already given by that of µ(n) by simply defining Φ to

be the absolute value function and applying Remark 5.13.

5.4 Dirichlet series and (non)regularity

We take the following definition from [6].

Definition 5.35. We say that a sequence S := (s(n))n≥0 taking values in a Z–module R

is a k–regular sequence, or just k–regular, provided there exist a finite number of sequences

over R, {(s1(n))n≥0, . . . , (ss(n))n≥0}, with the property that every sequence in the k–kernel

of S is a Z–linear combination of the si.

Compared to the finiteness of the k–kernel in the case of a k–automatic sequence, the above

definition tells us that the sequence S is k–regular provided the k–kernel of S is finitely

generated.

Using this definition, let k ≥ 2 and (v(n))n≥1 be a k–regular sequence with values in

C. Then similar to the automatic case, there exist an integer t ≥ 1 and a sequence (Vn)n≥1

with values in Ct (which we denote as a column vector) as well as k matrices of size t × t
denoted by B1, B2, . . . , Bk with integer entries (no longer just 1s and 0s as in the automatic

case), such that the first component of the vector (Vn)n≥1 is the sequence (v(n))n≥1 and for

each i = 1, 2, . . . , k, and for all n ≥ 1, we have

Vkn+i = BiVn.

These properties give the analogue of Theorem 5.19 to k–regular sequences. This result is

alluded to in [5, Remark 4].
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Theorem 5.36. Let k ≥ 2 be an integer and let (v(n))n≥0 be a k–regular sequence with

values in C. Then the Dirichlet series
∑

n≥1 v(n)n−s is the first component of a Dirichlet

vector (i.e., a vector of Dirichlet series) G(s), where G has an analytic continuation to a

meromorphic function on the whole complex plane, whose poles, if any, are located on a

finite number of left semi–lattices.

The proof of this theorem is exactly that of Theorem 5.19 with Vi and Bi substituted

for Ui and Ai, respectively, for each i.

We now have the same useful corollaries that we had for k–automatic sequences.

Corollary 5.37. Let k ≥ 2. The following properties hold:

(i) If the Dirichlet series
∑

n≥1 f(n)n−s is not meromorphically continuable to the whole

complex plane then (f(n))n≥1 is not k–regular.

(ii) If G(s) =
∑

n≥1 g(n)n−s (<s > α for some α ∈ R) is meromorphically continuable to

a region containing a rectangle R(a, b, T ) for which

lim
T→∞

1
T
N∞(G(s), R(a, b, T )) =∞,

then (g(n))n≥1 is not k–regular.

Theorem 5.38. The function ϕ(n) is not k–regular for any k ≥ 2.

Proof. From the relationship∑
n≥1

ϕ(n)
ns

=
ζ(s− 1)
ζ(s)

(<s > 2),

and the lack of zeros of ζ(s − 1) in the region 0 ≤ <s ≤ 1 as given by the Prime Number

Theorem, we need only show that

lim
T→∞

1
T
N∞

(
1
ζ(s)

, R(0, 1 : T )
)

=∞.

This is given by Theorem 5.26. Application of the Corollary 5.37 proves the theorem.

Theorem 5.39. For k ≥ 2, the functions ρ(n), τ(n2) and τ2(n) are not k–regular.
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Proof. Note the identities for <s > 1:∑
n≥1

ρ(n)
ns

=
ζ2(s)
ζ(2s)

,
∑
n≥1

τ(n2)
ns

=
ζ3(s)
ζ(2s)

,
∑
n≥1

τ2(n)
ns

=
ζ4(s)
ζ(2s)

.

Our result relies on ζ(s)/ζ(2z) having more than O(T ) poles in some rectangle. This follows

directly from the proof of Theorem 5.34.

Theorem 5.40. The functions ω(n) and Ω(n) are not k–regular for any k ≥ 2.

Proof. This follows from our proof of Theorem 5.16 and the identities∑
n≥1

ω(n)
ns

= ζ(s)
∑
k≥1

µ(k)
k

log ζ(ks), and
∑
n≥1

Ω(n)
ns

= ζ(s)
∑
k≥1

ϕ(k)
k

log ζ(ks)

and the added stipulation that there are no zeros of ζ(s) on the line <s = 0. This is provided

for by the Prime Number Theorem and the symmetry of zeros of the Riemann zeta function

about the critical line as given by the functional equation for ζ(s).

Some of these results can be found from another direction using our knowledge of their

non–automaticity and the following theorem (see Chapter 16 of [6] for details).

Theorem 5.41 (Allouche and Shallit [6]). If the integer sequence (f(n))n≥0 is k–regular,

then for all integers m ≥ 1, the sequence (f(n) mod m)n≥0 is k–automatic.

Thus if there exists an m ≥ 1 for which (f(n) mod m)n≥0 is not k–automatic, then

(f(n))n≥0 is not k–regular. Hence the results of the previous sections give non–regularity

results for each of ω, Ω, τ , and ρ. It is also worth noting that a sequence is k-regular and

takes on only finitely many values if and only if it is k–automatic [6]. This provides a nice

relationship for non–regularity results for characteristic functions like qm (m ≥ 2), χP , and

χΠ.

Remark 5.42. All zeta quotient identities as well as the properties of the Riemann zeta

function that were used in this chapter can be found in Titchmarsh’s monograph [92].

Remark 5.43. While many of the results of this chapter have been shown before, the

use of Dirichlet series to get at the non–automaticity of multiplicative functions has, with

the exception of one paper [5], been ignored. This is somewhat surprising, as it is evident

from the proofs given here that the systematic use of the properties of Dirichlet series,
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and in particular the properties of the Riemann zeta function, along with the vast body

of knowledge concerning the distribution of primes, yields a number of results concerning

automaticity and regularity of number–theoretic functions. It is hoped that this method

will be taken more advantage of in the future.



Chapter 6

Possible future directions

Strewn throughout this thesis there are many natural questions which arise and warrant

consideration. Many of these questions appear very difficult while others will just take more

time. In this chapter, we have gathered many of these questions with the hope of presenting

a clearer picture of where future work surrounding these topics may lead.

6.1 Sums of multiplicative functions

Throughout Chapter 2 we were interested in estimates concerning the partial sums of mul-

tiplicative functions. An important question is: what can be said about the growth of∣∣∣∑n≤x f(n)
∣∣∣ for any function f ∈ F({−1, 1})? This question goes back to Erdős [45].

He states

Finally, I would like to mention an old conjecture of mine: let f(n) = ±1 be an

arbitrary number–theoretic function. Is it true that to every c there is a d and

an m so that ∣∣∣∣∣
m∑
k=1

f(kd)

∣∣∣∣∣ > c?

I have made no progress with this conjecture.

Concerning this conjecture, he adds in [46]

The best we could hope for is that

max
md≤n

∣∣∣∣∣
m∑
k=1

f(kd)

∣∣∣∣∣ > c log n.

79
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We remark that these questions can also be asked for functions f(n) which take

kth roots of unity as values rather than just ±1. However, very little is yet known

for this case.

Our question only pertains to completely multiplicative functions, and in this setting

it may be possible to answer Erdős’ conjecture. It seems that automatic functions in

F({−1, 1}) will give the smallest growth of partial sums. Recall that for p an odd prime

and λp a character–like function, we have

max
N≤x

∣∣∣∣∣∣
∑
n≤N

λp(n)

∣∣∣∣∣∣ � log x.

Our investigations lead us to conjecture the following.

Conjecture 6.1. Let f ∈ F({−1, 1}) be k–automatic for some k ≥ 2. If
∑

n≤x f(n) = o(x),

then maxN≤x
∣∣∣∑n≤N f(n)

∣∣∣ � log x.

6.2 Algebraic character of generating functions

Many of the results of this thesis concern the algebraic character of the generating series of

a multiplicative function. The usual result is to choose a multiplicative function f : N→ R

and show that the series
∑

n≥1 f(n)xn is transcendental over R(x). For example, in the case

of Theorem 5.12 the function f(n) = λ(n) and R = Fp for any p > 2. Results like this lead

us to the following question.

Question 6.2. Let R be a ring and f : N→ R be a multiplicative function. Suppose that∑
n≥1 f(n)xn is algebraic over R(x). What can be said about f(n)?

In the case that R has characteristic zero, the result is known. Bell and Coons [10],

have shown that if R is of characteristic zero and
∑

n≥1 f(n)xn is algebraic over R(x), then

either there is a natural number k and a periodic multiplicative function χ(n) such that

f(n) = nkχ(n) for all n, or f(n) is eventually zero.

The question is much more interesting when we considerR to be of positive characteristic.

No progress has been made in this case, and to the best of our knowledge there are no known

conjectures regarding the case of positive characteristic.
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6.3 Transcendence and functional equations

Theorem 3.13 gives that a non–zero power series F (z) ∈ C[[z]] satisfying

F (zd) = F (z) +
A(z)
B(z)

, (6.1)

where A(z), B(z) ∈ C[z] with A(z) 6= 0 and degA(z),degB(z) < d is transcendental over

C(z).

One should have a similar result for a more general functional equation like

F (zd) =
An(z)
Bn(z)

F (z)n +
An−1(z)
Bn−1(z)

F (z)n−1 + · · ·+ F (z) +
A1(z)
B1(z)

F (z) +
A0(z)
B0(z)

.

The method of proof of Theorem 3.13 should apply to this case as well. In place of binomial

coefficients one would have multinomial coefficients which will make the combinatorics in-

volved much more complicated. We have attempted the case n = 2, but abandoned it since

the details were so messy.

6.4 Transcendental values of series

As the results in Chapter 4 demonstrate, transcendence results on power series are read-

ily available, though there are many open questions concerning their special values. The

question we would most like to answer is that of the transcendence of∑
n≥1

λ(n)
2n

,

though there are many other open questions concerning the algebraic character of values of

generating functions of multiplicative functions.

Erdős [43] was interested in the transcendence, and irrationality, of both
∑

n≥1 τ(n)2−n

and
∑

n≥1 ϕ(n)2−n. The irrationality of the first sum was shown by Borwein [11]; the tran-

scendence is not yet known. Questions regarding the algebraic character of
∑

n≥1 ϕ(n)2−n

remain open. Nesterenko [79] has shown that the number∑
n≥1

λ(n)
2n − 1

is transcendental, but his method does not seem to generalize to help with the case of∑
n≥1 λ(n)2−n.
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6.5 Correlation and diversity

There is much to do concerning the correlation and diversity of arithmetic functions, and it

seems that the available methods and results leave many ideas ripe for development.

Concerning transcendence of power series of generating functions, one need not dig so

deeply to give transcendence results over Z(X) or Q(X) using theorems like the following.

Theorem 6.3 (Fatou [48]). If F (X) =
∑

n≥1 f(n)Xn ∈ Z[[X]] converges inside the unit

disk, then either F (X) ∈ Q(X) or F (X) is transcendental over Q(X).

Carlson [21], proving a conjecture of Pólya, added to Fatou’s theorem.

Theorem 6.4 (Carlson [21]). A series F (X) =
∑

n≥1 f(n)Xn ∈ Z[[X]] that converges

inside the unit disk is either rational or it admits the unit circle as a natural boundary.

Recall that if f(n) = O(nd) for some d, the series F (X) =
∑

n≥1 f(n)Xn ∈ Z[[X]]

has radius of convergence 1, so that by Carlson’s Theorem, such a series is transcenden-

tal over Q(X). This gives very quick transcendence results for series F (X) with f(n) =

ϕ(n), τ(n2), τ2(n), ω(n), and Ω(n). Noting that by the Prime Number Theorem, p(n) ∼
n log n = O(n2), we have the following result for the nth prime number.

Proposition 6.5. The series
∑

n≥1 p(n)Xn ∈ Z[[X]] is transcendental over Q(X), and

hence also over Z(X).

The ideas of k-regularity may be exploitable to give transcendence results using the

following theorem of Allouche and Shallit from [6] and a combination of the above theorems

in this section, though it seems at this point that a case by case analysis would be necessary,

which we believe would not make for easy reading.

Theorem 6.6 (Allouche and Shallit [6]). Let K be an algebraically closed field (e.g., C).

Let (s(n))n≥0 be a sequence with values in K. Let S(X) =
∑

n≥0 s(n)Xn be a formal power

series in K[[X]]. Assume that S represents a rational function of X. Then (s(n))n≥0 is

k–regular if and only if the poles of S are roots of unity.

One may be able to form this into more rigid and inclusive theorems and as such, this

seems a worthy endeavor.

Concerning more specific functions, the non–automaticity of λ(n) (and similarly µ(n))

is somewhat weak compared to the expected properties of the correlation. One expects that
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for any A,B, a, b ∈ N with aB 6= Ab∣∣∣∣∣∣
∑
n≤x

λ(An+B)λ(an+ b)

∣∣∣∣∣∣ = o(x),

so that not only should the k–kernel be infinite, as shown in this chapter, but no two

sequences of λ–values on distinct arithmetic progressions, which are not multiples of each

other, should be equal. In this sense, the Liouville function should be a sort of “worst

case scenario” for non–automaticity concerning multiplicative functions. To make this more

formal, consider the idea of diversity as introduced by Shallit [90, Section 5].

A sequence is said to be k–diverse if every sequence in the k–kernel is distinct. Since

for a completely multiplicative function f , we have f(kn) = f(k)f(n) for all k. If there is a

k > 1 for which f(k) = 1, then f is identical on the two arithmetic progressions kn and n,

and hence the sequence of values of such an f cannot be k–diverse; there is such a k for λ.

This case can be excluded. The following definition is taken from [90].

Definition 6.7. A sequence (s(i))i≥0 is weakly k–diverse if the ϕ(k) subsequences {(s(ki+

a))i≥0 : gcd(a, k) = 1, 1 ≤ a < k} are all distinct. A sequence is weakly diverse if it is weakly

k–diverse for all k ≥ 2.

Using this language, we finish with the following conjecture.

Conjecture 6.8. The sequence (λ(n))n≥1 is weakly diverse.

We can presently think of two possible attacks on this conjecture. Firstly, we can try to

find solutions to the Diophantine equations

(pl1x+ r1)(pl2x+ r2) = cy2 (6.2)

where p is a given prime, l1, l2 ∈ N∪{0}, and we may take a c for which λ(c) = 1 and a c for

which λ(c) = −1. As a first step, if we take r1 = r2 = 1, (6.2) reduces to finding solutions

to

x2
1 − c1y

2 = d,

where

x1 :=
(
pl1+l2x+

pl1 + pl2

2

)
, c1 := pl1+l2c, d :=

(pl1 + pl2)2

4
− 1.

A second possible attack is to try to apply Elliott’s Theorem to the correlation of λ(n).
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Theorem 6.9 (Elliott [42]). Let a,A > 0 and b, B ∈ Z with aB 6= Ab. Let x > 2,

(log x)−
1

100 ≤ δ ≤ 1
3 . let g1 and g2 be complex valued multiplicative functions, of absolute

value at most one, which satisfy

y−1

∣∣∣∣∣∣
∑
n≤y

g1(an+ b)g2(An+B)

∣∣∣∣∣∣ ≥ 1− δ2

uniformly for xδ ≤ y ≤ x.
If there is a character χ modulo a(a, b)−1, and a real τ , |τ | ≤ xδ(log x)−2 for which∑

p≤x

1
p

∣∣1− g1(p)χ(p)pit
∣∣2 ≤ 1

3
log

1
δ
,

then there exists a real µ, |µ| ≤ 1, such that∑
p≤x

1
p

(
1−<g1(p)χ(p)pi(τ+µ)

)
≤ c0

where the constant c0 depends at most on the four integers a,A, b, B.

Just after the statement of this theorem in [42], Elliott writes that “applied to individual

multiplicative functions, such as the Möbius function, Theorem 6.9 appears weak in com-

parison with expected results.” By this statement, one assumes that Elliott has applied this

theorem to the Möbius function, though there is no record of it in the literature.



Appendix A

Proof of Mahler’s Theorem

This appendix contains a proof of Mahler’s Theorem [73] (Theorem 3.4 of this thesis), as

taken verbatim from Nishioka’s book [83]. Here I is the set of algebraic integers over Q,

K is an algebraic number field, IK = K ∩ I, and f(z) ∈ K[[z]] with radius of convergence

R > 0 satisfying the functional equation for an integer d > 1,

f(zd) =
∑m

i=0 ai(z)f(z)i∑m
i=0 bi(z)f(z)i

, m < d, ai(z), bi(z) ∈ IK [z],

and ∆(z) := Res(A,B) is the resultant of A(u) =
∑m

i=0 ai(z)u
i and B(u) =

∑m
i=0 bi(z)u

i as

polynomials in u. Also,

|α| := max{|ασ| : σ ∈ Aut(Q/Q)} and den(α) := min{d ∈ Z : d > 0, dα ∈ I}.

Mahler’s Theorem. Assume that f(z) is not algebraic over K(z). If α is an algebraic

number with 0 < |α| < min{1, R} and ∆(αd
k
) 6= 0 (k ≥ 0), then f(α) is transcendental.

Proof. Suppose that f(α) is algebraic. We may assume α, f(α) ∈ K. Let n be a positive

integer. Then there are n + 1 polynomials P0, P1, . . . , Pn ∈ IK [z] with degrees at most n

such that the auxiliary function

En(z) =
n∑
j=0

Pj(z)f(z)j =
∑
h≥0

bhz
h

is not identically zero and all the coefficients bh, with h < n2, vanish. Since f(z) is not

algebraic over K(z), En(z) is not identically zero. Let H be the least integer such that

bH 6= 0. Then H > n2. Since

lim
z→0

En(z)z−H = bH ,

85
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we have for any k ≥ c1(n),

0 6= |En(αd
k
)| ≤ c2(n)|α|dkH ≤ c2|α|d

kn2
. (A.1)

There are polynomials S(z, u), T (z, u) ∈ IK [z, u] such that

∆(z) = S(z, u)
m∑
i=0

ai(z)ui + T (z, u)
m∑
i=0

bi(z)ui.

Hence

∆(α) = S(α, f(α))
m∑
i=0

ai(α)f(α)i + T (α, f(α))
m∑
i=0

bi(α)f(α)i.

Suppose that
∑m

i=0 bi(α)f(α)i = 0. Since(
m∑
i=0

bi(α)f(α)i
)
f(αd) =

m∑
i=0

ai(α)f(α)i,

we get
∑m

i=0 ai(α)f(α)i = 0 and so ∆(α) = 0. This contradicts the assumption. Therefore∑m
i=0 bi(α)f(α)i 6= 0 and f(αd) ∈ K. preceding in this way, we see that f(αd

k
) ∈ K and

therefore En(αd
k
) ∈ K (k ≥ 0). Define Yk (k ≥ 0) inductively as follows,

Y1 =
m∑
i=0

bi(α)f(α)i,

Yk+1 = Y m
k

m∑
i=0

bi(αd
k
)f(αd

k
)i, k ≥ 1.

Then Yk ∈ K and Yk 6= 0 (k ≥ 0). We estimate |Y n
k En(αdk)| and den(Y n

k En(αd
k
)). Let

degz(b)i(z) ≤ l, |α|, |f(α)| ≤ c3 (c3 > 1) and D a positive integer such that Dα,Df(α) ∈ I.

Then we have

|Y1| =

∣∣∣∣∣
m∑
i=0

bi(α)f(α)i
∣∣∣∣∣ =

m∑
i=0

|bi(α)| |f(α)|i ≤ c4c
l
3c
m
3 ,

|Y1f(αd)| =

∣∣∣∣∣
m∑
i=0

ai(α)f(α)i
∣∣∣∣∣ =

m∑
i=0

|ai(α)| |f(α)|i ≤ c4c
l
3c
m
3

and

Dl+mY1, D
l+mY1f(αd) ∈ I.

Since Y2 = Y m
1

∑m
i=0 bi(α

d)f(αd)i and Y2f(αd
k
) = Y m

1

∑m
i=0 ai(α

d)f(αd)i, we have

|Y2|, |Y2f(αd2)| ≤ (c4c
dl
3 )(c4c

l+m
3 )m
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and

Ddl(Dl+m)mY2, D
dl(Dl+m)mY2f(αd

2
) ∈ I.

preceding in this way, we obtain

|Yk|, |Ykf(αdk)| ≤ c1+m+···+mk−1

4 (cl3)d
k−1+dk−2m+···+mk−1

cm
k

3

and

(Dl)d
k−1+dk−2m+···+mk−1

Dmk
Yk ∈ I,

(Dl)d
k−1+dk−2m+···+mk−1

Dmk
Ykf(αd

k
) ∈ I.

By the assumption m < d, we have

dk−1 + dk−2m+ · · ·+mk−1 = dk−1

(
1 +

m

d
+ · · ·+

(m
d

)k−1
)
≤ c5d

k−1,

where we take a positive integer as c5. Hence

|Yk|, |Ykf(αdk)| ≤ cc5d
k−1

4 (cl3)c5d
k−1

cd
k

3 ≤ cd
k

6

and

Ddk

0 Yk, D
dk

0 Ykf(αd
k
) ∈ I, D0 = Dlc5+1.

Since

Y n
k En(αd

k
) =

n∑
j=0

Pj(αd
k
)Y n−j
k

(
Ykf(αd

k
)
)j
,

we obtain

|Y n
k En(αdk)| ≤ c7(n)cd

kn
3 cd

kn
6 , D2dk

0 Y n
k En(αd

k
) ∈ I. (A.2)

By (A.1), (A.2) and the fundamental inequality,

dkn log c6 + log c2(n) + dkn2 log |α| ≥ log |Y n
k En(αd

k
)|

≥ −2[K : Q](log c7(n) + dkn log c3c6 + 2dkn logD0),

for k > c1(n). Dividing both sides above by dk and letting k tend to infinity, we have

n log c6 + n2 log |α| ≥ −2[K : Q](n log c3c6 + 2n logD0).

Dividing both sides above by n2 and letting n tend to infinity, we have log |α| ≥ 0, a

contradiction.
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et substitutions. Bull. Soc. Math. France, 108(4):401–419, 1980.

[24] A. Cobham. A proof of transcendence based on functional equations. RC-2041, IBM
Research Division, Yorktown Heights, New York, 1968.

[25] A. Cobham. On the base-dependence of sets of numbers recognizable by finite automata.
Math. Systems Theory, 3:186–192, 1969.

[26] A. Cobham. Uniform tag sequences. Math. Systems Theory, 6:164–192, 1972.

[27] J. B. Conrey. More than two fifths of the zeros of the Riemann zeta function are on
the critical line. J. Reine Angew. Math., 399:1–26, 1989.

[28] M. Coons. The prime number theorem: a parity perspective. preprint.

[29] M. Coons. Extension of some theorems of W. Schwarz. Canadian Math. Bulletin, to
appear.

[30] M. Coons. (Non)Automaticity of number theoretic functions. J. Théor. Nombres
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