

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 10, October 2016)

Analytical Study of Compact Mapping in Hilbert Space

Nirmal Kumar¹, Chandra Shekher Prasad², MD. Shahabuddin³, Umesh Kumar Srivastava⁴

Department of Mathematics

¹Research Scholar in M.Phil, University Department of Mathematics , B.R.A. Bihar University , Muzaffarpur – 842001, Bihar, India .

²L.N.T. College, Muzaffarpur – 842002, B.R.A. Bihar University, Muzaffarpur – 842001, Bihar, India.

³P.R.R.D. College, Bairgania, Sitamarhi – 843313, B.R.A. Bihar University, Muzaffarpur – 842001, Bihar, India.

⁴R.S.S. College Chochahan, P.O.- Aniruddh Belsar, Dist. – Muzaffarpur- 844111, B.R.A. Bihar University, Muzaffarpur – 842001, Bihar, India.

Abstract-- This paper presents the study of the representation of compact mappings in Hilbert Space . Here we denote the Scalar Product of two elements (x,y) of a (real or complex) Hilbert Space by (x,y). Here it is proved in this paper that the study of compact mappings in Hilbert Space is a consequence of the spectral theory of compact Symmetric operators.

Keywords-- Hilbert Space, Compact mapping , Spectral theory of compact Symmetric operators, Orthogonal projection , Riesz Representation, Scalar Product.

I. INTRODUCTION

Hall (1) and Kothe (2,3) are the pioneer worker of the present area . In fact , the present work is the extension of work done by Wong , Yau- Chuen (10) , Srivastava et al . (4), Srivastava et al. (5), Srivastava et al. (6) , Srivastava et al . (7), Kumar et al. (8) and Srivastava et al. (9). In this paper we have studied analytically about compact mapping in Hilbert Space.

Here , we use the following definitions, Notations and Fundamental ideas :

If M and N are subspaces of a Linear space X such that every $x \in X$ can be written uniquely as x = y + z where $y \in M$ & $z \in N$ then the direct sum of M and N can also be written $X = M \oplus N$ where N is called complimentary subspace of M in X and if $M \cap N = \{0\}$, the decomposition x = y + z is unique.

A given subspace M has many complimentary subspaces and every complimentary subspace of M has the same dimension and the dimension of a complimentary subspace is called co-dimension of M in X, as if $X = R^3$ and M is a plane through the origin then any line through the origin that does not lie in M is a complimentary subspace.

If $X = M \oplus N$ then we define the projection $P: X \to X$ of X on to M along N by Px = y, where x = y+z with $y \in M$, $Z \in N$ which is Linear with ran P = M and ker P = N satisfying $P^2 = P$.

This property characterizes projections for which the following definitions and theorems follow: -

Definition 1: Any projection associated with a direct sum decomposition of a projection on a Linear space X is a linear map $P:X \to X$ such that $P^2 = P$ Definition 2: An orthogonal projection on a Hilbert space H is also a Linear mapping $P:H \to H$ satisfying $P^2 = P$, $P: P \to P$, $P: P \to P$ for all $P: P \to P$.

"An orthogonal projection is necessarily bounded."

Theorem 1: Let X be a linear space,

- (i) If $P:X \to X$ is a projection then $X = ran P \oplus kerP$
- (ii) If $X = M \oplus N$ where M and N are Linear subspaces of X then there is a projection P:X \rightarrow X with ran P = M and ker P = N.

Proof:

For (i) We show that $x \in ran P$ if x = Px

If x = Px then clearly $x \in ran P$

If $x \in ran P$ then x = Py for some $y \in x$

And since $P^2 = P$ which follows that $Px = P^2y = Py = x$

If $x \in ran P \cap kerP$ then x = Px & Px = 0

So ran $P \cap kerP = \{0\}$. If $x \in X$ then

We have x = Px + (x - Px); where $Px \in ran P$ and $(x - Px) \in kerP$.

Since P $(x - Px) = Px - P^2x = Px - Px = 0$

Thus $X = \operatorname{ran} P \oplus \ker P$(1.1)

Now for (ii)

We consider if $X = M \oplus N$ then $x \in N$ has unique decomposition x = y + z with $y \in M$ & $Z \in N$ and Px = y defines the required Projection .

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 10, October 2016)

In particular, in orthogonal subspaces while using Hilbert Space, let us suppose that M is a closed subspace of Hilbert Space H then by well known property we have $H=M\oplus M^\perp$. We call the projection of H on to M along M^\perp the orthogonal projection of H on to M.

If x=y+z and $x_1=y_1+z_1$ where $y, y_1 \in M$ and $z, z_1 \in M^{\perp}$ then by orthogonality of M and $M^{\perp} \Rightarrow \langle Px, x_1 \rangle = \langle y, y_1 + z_1 \rangle = \langle y, y_1 \rangle = \langle y+z, y_1 \rangle$

$$= \langle x, Px_1 \rangle \dots (1.2)$$

Which states that an orthogonal projection is self Adjoint. We show the properties (1.1) and (1.2) characterize orthogonal projections with Defn-2.

Lemma :- If P is a non zero orthogonal projection then ||P|| = 1.

Proof: - If $x \in H$ and $Px \neq 0$ then by Cauchy Schwarz inequality ,

$$\parallel Px \parallel = \underline{\langle Px, Px \rangle} = \underline{\langle x, P^2x \rangle} = \underline{\langle x, Px \rangle} \leq \parallel x \parallel$$

 $\parallel Px \parallel \quad \parallel Px \parallel$

Therefore $||P|| \le 1$. If $P \ne 0$ then there is an $x \in H$ with $Px \ne 0$ and ||P(Px)|| = ||Px|| so that $||P|| \ge 1$.

Thus, the Orthogonal Projection P and closed subspace M of H such that ran P=M will must obey one -one correspondence, then the kernel of Orthogonal Projection is the Orthogonal Complement of M

Example .1 – The space L^2 (R) is the Orthogonal direct sum of space M of even functions and the space N of odd functions .

The Orthogonal Projection P and Q of H onto M and N, respectively are given by

$$Pf(x) = \frac{f(x) + f(-x)}{2}, Qf(x) = \frac{f(x) - f(-x)}{2}$$

Where I-P=Q.

Proposition: (a) A Linear functional on a Complex Hilbert space H is a Linear map from H to C. A Linear functional φ is bounded or continuous, if there exists a constant M such that $|\varphi(x)| \le M ||x||$ for all $x \in H$.

The norm of bounded linear functional φ is

$$\| \phi \| = \sup |\phi(x)|$$

$$|| \mathbf{x} || = 1$$

If $y \in H$ then $\phi_v(x) = \langle y, x \rangle$ is a bounded Linear functional on H, with

$$|| \phi_v || = || y ||$$
.

(b) If φ is a bounded Linear functional on a Hilbert space H, then there is a unique vector $y \in H$ such that

$$\varphi(x) = \langle y, x \rangle$$
 for all $x \in H$

Theorem.2: (Riesz representation) If ϕ is a bounded linear functional on a Hilbert space H, then there is a unique vector $y \in H$ such that

$$\varphi(x) = \langle y, x \rangle$$
 for all $x \in H$(2.1)

Proof. If $\phi=0$, then y=0, so we suppose that $\phi\neq 0.$ In that case , ker ϕ is a proper closed subspace of H. and , it implies that , there is a nonzero vector

 $z \in H$ such that $z \perp ker \phi$. We define a linear map $P : H \rightarrow H$ by

$$Px = \varphi(x)/\varphi(z).z$$

Then $P^2 = P$, so Theorem 1 implies that , H = ran P \oplus kerP. Moreover.

ran
$$P = \{\alpha z | \alpha \in C\}$$
, $kerP = ker\varphi$

So that ran $P \perp ker P$. It follows that P is an orthogonal projection, and

 $H = \{\alpha z | \alpha \in C\} \oplus \text{ker} \phi$ is an orthogonal direct sum. We can therefore write

$$x \in H$$
 as $x = \alpha z + n$, $\alpha \in C$ and $n \in \text{ker} \varphi$.

Taking the inner product of this decomposition with z, we get

 $\alpha = \langle z, x \rangle / II z II^2$, and evaluating φ on $x = \alpha z + n$, we find that

$$\varphi(x) = \alpha \varphi(z).$$

The elimination α from these equations , and a rearrangement of the result

yields
$$\varphi(x) = \langle y, x \rangle$$
, where $y = \varphi(z)/II z II^2.z$

Thus, every bounded linear functional is given by the inner product with a fixed vector. We have already , seen that $\phi_v\ (x)=< y,\ x>$ defines a bounded linear functional on H for every $y\in H$.

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 10, October 2016)

To prove that there is a unique y in H associated with a given linear functional, suppose that $\,\phi_{y1}=\phi_{y2}\,$. Then $\,\phi_{v1}(y)=\phi_{v2}(y).$ When $y=\,y_1\text{--}\,y_2$, which implies that II $y_1-y_2\,\text{II}^2=0$, so $y_1=y_2$.

The Map J :H \rightarrow H* given by $J_y=\phi_y$, therefore identifies a Hilbert space H with its dual space H*. The norm of ϕ_y is equal to the norm of y, so j is an isometry . In this case of complex Hilbert spaces , J is antilinear , rather than linear, because $\phi_{\lambda y}=\lambda \phi_y$. Thus, Hilbert spaces are self – dual , meaning that H and H* are isomorphic as Banach spaces, and anti-isomorphic as Hilbert spaces. Thus Hilbert spaces are special in this respect. This completes the proof of the Theorem 2.

Proposition: (c) An important consequences of the Riesz representation theorem is the existence of the adjoint of a bounded linear operator on a Hilbert space. The defining property of the adjoint $A^* \in B(H)$ of an operator $A \in B(H)$ is that

$$\langle x, Ay \rangle = \langle A^*x, y \rangle$$
 for all $x, y \in H$ (2.2)

The Uniqueness of A^* is obvious . The definition implies that

$$(A^*)^* = A$$
, $(AB)^* = B^*A^*$.

To prove that A^* exists , we have to show that for every $x \in H$, there is a vector $z \in H$, depending linearly on x such that

$$< z, y > = < x, Ay >$$
 for all $y \in H$ (2.3)

For fixed x, the map ϕ_x defined by, ϕ_x (y)=< x, Ay> is a bounded linear functional on H, with $II\phi_xII\le IIAII\ IIxII$. By the Riesz representation Theorem, there is a unique $z\in H$ such that $\phi_x\left(y\right)=< z,\,y>$. This z satisfies (2.3), So we get $A^*x=z$. The linearity of A^* follows from the uniqueness in the Riesz representation theorem and the linearity of the inner product.

Thus, from above definitions, Theorems, Leema, example, Propositions (a), (b),& (C), which Shows the proof of the main result as "the representation of compact mappings of Hilbert Spaces is a Consequence of the Spectral theory of Compact symmetric operators.

1) Let H_1 , H_2 be Hilbert spaces, $A \in \pounds$ (H_1 , H_2) compact and not of finite rank . Then, there exists orthonormal systems , e_n , $n=1,2,\ldots$ In H_1 and $\{f_n\}$, $n=1,2,\ldots$ in H_2 such that ∞

2) A
$$x=\Sigma \; \lambda_n \; (x, \, e_n \,) \; f_n$$
 , $x \, \in \, H_1 \; \mbox{ where } \lambda_n \, {>} \; 0 \mbox{ and } \lambda_n \, {\to} \; 0.$

n=1

Proof :- Since A is Compact , A*A is Compact too and positive , where A* denotes the adjoint in the sense of the scalar product . It follows from Spectral theory that there exists an orthonormal sequence of eigen vectors e_n , n=1,2,3,...... and eigen values $\lambda_n{}^2>0$, $\lambda_n{}^2\to 0$ such that

$$A^* A_x = \sum_{n=1}^{\infty} \lambda_n^2 (x, e_n) e_n,$$

 $A\ast A$ is zero on the orthonormal or complement H of the closed subspace spanned by all the e_n . But then A is zero too on H.

Take $y \in H$ and suppose $A_v \neq 0$.

Then $(A_y, A_y) = (y, A*A_y) \ddagger 0$. But this would imply $A*A_y \ddagger 0$, Therefore we have a representation

$$A_{x} = \sum \lambda_{n} (x, e_{n}) A e_{n}$$

$$n=1$$

We now define

$$f_n = (1/\lambda_n)A e_n$$
. Then

 ∞

 $A_x = \sum \lambda_n \ (x, \ e_n \) \ f_n \qquad \text{and other proposition}$ will be proved if we Show

n=1

that $\{f_n\}$ is an orthonormal systems.

$$\begin{aligned} But & (f_i \,, \! f_k \,) = (\lambda_i^{-1} \, A e_i \,, \, \lambda_k^{-1} \, A \, e_k \,) \\ & = \lambda_i^{-1} \, \lambda_k^{-1} (A^*\!A e_i, \! e_k \,) \\ & = \lambda_i^{-1} \, \lambda_k^{-1} \, (\lambda_i^2 e_i, \, e_k \,) \\ & = \! \delta_{ik} \end{aligned}$$

3) Conversely every mapping A $\in \pounds(H_1, H_2)$ which has a representation (2) with

 $\lambda_n > 0$, $\lambda_n \rightarrow 0$ is compact.

Let
$$A_k$$
 be $\sum_{n=1}^{K} \lambda_n(x, e_n) f_n$, $||(A - A_n)x||^2$
 $\lesssim \sum_{n=1}^{\infty} \lambda_n^2 |(x, e_n)|^2$
 $n=k+1$

$$\leq \varepsilon^2 \mid\mid x\mid\mid^2 \text{, it is }\mid \lambda_n\mid \leq \varepsilon \quad \text{ for } n>k(\varepsilon).$$

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 10, October 2016)

Thus A is compact as the limit of A_n in \mathfrak{L}_b $(H_1$, H_2). From this proof and (1) follow immediately.

4) Let H_1 , H_2 be Hilbert Spaces. Then every compact $A \in \pounds_b(H_1, H_2)$ is the limit of a sequence of mappings of finite rank.

Then λ_n of (2) are called the singular values of A and the non- increasing sequence of all singular values of A is uniquely determined by A, the representation (2) can be written in a different way using linear forms instead of scalar product for the coefficients of the f_n .

The scalar product (x,y) in Hilbert space H is linear in x for y fixed , thus it defines a linear functional, $\langle \bar{y} \rangle$, x > = (x,y), where \bar{y} is uniqually determined . One calls \bar{y} the Conjugate element to y. There exists an Orthonormal basis $\{e_{\alpha}\}, \alpha \in A$, of H such that

For
$$x = \sum_{\alpha} \xi_{\alpha} e_{\alpha}$$
, y

$$= \sum_{\alpha} \eta_{\alpha} e_{\alpha}$$

$$(x,y) = \sum_{\alpha} \xi_{\alpha} \eta_{\alpha} = \langle \bar{y} , x \rangle$$

Since this is true for all $~x\in H$, if follows that $\bar{Y}=\Sigma$ $\eta_{\alpha}\,e_{\alpha}$:

The coefficients of \bar{y} are the Conjugate of the coefficients of y.

Hence the Result.

Acknowledgment

The authors are thankful to Prof.(Dr.) S.N. Jha , Ex. Head , Prof. (Dr.) P.K.Sharan, Ex.Head, and Prof.(Dr.) B.P. Kumar present Head of the Deptt. Of Mathematics, B.R.A.B.U. Muzaffarpur, Bihar , India and Prof. (Dr.)T.N. Singh, Ex. Head ,Ex. Dean (Science) and Ex. Chairman, Research Development Council , , B.R.A.B.U. Muzaffarpur, Bihar , India for extending all facilities in the completion of the present research work.

REFERENCES

- [1] Hall , M. (1959) : J. The theory of groups , Mac Millan, New York.
- [2] Kothe, G. (1969) : Topological Vector Spaces , Springer Verlag, I, New York.
- [3] Kothe, G. (1979) : Topological Vector Spaces, Springer Verlag , II, New York.
- [4] Srivastava, U.K., : Proc. Of Math Soc., B.H.U. Vol. 28, pp 25-28.Kumar, N., Kumar, S., and Singh, T.N. (2012)
- [5] Srivastava, U.K., and : International Journal of Emerging Technology Singh, T.N. (2014) and Advanced Engineering Vol. 4 (3), pp 658-659.
- [6] Srivastava, U.K., : International Journal of Emerging Technology Kumar, N. and Haque . and Advanced Engineering Vol. 4 (9), pp 325-326. M. (2014)
- [7] Srivastava, U.K., Singh, : International Journal of Emerging Technology and A.K., Haque, M., and Advanced Engineering Vol.5 (Special Issue 1), Kumar, A. (2015) pp 186-189.
- [8] Kumar, N., Choudhary, : International Journal of Emerging Technology and D., Singh, A.K., and Advanced Engineering Vol. 5 (11), pp 177-179. Srivastava, U.K., (2015)
- [9] Srivastava, U.K., : International Journal of Emerging Technology and Talukdar, A.U., Advanced Engineering Vol. 6(6), pp.247-250. Shahabuddin, Md., and Pandit, A.S., (2016)
- [10] Wong , Yau- Chuen .(1969): Order Infrabarreled Riesz Spaces, Math. Ann., Vol.183, pp 17-32