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RIVER HYDRAULICS

SELECTED TOPICS OF FLUID MECHANICS

By CARL E. KINDSVATER*

ABSTRACT

The fundamental equations of fluid mechanics are specific expressions of the 
principles of motion which are ascribed to Isaac Newton. Thus, the equations 
which form the framework of applied fluid mechanics or hydraulics are, in ad­ 
dition to the equation of continuity, the Newtonian equations of energy and 
momentum. These basic relationships are also the foundations of river hydraulics.

The fundamental equations are developed in this report with sufficient rigor 
to support critical examinations of their applicability to most problems met by 
hydraulic engineers of the Water Resources Division of the United States Geo­ 
logical Survey. Physical concepts are emphasized, and mathematical procedures 
are the simplest consistent with the specific requirements of the derivations. 
In lieu of numerical examples, analogies, and alternative procedures, this treat­ 
ment stresses a brief methodical exposition of the essential principles.

An important objective of this report is to prepare the user to read the literature 
of the science. Thus, it begins with a basic vocabulary of technical symbols, 
terms, and concepts. Throughout, emphasis is placed on the language of modern 
fluid mechanics as it pertains to hydraulic engineering. The basic differential 
and integral equations of simple fluid motion are derived, and these equations are, 
in turn, used to describe the essential characteristics of hydrostatics and piezom- 
etry. The one-dimensional equations of continuity and motion are defined 
and are used to derive the general discharge equation. The flow net is described 
as a means of demonstrating significant characteristics of two-dimensional ir- 
rotational flow patterns. A typical flow net is examined in detail.

The influence of fluid viscosity is described as an obstacle to the derivation of 
general, integral equations of motion. It is observed that the part played by 
viscosity is one which is usually dependent on experimental evaluation. It 
follows that the dimensionless ratios known as the Euler, Froude, Reynolds, 
Weber, and Cauchy numbers are defined as essential tools for interpreting and 
using experimental data. The derivations of the energy and momentum equa­ 
tions are treated in detail. One-dimensional equations for steady nonuniform 
flow are developed, and the restrictions applicable to the equations are empha­ 
sized.

Conditions of uniform and gradually varied flow are discussed, and the origin 
of the Chezy equation is examined in relation to both the energy and the mo­ 
mentum equations. The inadequacy of all uniform-flow equations as a means of 
describing gradually varied flow is explained. Thus, one of the definitive problems 
of river hydraulics is analyzed in the light of present knowledge.

 Regents-Professor of Civil Engineering, Georgia Institute of Technology, Atlanta, Oa.; consultant to tbe 
U. S. Geological Surrey.
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2 RIVER HYDRAULICS

INTRODUCTION

This report is the outgrowth of a series of short schools conducted 
during the spring and summer of 1953 for engineers of the Surface 
Water Branch, Water Resources Division, U. S. Geological Survey. 
The topics considered are essentially the same as the topics selected 
for inclusion in the schools. However, in order that they might serve 
better as a guide and outline for informal study, the arrangement of 
the writer's original lecture notes has been considerably altered.

The purpose of the report, like the purpose of the schools which 
inspired it, is to build a simple but strong framework of the funda­ 
mentals of fluid mechanics. It is believed that this framework is 
capable of supporting a detailed analysis of most of the practical 
problems met by the engineers of the Geological Survey.

It is hoped that the least, accomplishment of this work will be to 
inspire the reader with the confidence and desire to read more of the 
recent and current technical literature of modern fluid mechanics.

TECHNICAL SYMBOLS, TERMS, AND BASIC CONCEPTS

The material in this section is the basic language of fluid mechanics. 
The reader is urged to become thoroughly acquainted with these 
symbols, terms, and fundamental concepts before reading the subse­ 
quent text.

LETTER SYMBOLS AND UNITS

BOUNDARY CONDITIONS

A Area; sq ft or ft2.
6, B Width of section; ft.
D Diameter of a circular section; ft.
L A length, as defined; ft.
n Direction or distance perpendicular to streamlines in

the s, n plane; as a radial distance it is measured
positively toward the center of curvature; ft. 

P Wetted perimeter or perimeter of the wetted cross
section; ft. 

R Hydraulic radius; ratio of the area to the wetted
perimeter; ft. 

r Radius of a circular arc or radial distance; as a
distance it is measured positively from the center
of curvature; ft. 

s Direction or distance along or parallel to streamlines;
ft. 

S Hydraulic "slope"; in uniform-flow equations it is
the flow-distance gradient of either the total energy
head or the piezometric head.
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V

m

y

7 (gamma) 

P (rho)

M (mu) 
<r (sigma) 
e (epsilon)

H

Q

t,T
v

Volume; cu ft or ft3.
Direction or distance perpendicular to streamlines in

the s, m plane and at right angles to the n direction;
ft. 

A direction or distance; as a plane coordinate it is
usually horizontal; ft. 

A direction or distance; as a plane coordinate it is
usually vertical; in open channels it is the depth of
flow referred to the average bottom level; ft. 

Elevation of a point referred to a horizontal datum;
ft.

FLUID PROPERTIES

Specific or unit weight; weight per unit volume; Ib
per cu ft or lb/ft3 . 

Mass density; ma'ss per unit volume; also, ratio of
specific weight to acceleration of gravity; slugs per
cu ft, slugs/ft3, or Ib-sec2/ft4. 

Viscosity; dynamic viscosity; lb-sec/ft2 . 
Surface tension; lb/ft. 
Modulus of elasticity; psf or lb/ft2.

MOTION (FLOW) PROPERTIES

Acceleration; rate of change of velocity with respect 
to time; a vector quantity; ft/sec2.

The acceleration due to gravitational force, usually 
taken to be essentially constant in magnitude 
(32.2) and fixed in direction (vertically downward); 
ft/sec2.

Piezometric head; in general, equivalent to pressure 
head plus elevation; for uniform flow in open 
channels, it is equivalent to the elevation of the 
free surface; ft.

Total energy head; energy in ft-lb/lb of fluid flowing; 
ft.

Volume rate of flow per unit width; discharge per 
foot of width; cfs per ft or ft3/sec/ft.

Volume rate of flow; total discharge at a cross sec­ 
tion; cfs or ft3/sec

An interval of time; sec.
Velocity at a point; instantaneous time rate of dis­ 

placement of a particle or point; a vector quantity 
as distinguished from speed, which is scalar; fps 
or ft/sec.
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V Average velocity in a cross section; ratio of total dis­ 
charge to the normal area of a cross section; fps or
ft/sec.

FORCE PROPERTIES

F Force; a vector quantity; Ib.
M Mass; ratio of weight to the acceleration due to- 

gravity; a scalar quantity; slugs.
p Pressure intensify; normal (pressure) force per unit 

area; a scalar quantity; psf or lb/ft2.
W Weight; total force due to gravity; a vector quantity, 

always vertical; Ib.
T (tau) Shear stress; tangential (shear) force per unit area; 

psf or lb/ft2.
it (eta) Eddy viscosity; apparent viscosity due to turbu­ 

lence; lb-sec/ft5.

RATIOS AND COEFFICIENTS

C Any coefficient; usually dimensionless.
Ce Coefficient of contraction; ratio of area of contracted

stream to gross area of opening; dimensionless. 
Cen Coefficient in the Chezy equation; has dimensions of

V#, units of ft^/sec.
Cd Coefficient of discharge; dimensionless. 
CL Energy-loss coefficient; dimensionless. 
CT Shear-force coefficient; dimensionless. 
K A constant. 
n Coefficient in the Chezy-Manning equation; has

dimensions of RH, units of ft*. 
a (alpha) Velocity-head coefficient; ratio of the true average

velocity head in a cross section to the velocity
head computed on the basis of the average velocity
in the section; dimensionless. 

j8 (beta) Momentum coefficient; ratio of true rate of transfer
of momentum (momentum flux) at a cross section
to the momentum ,flux computed on the basis of
the average velocity in the section; dimensionless. 

E Euler number; ratio of a unit inertia! reaction to a
unit pressure force; a basic flow parameter. 

F Froude number; ratio of a unit inertial reaction to a
unit weight force; a number which varies inversely
with the relative influence of weight on the flow
pattern; dimensionless.
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R Reynolds number; ratio of a unit inertial reaction to 
a unit viscous shear force; a measure of the relative 
influence of viscosity; dimensionless.

W Weber number; ratio of a unit inertial reaction to a 
unit surface-tension force; a measure of the relative 
influence of surface tension; dimensionless.

C Cauchy number; ratio of a unit inertial reaction to a 
unit elastic force; a measure of the relative in­ 
fluence of elasticity; dimensionless.

MATHEMATICAL SYMBOLS

A (delta) Change in value; final value minus initial value;
increment.

S (sigma) Summation. 
<* Proportional to ; varies as. 
** Approximately equal. 
H-» Vector addition.

BASIC CONCEPTS OF MECHANICS

Newton's laws of motion.   Engineering mechanics, which includes 
the mechanics of solid and rigid bodies as well as fluids, is based on 
Newton's hypotheses or "laws" concerning the behavior of masses 
acted upon by external forces. The fundamental proposition is 
stated in the second law of motion: a mass acted upon by an un­ 
balanced external force or force system has an acceleration which is 
proportional to and in the direction of the resultant force. This 
proposition is expressed algebraically in the familiar relation 2F<x.Ma, 
in which both F and a are recognized as vector quantities. In a 
rectilinear coordinate system, for example, *2Fx<x.Max, 2Fy<x.Mav, and

The first law is: A mass remains at rest or moves with constant 
velocity in a straight line until acted upon by an unbalanced resultant 
external force; or, in accordance with the second law, if S,F=0, then 
a=0. The first law, as applied to fluid mechanics, describes both 
hydrostatic and uniform-flow conditions.

The third law is: A mass acted upon by another mass exerts an 
equal, opposite, and simultaneous reaction. If "2F is defined as the 
resultant external force acting on a mass, then Ma is the inertial 
reaction of the mass.

It is apparent that Newton's second law of motion provides a 
quantitative expression for the relationship between force, mass, and 
acceleration which is the basis for all equations of motion in engi­ 
neering mechanics,
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Dimensions. The dimension of a quantity is its classification ac­ 
cording to a system of independent physical categories. Because 
Newton's second law is a complete description of a mass in motion, 
the fundamental dimensions are the dimensions of the quantities in­ 
volved in a physical statement of the law. Thus, the fundamental 
dimensions are mass, length, time, and force (M, L, T, and F) from 
the relationship F<xMa<xML/T2. Quantities such as acceleration, 
power^ and momentum are derived quantities; their dimensions are 
expressed in terms of the fundamental dimensions. Because the 4 
fundamental dimensions are related by means of the Newtonian equa­ 
tion, an adequate dimensional system need involve only 3 dimen­ 
sions. Commonly used dimensional systems involve F, It, and T, or 
M, L, and T.

Units of measure. For each of the fundamental dimensions there 
is an accepted unit of measure. Thus, L is measured in feet,, f in 
pounds, T in seconds, and M in slugs. Only three units nee<| be in­ 
volved in a complete dimensional system, however. For example, 
slugs need not be used in the F, L, T system. The units of derived 
quantities such as acceleration, power, and momentum are expressed 
only in terms of the units of the fundamental dimensions,

The American engineering system of units is an absolute system; 
that is, in the basic relationship Foc(ML/T2)=K(ML/T*), the pro­ 
portionality constant, K, is taken to be unity. Thus, a force of 1 pound 
produces in a mass of 1 slug an acceleration of 1 foot per second per 
second. It follows that, expressed in the absolute system of units, 
Newton's second law can be written 2F=Ma.

Kinematics. Kinematics deals with the description of motion 
without respect to the forces which cause or influence this motion, 
Kinematics involves only time and space.

Dynamics. Dynamics deals with the effect of forces in causing or 
changing the motion of a mass. It is further subdivided into statics 
and kinetics.

Statics. Motions described under this heading correspond to the 
condition of zero acceleration in the directions considered.

Kinetics. Kinetics is that branch of dynamics which deals with the 
accelerated motion of a mass under the influence of unbalanced exter­ 
nal forces.

Work. Work is the product of a force and the distance over which 
the force acts in accomplishing motion. Work is a scalar quantity; 
it does not involve the time during which the force acts. Work is 
measured in foot-pounds (ft-lb).

Power. Power is the time rate of doing work. The power deliv­ 
ered to a moving body is proportional to the product of the force 
producing the motion and the velocity of the body in the direction of
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the motion. Power is a scalar quantity. The unit of power is foot­ 
pounds per second (ft-lb per sec) or horsepower. One horsepower is 
equivalent to 550 ft-lb per sec.

Energy. A body upon which work is accomplished acquires thereby 
the capacity to do an equal amount of work. The capacity to do 
work is called energy. Thus, energy is a measure of work, and vice 
versa. Energy is a scalar quantity. The unit of both work and 
energy is the foot-pound (ft-lb).

Momentum. Linear momentum is the product of mass and velocity. 
It is a vector quantity, and its unit is the pound-second (Ib-sec).

Impulse. Linear impulse is the product of a force and the time 
during which the force acts. It is a vector quantity. From New­ 
ton's second law, impulse accomplishes and is equivalent to the change 
in momentum experienced by the mass acted upon. The unit of im­ 
pulse is, therefore, the same as that of momentum, the pound-second 
(Ib-sec).

BASIC CONCEPTS OF FLUID MECHANICS

Continuity and discharge. Fluid mass can be neither created no- 
destroyed by virtue of its motion. Thus, in a steady fluid flow ber 
tween solid boundaries or through a streamtube, the rate of passage 
of fluid mass through successive cross sections is constant. If the 
fluid be one of negligible compressibility (constant density), the rate 
of passage of fluid volume past successive sections is also constant. 
This is the simple basis for the continuity principle. The principle 
is expressed, for example, in the equation <2=.AV==constant, where 

 Q is the volume rate of flow, or discharge, in cubic feet per second and 
V is the average velocity normal to the surface represented by the 
area (A). In a section of nonuniform velocity, the total discharge is 
the summation (or integral) of the discharges through the elementary 
areas comprising the total area of the section.

Uniform and steady motion. Velocity in a fluid motion is a vector 
quantity and it is a function of both time and space. When the 
velocity remains constant with respect to time, the flow is described 
as steady. Most problems in engineering hydraulics involve steady 
motion.

When the velocity is constant with respect to distance in the direc­ 
tion of motion, the flow is described as uniform. Uniform flow occurs 
in long pipes. It seldom occurs in natural open channels.

Rotational and irrotational motion. The distinction between rota­ 
tional and irrotational motion is essentially mathematical. The most 
significant characteristics of an irrotational flow are those usually 
associated with the classical "ideal" or "frictionless" fluid (a fluid 
without compressibility or viscosity). It is pertinent to the subse-
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quent use of the flow net in these notes to observe that irrotationality 
is corequisite to the existence of a flow net.

Laminar and turbulent motion. Laminar fluid motion is character­ 
ized by a steady, translatory movement of all particles (small elements) 
of the fluid. Turbulence imposed on a laminar flow is eventually 
damped out by the viscous shear forces. Because viscous forces are 
large relative to inertial reactions in laminar motion, this condition 
corresponds to low values of the Reynolds number.

Turbulent motion is characterized by an erratic, small-scale eddying 
motion which is superposed on the translatory movement of the fluid 
mass. Local disturbances are rapidly dispersed throughout a turbu­ 
lent fluid flow because the viscous shear forces are small relative to 
the inertial reactions resulting from the turbulence. Thus, turbulent 
flow corresponds to high values of the Reynolds number. For most 
practical purposes, motion which is turbulent is described in terms of 
the 'average translatory velocity at a point or in a cross section.

Critical, tranquil, and rapid motion. It the mean total energy head 
referred to the bottom of an open channel is a minimum for a given 
discharge, the flow is described as critical. When critical flow occurs 
in a straight, rectangular, or nearly rectangular channel in which the 
velocity in the cross section is essentially constant, the average velocity 
is theoretically equal to the velocity of a small gravity wave, and the 
Froude number is equal to unity. The flow is described as tranquil if 
the average velocity is less than the critical value. If the average 
velocity is greater than the critical value, the flow is described as 
rapid.

Shear and pressure. The total force on any surface within a fluid 
in motion can be resolved into tangential and normal components. 
The tangential component of the total force on the surface is the shear 
force (FT). The limit of the ratio of the shear force to the area of the 
surface as the area approaches zero is the shear stress at a point (T).

The normal component of the total force on an area is the pressure 
force (Fp). The limit of the ratio of the pressure force to the area 
as the area approaches zero is the pressure intensity (p) at a point. 
Pressure intensity is a scalar quantity.

A fluid at rest with respect to its boundaries is in a state of zero 
shear stress throughout. It follows that pressure changes imposed 
at one point in a fluid mass at rest are transmitted undiminished to 
all points in the fluid mass (Pascal's principle). Furthermore, because 
shear stresses cannot exist in a fluid at rest, the resultant force on any 
surface within the fluid is a pressure force, and it is normal to the 
surface.

Viscous and turbulent shear. The viscous-shear force (FJ is a con­ 
sequence of internal stresses which resist fluid deformation.
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relative movement of the fluid on adjacent stream surfaces in a laminar 
flow results in a viscous-shear stress (TM) . In a motion of this kind, TV is 
a function of the fluid viscosity and the velocity "gradient", a prop­ 
erty of the flow defined as the rate of change of the tangential velocity 
with respect to distance perpendicular to the motion. The viscous- 
shear stress at any point in the flow pattern, therefore, is TM = 
fj,(dvs/dn), where ju is the dynamic viscosity of the fluid and dvjdn is the 
velocity gradient at the point. It is significant that TM is independent 
of fluid density and pressure.

The total shear force (FT) acting on a fluid in turbulent motion is 
the sum of the viscous shear (F^ and the turbulent shear (FJ. Tur­ 
bulent shear is a consequence of the momentum exchange between 
small masses of fluid moved transversely by the action of the turbu­ 
lence eddies. Unlike viscous-shear stress, turbulent-shear stress (T,) 
is a function of fluid density, and it is independent of fluid viscosity.

It can be shown that the turbulent-shear force acting on a fluid 
element is directly proportional to its inertial reaction. It follows 
that the Reynolds number is proportional to the ratio of turbulent 
shear to viscous shear, or R oc T,/TM . The influence of viscous shear is 
negligible in fully developed turbulence.

Boundary layer. The boundary layer was originally conceived as a 
means of correlating real fluid motion with the theoretical behavior 
of the hydrodynamicist's ideal fluid. Thus, Prandtl suggested that 
in flows at high Reynolds numbers the effect of fluid viscosity could 
be assumed to be limited to a narrow region near the confining bound­ 
aries. This concept is of fundamental importance in the analysis of 
flow around bodies immersed in relatively large fluid spaces. It is 
also essential to an understanding of certain phenomena associated 
with the establishment of uniform flow at entrances to conduits or 
following local disturbances in an otherwise uniform conduit. In 
regions of fully established flow, as in long pipes and open channels, 
the boundary layer is virtually the entire cross section of the flow.

Streamlines and streamtubes. A streamline is a line drawn through 
a flow in such a manner that at every point along its length it is tangent 
to the velocity vector. It follows that there can be no flow across a 
streamline; in this sense, the streamline imposes a boundary condition 
on the adjacent flow.

A streamtube is a surface formed entirely of streamlines; in other 
words, it is the surface defined by the streamlines passing through a 
closed curve. As the boundary of a streamtube is comprised of 
streamlines, there can be no velocity and, therefore, no flow through 
the walls of a streamtube. Any solid boundary or separation surface 
which effectively guides the flow has the properties of a streamtube 
surface.
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Stagnation and separation.   A stagnation point in fluid motion is 
defined as a point of zero velocity. When boundary conditions cause 
a flow to undergo an abrupt convergence, a tendency for stagnation 
occurs at a point on the boundary. In a sharp, concave boundary 
corner, or on the nose of a blunt obstruction, for example, the flow 
along the boundary would apparently experience an instantaneous 
change in direction of motion. As this implies an infinite normal 
acceleration if the tangential velocity were anything but zero, stagna­ 
tion occurs.

When flow boundaries diverge abruptly, as in sudden enlargements 
or following blunt obstructions, the boundary ceases to guide the 
flow effectively and separation occurs. Thus, the apparent require­ 
ment that the fluid undergo an infinite acceleration at the boundary 
discontinuity does not, in this example, result in stagnation. Instead, 
the live stream separates from the boundary and follows a "free- 
stream" surface bounded by eddying fluid. As a consequence of 
viscosity, such eddy-filled separation zones also occur in corners near 
regions of boundary convergence, thereby preventing stagnation.

EQUATIONS OF MOTION

FUNDAMENTAL EQUATION OF MOTION

The principal objective of fluid mechanics is a mathematical 
description of fluid motion. Newton's second law is the basis for 
equations of fluid motion. The sense of Newton's proposition is 
contained in the algebraic expression l 2FccMa=KMa. This is 
a vector relationship which states that the resultant of all external 
forces acting in a particular direction on a mass is proportional to 
the product of the mass and its acceleration in the direction of the 
resultant force. If the quantities involved in this expression are 
evaluated in accordance with an absolute system of units, then K  1.0, 
or 'LF Ma. In the Cartesian space system, for example, 2Fx=Max, 

and 2Fg

EXTERNAL FORCES IN FLUID MOTION

The independent forces which influence fluid motion are the con­ 
sequence of 1 property of state (pressure) and 4 physical properties 
of the fluid (density, viscosity, surface tension, and elasticity). An 
additional force, the apparent shear force due to fluid turbulence 
(-F7,), is not recognized as an independent force because it is directly 
proportional to the inertial characteristics of the flow.

Pressure, or pressure intensity, is a scalar quantity which describes

i Except where emphasis Is Intended, the symbols and technical terms defined In the preceding section 
are used in the subsequent text without further explanation.
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a particular kind of fluid stress. Pressure is the cause of a resultant 
external force (Fp) only when it varies in the direction of motion.

Density is involved in fluid motion in two distinctly different ways. 
Thus, density accounts for an accelerative force (Fg) which is the 
component of the weight (W) in the direction considered. The defini­ 
tive equation, W=Mg=pVg, is a particular form of Newton's second 
law in which p is the density and g is described as the acceleration due 
to gravity. On the other hand, the total inertial reaction due to the 
resultant of all the external forces, which might or might not include 
a component of the weight force, also involves the density; that is,

Viscosity is a fluid property which accounts for a shear force 
whenever fluids are in motion with respect to their boundaries. 
Viscous shear is the result of molecular forces which oppose fluid 
deformation. In turbulent fluid motion the total shear force (FT) 
is the sum of F? and the turbulent shear force (F,) .

Surface tension is the name given to certain manifestations of 
molecular forces which occur at the interface between different 
substances; for example, between a free jet of water and the surround­ 
ing air. The surface-tension force (Fa) is ordinarily of appreciable 
magnitude only when the other forces involved are extremely and 
unusually small.

Elasticity, or forces due to elastic deformation (Ft), are involved 
primarily in the unsteady flow of liquids and in the flow of gases under 
high pressure gradients. Neither of these problems is pertinent to 
this discussion.

KINEMATICS OF FLUID MOTION

A mathematical description of fluid motion necessarily involves the 
space-time characteristics which are known as velocity and accelera­ 
tion.

Velocity is the time rate of displacement of a mass or a point. For 
example, if As is a small displacement or distance traversed along a 
streamline in a short time interval (M) , and if vs is the average tangen­ 
tial velocity in the interval on that part of the streamline, then 
vs=As/M. It follows that the instantaneous tangential velocity at 
a point on a streamline is vs =^dsjdt.

Velocity is a vector quantity. Thus, the total or resultant velocity 
at a point is the vector sum of its components on the various vector 
axes. From the definition of a streamline, the total velocity in the 
"natural" or s, n, m system of coordinates is vt , and the normal com­ 
ponents, vn and vm, are zero. For many purposes, however, the 
Cartesian or x, y, z system of describing motion in three-dimensional 
space is preferred. Thus, in the Cartesian system v=vx -+*



12 RIVER HYDRAULICS

VV+V+^j where -f-> indicates vector addition and vx =dx/dt, 
vv=dy/dt, and vt=dz/dt.

Acceleration is time rate of change of velocity. As this discussion 
is concerned with steady motion only, the variation of the velocity 
at a point, with respect to time, is always zero. Thus, in the general 
definition a=dv/dt, the change in velocity represented by dv is the 
change which occurs over the^ distance traversed during the time 
interval dt. It follows that the total acceleration in steady motion 
is described as convective acceleration.

In the natural system of coordinates, the total acceleration includes 
both tangential and normal components. Thus, as  dvs/.dt is the tangen­ 
tial acceleration. Similarly, an =dvn/dt and am  dvm/dt are the or­ 
thogonal components of the normal acceleration. In the Cartesian 
system the total convective acceleration is comprised of the com­ 
ponents ax  dvx/dt, av=dvv/dt, and az  dvg/dt.

For subsequent use, the tangential and normal accelerations in 
two-dimensional motion (am =0) are more conveniently expressed

dvt ds dvt ds dvsa,=-j  -j-  , ~ji Vt -j-)
at ds rig at as

or, from the calculus,

a" ==Vs ~ds == 2~ds" (1)

From any mechanics or physics text, the normal (centripetal) 
acceleration at a point on a streamline is

an= dt = Gfe" Jf*Vt ~ds =~r~' (2)

in which r is the radius of curvature of the streamline at the point. 
It is significant that equation 1 describes at as a measure of the rate 

of change of the magnitude of vs , whereas equation 2 describes an as 
a measure of the change in direction of vt . Equation 2 also explains 
the anomalous situation which appears to exist when it is observed 
that an is not necessarily equal to zero even though vn is always zero 
on a streamline.

EQUATIONS FOB A SIMPLE FLUID MOTION

The next logical step in writing an equation of fluid motion is to 
evaluate all of the forces acting on a typical accelerated fluid mass 
and to write an equation of the form

(3)
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in each of the coordinate directions. First, however, in view of the 
purpose of this discussion, the problem can be simplified by omitting 
further consideration of the relatively minor surface-tension and 
elastic forces, F, and Ff, respectively. Furthermore, in order to demon­ 
strate certain basic principles without the complication of the most 
troublesome of all forces those due to viscosity and turbulence  
a kind of motion in which the influence of F, is negligible is initially 
selected for analysis.

The flow of a fluid from a large quiescent reservoir through a small ori­ 
fice is shown in plate 1 (a-c). It is assumed that the orifice discharges 
into another reservoir containing a fluid of the same density in order 
that certain independent influences of fluid weight can also be ignored. 
Sufficient, generality and considerable convenience is achieved in this 
example by assuming that the flow is two-dimensional in the s, n plane. 
Thus, the only accelerations involved are aa and an, and the only 
forces involved are those which have components acting parallel and 
perpendicular to the streamlines. The natural system of coordinates 
is ideally suited to this analysis.

Plate 1 (b) shows a typical small mass of the fluid in motion. For 
convenience it is shown as a prismatic element of volume (As AA). 
Its axis is a streamline and it is as small as necessary in order that its 
motion can be described in terms of the motion of its mass center. In 
plate 1 (c), showing the same element as a free body, the pressure force 
on each end of the element is represented by the product of the aver­ 
age pressure and the end area. The weight force in the direction of 
motion (Fg) is shown as the s component of the total weight of the 
element (W). It should be apparent that any errors resulting from 
neglecting area, velocity, or pressure variations over the small volume 
(As &A) are of a second order of magnitude and that they disappear 
when the volume of the element is allowed to approach the infinitesi­ 
mal (ds dA).

In the kind of motion represented by plate 1 (a-c) the influence of the 
total shear force (FT) is negligible. This follows from the fact that 
motion in the reservoir is assumed to be nonturbulent and that the 
velocity of the fluid relative to the boundaries is negligible except 
immediately adjacent to the opening. Thus, neither viscous- nor 
turbulent-shear forces are appreciable. Flow patterns of this kind 
are essentially similar to the theoretical flow patterns described in 
hydrodynamics for an ideal fluid. Thus, for the motion pattern 
described,

2F.=F,-}-*Fg=Ma., (4)

in which Fp and Fg are the s components of the forces due to pressure 
and weight, respectively.
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From plate 1 (c), the resultant pressure force is

Fp=p AA-(p+Ap)AA= Ap AA.

If it is assumed that the pressure intensity increases at a uniform rate 
(dp/ds) in the direction of motion, then Ap= (dp/ds) As is the total 
change in pressure over the distance As. Substituting and simplifying,

F^-^CAsAA). (5)

The weight of the element is y(AsAA), The s component of the 
weight is, from plate 1 (c),

dz
Fg= -y(As A A) sin 6= -y(As AA) ^- (6)

CLS

The mass of the element is p(As AA), and the inertial reaction due 
to Fp and Fg is *

Mas=p(As AA)as. (7)

Combining equations 5, 6, and 7 with equation 4,

-^ (As AA)-y ̂  (As AA)=pas(As AA). (8) as as

'Reducing this to a force-per-unit-volume relationship by dividing by 
the volume (As AA) of the element,

dp dz-

This equation shows that acceleration in the direction of motion re­ 
sults only when there is a gradient (a change with respect to distance) 
of the sum p-\-yz in that direction. It shows also that when dz/ds Q, 
which is true of any motion in a horizontal plane, the pressure gradient 
( dp/ds) is the sole accelerative force per unit volume, and it is 
exactly equal to the inertial reaction per unit volume (pas). It in­ 
dicates furthermore that when dp/ds  0, then  y(dz/ds)=pas, or 
 dz/ds=as/g, equations which, for example, describe flow along any 
free (constant-pressure) surface; thus, when ds= dz, as in free fall, 
a,s=g, or the total .acceleration is equal to the acceleration due to 
gravity. Finally, it indicates that when as=0, the pressure gradient 
is dp/ds= y(dz/ds), or, in the distance ds, dp= ydz; this describes 
the condition of hydrostatic pressure distribution.
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* T 2

If as =7j  f- from equation 1 is substituted in equation 9 and the a ds
terms rearranged,

From this equation, the s rate of change of the quantity within paren­ 
theses, at any point on the streamline, is zero.

If equation 10 is multiplied by the differential distance (ds),

Q, (11)

which shows that the differential change in the parenthetical quantity 
over the differential distance (ds) is also zero. It follows that the 
quantity within the parentheses is a constant along the streamline. 
Thus,

iH-rz+^f-W, (12)

which is the integral of equation 11, is a relationship between pressure, 
elevation, and velocity in which K is the constant of integration for a 
particular streamline. At successive points along this line, therefore,

av* pv£
^+A+rBlSSI__J+ft+7gl| etc. (13)

Equation 13 can be written in an alternate "head" form, known 
more familiarly to civil-hydraulic engineers as the Bernoulli equation. 
Dividing by the constant specific weight of the liquid (7) and noting 
that yp=

The algebraic operations which led from the Newtonian equation 
to equation 13 involved dividing a force by a volume and multiplying 
by a distance. Thus, the units of every term in the equation are 
foot-pounds per cubic foot. It follows that the units of every term 
in equation 14 are foot-pounds per pound or, simply, feet.

Equations 13 and 14 are both properly described as Bernoulli 
equations. They are relationships between integral values of pres­ 
sure, elevation, and velocity at successive points on a single stream­ 
line. In order to develop similar relationships between points on 
adjacent streamlines it is necessary that the foregoing analysis be 
repeated with the axis of the definitive fluid element oriented in the
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n direction. As a result, a differential equation is obtained which is 
the counterpart of equation 9:

However, when the equivalent expression for an in terms of the 
velocity (vs) is substituted, the similarity in the two developments 
ceases. Thus, an=vs2/r from equation 2. When this is substituted 
in equation 15, it appears to yield a nonintegrable equation. Re­ 
turning to equation 2, however, let an=vs (dvnfds). Adding and sub­ 
tracting the quantity vs (dvs/dn) ,

dvn . dvs dvg dvs . /dvn dv

From hydrodynamics, the quantity within the parentheses in the 
last term is a measure of rotationality. Irrotational flow corresponds 
to the condition that (dvjds)   (dvs/dri)=Q. Whereas this distinction 
between rotational and irrotational flow is essentially mathematical, 
it is significant that hydrodynamics also shows that the absence of 
viscous shear is corequisite to irrotationality. Thus, because shear 
forces are negligible here, it can be assumed that the flow is irrota­ 
tional, and, therefore,

dvs 1 dvs2 , .an=vs -7-=o -7  (16)
dn 2 dn ^

When this is substituted in equation 15, the modified equation 
leads to differential relationships which are the counterparts of equa­ 
tions 10 and 11 and integral relationships which are identical with the 
Bernoulli equations (12, 13, and 14). Thus, when the shear forces are 
negligible, the same relationships between velocity, pressure, and 
elevation will apply between adjacent streamlines as apply along 
single streamlines. In other words, the constant of integration in 
equation* 12 is the same for all streamlines and the Bernoulli equation 
is applicable to all points in an irrotational or frictionless flow pattern.

Several important applications of the equations of motion, including 
hydrostatics, piezometry, the one-dimensional equation, and the dis­ 
charge equation, are discussed in the following sections.

HYDROSTATICS

When only pressure and weight forces are effective in a fluid motion, 
as in the preceding example, the condition described as hydrostatic 
pressure distribution occurs along any line on which the acceleration 
at all points is zero. Thus, with as =0 in equation 9, Irydrostatie
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pressure distribution in the s direction implies that the pressure in an 
incompressible fluid (7 is constant) varies inversely with the eleva­ 
tion along a streamline. Similarly, from equation 15, pressure dis­ 
tribution is hydrostatic along lines normal to the streamlines when 
an=0. This also means, of course, that pressure is not hydrostatically 
distributed in the n direction if the streamlines are curved. It follows 
that hydrostatic pressure distribution occurs throughout a fluid in 
motion only if shear forces are negligible and the flow is truly uniform; 
that is, if a,=0 and a»=0.

However, when the shear force (FT] cannot be ignored, it should be 
apparent from plate 1 (c) that the pressure must vary with the influence 
of this force as well as with elevation along the streamline. Thus, in 
general, pressures are hydrostatically distributed in the s direction of 
a uniform motion only when the relative velocity of fluid and boundary 
is so small that the shear force is negligible. On the other hand, 
pressures are hydrostatically distributed in the n direction as long as 
an=0. This follows from the fact that, from the definition of a 
streamline, the average normal velocity (w») is zero and, as a conse­ 
quence, the net shear force in the n direction is always zero.

Hydrostatics, as the term is generally used in technical literature, 
refers to the behavior of fluids, particularly liquids, at rest. The 
equations derived for a simple fluid motion are also applicable to hydro­ 
statics. For this application, as there is no flow and consequently 
there are no streamlines, the s direction is arbitrarily defined as any 
direction. From equation 9, when the fluid is at rest the acceleration 
in all directions is zero, and the equation

defines the condition of hydrostatic pressure distribution throughout 
the fluid. Thus, along any line, in a distance ds,

dp= ydz. (18)

In horizontal planes, dz=Q, whence, from equation 18, dp=0. 
Therefore, one of the basic principles of hydrostatics is that the 
pressure is the same at all points on horizontal planes in a fluid at rest.

When 7 is constant, which is sensibly true for liquids, integration of 
equation 18 yields

Za)' (19)

Equation 19 is apparently a particular form of the Bernoulli equation 
(13). It is also the basic gage-pressure equation if conditions at point 1 
are defined as the conditions on a liquid surface open to the atmos-
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phere. Thus, if pi=0 (gage) and if 21 22=2/2 is the vertical depth of 
point 2 below the free surface, then #2 =7j/2- It follows that the gage 
pressure at any point in a continuous body of liquid at rest is

p=yy, (20)

in which y is the vertical depth of the point below the real or imaginary 
free surface of the liquid.

PIEZOMETBY

A piezometer is a small hole located in a surface which comprises a 
fluid boundary. The purpose of the piezometer is to provide a means 
of measuring the fluid pressure at the point where the hole is located. 
In its definitive application to a liquid, as shown in plate 1 (d), the pie­ 
zometer is connected to an open tube called a manometer. When the 
pressure in the liquid at the piezometer is exactly equal to the pres­ 
sure due to the weight of the liquid in the manometer column, the 
liquid in the manometer is at rest. Thus, the pressure at the point 
of attachment can be computed from the gage-pressure relationship 
(eq 20). When a piezometer is used to measure the pressure on the 
boundary of a flowing fluid, the piezometer orifice must be small and 
very carefully made in order that flow along the boundary is not 
disturbed by the presence of the piezometer.

The level of the liquid in a simple open-tube manometer is appropri­ 
ately called the piezometric level. As its height above the level of 
the piezometer (y) is equal to pfy from equation 20, this distance is 
described as the pressure head at the point of attachment. The 
elevation of the point with respect to a horizontal datum is called its 
elevation head. Thus, the vertical distance between the piezometric 
level in the manometer and the elevation datum is described as the 
piezometric head at the point where the piezometer is located. From 
this definition, if the symbol h is used to denote the piezometric 
head at any point,

A=£+z. (21) 

Thus, from equation 15 (divided by 7),

~j~  r n 
dn\y / dn 7 g

This equation shows that the piezometric-head distribution in 
a section normal to the flow is proportional to the normal acceleration. 
The hydrostatic condition in the n direction occurs when an=0. For 
this condition the gradient of the piezometric head is zero; that is, 
the piezometric head is constant. Thus, when flow past a piezometer
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in a flow boundary is truly uniform, the piezometer indicates not only 
the piezometric head at the point of attachment but also the piezo- 
metric head at all points in the adjacent uniform flow. Under these 
circumstances, the piezometric level is independent of the elevation 
of the piezometer. These conclusions are illustrated in plate 1 (d).

When a liquid flows in an open channel, as in plate 1 (f), the upper 
boundary of the flow is both a stream surface and a piezometric sur­ 
face. The gage pressure over the upper stream surface, regardless of 
its configuration or velocity, is zero. Thus, a piezometer located on 
the boundary of a uniform flow in an open channel indicates not only 
the piezometric level but also the level of the flowing liquid at the 
point of attachment. It follows that, if the piezometric datum is 
defined as the bottom of the channel, a piezometer located any­ 
where in the cross section indicates the depth of the liquid in the 
channel at, that section.

When a piezometer is located on the upstream end of a small object 
placed in a fluid flow, stagnation occurs over the piezometer. As 
viscosity has little influence on this occurrence, the Bernoulli equation 
is applicable between the stagnation point and any point on the same 
streamline in the undisturbed flow upstream from the obstruction. 
Two such points (on streamline AB) in a uniform pipe flow are desig­ 
nated points 1 and 2 in plate 1 (e). If 02=0, and h= (p/y) -\-z is sub­ 
stituted in equation 13, the piezometric head at the stagnation point 
is

A2=Ai+^- (23)

In plate 1 (e), the piezometer at point 2 is connected to an open 
manometer tube. The stagnation pressure on the nose of the tube 
causes liquid in the tube to rise to a height equal to p2/y above the 
level of the piezometer or h2 above the elevation datum. If the flow 
in the pipe is uniform at this section, a second piezometer located 
at any point on the boundary indicates the piezometric head in the 
undisturbed flow at point 1. Thus, from equation 23, the velocity 
head at point 1 is indicated as the difference in the piezometric levels 
in the two manometers. It follows that the velocity in the undis­ 
turbed flow on streamline AB is

). (24)

A tube such as that in plate 1 (e) which indicates the stagnation- 
pressure head is called a stagnation or pitot tube. It is apparent that 
the pitot tube provides an accurate means of measuring velocities in 
fluid motion. Its application to open-channel flows is illustrated in 
plate 1 (g).
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The velocity in a normal section through a uniform fluid flow 
between fixed boundaries varies with distance from the boundary. 
This is incidentally a consequence of the shear stresses which result 
from the relative motion of a viscous fluid and a solid boundary. 
When a pitot tube is used to traverse such a section, the piezometric 
level indicated by the tube varies from one streamline to the next. 
However, the piezometric level indicated by all wall piezometers is 
the same as long as an 0 at the section. Thus, only the pitot-tube 
manometer indications are affected by the velocity variations in 
the section. These conclusions are illustrated for an open channel in 
plate 1 (h).

The equations of motion have been used to demonstrate some of the 
basic principles of piezometry in uniform fluid motion. These equa­ 
tions are equally valuable as aids in the interpretation of piezometric 
measurements in nonuniform flows. For example, piezometers are 
often located at various points on bridge piers or abutments as a 
means of measuring the average water-surface level hi the bridge 
opening. If a piezometer is located downstream from the disturbed 
flow near the entrance to the constricted waterway, and if the flow 
across the entire section normal to the piezometer station is essen­ 
tially parallel to the face of the pier or abutment on which the piezom­ 
eter is located, the measurement will be quite satisfactory as an 
indication of the average water-surface level at this section.

Piezometers located near the upstream end of the structure, how­ 
ever, are generally unsatisfactory. Thus, piezometers located on 
the upstream face of a pier are ordinarily in the vicinity of a stag­ 
nation zone, and measurements are influenced to an indeterminate 
degree by separation upstream from the pier nose. The so-called 
superelevation of the water curving around the nose of a pier is 
evidence of nonhydrostatic pressure distribution due to normal 
acceleration in the horizontal plane. Similarly, vertical accelerations 
in this zone account for nonhydrostatic pressure distributions in 
vertical planes. Therefore, piezometers located on the walls of a 
pier just downstream from the nose indicate neither the mean water- 
surface level in the cross section nor the level adjacent to the pier.

It should be apparent that short piers, circular piers, piers with 
irregular boundaries, webbed pile bents, or piers alined obliquely 
with the flow are unsatisfactory as locations for stage-recorder gage 
intakes unless they are calibrated in the field or hi the laboratory.

ONE-DIMENSIONAL EQUATION

The piezometric head has been shown to be constant in any normal 
section over which an is everywhere zero (eq 22). From equation 
16, which applies only when the shear forces are negligible, the normal
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acceleration is proportional to the n gradient of the tangential velocity. 
Thus, if a«=0, it follows that dv,,fdn~Q, or vs  v is a constant. It may 
be concluded, therefore, that at all points over a normal section both 
the tangential velocity and the piezometric head are constant when 
FT and an are negligible. Two sections which satisfy these conditions 
are shown in plate 1 (i) .

Plate 1 (i), like plate 1 (a), represents the flow of a fluid from a large 
reservoir through a small orifice into another reservoir. Section 1 
in the figure is a hemispherical surface which is concentric with the 
center of the orifice. Streamlines passing through this surface are 
radial lines ; therefore they satisfy the requirement that the stream­ 
lines be without curvature if an be zero. As the influence of the 
shear forces is negligible in this kind of flow pattern, it is concluded 
that the piezometric head (hi) and the tangential velocity (PI) are 
constant at all points on section 1. Section 2 is a section through the 
parallel boundaries of the jet, downstream from the nonuniform flow 
in the immediate vicinity of the orifice. As the streamlines in this 
section are straight, an=0 and the velocity and piezometric head are 
constant at all points. It follows that every term in an equation 
of the Bernoulli form

applies to any and all streamlines between sections 1 and 2 in plate 1 (i). 
For the circumstances illustrated by plate 1 (i), it has been deter­ 

mined that the velocity at all points in section 1 is equal to v\. This 
velocity, therefore, can be represented by the symbol V\, for V has 
been defined as the average velocity in a total cross section. Similarly, 
here, 02=V2 . When these substitutions are made in equation 25, the 
resulting equation,

(26)

can be described as an equation of motion for a typical streamline or 
an equation of motion for a streamtube which envelops the total 
flow.

Plate 1 (j) shows an orifice flow pattern which differs in some very 
important respects from the flow pattern shown in plate 1 (i). In 
plate 1 (j) a diaphragm orifice is located in a pipe. Section 2 is again 
located in the parallel jet. Thus, as in the previous example, the 
velocity and the piezometric head at all points in section 2 are es­ 
sentially constant. Section 1 is normal to the axis of the pipe and 
far enough upstream from the orifice to be removed from the zone 
of streamline curvature. Thus, as the streamlines are all straight
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and perpendicular to section 1, the normal acceleration is everywhere 
zero, and the piezometric head is constant. However, the influence 
of the shear forces on the velocity distribution in section 1 can no 
longer be ignored. As the velocity of a viscous fluid relative to its 
fixed boundaries becomes appreciable, shear forces cause the fluid 
near the boundary to be retarded. As illustrated in plate 1 (j), there­ 
fore, the velocities in section 1 vary with distance from the boundary.

Another effect due to the influence of shear is shown in plate 1 (j). 
As there can be no slippage at the boundaries, the velocity of the 
contact fluid is always zero. On the other hand, flow approaching 
the upstream corners must decelerate. The apparent conflict be­ 
tween the condition of zero velocity at the boundary and the tendency 
for deceleration along the boundary is resolved by separation and the 
formation of an eddy zone in the corner region. The result is a 
modification of the flow pattern and a depreciation of flow energy. 
These matters obviously cannot be considered in detail at this time 
because the simplified equations of motion were derived on the con­ 
dition that the influence of shear forces was negligible.

For many practical purposes, it is permissible to ignore certain 
effects of viscous and turbulent shear. For a pattern such as that in 
plate 1 (j), for example, it is generally sufficient to ignore the nonuni- 
formity of tangential velocities across the normal sections and to 
acknowledge that equation 26 is a good approximation. Under such 
circumstances, because it ignores the influence of transverse velocity 
variations, equation 26 is called a one-dimensional equation of motion.

EQUATION OP CONTINUITY

Plate 1 (k) shows a typical streamtube in a steady fluid motion. The 
average tangential velocity at any section is vg , and the area of a 
section normal to the axis of the tube at any station is AAn . The 
product vs &An has already been defined as discharge, or volume rate 
of flow, a quantity which has no counterpart in rigid-body mechanics. 
The dimensions of discharge indicate that it is a measure of the time 
rate of passage of fluid volume through the streamtube. The product 
of discharge and density, therefore, is a measure of the rate of passage 
of fluid mass. By definition, the flow normal to the streamtube sur­ 
faces is everywhere zero. Thus, because fluid mass can be neither 
created nor destroyed, in a steady fluid motion the mass rate of flow 
(pvt &An) is constant at successive sections, or, (pvs AAn)i=(pvs A^.^. 
For a liquid flow, furthermore, the density is essentially constant. 
Thus, the volume rate of flow (A<2) at successive sections is also 
constant, or

AQ=(». *An\=(v, A4.),. (27)
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The discharge (Q) through a total cross section between fixed 
boundaries is the summation of the discharges through the component 
subsections, or

(28)

in which V is the average velocity and A is the total area of the section. 
Thus, because the fixed boundaries comprise limiting stream surfaces, 
from equations 27 and 28, the total discharge is constant at successive 
sections, and

(29)

Equation 29 is the one-dimensional equation of continuity.

DISCHARGE EQUATION

Equation 29 can be applied, for example, to sections 1 and 2 hi 
plate 1 (j) . It can also be solved simultaneously with equation 26, 
which is an approximate equation of motion for the same flow pattern. 
The result,

(30)

is a discharge equation hi terms of area and piezometric head. As is 
true of equation 26, equation 30 is applicable only when the influence 
of the shear forces is small.

When the discharge equation is applied to a flow pattern such as 
that shown in plate 1 (j), the area at section 2 is most conveniently 
expressed hi terms of the area (A) of the orifice and the coefficient of 
contraction (<7e). By definition, and as illustrated in plate 1 (1),

A2 =CcA. (31)

Thus, from equations 30 and 31, a common form of the discharge equa­ 
tion for a convergent boundary is

Q.= . V2gft.-k) (32)

or

^), (33)



24 RIVER HYDRAULICS

in which C& is the coefficient of discharge. From equations 32 and 33,

PLOW NET

The flow net is a pattern of streamlines and "potential" lines which 
indicates by its configuration the velocity distribution in a fluid flow. 
Flow nets can be constructed only in accordance with the following 
restrictions: The flow to be represented is a steady flow; the flow 
pattern is independent of the influence of fluid viscosity, surface ten­ 
sion, and elasticity; the flow pattern is independent of the influence 
of fluid weight (this does not preclude flow nets for completely enclosed 
flows in vertical planes nor certain kinds of free-surface flows). 
Within the limits of the restrictions above, flow nets can be constructed 
for flows involving free-stream surfaces as well as those which are 
effectively guided by rigid boundaries. A flow net is unique for the 
given boundary conditions, regardless of scale (size) or any assump­ 
tions regarding fluid density, velocity, elevation, or pressure.

From hydrodynamics it is known that the equations of the lines 
which comprise the flow net can be determined for many two-dimen­ 
sional flows and certain axisymmetric three-dimensional flows. From 
hydrodynamics it is also known that the requirement of negligible 
fluid viscosity is corequisite to the mathematical restriction of irrota- 
tionality.

Truly irrotational flow, of course, is impossible; however, as already 
observed, there are some kinds of fluid motion in which the influence 
of the complicating fluid properties is negligible. For such flows, 
usually involving rapidly accelerating motion and a completely 
enclosed or submerged flow pattern, the flow net affords a powerful 
means of analysis.

Whereas certain flow nets can be plotted as families of curves whose 
equations are developed by mathematical techniques, many others 
can be determined only by graphic or arithmetic successive-approxi­ 
mation procedures. Electric analogies, laminar-flow analogies, and 
other laboratory techniques facilitate the approximation procedures. 
Flow nets involving free-stream surfaces are more difficult to obtain 
than nets for totally enclosed flows. However, measurement of the 
free-stream profile under carefully controlled laboratory conditions is 
an expedient.

It is apparent that, in general, flow nets are not easily obtained. 
It will be made equally apparent, however, that a flow net once drawn
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for a particular boundary shape affords a universal solution for many 
fundamental flow characteristics. Some typical two-dimensional 
flow nets are shown on plate 2 (a-h) .

One of the definitive characteristics of a two-dimensional flow net 
is that the streamlines are so spaced that the discharge between all 
adjacent streamlines in the net is a constant. Furthermore, from the 
equation of continuity, the discharge past successive sections in each 
of the^two-dimensional streamtubes is also constant. In plate 2 (d), v 
is the average velocity and Aft is the corresponding normal distance 
between any pan1 of streamlines in a typical flow net. Because 
Ag=0 An, and because Ag<,=A<fr=Ag2=A<fe in plate 2 (d), it follows that 
v0 kn0=Vi Afti=02 Aft2 , etc., throughout the flow net. Thus, the relative 
velocity at any point in the flow pattern is indicated by the distance 
between streamlines at that point. For example, if v0 and An0 are 
described as reference characteristics in a particular flow net, the 
velocity at any other point is v=&q/&n=(v0 Aft0)/Aft, or

I
_o t
   . ) Bill/.. . .

V0 Aft v0 Aft! v0 Aft

In regions of flow where acceleration is appreciable, finite values of 
the normal distance between streamlines provide only an approximate 
measure of the mean velocity between the streamlines. Further 
subdivision of the net, however, affords a means of improving the 
accuracy of the measure. The limit of the subdivision procedure 
occurs when &n=dn. Then Aq dq=v dn is the constant infinitesimal 
discharge in each of an infinite number of streamtubes which make up 
the flow net. Actually, the decision regarding the number of stream­ 
lines to be drawn   that is, the practical limit of subdivision   is 
always based on a consideration of the labor involved, the accuracy 
attainable, and the accuracy required.

The potential lines on a flow net are a family of lines which are 
orthogonal (perpendicular) to the streamlines, including the effective 
boundaries. The potential lines are customarily drawn so that they 
are everywhere equ^al in spacing (As) to the spacing of the adjacent 
streamlines (An). Together, the conditions of perpendicularity and 
equivalent spacing of streamlines and potential lines govern the 
graphical, successive-approximations method of constructing a flow 
net.

In regions where the flow is uniform the meshes formed by pairs 
of streamlines and potential lines are squares. In regions of non- 
uniform flow, the meshes are imperfect squares, although individually 
their medians are equal and their corners form 90° angles. If the net 
is further subdivided, however, all of the component meshes approach 
perfect squares as Aft and As approach dn and ds, respectively, just as
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all curved lines approach straight lines as the length of line considered 
approaches zero.

Because in any local zone As is equal to Aw, it follows that As is a 
measure of the mean velocity between adjacent potential lines for the 
same reason that Aw is a measure of the mean velocity between ad­ 
jacent streamlines. Thus, in a uniform-flow zone, An=As, and

v An0 As0 . /OQ v  =-7 =-T-^ etc. (36) 
V0 An As

In nonuniform zones, either An or As might be preferable as an approxi­ 
mate measure of the mean velocity, depending on the characteristics 
of the flow pattern and the purpose of the analysis. For example, 
along any streamline, including the boundary, the maximum and 
minimum velocities are best indicated by the potential-line spacing.

Typical velocity-distribution curves, determined from the flow net 
for a sluice gate, are shown on plate 2 (g). Here, velocities along the 
floor of the channel and along the face of the sluice gate are repre­ 
sented as a multiple of the downstream uniform velocity (F2). Thus, 
the velocity-distribution curves shown on plate 2 (g) are plots of th« 
relationship

in which v is the velocity at any point, As. is the distance between poten­ 
tial lines at that point, and As2 is the distance between potential lines 
in the downstream, uniform-flow zone.

It has been established that the velocity variation throughout an 
irrotational-flow pattern is related to the piezometric-head variation. 
It follows that the flow net provides a means of analyzing the piezo­ 
metric-head distribution throughout any flow pattern for which a net 
can be drawn. From the Bernoulli equation (14), when it is applied 
between a reference point and a general point in any irrotational-flow 
pattern,

, , Vg2 V2

in which h=(p/y)-\-z is the piezometric head. By dividing both sides 
of this equation by the velocity head at the reference point and 
observing that

v_Ang_As0
v0 An As ' 

then  '  (37)
v '
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The left-hand member of equation 37, called the piezometric-head 
ratio, is dimensionless. It contains only one dependent variable (h), 
in addition to the reference values (h0 and v0). The terms on the right- 
hand side of the equation indicate that the piezometric-head ratio is a 
function of the flow-net configuration alone. It has been established 
from hydrodynamics that, if one can be drawn, a flow net is unique for 
any given boundary conditions; in other words, there is only one flow 
net for a given boundary form. It follows that the piezometric-head 
ratio is determined for all points in a given flow pattern by the shape 
of its boundaries. The full significance of this conclusion is best illus­ 
trated by the observation that both the velocity ratio (eq 36) and the 
piezometric-head ratio are independent of the size of the boundary as 
well as of the fluid density, discharge, elevation, and pressure.

Typical piezometric-head distribution curves, corresponding to the 
velocity curves in plate 2 (g), are shown for the sluice gate in plate 2 (h). 
From equation 37, when it is applied between a general point and a 
point in the uniform flow downstream from the gate,

in which As2 , V22/2g, and hz are constants which, for any scale of 
drawing, fix the scale of the piezometric-head graph. Thus, the only 
variable in this equation is the distance As, which is the scaled dis­ 
tance between potential lines at the point where the piezometric head is 
A. For convenience, in plate 2 (h) the piezometric head is represented as 
a multiple of the gate opening (6); that is, h=Cb, where C is a function 
of a single variable (As).

Because the elevation of any point on the flow pattern shown in 
plate 2 (h) is readily scaled off the drawing, it follows that the pressure 
head at any point along the gate face or the floor is represented as the 
difference between the plotted piezometric head and the elevation. In 
this manner the flow net can be used to evaluate the total fluid-pressure 
force acting on any portion of the boundary.

It is emphasized that the sluice gate shown in plate 2 (f-h) represents 
a fluid motion in which the influence of viscosity is almost negligible. 
Also, it is observed that, in this example, the influence of fluid weight 
is confined to its accounting for a variation of pressure with elevation. 
In other words, this is the kind of flow pattern for which a flow net 
yields useful, practical information. Many such examples could be 
given.2

' Rouse, Hunter (ed.) 1960, Engineering hydraulics: New York, John Wiley <& Sons, Inc. See p. 22, 
33, 47-52, 534-642.
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The coefficient of discharge for convergent-boundary flow patterns 
has been defined by the relationships

Q
C A.

/

The prerequisites for the applicability of this equation are essentially 
the same as those which determine whether the flow pattern can be 
represented by a flow net. In fact, a property of all flow nets that 
the streamline configuration is uniquely determinedly the form of 
the fixed boundaries leads to the conclusion that the second member 
of equation 34 involves only dimensionless characteristics of the flow 
boundary. In other words, Ce and, therefore, Cd, are functions of the 
boundary geometry alone. This conclusion is substantiated by the 
observation that the right-hand member in equation 34 is a particular 
form'of the piezometric-head ratio; that is,

s.
C*= /  / . .= ,~> (38)

Vft'l" /»2 ~ET

where V is the average velocity through the gross orifice area and 
hi hz is the difference in piezometric heads between the two uniform- 
flow regions designated sections 1 and 2. Thus, Cd has all the char­ 
acteristics of any piezometric-head ratio, including those of being 
dependent on the form of the fixed boundaries and independent of 
boundary scale, fluid, density, discharge, elevation, and pressure.

THE EXPERIMENTAL METHOD

A simple kind of motion which involved mainly the forces due to 
pressure gradient and fluid weight was examined in. the jpreceding 
section. The discharge of an incompressible fluid through a plate 
orifice between adjacent large reservoirs was described as a practical 
example of this kind of motion. In general, of course, additional 
forces must be considered. Thus, when a fluid flows between fixed 
boundaries, viscous and turbulent shear stresses are involved. On 
the other hand, when accelerated motion with a free surface occurs, 
certain independent effects due to fluid weight must be considered.

Unfortunately, flow patterns which depend on the combined effects 
of several fluid-property forces are seldom subject to complete mathe­ 
matical description. Thus, a full complement of expanded equations 
of motion, counterparts of the equations for a simple fluid motion
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derived in the preceding section, is not forthcoming. In this section 
a method of analysis which provides an indirect evaluation of the 
relative influence of the fluid-property forces will be considered.

INFLUENCE OF SHEAR

The effects of viscous and turbulent shear are prominent in most 
fluid-flow phenomena. They are manifested, usually, by their influ­ 
ence on the energy of flow and th.3 external aspects of the flow pattern. 
Thus, as a consequence of viscous shear, heat is generated within a 
moving fluid and the energy of the flow system is thereby degraded. 
On the other hand, she'ar stresses are primarily responsible for the 
occurrence of boundary drag forces, separation zones, eddies, and 
various phenomena associated with the boundary layer.

In the absence of comprehensive equations of motion, practical 
solutions for many problems in engineering hydraulics involve em­ 
pirical adjustments of the simple equations of motion derived in the 
preceding section. Thus, an understanding of the complex part 
played by the shear forces depends, in general, on an understanding 
of the techniques and limitations of dimensional analysis and experi­ 
ment.

EXPERIMENTS AND THE THEORY OF SIMILITUDE

The principal purpose of experiment is to determine the relative 
influence of each of the variables which govern the occurrence of a 
phenomenon. For occurrences lacking a general analytical solution, 
however, the identification of the independent variables is often as 
obscure as the evaluation of their influence. Frequently, therefore, 
an auxiliary purpose of experimental observations is to isolate the 
effective variables. Many practical problems have been satisfac­ 
torily solved by semi-empirical methods based on experimental data. 
However, it is emphasized that empirical solutions lack generality by 
their failure to recognize the exact functional relationship between 
the primary variables.

The variables involved in fluid motion are contained in one of 
following categories: boundary conditions; kinematic or flow charac­ 
teristics, including acceleration and velocity (or discharge); and 
dynamic characteristics, or the forces which cause motion. One of 
the most powerful tools of modern fluid mechanics is that which utilizes 
dimensionless ratios to describe boundary geometry, flow character­ 
istics, and force characteristics. The dimensionless-ratio technique 
provides a means of correlating similar phenomena without restriction 
as to scale, flow, or fluid properties. It is fundamental to the planning 
and execution of experimental programs, to the analysis of experi­ 
mental data, and to the application of solutions which are based on 
experimentation.
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The general Newtonian equation of motion for fluids has already 
been expressed in the symbolic form (eq 3), FP +*Fg+*FT -\-*F,-\-*Fe= 
Ma.

Plate 2 (i-1) illustrates the significance of such an equation when ap­ 
plied to the motion of a small element of fluid wherein the effects of 
Fff and Ft are negligible. Thus, in plate 2 (j),

F,+*Fg +>Fr =Ma. (39)

The size of the polygon which represents this force system depends 
on the scale selected for the drawing and the relative magnitude of 
the forces involved. It follows that the force picture at a correspond­ 
ing point in a completely similar flow pattern might be represented 
to the same scale by plate 2 (k). However, if every term in equation 39 
were divided by the resultant inertial reaction (Ma),

F F F++ 1 ' (4e>
the force systems shown by the similar polygons in plate 2 (j, k) 
might both be represented by the unit polygon shown in plate 2 (1). 
At corresponding points in all truly similar flow patterns such dimens- 
ionless force polygons are identical.

The magnitude of each of the ratios in equation 40 is a relative 
measure of the part played by a particular accelerative force. Each 
of the ratios, therefore, has obvious significance as a criterion of 
similarity. For example, the first ratio is a measure of the influence 
of the pressure force relative to the total inertial reaction. It is 
evident that when this and each of the other ratios are fixed, the force 
pattern and, therefore, the motion pattern, are determined. It 
follows that two or more flow patterns are completely similar when 
their boundaries are geometrically similar and the corresponding force 
ratios are identical. Thus, dynamic similarity is independent of the; 
size of the boundaries, the magnitudes of the velocities, or the physical 
properties of the fluids involved.

Equation 40 and plate 2 (1) have been used to demonstrate the signifi­ 
cance of dimensionless force ratios as a means of describing a particular 
fluid motion. Equivalent ratios, which are proportional to the recip­ 
rocals of the square roots of the ratios in equation 40, are widely 
accepted as general criteria of similarity. The first of these is the 
Euler-number (E),

»  £=  (41>
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in which V is a typical average velocity and Ap is a significant pres­ 
sure difference. The Euler number is derived from the pressure- 
force ratio, the first term in equation 40. Thus, the Euler number 
is a measure of the relative influence of the pressure force.

Similarly, a ratio which is a measure of the influence of the gravity 
force and which is derived from the second term in equation 40 is 
called the Froude number (F). For free-surf aee flows, the accepted 
form of this ratio is

(42)

in which L is a significant length. 
In the third term of equation 40,

FT Fu . Fn fll,r\ 4. 4.TT  irr JfTT'  WH-Constant, 
Ma Ma Ma Ma

in which FJMa is a constant because turbulent shear forces are pro 
portional to the total inertia! reaction. It follows that

. (43) Ma

The third term in equation 43 represents the relative influence of the 
independent viscous shear force. The accepted form of the ratio 
which is derived from this term is called the Reynolds number (R) ,

(44)

Similar ratios which have been formulated to describe the surface- 
tension and elastic forces are called the Weber and Cauchy (or Mach) 
numbers, respectively.

Inasmuch as the Euler, Froude, and Reynolds numbers are propor­ 
tional to tjie dimensionless ratios in equation 43, it follows that com­ 
plete similarity of two or more flow patterns will prevail when their 
boundaries are geometrically similar and their Euler, Froude, and 
Reynolds numbers are equal.

Of the ratios in equation 43, the Euler number (E) has special 
significance as a general flow parameter. Because it involves no fluid 
property other than density, E is the sole criterion of similarity for 
motion which, from hydrodynamics, is described as ideal. Thus, for 
an enclosed flow in a horizontal plane with negligible influence due to 
shear, inertial reactions are a function of pressure forces alone. For 
any given boundary conditions, therefore, E, representing a ratio of
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a typical inertial reaction to a typical pressure force, is a constant. In 
other words, for ideal-fluid motion, E is a function of boundary condi­ 
tions alone. On the other hand, if forces other than pressure are 
partly responsible for the total inertial reaction, the magnitude of E 
reflects the relative influence of the other forces. As all the other 
ratios are related to the fluid properties, the Euler number is appro­ 
priately selected as a dependent ratio. This leads to the statement 
of a general principle of similitude: Values of E for two or more flow 
patterns are identical, and the patterns, therefore, are exactly similar 
if their boundary conditions are similar and if the corresponding 
values of the fluid-property parameters, such as F and R, are equal. 

A significant example of the Euler number is the coefficient of 
discharge described on pages 24 and 28. Other examples are the 
uniform-flow resistance coefficients, various minor-loss coefficients, 
drag-force coefficients, etc. From equation 38,

£
A V ==E. (45)

/2
i Pa)

To all those conclusions concerning Cd which were derived previously 
from the piezometric-head ratio analogy and the flow-net character­ 
istics, there are now added the limitations imposed by the influence 
of the fluid-property forces. Thus C&, obviously an important flow 
parameter, is now defined as a function of not only the boundary 
geometry but also the several fluid-property parameters derived in 
this section.3

INFLUENCE OF A FREE SURFACE

Certain kinds of free-surface flow patterns, such as the sluice gate 
(pi. 2, f-h) and the simple measuring weir, are free of independent 
weight-force effects. In other words, for those flow patterns which 
are uniquely determined by the fixed boundaries, the only influence 
of fluid weight is to account for a variation of pressure with elevation.

Under other conditions, as illustrated by the brink at the end of a 
sloping channel or the orifice at the end of a pipe, the weight force 
can have an independent influence on the flow pattern. For example, 
when a fluid discharges from an'orifice into a space occupied by 
another fluid of different density, the trajectory of the jet and many 
related characteristics of the flow pattern depend on the velocity of 
approach, the specific weight of the fluid flowing, and the specific 
weight of the surrounding fluid, as well as the boundary geometry.

* Rouse, Hunter, 1946, Elementary mechanics of fluids: New York, John WUey & Sons, Inc. The reader 
Is urged to study the sequence of Ct curves represented by figures 31, 62,86, and 129*
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The effect of the weight force in this example is to deflect the jet 
upward or downward, depending on its effective weight or buoyancy 
relative to the. surrounding fluid. The relative magnitude of this 
effect depends on the ratio of the inertia of the jet to the weight force. 
Such a ratio, of course, is the Froude number. However, for an 
application of this kind, F must be written in the more general form,

(46)

in which AY is the difference in specific weights of the two fluids in­ 
volved and p is the density of the fluid flowing.

Practical problems related to free-surface flows are seldom subject 
to complete analytical solution. By means of the Froude criterion, 
however, along with the other dimensionless force ratios described 
previously, satisfactory solutions based on experiment can be 
achieved.

RECAPITULATION

A preceding section was principally concerned with a simple kind 
of fluid motion in which the only effective forces were those due to- 
pressure difference and weight. The main objective of that section 
was to derive equations which constitute a mathematical description 
of the motion. The most important equations derived were the 
Bernoulli equation, which defines the relationship between velocities, 
pressures, and elevations throughout the flow pattern; the one- 
dimensional equation of motion, which describes the variation in the 
average flow characteristics between sections of essentially uniform 
motion; the one-dimensional equation of continuity; and the dis­ 
charge equation. In addition, the flow net was introduced as a 
valuable analytical tool and a means of demonstrating the significance 
of the equations of motion.

It is now acknowledged that neither the simple equations of motion 
nor the flow net are theoretically compatible with the occurrence of 
shear forces. It is also acknowledged that, in general, it is not pos­ 
sible to derive expanded equations of motion which adequately define 
the influence of shear and certain free-surface flow characteristics due 
to fluid weight. Thus, for many problems involving appreciable ef­ 
fects due to viscosity, weight, or any other fluid property, solutions 
based on field or laboratory experiments must be sought. For this 
purpose the dimensionless-ratio technique of specifying boundary 
characteristics (a length ratio, usually), flow characteristics (a coeffi­ 
cient of discharge, piezometric-head ratio, efficiency, energy-loss co­ 
efficient, or some other form of the Euler number), and fluid-property
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force characteristics (the Froude, Reynolds, Weber, and Cauchy 
numbers) has been described. Flow-pattern descriptions based on 
dimensionless ratios are completely independent of restrictions re­ 
garding scale, discharge, pressure, or fluid properties. Thus, dimen­ 
sionless ratios are the basis for the general principle of similitude 
which governs all experimental investigations.

EXAMPLE

The manner in which the principle of similitude can be used to guide 
the planning and execution of an experimental program is demon­ 
strated by the following example. It is proposed to make laboratory 
tests on a diaphragm orifice. The purpose of the tests is to determine 
the discharge characteristics of an 8-inch thick-plate metering orifice 
in a 16-inch pipeline carrying crude oil. The laboratory tests are to 
be made in a 4-inch pipe carrying water. The principal objective of 
the investigation is to define the coefficient of discharge (Ca) for a full 
range of oil-pipeline (prototype) flows. This objective is incidental, 
of course, to the requirement that the flow pattern in the pipeline be 
exactly simulated by the flow pattern created in the experimental 
setup.

The scale ratio of lengths in this example is determined by the ratio 
of pipe diameters, 1:4. In order to achieve geometric similarity, 
therefore, the laboratory orifice must be one-fourth as large as the 
pipeline orifice, or 2 inches hi diameter. Similarly, all other length 
characteristics, such as plate thickness, rounding radius, and piez­ 
ometer locations, must be reproduced in accordance with the 1:4 
length-scale ratio.

In order to obtain completely similar flow patterns in the vicinity 
of the geometrically similar orifices, the relative influence of each of 
the effective independent forces must be the same. In this example, 
viscous shear forces are involved in the occurrence of the boundary 
layer upstream from the orifice and in all the consequent effects de­ 
scribed on page 22. Because the flow pattern is entirely enclosed, 
however, the weight force does not have an independent influence. 
Surface-tensiQn forces are absent because there are no fluid interfaces, 
and elastic forces are negligible because both of the fluids involved are 
liquids.

It follows that, for similar boundary conditions, pressure differences 
are functions of viscous shear forces and accelerations. Therefore, 
ratios of the Euler variety, including the coefficient of discharge, are 
functions of the Reynolds number alone. In other words, complete 
similarity of the flow pattern (including turbulence) will be achieved 
and the discharge coefficients for the two orifices will be equal when 
their Reynolds numbers are equal. It is this condition which de-
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termines the range of laboratory test conditions required to define C& 
for a full range of pipeline discharges.

Thus, for similar flow patterns and equal coefficients of discharge,

(oU)jR«> ( water) =

(VLP\ }
\ M /w \ M /o

in which V is usually defined as the average velocity based on the 
gross area of the orifice, and L is the diameter of the orifice. From 
this relationship, the ratio of velocities for similar flow conditions is

vw /LO\/PO \/HW\ ( 7.(47)

and, because discharge is proportional to the product of a velocity 
and an area (or the square of a length) ,

(giB_ A-w V w _ /jLuA'&-~Ajr0 -\j:J p.

Therefore, the discharge of water in the laboratory setup required to 
simulate a given rate of flow in the pipeline can be expressed in terms 
of the length ratio, the density ratio, and the viscosity ratio, or,

«  {©(£)©> (48)
In this example, LWIL0=Y^ Furthermore, the density and viscosity 

ratios are virtually fixed because, for given fluids, these properties 
can be altered only slightly (by changes in temperature). Thus, 
equation 48 is of the form Quj=K Q0, and K is essentially constant.

The example would have been considerably complicated if the 
metering orifice had been located at the end of the pipeline. Because 
the orifice would then discharge freely into the atmosphere, fluid 
weight would be added to the independent variables already con­ 
sidered. Thus, the Froude number would be an additional criterion 
governing the performance of the laboratory investigation. Under 
certain conditions this added requirement makes complete similarity 
impossible to achieve.

The difficulty of satisfying more than one fluid-property criterion 
is easily demonstrated. From the requirement that the Froude 
numbers be equal for similar flow patterns,

LA /JLA
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or,

whence,

~o- (so)

For similarity with respect to viscous forces as well as the weight 
force, equation 50 must be equivalent to equation 48. Solving the- 
two equations simultaneously,

or,

(51)

Equation 51 places a definite restriction on the physical properties 
of the fluids involved in the investigation. In fact, assuming that 
the length ratio and the experimental fluid are fixed within narrow 
limits by practical considerations, equation 51 imposes an impossible 
condition on the investigation. Thus, because of the small range in 
magnitude represented by the viscosities and densities of ordinary 
fluids, it is a conclusion of general significance that it is impossible 
to satisfy simultaneously more than one of the fluid-property criteria.

Fortunately, the apparent difficulty in attempting to satisfy all 
of the similitude criteria is not a hopeless barrier to experimental 
investigations. It is recalled that the Reynolds number, for example,. 
is proportional to the ratio of a typical inertial reaction to a typical 
viscous-shear force. The relative influence of F^ , therefore, diminishes 
as R increases. Experiments show that the effect of viscosity on 
CA for most sharp-edged orifices is negligible at values of R above a 
critical value of 100,000 * (not an unusually high value, as it cor­ 
responds, for example, to the discharge of water at 70° F at 6 feet 
per second through a 2-inch orifice). Similarly, the influence of the- 
weight force diminishes as the Froude number increases, becoming 
negligible at a comparatively low critical value of F.6

In the range wherein variations in the magnitude of a given fluid- 
property criterion produces negligible changes in the flow pattern,

* Bouse, Hunter, 1946, Elementary mechanics of fluids: New York, John Wiley & Sons, Inc. See fig. 
129, p. 256. 

« Ibid, fig. 52, p. 105.
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that criterion can be ignored as a condition for similitude. Thus, it 
is possible that neither viscous forces nor weight forces have an appre­ 
ciable effect on the coefficient of discharge within the full range of the 
pipeline flows. If this were true, the coefficient of discharge would be 
a function of boundary conditions alone, and the laboratory program 
to determine Cd for the metering orifice might actually consist of a 
single test. However, that test could not be made with assurance 
until a series of tests had established the lower critical values for both 
F and R. It is apparent, therefore, that the fluid-property parameters 
are useful not only as similitude criteria but also as means of defining 
the effective range of influence of the various fluid-property forces. 
The practical theory of model testing makes use of the fact that a 
single force can have a dominant, although not an exclusive, influence 
on the flow pattern.

THE ENERGY EQUATION

REVIEW OF THE BERNOULLI EQUATION

One of the fundamental concepts of fluid mechanics and the basis 
for many of the practical formulas of engineering hydraulics is the 
energy equation. To bring a detailed consideration of the energy 
concept into this discussion requires first a review of certain steps 
taken in the derivation of the equations for a simple fluid motion.

Plate 1 (c) shows the small element of fluid which, on page 13, was 
considered to be undergoing accelerated motion because of a com­ 
bination of pressure and weight forces. It is pertinent now to discuss 
certain characteristics of this element which make it possible to 
'associate with it some of the familiar concepts of particle mechanics. 
The elementary volume of fluid shown in plate 1 (c) was assvmed to be 
large enough to be represented by steady-motion characteristics hi a 
turbulent flow. On the other hand, it was assumed to be small 
enough that pressure forces could be accurately expressed in terms of 
a mean pressure intensity, pressure gradients could be assumed con­ 
stant over the length of the element, and velocity characteristics could 
be described in terms of the velocity at the mass center of the element. 
Thus, as the volume of the element (As &A) was,allowed to approach 
the differential quantity ds dA, the motion characteristics of the 
element were described as the steady-motion characteristics at a point. 
They might also be described as the characteristics of a fluid particle.

Because fluid flow is a continuous process, it is often convenient to 
consider the fluid particle as the instantaneous image of the moving 
fluid contained in a particular space in the flow pattern. Thus, 
equations of motion for a fluid particle can be related to the rate of
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flow through the space designated as its location. The volume of the 
element, for example, is

dY =ds dA=v dt dA=dQ dt (52)

in which v is the mean velocity in the differential length (ds) of the 
infinitesimal streamtube on which the element is located. It follows 
that the weight of a fluid particle (dW) can be expressed as

dW=ydY=ydQdt. (53)

An equation for the simple fluid motion represented by plate 1 (a-c) 
is equation 8,

 Y(As AA)=pa,(As AA). (8)

Collecting terms in the left member of this equation, substituting the 
equivalent expression for a» from equation I,6 and replacing As AA 
with the differential volume (ds dA),

dA. (54)

Reviewing the steps taken in obtaining equations 8 and 54 from 
Newton's fundamental equation, it appears that they both represent, 
on the left, the resultant of the external forces acting on the fluid 
element in the s direction, and, on the right, the total inertial reaction 
in the same direction.

Continuing with the particle analogy, if dW is substituted for 
7 ds dA in equation 54, and terms are rearranged,

Equation 55 states simply that the s gradient (rate of change with 
respect to s distance) of the quantity in parentheses is zero. If the 
gradient is zero, it follows that the differential of the quantity in 
parentheses is zero over a small distance (ds), or,

(S6)
The process of determining the differential of the quantity in paren­ 

theses consisted of multiplying the gradient by the distance (ds). It

* The subscript on v. in the definition of a, will henceforth be omitted. By definition, vn is equal to zero, 
and v, is therefore equal to tbe total velocity, c.



SELECTED TOPICS OF FLUID MECHANICS 39

is this operation which converts the vector force-inertia relationships 
in the preceding equations into a scalar work-energy relationship 
(eq 56). The conversion might have been more apparent had the 
operation been performed while the differential equation was in the 
form shown by equation 54. In that procedure, multiplying the 
left-hand term, a force, by ds converts it to a measure of the work 
performed by the external forces during the time interval (dt) repre­ 
sented by the average velocity (v) and the distance (ds). Concur­ 
rently, the right-hand term, [d(pv*l2)] ds dA~d[dW(i^l2g)], is a meas­ 
ure of the change in kinetic energy of the particle whose weight is dW. 

Equation 56, therefore, is an expression of the familiar work-energy 
principle of mechanics. A convenient interpretation of the concept 
of work-energy equivalence and an examination of the units involved 
in equation 56 lead to the practice of referring to the parenthetical 
quantity as the total energy per pound of the fluid flowing. Thus, 
equation 56 is interpreted to mean that the total energy of the particle 
of weight (dW) remains unchanged over the distance interval (ds). 
It follows that the quantity in parentheses is a constant during the 
interval, or,

(57)

Equation 57 is simply the integral (along the streamline) of equa­ 
tion 56. When it is divided by dW it becomes the familiar Bernoulli 
equation,

/» » n \

-H, (58)

in which H, the constant of integration, is the total energy per pound 
of fluid flowing.

In review, the Bernoulli equation is a description of a simple fluid 
motion along a streamline. In its customary form (eq 58), it states 
that the sum of three quantities, collectively defined as the total 
energy per pound of fluid (H), remains constant during the motion. 
Individually, the quantities which constitute H may be either a 
measure of work performed on the fluid or a change in its mechanical 
energy. Thus, the Bernoulli equation states that the total energy or 
"work potential" of 1 pound of fluid in motion along a streamline 
remains constant regardless of transformations due to changes in 
velocity, pressure, or elevation.

It has already been established (p. 16) that the Bernoulli equation 
could be assumed to apply to an entire flow pattern as long as fluid 
viscosity is ignored. However, the practical objective is a general 
equation of motion which includes terms to account for the influence 
of viscous and turbulent shear.
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GENERAL ENERGY EQUATION

As observed previously the influence of viscous and turbulent shear 
is manifested by its effect on the energy of flow and by its effect on 
the external aspects of the flow pattern. Unfortunately, general 
equations of motion which describe these effects are not yet available. 
Thus, a practicable general energy equation is based on a simple 
modification of the procedure leading to the Bernoulli equation.

The equation of motion for a single streamline (eq 56), modified to 
acknowledge the loss of energy, takes the form

(59)

in which dH is the differential loss in total energy head in the distance 
ds. From equation 53 the term dW in equation 59 is equivalent to 
y dQ dt, in which dQ is the differential flow through the elementary 
streamtube which contains and defines the particle represented by 
dW. Because dQ is constant in a steady flow, equation 59 is readily 
integrated with respect to distance along the streamline. Thus, be­ 
tween any two points designated 1 and 2 on a streamline,

(60)

In order to obtain an equation which describes the total flow 
between enclosing boundaries, it is necessary to integrate equation 
60 over the total cross-sectional areas which contain points 1 and 2. 
The difficulty of performing this operation is made apparent by 
recalling that dW y ds dA yv dt dA. It is evident that integration 
with respect to area must take into account the fact that the velocity, 
in general, is variable over the cross section. Therefore, unless the 
velocity is essentially constant or is analytically defined as a function 
of area, the-indicated integration is impossible. The assumption of 
constant velocity across a section between solid boundaries would be 
inconsistent with the known effects of viscosity. On the other hand, 
explicit analytical relationships between velocity and area are im­ 
possible to formulate except for a few classic examples of uniform 
motion.

Not only does variable velocity hinder integration over total cross 
sections, but, as a result of boundary nonuniformities, a nonhydro- 
static pressure variation may present a similar obstacle. However, 
if it is assumed that the integration can be performed over a section 
of parallel flow, which is usually possible, the pressure distribution 
can be assumed to be hydrostatic that is, the sum of the quantities 
pjy and z is constant and this obstacle is removed. Thus, if y dQ dt is
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:substituted for dW in equation 60, and if both sides of the equation 
.are divided by dt, integration with respect to the discharge (Q) in the 
total area gives

Incidentally, the foregoing division by dt converts the work-energy 
relationship into a power relationship. Thus, each of the expressions 
in brackets on the left-hand side of equation 61 is a measure of the 
total power of the flowing fluid. The expression on the right-hand 
tside, therefore, is a measure of the power "lost" between the designated
 cross sections.

If equation 61 is divided by the quantity <2y, it again becomes an
-energy equation, and the units of every term in the equation are 
ioot-pounds per pound (or feet) of the fluid flowing. Thus,

Defining the right-hand member of this equation as the , average 
«energy (head) loss (HL) between sections 1 and 2, and substituting
 the piezometric-head symbol (h) for (p/y)-\-z,

-* -*«  (62)
JEquation 62 is a general energy equation which is restricted only by 
the assumption of hydrostatic pressure distribution at the designated
 cross sections. The head-loss term (HL) ordinarily requires evalua­ 
tion on the basis of experiment.

In many practical applications the integration involved in the 
velocity-head terms in equation 62 can be approximated by a numeri­ 
cal summation. Thus,

Ifrom this, the average kinetic energy or velocity head in a total cross 
^section can be defined as the discharge-weighted mean of the velocity 
Jieads in its constituent subsections. Each subsection is taken to 
represent a zone of uniform velocity. This process is conveniently 
adapted to the practice of determining discharge by means of current- 
aneter or pitot-tube velocity traverses.
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The minor importance of the kinetic-energy terms- in certain appli­ 
cations of the general energy equation does not justify involved 
methods of accounting for the velocity variation in a cross section. 
For those applications it is customary to approximate the true average 
kinetic energy in terms of the average velocity in the section (V). 
The result is a modification of equation 62 which is another form of 
the one-dimensional equation of motion (eq 26),

The error inherent in the velocity-head terms of equation 64 is often 
acknowledged by means of a coefficient (a),

a, of course, is not an independent expression of the influence of 
velocity nonuniformity. It can be evaluated only in terms of the 
integral or summation definitions of the true average velocity head, 
equations 63 and 65. Thus,

«=^ J (66)

Equation 65, better than any other, demonstrates that the main 
objective of this discussion has been accomplished. The result is a 
general energy equation involving separate terms to account for both 
effects of shear   a as a measure of its influence on the flow pattern, 
and HL as a measure of its energy-dissipating effect.

THE MOMENTUM 'EQUATION

Numerous problems arise in applied fluid mechanics which are not 
readily or completely defined by the energy equation. The solution 
of many of these problems can be accomplished by means of an in­ 
dependent form of the equation of motion which does not require 
knowledge of the energy losses due to internal viscous shear. This 
is known as the momentum equation. As both the momentum equa­ 
tion and the energy equation are derived from Newton's fundamental 
equation of motion, it is necessary to examine the derivations care­ 
fully in order to establish their independence.

A common starting point for the derivation of both the energy 
equation and the momentum equation is the differential equation 
given on page 38,

{54)
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Equation 54 is a statement of Newton's second law as applied to the 
accelerated motion of a fluid element. The left-hand member, for 
the conditions represented by plate 1 (a-c), is the resultant accelerative 
force, and the right-hand side is the total inertial reaction in the 
direction of the total-velocity vector. Equation 54 is a vector equa­ 
tion because force and inertial reaction are vector quantities.

It has been demonstrated that the work-energy significance of the 
Bernoulli equation resulted from the fact that, in its derivation, both 
sides of equation 54 were multiplied by the distance (ds). This opera­ 
tion converted force to work and inertial reaction to change in kinetic 
energy. Both work and energy are scalar quantities. Thus, the 
Bernoulli equation resulted from the integration of a work-energy 
equation over a streamline distance without regard for the change hi 
direction of the s distance.

It is pertinent to recall that the effects of the shear forces were 
ignored hi the derivation of equation 54. Subsequently, however, in 
the derivation of the general energy equation, a term which would 
compensate for the work done by the internal viscous shear was 
included.

In the derivation of the momentum equation, it is convenient to 
replace the left-hand member of equation 54 with one symbol which 
represents the resultant of all external forces. Thus, in the form

<M, (67)

the quantity dFa is assumed to include the boundary shear force as 
well as the boundary pressure force and the weight force. It does not 
include internal shear forces, because these are mutually canceling. 
Apparently, therefore, the independence of the energy and momentum 
equations is related to the fact that the first involves the internal 
viscous shear forces and the second involves the external boundary 
shear force.7

From the calculus, d^/ds=2v(dv/ds'), where dvfds is the gradient 
of the total velocity in the s direction. When this is substituted in 
equation 67,

p rWI j j A /dv\ j JA £ -j- I <k dA=pv [ j- ) ds dA, 2[_dsj \ds/
or,

dF,=pv dv dA=p dQ dv, (68)

in which dQ is the rate of flow in the infinitesimal streamtube which 
contains the fluid element and dv is the change in velocity over the

1 The boundary shear force Is not considered in the derivation of the work-energy equations because the 
relative velocity of the fluid at the boundary is zero, and therefore the work done by the shear force is also
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differential distance (ds) which is the length of the element. Equation 
68 is still a force-inertia equation. Therefore, it is still a vector 
equation.

Because motion along a streamline can involve a change in the 
direction as well as the magnitude of the force and velocity terms in 
equation 68, an adequate algebraic description of accelerated motion 
involves similar equations in each of the fixed coordinate directions. 
Thus,

dFx =p dQ dvx, (69a)

dFv=p dQ dvv, (69b) 

and dFs=pdQdvs. (69c)

The quantity p dQ dv in equations 68 and 69 has been described 
as the inertia! reaction of an elementary fluid particle. The product 
p dQ is equivalent to dM/dt, where dM is the mass of the particle. If 
this substitution is made in the x form of equation 69, for example,

P dQdvx=jt (Mvx\ (70)

the right-hand member acquires a new significance. In this form it 
is commonly described as the rate of change of x momentum or the 
change of z-momentum flux in the flow distance ds. This is the origin 
of the name "momentum equation."

For practical applications the momentum equation must be ex­ 
tended to a finite reach and a finite cross section. The operations 
required for this extension involve double integration of the differ­ 
ential equation of motion first with respect to distance along the 
streamline and then with respect to the area of the cross section. 
Similar operations were involved in the derivation of the general energy 
equation. This tune, however, a vector relationship is involved, and 
the integration procedures must be performed for each of the signifi­ 
cant coordinate directions. In the following steps the x direction has 
been selected as typical.

Because dQ, in equation 69 is constant, integration with respect to 
distance is readily accomplished. Thus, if the 3-distance integral of 
dFx is represented by &FX,

A^=p dQ vf2-p dQ vXl . (71)

Because all internal forces are canceling, &FX is simply the resultant 
of the external forces on the finite reach of streamtube between 
sections 1 and 2.
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The next step is to integrate equation 71 over the total areas at 
sections 1 and 2. Substituting dQ=v dA,

r CA* CAi|A*>=pJ vXzv2 dA2-p\ VsfidAi, (72)

it is apparent that integration depends again (see page 40) on an 
integrable relationship between velocity and area. Thus, a general 
solution of equation 82 is prevented by the fact that explicit analytical 
relationships between v and A are seldom attainable. The left-hand 
member, however, can be simplified to 27^, a symbol which represents 
the resultant of the external forces acting in the x direction on the 
total volume of fluid between sections 1 and 2. Thus, general momen­ 
tum equations in the fixed coordinate directions are

r CQ 
Vx2 dQ p I vxi dQj (73a)

S*V= P JX <Z£-P JX dQ, (73b) 

and

2F,=p {Qv,2 dQ-p f X dQ- (73c)

The integrations implied by equation 73 can be approximated by 
the numerical summation

(74)

in which the quantity pvx A<2 represents the momentum flux through 
a constituent subsection assumed to be located in a zone of essentially 
uniform velocity.

Further paralleling the various forms of the general energy equa­ 
tion, a typical one-dimensional form of the momentum equation is

ZF^QpfaV^-QphV^, (75)

in which V is the average velocity and 0 is a coefficient which accounts 
for the nonuniformity of velocities in each cross section. From 
equations 73, 74, and 75,

The energy equation and the momentum equation describe the 
same state of motion, and they are derived from the same differential
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equation. They are independently useful, however, because the 
energy equation is independent of the external boundary shear, and 
the momentum equation is independent of the energy losses due to 
internal viscous shear. Thus, equations 65 and 75 can be shown to 
be equivalent only when the relationship between the boundary shear 
force and the internal, energy-dissipating viscous shear forces is 
explicit. This is true only when the flow is truly uniform (see below). 

Many complex phenomena (such as the hydraulic jump, abrupt 
enlargements, and short transitions, all involving rapidly accelerated 
motion) are readily and accurately described by means of the momen­ 
tum equation simply because the boundaries involved are short and 
the boundary shear forces can be ignored. The energy equation can 
be applied to these phenomena, too, but it includes a term of primary 
importance which compensates for the work done by the internal 
viscous shear forces. Ordinarily, the energy-loss term is evaluated 
by experimental means. However, because of their peculiar inde­ 
pendence in these phenomena, the energy and the momentum equa­ 
tions can be solved simultaneously to yield analytical solutions for 
tne energy loss.

UNIFORM AND GRADUALLT VARIED FLOW 

CHARACTERISTICS OF UNIFORM FLOW

In most of the foregoing discussion, generality was maintained by 
assuming that the flow under consideration was accelerated. The 
specific problem of uniform flow, illustrated in plate 2 (m, n), will be 
examined next,

By definition, the total convective acceleration at all points in a 
uniform flow is zero; in other words, a,=0 and aB=0. It follows 
that the velocity is constant along each streamline. Because velocity 
is a vector quantity, this implies that the streamlines are straight 
lines and, therefore, that the boundaries are prismatic.

Uniformity does not require that the velocities in a transverse 
section be equal. However, it does require that the transverse 
velocity distribution, which is a function of boundary drag and 
internal shear forces, be identical at all successive sections. As a 
corollary to the last requirement, uniformity implies that the rate of 
loss of energy is also constant. It follows that the average velocity 
and the velocity-head coefficient (a) are the same at successive sections. 
Thus, from the one-dimensional energy equation (65),

Jn-h^-M^Ht, (77)

which states that, as a distinctive characteristic of uniform flow, the 
loss of piezometric head (or the negative change of piezometric head) 
is equal to the loss of total energy head.
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Because the velocity pattern is uniform, the momentum coefficient 
(j8) and the momentum flux are also constant. Thus, from equation 
75,

S -0. (78)

Equation 78 states that, in a uniform fluid motion, the resultant of 
the external forces is zero.

Most of the uniform-flow characteristics described above are illus­ 
trated in plate 2 (m, n) for both open and enclosed conduits. It is 
apparent that the most distinctive characteristic of uniform flow in 
open channels is the requirement that the axis of the channel be paral­ 
lel to the energy and piezometric grade lines. This is because the 
piezometric line and the upper, free surface of the flow are coincident.

THE CHEZY EQUATION

The Chezy equation is the basis for many empirical equations for 
uniform flow in both open and enclosed conduits. One of its deriva­ 
tives, the Manning equation, is widely accepted in the U. S. Geological 
Survey as a practical formula for open channels, ^.s an equation of 
motion, the Chezy equation must be either a form of the energy 
equation (77) or the momentum equation (78). In fact, as will be 
shown, it can be considered to be both.

Most frequently, perhaps, the Chezy equation is derived from the 
one-dimensional momentum equation. Thus, from equation 78, the 
resultant of the external forces acting on a free body of fluid in uniform 
motion is zero, or,

0. (79)

In this equation s denotes the direction of the total velocity vector. 
The effective forces in the s direction are Fv, the force due to boundary 
pressure; Fg, the force due to weight; and Fr, the boundary shear force. 
From page 14 the sum of the pressure and weight forces on an 
element of volume (As &A) can be expressed as a function of the piezo­ 
metric gradient. Thus,

bs AA,
UO

or, over the finite volume of length L and area A,

(80)

From equations 79 and 80, considering the fact that the boundary 
shear force is negative in the s direction,

(81)
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Dimensional analysis, substantiated by experiment, indicates that 
FT can be expressed by the relationship

Fr^CrpPLV2, (82)

in which <7r is a dimensionless drag-force coefficient, a form of the 
Euler number and a function of the Reynolds number and boundary 
geometry, including roughness. P is the perimeter of the wetted cross 
section.

From equations 81 and 82,

-Ah=Cr - LV2=Cr > (83)

in which R=A/P is the hydraulic radius of the wetted cross section. 
If equation 83 is solved for velocity,

(84>
The quantity   M/i in this equation is the L gradient of the piezo- 
metric head. This quantity is unfortunately described as the hy­ 
draulic "slope" ($). For uniform flow in open channels, of course, 
S is also equivalent to the free-surface elevation gradient and the total- 
energy head gradient. Thus, if S is substituted for the piezometric 
head gradient and <7cft is substituted for the coefficient radical in the- 
right-hand member of equation 84,

(85>

This is the Chezy equation. 
From equations 84 and 85,

It is apparent that <7cft , unlike Cr, is not a dimensionless coefficient. It 
is, nevertheless, a drag-force coefficient and a function of the Reynolds- 
number and boundary geometry.

ALTERNATE DERIVATION OF THE CHEZY EQUATION

An alternate derivation of the Chezy equation is based on the one- 
dimensional energy equation. In equation 77 the head-loss term 
(Hi) represents the amount of work done by the external forces in. 
overcoming the viscous resistance to fluid deformation. Thus, 
whether the flow be laminar or turbulent, uniform or nonuniform, the- 
energy equation must contain a term which represents the flow energy
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dissipated by the internal viscous shear forces. It is customary to 
express this loss of total energy as a function of the mean kinetic 
energy of flow, or, in general,

(87)

where CL is a dimensionless energy-loss coefficient which, like Cr, is a 
form of the Euler number and a function of the Reynolds number and 
boundary geometry. Unlike CT , of course, CL is not a drag-force 
coefficient.

From equation 77, as one of the most distinctive characteristics of 
uniform flow,  Ah=HL . It follows that, for this condition, the inde­ 
pendent momentum and energy relationships expressed by equations 
83 and 87 are equivalent, or,

from which,

From equations 86 and 89, therefore,

from which it is concluded that the Chezy coefficient is proportional 
to either a drag-force coefficient or an energy-loss coefficient. Thus, 
the Chezy equation can be regarded as a form of either the momentum 
equation or the energy equation.

It is pertinept t& observe that 0 is not included in tfae.bonmdory- 
drag equation (82) and a is not included in the energy-loss equation 
(87). Thus, the influence of velocity distribution is apparently 
ignored in both of the alternate derivations of the Chezy equation. 
This procedure is justified by the observation that ft and a are func­ 
tions of the Reynolds number and boundary geometry   variables 
which also govern the value of CT in equation 82 and CL in equation 87. 
Thus, the Chezy coefficient takes full account of the influence of 
velocity distribution because it depends on the variables which govern 
the normal velocity pattern in uniform flow.

If a velocity nonuniformity is caused by an added variable, such as 
a local boundary irregularity, a and ft will depend on this local condi­ 
tion as well as the normal resistance characteristics of the channel. 
For this condition, of -course, the flow would not be uniform, the
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derivations leading to the Chezy equation would be invalid, and the 
question of including a and /8 in the Chezy equation is not pertinent.

GRADUALLY VARIED FLOW IN OPEN CHANNELS

Truly uniform flow seldom occurs in open channels. Thus, most 
practical problems involving both artificial and natural channels are 
concerned with either rapidly varied or gradually varied nonuniform 
motion. In either kind of flow, the nonuniformity may represent 
either an acceleration or a deceleration. Accelerated fluid motion is 
characteristically stable, but decelerated motion, especially if it is 
rapidly varied, is usually accompanied by separation, extreme turbu­ 
lence, and, therefore, a large energy loss.

The distinction between rapidly varied and gradually varied flow 
is conveniently associated with the relative magnitudes of the quanti­ 
ties HL and FT in the energy and momentum equations, respectively. 
A rapidly varied flow pattern, by definition, occurs in a relatively 
short length of channel. Thus, the boundary shear force (FT) is 
usually negligible, and the momentum equation, free of this trouble­ 
some term, provides an adequate solution for many rapidly varied 
flow problems. If the flow is accelerating as well as rapidly varied, 
the energy loss might also be negligible. For" this condition the energy 
equation provides useful solutions. On the other hand, if the flow is 
rapidly varied and decelerating, the energy loss is usually of major 
importance, even when the boundary shear is negligible.

Gradually varied flow, by definition, occupies a comparatively long 
length of channel. Thus, both the boundary shear force and the 
energy loss are significantly related to the flow pattern. The two are 
explicitly related to each other only in the limiting condition of uniform 
flow, as described on page 49.

Between the extremes of rapidly varied flow arid uniform flow, 
gradually varied flow in open channels is a complex function of many 
variables. Neither the boundary-shear mechanism nor the,energy- 
loss mechanism for this kind of flow is fully understood. In fact> 
neither F* nor HL can be satisfactorily evaluated.

In view of the foregoing arguments, it would appear to be ridiculous 
to propose that the Chezy equation, or any other uniform-flow equa^- 
tion, could be used to describe gradually varied flow in open channels. 
Nevertheless, lacking: a .better solution, it is common practice to 
assume that a gradually varied nonuniform flow reach can be repre­ 
sented as the sum of constituent subreaches within which the flow is 
essentially uniform'. It is apparent that such reasoning leads to the 
conclusion that the energy-loss and boundary-shear mechanisms .are 
the same in nonuniform flow as in uniform flow. This must surely be 
incorrect and increasingly so «,s the nonuniformity increases.
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In general, the velocity distribution as well as the average velocity 
is different at successive cross sections in nonuniform flow. Thus, if 
the one-dimensional energy equation is applied to a gradually varied 
flow reach, the velocity-head coefficients at the end sections (04 and 
o2) are different. In addition, if an equation like the Chezy equation 
is used to evaluate the total head loss (HL) in a nonuniform reach it 
must be adjusted to account for the effect of channel shape and for the 
effect of using average values of the conveyance characteristics at the 
ends of the reach. In other words, if uniform-flow equations are to 
be used satisfactorily to describe a reach of gradually varied flow they 
must be adjusted to take into consideration the effect of various kinds 
and degrees of nonuniformity. These adjustments are ordinarily 
included in estimates of the Chezy coefficient, and the estimates are 
J>ased on analyses of field and laboratory measurements made in a 
variety of open channels; Needless to say, the procedure is not 
dependable.

Application of the one-dimensional momentum equation (75) to a 
gradually varied flow is also complicated by changes in the velocity 
distribution at successive sections. Thus, the momentum coefficients 
(j8i and j82) are different, and the value of the coefficient CT in equation 
82 must be adjusted to account for the variations in the velocity 
pattern within the reach. Evaluation of boundary pressure forces is 
also complicated by the fact that the boundary is not prismatic. There 
is clearly no advantage in applying the momentum equation instead 
of the energy equation to a gradually varied flow.
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