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1. What is Analytic Number Theory?

From D. J. Newman [5]: The most intriguing thing about Analytic Number The-
ory (the use of analysis, or function theory, in number theory) is its very existence!
How could one use properties of continuous valued functions to determine prop-
erties of those most discrete items, the integers. Analytic functions? What has
differentiability got to do with counting? The astonishment mounts further when
we learn that the complex zeros of a certain analytic function are the basic tools in
the investigation of the primes. The answer to all this bewilderment is given by
two words, generating functions [5]

1.1. Generating functions. The simplest kind of generating function is a poly-
nomial or power series

∑
akz

k. Assume in general that the sum of a power series
is from k = 0 to ∞. For analytic number theory the coefficients ak should be func-
tions of integers and the series, if it converges, a function of z that can be studied
by calculus or by analytic function theory.

A simple example of how analysis can be used to get a number theory result
is found by letting ak = k be the sequence of integers from k = 1 to k = n. A
generating function using this sequence of integers as coefficients is

n∑
k=1

kzk−1 =
d

dz

n∑
k=0

zk =
d

dz

zn+1 − 1

z − 1

=
nzn+1 − (n+ 1)zn + 1

(z − 1)2
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Now taking the limit as z → 1 and using l’Hospital’s rule on the function on the
right, get

n∑
k=1

k =
n(n+ 1)

2

the well known formula for the sum of the first n integers. Thus we have obtained
a formula for integer sums using calculus.

Exercise: Using a similar technique, show that

n∑
k=1

k2 =
1

3
n3 +

1

2
n2 +

1

6
n

Another type of generating function different from a power series is a Dirichlet
series,

∑
ann

−s. Assume in general the sum of a Dirichlet series is from n = 1 to
∞. The simplest such series is the Riemann zeta function

∑
n−s where all of the

coefficients an are equal to 1. The sum converges for s > 1. We can also take finite

Dirichlet sums, for example,
∑N
n=1 n

−s. When s = −2 or s = −1 we get the sums∑n
k=1 k and

∑n
k=1 k

2. For −s a non-negative integer, the sums are called Faulhaber
sums.

We can form a generating function using Faulhaber sums for coefficients of a
power series. For µ a non-negative integer and N a positive integers let S(µ,N) =∑N
n=1 n

µ. Now write a generating power series using these sums in the coefficients.
Interchanging the order of summation, and using the power series for the exponen-
tial function get

∞∑
µ=0

1

µ!
S(µ,N)zµ =

N∑
n=1

enz =
e(N+1)z − ez

ez − 1
.

Calculating the coefficients of the series on the right gives of way of finding formulas
for the Faulhaber sums. See [3].

1.2. Operations on series. In using these generating functions, we use rules for
adding, multiplying, and dividing to create other functions. We can do the formal
computation without worrying about convergence.

1.2.1. Addition. Both Dirichlet and power series can be added term by term.
We can form an infinite sum of power series

∑∞
k=0 hk if hk = O(zk), that is,

the first non zero coefficient of hk is the kth one. We need this so the sums of the
coefficients can be collected as finite sums and we get another well-defined power
series.

Under similar conditions we can add an infinite number of Dirichlet series.

1.2.2. Multiplication. For both Dirichlet and power series we can multiply term by
term and collect like terms to get another series of the same type. Multiplication
of power series: ∑

m

amz
m
∑
n

bnz
n =

∑
m,n

ambnz
m+n

=
∑
k

( ∑
m+n=k

ambn

)
zk
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where sums are from 0 to ∞. The coefficient

cn =
∑

m+n=k

ambn

of the product can be thought of as the sum along the diagonal line m+ n = k of
the product of the coefficients.

Multiplication of Dirichlet series:∑
m

amm
−s
∑
n

bnn
−s =

∑
m,n

ambn(mn)−s

=
∑
k

( ∑
mn=k

ambn

)
k−s

where sums are from 1 to ∞. The coefficient

cn =
∑
mn=k

ambn

of the product can be thought of as the sum along the hyperbola mn = k of the
product ambn of the coefficients.

In some cases it makes sense to take the infinite product of power series or
Dirichlet series.

1.2.3. Inverse. For taking the inverse of a power series assume that a0 = 1 and the
series is 1 + h where h =

∑∞
k=1 akz

k. Then use the rule for a geometric series

1

1 + h
=

∞∑
k=0

(−1)khk

A similar method works for finding the inverse of a Dirichlet series.
As an example of inverting a power series using the above method, consider the

series
ez − 1

z
= 1 +

∞∑
k=1

zk

(k + 1)!
.

= 1 +

(
z

2
+
z2

6
+ · · ·

)
Then

z

ez − 1
= 1−

(
z

2
+
z2

6
+ · · ·

)
+

(
z

2
+
z2

6
+ · · ·

)2

+ · · ·

= 1− 1

2
z +

1

12
z2 − · · ·

If we write
z

ez − 1
=
∑ Bk

k!
zk

then the above method is a way of generating the numbers Bk, called the Bernoulli
numbers. We see that B0 = 1, B1 = −1/2 and B2 = 1/6.

As an example of inverting Dirichlet series, consider the series ζ(s) =
∑∞
n=1 n

−s =
1 + h where h =

∑∞
n=2 n

−s. Then

1

ζ(s)
=

∞∑
k=0

(−1)khk
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So

(1)

1

ζ(s)
= 1−

(
2−s + 3−s + 4−s + 5−s + 6−s + · · ·

)
+
(
2−s + 3−s + 4−s + · · ·

)2 − · · ·
= 1− 2−s − 3−s − 5−s + 6−s + · · ·

If we write
1

ζ(s)
=
∑
n

µ(n)n−s

then the above method is a way of generating the numbers µ(n). It looks like all
the numbers will be 1 or -1 or 0. There is a simple expression for these numbers in
terms of primes, but it is not clear how to find it using the above method.

Exercise: Generate some more of the sequence an and try to guess a simple
formula for an .

Addition, multiplication and inversion give ways to create new series from given
ones. Also the exponential and logarithm can be taken, as we will see. The coeffi-
cients of the resulting series may be of number theoretic interest.

1.3. Some interesting series. We give two example of interesting generating
functions, both the subject of much study. Both can be represented as an infinite
product, a fact which gives them their number theoretic interest.

The first is

(2)
1

(1− z)(1− z2)(1− z3) · · ·
=

∞∑
n=0

p(n)zn

where p(k) is the partition function, the number of ways of representing the integer
n as the sum of positive integers, not counting the order in which the sum is written
(Wikipedia reference). For example

5 = 5

= 4 + 1

= 3 + 1 + 1

= 3 + 2

= 2 + 2

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1

so p(5) = 7. Equation (2) can be checked by writing each factor 1/(1 − xk) as a

geometric series

∞∑
j=0

xjk.

The second is the Riemann zeta function and it’s Euler factorization,

(3) ζ(s) =

∞∑
n=1

n−s =
∏
p

(1− p−s)−1

where the product on the right is the product over all primes. This factorization
is equivalent to the statement that every integer has a unique factorization into
primes. Equation (3) can be checked formally by writing each factor 1/(1 − p−s)

http://en.wikipedia.org/wiki/Partition_function_(number_theory)#Partition_function
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as a geometric series

∞∑
j=0

p−sj . This factorization explains why we got only 1,−1, 0

as coefficients in the series (1) for 1/ζ.
Analysis of the function (2) yields the
Asymptotic formula for the partition function

p(n) ∼ 1

4
√

3n
exp

(
π

√
2n

3

)
as n→∞.

There is proof of this in Chapter II of [5].
Analysis of the function (3) yields the
Prime Number Theorem. If π(x) is the number of primes ≤ x then

π(x) ∼ x

log x
as x→∞.

There is a short proof of this in the paper [8]. A longer proof is given in [6] Chapter
7. A good history of the prime number theorem is found in [2].

Dirichlet L functions are a generalization of the zeta function. Analysis of these
shows

Dirichlet’s Theorem If q and ` are relatively prime positive integers, then there
are infinitely many primes of the form `+ kq with k ∈ Z.

The proof of this is covered in [7] Chapter 6, and we will discuss this in the next
sections.

2. The Zeta Function

2.1. Some elementary number theory. The following elementary facts are proved
in Chapter 6 of [7].

(1) Euclid’s Algorithm. For any integers a and b with b > 0, there exist
unique integers q and r with 0 ≤ r < b such that

a = qb+ r.

(2) If gcd(a, b) = d then there exists integers x and y such that

xa+ yb = d.

(3) Two positive integers are relatively prime if and only if there exist integers
x and y such that

xa+ yb = 1.

(4) If a and c are relatively prime and c divides ab then c divides b. In partic-
ular, if p is a prime that does not divide a, and p divides ab, then p divides
b.

(5) If p is prime and p divides the product a1 · · · an, then p divides ai for some
i.

(6) n is relatively prime to q if and only if there is m such that mn = 1 mod q.
(7) Fundamental theorem of arithmetic. Every positive integer greater

than 1 can be factored uniquely into the product of primes.
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2.2. The infinitude of primes. Euclid provided a simple argument that there
are an infinite number of primes. A simple variation of this argument shows that

There are an infinite number of primes of the form 4k + 3.

Proof. Proof by contradiction. Suppose p1 = 7, p2 = 11, . . . , pn are all primes
≡ 3 mod 4, except for 3. Let N = 4p1 · · · pn + 3. The product of integers ≡ 1 mod
4 is and integer ≡ 1 mod 4, so if all prime factors of N are ≡ 1 mod 4 then N
would be ≡ 1 mod 4. Since N ≡ 3 mod 4 there must be a prime factor ≡ 3 mod 4.
This factor cannot be p1, . . . , pn or 3, since these are not factors of N . Therefore
there must be another prime ≡ 3 mod 4 other than the ones listed. �

The same proof does not work for primes of the form 4k + 1, so the question
arises whether there are an infinite number of primes of the form 4k + 1. Here we
need to use some analysis of the zeta function and the Euler product and to define
an L function.

2.3. Infinite products. For a sequence An of complex numbers, define the infinite
product by

∞∏
n=1

An = lim
N→∞

N∏
n=1

An.

For a sequence of non-zero numbers you can show the product converges by showing
the sum of the logarithms converges. Using this method we find that

If An = 1+an and
∑
|an| converges, the the product

∏
nAn converges, and this

product is zero if and only if one of the factors An is zero. Also if an 6= 1 for all
n, then

∏
n 1/(1− an) converges.

The proof relies on the following inequalities which will be used often. If |z| < 1/2

(4)
| log(1 + z)− z| ≤ |z|2

| log(1 + z)| ≤ 2|z|.

For complex numbers we use the principal branch of the log.

2.4. The zeta function and Euler product. For s > 1 the zeta function is
defined by

ζ(s) =
∑
n=1

n−s.

By the integral test, the series converges. By the comparison test it converges
uniformly for s ≥ s0 > 1, and therefore is a continuous function of s.

The zeta function is useful in the study of primes because it can be factored into
an infinite product, the Euler product, using primes.

For every s > 1 we have

(5) ζ(s) =
∏
p

(1− p−s)−1.

where the product is taken over all primes.
Taking the log of equation (5) we find that

log ζ(s) = −
∑
p

log(1− p−s) =
∑
p

p−s + O(1)
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where the O(1) term is ≤
∑∞
n=1 n

−2 independent of s. Letting s→ 1+ get

(6)
∑
p

1/p =∞,

proving in a different way from Euler that there are an infinite number of primes.
Although this is not the easiest way to prove there are an infinite number of primes,
the method generalizes to prove much more interesting results.

2.5. Infinitude of primes of the form 4k + 1. Using (6) and a variation of the
zeta function, called a L function, it can be shown that there are an infinite number
of primes of the form 4k + 1.

We first define a function χ on Z by

(7) χ(n) =


0 if n is even

1 if n ≡ 1 mod 4

−1 if n ≡ 3 mod 4

and check directly that χ has the multiplicative property χ(mn) = χ(m)χ(n) on
all of Z. The function χ is called a Dirichlet character.

Let

(8) L(s, χ) =

∞∑
n=1

χ(n)n−s = 1− 1

3s
+

1

5s
− 1

7s
+ · · · .

for s > 1. The multiplicative property of the character implies that if an integer n
factors into primes as n = pα1

1 · · · p
αk
k then χ(n)n−s = (χ(p1)p−s1 )α1 · · · (χ(pk)p−sk )αk .

Using this fact, for s > 1 an Euler product can be written for L,

(9) L(s, χ) =
∏
p

(1− χ(p)p−s)−1

with a similar proof as for ζ(s). A detailed proof will be given later.
The function L looks similar the ζ function, but because the series (8) is alter-

nating, it has a finite value at s = 1 by the alternating series test. We can see
that it converges to a value between 1 and 2/3. A more detailed analysis shows it
converges to π/4, and that

lim
s→1+

L(s, χ) = L(1, χ),

a fact that will be show later using summation by parts to show that the function
L is continuous for 0 < s.

Now arguing as with the zeta function,

logL(s, χ) =
∑
p

χ(p)p−s + O(1).

Conclude that
∑
p

χ(p)p−s remains bounded as s→ 1+.

Write for s > 1, ∑
p

χ(p)p−s =
∑
p≡1

p−s −
∑
p≡3

p−s

and ∑
p

p−s = 2−s +
∑
p≡1

p−s +
∑
p≡3

p−s



LECTURES ON ANALYTIC NUMBER THEORY 9

where all congruences are mod 4. The sum is

2−s + 2
∑
p≡1

p−s.

and so ∑
p≡1

p−s →∞ as s→ 1+

and consequently ∑
p≡1

p−1 =∞.

This shows there are an infinite number of primes ≡ 1 mod 4.

3. Dirichlet characters and L functions

The goal is to prove Dirichlet’s theorem.
Dirichlet’s theorem. If q and ` are relatively prime positive integers, the

there are infinitely many primes of the form `+ kq with k ∈ Z.
We have already proved the theorem for q = 4, ` = 1, 3. The proof for ` = 1 uses

the zeta function and illustrates the proof for arbitrary q. It also is an introduction
to L functions. Generalizing the L function requires a study of Dirichlet characters.

3.1. Dirichlet characters. Recall that Z(q) is the group of integers mod q. Define
Z(q)∗ to be the group of units of Z(q) under multiplication. The set of units is the
set of ` such that gcd(`, q) = 1. The number of elements of Z(q)∗ is denoted ϕ(q)
which is also called Euler’s totient function.

A character mod q is a map χ : Z(q)∗ → S1 ⊂ C such that χ(mn) = χ(m)χ(n)
for all m,n. Note that S1 is the unit circle in the complex plane. We will also call
these Dirichlet characters.

We may also think of χ(n) as defined for any integer relatively prime to q by
identifying the integer n with it’s equivalence class in Z(q)∗. The character can
then be extended to all of Z by setting χ(n) = 0 if n is not relatively prime to q.
Use the same symbol χ for the character on Z(q)∗ and the character extended to
Z. It is clear that χ(mn) = χ(m)χ(n) (the multiplicative property) also holds for
the character extended to all of Z.

For any q we can define the trivial character by setting χ(m) to be 1 for all
m ∈ Z(q)∗. The trivial character is denoted χ0.

The character χ above we used for q = 4 is defined on Z(4)∗ = {1, 3} by setting
χ(1) = 1 and χ(3) = −1.

3.2. Construction of Dirichlet characters. In this section we show that we can
define Dirichlet characters for all integers q. We also investigate properties of the
set of characters.

To illustrate the method we will construct characters for a few values of q. In
the previous section we constructed a character for q = 4. There is also the trivial
character giving 2 in total.

Lets try a similar method for q = 5. The elements of Z(q)∗ are 1,2,3,4. Note
that 22 = 4 and 23 = 3, so the elements of Z(q)∗ are 2j for j = 0, 1, 2, 3. Note
that the values of 2j are the same for any j in the same residue class mod 4, since
24 ≡ 1. This shows that Z(5)∗ is isomorphic to the cyclic group Z(4).
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If z is any fourth root of unity we define a character by setting χ(2j) = zj . This
is well defined since the right hand side has the same value for values of j in the
same residue class mod 4. It is clear that χ is a character since if m = 2j and
n = 2k then

χ(m)χ(n) = χ(2j)χ(2k) = zjzk = zj+k = χ(mn).

We get a character for z equal to each fourth root of unity, 1, i,−1,−i. When
z = 1 we get the trivial character.

We can summarize the list of characters in table 1. More conveniently it can be

Table 1. Dirichlet characters for Z(5)∗

χ\n 1 2 3 4
χ0(n) 1 1 1 1
χ1(n) 1 i −i −1
χ2(n) 1 −1 −1 1
χ3(n) 1 −i i −1

summarized as a 4× 4 matrix,

(10) A =


1 1 1 1
1 i −i −1
1 −1 −1 1
1 −i i −1


Notice that A has the property that A∗A = 4I so that 1

2A is unitary. We will see
that this generalizes to characters of Z(q)∗ arbitrary q.

For q = 8, the situation is different since the group Z(8)∗ is not cyclic. The
elements of Z(8)∗ are 1, 3, 5, 7. We have 32 = 52 = 72 = 1 so the elements are not
powers of any one element. However 7 = 3 · 5 so every element of Z(8)∗ can be
written as 3j5k for j = 0, 1 and k = 0, 1 and the expression is the same if j or k are
change by a multiple of 2. This shows that Z(8)∗ is isomorphic to the direct sum
of cyclic groups Z(2)⊕ Z(2).

Now taking z1 and z2 to be square roots of 1, that is, 1 or −1, we can get a
character by defining χ(3j5k) = zj1z

k
2 . As before it is easy to see that this has the

multiplicative property. The four characters are given by the matrix

(11)


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


where the column correspond to the elements 1, 3, 5, 7 of Z(8)∗, and the rows
correspond to the four different characters.

The examples above illustrate a method for proving the following theorem.
Existence and orthogonality of characters For every positive integer q ≥ 2

there are exactly ϕ(q) characters of Z(q)∗. The set of characters is a group under
multiplication. This group is isomorphic to Z(q)∗. When the characters are written
in the form of a matrix A,

AA∗ = ϕ(q)I.
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Proof. We need to show that the construction of characters illustrated above works
for any q. For this we need the fact that every finite abelian group can be written
as the direct product of cyclic groups. We will not prove this fact. In the case
of the group Z(q)∗ it means that there are elements a1, . . . , ak of order N1, · · ·N`
respectively such that every element of Z(q)∗ can be written uniquely as aj11 · · · a

jk
k

for 0 ≤ j` ≤ N` − 1, where N1 · · ·N` = ϕ(q). We saw this in the case q = 8 above
with a1 = 3, a2 = 5, N1 = N2 = 2.

Now letting ω` = e2πi/Nl and defining

(12) χ(aj11 · · · a
jk
k ) = ωn1j1

1 · · ·ωnkjkk

gives a character for each choice of integers 0 ≤ n` ≤ N` − 1. This gives ϕ(q)
characters.

The product of characters is clearly a character. Associate the character defined
in (12) with the element an1

1 · · · a
nk
k in Z(q)∗. This is easily seen to be a group

isomorphism.
Next we show that AA∗ = ϕ(q)I. This is equivalent to

(13)
∑

n∈Z(q)∗
χ1(n)χ2(n) =

{
0 if χ1 6= χ2

ϕ(q) if χ1 = χ2.

If χ1 6= χ2 then there is some m such that χ1(m) 6= χ2(m). Now∑
n∈Z(q)∗

χ1(n)χ2(n) =
∑

n∈Z(q)∗
χ1(mn)χ2(mn)

= χ1(m)χ2(m)
∑

n∈Z(q)∗
χ1(n)χ2(n).

The first equality is a change in the order of summation, and the second is by
the multiplicative property of characters. Since χ1(m)χ2(m) 6= 1, it follows that∑
n

χ1(n)χ2(n) = 0. If χ1 = χ2, all the terms in the sum are 1 and so the sum is

the number of elements in Z(q)∗, ϕ(q).
�

We can think of a character as a vector in Cϕ(q), a row of A. The above expression
then becomes 〈χ1, χ2〉, the Hermitian inner product. The statement 〈χ1, χ2〉 = 0
means that the rows of A are orthogonal.

Since A∗/
√
ϕ(q) is the inverse of A/

√
ϕ(q), we also have that A∗A = ϕ(q)I and

so the columns of A are orthogonal. This is written as

(14)
∑
χ

χ(`)χ(n) =

{
0 if ` 6= n

ϕ(q) if ` = n.

In the proof we used the fact that every finite abelian group can be written as the
direct product of cyclic groups. Alternately we can use the fact that a commuting
family of unitary transformation on a finite dimensional space are simultaneously
diagonalizable. See [7] page 233.

The fact that the group of characters and Z(q)∗ are isomorphic is used by New-
man in his proof in [5] of the non vanishing of L(1, χ) for non trivial characters.
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3.3. Euler product for L functions. Similar to the proof of the Euler product
for the zeta function we can show that for s > 1,

(15) L(s, χ) =
∏
p

(1− χ(p)p−s)−1.

The proof uses the fundamental theorem of arithmetic. The basic idea is to make
sense of the statement

lim
N→∞

∑
n≤N

χ(n)n−s = lim
M,N→∞

∏
p≤N

M∑
kp=0

χ(p)p−kps.

The finite sums on either side have approximately the same terms by the funda-
mental theorem of arithmetic and by the multiplicative property of characters. See
[7] p. 260.

Denoting the sum on the left by SN and the one on the right by
∏
N,M , the

key step is to estimate |SN −
∏
N,M |. Note that if pα|n and n ≤ N then p ≤ N

and α ≤ logN/ log p ≤ logN/ log 2. It follows from the fundamental theorem of
arithmetic that if M > logN/ log 2, the product

∏
N,M multiplied out into a sum

contains all the terms of SN exactly once. We can then estimate∣∣∣SN −∏
N,M

∣∣∣ ≤ ∣∣∣∣∣∑
n>N

χ(n)n−s

∣∣∣∣∣ ≤ ∑
n>N

n−s,

and the sum on the right goes to zero as N →∞ for s > 1.

3.4. Outline of proof of Dirichlet’s theorem. The proof of Dirichlet’s theorem
for arbitrary q follows the method used for q = 4. Consider the ϕ(q) characters χ
on Z∗(q). By the orthogonality of characters, for ` and m in Z∗(q),

(16) ϕ(q)δ`(m) =
∑
χ

χ(`)χ(m)

where

δ`(m) =

{
1 if ` = m

0 if ` 6= m.

If the characters are extended to m ∈ Z, equation (16) also holds with δ`(m) defined
by

(17) δ`(m) =

{
1 if m ≡ ` mod q

0 otherwise.

Write (16) as

(18) ϕ(q)δ`(m) = χ0(m) +
∑
χ 6=χ0

χ(`)χ(m)

where χ0 is the trivial character. Multiply both sides of (18) by m−s and sum over
all m = p where p is a prime to get

(19) ϕ(q)
∑
p≡`

p−s =
∑
p-q

p−s +
∑
χ 6=χ0

χ(`)
∑
p

χ(p)p−s.

Now ∑
p-q

p−s =
∑
p

p−s −
∑
p|q

p−s
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and the sum on the right is a finite sum. Since it was shown that∑
p

p−s →∞ as s→ 1+

it follows that ∑
p-q

p−s →∞ as s→ 1+.

If
∑
p χ(p)p−s is bounded as s→ 1+ for every non trivial character χ, then by (19)∑

p≡`

p−1 =∞,

so there are an infinite number of prime p ≡ ` mod q and this proves Dirichlet’s
theorem.

As before
logL(s, χ) =

∑
p

χ(p)p−s + O(1)

as s → 1+, so to complete the proof of Dirichlet’s theorem it is left to show that
L(1, χ) is finite and non-zero for every non trivial character χ, and lims→1+ logL(s, χ) =
L(1, χ). This will be proved in following sections.

4. Analytic tools

Before continuing with L functions and the proof of Dirichlet’s theorem, review
a few tools from analysis.

4.1. Summation by parts. Summation by parts is analogous to integration by
parts.

Let aj and bj be sequences and let An =
∑n
j=1 aj, then for integers M > N ,

(20)

N∑
n=M

anbn =

N−1∑
n=M

An(bn − bn+1) +ANbN −AM−1bM .

Proof Write

N∑
n=M

anbn =

N∑
n=M

(An −An−1)bn and break the sum into two parts.

Change the index of summation from n to n+ 1 in the second part. �
The formula for summation by parts can be written in a different way if f is a

differentiable function and bn = f(n). In this case write

bn+1 − bn =

∫ n+1

n

f ′(x) dx,

and A(x) =
∑
n≤x an. The sum on the right of (20) becomes

−
∫ N

M

A(x)f ′(x) dx.

The sum on the left is written ∫ N

M

f(x)dA(x).

This is really a Stieltjes integral, but can be thought of simply as a sum. This gives
a way to remember summation by parts, because it can be written in the same way
as integration by parts.
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Summation by parts, integral form. Let aj be a sequence and f a differ-
entiable function. Let A(x) =

∑
j≤x aj, then for integers M > N ,

(21)

∫ N

M

f(x)dA(x) = A(x)f(x)
∣∣N
M−
−
∫ N

M

A(x)f ′(x) dx.

The M− indicates the limit from the left.
Summation by parts can be applied to Dirichlet series by setting f(x) = x−s

above. In this case the summation by parts formula becomes

(22)

N∑
n=M

ann
−s = s

∫ N

M

A(x)x−s−1 dx+A(x)x−s
∣∣N
M−

.

In the case that an = 1 for all n, the function A(x) is [x], the greatest integer
function, also called the floor function.

4.2. Sums and integrals. Summation by parts is useful for comparing sums

and integrals. The sum
∑N
n=M f(n) is expected to be approximately the same

as
∫ N
M
f(x) dx. Summation by parts gives the difference between them as

(23)

∫ N

M

f(x)d([x]− x) = f(M) +

∫ N

M

(x− [x])f ′(x) dx.

In the case of f(x) = x−1/2 for example the integral is 2N1/2 − 1 and summation
by parts gives

(24)

N∑
n=1

n−1/2 = 2N1/2 − 1 +
1

2

∫ N

1

([x]− x)x−3/2 dx

= 2N1/2 + c+ O(N1/2)

4.3. Euler’s constant. Consider f(x) = 1/x and compare the sum and the inte-
gral using summation by parts. Euler’s constant is defined by the following limit.

As N →∞

(25)

N∑
n=1

1

n
= logN + γ + O(1/N)

where γ is a constant (called Euler’s constant).

Proof. To show the limit exists use summation by parts and the fact that logN =∫ N
1
dx/x to write

N∑
n=1

1

n
− logN = 1 +

∫ N

1

[x]− x
x2

dx.

Since 0 ≤ [x] − x < 1, the integral on the right converges as N → ∞, and we can
write

γ = 1 +

∫ ∞
1

[x]− x
x2

dx.

Thus
N∑
n=1

1

n
− logN − γ = −

∫ ∞
N

[x]− x
x2

dx,

and the integral is ≤
∫ ∞
N

1

x2
dx = 1/N �
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4.4. Stirling’s formula. Consider f(x) = log x and compare the sum and the
integral using summation by parts. We obtain Stirling’s formula.

Stirling’s formula. As N →∞

logN ! = N logN −N + O(logN).

Proof. Write

logN ! =

N∑
n=1

log n =

∫ N

1

log x d[x]

and

N logN −N + 1 =

∫ N

1

log x dx.

Summation by parts gives

N∑
n=1

log n−N logN +N = 1 +

∫ N

1

[x]− x
x

dx.

The integral on the right is between 0 and logN . �

4.5. Hyperbolic sums. For N a positive integer, the following sets of pairs (m,n)
of positive integer are equal.

(26)

{mn = k, 1 ≤ k ≤ N}
{1 ≤ m ≤ N, 1 ≤ n ≤ N/m}
{1 ≤ n ≤ N, 1 ≤ m ≤ N/n} .

The first expression describes the set as the union of integer points on hyperbolas.
The other expressions describe the set as the union of horizontal or vertical lines.
It follow that for any function F the following sums are equal.

(27)

∑
1≤k≤N

∑
mn=k

F (m,n)

∑
1≤m≤N

∑
1≤n≤N/m

F (m,n)

∑
1≤n≤N

∑
1≤m≤N/n

F (m,n).

The sum
∑
mn=k F (m,n) is of the type found in computing kth coefficient in the

product of Dirichlet series, where F (m,n) = ambn.
An application for hyperbolic sums is
Asymptotic expression for the divisor function For a positive integer k

let d(k) denote the number of positive divisors of k. Then as N →∞

1

N

N∑
k=1

d(k) = logN + O(1)

More precisely

1

N

N∑
k=1

d(k) = logN + (2γ − 1) + O(N−1/2)

where γ is Euler’s constant.
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The proof uses the fact that the divisor function can be written as a hyperbolic
sum,

d(k) =
∑
mn=k

1.

See [7] for the proof.

5. Analytic properties of L functions

In this section we show that the functions L(s, χ) have analytic continuation to
Re s > 0. For a non-trivial character χ the Dirichlet series converges in this region
and there are no poles. For the trivial character there is a simple pole at s = 1.
We show that L(1, χ) 6= 0 which completes the proof of Dirichlet’s Theorem.

5.1. Non trivial characters. For χ a non-trivial character the Dirichlet series

L(s, χ) =
∑∞
n=1 χ(n)n−s converges uniformly for s ≥ s0 > 0 and L(s, χ)−

∑N
n=1 χ(n)n−s =

O(N−s).

Proof. Use summation by parts. Write A(x) =
∑

1≤k≤x

χ(k) and

(28)

N∑
n=1

χ(n)n−s =

∫ N

1

x−sdA(x).

The function A is bounded. Since a non-trivial character is orthogonal to the trivial
character, ∑

n<k≤n+q

χ(k) = 0

for any positive integer n. This shows A is a function of period q, and therefore its
maximum is on the interval [0, q]. For 0 ≤ x ≤ q,

|A(x)| ≤
∑

1≤k≤x

|χ(k)| ≤ q

since |χ(k)| ≤ 1 for all k.
Now using summation by parts, (28) can be rewritten as

N∑
n=1

χ(n)n−s = A(N)N−s + s

∫ N

1

x−s−1A(x) dx.

For s ≥ s0 > 0, |x−s−1A(x)| ≤ qx−s0−1 and the integral

∫ ∞
1

x−s0−1 dx converges

for s0 > 0. The first term has absolute value ≤ qN−s0 which converges to 0 as

N →∞. Thus

N∑
n=1

χ(n)n−s converges uniformly for s ≥ s0.

This shows that for s > 0,

L(s, χ) = s

∫ ∞
1

x−s−1A(x) dx
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and so

(29)

L(s,χ)−
N∑
n=1

χ(n)n−s

= −A(N)N−s − s
∫ ∞
N

A(x) dx−s

= O(N−s).

�

The same argument holds for s complex and Re s ≥ s0 > 0. Since the conver-
gence is uniform, the resulting function is holomorphic for Re s > 0.

For χ a non trivial character the Dirichlet series L(s, χ) =
∑∞
n=1 χ(n)n−s con-

verges to a holomorphic function for Re s > 0.
We now know that lims→1 L(s, χ) = L(1, χ) for a non-trivial character.

5.2. The trivial character. The function L(s, χ0) for the trivial character is an
entire function times the Riemann zeta function ζ. To see this, look at the Euler
products for L(s, χ0) and ζ(s).

L(s, χ0) =
∏
p

(1− χ0(p)p−s)−1 ζ(s) =
∏
p

(1− p−s)−1.

Since for a prime p, χ0(p) = 1 unless p|q, in which case χ0(p) = 0, it follows that

(30) L(s, χ0) = ζ(s)
∏
p|q

(1− p−s)−1.

Note that the product on the right is a finite product and therefore and entire
function. It is also not zero at s = 1.

We show that the function ζ can be analytically continued to a function which
has a simple pole at s = 1.

The function ζ(s) − 1/(s− 1) can be analytically continued to a function holo-
morphic in Re s > 0. If follow that ζ can be extended to a meromorphic function
there with simple pole at s = 1.

Proof. Using summation by parts.

N∑
n=1

n−s −
∫ N

1

x−s dx = 1 + s

∫ N

1

x−s−1([x]− x) dx.

Since the integrand on the right is ≤ x−Re s−1 in absolute value, the integral con-
verges as N → ∞ uniformly in Re s ≥ s0 > 0 to a holomorphic function. Letting
N →∞, for Re s > 1 get

(31) ζ(s) =
1

s− 1
+ 1 + s

∫ ∞
1

x−s−1([x]− x) dx

and the expression on the right is meromorphic for Re s > 0. �

So now by (30), L(s, χ0) has a simple pole at s = 1.
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5.3. Non vanishing of L function at s = 1. We show that L(1, χ) 6= 0 if χ is a
non-trivial character.

If χ has values which are not real it is called a complex character. In this case
the proof is easy

For χ a complex Dirichlet character, L(1, χ) 6= 0.

Proof. Form the product of all functions L(s, χ) for Dirichlet characters χ mod q,

(32) L(s) =
∏
χ

L(s, χ).

Since

logL(s, χ) = −
∑
p

log(1− χ(p)p−s) =
∑
p

∞∑
k=1

1

k
χ(pk)p−sk

then

(33)

logL(s) =
∑
χ

∑
p

∞∑
k=1

1

k
χ(pk)p−sk

=
∑
p

∞∑
k=1

∑
χ

1

k
χ(pk)p−sk

By the orthogonality of characters∑
χ

χ(`)χ(m) = δ`(m),

where δ`(m) is defined by (17). Letting ` = 1, and m = pk,∑
χ

χ(pk) = δ1(pk).

Substituting in (33),

(34) logL(s) =
∑
p

∞∑
k=1

1

k
δ1(pk)p−sk

showing that for s real logL(s) ≥ 0 so L(s) ≥ 1.
If χ is a complex character, then so is χ. If L(1, χ) = 0 then also L(1, χ) = 0,

and in the product (32) one of the factors has a simple pole and two have zeros at
1. This implies that L(1) = 0. But this contradicts the fact that L(s) ≥ 1 for s
real. �

If all values of χ are real, it is said to be a real character.
For χ a non-trivial real Dirichlet character, L(1, χ) 6= 0.

Proof. The proof uses the follwing sum along hyperbolas

(35) SN =

N∑
k=1

∑
mn=k

χ(n)

(nm)1/2
.

That L(1, χ) 6= 0 follows from the two statements

(36) SN ≥ c logN for some constant c > 0

(37) SN = 2N1/2L(1, χ) + O(1) as N →∞
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since if L(1, χ) = 0, (37) says that SN is bounded as N → ∞ which contradicts
(36).

Proof of (36) Write

SN =

N∑
k=1

∑
n|k

χ(n)

Now using

(38)
∑
n|k

χ(n) ≥

{
0 for all k

1 if k = `2 for some ` ∈ Z.

(this is shown below) get

SN ≥
∑

`≤N1/2

1

`
= log(N1/2) + O(1)

where the right inequality is from (25). This proves (36).
To prove (38) look at the prime factorization k = pa11 · · · pann of k. The divisors

of k are pb11 · · · pbnn for 0 ≤ bj ≤ aj . By the multiplicative property of characters we
can factor

∑
n|k χ(n) as

(39)
∑
n|k

χ(n) =

n∏
j=1

(
χ(1) + χ(pj) + χ(p2j ) + · · ·χ(pann )

)
.

But for any p and a,

χ(1) + χ(p) + χ(p2) + · · ·χ(pa) =


a+ 1 if χ(p) = 1

1 if χ(p) = −1 and a is even

0 if χ(p) = −1 and a is odd

1 if χ(p) = 0, that is p|q

Now if is k is a square, all of the aj in (39) are even and each factor is ≥ 1 . In
any case each factor is ≥ 0. This proves (38).

Proof of (37) First prove the following two inequalities for integers a < b, as
a→∞

(40)

b∑
n=a

χ(n)

n1/2
= O(a−1/2)

(41)

b∑
n=a

χ(n)

n
= O(a−1)

Equation (40) follow from (29) since the expression can be written as

L(χ, 1/2)−
a∑

n=1

χ(n)n−1/2 −

(
L(χ, 1/2)−

b∑
n=1

χ(n)n−1/2

)
= O(a−1/2) + O(b−1/2).

Now the result follows since for b > a, b−1/2 < a−1/2.
The proof of (41) also follows from (29) by a similar argument.
For the rest of the proof see [7]. �
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6. Prime counting functions

There are an infinite number of primes and an infinite number of primes of the
form nq + ` for q and ` relatively prime. What about a more precise count of
primes? It was first observed by Gauss and Legendre that the number of primes
less than or equal to a positive number x is approximately x/ log x. Let

(42) π(x) =
∑
p≤x

1 = the number of primes ≤ x

be the prime counting function. The Prime Number Theorem (PNT) conjectured
by Gauss and Legendre is

(43) π(x) ∼ x

log x
as x→∞,

which is short a way of saying that

(44) lim
x→∞

π(x) log x

x
= 1.

To prove PNT we must study more carefully the behavior of ζ(s) at s = 1.

6.1. Generating functions and counting primes. In keeping with the spirit of
using generating functions, consider a Dirichlet series

∑
n ann

−s with coefficients
an = 1 for n a prime and 0 otherwise. This is the function

∑
p p
−s that was studied

to give the analytic proof that there are an infinite number of primes. The prime
counting function (42) is the partial sum of the coefficients and so using summation
by parts,

(45)

∑
p

p−s =

∫ ∞
0

x−s dπ(x)

= s

∫ ∞
0

x−s−1π(x) dx.

Some other prime counting functions are more convenient for proving PNT (43).
Consider the derivative

∑
p(log p)p−s of (45). The partial sum of the coefficients is

given by the function

(46) ϑ(x) =
∑
p≤x

log p.

The function ϑ gives another way to count primes, weighted by their log. Summa-
tion by parts gives

(47)

∑
p

(log p)p−s =

∫ ∞
0

x−s dϑ(x)

= s

∫ ∞
0

x−s−1ϑ(x) dx

since clearly ϑ(x) ≤ x log x, so x−sϑ(x)→ 0 as x→∞ for Re s > 1.
The Prime Number Theorem is equivalent to

(48) ϑ(x) ∼ x as x→∞.
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Proof. This follows from the fact that for every ε > 0,

(49) (1− ε)π(x) log x+ O(x1−ε) log x ≤ ϑ(x) ≤ π(x) log x.

The inequality on the right is easy. To get the one on the left, first note that it
is clear that π(x) ≤ x. Then for ε > 0,

ϑ(x) ≥
∑

x1−ε<p≤x

log p ≥ log x1−ε
∑

x1−ε<p≤x

1

= log x1−ε
(
π(x)− π(x1−ε)

)
= π(x)(1− ε) log x+ O(x1−ε) log x.

So if limx→∞ ϑ(x)/x exists, (49) and the fact that limx→∞ x−ε log x = 0 shows that

(1− ε) lim
x→∞

π(x) log x

x
≤ lim
x→∞

ϑ(x)

x
≤ lim
x→∞

π(x) log x

x

for every ε > 0. So limx→∞(π(x) log x)/x exists and

lim
x→∞

π(x) log x

x
= lim
x→∞

ϑ(x)

x
.

A similar argument proves the above equation assuming the limit on the left exists.
�

Another prime counting function is obtained by looking at the Dirichlet series
for ζ ′/ζ. By the Euler factorization of ζ,

(50)

−ζ
′(s)

ζ(s)
=
∑
p

p−s log p

1− p−s

=
∑
p

log p

∞∑
k=1

p−ks

=

∞∑
n=1

Λ(n)n−s

for Re s > 1, where Λ is the Von Mangoldt function defined by

(51) Λ(n) =

{
log p if n = pk

0 otherwise.

Define the partial sums of the coefficients of (50) by

(52) ψ(x) =
∑
n≤x

Λ(k).

Using this new prime counting function we have a new statement of the Prime
Number Theorem.

The Prime Number Theorem is equivalent to

(53) ψ(x) ∼ x as x→∞,
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Proof.

ψ(x)− ϑ(x) =
∑
pk≤x
2≤k

log p

≤
∑
p≤
√
x

log p ≤
√
x log x

Now (
√
x log x)/x goes to 0 as x → ∞, so by (48), (53) is another statement of

PNT. �

The functions ψ(x) and ϑ(x) are generated by partial sums of the coefficients of
−ζ ′(s)/ζ(s) and

∑
p(log p)p−s respectively. These functions are closely related.

The function

(54)
∑
p

(log p)p−s +
ζ ′(s)

ζ(s)

has analytic continuation to a function holomorphic in Re s > 1/2.

Proof. The Euler factorization of ζ gives

−ζ
′(s)

ζ(s)
=
∑
p

log p

ps − 1
.

so (54) is given by

−
∑
p

log p

ps(ps − 1)
.

Comparing this series to
∑
p p
−2Re s+ε, it converges for Re s > (1 + ε)/2. Since this

is true for every ε > 0 this completes the proof. �

This shows that both functions −ζ ′(s)/ζ(s) and
∑
p(log p)p−s have the same

singular part 1/(s− 1) at s = 1.

6.2. Outline of proof of PNT. We can now give an argument that suggests why
PNT is true, but which does not give a proof. The previous paragraph shows that
the function defined in Re s > 1 by

(55)
∑
p

(log p)p−s − 1

s− 1

has analytic continuation to a function holomorphic in a neighborhood of s = 1.
Use summation by parts (47) and the fact that

∫∞
1
x−s dx = 1/(s−1) to write (55)

for Re s > 1 as

(56)

∫ ∞
1

(
sϑ(x)

x
− 1

)
x−s dx.

If we could take the limit under the integral sign as s→ 1+ we would get that the
integral

(57)

∫ ∞
1

(
ϑ(x)

x
− 1

)
dx

x

converges. This integral is of the form∫ ∞
1

f(x)x−1 dx =

∫ ∞
0

f(et) dt
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where f(x) = ϑ(x)/x − 1. Since the integral converges, probably f(et) → 0 as
t → ∞ and this is PNT. It is not true in general that if

∫∞
0
g(t) dt converges then

g(t) → 0 as t → ∞. There are easy counterexamples. In this case, however, the
function g is regular enough that it is true. The fact that ϑ(x) is increasing is the
key.

If

(58)

∫ ∞
1

(
ϑ(x)

x
− 1

)
dx

x

converges then

(59) lim
x→∞

(
ϑ(x)

x
− 1

)
= 0

and this proves PNT.

Proof. This proof is taken from [8]. If (59) does not hold then for some ε > 0 there
is a sequence xn with limit ∞ such that for every n

ϑ(xn)

xn
> 1 + ε or

ϑ(xn)

xn
< 1− ε.

One of these inequalities must hold for infinitely many n.
Now let λ = 1 + ε. Suppose for some λ > 1 there are arbitrarily large x with

ϑ(x) ≥ λx. Since ϑ is non-decreasing,∫ λx

x

ϑ(t)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt

=

∫ λ

1

λ− t
t2

dt > 0.

Note the last expression is independent of x. This contradicts the convergence of
the integral (58) since if the integral converges,

lim
x→∞

∫ λx

x

ϑ(t)− t
t2

dt = 0.

Likewise let λ = 1− ε. Suppose for some λ < 1 there are arbitrarily large x with
ϑ(x) ≤ λx. Since ϑ is non-decreasing,∫ x

λx

ϑ(t)− t
t2

dt ≤
∫ x

λx

λx− t
t2

dt

=

∫ 1

λ

λ− t
t2

dt < 0

which again contradicts the convergence of the integral (58). �

These same arguments can be made with ϑ(x) replaced by ψ(x).

So PNT reduces to proving that the integral

∫ ∞
1

(
ϑ(x)

x
− 1

)
dx

x
converges.

This is the hard part and will require Newman’s Analytic Theorem proved in section
8



24 J. R. QUINE

6.3. The Möbius function. Another prime counting function is obtained by look-
ing at partial sums of the coefficients of 1/ζ. By the Euler factorization,

(60)
1

ζ(s)
=
∏
p

(1− p−s) =

∞∑
n=1

µ(n)n−s,

where the coefficients are given by the Möbius function

(61) µ(n) =


1 if n = 1,

(−1)k if n = p1 · · · pk for distinct primes,

0 otherwise.

The Möbius function is interesting because it has values −1, 0 or 1 and appears to
be quite random in a way explained later. The partial sums of the coefficients of
the series for 1/ζ are denoted by

(62) M(x) =
∑
n≤x

µ(n).

We show later that PNT is equivalent to M(x)/x → 0 as x → ∞. So it is known
to be random in the sense that the average goes to zero.

Relationship between the Möbius function and von Mangoldt function and the
sequence log n can be seen by multiplying the various generating functions. Recall
the following Dirichlet series.

(63)

−ζ
′(s)

ζ(s)
=

∞∑
n=1

Λ(n)n−s

1

ζ(s)
=

∞∑
n=1

µ(n)n−s

ζ(s) =

∞∑
n=1

n−s

−ζ ′(s) =

∞∑
n=1

(log n)n−s

Since the fourth equation is the first times the third, get by equating coefficients of
the Dirichlet series

(64) log n =
∑
d|n

Λ(d).

Since the first equation is the second times the third, get by equating coefficients
of the Dirichlet series

(65) Λ(k) =
∑
mn=k

µ(m) log n.

Equations (64) and (64) can be considered as inverses of each other.
In proving equation (64) we have assumed that the coefficients of Dirichlet series

are unique, but this equation, like the Euler factorization, is based simply on the
the fact that every integer can be uniquely factored into primes. To prove (64)
using this fact, write n = pα1

1 · · · p
αk
k . Then the only d for Λ(d) is not zero are

d = pβj for 1 ≤ β ≤ αj and (64) follows directly. Equation (65) can be proved
similarly.



LECTURES ON ANALYTIC NUMBER THEORY 25

Table 2. Dirichlet series related to ζ(s) and partial sums of co-
efficients. Coefficients not specified are 0. Primes p1, . . . , pk are
distinct. Coefficients can be easily found from the Euler factoriza-
tion ζ(s) =

∏
p(1− p−s)−1

series coeff. coeff. part. sum part. sum∑
ann

−s an name
∑
n≤x an name

ζ(s) 1 [x] floor

1/ζ(s) (−1)k if n = p1 · · · pk µ(n)
Möbius

M(x) Mertens

−ζ ′(s) log n log([x]!) T (x)

−ζ ′(s)/ζ(s) log p if n = pk
Λ(n)

von Mangoldt
ψ(x) Chebychev∑

p(log p)p−s log p if n = p ϑ(x)

log ζ(s) Λ(n)/ log n J(x)∑
p p
−s 1 if n = p π(x)

prime
counting

ζ(2s)/ζ(s)
(−1)a1+···+ak

if n = pa11 · · · p
ak
k

λ(n)
Liouville

M1(x)

7. Chebyshev’s estimates

Chebyshev studied the function ψ(x) =
∑
n≤x

Λ(n). The Prime Number Theorem

is equivalent to ψ(x)/x → 1 as x → ∞. Chebyshev was able to show without
complex analysis that for sufficiently large x

(66) A < ψ(x)/x < 6A/5

where A = .921 . . . , and 6A/5 = 1.106 . . . . The technique is interesting because it
uses only elementary analysis and Stirling’s formula. We will give the proof in this
section. This material is taken from [4].

7.1. An easy upper estimate. As a warm up, we prove something easier. The
proof does not use any analysis, just some algebra. We show that the order of
magnitude of ϑ(x) is less that x in the sense that there is a constant C such that
ϑ(x)/x ≤ C for large x, that is, ϑ(x) = O(x). This will be an important hypothesis
used in the proof of Newman’s Analytic Theorem, the key step in the proof of PNT.

Theorem.

(67)
ϑ(x)

x
≤ 4 log 2

for x sufficiently large.
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Proof. For any integer n ≥ 1 see by the binomial expansion of (1 + 1)2n that

(68)

22n =

2n∑
k=0

(
2n

k

)
>

(
2n

n

)
=

(2n)(2n− 1) . . . (n+ 1)

n!

≥
∏

n<p≤2n

p.

The latter inequality holds since any prime p, n < p ≤ 2n is one of the factors of
the numerator but does not divide any factor of the denominator, and therefore
must divide

(
2n
n

)
which is an integer.

Taking the log of (68) gives

(2 log 2)n ≥
∑

n<p≤2n

log p = ϑ(2n)− ϑ(n).

Letting n = 2k get

(2 log 2)2k ≥ ϑ(2k+1)− ϑ(2k).

It follows that

ϑ(2n+1) =

n∑
k=0

[ϑ(2k+1)− ϑ(2k)]

≤ 2 log 2

n∑
k=0

2k = (2 log 2)(2n+1 − 1)

≤ (2 log 2)2n+1.

Now if x > 1 then for some k, 2k ≤ x ≤ 2k+1 and

ϑ(x) ≤ ϑ(2k+1) ≤ (2 log 2)2k+1 ≤ (4 log 2)x.

Thus if C = 4 log 2 the inequality ϑ(x) ≤ Cx holds. With a little more work it can
be shown using this method that any C > 2 log 2 works.

�

7.2. Upper and lower estimates. Now proceed to the proof of (66). Chebychev
used the formulas (64) and (65).

Let

T (x) = log([x]!) =
∑
k≤x

log k.

Summing both sides of (64) over k ≤ x, and reordering the sum over hyperbolas to
the sum over vertical lines, get

(69)

T (x) =
∑
k≤x

log k =
∑
k≤x

∑
mn=k

Λ(n)

=
∑
m≤x

∑
n≤x/m

Λ(n)

=
∑
m≤x

ψ(x/m).
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Summing both sides of (65) over k ≤ x and reordering the sum over hyperbolas
to the sum over vertical lines get

(70)

ψ(x) =
∑
k≤x

Λ(k) =
∑
k≤x

∑
mn=k

µ(m) log n

=
∑
m≤x

µ(m)
∑

n≤x/m

log n

=
∑
m≤x

µ(m)T (x/m).

The absolute values, T (x/m), of the terms in the last sum can be estimated
using Stirling’s formula T (x) = x log x − x + O(log x) to try to get an estimate of
ψ(x) as x→∞. The problem is that the coefficients µ(m) are a seemingly random
sequence chosen from −1, 0, 1, and therefore many cancellations occur.

The method of Chebyshev was to consider instead of the right hand side of (70)
the sum

(71)

T (x)− T (x/2)− T (x/3)

− T (x/5) + T (x/30) =
∑
m∈S

νmT (x/m)

where S is the set of integers {1, 2, 3, 5, 30} and where ν1 = 1, ν2 = −1, ν3 = −1,
ν5 = −1 and ν30 = 1. Substituting (69) in the sum (71) get

(72)

∑
m∈S

νmT (x/m) =
∑
m∈S

νm
∑

n≤x/m

ψ (x/(mn))

=
∑
k≤x

∑
m∈S
m|k

νmψ(x/k)

=
∑
k≤x

Akψ(x/k)

where

(73) Ak =
∑
m∈S
m|k

νm.

For m ∈ S m|30, so m|k if and only if m|(k + 30) and it follows that Ak = Ak+30.
Thus Ak is completely determined by its values for k = 1, 2, . . . 30 given in table 3.

Table 3. Table of Ak given by (73)

k 1 2 3 4 5 6 7 8 9 10
Ak 1 0 0 0 0 -1 1 0 0 -1
k 11 12 13 14 15 16 17 18 19 20
Ak 1 -1 1 0 -1 0 1 -1 1 -1
k 21 22 23 24 25 26 27 28 29 30
Ak 0 0 1 -1 0 0 0 0 1 -1

From table 3 and the fact that ψ is an increasing function, we see that the
series

∑∞
k=1Akψ(x/k) is an alternating series of the form

∑∞
j=1(−1)j+1aj with
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aj a decreasing sequence of non-negative numbers. In the latter case the sum σ
satisfies a1 − a2 < σ < a1. Thus

(74) ψ(x)− ψ(x/6) ≤
∑
m∈S

νmT (x/m) ≤ ψ(x).

Using Stirling’s formula T (x) = x log x−x+O(log x) and the fact that
∑
n∈S νn/n =

0, get

(75)
∑
m∈S

νmT (x/m) = Ax+ O(log x)

where

A =
∑
m∈S

νm
logm

m
= .921 . . .

Now (74) becomes

(76) ψ(x)− ψ(x/6) ≤ Ax+ O(log x) ≤ ψ(x).

and this gives the left hand inequality in (66).
To get the right hand inequality of (66), substitute x

6k
in the left inequality of

(76), and sum getting

(77) ψ (x) =
∑

k≤ log x
log 6

(
ψ
( x

6k

)
− ψ

( x

6k+1

))
since if k > log x

log 6 then x
6k
< 1 and ψ

(
x
6k

)
= 0. Hence by (76)

(78)

ψ (x) ≤ Ax
∑

k≤ log x
log 6

6−k + O(log x)
log x

log 6

≤ Ax
∞∑
k=0

6−k + O((log x)2)

=
5

6
Ax+ O((log x)2)

and the right hand inequality of (66) follows.

8. Proof of the Prime Number Theorem

The easiest proof of PNT follows from a study of ζ(s) using complex variables
theory. There are “elementary” proofs which do not use complex variables, but they
are more complicated. We will show that ζ(s) has no zeros on Re s = 1 and that
this fact is equivalent to PNT. This explains why Chebychev could not complete
the proof of PNT, since he was looking only along the real axis.

8.1. PNT and zeros of ζ. Recall from (54) that the function

(79) Φ(s) =
∑
p

log p

ps

can be continued to Re s > 1/2 and that Φ(s)+
ζ ′(s)

ζ(s)
is holomorphic in Re s > 1/2.

The function ζ′(s)
ζ(s) has simple poles with residues equal to the order of the zero of

ζ(s) at the poles. Thus if s0 is a zero of ζ of order h then lim
s→s0

(s− s0)Φ(s) = −h.
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First we show
The Prime Number Theorem, ϑ(x) ∼ x as x→∞, implies there are no zeros of

ζ(s) on Re s = 1.

Proof. In sections 6.1 and 6.2 it was shown that for Re s > 1,

(80)

∫ ∞
1

(ϑ(x)− x)x−s−1 dx =
Φ(s)

s
− 1

s− 1

= − ζ
′(s)

sζ(s)
− 1

s− 1
+ h(s)

where h(s) is holomorphic on Re s > 1/2. Denote this meromorphic function in
Re s > 1/2 by f(s). We show f(s) has no poles on Re s = 1 and therefore ζ(s) has
no zeros there. For ε > 0 choose M such that

|ϑ(x)− x| ≤ εx

for x > M . Then if s = σ + iτ , σ > 1,

(81)
|f(s)| ≤

∫ M

1

|ϑ(x)− x|x−σ−1 dx+ ε

∫ ∞
M

x−σ dx

= g(σ) + ε
M1−σ

σ − 1

where g(σ) is continuous at σ = 1. Let s0 = 1 + iτ , then∣∣∣∣∣∣ lim
s→s0
Im s=τ

(s− s0)f(s)

∣∣∣∣∣∣ = lim
σ→1

(σ − 1)|f(σ + iτ)| ≤ ε.

Since ε is arbitrary,

(82) lim
s→s0
Im s=τ

(s− s0)f(s) = 0.

So ζ ′(s)/ζ(s)+1/(s−1) has no singularity at s0, since at a singularity the limit (82)
is ∞ or non-zero. Since τ is arbitrary, ζ ′(s)/ζ(s) has no singularities on Re s = 1
except at s = 1, so ζ(s) has no zeros on Re s = 1. �

8.2. There are no zeros of ζ(s) on Re s = 1. In this section we prove that
There are no zeros of ζ(s) on Re s = 1

Proof. For any positive real number p and any real number α, piα + p−iα is real so

(83)
0 ≤ (piα/2 + p−iα/2)4 =

4∑
k=0

(
4

k

)
pikα/2p−i(4−k)α/2

= p−2iα + 4p−iα + 6 + 4piα + p2iα.

Now let

(84) Φ(s) =
∑
p

log p

ps
.

For σ real, multiply equation (83) by p−σ log p and sum over all primes p to get

(85)
0 ≤ Φ(σ + 2iα) + 4Φ(σ + iα) + 6Φ(σ)

+ 4Φ(σ − iα) + Φ(σ − 2iα).
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Suppose now that for α 6= 0, ζ has a zero of order µ at 1+ iα and order ν at 1+ i2α.
Since the coefficients of ζ are real, ζ also has a zero of order µ at 1− iα and order
ν at 1 − i2α. Then Φ has simple pole with residue µ at 1 ± iα and residue ν at
1± i2α. Also Φ(s) has a simple pole with residue 1 at s = 0. Multiplying equation
(85) by σ− 1 and letting σ → 1 get 0 ≤ −2ν− 8µ+ 6. Since µ is a positive integer,
conclude that µ = 0. Thus there is no zero at 1 + iα. Since α 6= 0 is arbitrary,
there is no zero of ζ on Re s = 1.

�

8.3. Newman’s Analytic Theorem. Using Newman’s Analytic Theorem we prove
that no zeros of ζ on Re s = 1 implies PNT. Newman’s Theorem belongs to a class
of theorems called Tauberian theorems which deal with taking the limit under the
sum or integral sign. Newman’s Tauberian theorem has weaker hypotheses that
the Wiener-Ikehara Tauberian theorem often used to prove PNT, but using Cheby-
shev’s estimate ϑ(x) = O(x), Newman’s Theorem proves PNT.

Newman’s Analytic Theorem I: Let f(t) be a bounded and locally integrable fun-

tion on [0.∞) and suppose that the function g(z) =

∫ ∞
0

f(t)e−zt dt, Re z > 0

extends holomorphically to Re z ≥ 0. Then
∫∞
0
f(t) dt exists (and equals g(0)).

Newman’s Analytic Theorem essentially says that under the conditions of the
theorem, the limit can be taken under the integral sign,

(86)

g(0) = lim
z→0+

∫ ∞
0

f(t)e−zt dt

=

∫ ∞
0

lim
z→0+

f(t)e−zt dt

=

∫ ∞
0

f(t) dt.

implying that the last integral exists.
Using the change of variables x = et and s = z+1, Newman’s Theorem becomes:
Newman’s Analytic Theorem II: Let f(x) be a bounded and locally integrable

funtion on [1,∞) and suppose that the function g(s) =

∫ ∞
0

f(x)x−s dx, Re s > 1

extends holomorphically to Re s ≥ 1. Then
∫∞
1
f(x)x−1 dx exists (and equals g(1)).

To prove PNT, use the second form of the Analytic Theorem with f(x) =
ϑ(x)

x
−

1. The Analytic Theorem is a little easier to prove in the first form.

Note: The integral g(z) =

∫ ∞
0

f(t)e−zt dt is called the Fourier transform of f ,

and the integral g(s) =

∫ ∞
0

f(x)x−s dx is called the Mellin transform of f .

Proof. We prove of Newman’s Analytic Theorem I. The proof uses the Cauchy
integral theorem in an extremely clever way.

Let

gT (z) =

∫ T

0

f(t)e−zt dt

We must show that

(87) lim
T→∞

gT (0) = g(0).
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The difference g(0) − gT (0) is estimated using Cauchy’s theorem. Fix R > 0 and
δ > 0 such that g(z) is holomorphic in the region

R = {z | |z| ≤ R and Re z ≥ −δ}

and let C be the boundary of R. Since 0 is in the interior, by Cauchy’s Theorem,

(88) g(0)− gT (0) =
1

2πi

∫
C

(g(z)− gT (z)) ezT
(

1 +
z2

R2

)
dz

z
.

Break the integral into three parts. Let

C+ = C ∩ {z |Re z > 0}

and

C− = C ∩ {z |Re z < 0}
so that C = C+ + C−, and C+ is a semicircle. Then

(89) g(0)− gT (0) = I1 + I2 + I3

where

I1 =
1

2πi

∫
C+

(g(z)− gT (z)) ezT
(

1 +
z2

R2

)
dz

z

I2 = − 1

2πi

∫
C−

gT (z)ezT
(

1 +
z2

R2

)
dz

z

I3 =
1

2πi

∫
C−

g(z)ezT
(

1 +
z2

R2

)
dz

z
.

We estimate the integrals I1, I2, I3 separately.
To estimate I1, suppose |f(t)| ≤ B for all t and observe that on C+ , |z| = R

and

|g(z)− gT (z)| =
∣∣∣∣∫ ∞
T

f(t)e−zt dt

∣∣∣∣
≤ B

∫ ∞
T

e−Re (z)t dt =
Be−Re (z)T

Re z∣∣∣∣1 +
z2

R2

∣∣∣∣ =

∣∣∣∣1 +
z2

zz̄

∣∣∣∣ =

∣∣∣∣z + z̄

z̄

∣∣∣∣ =
2 Re z

R
.

Also
∣∣ezT ∣∣ = eRe (z)T and length(C+) = πR. Combining these inequalities,

(90) |I1| ≤
B

R
.

To estimate I2, note that the integrand is an entire function of z, so the contour
C− can be replaced by the semicircle C ′− = {z | |z| = R and Re z < 0}. Again
suppose that |f(t)| ≤ B for all t and observe that on C ′−, |z| = R and

|gT (z)| =

∣∣∣∣∣
∫ T

0

f(t)e−zt dt

∣∣∣∣∣
≤ B

∫ T

−∞
e−Re (z)t dt = −Be

−Re (z)T

Re z∣∣∣∣1 +
z2

R2

∣∣∣∣ =

∣∣∣∣1 +
z2

zz̄

∣∣∣∣ =

∣∣∣∣z + z̄

z̄

∣∣∣∣ = −2 Re z

R
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Also
∣∣ezT ∣∣ = eRe (z)T and length(C ′−) = πR. Combining these inequalities as with

I1 get

(91) |I2| ≤
B

R
.

Finally to estimate I3, note the the function g(z)

(
1 +

z2

R2

)
dz

z
is continuous on

C− and therefore bounded there. Suppose it’s absolute value less than or equal to
M . Since |ezT | = eRe (z)T ≤ 1 on C− the integrand is also bounded in absolute
value by M . Also ezT → 0 as T → ∞ on C− so the integrand converges to 0 as
T →∞. By the bounded convergence theorem

(92) lim
T→∞

I3 = 0.

Combining (89), (90). (91), (92), get

lim sup
T→∞

|g(0)− gT (0)| ≤ 2B

R

Since R is arbitrary, (87) follows. �

8.4. Proof of PNT. Now it is easy to complete the proof of PNT. The function

f(x) =
ϑ(x)

x
− 1 satisfies the hypothesis of Newman’s Analytic Theorem II, since∫ ∞

1

(
ϑ(x)

x
− 1

)
x−s dx = − ζ

′(s)

sζ(s)
− 1

s− 1
+ h(s)

where h(s) is holomorphic in Re s > 1/2. Therefore∫ ∞
1

(
ϑ(x)

x
− 1

)
dx

x

converges, and therefore as shown in (58), this proves PNT.

8.5. PNT for arithmetic progressions. The Prime Number Theorem states
that

(93) π(x) ∼ x

log x
x→∞,

where π(x) =
∑
p≤x

1 is the prime counting function. Dirichlet’s Theorem states that

for an q and ` relatively prime to q the set

(94) {p | p prime and p ≡ ` mod q}
is infinite. The Prime Number Theorem for arithmetic progressions says that the
primes are evenly distributed between the ϕ(q) sets of the form (94), that is, if the
prime counting function of primes eqaul to ` mod q is defined by

π`(x) =
∑
p≡`
p≤x

1

then

(95) π`(x) ∼ 1

ϕ(q)

x

log x
x→∞,

for every ` relatively prime to q.
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The proof of (95) follows from Newman’s Analytic Theorem in much the same
way as PNT. Define the following functions

(96)

ϑ`(x) =
∑
p≡`
p≤x

log p

Φ`(s) =
∑
p≡`

log p

ps

= s

∫ ∞
1

ϑ`(x)x−s−1 dx

where the last integral follows for Rex > 1 using summation by parts.
Using the same methods as in the proof of (48) it can be shown that as x→∞,

(97) π`(x) ∼ 1

ϕ(q)

x

log x
⇐⇒ ϑ`(x) ∼ 1

ϕ(q)
x.

Likewise arguing as in the proof of (54), for any character χ

(98)
∑
p

χ(p)
log p

ps
+
L′(s, χ)

L(s, χ)
= h(s)

where h(s) is a function holomorphic in Re s > 1/2. By (98) and the orthogonality
of characters

(99)

ϕ(q)Φ`(s) = ϕ(q)
∑
p≡`

p−s log p

=
∑
χ

χ(`)
∑
p

χ(p)p−s log p

= −ζ
′(s)

ζ(s)
−
∑
χ 6=χ0

L′(s, χ)

L(s, χ)
+ h1(s)

where h1(s) is a function holomorphic in Re s > 1/2. Since the L functions for
non-trivial characters are not zero at s = 1, (99) shows that ϕ(q)Φ`(s) has a simple
pole at s = 1 with residue 1.

The Prime Number Theorem for arithmetic progressions follows from the fact
that for any character χ there are no zeros of L(s, χ) on Re s = 1. We already
showed this for the trivial character since this is equivalent to the fact that ζ(s)
has no zeros on Re s = 1. Now we show this for all L functions at once.

Theorem: For any character χ there are no zeros of L(s, χ) on Re s = 1, and for
any ` relatively prime to q no poles of Φ`(s) except at s = 1.

Proof. This fact follows using the same method as in the proof that there are no
zeros of ζ(s) on Re s = 1. As in the proof of (85) we see that

(100)
0 ≤ Φ`(σ + 2iα) + 4Φ`(σ + iα) + 6Φ`(σ)

+ 4Φ`(σ − iα) + Φ`(σ − 2iα).

Suppose now that for α 6= 0, the total number of zeros of L(s, χ) for all characters
at s = 1 + iα is µ and at s = 1 + i2α is ν. Then by (99) ϕ(q)Φ` has a simple pole
with residue µ at 1+ iα and residue ν at 1+ i2α. Since the coefficients of ϕ(q)Φ`(s)
are real, it also has a simple pole with residue µ at s = 1 − iα and residue ν at
s = 1 − i2α. Since for non trivial characters L(1, χ) 6= 0, ϕ(q)Φ`(s) has a simple
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pole with residue 1 at s = 0. Multiplying equation (100) by σ−1 and letting σ → 1
get 0 ≤ −2ν − 8µ + 6. Since µ is a positive integer, conclude that µ = 0. Thus
there is no zero of any L function at 1 + iα. Since α 6= 0 is arbitrary, there are no
zeros of any L function on Re s = 1. �

Now we have
The Prime Number Theorem for arithmetic progressions: For any ` relatively

prime to q,

ϑ`(x) =
∑
p≡`
p≤x

log p ∼ x

ϕ(q)

Proof. ∫ ∞
1

(
ϑ`(x)

x
− 1

ϕ(q)

)
x−s dx =

Φ`(s)

s
− 1

ϕ(q)

1

s− 1
.

for Re s > 1 and by the previous theorem, this has analytic continuation to Re s ≥
1. By the Chebychev estimate, ϑ`(x) = O(x) and the integrand is bounded, so
Newman’s Analytic Theorem can be applied and the integral∫ ∞

1

(
ϑ`(x)

x
− 1

ϕ(q)

)
x−1 dx

converges. As with (58), since ϑ`(x) is increasing, the convergence of the integral
shows that ϑ`(x)/x ∼ 1/ϕ(q). �

8.6. A counter example. Here is an example to show that in the hypothesis of
Newman’s Theorem, it is necessary to have g(z) be holomorphic on the entire line
Re z = 0. Let f(t) = eiαt for α 6= 0. Then for Re z > 0,

g(z) =

∫ ∞
0

eiαte−zt dt =
1

z − iα
and g is holomorphic at 0 with g(0) = −1/iα. However, for z = 0 the integral∫∞
0
eiαt dt does not converge. Here f is a complex valued function. For a real

valued function take f(t) = 2 cosαt.
In the second version of Newman’s Theorem, take f(x) = xiα for an example.

This is the same counterexample as the one above, with x = et.

9. The Riemann Hypothesis

The zeta function is defined in Re s > 1 by the Dirichlet series
∑∞
n=1 n

−s and
the Euler product

∏
p(1− p−s)−1. To extend it to Re s > 0 we use summation by

parts as in (31) to write

(101) ζ(s) =
1

s− 1
+ 1 + s

∫ ∞
1

x−s−1([x]− x) dx.

This show also that the logarithmic derivative ζ ′/ζ extends to a meromorphic func-
tion in Re s > 0 but we do not have a nice expression for it in 0 < Re s ≤ 1. We

do know that the difference
∑
p

log p

ps
− ζ ′(s)

ζ(s)
extends to a function holomorphic in

Re s > 1/2.
The Prime Number Theorem is equivalent to the fact that ζ(s) has no zeros

in Re s ≥ 1. The Riemann Hypothesis (RH) states the stronger conclusion that
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ζ(s) has no zeros in Re s > 1/2. This conjecture has not yet been proved. We
will explain how RH relates to the distribution of prime numbers. First we discuss
alternate formulations of PNT in terms of sums or averages of coefficients of various
Dirichlet series.

9.1. PNT and M(x). Recall that Mertens function M(x) =
∑
n≤x µ(n) is given

by the partial sums of the Möbius function defined by (61). The Möbius function
is defined by the Dirichlet series

(102)
1

ζ(s)
=
∑
n

µ(n)n−s

obtained from the Euler factorization of ζ. Since |µ(n)| = 1 for all n, |M(x)| ≤ x,
and partial summation gives

(103)
1

ζ(s)
= s

∫ ∞
1

M(x)x−s−1 dx

for Re s > 1.
The Prime Number Theorem is equivalent to the fact that the coefficients of 1/ζ

average to zero. This can be interpreted as saying that the sequence µ(n) behaves
like a random sequence of integers -1, 0, 1.

(104) PNT ⇐⇒ M(x)

x
→ 0 as x→∞.

Proof. First show PNT =⇒ M(x)/x→ 0.
Recall that PNT is equivalent to the fact that ζ(s) has no zeros on Re s = 1,

The function M(x)/x is clearly bounded. Using Newman’s analytic theorem and
(103) we find that if ζ(s) has no zeros on Re s = 1, then

(105)

∫ ∞
1

M(x)

x

dx

x
= 0

since by Newman’s theorem and (103) the integral converges to 1/ζ(s)|s=1 = 0.
The convergence of the integral implies that M(x)/x → 0 as x → ∞. To see this

note that for t ≥ x, M(x)−M(t) =
∑
x<n≤t

µ(n). Since −1 ≤ µ(n) ≤ 1,

(106) x− t ≤M(x)−M(t) ≤ t− x
Now given ε > 0 suppose that

(107) M(x) ≥ εx.
Then for x ≤ t ≤

(
1 + ε

2

)
x we have by (106)

M(t) ≥M(x) + x− t ≥ ε

2
x.

So ∫ (1+ ε
2 )x

x

M(t)

t

dt

t
≥ ε

2

∫ (1+ ε
2 )x

x

x

t2
dt =

ε

2

∫ (1+ ε
2 )

1

du

u2
> 0.

But the right hand side is independent of x so, if (107) is true for a sequence x
going to infinity, then the integral does not converge.

A similar argument holds for

(108) M(x) ≤ −εx.
So M(x)/x→ 0.
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Next show M(x)/x→ 0 =⇒ PNT. By (103) for Re s > 1,

(109)
1

sζ(s)
=

∫ ∞
1

M(x)

x
x−s dx.

Given ε > 0 suppose there is an N > 0 such that |M(x)/x| ≤ ε for x ≥ N . Then
similar to (81) we have for s = σ + iτ , σ > 1,∣∣∣∣ 1

sζ(s)

∣∣∣∣ ≤ ∫ N

1

x−σ dx+ ε
N−σ+1

σ − 1
,

so ∣∣∣∣ lim
σ→1+

(σ − 1)
1

sζ(s)

∣∣∣∣ ≤ ε.
Since this is true for all ε,

lim
σ→1+

(σ − 1)
1

sζ(s)
= 0

and so there are no singularities of 1/ζ on the line Re s = 1.
�

9.2. PNT and 1/ζ. For Re s > 1, the Euler factorization gives 1/ζ(s) =
∑
n µ(n)n−s.

For the analytic continuation of ζ we easily see that since ζ(s) has a pole at s = 1
it follows that 1

ζ (1) = 0. It might be conjectured that the series converges at s = 1

to 0. In fact, this is equivalent to PNT,

(110) PNT ⇐⇒
∞∑
n=1

µ(n)

n
= 0.

A direct proof can be found in [1] p. 97. Here is another proof.

Proof. First show PNT =⇒ (110). Let A(x) =
∑
n≤x

µ(n)
n . Note that

(111) |A(x)| ≤
∑
n≤x

1

n
= O(log x)

Using summation by parts. for Re s > 1

A(x) =

∫ x

1

dM(t)

t

=
M(x)

x
+

∫ x

1

M(t)

t2
dt.

Now by (111) the first term converges to 0 as x → ∞, and by (105) the second
term converges to 0 as x→∞.

Next show (110) =⇒ PNT. By (102) we get using summation by parts

(112)

1

ζ(s)
=
∑
n

µ(n)

n
n−s+1 =

∫ ∞
1

x−s+1dA(x)

= (s− 1)

∫ ∞
1

A(x)x−s dx

So

(113)
1

ζ(s)(s− 1)
=

∫ ∞
1

A(x)x−s dx.
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Let ε > 0 be given and suppose |A(x)| < ε for x > N . Then if σ = Re s,

(114)

∣∣∣∣ 1

ζ(s)(s− 1)

∣∣∣∣ ≤ ε∫ ∞
M

x−σ+1 dx+ g(σ)

= ε
M−σ+1

σ − 1
+ g(σ)

where g is a continuous function. This shows∣∣∣∣ lim
σ→1+

1

ζ(s)(s− 1)

∣∣∣∣ < ε

for every ε > 0 and hence the limit is 0 and there are no zeros of ζ(s) on the line
Re s = 1.

�

This is a Tauberian type result and one of the results that Chebychev needed
to complete his attempted proof of PNT in section 7 since his argument can be
summarized as

(115)

ψ(x) =
∑
n

µ(n)T (x/n)

=
∑
n

µ(n)
(x
n

log
(x
n

)
− x

n

)
= (x log x− x)

(∑
n

µ(n)

n

)
− x

(∑
n

µ(n)
log n

n

)
.

This reduces to x if ∑
n

µ(n)

n
= 0 and

∑
n

µ(n)
log n

n
= −1.

The first equation we showed is equivalent to PNT. We now discuss the second.

9.3. PNT and 1/ζ ′. Similarly, for Re s > 1, (1/ζ(s))′ = −
∑
n µ(n)n−s log n. For

the analytic continuation of ζ since ζ(s) has a pole at s = 1 with residue 1 we see
that ( 1

ζ )′(1) = 1. It might be conjectured that the series converges at s = 1. In fact

(116) PNT ⇐⇒
∞∑
n=1

µ(n)
log n

n
= −1.

(I think this is true and I think I saw it in a book, but I can’t prove it. It might
require a stronger form of Newman’s Theorem.) This is a Tauberian type result
and is the other fact that Chebychev needed to complete his attempted proof of
PNT in section 7.

9.4. PNT and M1. The Möbius function µ(n) takes values -1, 0, 1. A similar
function which takes values ±1 is the Liouville function λ(n). This function is
defined as the coefficients of the Dirichlet series for ζ(2s)/ζ(s). From the Euler
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product for ζ,

(117)

ζ(2s)

ζ(s)
=
∏
p

(
1− p−2s

1− p−s

)−1
=
∏
p

(1 + p−s)−1

=
∏
p

∑
k

(−1)kp−ks

=
∑
n

λ(n)n−s.

From this we see that

(118) λ(n) = (−1)a1+···+ak if n factors into primes as n = pa11 · · · p
ak
k .

This is a variation of the Möbius function. Define the partial sum by

(119) M1(x) =
∑
n≤x

λ(n).

Clearly M1(x) ≤ x so by partial summation,

(120)
ζ(2s)

ζ(s)
= s

∫ ∞
1

M1(x)x−s−1 dx.

Now the same argument as in section 9.1 shows that

(121) PNT ⇐⇒ M1(x)

x
→ 0 as x→∞.

Again this says that the sequence λ(n) behaves like a random sequence of integers
±1.

9.5. RH and µ and λ. It is easily seen that

(122)

{
For all ε > 0, lim

x→∞

|M(x)|
x

1
2+ε

= 0

}
=⇒ RH

since by (103) the integral converges absolutely and uniformly for Re s > 1
2 + ε and

so 1/ζ(s) is analytic there and ζ(s) has no zeros there. Since this is true for every
ε, ζ(s) has no zeros in Re s > 1/2. Actually, the statement on the left in (122) is
equivalent to RH, but the implication in the other direction is harder to prove.

Similarly by (120),

(123)

{
For all ε > 0, lim

x→∞

|M1(x)|
x

1
2+ε

= 0

}
=⇒ RH

Again, the two sides are equivalent, but the implication in the opposite direction is
harder to prove. The statement on the left is what we would expect of a random
sequence of ±1, as we show in the next section.
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9.6. RH is almost certainly true. Although there is some reasoning behind
this statement, it really makes no sense. But reasons for stating that RH is almost
certainly true give some insight into the meaning of RH.

We think of the sequence λ(n) as a random sequence of numbers ±1 and ask
what is the probability that (123) holds. We show that the probability is 1. To see
this, first consider the question when we have a finite sequence of length N.

Consider the situation where λ(n) is a random choice of a sequence of N values
±1. There are 2N such sequences. If the sequence consists of k values 1 and N − k
values −1 then the sum S is 2k − N . There are

(
N
k

)
such sequences. Thinking

of S as a random variable, the probability that S = 2k − N is 2−N
(
N
k

)
, and the

distribution of S is the binomial distribution

(124) fN (x) =
1

2N

N∑
k=0

(
N

k

)
δ2k−N (x),

where δ is the Dirac delta function. The mean of fN is zero and the variance is

∫ ∞
−∞

fN (x)x2 dx =
1

2N

N∑
k=0

(
N

k

)
(2k −N)2 = N.

Comparing to (123), look at the probability that |S| ≤ N 1
2+ε,

(125) P (|S| ≤ N 1
2+ε) =

1

2N

∑
|2k−N |≤N

1
2
+ε

(
N

k

)
.

We show that

(126) P (|S| ≤ N 1
2+ε)→ 1, as N →∞.

This means that for almost all choices of random sequences λ with values ±1, (123)
holds. The idea of the proof of (126) is that the binomial distribution converges
to the Gaussian distribution. More precisely, if the binomial distribution (124) is

scaled by
√
N to

√
NfN (

√
Nx), which is a probability distribution with mean 0

and variance 1, then it converges as N →∞ to the Gaussian distribution 1√
2π
e−

x2

2

with the same mean and variance. So now the proof can be summarized as

(127)

P (|S| ≤ N 1
2+ε) =

∫ N
1
2
+ε

−N
1
2
+ε
fN (x) dx

=

∫ Nε

−Nε

√
NfN (

√
Nx) dx

∼ 1√
2π

∫ Nε

−Nε
e−

x2

2 dx

→ 1 as N →∞.
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10. Faulhaber and Bernoulli polynomials

10.1. Faulhaber polynomials. Johann Faulhaber (1580 – 1635) is a German
mathematician famous for his discovery of polynomials giving sums of integer pow-
ers of integers. Examples for µ = 0, . . . , 4 are:

N∑
n=1

1 = N

N∑
n=1

n =
1

2
N2 +

1

2
N

N∑
n=1

n2 =
1

3
N3 +

1

2
N2 +

1

6
N

N∑
n=1

n3 =
1

4
N4 +

1

2
N3 +

1

4
N2

N∑
n=1

n4 =
1

5
N5 +

1

2
N4 +

1

3
N3 − 1

30
N

As a function of s = −µ we can think of these as similar to the ζ function, but
finite sums.

These polynomials are easy to find by induction. Let

(128) S(µ,N) =

N∑
n=1

nµ

denote the sum of µth powers, where µ is a non-negative integer. Then

(129)

(N + 1)µ+1 − 1 =

N∑
n=1

(
(n+ 1)µ+1 − nµ+1

)
=

N∑
n=1

µ∑
k=0

(
µ+ 1

k

)
nk

=

µ∑
k=0

(
µ+ 1

k

) N∑
n=1

nk

=

µ∑
k=0

(
µ+ 1

k

)
S(k,N)

so from S(k,N), k = 1, . . . , µ − 1 equation (129) gives S(µ,N). For example for
µ = 2 and S(0, N) = N and S(1, N) = N(N + 1)/2, (129) gives

(N + 1)3 − 1 = N + 3N(N + 1)/2 + S(2, N)

which can be solved to give

S(2, N) =
1

3
N3 +

1

2
N2 +

1

6
N.

This method to generate the Faulhaber polynomials by induction is due to Pascal
(1864).
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10.2. Bernoulli polynomials. The Bernoulli polynomials are almost the same as
the Faulhaber polynomials but Bernoulli polynomials are generated as coefficients
of a power series. The Bernoulli numbers are defined by the generating function

(130)
1

et − 1
=

∞∑
k=0

Bk
k!
tk−1.

The coefficients Bk can be computed from the geometric series

t

et − 1
=

1

1 + 1
2 t+ 1

6 t
2 + · · ·

= 1−
(

1

2
t+

1

6
t2 + · · ·

)
+

(
1

2
t+

1

6
t2 + · · ·

)2

+ · · ·

The first few Bernoulli numbers are

B0 = 1 B1 = −1

2
B2 =

1

6
B4 = − 1

30
B6 =

1

42
.

Since
1

et − 1
− 1

t
+

1

2

is an odd function, the Bernoulli numbers Bk for k odd, k ≥ 3 are zero.
The Bernoulli polynomials are defined by the generating function

(131)
ext

et − 1
=

∞∑
k=0

Bk(x)

k!
tk−1.

Using

ext =

∞∑
k=0

xk

k!
tk

and multiplying by the series (130) it follows from (131) that the Bernoulli poly-
nomials are given from the Bernoulli numbers by

(132) Bµ(x) =

µ∑
k=0

(
µ

k

)
Bkx

µ−k.

Using the umbral calculus where Bk is replaced by Bk, (132) can be written as

(133) Bµ(x) = (B + x)µ.

This is a good mnemonic device for remembering the formula, but the umbral
calculus can be given a rigorous foundation.

The first few Bernoulli polynomials are

B0(x) = 1 B1(x) = x− 1

2
B2(x) = x2 − x+

1

6

B3(x) = x3 − 3

2
x2 +

1

2
x B4(x) = x4 − 2x3 + x2 − 1

30
Note that

(134) Bk = Bk(0).

so the Bernoulli numbers are the constant terms in the Bernoulli polynomials.
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10.3. The relationship between Bernoulli polynomials and Faulhaber poly-
nomials. The Bernoulli polynomials are almost the same as the Faulhaber poly-
nomials ([3]). Write

(135)

e(N+1)t − 1

et − 1
=

N∑
n=0

ent

=

N∑
n=0

∞∑
µ=0

1

µ!
nµtµ

=

∞∑
µ=0

1

µ!
S(µ,N)tµ

where S(µ,N) denotes the Faulhaber sum S(µ,N) =
∑N
n=0 n

µ. (Note, for µ = 0
define 00 = 1.) Now expand the left hand side of (135) in powers of t using (131):

(136)
e(N+1)t

et − 1
= −e

(−N)(−t)

e−t − 1
=

∞∑
µ=0

(−1)µ+1Bµ(−N)

µ!
tµ−1,

so using (130)

(137)
e(N+1)t − 1

et − 1
=

∞∑
µ=0

(−1)µ+1Bµ(−N)−Bµ
µ!

tµ+1.

Now equating coefficients of tµ in (137) and (135), get

(138)

N∑
n=0

nµ =
1

µ+ 1

[
(−1)µ+1Bµ+1(−N)−Bµ+1

]
=

1

µ+ 1

µ∑
k=0

(−1)k
(
µ+ 1

k

)
BkN

µ+1−k.

and this shows that Faulhaber polynomials are easily written in terms of Bernoulli
polynomials.

Using the umbral calculus,

(139)

N∑
n=0

nµ =
1

µ+ 1

(
(N −B)µ+1 −Bµ+1

)
(Note: Since all the odd Bernoulli numbers except B1 are zero, if B1 is defined to be
1/2 instead of −1/2 then the above could be written 1

µ+1

(
(B +N)µ+1 −Bµ+1

)
).

Similar techniques using (135) give

(140)

N∑
n=0

nµ =
1

µ+ 1

(
(B +N + 1)µ+1 −Bµ+1

)
or using more umbral calculus,

(141)

N∑
n=0

nµ =

∫ N+1

0

(B + x)µ dx.
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Figure 1. Bernoulli Polynomials

10.4. Properties of Bernoulli polynomials. From (131) we see that for k ≥ 1,

(142)

∫ 1

0

Bk(x) dx = 0 k ≥ 1

(143) Bk(x+ 1) = (−1)kBk(−x)

(144) Bk(x+ 1)−Bk(x) = kxk−1

(145) B′k(x) = kBk−1(x).

To prove (142), for example, integrate both sides of (131) from 0 to 1 and use the
fact that ∫ 1

0

ext

et − 1
dx =

1

t
.

10.5. Periodic Bernoulli functions. From (144) it follows that

(146) Bk(0) = Bk(1) k ≥ 2

The Bernoulli polynomials restricted to the interval [0, 1] can be extended to a
function

(147) Pk(x) = Bk(x− [x])

on R of period 1. By (146), the functions Pk are continuous for k ≥ 2. Also

(148) Pk(n) = Bk k ≥ 2 and n an integer.

It follows from (145) that

(149) P ′k(x) = kPk−1(x) except when x is an integer.

Also from (142),

(150)

∫ N

M

Pk(x) dx = 0 for M and N integers and k ≥ 1.
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11. Euler-MacLaurin Summation

The Euler-Maclaurin summation formula is a method to generalize the method

of summation by parts for
∑N
n=M f(n) where f is a differentiable function (23).

The sum is converted into an integral to make the process look like integration by
parts. If f has more derivatives, the integration by parts can be continued giving
a more accurate approximation for the sum. The Bernoulli polynomials play an
important role.

We might ask what would have happened if Faulhaber investigated the sum of
fractional powers of integers. It will follow from Euler-Mclaurin summation that
he would have a similar formula but with a remainder. That remainder is related
to the the zeta function.

11.1. The Euler-Mclaurin summation formula. Summation by parts gives a
way to express the difference between the sum and the corresponding integral using
the notation of integration by parts:

(151)

N∑
n=M

f(n)−
∫ N

M

f(x) dx =

∫ N

M−
f(x) d ([x]− x)

= f(x)([x]− x)
∣∣N
M−

+

∫ N

M

f ′(x)(x− [x]) dx

= f(M) +

∫ N

M

f ′(x)(x− [x]) dx.

This technique is slightly modified by replacing x− [x] by x− [x] + 1/2:

(152)

N∑
n=M

f(n)−
∫ N

M

f(x) dx =

∫ N

M−
f(x) d ([x]− x+ 1/2)

= f(x)([x]− x+ 1/2)
∣∣N
M−

+

∫ N

M

f ′(x)(x− [x] + 1/2) dx

=
1

2
(f(M) + f(N)) +

∫ N

M

f ′(x)(x− [x] + 1/2) dx.

Since the first Bernoulli polynomial is B1(x) = x − 1/2, equation (152) can be
written as

(153)

N∑
n=M

f(n)−
∫ N

M

f(x) dx

=
1

2
(f(M) + f(N)) +

∫ N

M

f ′(x)B1(x− [x]) dx.

This integration by parts can be done again. Using (145) write B1(x − [x]) dx =
dB2(x − [x])/2, or equivalently P1(x) dx = P2(x)/2 where Pk are the periodic
Bernoulli functions described in the previous section. Now integrate (153) again by
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parts giving

(154)

N∑
n=M

f(n)−
∫ N

M

f(x) dx

=
1

2
(f(M) + f(N)) +

B2

2
f ′(x)

∣∣N
M

− 1

2

∫ N

M

f ′′(x)B2(x− [x]) dx.

Continuing to integrate by parts, obtain the Euler-Mclaurin summation formula

(155)

N∑
n=M

f(n)−
∫ N

M

f(x) dx

=
1

2
(f(M) + f(N)) +

K∑
k=2

(−1)kBk
k!

f (k−1)(x)

∣∣∣∣N
M

+RK

where the remainder RK is given by

(156) RK = (−1)K+1 1

K!

∫ N

M

f (K)(x)BK(x− [x]) dx.

Note that the (−1)k is unnecessary in the sum since the odd Bernoulli numbers are
0 for k ≥ 2.

11.2. Faulhaber sums from Euler-Mclaurin. The Faulhaber/Bernoulli poly-
nomials for sums of integer powers of integers can be obtained from the Euler-
Mclaurin formula (155). For an integer µ ≥ 1 let f(x) = xµ and let M = 0. Since
the µ derivative of xµ is µ!, the µ remainder term is

(157) Rµ = µ!

∫ N

0

Bµ(x− [x]) dx = 0

by (142). So now (155) becomes

(158)

N∑
n=0

nµ =
Nµ+1

µ+ 1
+

1

2
Nµ

+

µ∑
k=2

(−1)kBk
k!

µ(µ− 1) · · · (µ− k + 2)Nµ−k+1

which is the same as (138). Note: if µ = 1 take just the first two terms on the right.

11.3. Euler-Mclaurin and the zeta function. The Euler-Mclaurin formula (155)
can be applied to any complex valued function. Taking f(x) = x−s where s is any
complex number, and taking M = 1, (155) gives for s 6= 1,

(159)

N∑
n=1

n−s =
N−s+1

−s+ 1
+

1

2
N−s + c(s)

+

K∑
k=2

(−1)kBk
k!

(−s)(−s− 1) · · · (−s− k + 2)N−s+1−k +RK
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where

(160) RK = (−1)K+1 (−s)(−s− 1) · · · (−s−K + 1)

K!

∫ N

1

x−s−KBK(x− [x]) dx

and where

(161) c(s) =
1

s− 1
− 1

2
−

K∑
k=2

(−1)kBk
k!

(−s)(−s− 1) · · · (−s− k + 2).

Note that c(s) is holomorphic except for a pole at s = 1.
Equation (159) can be written more succinctly as

(162)
N∑
n=1

n−s =
1

−s+ 1

K∑
k=0

(
−s+ 1

k

)
(−1)kBkN

−s+1−k + c(s) +RK

with

(163) RK = (−1)K+1

(
−s
K

)∫ N

1

x−s−KBK(x− [x]) dx

where for z a complex number and k a non-negative integer, we define(
z

k

)
=
z(z − 1) · · · (z − k + 1)

k!
.

If z is a positive integer and k ≤ z, this is the binomial coefficient. Equation (162)
is similar to Faulhaber’s formula (138). In (162) we could possibly take K = 1.

Now suppose that Re s > −K+1 and look at the remainder (163). The function
BK(x− [x]) is bounded and so the absolute value of the integrand is ≤ Cx−Re s−K

where C is a positive constant. It follows that the integral for RK converges as
N → ∞ to a holomorphic function f(s) and that RK = f(s) + O(N−Re s−K+1).
Now it follows that in Re s > −K + 1,

(164)

N∑
n=1

n−s =
1

−s+ 1

K∑
k=0

(
−s+ 1

k

)
(−1)kBkN

−s+1−k

+ ζ(s) + O(N−Re s−K+1)

where ζ(s) is holomorphic except for a pole at s = 1. If Re s > 1, all terms on the
right hand side of (164) go to zero as N → ∞. So for Re s > 1, ζ(s) =

∑∞
n=1 n

−s

and ζ is the analytic continuation of the Riemann zeta function.
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