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Abstract-- This paper presents the study of the
representation of compact mappings in Hilbert Space . Here
we denote the Scalar Product of two elements (x,y) of a (real
or complex ) Hilbert Space by (x,y). Here it is proved in this
paper that the study of compact mappings in Hilbert Space is
a consequence of the spectral theory of compact Symmetric
operators.
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I. INTRODUCTION

Hall (1) and Kothe (2,3) are the pioneer worker of the
present area . In fact , the present work is the extension of
work done by Wong , Yau- Chuen (10) , Srivastava et al .
(4), Srivastava et al. (5), Srivastava et al. (6) , Srivastava et
al .(7), Kumar et al. (8) and Srivastava et al.(9). In this
paper we have studied analytically about compact mapping
in Hilbert Space.

Here , we use the following definitions, Notations and
Fundamental ideas :

If M and N are subspaces of a Linear space X such
that every xeX can be written uniquely as x =y + z
where y € M & z €N then the direct sum of M and N
can also be written X= M @& N where N is called
complimentary subspace of M in X and if M n N =
{0 }, the decomposition x =y + z is unique.

A given subspace M has many complimentary
subspaces and every complimentary subspace of M has
the same dimension and the dimension of a
complimentary subspace is called co-dimension of M
in X , as if X = R*and M is a plane through the origin
then any line through the origin that does not lie in M
is a complimentary subspace.

If X =M @ N then we define the projection P: X
— X of X onto M along N by Px =y, where x = y+z
withy € M, Z eN which is Linear with ran P = M and
ker P = N satisfying P> =P .

149

This property characterizes projections for which the
following definitions and theorems follow : -

Definition 1: Any projection associated with a direct
sum decomposition of a projection on a Linear space X
is a linear map P:X — X such that P2 = P
Definition 2: An orthogonal projection on a Hilbert
space H is also a Linear mapping P:H — H satisfying
P? = P, <Px,y> = <x, Py> forall x, y € H.

“An orthogonal projection is necessarily bounded.”

Theorem 1 : Let X be a linear space,

(i) If P:X — X is a projection then X =ran P &
kerP

(i) If X =M @ N where M and N are Linear
subspaces of X then there is a projection P:X
— X withran P =M and ker P = N.

Proof:

For (i) We show that x € ran P if x = Px

If x = Px then clearly x € ran P

If xe ran P then x = Py for some y € x

And since P? = P which follows that Px = P?y = Py = x
If x € ran P n kerP then x =Px & Px =0

Soran P m kerP = {0}. If x € X then

We have x = Px + (x- Px) ; where Px € ran P and (x —
Px) e kerP .

Since P (x- Px) = Px - P2 = Px -Px = 0
Thus X =ranP @ kerP. ............coooiiiin .. (L.1)
Now for (ii)

We consider if X = M@ N then x € N has unique

decomposition x = y+z withye M & Z e Nand Px =y
defines the required Projection .
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In particular, in orthogonal subspaces while using
Hilbert Space, let us suppose that M is a closed
subspace of Hilbert Space H then by well known
property we have H = M® M* . We call the projection
of H on to M along M* the orthogonal projection of H
onto M.

If x=y+z and x; = y; + z; where y, y; € M and z, z;
e M* then by orthogonality of M and M* = <Px, x;>
= <y! yl +Zl> = <y! yl> = <y+Z, y1>

Which states that an orthogonal projection is self
Adjoint. We show the properties (1.1) and (1.2)
characterize orthogonal projections with Defn-2 .

Lemma :- If P is a non zero orthogonal projection then
IIPII=1.

Proof : - If x € H and Px # 0 then by Cauchy Schwarz
inequality ,

| Px|| = <Px,Px>= <x,P’x>= <x,Px><|X||
I Px[l [ Px]l I Px ]

Therefore || P || < 1. If P # 0 then there is an x €H
with Px # 0 and || P(Px) || = || Px || sothat || P]| > 1.

Thus, the Orthogonal Projection P and closed
subspace M of H such that ran P = M will must obey
one -—one correspondence, then the kernel of
Orthogonal Projection is the Orthogonal Complement
of M.

Example .1 — The space L? (R) is the Orthogonal direct
sum of space M of even functions and the space N of
odd functions .

The Orthogonal Projection P and Q of H onto M and
N, respectively are given by

PF(X)= f(X)+f(-x) ,Qf(x)=f(x)—f(-x)
2 2
Where I-P=Q.

Proposition: (a) A Linear functional on a Complex
Hilbert space H is a Linear map from H to C. A Linear
functional ¢ is bounded or continuous, if there exists a
constant M such that [ @ (x) | <M || x| forall x e H .

The norm of bounded linear functional ¢ is

¢l =suple(X) |

x|=1
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If y e Hthen g, (X) =<y, x>isabounded Linear
functional on H, with

oy =11yl

(b) If @ is a bounded Linear functional on a Hilbert
space H, then there is a unique vector y € H such that

o (X)=<y, x> forall x e H

Theorem.2 : (Riesz representation) If ¢ is a bounded
linear functional on a Hilbert space H , then there is a
unique vector y € H such that

o (X)=<y,x> forall xeH.

Proof. If =0, theny =0, so we suppose that ¢ # 0.
In that case , ker ¢ is a proper closed subspace of H.
and , it implies that , there is a nonzero vector

ze Hsuch that z L kere. We define a linear map P : H
—H by

Px =0 (X) /o (2) .z

Then P? = P, so Theorem 1 implies that , H = ran P
@ kerP. Moreover,

ran P ={az|aeC}, kerP = ker¢

So that ran P 1 ker P.
orthogonal projection, and

It follows that P is an

H ={az|aeC} @ kero is an orthogonal direct sum.
We can therefore write

X € Has x=az +n, aeC and n e kerg.
Taking the inner product of this decomposition with
z, we get
a =<z, x>/l z 11, and evaluating ¢ on x = az +
n,we find that
¢ (X)=ae(2).

The elimination
a from these equations, and a rearrangement of the
result

yields ¢ (X) =<y, X >, where y=o @/ zI1%z

Thus, every bounded linear functional is given by
the inner product with a fixed vector.We have already ,
seen that ¢, (X) = <y, x > defines a bounded linear
functional on H foreveryy € H..
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To prove that there is a unique y in H associated
with a given linear functional, suppose that @y = ¢y> .
Then oy1(y) = @y2(y). When y= y;- y, , which implies
that 1y, —y, 11 =0,s0y; =Y, .

The Map J :H—>H* given by J, =¢, , therefore
identifies a Hilbert space H with its dual space H*. The
norm of ¢, is equal to the norm of y, so j is an
isometry . In this case of complex Hilbert spaces , J is
antilinear , rather than linear, because ¢,, = Ao, Thus,
Hilbert spaces are self — dual , meaning that H and H*
are isomorphic as Banach spaces, and anti-isomorphic
as Hilbert spaces. Thus Hilbert spaces are special
in this respect. This completes the proof of the
Theorem 2.

Proposition : (¢) An important consequences of the
Riesz representation theorem is the existence of the
adjoint of a bounded linear operator on a Hilbert space.
The defining property of the adjoint A* « B(H) of an
operator A € B(H) is that

<X, Ay > = <A*x |y > forall x,y e H

The Uniqueness of A* is obvious . The definition

implies that
(A*)*= A, (AB)* =B*A*

To prove that A* exists , we have to show that for
every xeH , there is a vector zeH , depending linearly
on x such that

<z,y>=<x,Ay> forally e H

For fixed x , the map ¢« defined by, oy (y) = < X,
Ay > is a bounded linear functional on H , with 11¢,lI
< HAII lIxIl . By the Riesz representation Theorem,
there is a unique z € H such that o4 (y) =<1z, y > . This
z satisfies (2.3), So we get A*x = z . The linearity of
A* follows from the uniqueness in the Riesz
representation theorem and the linearity of the inner
product.

Thus, from above definitions , Theorems, Leema ,
example , Propositions (a), (b),& (C), which Shows the
proof of the main result as “the representation of
compact mappings of Hilbert Spaces is a Consequence
of the Spectral theory of Compact symmetric operators.

1) Let H;, H, be Hilbert spaces, Ae £ (Hy,H,) compact
and not of finite rank . Then, there exists orthonormal
systems , e, , n = In H; and {f, }, n=

in H, such that oo
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2)AX=X A, (X €,) f,, x € H, where &,> 0 and A, —
0.
n=1

Proof :- Since A is Compact , A*A is Compact too and
positive , where A* denotes the adjoint in the sense of the
scalar product . It follows from Spectral theory that there
exists an orthonormal sequence of eigen vectors e, , n=
1,2,3,........ and eigen values A2 >0, A2 —0 such that

e 0]
A* A =2 07 (X, €n) en,
n=1

A*A is zero on the orthonormal or complement H of the
closed subspace spanned by all the e, . But then A is zero
too on H.

Take y € H and suppose A, #0.

Then (A, , A)) = (v, A*A, ) # 0. But this would imply
A*A, 10, Therefore we have a representation

o0
Ac=X A (X, ey) Ae,
n=1

We now define
f, =@/ A )Ae,. Then

o0
A= M (X, &) T,
will be proved if we Show
n=1
that { f, } is an orthonormal systems.

and other proposition

But (fi fi) = (A Aei, i Aey)
=% " M (A*Ae e )
=n7" T (e ek)
=ik
3) Conversely every mapping A € £(H,H,) which has a
representation (2) with
A >0, A, —0 is compact.
K
Let Acbe 3 A (X, e )fa, lI(A - Ay )x II?
n=1

o0
<IM I(x,en) P
n=k+1

<l x|, itis I 1<e  for n>k(e).
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Thus A is compact as the limit of A, in £, (H;, H,) .
From this proof and (1) follow immediately.

4) Let H;, H, be Hilbert Spaces. Then every compact
A € £ (Hy, Hy) is the limit of a sequence of mappings
of finite rank.

Then A, of (2) are called the singular values of A and
the non- increasing sequence of all singular values of A is
uniquely determined by A , the representation (2) can be
written in a different way using linear forms instead of
scalar product for the coefficients of the f, .

The scalar product (x,y) in Hilbert space H is linear in x
for y fixed , thus it defines a linear functional, <V , x >=
(x,y), where ¥ is uniqually determined . One calls ¥ the
Conjugate element to y. There exists an Orthonormal basis
{e, }, a e A, of Hsuch that

For x=X¢&,e, VY

o

=21, €

o

(XY)=Z&n=<Y,x >

o

" Since this is true for all x € H , if follows that ¥ = X
Mo €q -
The coefficients of V¥V are the Conjugate of the

coefficients of y.
Hence the Result.
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