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Abstract

The RealityEngineTM graphics system is the first of a new genera-
tion of systems designed primarily to render texture mapped, an-
tialiased polygons. This paper describes the architecture of the
RealityEngine graphics system, then justifies some of the decisions
made during its design. The implementation is near-massively par-
allel, employing 353 independent processors in its fullest configura-
tion, resulting in a measured fill rate of over 240 million antialiased,
texture mapped pixels per second. Rendering performance exceeds
1 million antialiased, texture mapped triangles per second. In ad-
dition to supporting the functions required of a general purpose,
high-end graphics workstation, the system enables realtime, “out-
the-window” image generation and interactive image processing.

CR Categories and Subject Descriptors: I.3.1 [Computer
Graphics]: Hardware Architecture; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - color, shading, shad-
owing, and texture

1 Introduction

This paper describes and to a large extent justifies the architecture
chosen for the RealityEngine graphics system. The designers think
of this system as our first implementation of a third-generation
graphics system. To us a generation is characterized not by the
scope of capabilities of an architecture, but rather by the capabili-
ties for which the architecture was primarily designed – the target
capabilities with maximized performance. Because we designed
our first machine in the early eighties, our notion of first generation
corresponds to this period. Floating point hardware was just be-
coming available at reasonableprices, framebuffer memory was still
quite expensive, and application-specificintegrated circuits (ASICs)
were not readily available. The resulting machines had workable
transformation capabilities, but very limited framebuffer process-
ing capabilities. In particular, smooth shading and depth buffering,
which require substantial framebuffer hardware and memory, were
not available. Thus the target capabilities of first-generation ma-
chines were the transformation and rendering of flat-shaded points,
lines, and polygons. These primitives were not lighted, and hidden
surface elimination, if required, was accomplished by algorithms
implemented by the application. Examples of such systems are the
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Silicon Graphics Iris 3000 (1985) and the Apollo DN570 (1985).
Toward the end of the first-generation period advances in technology
allowed lighting, smooth shading, and depth buffering to be imple-
mented, but only with an order of magnitude less performance than
was available to render flat-shaded lines and polygons. Thus the
target capability of these machines remained first-generation. The
Silicon Graphics 4DG (1986) is an example of such an architecture.

Because first-generation machines could not efficiently eliminate
hidden surfaces, and could not efficiently shade surfaces even if the
application was able to eliminate them, they were more effective
at rendering wireframe images than at rendering solids. Begin-
ning in 1988 a second-generation of graphics systems, primarily
workstations rather than terminals, became available. These ma-
chines took advantage of reduced memory costs and the increased
availability of ASICs to implement deep framebuffers with multiple
rendering processors. These framebuffers had the numeric ability
to interpolate colors and depths with little or no performance loss,
and the memory capacity and bandwidth to support depth buffering
with minimal performance loss. They were therefore able to render
solids and full-frame scenesefficiently, as well as wireframe images.
The Silicon Graphics GT (1988)[11] and the Apollo DN590 (1988)
are early examples of second-generation machines. Later second-
generation machines, such as the Silicon Graphics VGX[12] the
Hewlett Packard VRX, and the Apollo DN10000[4] include texture
mapping and antialiasing of points and lines, but not of polygons.
Their performances are substantially reduced, however, when tex-
ture mapping is enabled, and the texture size (of the VGX) and
filtering capabilities (of the VRX and the DN10000) are limited.

The RealityEngine system is our first third-generation design. Its
target capability is the rendering of lighted, smooth shaded, depth
buffered, texture mapped, antialiased triangles. The initial target
performance was 1/2 million such triangles per second, assuming
the triangles are in short strips, and 10 percent intersect the viewing
frustum boundaries. Textures were to be well filtered (8-sample lin-
ear interpolation within and between two mipmap[13] levels) and
large enough (1024 � 1024) to be usable as true images, rather
than simply as repeated textures. Antialiasing was to result in high-
quality images of solids, and was to work in conjunction with depth
buffering, meaning that no application sorting was to be required.
Pixels were to be filled at a rate sufficient to support 30Hz ren-
dering of full-screen images. Finally, the performance on second-
generation primitives (lighted, smooth shaded, depth buffered) was
to be no lower than that of the VGX, which renders roughly 800,000
such mesh triangles per second. All of these goals were achieved.

The remainder of this paper is in four parts: a description of the
architecture, some specifics of features supported by the architec-
ture, alternatives considered during the design of the architecture,
and finally some appendixes that describe performance and imple-
mentation details.
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Figure 1. Board-level block diagram of an intermediate configu-
ration with 8 Geometry Engines on the geometry board, 2 raster
memory boards, and a display generator board.

2 Architecture

The RealityEngine system is a 3, 4, or 6 board graphics accelerator
that is installed in a MIPS RISC workstation. The graphics system
and one or more MIPS processors are connected by a single system
bus. Figure 1 is a board-level block diagram of the RealityEngine
graphics accelerator. The geometry board comprises an input FIFO,
the Command Processor, and 6, 8, or 12 Geometry Engines. Each
raster memory board comprises 5 Fragment Generators (each with
its own complete copy of the texture memory), 80 Image Engines,
and enough framebuffer memory to allocate 256 bits per pixel to a
1280� 1024 framebuffer. The display generator board supports all
video functions, including video timing, genlock, color mapping,
and digital-to-analog conversion. Systems can be configured with
1, 2, or 4 raster memory boards, resulting in 5, 10, or 20 Fragment
Generators and 80, 160, or 320 Image Engines.

To get an initial notion of how the system works, let’s follow
a single triangle as it is rendered. The position, color, normal,
and texture coordinate commands that describe the vertexes of the
triangle in object coordinates are queued by the input FIFO, then
interpreted by the Command Processor. The Command Processor
directs all of this data to one of the Geometry Engines, where the
coordinates and normals are transformed to eye coordinates, lighted,
transformed to clip coordinates, clipped, and projected to window
coordinates. The associated texture coordinates are transformed
by a third matrix and associated with the window coordinates and
colors. Then window coordinate slope information regarding the
red, green, blue, alpha, depth, and texture coordinates is computed.

The projected triangle, ready for rasterization, is then output from
the Geometry Engine and broadcast on the Triangle Bus to the 5,
10, or 20 Fragment Generators. (We distinguish between pixels
generated by rasterization and pixels in the framebuffer, referring to
the former as fragments.) Each Fragment Generator is responsible
for the rasterization of 1/5, 1/10, or 1/20 of the pixels in the frame-

buffer, with the pixel assignments finely interleaved to insure that
even small triangles are partially rasterized by each of the Fragment
Generators. Each Fragment Generator computes the intersection of
the set of pixels that are fully or partially covered by the triangle and
the set of pixels in the framebuffer that it is responsible for, gener-
ating a fragment for each of these pixels. Color, depth, and texture
coordinates are assigned to each fragment based on the initial and
slope values computed by the Geometry Engine. A subsample mask
is assigned to the fragment based on the portion of each pixel that
is covered by the triangle. The local copy of the texture memory is
indexed by the texture coordinates, and the 8 resulting samples are
reduced by linear interpolation to a single color value, which then
modulates the fragment’s color.

The resulting fragments, each comprising a pixel coordinate, a
color, a depth, and a coverage mask, are then distributed to the
Image Engines. Like the Fragment Generators, the Image Engines
are each assigned a fixed subset of the pixels in the framebuffer.
These subsets are themselves subsets of the Fragment Generator
allocations, so that each Fragment Generator communicates only
with the 16 Image Engines assigned to it. Each Image Engine
manages its own dynamic RAM that implements its subset of the
framebuffer. When a fragment is received by an Image Engine,
its depth and color sample data are merged with the data already
stored at that pixel, and a new aggregate pixel color is immediately
computed. Thus the image is complete as soon as the last primitive
has been rendered; there is no need for a final framebuffer operation
to resolve the multiple color samples at each pixel location to a
single displayable color.

Before describing each of the rendering operations in more detail,
we make the following observations. First, after it is separated by
the Command Processor, the stream of rendering commands merges
only at the Triangle Bus. Second, triangles of sufficient size (a
function of the number of raster memory boards) are processed by
almost all the processors in the system, avoiding only 5, 7, or 11
Geometry Engines. Finally, small to moderate FIFO memories are
included at the input and output of each Geometry Engine, at the
input of each Fragment Generator, and at the input of each Image
Engine. These memories smooth the flow of rendering commands,
helping to insure that the processors are utilized efficiently.

2.1 Command Processor

That the Command Processor is required at all is primarily a func-
tion of the OpenGLTM [8][7] graphics language. OpenGL is modal,
meaning that much of the state that controls rendering is included
in the command stream only when it changes, rather than with
each graphics primitive. The Command Processor distinguishes
between two classes of this modal state. OpenGL commands that
are expected infrequently, such as matrix manipulations and light-
ing model changes, are broadcast to all the Geometry Engines.
OpenGL commands that are expected frequently, such as vertex
colors, normals, and texture coordinates, are shadowed by the Com-
mand Processor, and the current values are bundled with each ren-
dering command that is passed to an individual Geometry Engine.
The Command Processor also breaks long connected sequences of
line segments or triangles into smaller groups, each group passing
to a single Geometry Engine. The size of these groups is a trade-
off between the increased vertex processing efficiency of larger
groups (due to shared vertexes within a group) and the improved
load balancing that results from smaller groups. Finally, because
the Command Processor must interpret each graphics command, it
is also able to detect invalid command sequences and protect the
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Figure 2. Individual Geometry Engine.

subsequent processors from their effects.
Non-broadcast rendering commands are distributed to the Ge-

ometry Engines in pure round-robin sequence, taking no account
of Geometry Engine loading. This approach was chosen for its
simplicity, and is efficient because the processing requirements of
primitives are usually very similar, and because the input and out-
put FIFOs of each Geometry Engine smooth the imbalances due to
data-dependent processing such as clipping.

2.2 Geometry Engines

The core of each Geometry Engine is an Intel i860XP processor.
Operating at 50MHz, the combined floating point multiplier and
ALU can achieve a peak performance of 100 MFLOPS. Each Intel
processor is provided 2 Mbytes of combined code/data dynamic
memory, and is supported by a single ASIC that implements the in-
put and output FIFOs, a small register space from which the i860XP
accesses incoming commands, and specialized data conversion fa-
cilities that pack computed slope data into a format accepted by the
Fragment Generators. (Figure 2.)

All Geometry Engine code is first developed in C, which is cross
compiled for the i860XP on MIPS RISC development systems.
Code that is executed frequently is then re-coded in i860XP assem-
bly code, showing the greatest improvement in performance where
scheduling of the vector floating point unit is hand optimized. The
assembly code is written to conform to the compiler’s link conven-
tions, so that hand-codedand compiled modules are interchangeable
for development and documentation purposes.

Most floating point arithmetic is done in single precision, but
much of the texture arithmetic, and all depth arithmetic after projec-
tion transformation, must be done in double precision to maintain
the required accuracy. After transformation, lighting, and clipping,
the rasterization setup code treats each parameter as a plane equa-
tion, computing its signed slope in the positive X and Y screen
directions. Because the parameters of polygons with more than 3
vertexes may be non-planar, the Geometry Engine decomposes all
polygons to triangles.

2.3 Triangle Bus

The Triangle Bus acts as a crossbar, connecting the output of each
Geometry Engine to the inputs of all the Fragment Generators.
Because all Geometry Engine output converges at this bus, it is a
potential bottleneck. To avoid performance loss, the Triangle Bus
was designed with bandwidth to handle over one million shaded,
depth buffered, texture mapped, antialiased triangles per second,
more than twice the number of primitives per second that were
anticipated from an 8 Geometry Engine system. This performance
cushion allows the later-conceived 12 Geometry Engine system to
render at full performance, in spite of the greater than expected
performance of the individual engines.

In addition to broadcasting the rasterization data for triangles to
the Fragment Generators, the Triangle Bus broadcasts point and
line segment descriptions, texture images, and rasterization mode
changes such as blending functions.

2.4 Fragment Generators

Although each Fragment Generator may be thought of as a single
processor, the data path of each unit is actually a deep pipeline. This
pipeline sequentially performs the initial generation of fragments,
generation of the coverage mask, texture address generation, texture
lookup, texture sample filtering, texture modulation of the fragment
color, and fog computation and blending. These tasks are distributed
among the four ASICs and eight dynamic RAMs that comprise each
Fragment Generator. (Figure 3.)

Fragments are generated using Pineda arithmetic[9], with the
algorithm modified to traverse only pixels that are in the domain
of the Fragment Generator. A coverage mask is generated for 4, 8,
or 16 sample locations, chosen on a regular 8 � 8 subsample grid
within the square boundaries of the pixel. The hardware imposes no
constraints on which subset of the 64 subsample locations is chosen,
except that the same subset is chosen for each pixel. The subset may
be changed by the application between frames.

Depth and texture coordinate sample values are always computed
at the center-most sample location, regardless of the fragment cov-
erage mask. The single depth sample is later used by the Image
Engines to derive accurate depth samples at each subpixel location,
using the X and Y depth slopes. Taking the texture sample at a
consistent location insures that discontinuities are avoided at pixels
that span multiple triangles. Color sample values are computed at
the center-most sample location only if it is within the perimeter
of the triangle. Otherwise the color sample is taken at a sample
location within the triangle perimeter that is near the centroid of
the covered region. Thus color samples are always taken within the
triangle perimeter, and therefore never wrap to inappropriate values.

Based on a level-of-detail (LOD) calculation and the texture co-
ordinate values at the fragment center, the addresses of the eight
texels nearest the sample location in the mipmap of texture images
are produced. Eight separate banks of texture memory are then
accessed in parallel at these locations. The 8 16-bit values that
result are merged with a trilinear blend, based on the subtexel co-
ordinates and the LOD fraction, resulting in a single texture color
that varies smoothly from frame to frame in an animation. The
entire bandwidth of the 8-bank texture memory is consumed by a
single Fragment Engine, so each Fragment Engine includes its own
complete copy of all texture images in its texture memory, allowing
all Fragment Generators to operate in parallel. Separate FIFO mem-
ories on the address and data ports of each texture memory bank
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Figure 3. Individual Fragment Generator.

insure that random page boundary crossings do not significantly
degrade the bandwidth available from the dynamic RAMs.

The last ASIC in the Fragment Generator applies the texture color
to the fragment’s smooth shaded color, typically by modulation. It
then indexes its internal fog table with the fragment’s depth value and
uses the resulting fog blend factor (computed by linear interpolation
between the two nearest table entries) to blend the fragment color
with the application-defined fog color.

2.5 Image Engines

Fragments output by a single Fragment Generator are distributed
equally among the 16 Image Engines connected to that generator.
When the triangle was first accepted by the Fragment Generator for
processing, its depth slopes in the X and Y screen directions were
broadcast to each Image Engine, which stored them for later use.
When an Image Engine accepts a fragment, it first uses these two
slope values and the fragment’s depth sample value to reconstruct
the depth values at each subpixel sample location. The arithmetic
required for this operation is simplified because the subpixel sam-
ple locations are fixed to a regular 8 � 8 grid. The calculations are
linear because depth values have been projected to window coor-
dinates just like the X and Y pixel coordinates. At each sample
location corresponding to a ‘1’ in the fragment’s coverage mask,
the computed depth value is compared to the depth value stored in
the framebuffer. If the comparison succeeds, the framebuffer color
at that subsample location is replaced by the fragment color, and
the framebuffer depth is replaced by the derived fragment depth.
If any change is made to the pixel’s contents, the aggregate pixel
color is recomputed by averaging the subpixel sample colors, and is
immediately written to the displayable color buffer that will contain
the final image.

Each Image Engine controls a single 256K � 16 dynamic RAM
that comprises its portion of the framebuffer. (Figure 4.) When
the framebuffer is initialized, this memory is partitioned equally
among 4K, 8K, or 16K pixels, resulting in pixels with 1024, 512,
or 256 bits. All subsample depth and color samples, as well as
the one, two, or four displayable color buffers and other auxiliary
buffers, are stored in this memory. By default, colors are stored
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Figure 4. Individual Image Engine.

with 12 bits per red, green, blue, and alpha component in both the
displayable buffers and the subpixel samples. Depth values are 32
bits each, and are normally required only for each subpixel sample,
not for the displayable color buffer or buffers. Color and depth
sample resolutions can be reduced to 8,8,8 and 24 bits to allow
more samples to be stored per pixel. The 4K partition stores 8 high-
resolution samples per pixel, or 16 low-resolution samples per pixel,
in addition to two displayable color buffers of the same resolution.
The 8K partition stores 4 high-resolution samples per pixel, or 8
low-resolution samples per pixel, again with two displayable color
buffers of the same resolution. The 16K partition cannot be used to
support multisample antialiasing.

Because the number of raster memory boards (1, 2, or 4) and
the number of pixels per Image Engine (4K, 8K, or 16K) are in-
dependent, the RealityEngine system supports a wide variety of
framebuffer dimensions, color and depth resolutions, and subpixel
samples. For example, a single raster board system supports 16-
sample antialiasing at 640� 512 resolution or aliased rendering at
1280� 1024 resolution, and a 4-board system supports 8-sample
antialiasing at true HDTV (1920� 1035) resolution or 16-sample
antialiasing at 1280� 1024 resolution.

2.6 Display Hardware

Each of the 80 Image Engines on the raster memory board drives
a single-bit, 50 MHz path to the display board, delivering video
data at 500 MBytes per second. All 160 single-bit paths of a two
raster memory board configuration are active, doubling the peak
video data rate. The paths are time multiplexed by pairs of raster
memory boards in the four board configuration. Ten crossbar ASICs
on the display board assemble the 80 or 160 single-bit streams into
individual color components or color indexes. Color components
are then dithered from 12 bits to 10 bits and gamma corrected using
1024� 8 lookup tables. The resulting 8-bit color components drive
digital-to-analog converters and are output to the monitor. Color
indexes are dereferenced in a 32K-location lookup table, supporting
separate color lookup tables for each of up to 40 windows on the
screen. Per-pixel display modes, such as the color index offset,
are supported by a combination of Image Engine and display board
hardware, driven by window ID bits stored in the framebuffer [1].



3 Features

This section provides additional information regarding the architec-
ture’s antialiasing, texture mapping, stereo, and clipping capabili-
ties.

3.1 Antialiasing

The architecture supports two fundamentally different antialiasing
techniques: alpha and multisample. Alpha antialiasing of points
and lines is common to second generation architectures. Alpha
antialiasing is implemented using subpixel and line-slope indexed
tables to generate appropriate coverage values for points and lines,
compensating for the subpixel position of line endpoints. Polygon
coverage values are computed by counting the ‘1’s in the full pre-
cision 8� 8 coverage mask. The fragment alpha value is scaled by
the fractional coverage value, which varies from 0.0, indicating no
coverage, to 1.0, indicating complete coverage. If pixel blending is
enabled, fragments are blended directly into the color buffer – no
subpixel sample locations are accessedor required. Alpha antialias-
ing results in higher quality points and lines than does multisample
antialiasing, because the resolution of the filter tables is greater than
the 4 bit equivalent of the 16-sample mask. While alpha antialiased
primitives should be rendered back-to-front or front-to-back (de-
pending on the blend function being used) to generate a correct
image, it is often possible to get an acceptable point or line image
without such sorting. Alpha antialiased polygons, however, must
be sorted near to far to get an acceptable image. Thus this technique
is efficiently applied to polygons only in 2D scenes, such as instru-
ment panels, where primitive ordering is fixed and a slight increase
in quality is desired.

Multisample antialiasing has already been described. Its princi-
pal advantage over alpha antialiasing is its order invariance - points,
lines, and polygonscan be drawn into a multisample buffer in any or-
der to produce the same final image. Two different mask generation
techniques are supported in multisample mode, each with its own
advantages and disadvantages. The default mask generation mode
is called point sampled; the alternate mode is area sampled. A point
sampled mask is geometrically accurate, meaning that each mask
bit is set if and only if its subpixel location is within the perimeter of
the point, line, or polygon outline. (Samples on the primitive’s edge
are included in exactly one of the two adjacent primitives.) Such
masks insure the correctness of the final image, at the expense of its
filtered quality. The final image is correct because all the samples
that comprise it are geometrically valid - none having been taken
outside their corresponding primitives. It is poorly sampled because
the number of bits set in the mask may not closely correspond to the
actual area of the pixel that is covered by the primitive, and the final
filtering quality depends on this correspondence. Area sampling
attempts to insure that the number of ‘1’s in the sample mask is
correct plus or minus 1/2 a sample, based on the actual coverage of
pixel area by the primitive. (Figure 5.) In order to accomplish this,
area sampled masks necessarily include samples that are outside
the primitive outline, resulting in image artifacts such as polygon
protrusions at silhouettes and T-junctions. Area sampled masks are
implemented with a technique that is related to the one described
by Andreas Schilling[10]. Point and area sampling can be selected
by the application program on a per-primitive basis.

The desirable multisample property of order invariance is lost
if alpha transparency and pixel blending are used. Alpha does
sometimes carry significant information, usually as a result of the
alpha channel in the texture application. For example, trees are

The single sample selected by the
point sample method is darkened.

The three samples selected by the
area sample method are darkened.

Figure 5. A narrow triangle intersected with a single, 16-sample
pixel. The three samples selected by the area sample method
accurately represent the fact that almost 20 percent of the pixel is
covered by the triangle.

often drawn as single polygons, using an alpha matte to express their
shape. In order to handle alpha transparency without requiring pixel
blending, the Image Engines have the ability to convert fragment
alpha values to pseudo-random masks, which are then logically
ANDed with the fragment’s coverage mask. This method, while
not geometrically accurate, provides usable antialiasing of texture
mattes, and is order invariant.

3.2 Texture Mapping

In addition to the 2-dimension texture maps described in the archi-
tecture section, 1- and 3-dimension maps are also supported. The
eight million texel memory associated with each Fragment Genera-
tor stores 2D mipmapped images up to 1024� 1024, and 3D non-
mipmapped images up to 256� 256� 64. Thus 3D textures can be
used to render volumetric images of substantial resolution, at rates
up to 30 frames per second. The S, T, and R texture coordinates
of each fragment are computed by interpolating S/W, T/W, R/W,
and 1/W, then doing the correct divisions at each pixel, resulting
in perspective-corrected mapping. Level-of-detail is also computed
for each pixel, based on the worst-case of the four pixel-to-texel X
and Y ratios.

Linear filtering of the nearest texels and mipmap levels is sup-
ported for 1D, 2D, and 3D textures, blending a total of 16 texel
colors in the 3D mode. In the 2D case such linear filtering is com-
monly known as trilinear. Bicubic interpolation is supported for 2D,
nonmipmapped textures, again blending 16 texels. There is no sup-
port for cubic filtering of 1D or 3D textures, or of any mipmapped
textures. The default 16-bit texel size supports RGBA texels at 4-
bits per component, RGB texels at 5-bits per component (6 bits for
green), intensity-alpha texels at 8-bits per component, and intensity
texels at 12-bits per component. 32-bit and 48-bit texels can be
specified by the application with proportional loss of performance.
The maximum RBGA texel resolution is 12-bits per component,
equal to the maximum framebuffer color resolution.

Texture magnification can be done by extrapolation of mipmap
levels, resulting in a sharpening of the highest resolution mipmap
image, or the highest resolution image can be blended with a repli-
cated 256� 256 detail image, greatly increasing the apparent res-
olution of the texture without requiring excessive texture storage.
Filter functions for RGB and for alpha can be specified separately



to improve the quality of texture mattes. Finally, texture memory
can be loaded from the application processor’s memory at the rate
of 80 million 16-bit texels per second, allowing the application to
treat texture memory as a managed cache of images.

3.3 Stereo in a Window

Image Engine memory can be configured with separate left and right
color buffers for both the visible and nonvisible displayable color
buffers, resulting in a total of four 48-bit color buffers per pixel. The
display hardware alternately displays the left and right buffer con-
tents of the visible buffers of all windows so configured, and drives
a sync signal that can be used to control screen or head-mounted
shutters. This stereo-in-a-window capability is both formally and
practically compatible with the X protocol: formally because neither
framebuffer dimensions nor pixel aspect ratio are changed when it
is enabled or disabled, and practically because it allows monoscopic
windows such as menus to be rendered and displayed correctly. To
reduce eye fatigue, it is advisable to select a reduced-dimension
framebuffer when the window system is initialized, allowing the
frame display rate to be increased to 90+ Hz within the 140 MHz
pixel limit of the display board.

3.4 Fast Clipping

RealityEngine polygon clipping is faster than that of our earlier
designs for two fundamental reasons: it is implemented more effi-
ciently, and it is required less often. Higher efficiency results from
the MIMD Geometry Engine architecture. Because each of the en-
gines executes an independent code sequence, and because each has
significant input and output FIFOs, random clipping delays affect
only a single engine and are averaged statistically across all the en-
gines. Also, becauseeach Geometry Engine comprises only a single
processor, all of that engine’s processing power can be devoted to
the clipping process. SIMD architectures are less efficient because
all processors are slowed when a single processor must clip a poly-
gon. Pipelines of processors, and even MIMD arrangements of
short pipelines, are less efficient becauseonly a fraction of available
processing power is available to the clipping process.

The requirement for clipping is reduced through a technique we
call scissoring. Near and far plane clipping are done as usual, but
the left, right, bottom, and top frustum edges are moved well away
from the specified frustum, and all triangles that fall within the
expanded frustum are projected to extended window coordinates. If
culling is done by the application, almost no triangles will actually
intersect the sides of the expanded frustum. Projected triangles that
are not fully within the viewport are then scissored to match the
edges of the viewport, eliminating the portions that are not within
the viewport. The Pineda rasterization algorithm that is employed
easily and efficiently handles the additional rectilinear edges that
result, and no fragment generation performance is lost on scissored
regions.

4 Design Alternatives

We think that the most interesting part of design is the alternatives
considered, and the reasons for choices, rather than the details of the
result. This section highlights some of these alternatives, in roughly
decreasing order of significance.

4.1 Single-pass Antialiasing

Multi-pass accumulation buffer antialiasing using an accumulation
buffer [3] is order invariant, and produces high-quality images in
10 to 20 passes. Further, a system that was fast enough to render
10 to 20 full scene images per frame would be a fantastic generator
of aliased images. So why design a complex, multisample frame-
buffer to accomplish the same thing in one pass? The answer is
that significantly more hardware would be required to implement a
multi-pass machine with equivalent performance. This is true not
only because the multi-pass machine must traverse and transform
the object coordinates each pass, but in particular because texture
mapping would also be performed for each pass. The component
costs for traversal, transformation, parameter interpolation, and tex-
ture mapping constitute well over half of the multisample machine
cost, and they are not replicated in the multisample architecture. A
competing multi-pass architecture would have to replicate this hard-
ware in some manner to achieve the required performance. Even
the PixelFlow architecture[6], which avoids repeated traversal and
transformation by buffering intermediate results, must still rasterize
and texture map repeatedly.

4.2 Multisample Antialiasing

Multisample antialiasing is a rather brute-force technique for
achieving order invariant single-pass antialiasing. We investi-
gated alternative sorting buffer techniquesderived from the A-buffer
algorithm[2], hoping for higher filter quality and correct, single-pass
transparency. These techniques were rejected for several reasons.
First, sort buffers are inherently more complex than the multisam-
ple buffer and, with finite storage allocations per pixel, they may
fail in undesirable ways. Second, any solution that is less exact
than multisampling with point sampled mask generation will ad-
mit rendering errors such as polygon protrusions at silhouettes and
T-junctions. Finally, the multisample algorithm matches the single-
sample algorithm closely, allowing OpenGL pixel techniques such
as stencil, alpha test, and depth test to work identically in single or
multisample mode.

4.3 Immediate Resolution of Multisample Color

Our initial expectation was that rendering would update only the
multisample color and depth values, requiring a subsequent res-
olution pass to reduce these values to the single color values for
display. The computational expense of visiting all the pixels in the
framebuffer is high, however, and the resolution pass damaged the
software model, because OpenGL has no explicit scene demarca-
tions. Immediate resolution became much more desirable when we
realized that the single most common resolution case, where the
fragment completely replaces the pixel’s contents (i.e. the fragment
mask is all ones and all depth comparisons pass) could be imple-
mented by simply writing the fragment color to the color buffer,
making no change to the 4, 8, or 16 subsample colors, and spe-
cially tagging the pixel. Only if the pixel is subsequently partially
covered by a fragment is the color in the color buffer copied to the
appropriate subsample color locations. This technique increases the
performance in the typical rendering case and eliminates the need
for a resolution pass.



4.4 Triangle Bus

All graphics architectures that implement parallel primitive pro-
cessing and parallel fragment/pixel processing must also implement
a crossbar somewhere between the geometry processors and the
framebuffer[5]. While many of the issues concerning the placement
of this crossbar are beyond the scope of this paper, we will men-
tion some of the considerations that resulted in our Triangle Bus
architecture. The RealityEngine Triangle Bus is a crossbar between
the Geometry Engines and the Fragment Generators. Described
in RealityEngine terms, architectures such as the Evans & Suther-
land Freedom SeriesTM implement Geometry Engines and Fragment
Generators in pairs, then switch the resulting fragments to the ap-
propriate Image Engines using a fragment crossbar network. Such
architectures have an advantage in fragment generation efficiency,
due both to the improved locality of the fragments and to only one
Fragment Generator being initialized per primitive. They suffer
in comparison, however, for several reasons. First, transformation
and fragment generation rates are linked, eliminating the possibil-
ity of tuning a machine for unbalanced rendering requirements by
adding transformation or rasterization processors. Second, ultimate
fill rate is limited by the fragment bandwidth, rather than the prim-
itive bandwidth. For all but the smallest triangles the quantity of
data generated by rasterization is much greater than that required
for geometric specification, so this is a significant bottleneck. (See
Appendix 2.) Finally, if primitives must be rendered in the order
that they are specified, load balancing is almost impossible, because
the number of fragments generated by a primitive varies by many
orders of magnitude, and cannot be predicted prior to processor
assignment. Both OpenGL and the core X renderer require such
ordered rendering.

The PixelFlow[6] architecture also pairs Geometry Engines and
Fragment Generators,but the equivalent of Image Engines and mem-
ory for a 128� 128 pixel tile are also bundled with each Geome-
try/Fragment pair. The crossbar in this architecture is the composit-
ing tree that funnels the contents of rasterized tiles to a final display
buffer. Because the framebuffer associated with each processor is
smaller than the final display buffer, the final image is assembled as
a sequenceof 128�128 logical tiles. Efficient operation is achieved
only when each logical tile is rasterized once in its entirety, rather
than being revisited when additional primitives are transformed. To
insure that all primitives that correspond to a logical tile are known,
all primitives must be transformed and sorted before rasterization
can begin. This substantially increases the system’s latency, and
requires that the rendering software support the notion of frame de-
marcation. Neither the core X renderer nor OpenGL support this
notion.

4.5 12-bit Color

Color component resolution was increased from the usual 8 bits to
12 bits for two reasons. First, the RealityEngine framebuffer stores
color components in linear, rather than gamma-corrected, format.
When 8-bit linear intensities are gamma corrected,single bit changes
at low intensities are discernible, resulting in visible banding. The
combination of 12-to-10 bit dithering and 10-bit gamma lookup ta-
bles used at display time eliminates visible banding. Second, it is
intended that images be computed, rather than just stored, in the
RealityEngine framebuffer. Volume rendering using 3D textures,
for example, requires back-to-front composition of multiple slices
through the data set. If the framebuffer resolution is just sufficient to
display an acceptable image, repeated compositionswill degrade the

Figure 6. A scene from a driving simulation running full-screen at
30 Hz.

Figure 7. A 12x magnified subregion of the scene in figure 6. The
sky texture is properly sampled and the silhouettes of the ground
and buildings against the sky are antialiased.

resolution visibly. The 12-bit components allow substantial frame-
buffer composition to take place before artifacts become visible.

Conclusion

The RealityEngine system was designed as a high-end workstation
graphics accelerator with special abilities in image generation and
image processing. This paper has described its architecture and
capabilities in the realm of image generation: 20 to 60 Hz anima-
tions of full-screen, fully-textured, antialiased scenes. (Figures 6
and 7.) The image processing capabilities of the architecture have
not been described at all; they include convolution, color space
conversion, table lookup, histogramming, and a variety of warping
and mapping operations using the texture mapping hardware. Fu-
ture developments will investigate additional advanced rendering
features, while continually reducing the cost of high-performance,
high-quality graphics.
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Appendix 1: Measured Performance

The two most significant performance categories are transform rate:
the number of primitives per second that can be processedby the Ge-
ometry Engines, and fill rate: the number of fragments per second
that can be generated and merged into the framebuffer. Running in
third-generation mode (lighting, smooth shading, depth buffering,
texturing and multisample antialiasing) a 12 Geometry Engine sys-
tem can process 1.5 million points, 0.7 million connected lines, and
1.0 million connected triangles per second. In second-generation
mode (lighting, smooth shading, and depth buffering) the same sys-
tem can process 2.0 million points, 1.3 million connected lines,
and 1.2 million connected triangles per second. Measured third-
generation fill rates for 2 and 4 raster board systems are 120 and
240 million fragments per second. Measured second-generation
fill rates for 1, 2, and 4 raster board systems are 85, 180, and 360
million fragments per second. The third-generation fill rate num-
bers are somewhat dependent on rendering order, and are therefore
chosen as averages over a range of actual performances.

Appendix 2: Bandwidth and other Statistics

Triangle Bus, fragment transfer path, and Image Engine to frame-
buffer memory bandwidths are in roughly the ratios of 1:10:20.
Specific numbers for the typical two raster board configuration are
240 Mbyte/sec on the Triangle Bus, 3,200 Mbyte/sec aggregate on
the 160 Fragment Generator to Image Engine busses, and 6,400
Mbyte/sec aggregate on the 160 Image Engine to framebuffer con-
nections.

Because the 6,400 Mbyte/sec framebuffer bandwidth is so much
larger than the bandwidth required to refresh a monitor (roughly 800
Mbyte/sec at 1280� 1024� 76Hz) we implement the framebuffer
memory with dynamic RAM rather than video RAM, accepting the
12 percent fill rate degradation in favor of the lower cost of com-
modity memory. Geometry Engine memory and texture memory
are also implemented with commodity, 16-bit data path dynamic
RAM. Total dynamic memory in the maximally configured system
is just over 1/2 Gigabyte.
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