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Abstract

In recent years, analytic methods have become prominent in additive number theory. In
particular, finite Fourier analysis is well-suited to solve some problems that are too difficult
for purely combinatorial techniques. Among these is Szemerédi’s Theorem, a statement
regarding the density of integral sets and the existence of arithmetic progressions in those
sets.

In this thesis, we give a general introduction to classical Fourier analysis over R and
discrete Fourier analysis over the group of integers modulo N. We then give a complete
explanation of Timothy Gowers’s 1998 proof of Szemerédi’s Theorem for arithmetic pro-
gressions of length four. This proof relies entirely on finite Fourier analytic methods. As a
result, our explanation of it provides readers with a thorough demonstration of how these
techniques are useful in additive number theory. We also give a short description of other
problems in this field for which analytic methods are helpful.
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Chapter 1

An Introduction to Fourier Analysis

As its name suggests, classical number theory is rooted in the study of integers. Ques-
tions regarding divisibility, prime factorizations, congruence equations, and Diophantine
equations are all questions about integers (usually positive integers). The traditional meth-
ods used to study such topics are finite in nature, which makes sense since the problems
themselves are finite in nature. For example, the Fundamental Theorem of Arithmetic –
arguably the most important fact about the integers – is usually proved by simple discrete
arguments: the existence of prime factorizations can be verified using strong induction,
and uniqueness can be shown using elementary properties of divisibility.

Due to the fundamentally finite nature of number theory, it is interesting when meth-
ods that are not naturally number theoretic arise and are useful. In modern number theory,
methods from combinatorics, graph theory, probability, ergodic theory, convex geometry,
incidence geometry, and algebraic geometry are surprisingly helpful [30]. Some of the
most important number theoretic problems, however, have been resolved (or are in the
process of being resolved) with analytic methods.

One of the earliest significant number theoretic problems that was solved using analytic
arguments was Dirichlet’s Theorem. In 1837, Dirichlet proved that for any positive integers
a and b with gcd(a, b) = 1 (that is, a and b are coprime), the set {a + bk : k ∈N} contains
infinitely many primes. In fact, Dirichlet proved a stronger statement, namely that the sum
∑p∈a+bN

1
p diverges, where p runs over primes. Other well-known results and questions

in number theory that have a particularly analytic flavor are the Prime Number Theorem
(regarding the density of primes in the integers), finding methods for solving Diophantine
equations, Goldbach’s Conjecture (stating that any even integer larger than 2 is the sum of
two primes), and of course, the Riemann Hypothesis and it’s generalization to L-functions.

Interestingly, the analysis used in the proof of Dirichlet’s Theorem is a type of discrete
Fourier analysis. It has been only in the past 60 years, however, that Fourier analytic
methods have become generally popular in number theory. One of the primary reasons
for the increased popularity of these methods is their usefulness in solving problems in
additive number theory. In particular, their ability to help prove Szemerédi’s Theorem,
and their subsequent extension to prove the Green-Tao Theorem (that the primes contain
arbitrarily long arithmetic progressions) have showed the mathematical community how
much these methods can say about integral sets.

In this work, we attempt to give a general introduction to discrete Fourier analysis
and a description of its uses in additive number theory. This description will take the
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form of a detailed explanation of Gowers’s Fourier analytic proof of Szemerédi’s Theorem
(or more accurately, a special case of Szemerédi’s Theorem for which the solution uses
nearly all the techniques found in the proof of the full result). Although Gowers’s proof of
this theorem was one of the most important results in the past decade (partially because
Green and Tao were able to extend his techniques to prove their theorem), it is surprisingly
self-contained. Thus, we believe that a brief introduction to discrete Fourier analysis will
suffice for readers to understand the entirety of Gowers’s proof.

1.1 Classical Fourier Analysis

Before introducing discrete Fourier analysis, it will be helpful to discuss classical Fourier
analysis. Readers may be familiar with this field, but a short reminder is useful. It will
also enable us to present some of the results in discrete Fourier analysis as analogues of
results in classical Fourier analysis. Because this section is meant to be a review of Fourier
analysis, we will confine ourselves to functions defined on R, rather than discussing the
more general theory for functions defined on Rn.

One of the first necessities in Fourier analysis is the identification of the unit circle T

in the complex plane with the interval (−π, π] in R. As we shall see, the fundamental
concepts in Fourier analysis are defined by integrating a function f : T → C over its
entire domain T. In order to keep this review simple, we wish to use Riemann integration
rather than Lebesgue integration. As a result, we identify T with (−π, π] by eiθ ↔ θ. We
then set f (−π) = f (π) so that f is defined on [−π, π] and we can integrate f over this
closed interval. Hence, from this point forward, we use the closed interval [−π, π] and
the unit circle T interchangeably, remembering that −π and π are essentially the same
point (functions that we consider will always have f (−π) = f (π)). We also use the term
”integrable” to refer to Riemann integrable functions.

Observe that the set of functions defined on T can be identified with the set of functions
on R that have period 2π. Indeed, any function on T can be periodically extended to all
of R, and any function on R with period 2π can be restricted to T. Hence, it is natural
to consider functions of the form en(x) = einx. We can easily check that the collection
{en : n ∈ Z} of such functions is an orthonormal set with regard to the inner product

〈 f , g〉 =
1

2π

∫ π

−π
f (x)g(x)dx.

(Recall that this inner product is defined for the complex vector space of integrable func-
tions on T.) In other words,

〈en, em〉 =
1

2π

∫ π

−π
ei(n−m)xdx =

{
0 if n 6= m
1 if n = m.

Hence, we would like to say that the set {en : n ∈ Z} is an orthonormal basis for

span(en : n ∈ Z) =

{
∑

n∈Z

anen : an ∈ C

}
.

The problem here, however, is with convergence of these infinite sums. Certainly, we must
restrict the set {∑n∈Z anen : an ∈ C} to sums that converge in some sense; perhaps uni-
form convergence, perhaps pointwise convergence, perhaps convergence in some norm.
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Suppose we decide on uniform convergence, and suppose additionally that the series
∑n∈Z aneinx converges (uniformly) to an integrable function f . Then, for each n ∈ Z, we
have

an = ∑
m∈Z

am

(
1

2π

∫ π

−π
ei(m−n)xdx

)
=

1
2π

∫ π

−π

(
∑

m∈Z

ameimx

)
e−inx

=
1

2π

∫ π

−π
f (x)e−inx.

Thus, although we have not settled any questions regarding convergence, it seems natural
to define our coefficients an in this manner. This leads us to the following definitions, and
with it, the foundation of classical Fourier analysis.

Definition 1. Let f : T→ C be integrable on [−π, π]. Then for n ∈ Z, we say that

f̂ (n) =
1

2π

∫ π

−π
f (x)e−inxdx

is the n-th Fourier coefficient of f .

Note that in particular, f̂ (0) is simply the average value of f over T.

Definition 2. If f : T→ C is integrable on [−π, π], then we say that the function

S(ξ) = ∑
n∈Z

f̂ (n)einξ

is the Fourier series of f .

Note that S is ”defined” for any x ∈ R, and it takes values in C. But as we discussed
above, S may not be well-defined for some x because the sum may not converge. Questions
regarding convergence of these series formed the foundation of the early study of Fourier
analysis. Tied closely with these questions of convergence are questions concerning the
relationship between S and f . In order to discuss convergence, though, it is convenient to
use the following definition.

Definition 3. If f : T→ C is integrable on [−π, π], then we call

SN(ξ) =
N

∑
n=−N

f̂ (n)einξ

the N-th partial sum of the Fourier series of f .

As we shall now see, the convergence of the Fourier series of f can depend on how
”nice” f is. We shall also see, however, that there are examples of fairly nice functions for
which the corresponding Fourier series do not come close to converging, even pointwise,
on some (perhaps infinite) subset of T.

The following theorems are results regarding the convergence of the Fourier series un-
der different assumptions about f . We arrange the theorems from weakest to strongest,
and since this section serves only as a review, we omit proofs. Justification for these results
can be found in most texts on Fourier analysis, such as [14] and [23].
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Theorem 1.1. Let f : T → C be continuous, and suppose that its Fourier series converges abso-
lutely; that is, ∑n∈Z | f̂ (n)| < ∞. Then the partial sums SN converge absolutely and uniformly to
f .

Certainly, the conclusions of this theorem are strong, but since the hypotheses are also
strong (namely, absolute convergence of the Fourier series), the theorem, although impor-
tant, is fairly weak. It does give the following corollary, though.

Corollary 1.1. Let f : T → C be twice continuously differentiable. Then there is a constant C
(not depending on n) for which | f̂ (n)| ≤ C(1/|n|2) whenever n 6= 0. Thus, by Theorem 1.1, the
partial sums SN converge absolutely and uniformly to f .

The next theorem pertains to the norm convergence of partial sums. Recall from above
that we are working in the space of integrable functions on T, with inner product 〈 f , g〉 =

1
2π

∫ π
−π f (x)g(x)dx. The associated norm is the L2 norm: || f ||22 = 1

2π

∫ π
−π | f (x)|2dx. Thus,

the distance between two functions f and g is given by

|| f − g||2 =

√
1

2π

∫ π

−π
| f (x)− g(x)|2dx.

Theorem 1.2. If f : T→ C is integrable, then

lim
N→∞

1
2π

∫ π

−π
| f (x)− SN(x)|2dx = 0.

In other words, SN converges to f in the L2-norm.

The assumptions of this theorem are, of course, just about as weak as possible. How-
ever, convergence in the L2-norm is certainly not a strong notion of convergence, since
it does not imply pointwise convergence anywhere (for example, there are functions that
converge to zero in the L2-norm but converge nowhere pointwise). The following theorem
is a bit stronger.

Theorem 1.3. If f : T → C is integrable, then for any x at which f is differentiable, the partial
sums SN(x) converge to f (x) as N → ∞.

This theorem, although stronger than its predecessors, still is not a satisfactory answer
to our questions of convergence. In 1964, however, Carleson proved the strongest possible
result regarding pointwise convergence of Fourier series.

Theorem 1.4 (Carleson). If f : T→ C is integrable, then the set of points x for which SN(x) does
not converge to f (x) has Lebesgue measure zero. In other words, the partial sums of the Fourier
series of f converge pointwise almost-everywhere on T.

We say that this theorem is the strongest possible pointwise convergence result because
of the following theorem due to Kahane and Katznelson. In essence, their theorem says
that for any set of measure zero in T, there is a continuous function whose Fourier series
behaves terribly on that set.
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Theorem 1.5 (Kahane-Katznelson). Let E ⊂ T have Lebesgue measure zero. Then there exists a
function f : T→ C such that f is continuous on T but

lim sup
N→∞

|SN(x)| = ∞

for all x ∈ E.

For example, we can take E = Q ∩ [−π, π]. Despite E being dense in T, there is a
continuous function whose Fourier series does not even come close to converging at any
point of E. Together, the results of Carleson and Kahane-Katznelson completely solve
the pointwise convergence question about Fourier series. They also vividly show us why
questions of convergence on all of T are so difficult.

There are several other results regarding the convergence of Fourier series, and readers
who wish to learn more may consult any text in Fourier analysis. For our purposes, these
theorems give us a flavor of classical Fourier analysis and will help us to appreciate discrete
Fourier analysis, where we will not have to worry about any questions of convergence. We
now discuss some non-convergence results in classical Fourier analysis. Later, we will see
that these results have direct analogues in discrete Fourier analysis.

One of the most important tools in classical Fourier analysis is a type of smoothing, or
averaging, operation between two functions, called the convolution.

Definition 4. If f , g : T→ C are integrable, then we define their convolution as a function
f ∗ g : T→ C where

( f ∗ g)(x) =
1

2π

∫ π

−π
f (y)g(x− y)dy

for x ∈ [−π, π].

In general, it is helpful to think of the convolution as a weighted average. Observe that
if we let g be identically one on T, then ( f ∗ g)(x) = 1

2π

∫ π
−π f (y)dy, which is simply the

average value of f over T. Thus, even when g is not a constant function, we can consider
the convolution to be an average of f , weighted by g. Additionally, we can think of the
convolution as a smoothing operation because f ∗ g is continuous on T for any integrable
f and g.

The convolution also has several desirable algebraic properties. First, it is linear in
that f ∗ (g + h) = ( f ∗ g) + ( f ∗ h) and (c f ) ∗ g = c( f ∗ g) = f ∗ (cg) for all integrable
functions f , g, h on T and any c ∈ C. This is a simple consequence of the linearity of the
integral. Second, the convolution is associative and commutative: ( f ∗ g) ∗ h = f ∗ (g ∗ h)
and f ∗ g = g ∗ f for all integrable functions f , g, h on T. This tells us that not only can
we think of f ∗ g as an average of f weighted by g but also as an average of g weighted
by f . Third, and perhaps most important, the convolution gives the Fourier coefficients a
certain multiplicative property:

f̂ ∗ g(n) = f̂ (n)ĝ(n)

for all integrable functions f , g on T and any n ∈N.
We will not give a justification of these properties of the convolution here. However,

we shall see that the convolution defined in discrete Fourier analysis has many of the same
properties, and we will provide proofs there.
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We now present an important identity in classical Fourier analysis that will have a
direct analogue in the finite version. Diverging from our desired brevity in this section, we
give a proof of this result.

Theorem 1.6 (Parseval’s Formula). Let f : T→ C be integrable. Then

∑
n∈Z

| f̂ (n)|2 =
1

2π

∫ π

−π
| f (x)|2dx.

Proof. First, recall from before that the collection {en : n ∈ Z}, where en(x) = einx, is an
orthonormal set with respect to the inner product

〈 f , g〉 =
1

2π

∫ π

−π
f (x)g(x)dx.

Also, observe that

f̂ (n) =
1

2π

∫ π

−π
f (x)e−inxdx = 〈 f , en〉

for each n ∈ Z. Therefore, given N ∈ N, we have SN = ∑|n|≤N 〈 f , en〉en. We claim that
f − SN is orthogonal to each en for which |n| ≤ N. Indeed, for such an n, we have

〈 f − SN , en〉 = 〈 f , en〉 − 〈SN , en〉 = 〈 f , en〉 −
〈

∑
|m|≤N

〈 f , em〉em, en

〉
= 〈 f , en〉 − ∑

|m|≤N
〈 f , em〉〈em, en〉 = 〈 f , en〉 − 〈 f , en〉 = 0,

where we have used the orthonormality of the set {en}. Thus, the claim is true. By linearity,
this implies that f − SN is orthogonal to any combination ∑|n|≤N bnen where bn ∈ C. In
particular, we can let bn = f̂ (n) so that f − SN is orthogonal to SN . Now, write f =
( f − SN) + SN , and observe that the Pythagorean theorem implies

|| f ||22 = || f − SN ||22 + ||SN ||22.

Also observe that

||SN ||22 = 〈SN , SN〉 =
〈

∑
|n|≤N

f̂ (n)en, ∑
|m|≤N

f̂ (m)em

〉

= ∑
|n|≤N

∑
|m|≤N

〈
f̂ (n)en, f̂ (m)em

〉
= ∑
|n|≤N

∑
|m|≤N

f̂ (n) f̂ (m)〈en, em〉

= ∑
|n|≤N

f̂ (n) f̂ (n) = ∑
|n|≤N

| f̂ (n)|2,

where we have again used the orthonormality of {en}. Therefore, we have

|| f ||22 = || f − SN ||22 + ∑
|n|≤N

| f̂ (n)|2
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for each N ∈ N. Now, let N approach ∞. By Theorem 1.2, we see that || f − SN ||22 ap-
proaches 0. Hence, we have

|| f ||22 = lim
N→∞

∑
|n|≤N

| f̂ (n)|2 = ∑
n∈Z

| f̂ (n)|2,

which is precisely

∑
n∈Z

| f̂ (n)|2 =
1

2π

∫ π

−π
| f (x)|2dx.

There is certainly more to classical Fourier analysis than we have covered here. In fact,
there is a nice extension of the periodic theory that we have discussed to non-harmonic
functions defined on all of R. A result of this extension is a beautiful relationship between
functions and their Fourier transforms, called the Fourier inversion formula. These and
similar topics, though interesting, will not give us much additional insight into the foun-
dations of discrete Fourier analysis. Thus, we now turn exclusively to the finite version.

1.2 Discrete Fourier Analysis

We saw in the previous section that given an integrable function f on the unit circle T

in the complex plane, we can define Fourier coefficients for this function that allow us to
write f as an infinite linear combination of functions from an orthonormal set, using the
Fourier coefficients as the coefficients in the linear combination. We also saw that f and
this linear combination may not agree at some points, but they will agree on almost all of
T. If we want to develop a discrete version of this theory, our first task is to determine on
what domain we should define our functions f . In particular, is there a discrete version of
T?

There is, of course, such a set: the group of N-th roots of unity. We denote this group
by Z(N). Recall that a complex number z is an N-th root of unity if and only if zN = 1.
It is well known that Z(N) =

{
1, e2πi/N , . . . , e2(N−1)πi/N

}
where the group operation is

complex multiplication. Since complex multiplication is commutative, Z(N) is an abelian
group for all N.

For our purposes, however, it will be easier to use Z(N) in a different form, namely
in additive form. Let ZN denote the quotient group Z/ZN (that is, the group of con-
gruence classes modulo N). There is a group isomorphism between Z(N) and ZN given
by e2πki/N ↔ k + ZN. Thus, Z(N) is isomorphic to ZN , where the group operation in
ZN is addition of congruence classes. In fact, we can think of ZN as the set of integers
{0, 1, . . . , N − 1} under addition modulo N. We will always consider ZN in this form.

We therefore wish to study functions defined on ZN that take values in C. It is impor-
tant first to observe that such functions form a vector space over C with inner product

〈 f , g〉 =
N−1

∑
k=0

f (k)g(k).
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This inner product induces the l2 norm

|| f ||22 =
N−1

∑
k=0
| f (k)|2.

It is clear that this vector space has dimension N. Indeed, the collection of characteristic
functions χn : ZN → C defined by

χn(k) =

{
0 if k 6= n
1 if k = n

for n ∈ ZN spans the vector space since

f =
N−1

∑
n=0

f (n)χn

for each f : ZN → C. It is also easy to see that this collection is linearly independent.
A different (and more important) collection of functions in this vector space are the

exponential functions. For n ∈ ZN , define en : ZN → C by en(k) = e2πkni/N . We claim that
this collection is an orthogonal set. Indeed, for any n and m in ZN , we have

〈en, em〉 =
N−1

∑
k=0

e2πkni/Ne−2πkmi/N =
N−1

∑
k=0

e2π(n−m)ki/N =

{
0 if n = m
N if n 6= m

where the last equality follows from the identity 1 + x + x2 + . . . + xN−1 = (1− xN)/(1−
x) for x 6= 1 and letting x = e2π(n−m)i/N when n 6= m. When n = m, the equality is
trivial. Thus, the collection of functions en for n ∈ N is orthogonal; and more is true,
namely that each en has norm squared equal to N. The orthogonality of this collection
implies immediately that the elements are linearly independent. But this, in turn, means
that they form a basis for the vector space since there are N of them. Thus, given an
arbitrary function f : ZN → C, we can express it as a linear combination

f =
N−1

∑
n=0

anen.

Notice that we do not have to worry about convergence as we did in the classical analogue.
But we can ask the same question as we did before: what are the coefficients an?

Suppose f = ∑N−1
n=0 anen. Then for each n ∈ ZN , we have the following:

an =
N−1

∑
m=0

am

(
1
N
〈em, en〉

)
=

N−1

∑
m=0

am

(
1
N

N−1

∑
k=0

em(k)en(k)

)

=
1
N

N−1

∑
m=0

N−1

∑
k=0

amem(k)en(k) =
1
N

N−1

∑
k=0

(
N−1

∑
m=0

amem(k)

)
en(k)

=
1
N

N−1

∑
k=0

f (k)e−2πkni/N .

We therefore introduce the following definition.
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Definition 5. Let f : ZN → C. Then for n ∈ ZN , we say that

f̂ (n) =
1
N

N−1

∑
k=0

f (k)e−2πkni/N

is the n-th Fourier coefficient of f .

Using this definition, we have already proven the following theorem, which is the finite
analogue of the Fourier inversion from the classical theory.

Theorem 1.7 (Inversion formula). Let f : ZN → C. Then

f (k) =
N−1

∑
n=0

f̂ (n)en(k)

for all k ∈ ZN .

As in the classical theory, we can define the convolution of two complex valued func-
tions on ZN .

Definition 6. If f , g : ZN → C, then we define their convolution f ? g : ZN → C as

( f ? g)(n) =
1
N

N−1

∑
k=0

f (k)g(n− k)

for n ∈ ZN .

We claim that like its classical analogue, the discrete convolution has several nice alge-
braic and multiplicative properties. This is the content of the following proposition.

Proposition 1.1. For f , g, h : ZN → C, the following are true:

i. f ? (g + h) = ( f ? g) + ( f ? h)

ii. (c f ) ? g = c( f ? g) if c ∈ C

iii. ( f ? g) ? h = f ? (g ? h)

iv. f ? g = g ? f

v. f̂ ? g = f̂ · ĝ

Proof. Parts (i) and (ii) follow directly from the definition of convolution. The proofs of (iii)
and (iv) primarily use interchanging sums and re-indexing.
(iii): For each n ∈ ZN , we have

[( f ? g) ? h] (n) =
1
N

N−1

∑
k=0

( f ? g)(k)h(n− k) =
1
N

N−1

∑
k=0

(
1
N

N−1

∑
s=0

f (s)g(k− s)

)
h(n− k)

=
1

N2

N−1

∑
s=0

f (s)
N−1

∑
k=0

g(k− s)h(n− k).
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Now, for s fixed, let y = k− s. Note that as k runs through ZN , y also runs through ZN .
And of course, with y = k− s, we have n− k = n− s− y. Thus,

N−1

∑
k=0

g(k− s)h(n− k) =
N−1

∑
y=0

g(y)h(n− s− y) = N(g ? h)(n− s).

Therefore, we see that

[( f ? g) ? h] (n) =
1
N

N−1

∑
s=0

f (s)(g ? h)(n− s) = [ f ? (g ? h)] (n)

as desired.
(iv): For each n ∈ ZN , we have

( f ? g)(n) =
1
N

N−1

∑
k=0

f (k)g(n− k)

by definition. Let y = n − k, and again, as k runs through ZN , y also runs through ZN .
Therefore,

1
N

N−1

∑
k=0

f (k)g(n− k) =
1
N

N−1

∑
y=0

f (n− y)g(y) = (g ? f )(n),

so we indeed have ( f ? g)(n) = (g ? f )(n) as desired.
(v): For each n ∈ ZN , we have

(̂ f ? g)(n) =
1
N

N−1

∑
k=0

( f ? g)(k)e−2πkni/N =
1
N

N−1

∑
k=0

(
1
N

N−1

∑
s=0

f (s)g(k− s)

)
e−2πkni/N

=
1

N2

N−1

∑
s=0

f (s)
N−1

∑
k=0

g(k− s)e−2π(s+k−s)ni/N

=
1

N2

N−1

∑
s=0

f (s)e−2πsni/N
N−1

∑
k=0

g(k− s)e−2π(k−s)ni/N .

For s fixed, let y = k− s. Then as k runs through ZN , y runs through ZN as well. Thus,

N−1

∑
k=0

g(k− s)e−2π(k−s)ni/N =
N−1

∑
y=0

g(y)e−2πyni/N = Nĝ(n).

This gives us

(̂ f ? g)(n) =
1

N2

N−1

∑
s=0

f (s)e−2πsni/N Nĝ(n) = ĝ(n)
1
N

N−1

∑
s=0

f (s)e−2πsni/N = f̂ (n)ĝ(n)

as desired.
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At this point, we observe that indexing our sums by k = 0, 1, . . . , N − 1 is not really
accurate. Indeed, when we re-indexed the sums above, we did not actually use the integers
0, 1, . . . , N − 1 (if we had, it would have been necessary to consider negative integers or
integers greater than N in the new index). Instead, we simply used the fact that the sum
was over all of the elements of a group. Thus, from here on, we will use the simple notation
∑k to denote the sum over all elements of ZN (what we have, until now, been denoting by
∑N−1

k=0 ). It will always be clear which N we are referring to when we use ∑k.
The final result in discrete Fourier analysis that is a direct analogue of a result in the

classical theory is Parseval’s formula. In fact, Parseval’s formula here is an easy conse-
quence of the fact that the complex valued functions on ZN form a finite dimensional
vector space.

Theorem 1.8 (Parseval’s formula). If f : ZN → C, then

∑
n
| f̂ (n)|2 =

1
N ∑

k
| f (k)|2.

Proof. Given a function f , recall that the l2 norm of f is defined by

|| f ||22 = 〈 f , f 〉 = ∑
k

f (k) f (k) = ∑
k
| f (k)|2.

We also know by the inversion formula that

f = ∑
n

f̂ (n)en,

and consequently, we have

〈 f , f 〉 =
〈

∑
n

f̂ (n)en, ∑
k

f̂ (k)ek

〉
= ∑

n
∑

k
f̂ (n) f̂ (k)〈en, ek〉

= ∑
n

f̂ (n) f̂ (n)〈en, en〉 = N ∑
n
| f̂ (n)|2,

where we have used the fact that 〈en, ek〉 is 0 if n 6= k but is N if n = k. Therefore, we see
that

∑
k
| f (k)|2 = 〈 f , f 〉 = N ∑

n
| f̂ (n)|2,

which is what we wanted to show.

It is interesting to note that the theory developed here is not specific to the group ZN .
In fact, discrete Fourier analysis can be used on any finite abelian group G. In essence, the
Fourier coefficients of a complex valued function on G are defined in a way analogous to
what we did above. The primary difference is that instead of using the basis {en : n ∈ ZN},
we use the characters of G (a function e : G → C is a character of G if e(a · b) = e(a)e(b)
for all a, b ∈ G). It turns out that for any such group, the characters of G form a basis for
the vector space of complex valued functions on G, just as {en : n ∈ ZN} forms a basis for
the vector space of complex valued functions on ZN . In fact, {en : n ∈ ZN} is precisely the
set of characters of ZN . A more complete explanation of this theory can be found in [23],
but since it is not necessary for our purposes, we will not go into more detail. Instead, we
will shift our attention to Szemerédi’s Theorem and some concepts that Gowers uses in his
proof of this important result.



Chapter 2

The Work of Roth and Gowers on
Szemerédi’s Theorem

Szemerédi’s Theorem was initially conjectured by Erdös, Szekeres, and Turán in 1936 [6].
The fundamental question behind the conjecture is how dense an unstructured subset of
[1, N] can be. (Here, we use the notation [x, y] = {n ∈ Z : x ≤ n ≤ y}. Whenever we use
this interval notation, it will denote a set of integers, not an interval in R.) Alternatively,
for a fixed density, can we find [1, N] long enough to guarantee that every subset with that
density is structured? In order to answer these questions, we first need a notion of struc-
ture. Naturally, we consider a set of integers A to be structured if it contains long arithmetic
progressions: sets of the form {a + qr : q = 0, 1, . . . , n} where a ∈ Z and r, n ∈ N. For ex-
ample, the set {2, 5, 8, 11, 14, 17, 20} is an arithmetic progression because it can be written in
the form {2 + 3q : q = 0, 1, . . . , 6}. As a result, the set A = {2, 5, 6, 8, 11, 14, 15, 16, 17, 20, 26}
is fairly structured because it contains the arithmetic progressions {2, 5, 8, 11, 14, 17, 20}
and {2, 8, 14, 20, 26} (among others), which are long compared to the size of A itself.

If A = {a + qr : q = 0, 1, . . . , n} is an arithmetic progression, then we say that the
length of the progression is |A| = n + 1 and the common difference is r. Note that any
one or two element set is trivially an arithmetic progression, so we disregard these types
of progressions when considering the amount of structure in a given set. We will now
introduce Szemerédi’s Theorem in two (equivalent) ways. The first will be easier to state,
but the second will give us more insight into the difficulty of the problem.

Suppose that k is a positive integer and δ > 0. Is it possible to find N large enough
so that any subset A of [1, N] with size at least δN contains an arithmetic progression of
length k? Here, we consider δ to be the density of A in [1, N], and we are asking whether or
not there is a number N large enough for which any subset of [1, N] with density at least
δ must contain a k-term progression. Szemerédi’s Theorem answers this question in the
affirmative.

Theorem 2.1 (Szemerédi’s Theorem). Let k ∈N and δ > 0. There is an N0 ∈N for which any
subset A ⊂ [1, N] with size at least δN contains an arithmetic progression of length k whenever
N ≥ N0.

Unfortunately, this form of Szemerédi’s Theorem does not immediately tell us much
about how difficult the problem is. To gain some insight into its level of difficulty, we
consider the following similar problem. Given N ∈ N, we wish to find a δ > 0 for which
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every set A ⊂ [1, N] of cardinality at least δN contains a long arithmetic progression (that
is, every subset with high enough density has additive structure). In particular, we want
to find a minimal such δ. This will then allow us to determine the highest density that an
unstructured set may have.

Note first that if δ > N−1
N , then the only subset of [1, N] with cardinality at least δN

is the entire set itself, so the problem is trivial. We can therefore suppose that δ ≤ N−1
N .

Now consider the set A = [1, N]\{dN
2 e}. Observe that if k ≥ dN

2 e, then A cannot con-
tain any arithmetic progression of length k and common difference at least 2 (such an
arithmetic progression would have either an element greater than N or the element dN

2 e).
Also, the longest arithmetic progression of common difference 1 that A contains is pre-
cisely {1, . . . , dN

2 e − 1}. Hence, A does not contain any progression of length k if k ≥ dN
2 e.

Therefore, when we are given a set A ⊂ [1, N] and want to determine its structure, we are
interested only in arithmetic progressions of length k ≤ bN

2 c.
Now, if N is given and k ≤ bN

2 c, it is easy to find a 0 < δ < 1 for which any subset
A ⊂ [1, N] with cardinality |A| ≥ δN contains an arithmetic progression of length k. For
example, we can do the following. Let l the largest positive integer such that k ≤ bN

l c = m,
and since k ≤ bN

2 c, we know that l ≥ 2. Partition [1, N] into the disjoint intervals

[1, m], [m + 1, 2m], . . . , [(l − 1)m + 1, lm], [lm + 1, N]

where the last interval in this list might be empty. In this list, there are exactly l intervals
with length m. Let δ = N−l+1

N , so if A has size at least δN, then the complement of A
in [1, N] contains at most l − 1 points. The pigeonhole principle then tells us that there
is an interval [jm + 1, (j + 1)m], where 0 ≤ j ≤ l − 1, for which the complement of A is
disjoint from [jm + 1, (j + 1)m]. Hence, [jm + 1, (j + 1)m] ⊂ A, so A contains an arithmetic
progression of length m = bN

l c ≥ k. And since we had l ≥ 2, we know that 0 < δ < 1, as
claimed. Note also that δ depends only on N and k.

Of course, our method for finding such a δ is incredibly crude. Since our δ in fact
guarantees that A will contain an interval of length k, we should be able to find a much
smaller δ that still guarantees an arithmetic progression of length k in A. Let us say that
δ > 0 is (N, k)-good if every A ⊂ [1, N] of cardinality at least δN contains a progression of
length k, and define

rN,k = inf(δ > 0 : δ is (N, k)-good).

It is clear that if δ is (N; k)-good, then ε is also (N; k)-good whenever ε ≥ δ. Thus, we see
that N · rN,k is the size of the largest subset of [1, N] that does not contain an arithmetic
progression of length k. In other words, rN,k is the highest density that a set in [1, N] may
have if it contains no progressions of length k. It is natural, now, to ask whether we can
find good upper bounds on rN,k. This is the substance of the second form of Szemerédi’s
Theorem.

Theorem 2.2 (Szemerédi’s Theorem). Let k be a positive integer. Then

lim
N→∞

rN,k = 0.

Before we justify the equivalence of the two statements, observe the following. If we let
δN,k denote the δ > 0 we found by our crude use of the pigeonhole principle above, then
for each k ≥ 1, we have limN→∞ δN,k = (k − 1)/k. Thus, the conclusion of Szemerédi’s
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Theorem is much stronger than what we found. We now prove that the two forms of
Szemerédi’s Theorem are equivalent.

Proof. Assume that Theorem 2.2 is true, so for each positive integer k, we have rN,k → 0
as N → ∞. Let k ∈ N and δ > 0. Then there exists an N0 large enough for which
rN,k < δ whenever N ≥ N0. Suppose that A is a subset of [1, N] where N ≥ N0 and
|A| ≥ δN. If A does not contain an arithmetic progression of length k, then δ is not (N, k)-
good. But this implies that δ ≤ rN,k, which is a contradiction. Hence, A must contain a
k-term progression, so Theorem 2.1 holds.

Assume now that Theorem 2.1 is true. Let k be a fixed positive integer, and let δ > 0.
Choose N0 ∈N such that any subset A ⊂ [1, N] with size at least δN contains an arithmetic
progression of length k whenever N ≥ N0. Then δ is (N, k)-good for each N ≥ N0, so we
must have rN,k ≤ δ whenever N ≥ N0. Therefore, limN→∞ rN,k = 0, so Theorem 2.2 holds.

From here on, we will primarily consider Szemerédi’s Theorem to be of the form in
Theorem 2.1, but it is useful to keep its other form in mind.

Szemerédi first proved this result in 1975 using combinatorial arguments [25]. Other
proofs followed, including a proof by Furstenberg in 1982 that primarily used ergodic
theory [7], and a proof by Gowers in 2001 that used discrete Fourier analysis [9]. It is this
latter proof that interests us. As mentioned at the beginning of this chapter, we will not
present Gowers’s entire proof of Szemerédi’s Theorem. Instead, we will present his proof
of the case where k = 4 [10]. Thus, we want to show that there is an N0 ∈N for which any
subset A ⊂ [1, N] with size at least δN contains an arithmetic progression of length four
whenever N ≥ N0, or equivalently, that limN→∞ rN,4 = 0. We are content with presenting
the proof of this case only because the methods used in it are very similar to the general
proof but are easier to work with.

Gowers, however, was not the first person to approach Szemerédi’s Theorem with an-
alytic methods. In 1953, Roth proved the theorem for progressions of length three using
discrete Fourier analysis [20]. In fact, the upper bound that Roth obtained on rN,3 were
much better than those obtained by Szemerédi and Furstenberg. As a result, it was natural
to ask whether some of Roth’s ideas could be extended to a general proof of Szemerédi’s
Theorem using discrete Fourier analysis. If so, it would be reasonable to expect that one
could obtain much better bounds for general k than Szemerédi or Furstenberg had found.
Gowers did precisely this in his 2001 proof. Before beginning our exposition on Gowers’s
proof, we give a sketch of Roth’s proof for three-term progressions. This will familiarize
readers with some of the basic ideas that Gowers uses in his work.

2.1 Roth’s Work on Progressions of Length Three

First recall that for f : ZN → C, we define the discrete Fourier coefficients as

f̂ (s) =
1
N ∑

x
f (x)e−2πixs/N

for s ∈ ZN . A natural question to consider is how large these coefficients can be. We give a
few examples that will motivate Roth’s approach – an approach that relies heavily on the
sizes of Fourier coefficients for certain functions.
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Let f0 be the function that is identically δ on ZN , where δ is a positive real number.
Then, we have

f̂0(s) =
δ

N ∑
x

e−2πixs/N =

{
δ if s = 0
0 if s 6= 0

.

We see here that the Fourier coefficients are all small, with the exception of f̂0(0). Often,
we will not want to consider the 0-th coefficient, so we can say that all of the non-trivial
Fourier coefficients are small. (The trivial coefficient is always the 0-th coefficient.)

Now let f be a ”random” function on ZN . Namely, for each x ∈ ZN , let f (x) be an
independent random variable where

f (x) =

{
1 with probability δ

0 with probability 1− δ

where 0 < δ < 1 is fixed. We can think of f , then, as the characteristic function of a set
of cardinality approximately δN. It is then true that with high probability, f̂ (s) is close to
f̂0(s) for all s ∈ ZN , as long as N is large enough. More precisely, we can show that for any
λ > 0,

Prob(| f̂ (s)− f̂0(s)| > λ for some s ∈ ZN) ≤ e−CN

where C is a constant depending only on δ and λ. Thus, by taking N large enough, the
probability that f̂ (s) and f̂0(s) are far apart for some s becomes arbitrarily small. We see
then that for a random function defined in this way, all of the non-trivial Fourier coeffi-
cients are small (as long as N is large enough, of course).

We now concern ourselves with functions on ZN , where N is prime, that are defined
using a subset of ZN . The easiest such functions are characteristic functions: if A ⊂ ZN ,
we define the characteristic function as

A(x) =

{
0 if x /∈ A
1 if x ∈ A

.

Note that we have identified the set A with its characteristic function. We will continue to
do this throughout the next two chapters. Now, observe that for any s ∈ ZN ,

Â(s) =
1
N ∑

x
A(x)e−2πisx/N =

1
N ∑

x∈A
e−2πisx/N .

By the triangle inequality, we then have

|Â(s)| ≤ 1
N
|A| = δ.

We therefore see that the Fourier coefficients of A can be no larger than δ. It is easy to see
that when s = 0, we actually have Â(0) = δ. A natural question then is whether or not
there exists a nonzero s ∈ A for which |Â(s)| is close to δ. The answer to this question
depends on the structure of A. In particular, if A is a ”random” set in that its characteristic
function behaves like a random function, then the non-trivial Fourier coefficients will all
be small. But if A is not a random set, then there will be a non-trivial Fourier coefficient
that is large compared to δ. One more example will serve to highlight this distinction.
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Let A = {a, a + r, . . . , a + (m − 1)r} be an arithmetic progression in ZN of length m
and common difference r 6= 0. Suppose also that N is large compared to m. Then A
certainly does not resemble a random set since it is highly unlikely that m points, chosen
from ZN independently, would form an arithmetic progression. We claim that this lack of
randomness forces the characteristic function of A to have at least one non-trivial Fourier
coefficient that is large compared to δ = m/N.

Since we are working under the assumption that N is prime, we can find an s ∈ ZN
such that rs = 1. It then turns out that e−2πixs/N is almost constant on the progression A.
Indeed, if x ∈ A, then x = a + jr for some 0 ≤ j ≤ m. We then have∣∣∣e−2πixs/N − e−2πias/N

∣∣∣ =
∣∣∣e−2πi(a+jr)s/N − e−2πias/N

∣∣∣
=
∣∣∣e−2πijrs/N − 1

∣∣∣ =
∣∣∣e−2πij/N − 1

∣∣∣ =
√

2− 2 cos(2π j/N)

= 2 sin(π j/N) ≤ 2π j
N
≤ 2πm

N
= 2πδ

and recall that δ is small since N is much larger than m. Looking at the Fourier coefficient
Â(s), we then have

Â(s) =
1
N ∑

x∈A
e−2πixs/N =

1
N ∑

x∈A

(
e−2πia/N + e−2πixs/N − e−2πia/N

)
= δe−2πia/N +

1
N ∑

x∈A

(
e−2πixs/N − e−2πia/N

)
We can consider 1

N ∑x∈A
(
e−2πixs/N − e−2πia/N) to be an error term because of what we

found above: ∣∣∣∣∣ 1
N ∑

x∈A

(
e−2πixs/N − e−2πia/N

)∣∣∣∣∣ ≤ 1
N ∑

x∈A

∣∣∣e−2πixs/N − e−2πia/N
∣∣∣

≤ 1
N ∑

x∈A
2πδ = 2πδ2

Thus, the error term is bounded in absolute value by a constant times δ2, which is quite
small. As a result, Â(s) is close to δe−2πia/N , so the size of this Fourier coefficient, |Â(s)|, is
close to δ.

We now ask an inverse question to what we have just found. If a subset A in ZN of size
δN has a Fourier coefficient whose size is approximately δ, can we say something about
the structure of A? It turns out that we can; the precise answer is given in the following
lemma.

Lemma 2.1. Let A ⊂ ZN have cardinality |A| = δN, and suppose that there is a non-zero
s ∈ ZN such that |Â(s)| > ε, where ε > 0. Then there exists an arithmetic progression P =
{a, a + r, . . . , a + (m− 1)r} where m is approximately ε

√
N and |A ∩ P| ≥ (δ + ε

2 )|P|.

Proof Sketch. Let s be the element in ZN for which |Â(s)| > ε. From what we did earlier, we
might expect that if A has a large intersection with an arithmetic progression of common
difference r, then rs = 1 modulo N. Indeed, that would explain why |Â(s)| is large.
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Unfortunately, since we are no longer working under the assumption that N is prime,
such an r might not exist. To remedy this, we do the following. Choose r ∈ ZN such that
1 ≤ r ≤

√
N and

{ rs
N

}
≤ 1√

N
. Here,

{ rs
N

}
denotes the fractional part of rs

N , which is equal
to rs

N − b
rs
N c. Note that such an r must exist by a simple pigeon-hole argument. It is entirely

possible that rs is not equal to 1 modulo N, but we can consider rs to be much closer to 1
than it is to N.

We now want to cover ZN by arithmetic progressions Pj = {aj, aj + r, . . . , aj + (mj −
1)r}, each of common difference r and length approximately ε

√
N. We also want these

progressions to be pairwise disjoint. We now observe that the function e−2πisx/N is almost
constant on Pj for each j. Although this is not a direct consequence of what we found
earlier (precisely because we do not necessarily have rs = 1 modulo N), we can justify the
observation in the same way as before, using the fact that

{ rs
N

}
≤ 1√

N
. It turns out that

each e−2πisx/N is approximately equal to e−2πisaj/N for x ∈ Pj.
We now consider the large Fourier coefficient Â(s). By splitting sums, it can be shown

that
Â(s) =

1
N ∑

x
(A(x)− δ) e−2πixs/N .

(This representation of the non-trivial Fourier coefficients of a characteristic function will
be important in Gowers’s work.) We then have

ε < |Â(s)| = 1
N

∣∣∣∣∣∑x
(A(x)− δ) e−2πixs/N

∣∣∣∣∣ ≤ 1
N ∑

j

∣∣∣∣∣∣∑x∈Pj

(A(x)− δ) e−2πixs/N

∣∣∣∣∣∣
≈ 1

N ∑
j

∣∣∣∣∣∣∑x∈Pj

(A(x)− δ) e−2πisaj/N

∣∣∣∣∣∣ =
1
N ∑

j
|e−2πisaj/N |

∣∣∣∣∣∣∑x∈Pj

(A(x)− δ)

∣∣∣∣∣∣
=

1
N ∑

j

∣∣∣∣∣∣∑x∈Pj

A(x)− δ

∣∣∣∣∣∣
where the ≈ symbol represents an approximation. We therefore know that there exists a j
for which ∣∣∣∣∣∣∑x∈Pj

A(x)− δ

∣∣∣∣∣∣ > ε|Pj|.

But the sum on the left side is equal to |A ∩ Pj| − δ|Pj|, so we have

|A ∩ Pj| > (ε + δ)|Pj|.

Note that this seems to be a stronger result than the lemma actually states, since the state-
ment of the lemma has ε/2 instead of ε. The need for ε/2 is a consequence of approximat-
ing e−2πixs/N by e−2πisaj/N .

We have, of course, omitted many details from this proof sketch. When we present
Gowers’s proof of Szemerédi’s Theorem for progressions of length four, we will use many
of the same ideas that we used here. There, we will provide all of the details that are
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necessary to justify each step. For now, though, Lemma 2.1 will allow us to give Roth’s
proof of Szemerédi’s Theorem for progressions of length three.

Theorem 2.3 (Roth). Let A ⊂ [1, N] have cardinality |A| ≥ δN, where δ > c
log log N . Then A

contains an arithmetic progression of length three. Here, c is an absolute constant that does not
depend on N.

The idea of the proof of Roth’s Theorem is to consider two cases: first, if A is a random
set in that all of its Fourier coefficients are small; and second, if A has at least one large
Fourier coefficient. In the first case, we will be able to show that A contains many arith-
metic progressions of length three, and in the second case, we will be able to apply Lemma
2.1 to obtain an arithmetic progression P on which A has increased density. We can then
iterate the argument, replacing A and ZN with A ∩ P and P, respectively. The details are
as follows.

Proof. We first work in the setting of ZN rather than Z, so for now, let A ⊂ ZN with
cardinality δN, and identify A with its characteristic function. Define

Λ(A) =
1

N2 ∑
x,r

A(x)A(x + r)A(x + 2r).

Note that for each pair x, r we have

A(x)A(x + r)A(x + 2r) =

{
0 if {x, x + r, x + 2r} 6⊂ A
1 if {x, x + r, x + 2r} ⊂ A

Therefore, N2Λ(A) counts the number of three-term, mod-N arithmetic progressions in
A. Included in this count, though, are trivial progressions – those with r = 0. Since
there are |A| = δN trivial progressions, we see that the number of non-trivial three-term
progressions in A is N2Λ(A)− δN.

Using Fourier arguments, it is possible to show that

Λ(A) = ∑
s

Â(s)2Â(−2s).

In the following chapter, we will show and justify a similar identity, so we will not justify
this identity here. We then have

Λ(A) = Â(0)3 + ∑
s 6=0

Â(s)2Â(−2s).

We know from earlier that Â(0) = δ, but we now wish to bound the term ∑s 6=0 Â(s)2Â(−2s),
which we consider to be an error term.

Recall that by Parseval’s formula, ∑s |Â(s)|2 = 1
N ∑x |A(x)|2. Thus,

∑
s
|Â(s)|2 =

1
N

δN = δ.

As a result, we see that∣∣∣∣∣∑s 6=0
Â(s)2Â(−2s)

∣∣∣∣∣ ≤ max
s 6=0
|Â(s)| ·∑

s
|Â(s)|2 = δ max

s 6=0
|Â(s)|.
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We now consider two different cases. First assume that all non-trivial Fourier coefficients
are small in that |Â(s)| ≤ δ2

2 for each s 6= 0. This is essentially the case where A resembles
a random set. We then have ∣∣∣∣∣∑s 6=0

Â(s)2Â(−2s)

∣∣∣∣∣ ≤ δ3

2
,

and consequently,

|Λ(A)| ≥ |Â(0)3| −
∣∣∣∣∣∑s 6=0

Â(s)2Â(−2s)

∣∣∣∣∣ ≥ δ3 − δ3

2
=

δ3

2
.

The number of non-trivial three-term progressions in A is therefore at least δ3 N2

2 − δN. But
this quantity is strictly positive by our assumption that δ > c

log log N , as long as c ≥
√

2.
Thus, A contains at least one mod-N arithmetic progression of length three (of course, this
might not be a valid progression in Z due to wrap-around in ZN).

For the second case (the case corresponding to A being a more structured set), suppose
that |Â(s)| > δ2

2 for some s 6= 0. Then by Lemma 2.1, there exists an arithmetic progression
P = {a, a + r, . . . , a + (M − 1)r} of length approximately δ2

2

√
N where |A ∩ P| ≥ (δ +

δ2

4 )|P|. Now, we iterate the argument, replacing A and ZN by A ∩ P and P. (Even though
P itself may not be of the form [1, |P|], we can identify it with this interval and perform
the iteration validly.) At each step in the iteration, the density of A inside an arithmetic
progression increases. In fact, it increases in such a way that the iteration can be repeated
only finitely-many times before this density becomes greater than one. Of course, the
density of a set in an interval can never be greater than one, so at some step, the set that we
have replaced A with must not have any large non-trivial Fourier coefficients. This set will
then contain a three-term progression, and this gives a three-term progression in A. The
maximum number of times that the iteration must be done to reach density one gives the
bound δ > c

log log N . We will not show the calculations needed to justify this here because
Gowers’s proof concludes with a similar statement that we will justify there.

We have therefore shown that if A ⊂ ZN has cardinality |A| ≥ δN, where δ > c
log log N ,

then A contains a mod-N arithmetic progression of length three. Unfortunately, this does
not immediately imply that the result extends when A is a subset of [1, N]. Indeed, the
progression we found when we considered A ⊂ ZN might wrap around the group and
therefore may not be a progression in the interval [1, N]. Remedying this problem requires
some technical work that we will have to do in Gowers’s proof. But here, we will simply
state that it can be done to prove Roth’s Theorem.

It is easy to see that Roth’s Theorem proves Szemerédi’s Theorem for progressions of
length three. Indeed, given δ > 0, choose N0 > exp exp (c/δ). Then, for each N ≥ N0, we
have δ > c/(log log N), so by Roth’s Theorem, any subset A ⊂ [1, N] of size at least δN
contains an arithmetic progression of length three. Alternatively, Roth’s Theorem tells us
that for each N, the density c/ log log N is (N, 3)-good. Thus, rN,3 ≤ c/ log log N, so as N
approaches infinity, rN,3 must approach zero.
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2.2 Preliminaries for Gowers’s Work on Progressions of Length
Four

Gowers’s work on Szemerédi’s Theorem for progressions of length four follows the same
basic ideas that Roth used in his work on progressions of length three. The fundamental
concept is to use Fourier coefficients of the characteristic function of a set to determine
whether the set is random or structured. If it is random, prove that it must contain a
progression of length four; if it is structured, find a long progression on which the set has
increased density so that we may iterate the argument. The details of Gowers’s proof,
however, are much more involved than those in Roth’s proof. To deal with technicalities,
Gowers introduces some new notation and redefines some traditional concepts in discrete
Fourier analysis. Most of these new definitions are essentially the same as their traditional
counterparts; Gowers simply modifies them so that they work better for his purposes.
Before beginning his proof, though, it is necessary to introduce these changes.

In order to simplify notation, Gowers defines ω = e2πi/N when N is clear from context.
We will also use this notation, and each time it is used, the N we are using will be clear (in
fact, we primarily use ω in sums that are taken over ZN). Gowers then defines the Fourier
coefficients as follows.

Definition 7. If f : ZN → C, then the n-th Fourier coefficient of f is defined as

f̃ (n) = ∑
k

f (k)ω−kn.

Note that this new definition relates to the traditional definition by f̃ (n) = N f̂ (n) for
each n ∈ ZN . As a result of this change, we have the following facts:

f (k) = ∑
n

f̂ (n)en(k) = ∑
n

1
N

f̃ (n)ω−nk =
1
N ∑

n
f̃ (n)ω−nk

for each k ∈ ZN , and

∑
k
| f (k)|2 = N ∑

n
| f̂ (n)|2 = N ∑

n
| 1
N

f̃ (n)|2 =
1
N ∑

n
| f̃ (n)|2.

Acknowledging an abuse of terminology, we will call the former identity the inversion for-
mula and the latter we will call Parseval’s formula. Whenever we refer to these formulae,
we will be referring to Gowers’s version, not to the traditional version. The other primary
abuse of terminology that we use following Gowers is the definition of convolution.

Definition 8. If f , g : ZN → C, then we define their convolution f ∗ g : ZN → C as

( f ∗ g)(n) = ∑
k

f (k)g(k− n)

for n ∈ ZN .

Despite some important differences between Gowers’s definition of convolution and
the traditional definition, all of the algebraic properties of the traditional convolution have
analogues for Gowers’s convolution. These are given in the following proposition.
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Proposition 2.1. For f , g, h : ZN → C, the following are true:

i. f ∗ (g + h) = ( f ∗ g) + ( f ∗ h)

ii. (c f ) ∗ g = c( f ∗ g) if c ∈ C

iii. ( f ∗ g) ∗ h = N f ∗ (g ? h)

iv. ( f ∗ g)(n) = (g ∗ f )(−n) for each n ∈ ZN

v. f̃ ∗ g = f̃ · g̃

Proof. As in Proposition 1.1, parts (i) and (ii) follow directly from the definition of the
convolution and the fact that g + h = g + h. We prove the other three parts primarily by
interchanging and re-indexing sums as we did before.
(iii): For n ∈ ZN , we have

[( f ∗ g) ∗ h] (n) = ∑
k

( f ∗ g)(k)h(k− n) = ∑
k

(
∑

t
f (t)g(t− k)

)
h(k− n)

= ∑
t

f (t)

(
∑

k
g(t− k)h(k− n)

)
= ∑

t
f (t)

(
∑
y

g(y)h(t− n− y)

)
= ∑

t
f (t)N(g ? h)(t− n) = N [ f ∗ (g ? h)] (n),

where we have used the substitution y = t− k.
(iv): For n ∈ ZN , we have

( f ∗ g)(n) = ∑
k

f (k)g(k− n) = ∑
y

f (y + n)g(y)

= ∑
y

g(y) f (y− (−n)) = (g ∗ f )(−n),

where this time, we have used the substitution y = k− n.
(v): For n ∈ ZN , we have

f̃ ∗ g(n) = ∑
k

( f ∗ g)(k)ω−kn = ∑
k

(
∑

t
f (t)g(t− k)

)
ω−kn

= ∑
t

∑
k

f (t)g(t− k)ω(−t+t−k)n = ∑
t

f (t)ω−tn

(
∑

k
g(t− k)ω(t−k)n

)

= ∑
t

f (t)ω−tn

(
∑
y

g(y)ωyn

)
= ∑

t
f (t)ω−tn

(
∑
y

g(y)ω−yn

)
= ∑

t
f (t)ω−tn

(
g̃(n)

)
= f̃ (n)g̃(n),

where we have again used the substitution y = t− k.
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The only property of the convolution that we will use directly in the proof of Sze-
merédi’s Theorem is (v); but it is useful to know the other properties to understand the
convolution operation better.

It is also important to introduce a characteristic-type function that is associated with
a given subset of ZN . Namely, if A ⊂ ZN has cardinality δN, we define the balanced
function of A to be

fA(n) = A(n)− δ =

{
−δ if n /∈ A
1− δ if n ∈ A.

where, as before, we have identified the set A with its characteristic function. Observe now
that for any subset A of ZN with |A| = δN, we have

f̃A(0) = ∑
k

fA(k)ω−k·0 = ∑
k

fA(k) = ∑
k/∈A

fA(k) + ∑
k∈A

fA(k)

= (N − δN)(−δ) + (δN)(1− δ) = 0.

Also, we see that for any n 6= 0,

f̃A(n) = ∑
k

fA(k)ω−kn = ∑
k/∈A
−δω−kn + ∑

k∈A
(1− δ)ω−kn

= −δ ∑
k/∈A

ω−kn − δ ∑
k∈A

ω−kn + ∑
k∈A

ω−kn = −δ ∑
k

ω−kn + ∑
k∈A

ω−kn

= ∑
k∈A

ω−kn = ∑
k

A(k)ω−kn = Ã(n).

Thus, the Fourier coefficients of A and fA coincide, except for n = 0, where the coefficient
of fA vanishes. Because of this, it will be more useful for us to analyze the balanced func-
tion than the characteristic function. Indeed, to determine the additive structure of a set
A, we want to know how large the non-trivial Fourier coefficients of A are, and it is gener-
ally easier to consider maxn∈ZN | f̃A(n)| than maxn 6=0 |Ã(n)|. Certainly, both quantities are
equal. We therefore use balanced functions, rather than characteristic functions, to study
the structure of sets.

In order to estimate the size of certain quantities (usually sums of Fourier coefficients),
we will use two classical inequalities often: Hölder’s inequality (and its consequence, the
Cauchy-Schwarz inequality) and Minkowski’s inequality.

Theorem 2.4 (Hölder). If an and bn are real numbers for all 1 ≤ n ≤ N and p, q > 1 satisfy
1/p + 1/q = 1, then ∣∣∣∣∣ N

∑
n=1

anbn

∣∣∣∣∣ ≤
(

N

∑
n=1
|an|p

)1/p( N

∑
n=1
|bn|q

)1/q

.

The Cauchy-Schwarz inequality is the inequality obtained by setting p = q = 2.

Theorem 2.5 (Minkowski). If an and bn are real numbers for all 1 ≤ n ≤ N and p ≥ 1, then(
N

∑
n=1
|an + bn|p

)1/p

≤
(

N

∑
n=1
|an|p

)1/p

+

(
N

∑
n=1
|bn|p

)1/p

.
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We make one more note before proceeding to Gowers’s proof. In the section on discrete
Fourier analysis earlier, we worked in the inner product space of complex valued functions
on ZN , where the inner product was defined by

〈 f , g〉 = ∑
k

f (k)g(k).

This induces the l2 norm
|| f ||2 =

√
∑

k
| f (k)|2.

As we will see, this norm is important in Gowers’s proof of Szemerédi’s Theorem, but two
other norms are important as well – the l1 norm and the uniform (or l∞) norm. The l1 norm
is defined by

|| f ||1 = ∑
k
| f (k)|

for f : ZN → C, and the l∞ norm is defined by

|| f ||∞ = max
k∈ZN

| f (k)|.

These will be the only three norms needed here, and they will be distinguished by their
subscripts.



Chapter 3

Gowers’s Proof of Szemerédi’s
Theorem for Progressions of Length
Four

In the previous section, we gave a short outline of the strategy in Gowers’s proof. In
particular, we will use the dichotomy between structure and randomness in subsets of
[1, N] that naturally arises by considering sizes of Fourier coefficients. We now give a
more detailed outline of Gowers’s methods that will serve as a guide for where we are
going. First, it is necessary to define the following concept.

Definition 9. Let f : ZN → D be a function to the closed unit disk in C. Then f is α-
uniform if

∑
r
| f̃ (r)|4 ≤ αN4.

Our first task in the proof of Szemerédi’s Theorem will be to give equivalent definitions
of α-uniformity. As we shall see, a function f is α-uniform if and only if there is an upper
bound (a constant depending on α, multiplied by N) on the sizes of the Fourier coefficients
of f . Therefore, we can say that f is α-uniform for a small α if and only if f behaves like a
random function.

We now want to use α-uniformity of functions to say something about subsets of ZN .
Recall from earlier that we consider a set A ⊂ ZN to be random if all of the non-trivial
Fourier coefficients of its characteristic function are small. We also remarked, however, that
it will be more convenient to use the balanced function of A rather than the characteristic
function. Thus, if all Fourier coefficients of the balanced function of A are small, then A
is, in some sense, random. We therefore say that A is α-uniform if and only if its balanced
function is α-uniform. As a result, we see that A is random if it is α-uniform for small
enough α.

From the proof of Roth’s Theorem, we know that if A ⊂ ZN is α-uniform for a suf-
ficiently small α, then A must contain a progression of length three. Unfortunately, α-
uniformity does not guarantee a progression of length four (see [8], Section 3, for a short
discussion about why uniformity is not strong enough). As a result, we will need a
stronger notion of randomness. The following definition gives us just that.
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Definition 10. Let f : ZN → D be a function to the unit disk in C. Then f is quadratically
α-uniform if

∑
u

∑
v

∣∣∣∣∣∑s
f (s) f (s− u) f (s− v) f (s− u− v)

∣∣∣∣∣
2

≤ αN4.

Note here that if we define ∆( f ; k)(s) = f (s) f (s− k), then the sum on the left-hand
side in Definition 10 is equivalent to

∑
u

∑
v

∣∣∣∣ [∆( f ; u) ∗ ∆( f ; u)] (v)
∣∣∣∣2.

The collection of functions ∆( f ; k) for k ∈ ZN will play an important role in Gowers’s
proof.

As with uniformity, it will be necessary for us to find equivalent definitions of quadratic
α-uniformity so that we can relate this concept to the sizes of Fourier coefficients. We shall
see that a function f is quadratically α-uniform if and only if most of the Fourier coefficients
of ∆( f ; k), as k ranges over ZN , are small. Of course, the notion of ”smallness” and ”most
of” will depend on α. We can therefore consider f to be quadratically α-uniform if and
only if the collection of functions ∆( f ; k) are somewhat random.

We now say that a set A ⊂ ZN is quadratically α-uniform if its balanced function is
quadratically α-uniform. For small enough α, we can then think of quadratically α-uniform
sets as pseudo-random sets. We shall see that unlike α-uniformity, quadratic α-uniformity
will guarantee a progression of length four, as long as α is sufficiently small. Gowers’s
general argument goes as follows.

Let A be a subset of ZN . First, suppose that A is quadratically α-uniform for a suf-
ficiently small α. Our main goal here is first to prove that there are many ”possible”
arithmetic progressions, and as a result, at least one of them must be an actual arithmetic
progression. Namley, suppose that we can guarantee many elements of the form (a, a +
d, a + 2d, a + 3d) in the set A∩ [2N/5, 3N/5)× A∩ [2N/5, 3N/5)× A× A where d ∈ ZN .
These are the ”possible” arithmetic progressions because if d 6= 0, then the quadruple
corresponds to an arithmetic progression in ZN . Observe, though, that since we restrict
a ∈ A ∩ [2N/5, 3N/5), there can be at most δN quadruples where d = 0. We can there-
fore conclude that if there are strictly more than δN quadruples (a, a + d, a + 2d, a + 3d),
then there is at least one with d 6= 0. This gives us a mod-N progression in A. But also
notice that since a and a + d are in [2N/5, 3N/5), we have a + 2d and a + 3d in [0, N).
Hence, the arithmetic progression in ZN is actually an arithmetic progression in Z. The
main difficulty in this case, of course, is showing that there are many elements of the form
(a, a + d, a + 2d, a + 3d) in A ∩ [2N/5, 3N/5) × A ∩ [2N/5, 3N/5) × A × A. Most of the
ideas we use to do this will parallel the ideas developed in Roth’s proof.

Now suppose the second case; that is, A is not quadratically α-uniform for a sufficiently
small α. This is certainly the more difficult case, and it requires some heavy machinery
such as Freiman’s Theorem and a discrete version of Weyl’s Equidistribution Theorem. A
helpful concept in this part of the proof is that of additive quadruples. Namely, if φ : ZN →
ZN , then we call a quadruple (a, b, c, d) ∈ Z4

N additive if a + b = c + d and φ(a) + φ(b) =
φ(c) + φ(d).

An overview of the approach is as follows. As we shall see, the failure of A to be
quadratically α-uniform implies that there is some set B ⊂ ZN with |B| ≥ αN/2 and a
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function φ : B → ZN such that φ has many additive quadruples (a, b, c, d) ∈ B4. We then
use this fact to show that there is an arithmetic progression P in ZN such that for any
s ∈ ZN , the progression P + s can be partitioned into smaller progressions Ps1, . . . , Psm,
where each of these smaller progressions is actually an arithmetic progression in Z. We
then want to show that for some s, at least one of the Psj has a large intersection with A
(that is, the density of A in Psj is greater than the density of A in [1, N]) just as we did in
the proof of Roth’s Theorem.

Once we have obtained this Psj, we iterate the argument. Namely, we replace A and
[1, N] with A ∩ Psj and Psj, respectively, and we use the fact that the density of A ∩ Psj in
Psj is higher than the original density of A in [1, N]. In fact, the increase in density that we
find will allow us to conclude that this argument can be iterated only a finite number of
times before the density exceeds one. As a result, at some step in the iteration, the smaller
set A ∩ Psj will be quadratically α-uniform for a sufficiently small α. By the first case, then,
A ∩ Psj (and hence, A itself) must contain an arithmetic progression of length four.

We now begin Gowers’s proof of Szemerédi’s Theorem for progressions of length four.
We will break the proof into sections for ease.

3.1 Quadratic Uniformity

We first want to prove some helpful results regarding α-uniform and quadratically α-
uniform sets. The properties we find will give us a straightforward proof that if A is
quadratically α-uniform for a sufficiently small α, then A must contain a four-term arith-
metic progression. We begin with a lemma that gives equivalent definitions for α-uniformity.
In this lemma, when we say that one bound depending on ci implies another bound de-
pending on cj, we mean that cj is an absolute constant multiplied by some power of ci.

Lemma 3.1. Let f : ZN → D be a function to the closed unit disk in C. Then the following are
equivalent.

1. ∑r
∣∣ f̃ (r)

∣∣4 ≤ c1N4

2. maxr
∣∣ f̃ (r)

∣∣ ≤ c2N

3. ∑k

∣∣∣∑s f (s) f (s− k)
∣∣∣2 ≤ c3N3

4. ∑k

∣∣∣∑s f (s)g(s− k)
∣∣∣2 ≤ c4N2||g||22 for each function g : Zn → C

Proof. First, note that for any f , g : ZN → D, we have

∑
k

∣∣∣∣∣∑s
f (s)g(s− k)

∣∣∣∣∣
2

= ∑
k
|( f ∗ g)(k)|2 =

1
N ∑

k

∣∣∣(̃ f ∗ g)(k)
∣∣∣2

=
1
N ∑

k

∣∣∣ f̃ (k)g̃(k)
∣∣∣2 =

1
N ∑

k

∣∣ f̃ (k)
∣∣2 |g̃(k)|2.

(1)⇔ (3): Since ∑k

∣∣∣∑s f (s) f (s− k)
∣∣∣2 = 1

N ∑k
∣∣ f̃ (k)

∣∣4 by what we just found, it is immedi-

ate that ∑r
∣∣ f̃ (r)

∣∣4 ≤ c1N4 if and only if ∑k

∣∣∣∑s f (s) f (s− k)
∣∣∣2 ≤ c3N3 where c1 = c3.



Quadratic Uniformity 27

(4)⇒ (3): Observe that since | f (s)| ≤ 1 for all s ∈ ZN , we have || f ||22 = ∑r | f (r)|2 ≤ N.
Hence, we see that

∑
k

∣∣∣∣∣∑s
f (s) f (s− k)

∣∣∣∣∣
2

≤ c4N2|| f ||22 ≤ c4N3 ≤ c3N3

if c4 ≤ c3. Note that we have used the fact that || f ||22 ≤ N.

(1)⇒ (4) : Using the Cauchy-Schwarz inequality and Parseval’s formula, we have

∑
k

∣∣∣∣∣∑s
f (s)g(s− k)

∣∣∣∣∣
2

=
1
N ∑

k

∣∣ f̃ (k)
∣∣2 |g̃(k)|2 ≤ 1

N

(
∑

k

∣∣ f̃ (k)
∣∣4)1/2(

∑
k
|g̃(k)|4

)1/2

≤ 1
N
√

c1N2

(
∑

k
|g̃(k)|4

)1/2

≤ N
√

c1

(
∑

k
|g̃(k)|2

)

= N
√

c1

(
N ∑

k
|g(k)|2

)
=
√

c1N2||g||22 ≤ c4N2||g||22

as long as c1 ≤ c2
4.

We now know that (1), (3), and (4) are equivalent since (3)⇒ (1)⇒ (4)⇒ (3). Thus, it
is sufficient to show that (1) and (2) are equivalent.

(1)⇒ (2): Trivially, we have
(
maxr

∣∣ f̃ (r)
∣∣)4 ≤ ∑r

∣∣ f̃ (r)
∣∣4, so

max
r

∣∣ f̃ (r)
∣∣ ≤ (∑

r

∣∣ f̃ (r)
∣∣4)1/4

≤
(

c1N4
)1/4

≤ c2N

as long as c1 ≤ c4
2.

(2)⇒ (1): Using Parseval’s formula and the fact that || f ||22 ≤ N, we have

∑
r

∣∣ f̃ (r)
∣∣4 ≤ max

r

∣∣ f̃ (r)
∣∣2 ∑

r

∣∣ f̃ (r)
∣∣2 ≤ (c2N)2 ∑

r

∣∣ f̃ (r)
∣∣2

= c2
2N2

(
N ∑

r
| f (r)|2

)
= c2

2N3|| f ||22 ≤ c2
2N4 ≤ c1N4

as long as c1 ≥ c2
2.

Therefore, (1) is equivalent to (2), so the proof is complete.

Recall that we say f is α-uniform if condition (1) holds for α = c1, and a set A ⊂ ZN is
α-uniform if its balanced function is. The following is an easy fact about sums of uniform
functions.

Lemma 3.2. Suppose that for 1 ≤ i ≤ k, fi : ZN → D is αi-uniform. Then the sum f1 + . . . + fk
is (α1/4

1 + . . . + α1/4
k )4-uniform.
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Proof. First note that by definition,

˜( f1 + . . . + fk)(r) = ∑
s

( f1 + . . . + fk)(s)ω−rs = ∑
s

f1(s)ω−rs + . . . + ∑
s

fk(s)ω−rs

= f̃1(r) + . . . + f̃k(r)

for each r ∈ ZN . Thus, we have

∑
r

∣∣∣ ˜( f1 + . . . + fk)(r)
∣∣∣4 ≤∑

r

(∣∣ f̃1(r)
∣∣+ . . . +

∣∣ f̃k(r)
∣∣)4

.

As a result, using Minkowski’s inequality and the fact that each fi is αi-uniform, we see
that [

∑
r

∣∣∣ ˜( f1 + . . . + fk)(r)
∣∣∣4]1/4

≤
[
∑

r

(∣∣ f̃1(r)
∣∣+ . . . +

∣∣ f̃k(r)
∣∣)4
]1/4

≤
(

∑
r

∣∣ f̃1(r)
∣∣4)1/4

+ . . . +

(
∑

r

∣∣ f̃k(r)
∣∣4)1/4

≤ (α1N4)1/4 + . . . + (αkN4)1/4 = N(α1/4
1 + . . . + α1/4

k ).

Hence, we have

∑
r

∣∣∣ ˜( f1 + . . . + fk)(r)
∣∣∣4 ≤ (α1/4

1 + . . . + α1/4
k )4N4,

so f1 + . . . + fk is (α1/4
1 + . . . + α1/4

k )4-uniform.

In the proof of Roth’s Theorem, we saw that α-uniformity for small enough α was
enough to guarantee that a set had many three-term progressions in ZN . As we discussed
earlier, it is necessary to strengthen our notion of randomness to deal with progressions of
length four. We now present the concept of quadratic uniformity more formally.

Recall that given a function f : ZN → C and k ∈ ZN , we define ∆( f ; k) : ZN → C by
∆( f ; k)(s) = f (s) f (s− k). We have the following result, where equivalence has the same
definition as it did in Lemma 3.1.

Lemma 3.3. Let f : ZN → D be a function to the closed unit disk in C. Then the following are
equivalent:

1. ∑u ∑v

∣∣∣∑s f (s) f (s− u) f (s− v) f (s− u− v)
∣∣∣2 ≤ c1N4

2. ∑k ∑r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 ≤ c2N5

3.
∣∣∣∆̃( f ; k)(r)

∣∣∣ ≥ c3N for at most c2
3N pairs (k, r)

4. For all but c4N values of k, the function ∆( f ; k) is c4-uniform
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Proof. (1)⇔ (2): Using Parseval’s formula and the multiplicative property of the convolu-
tion, we have the following:

∑
u

∑
v

∣∣∣∣∣∑s
f (s) f (s− u) f (s− v) f (s− u− v)

∣∣∣∣∣
2

= ∑
u

∑
v

∣∣∣∣∣∑s
∆( f ; u)(s)∆( f ; u)(s− v)

∣∣∣∣∣
2

= ∑
u

∑
v

∣∣∣∣ [∆( f ; u) ∗ ∆( f ; u)] (v)
∣∣∣∣2 = ∑

u

1
N ∑

v

∣∣∣ ˜[∆( f ; u) ∗ ∆( f ; u)](v)
∣∣∣2

= ∑
u

1
N ∑

v

∣∣∣∣∆̃( f ; u)(v)∆̃( f ; u)(v)
∣∣∣∣2 =

1
N ∑

u
∑
v

∣∣∣∆̃( f ; u)(v)
∣∣∣4,

so the equivalence between (1) and (2) follows immediately if c1 = c2.

(2)⇒ (3): Suppose that
∣∣∣∆̃( f ; k)(r)

∣∣∣ ≥ c3N for more than c2
3N pairs (k, r), so

∣∣∣∆̃( f ; k)(r)
∣∣∣4 ≥

c4
3N4 for more than c2

3N pairs (k, r). Then

∑
k

∑
r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 > (c4

3N4)(c2
3N) = c6

3N5 ≥ c2N5

if c2 ≤ c6
3. By taking the contrapositive of this, we see that (2) implies (3) if c2 ≤ c6

3.

(3) ⇒ (2): Again, we prove this implication by proving the contrapositive. Observe first
that for any r and k in ZN , we have

∑
r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 = N ∑

v

∣∣∣∣∣∑s
f (s) f (s− u) f (s− v) f (s− u− v)

∣∣∣∣∣
2

by the proof of (1)⇔ (2). Using the triangle inequality and the fact that f takes values in
the unit disk, we then have

∑
r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 ≤ N ∑

v

(
∑

s
| f (s)|| f (s− u)|| f (s− v)|| f (s− u− v)|

)2

≤ N ∑
v

(
∑

s
1

)2

= N4.

We now claim that if (2) does not hold, then there are more than c2N/2 values of k such

that ∑r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 > c2N4/2. Indeed, if there were no more than c2N/2 such k, then we

would have at least N − c2N/2 values of k for which ∑r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 ≤ c2N4/2. Hence,

∑
k

∑
r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 ≤ (N − c2N/2)(c2N4/2) + (c2N/2)(N4)

= (c2 − c2
2/4)N5 ≤ c2N5.

so (2) would hold. Therefore, we have more than c2N/2 values of k such that

∑
r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 > c2N4/2.



Quadratic Uniformity 30

For each such k, Lemma 3.1 tells us that since ∑r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 > c2N4/2, we must have

maxr

∣∣∣∆̃( f ; k)(r)
∣∣∣ > (c2/2)1/2N. Thus, if c2 ≥ 2c2

3, then there are more than c2
3N values of

k for which there is an r such that
∣∣∣∆̃( f ; k)(r)

∣∣∣ > c3N. Hence, (3) does not hold, as desired.

We conclude that (3) implies (2) if c2 ≥ 2c2
3.

We now have equivalence among (1), (2), and (3). It suffices to show that (2) and (4) are
equivalent.

(4)⇒ (2): If ∆( f ; k) is c4-uniform for all but c4N values of k, then there are at least N− c4N

values of k for which ∑r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 ≤ c4N4. Recall also that for the other c4N values of

k, we still have the bound ∑r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 ≤ N4. Hence,

∑
k

∑
r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 ≤ (N − c4N)(c4N4) + (c4N)(N4) = (2c4 − c2

4)N5 ≤ c2N5

as long as c2 ≥ 2c4.

(2) ⇒ (4): We prove the contrapositive again. If (4) does not hold, then there are more

than c4N values of k such that ∑r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 > c4N4. Thus,

∑
k

∑
r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 > (c4N)(c4N4) = c2

4N5 ≥ c2N5

as long as c2 ≤ c2
4. Therefore, (2) implies (4) if c2 ≤ c2

4.
Hence, we see that (2) and (4) are equivalent, so the proof is complete.

Recall that we say f is quadratically α-uniform if condition (1) in Lemma 3.3 holds for
α = c1, and a set A ⊂ ZN is quadratically α-uniform if its balanced function is. Above, we
claimed that quadratic uniformity is somehow a stronger condition than uniformity. The
next two lemmas formalize this claim.

Lemma 3.4. If f is quadratically α-uniform and real-valued, then f is α1/2-uniform.

Proof. If f is quadratically α-uniform, then we have the following:

∑
k

∣∣∣∣∣∑s
f (s) f (s− k)

∣∣∣∣∣
2

= ∑
k

∣∣∣∣∣∣
(

∑
s

f (s) f (s− k)

)2
∣∣∣∣∣∣

= ∑
k

∣∣∣∣∣∑u,s
f (s) f (s− k) f (s− u) f (s− u− k)

∣∣∣∣∣
by expansion and the fact that s− u runs through ZN as u varies

≤∑
k

∑
u

∣∣∣∣∣∑s
f (s) f (s− k) f (s− u) f (s− u− k)

∣∣∣∣∣
by the triangle inequality
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≤∑
k


∑

u

∣∣∣∣∣∑s
f (s) f (s− k) f (s− u) f (s− u− k)

∣∣∣∣∣
2
1/2

(N)1/2


by the Cauchy-Schwarz inequality

= N1/2 ∑
k

∑
u

∣∣∣∣∣∑s
f (s) f (s− k) f (s− u) f (s− u− k)

∣∣∣∣∣
2
1/2

≤ N1/2

∑
k

∑
u

∣∣∣∣∣∑s
f (s) f (s− k) f (s− u) f (s− u− k)

∣∣∣∣∣
2
1/2

(N)1/2

again by the Cauchy-Schwarz inequality

= N

∑
k

∑
u

∣∣∣∣∣∑s
f (s) f (s− k) f (s− u) f (s− u− k)

∣∣∣∣∣
2
1/2

≤ N(αN4)1/2

since f is real-valued and quadratically α-uniform

= α1/2N3.

Hence, by (3) in Lemma 3.1, f is α1/2-uniform as desired.

Lemma 3.5. Let A ⊂ N have cardinality δN, and suppose that A is quadratically α-uniform.
Then for all but at most α1/2N values of k, A ∩ (A + k) is 81α1/2-uniform. Furthermore, for all
but at most α1/4N values of k,

∣∣|A ∩ (A + k)| − δ2N
∣∣ ≤ α1/8N.

Proof. Let f be the balanced function of A, and identify A ∩ (A + k) with its characteristic
function. Then for each s ∈ ZN , we have

A ∩ (A + k)(s) =

{
1 if s ∈ A ∩ (A + k)
0 if s /∈ A ∩ (A + k)

=

{
δ + (1− δ) if s ∈ A ∩ (A + k)
δ + (−δ) if s /∈ A ∩ (A + k)

= (δ + f (s))(δ + f (s− k)) = δ2 + δ f (s) + δ f (s− k) + f (s) f (s− k).

By assumption, f is quadratically α-uniform, so by Lemma 3.3 (specifically the cases of
(1) implies (2) with c2 = α and (2) implies (4) with c2 = c2

4), we know that for all but at
most α1/2N values of k, the function ∆( f ; k) is α1/2-uniform. Also, because f is real-valued,
Lemma 3.4 implies that f itself is α1/2-uniform.

For a given k where ∆( f ; k) is α1/2-uniform, define f1, f2, f3 as f1(s) = δ f (s), f2(s) =
δ f (s− k), and f3(s) = f (s) f (s− k) = ∆( f ; k)(s). Observe that

∑
r

∣∣ f̃1(r)
∣∣4 = ∑

r
δ4 ∣∣ f̃ (r)

∣∣4 ≤ δ4α1/2N4 ≤ α1/2N4

since δ ≤ 1 and f is α1/2-uniform. Thus, f1 is α1/2-uniform. Similarly, we know that f2
is α1/2-uniform since s− k varies over ZN as s does. Lastly, f3 is also α1/2-uniform since
f4 = ∆( f ; k).

By Lemma 3.2, we therefore know that that the function A ∩ (A + k) − δ2 is 81α1/2-
uniform. Note, however, that any non-trivial Fourier coefficient of A∩ (A + k)− δ2 equals
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the corresponding coefficient of A ∩ (A + k). Thus, if gk is the balanced function of the set
A ∩ (A + k), then

∑
r
|g̃k(r)|4 = ∑

r 6=0

∣∣∣ ˜A ∩ (A + k)(r)
∣∣∣4 = ∑

r 6=0

∣∣∣ ˜[A ∩ (A + k)− δ2](r)
∣∣∣4 ≤ 81α1/2N4,

so gk is 81α1/2-uniform. By definition, then, the set A ∩ (A + k) is 81α1/2-uniform. Since
this holds for each k such that ∆( f ; k) is α1/2-uniform, we know that A ∩ (A + k) is 81α1/2-
uniform for all but at most α1/2N values of k, as desired.

Now consider |A ∩ (A + k)|. For any k, note that

|A ∩ (A + k)| = ∑
s

A ∩ (A + k)(s)

= ∑
s

[
δ2 + δ f (s) + δ f (s− k) + f (s) f (s− k)

]
= ∑

s
δ2 + ∑

s
δ f (s) + ∑

s
δ f (s− k) + ∑

s
f (s) f (s− k)

= δ2N + ∑
s∈A

δ f (s) + ∑
s/∈A

δ f (s) + ∑
s∈A+k

δ f (s− k)

+ ∑
s/∈A+k

δ f (s− k) + ∑
s

f (s) f (s− k)

= δ2N + |A|δ(1− δ) + (N − |A|)δ(−δ) + |A + k|δ(1− δ)

+ (N − |A + k|)δ(−δ) + ∑
s

f (s) f (s− k)

= δ2N + ∑
s

f (s) f (s− k)

Thus, |A∩ (A + k)| − δ2N = ∑s f (s) f (s− k), so
∣∣|A ∩ (A + k)| − δ2N

∣∣ = |∑s f (s) f (s− k)|.
As a result, if we had

∣∣|A ∩ (A + k)| − δ2N
∣∣ > α1/8N for more than α1/4N values of k, then

we would have

∑
k

∣∣∣∣∣∑s
f (s) f (s− k)

∣∣∣∣∣
2

> (α1/4N)(α1/8N)2 = α1/2N3,

which by Lemma 3.1 would contradict the fact that f is α1/2-uniform. Thus, for all but at
most α1/4N values of k,

∣∣|A ∩ (A + k)| − δ2N
∣∣ ≤ α1/8N, as desired.

We now recall the standard norms for functions f : ZN → C. The l1 norm is given by
|| f ||1 = ∑s | f (s)|, and the l2 norm is given by || f ||2 =

(
∑s | f (s)|2

)1/2. From the Cauchy-
Schwarz inequality, we see that for any f ,

|| f ||1 = ∑
s
| f (s)| ≤

(
∑

s
| f (s)|2

)1/2(
∑

s
1

)1/2

= N1/2|| f ||2.

Hence, if || f ||1 = wN, then we have || f ||22 ≥ w2N. We now wish to show that if equality
almost holds in this inequality, then f is almost constant over ZN . The following lemma
makes this clear.
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Lemma 3.6. Let f : ZN → R+ map ZN to the non-negative reals with || f ||1 = wN. Suppose
that || f ||22 ≤ (1 + ε)w2N for some ε > 0. Then for each A ⊂ ZN , we have∣∣∣∣∣∑s∈A

f (s)− w|A|
∣∣∣∣∣ ≤ ε1/2wN1/2|A|1/2.

Proof. We first claim that the the variance of f is no more than εw2. Observe that by defi-
nition of the mean and using the fact that f is non-negative, we have

E[ f ] =
1
N ∑

s
f (s) =

1
N ∑

s
| f (s)| = 1

N
|| f ||1 =

1
N

wN = w.

Similarly, observe that

E[ f 2] =
1
N ∑

s
f (s)2 =

1
N ∑

s
| f (s)|2 =

1
N
|| f ||22 ≤ (1 + ε)w2.

Now, by the definition of variance, we have

var( f ) = E[( f − w)2] = E[ f 2]− 2wE[ f ] + E[w2] ≤ (1 + ε)w2 − 2w2 + w2 = εw2

where we have used the linearity of the functional E. We can now prove the lemma easily.
Indeed, by the Cauchy-Schwarz inequality, we have∣∣∣∣∣∑s∈A

f (s)− w|A|
∣∣∣∣∣ ≤ ∑

s∈A
| f (s)− w| ≤

(
∑
s∈A

( f (s)− w)2

)1/2(
∑
s∈A

1

)1/2

≤ |A|1/2

(
∑

s
( f (s)− w)2

)1/2

= |A|1/2 (N · var( f ))1/2 ≤ ε1/2wN1/2|A|1/2

which is what we wanted to show.

In the next lemma, we prove a result regarding the number of arithmetic progressions
in uniform sets. However, this result only tells us about progressions of length three be-
cause we are assuming uniformity (rather than quadratic uniformity). When we eventu-
ally add an assumption about quadratic uniformity, we will be able to say something about
the number of progressions of length four. The following lemma will be useful when we
add in the stronger assumption.

Before stating the lemma, though, it is important to point out a method that is common
in Fourier analytic approaches to additive number theory. Notice that if A is a subset of
ZN , then any progression of length k in A can be identified with a k-tuple in Ak that has
the form (a, a− r, a− 2r, . . . , a− (k− 1)r) for some a ∈ A and r ≥ 1. If this is the case, then
we see that a ∈ A ∩ (A + r) ∩ . . . ∩ (A + (k − 1)r). Therefore, if we are interested in the
number of progressions of length k in A, we consider the sum

∑
r
|A ∩ (A + r) ∩ . . . ∩ (A + (k− 1)r)|.

However, for each r, we can express |A ∩ (A + r) ∩ . . . ∩ (A + (k− 1)r)| in terms of this
set’s characteristic function, namely

∑
s

[A ∩ (A + r) ∩ . . . ∩ (A + (k− 1)r)] (s).
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But this can be written as

∑
s

A(s)A(s− r) · · · A(s− (k− 1)r).

Therefore, the number of progressions of length k in A (including those with common
difference r = 0) is given by

∑
r

∑
s

A(s)A(s− r) · · · A(s− (k− 1)r),

which lends itself nicely to Fourier analytic arguments.

Lemma 3.7. Let A, B, and C be subsets of ZN with cardinalities αN, βN, and γN respectively. If
C is η-uniform, then ∣∣∣∣∣∑r

|A ∩ (B + r) ∩ (C + 2r)| − αβγN2

∣∣∣∣∣ ≤ η1/4N2.

Proof. As usual, identify A, B, and C with their characteristic functions. Then for each pair
s, r ∈ ZN , we have

A(s)B(s− r)C(s− 2r) =

{
1 if s ∈ A ∩ (B + r) ∩ (C + 2r)
0 if not.

Therefore, we see that

∑
r
|A ∩ (B + r) ∩ (C + 2r)| = ∑

r
∑

s
A(s)B(s− r)C(s− 2r).

But observe the following. For any pair s, r, if we let x = s and y = s− r, then A(s)B(s−
r)C(s− 2r) = A(x)B(y)C(−x + 2y) = A(x)B(y)C(z) where x − 2y + z = 0. Conversely,
for any triple x, y, z such that x− 2y + z = 0, we can let s = x and r = x− y. Then y = s− r
and z = 2y− x = s− 2r, so A(x)B(y)C(z) = A(s)B(s− r)C(s− 2r). Hence, we have

∑
r

∑
s

A(s)B(s− r)C(s− 2r) = ∑
x−2y+z=0

A(x)B(y)C(z).

Now recall that for fixed x, y, z, we have

∑
p

ω−p(x−2y+z) =

{
N if x− 2y + z = 0
0 if not.

Thus, we can write the sum ∑x−2y+z=0 A(x)B(y)C(z) as

∑
x,y,z

A(x)B(y)C(z)

(
1
N ∑

p
ω−p(x−2y+z)

)
.

This, in turn, equals
1
N ∑

p
∑

x,y,z
A(x)B(y)C(z)ω−p(x−2y+z),
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which we can then write as

1
N ∑

p

(
∑
x

A(x)ω−px

)(
∑
y

B(y)ω2py

)(
∑

z
C(z)ω−pz

)
.

By definition of the Fourier coefficients, this is simply 1
N ∑p Ã(p)B̃(−2p)C̃(p). Therefore,

we have found that

∑
r
|A ∩ (B + r) ∩ (C + 2r)| = 1

N ∑
p

Ã(p)B̃(−2p)C̃(p).

Note that for p = 0, we have

1
N

Ã(0)B̃(0)C̃(0) =
1
N

(
∑

s
A(s)

)(
∑

s
B(s)

)(
∑

s
C(s)

)
= αβγN2.

As a result,∣∣∣∣∣∑r
|A ∩ (B + r) ∩ (C + 2r)| − αβγN2

∣∣∣∣∣ =

∣∣∣∣∣ 1
N ∑

p 6=0
Ã(p)B̃(−2p)C̃(p)

∣∣∣∣∣ ,

so it suffices to show that
∣∣∣∑p 6=0 Ã(p)B̃(−2p)C̃(p)

∣∣∣ ≤ η1/4N3. We have the following:∣∣∣∣∣∑p 6=0
Ã(p)B̃(−2p)C̃(p)

∣∣∣∣∣ ≤ ∑
p 6=0

∣∣Ã(p)
∣∣ ∣∣B̃(−2p)

∣∣ ∣∣C̃(p)
∣∣

= ∑
p 6=0

∣∣Ã(p)
∣∣ ∣∣B̃(−2p)

∣∣ ∣∣ f̃C(p)
∣∣

since f̃C(p) = C̃(p) for p 6= 0

≤ η1/4N ∑
p 6=0

∣∣Ã(p)
∣∣ ∣∣B̃(−2p)

∣∣
since C is η-uniform implies max

p

∣∣ f̃C(p)
∣∣ ≤ η1/4N

≤ η1/4N

(
∑
p 6=0

∣∣Ã(p)
∣∣2)1/2(

∑
p 6=0

∣∣B̃(−2p)
∣∣2)1/2

by the Cauchy-Schwarz inequality

≤ η1/4N

(
∑

p

∣∣Ã(p)
∣∣2)1/2(

∑
p

∣∣B̃(p)
∣∣2)1/2

since − 2p runs through elements in ZN as p runs through all of ZN

= η1/4N

(
N ∑

p
|A(p)|2

)1/2(
N ∑

p
|B(p)|2

)1/2

by Parseval’s formula

= η1/4N (N|A|)1/2 (N|B|)1/2

≤ η1/4N3,

which is what we wanted to show.
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We now wish to prove a similar lemma, except we want to extend the result to four
sets. In doing this, we will need to make some stronger assumptions, including quadratic
uniformity. We will also use Lemma 3.7 a few times, though the general argument will be
more complicated.

Lemma 3.8. Let A, B, C, and D be subsets of ZN with cardinalities αN, βN, γN, and δN
respectively. If C and D are quadratically η4-uniform for some η ≤ 2−20, where η < β2γ2δ2, then∣∣∣∣∣∑r

|A ∩ (B + r) ∩ (C + 2r) ∩ (D + 3r)| − αβγδN2

∣∣∣∣∣ ≤ 3η1/16N2

βγδ
.

Proof. As in the previous lemma, we identify sets with their characteristic functions. Now,
define a non-negative, real-valued function f by f (s) = ∑r B(s− r)C(s− 2r)D(s− 3r).
Note that if we sum f (s) over all s ∈ ZN , we obtain an expression that resembles expres-
sions we dealt with in Lemma 3.7. Recalling that this sum is precisely the l1 norm of f , we
have

|| f ||1 = ∑
s

f (s) = ∑
s

∑
r

B(s− r)C(s− 2r)D(s− 3r)

= ∑
r

∑
s

B(s− r)C(s− 2r)D(s− 3r) = ∑
r
|(B + r) ∩ (C + 2r) ∩ (D + 3r)|.

Note that if we fix r ∈ ZN , the set B∩ (C + r)∩ (D + 2r) is simply a shift of (B + r)∩ (C +
2r) ∩ (D + 3r) by −r. As a result,

|(B + r) ∩ (C + 2r) ∩ (D + 3r)| = |B ∩ (C + r) ∩ (D + 2r)|

for each r ∈ ZN , so

∑
r
|(B + r) ∩ (C + 2r) ∩ (D + 3r)| = ∑

r
|B ∩ (C + r) ∩ (D + 2r)|.

By assumption, D is quadratically η4-uniform, so by Lemma 3.4, we know that D is η2-
uniform. We can now apply Lemma 3.7 to obtain

∣∣|| f ||1 − βγδN2∣∣ =

∣∣∣∣∣∑r
|B ∩ (C + r) ∩ (D + 2r)| − βγδN2

∣∣∣∣∣ ≤ η1/2N2.

Hence, we know that

(βγδ− η1/2)N2 ≤ || f ||1 ≤ (βγδ + η1/2)N2.

We now wish to estimate the l2 norm of f . By simple expansion, we have

|| f ||22 = ∑
s

(
∑

r
B(s− r)C(s− 2r)D(s− 3r)

)(
∑

q
B(s− q)C(s− 2q)D(s− 3q)

)
= ∑

s
∑
r,q

B(s− r)B(s− q)C(s− 2r)C(s− 2q)D(s− 3r)D(s− 3q)

If we let p = q− r, then this becomes

∑
s

∑
r,p

B(s− r)B(s− r− p)C(s− 2r)C(s− 2r− 2p)D(s− 3r)D(s− 3r− 3p)
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since each pair r, q is uniquely associated with a pair r, p with the property that p = q− r.
We can then write this as

∑
r,p

∣∣∣(B + r) ∩ (B + r + p) ∩ (C + 2r) ∩ (C + 2r + 2p) ∩ (D + 3r) ∩ (D + 3r + 3p)
∣∣∣

= ∑
r,p

∣∣∣B ∩ (B + p) ∩ (C + r) ∩ (C + r + 2p) ∩ (D + 2r) ∩ (D + 2r + 3p)
∣∣∣

= ∑
r,p

∣∣∣(B ∩ (B + p)) ∩
(
(C ∩ (C + 2p)) + r

)
∩
(
(D ∩ (D + 3p)) + 2r

)∣∣∣.
Note that for each p, we can work with the three sets B ∩ (B + p), C ∩ (C + 2p), and
D ∩ (D + 3p). Then the sum

∑
r

∣∣∣(B ∩ (B + p)) ∩
(
(C ∩ (C + 2p)) + r

)
∩
(
(D ∩ (D + 3p)) + 2r

)∣∣∣
resembles the sum dealt with in Lemma 3.7. To apply the results from that lemma, though,
we need to know something about the uniformity of D ∩ (D + 3p).

For this, we recall Lemma 3.5. Since D is quadratically η4-uniform, there are at most
η2N values of k for which the set D ∩ (D + k) is not 81η2-uniform. Thus, there are at most
η2N values of p for which the set D ∩ (D + 3p) is not 81η2-uniform (if N is coprime to
3, then the number of such values of k will be the same as the number of such values of
p, while if N is not coprime to 3, the number of such values of k may be greater than the
number of such values of p). Let U denote the set of such p, so |U| ≤ η2N. Then for each
p /∈ U (that is, when D ∩ (D + 3p) is 81η2-uniform), we can apply Lemma 3.7 to obtain

∑
r

∣∣∣(B ∩ (B + p)) ∩
(
(C ∩ (C + 2p)) + r

)
∩
(
(D ∩ (D + 3p)) + 2r

)∣∣∣
≤ |B ∩ (B + p)|

N
|C ∩ (C + 2p)|

N
|D ∩ (D + 3p)|

N
N2 + 811/4η1/2N2

=
1
N
|B ∩ (B + p)||C ∩ (C + 2p)||D ∩ (D + 3p)|+ 3η1/2N2

We therefore can say the following:

|| f ||22 = ∑
r,p

∣∣∣(B ∩ (B + p)) ∩
(
(C ∩ (C + 2p)) + r

)
∩
(
(D ∩ (D + 3p)) + 2r

)∣∣∣
= ∑

p∈U
∑

r

∣∣∣(B ∩ (B + p)) ∩
(
(C ∩ (C + 2p)) + r

)
∩
(
(D ∩ (D + 3p)) + 2r

)∣∣∣
+ ∑

p/∈U
∑

r

∣∣∣(B ∩ (B + p)) ∩
(
(C ∩ (C + 2p)) + r

)
∩
(
(D ∩ (D + 3p)) + 2r

)∣∣∣
≤ ∑

p∈U
∑

r
N + ∑

p/∈U

(
1
N
|B ∩ (B + p)||C ∩ (C + 2p)||D ∩ (D + 3p)|+ 3η1/2N2

)
= |U|N2 + 3η1/2N3 +

1
N ∑

p
|B ∩ (B + p)||C ∩ (C + 2p)||D ∩ (D + 3p)|
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≤ η2N3 + 3η1/2N3 +
1
N ∑

p
|B ∩ (B + p)||C ∩ (C + 2p)||D ∩ (D + 3p)|

≤ 4η1/2N3 +
1
N ∑

p
|B ∩ (B + p)||C ∩ (C + 2p)||D ∩ (D + 3p)|.

The last inequality follows from η < 1, and we use it to make computations more simple.
We now wish to use the second result from Lemma 3.5. Since C and D are quadratically

η4-uniform, we know that for all but at most ηN values of k,
∣∣|C ∩ (C + k)| − γ2N

∣∣ ≤
η1/2N, and for all but at most ηN values of m,

∣∣|D ∩ (D + m)| − δ2N
∣∣ ≤ η1/2N. Hence, we

know that for all but at most ηN values of k, |C ∩ (C + 2k)| ≤ γ2N + η1/2N, and for all but
at most ηN values of m, |D ∩ (D + 3m)| ≤ δ2N + η1/2N. Therefore, both |C ∩ (C + 2p)| ≤
γ2N + η1/2N and |D ∩ (D + 3p)| ≤ δ2N + η1/2N hold for all but at most 2ηN values of
p. Let J denote the set of p such that these inequalities hold, so the cardinality of the
complement of J satisfies |Jc| ≤ 2ηN.

Continuing with the chain of inequalities from before, we have

1
N ∑

p
|B ∩ (B + p)||C ∩ (C + 2p)||D ∩ (D + 3p)|+ 4η1/2N3

≤ 1
N ∑

p∈J
|B ∩ (B + p)|(γ2N + η1/2N)(δ2N + η1/2N)

+
1
N ∑

p/∈J
(βN)(γN)(δN) + 4η1/2N3

≤ 1
N

(γ2δ2 + γ2η1/2 + δ2η1/2 + η)N2 ∑
p∈J
|B ∩ (B + p)|+ 1

N
|Jc|N3 + 4η1/2N3

≤ N(γ2δ2 + 2η1/2 + η) ∑
p
|B ∩ (B + p)|+ 2ηN3 + 4η1/2N3.

Now note that

∑
p
|B ∩ (B + p)| = ∑

p

(
∑

s
B(s)B(s− p)

)
= ∑

s
B(s) ∑

p
B(s− p) = β2N2.

Therefore, if we continue from above, we obtain

N(γ2δ2 + 2η1/2 + η) ∑
p
|B ∩ (B + p)|+ 2ηN3 + 4η1/2N3

= β2N3(γ2δ2 + 2η1/2 + η) + 2ηN3 + 4η1/2N3

≤ N3(β2γ2δ2 + 2η1/2 + 3η1/2η1/2 + 4η1/2)

≤ N3(β2γ2δ2 + 7η1/2)

≤ N3(β2γ2δ2 + 3η1/8)

where the last two inequalities hold since η ≤ 2−20. We therefore have shown that

|| f ||22 ≤ N3(β2γ2δ2 + 3η1/8).
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Our wish now is to find an ε > 0 such that

|| f ||22 ≤
1
N
|| f ||21(1 + ε).

This will allow us to use Lemma 5, and as a result, we will obtain the desired bound on

∑
r
|A ∩ (B + r) ∩ (C + 2r) ∩ (D + 3r)|.

First, recall that by assumption, η 6= β2γ2δ2, so we can write

N3(β2γ2δ2 + 3η1/8) = N3 (β2γ2δ2 + 3η1/8)
β2γ2δ2

β2γ2δ2

(βγδ− η1/2)2

(
βγδ− η1/2

)2
.

Continuing, we have

= N3
(

βγδ− η1/2
)2
(

1 +
3η1/8

β2γ2δ2

)(
βγδ− η1/2

βγδ

)−2

=
1
N

[
N2
(

βγδ− η1/2
)]2

(
1 +

3η1/8

β2γ2δ2

)(
1− η1/2

βγδ

)−2

≤ 1
N
|| f ||21

(
1 +

3η1/8

β2γ2δ2

)(
1− η1/2

βγδ

)−2

where the last inequality comes from the bound N2(βγδ− η1/2) ≤ || f ||1 which we found
at the beginning of the proof, along with the fact that βγδ− η1/2 > 0 (so squaring does not
switch the inequality).

We consider now the product(
1 +

3η1/8

β2γ2δ2

)(
1− η1/2

βγδ

)−2

.

Using the fact that that (1− x)−2 = ∑∞
n=1 nxn−1 for any |x| < 1 and our assumption that

η ≤ 2−20, we know that this is bounded above by 1 + 4η1/8/(β2γ2δ2). Therefore, we see
that

|| f ||22 ≤
1
N
|| f ||21

(
1 + 4

η1/8

β2γ2δ2

)
.

Let ε = 4η1/8/(β2γ2δ2) and w = || f ||1/N so that || f ||22 ≤ (1 + ε)w2N. By Lemma 3.6, we
then know that ∣∣∣∣∣∑s∈A

f (s)− w|A|
∣∣∣∣∣ ≤ ε1/2wN1/2|A|1/2.

Recalling that |w− βγδN| = (1/N)
∣∣|| f ||1 − βγδN2

∣∣ ≤ η1/2N, we then have∣∣∣∣∣∑s∈A
f (s)− αβγδN2

∣∣∣∣∣ ≤
∣∣∣∣∣∑s∈A

f (s)− w|A|
∣∣∣∣∣+ ∣∣w|A| − αβγδN2∣∣

≤ ε1/2wN1/2|A|1/2 + |A|η1/2N ≤ ε1/2|| f ||1 + η1/2N2

≤ 2η1/16

βγδ

(
βγδ + η1/2

)
N2 + η1/2N2 ≤ 3η1/16N2

βγδ
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where the last inequality follows from our assumption that η ≤ 2−20. But by definition of
f ,

∑
s∈A

f (s) = ∑
r
|A ∩ (B + r) ∩ (C + 2r) ∩ (D + 3r)|,

so we have our desired result.

We are almost ready to show that if a subset of ZN is quadratically α-uniform for a
sufficiently small α, then the set must contain a progression of length four that is a genuine
progression when considered as a subset of Z. We first need to prove one small lemma,
though.

Lemma 3.9. Let A ⊂ ZN be α-uniform with cardinality δN, and let P be an interval of the form
[a, a + M] where M = βN. Then

∣∣|A ∩ P| − βδN
∣∣ ≤ 3α1/4N.

Proof. Departing from our standard notation, we consider the representatives of the con-
gruence classes of ZN to lie in the interval [− bN/2c , bN/2c]. Identifying the set P with
its characteristic function, we have

∣∣P̃(r)
∣∣ =

∣∣∣∣∣∑s
P(s)ω−rs

∣∣∣∣∣ =

∣∣∣∣∣ M

∑
s=1

ω−r(a+s)

∣∣∣∣∣ =
∣∣ω−ra∣∣ · ∣∣∣∣∣ M

∑
s=1

ω−rs

∣∣∣∣∣
=
∣∣ω−r∣∣ · ∣∣∣∣1−ω−rM

1−ω−r

∣∣∣∣ ≤ 2
|1−ω−r|

for each non-zero r ∈ ZN . But note that∣∣1−ω−r∣∣ =
∣∣∣1− e−2πir/N

∣∣∣ = |1− cos (−2πr/N)− i sin (−2πr/N)|

=
√

2− 2 cos (−2πr/N) = 2 |sin (πr/N)| .

Since we have assumed −N/2 ≤ r ≤ N/2 and we know that |sin(x)| ≥ (2/π) |x| for
−π/2 ≤ x ≤ π/2, we have |sin (πr/N)| ≥ 2|r|/N. Therefore |1−ω−r| ≥ 4|r|/N, and as
a result, ∣∣P̃(r)

∣∣ ≤ 2
4|r|/N

=
N

2|r| .

Observe now that

∑
r 6=0

∣∣P̃(r)
∣∣4/3 ≤ ∑

r 6=0

(
N

2|r|

)4/3

=
(

N
2

)4/3

∑
r∈[−N/2,N/2]\{0}

1
|r|4/3

= 2
(

N
2

)4/3 bN/2c

∑
r=1

1
r4/3 ≤ 2

(
N
2

)4/3 ∞

∑
r=1

1
r4/3

≤ 2
(

N
2

)4/3
(

1 +
∞

∑
r=1

∫ r+1

r
x−4/3dx

)
= 2

(
N
2

)4/3 (
1 +

∫ ∞

1
x−4/3dx

)

= 8
(

N
2

)4/3

≤ 4N4/3.
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Also note that if we identify A with its characteristic function, the size of A∩ P is given by

|A ∩ P| = ∑
s

A(s)P(s) =
1
N ∑

r
∑
s,t

A(s)P(t)ω−r(s−t) =
1
N ∑

r
Ã(r)P̃(−r).

Using Hölder’s inequality, we then have

∣∣|A ∩ P| − βδN
∣∣ =

1
N

∣∣∣∣∣∑r
Ã(r)P̃(−r)− βδN2

∣∣∣∣∣ =

∣∣∣∣∣∑r 6=0
Ã(r)P̃(−r)

∣∣∣∣∣
≤ 1

N

(
∑
r 6=0
|Ã(r)|4

)1/4(
∑
r 6=0
|P̃(r)|4/3

)3/4

.

Since A is α-uniform, we know that ∑r 6=0 |Ã(r)|4 = ∑r | f̃A(r)|4 ≤ αN4, where fA denotes,
as usual, the balanced function of A. Therefore,∣∣|A ∩ P| − βδN

∣∣ ≤ 1
N

(
αN4

)1/4 (
4N4/3

)3/4
≤ 3α1/4N

as desired.

We are now fully equipped to prove the main result of this section.

Corollary 3.1. Let A0 ⊂ ZN be quadratically α-uniform with size |A0| = δN, where α ≤
2−832δ448 and N > 200δ−3. Then A0 contains an arithmetic progression of length four.

Proof. Let A = A0 ∩ [2N/5, 3N/5) = B and C = A0 = D. Note that since A0 is quadrat-
ically, α-uniform, it is α1/2-uniform by Lemma 3.4. First we claim that A and B have size
at least δN/10. To show this, take P = [2N/5, 3N/5) in Lemma 3.9, so |P| = βN, where
β = bN/5c /N ≥ 1/5− 1/N. We then have

∣∣|A0 ∩ P| − βδN
∣∣ ≤ 3α1/8N, and as a result,

|A| = |B| =|A0 ∩ P| ≥ βδN − 3α1/8N ≥
(

δ

5
− δ

N
− 3 · 2−104δ56

)
N

≥
(

δ

5
− δ

10

)
N =

δN
10

.

We now wish to apply Lemma 3.8 to the sets A, B, C, and D. For convenience, let |A| =
α′N, |B| = β′N, |C| = γ′N, and |D| = δ′N. Note that C and D are quadratically α-uniform
for some α ≤ 2−832δ448, so they are quadratically η4-uniform for some η ≤ 2−208δ112 ≤
2−20. Also, we have the bound

β′2γ′2δ′2 ≥
(

δ

10

)2

δ4 =
δ6

100
> 2−208δ112 ≥ η,

so the hypotheses of Lemma 3.8 are satisfied here. As a result, we obtain∣∣∣∣∣∑r
|A ∩ (B + r) ∩ (C + 2r) ∩ (D + 3r)| − α′β′γ′δ′N2

∣∣∣∣∣ ≤ 3η1/16N2

β′γ′δ′
,
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so the number of elements (a, a + r, a + 2r, a + 3r) ∈ A× B× C× D is at least

α′β′γ′δ′N2 − 3η1/16N2

β′γ′δ′
.

From the sizes of A, B, C, and D and our bounds on η, we know that this is at least

δ

10
δ

10
δδN2 − 3η1/16N2

(δ/10)δδ
≥ δ4N2

100
− 30 · 2−13δ7N2

δ3 ≥ δ4N2

100
− δ4N2

200
=

δ4N2

200
.

Thus, there are at least δ4N2/200 such elements in A× B× C × D. Of course, not every
such element is actually an arithmetic progression; it could be the case that r = 0. But there
are at most |C| = δN quadruples (a, a + r, a + 2r, a + 3r) ∈ A× B× C× D with r = 0, so
there are at least δ4N2/200− δN quadruples with r 6= 0. By our strict lower bound on N,
we have

δ4N2

200
− δN >

δ4N
(
200δ−3)
200

− δN = 0,

so in particular, there is at least one quadruple with r 6= 0. If (a, a + r, a + 2r, a + 3r)
is this quadruple, then we immediately see that {a, a + r, a + 2r, a + 3r} is a progression
in Z, not just in ZN , because of our restriction of A and B to the interval [2N/5, 3N/5).
Indeed, with this restriction we must have a ∈ [2N/5, 3N/5) and r ∈ (0, N/5), so a +
2r ∈ [2N/5, 4N/5) and a + 3r ∈ [2N/5, N). Thus, {a, a + r, a + 2r, a + 3r} is a genuine
arithmetic progression in A0.

3.2 Sets that Fail to be Quadratically Uniform

In the previous section, we showed that if a subset of {1, . . . , N} is quadratically α-uniform
for a small enough value α, then the set must contain an arithmetic progression of length
four. We now must deal with the more difficult case for when the set is not quadratically
α-uniform.

If A ⊂ ZN is not quadratically α-uniform, then by definition, its balanced function f
fails to be quadratically α-uniform. From Lemma 3.3, this means that

∑
k

∑
r

∣∣∣∆̃( f ; k)(r)
∣∣∣4 ≥ αN5.

Recall from the proof of (3) ⇒ (2) in that lemma, we showed that if (2) does not hold,

then there are at least αN/2 values of k for which there exists an r such that
∣∣∣∆̃( f ; k)(r)

∣∣∣ ≥
(α/2)1/2N. In other words, there are many values of k for which ∆( f ; k) has a large Fourier
coefficient. Let B be the set of such k, so |B| ≥ (α/2)N, and define a function φ : B → ZN

by φ(k) = r, where r is one of the elements of ZN for which
∣∣∣∆̃( f ; k)(r)

∣∣∣ ≥ (α/2)1/2N
(there might be more than one such r, but in this case, just choose one of them). We then
have

∑
k∈B

∣∣∣∆̃( f ; k)(φ(k))
∣∣∣2 ≥ ∑

k∈B
(α/2)N2 ≥ (α/2)2N3.
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It is therefore reasonable to begin our study of sets that fail to be quadratically uniform
with the following proposition. As we shall see, the consequences of this result will even-
tually allow us to find an arithmetic progression P ⊂ Z such that A has increased density
on P, just as we did in the proof of Roth’s Theorem.

Proposition 3.1. Let α > 0, f : ZN → D, B ⊂ ZN , and φ : B→ ZN such that

∑
k∈B

∣∣∣∆̃( f ; k)(φ(k))
∣∣∣2 ≥ αN3.

Then there are at least α4N3 quadruples (a, b, c, d) ∈ B4 such that a + b = c + d and φ(a) +
φ(b) = φ(c) + φ(d).

Proof. For each k ∈ B, we have

∣∣∣∆̃( f ; k)(φ(k))
∣∣∣2 =

(
∑

s
∆( f ; k)(s)ω−sφ(k)

)(
∑

t
∆( f ; k)(t)ω−tφ(k)

)
,

so by definition of ∆( f ; k),

∣∣∣∆̃( f ; k)(φ(k))
∣∣∣2 =

(
∑

s
f (s) f (s− k)ω−sφ(k)

)(
∑

t
f (t) f (t− k)ωtφ(k)

)
= ∑

s,t
f (s) f (s− k) f (t) f (t− k)ω−φ(k)(s−t)

Hence, the inequality in the proposition is equivalent to

∑
k∈B

∑
s,t

f (s) f (s− k) f (t) f (t− k)ω−φ(k)(s−t) ≥ αN3.

Now, let u = s− t, so we can rewrite this as

∑
k∈B

∑
s,u

f (s) f (s− k) f (s− u) f (s− k− u)ω−φ(k)u ≥ αN3.

Since α > 0, we have

αN3 ≤
∣∣∣∣∣∑k∈B

∑
s,u

f (s) f (s− k) f (s− u) f (s− k− u)ω−φ(k)u

∣∣∣∣∣
=

∣∣∣∣∣∑s,u
f (s) f (s− u) ∑

k∈B
f (s− k) f (s− k− u)ω−φ(k)u

∣∣∣∣∣
≤∑

s,u
| f (s)| | f (s− u)|

∣∣∣∣∣∑k∈B
f (s− k) f (s− k− u)ω−φ(k)u

∣∣∣∣∣
≤∑

s,u

∣∣∣∣∣∑k∈B
f (s− k) f (s− k− u)ω−φ(k)u

∣∣∣∣∣
since | f (x)| ≤ 1
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≤
(

∑
s,u

12

)1/2
∑

s,u

∣∣∣∣∣∑k∈B
f (s− k) f (s− k− u)ω−φ(k)u

∣∣∣∣∣
2
1/2

by applying the Cauchy-Schwarz inequality twice

= N

∑
s,u

∣∣∣∣∣∑k∈B
f (s− k) f (s− k− u)ω−φ(k)u

∣∣∣∣∣
2
1/2

.

Consequently, we see that

∑
s,u

∣∣∣∣∣∑k∈B
f (s− k) f (s− k− u)ω−φ(k)u

∣∣∣∣∣
2

≥ α2N4.

For each u, define γ(u) as

γ(u) =
1

N3 ∑
s

∣∣∣∣∣∑k∈B
f (s− k) f (s− k− u)ω−φ(k)u

∣∣∣∣∣
2

,

so that
∑
u

γ(u) ≥ α2N.

For each u, we therefore have

γ(u)N3 = ∑
s

∣∣∣∣∣∑k∈B
f (s− k) f (s− k− u)ω−φ(k)u

∣∣∣∣∣
2

= ∑
s

∣∣∣∣∣∑k
B(k)ω−φ(k)u∆( f ; u)(s− k)

∣∣∣∣∣
2

= ∑
s

∣∣∣∣∣∑k
B(−k)ω−φ(−k)u∆( f ; u)(k− s)

∣∣∣∣∣
2

.

Consider the function ∆( f ; u). Using the fact that | f (x)| ≤ 1, we have

||∆( f ; u)||22 = ∑
t
|∆( f ; u)(t)|2 = ∑

t

∣∣∣ f (t) f (t− u)
∣∣∣2 ≤ N.

Hence, we see that

∑
s

∣∣∣∣∣∑k
B(−k)ω−φ(−k)u∆( f ; u)(k− s)

∣∣∣∣∣
2

≥ γ(u)N2||∆( f ; u)||22,

so by the implication of (4) from (1) in Lemma 3.1, we have

∑
r
|g̃(r)|4 ≥ γ(u)2N4
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where g(k) = B(−k)ω−φ(−k)u. But for each r, we know that

g̃(r) = ∑
k

g(k)ω−kr = ∑
k

B(−k)ω−φ(−k)uω−kr

= ∑
k

B(k)ω−φ(k)uωkr = ∑
k∈B

ω−φ(k)u+kr

= ∑
k∈B

ωφ(k)u−kr,

so we see that

∑
r
|g̃(r)|4 = ∑

r

∣∣∣∣∣∑k∈B
ωφ(k)u−kr

∣∣∣∣∣
4

,

and therefore

∑
r

∣∣∣∣∣∑k∈B
ωφ(k)u−kr

∣∣∣∣∣
4

≥ γ(u)2N4.

We know, though, that ∑u γ(u) ≥ α2N, so using the Cauchy-Schwarz inequality, we have
∑u γ(u)2 ≥ α4N. Therefore, summing the above inequality over u ∈ ZN , we obtain

∑
u

∑
r

∣∣∣∣∣∑k∈B
ωφ(k)u−kr

∣∣∣∣∣
4

≥ α4N5.

We now expand the left hand side of this inequality to conclude the proof of the proposi-
tion. Observe that for each u, r we have∣∣∣∣∣∑k∈B

ωφ(k)u−kr

∣∣∣∣∣
4

=

(
∑
a∈B

ωφ(a)u−ar

)(
∑
b∈B

ωφ(b)u−br

)(
∑
c∈B

ωφ(c)u−cr

)(
∑
d∈B

ωφ(d)u−dr

)

=

(
∑
a∈B

ωφ(a)u−ar

)(
∑
b∈B

ωφ(b)u−br

)(
∑
c∈B

ω−φ(c)u+cr

)(
∑
d∈B

ω−φ(d)u+dr

)
= ∑

a,b,c,d∈B
ωφ(a)u−ar+φ(b)u−br−φ(c)u+cr−φ(d)u+dr

= ∑
a,b,c,d∈B

ωu(φ(a)+φ(b)−φ(c)−φ(d))ω−r(a+b−c−d).

Therefore, we see that

∑
u,r

∑
a,b,c,d∈B

ωu(φ(a)+φ(b)−φ(c)−φ(d))ω−r(a+b−c−d) ≥ α4N5.

But also, we have

∑
u,r

∑
a,b,c,d∈B

ωu(φ(a)+φ(b)−φ(c)−φ(d))ω−r(a+b−c−d)

= ∑
a,b,c,d∈B

(
∑
u

ωu(φ(a)+φ(b)−φ(c)−φ(d))

)(
∑

r
ω−r(a+b−c−d)

)
= ∑

a,b,c,d∈B
χ(a, b, c, d)ψ(a, b, c, d)
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where χ(a, b, c, d) = ∑u ωu(φ(a)+φ(b)−φ(c)−φ(d)) and ψ(a, b, c, d) = ∑r ω−r(a+b−c−d). Note
that

χ(a, b, c, d) =

{
0 if φ(a) + φ(b) 6= φ(c) + φ(d)
N if φ(a) + φ(b) = φ(c) + φ(d)

and

ψ(a, b, c, d) =

{
0 if a + b 6= c + d
N if a + b = c + d

Therefore,
∑

a,b,c,d∈B
χ(a, b, c, d)ψ(a, b, c, d) = N2Q,

where Q is the number of quadruples (a, b, c, d) ∈ B such that a + b = c + d and φ(a) +
φ(b) = φ(c) + φ(d). This gives

∑
u,r

∑
a,b,c,d∈B

ωu(φ(a)+φ(b)−φ(c)−φ(d))ω−r(a+b−c−d) = N2Q,

and since
∑
u,r

∑
a,b,c,d∈B

ωu(φ(a)+φ(b)−φ(c)−φ(d))ω−r(a+b−c−d) ≥ α4N5,

we obtain our desired result that
Q ≥ α4N3.

These quadruples will be important to us throughout the remainder of the proof, so we
give them a name. For φ : B→ ZN , we say that (a, b, c, d) ∈ B4 is φ-additive if a + b = c + d
and φ(a) + φ(b) = φ(c) + φ(d). In the cases where the function φ is understood, we
may say that such a quadruple is additive. We now want to show that for a given φ,
the φ-additive quadruples have structure. This will require the invocation of two strong
theorems, one of which we will not prove (Freiman’s Theorem), and the other of which
we will prove (the Balog-Szemerédi Theorem). In fact, Gowers gives a new proof of the
Balog-Szemerédi Theorem, in which he obtains better bounds than previous proofs did.
These new bounds allow us to find significantly better bounds for Szemerédi’s Theorem
itself.

3.3 Some Combinatorial Considerations

We briefly depart from the setting of ZN and discuss sets in Z. Given finite subsets A, B ⊂
Z, we define the sumset A + B to be

A + B = {a + b : a ∈ A, b ∈ B} .

It is natural to ask how large A + B is, and the answer certainly depends on the structure
of A and B. The following result gives upper and lower bounds on sumsets.

Theorem 3.1. Let A and B be finite subsets of Z. Then |A|+ |B| − 1 ≤ |A + B| ≤ |A| · |B|.
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It is also natural to ask which sets A and B have a small sumset. In particular, can we
characterize the sets for which |A + B| = |A|+ |B| − 1? The following result answers this
question in the affirmative.

Theorem 3.2. Let A and B be finite subsets of Z with |A| ≥ 2 and |B| ≥ 2. If |A + B| =
|A|+ |B| − 1, then A and B are arithmetic progressions of the same common difference.

A much more interesting result in the theory of sumsets is due to Freiman. After seeing
Theorem 3.2, an obvious question is what happens when A + B is close to, but not exactly,
the minimal size. Freiman answers this question for sumsets of the form A + A. Essen-
tially, Freiman’s Theorem says that if |A + A| is on the order of |A|, then A is contained
in a reasonably small generalized arithmetic progression, where a generalized arithmetic
progression is simply a sumset of arithmetic progressions. If P1, . . . , Pd are arithmetic pro-
gressions in Z, then we say that the generalized arithmetic progression Q = P1 + . . . + Pd
has dimension d. The formal statement of Freiman’s Theorem is the following.

Theorem 3.3. Let C be a positive constant. Then there exist constants d and K which depend only
on C such that for each finite subset A ⊂ Z with |A + A| ≤ C|A|, there exists a generalized
arithmetic progression Q of dimension at most d for which |Q| ≤ K|A| and A ⊂ Q.

Note that the conclusion that Q is small (that is, the dimension of Q is no greater than d
and the size of Q is on the order of |A|) is vital in this theorem. Indeed, any finite set A ⊂ Z

is trivially contained in the generalized arithmetic progression {−m, . . . , 0, . . . , m}, where
m = maxa∈A{|a|}. Thus, ensuring that Q can be small compared to A is an important part
of Freiman’s Theorem.

It will be necessary for us to apply Freiman’s Theorem to subsets of ZD rather than
to subsets of Z. Fortunately, there is a method of embedding finite subsets of ZD into Z

isomorphically, namely, using Freiman isomorphisms.

Definition 11. Let A and B be subsets of some additive groups G and H. We say that a
function φ : A → B is a k-homomorphism if φ(x1) + . . . + φ(xk) = φ(y1) + . . . + φ(yk)
whenever x1 + . . . + xk = y1 + . . . + yk for xi, yi ∈ A. If there is also an inverse map
φ−1 : B→ A that is a k-homomorphism, then we call φ a k-isomorphism.

It is easy to see that Freiman homomorphisms are a weaker type of map than group
homomorphisms (where we require that φ(x + y) = φ(x) + φ(y) for all elements x and y
in the group). The important aspect of Freiman homomorphisms is that they preserve the
additive structure of their domains. The following fact tells us precisely this, which we
state without proof.

Fact 3.1 (Proposition 5.24 in [30]). Let φ : A → B be a k-homomorphism where k ≥ 2, and
let Q = P1 + . . . + Pd = {a0 + a1x1 + . . . adxd : 0 ≤ xi ≤ ni} be a generalized arithmetic
progression in A. Then φ(Q) is a generalized arithmetic progression in B with the same dimension
as Q. Furthermore, if φ is a k-isomorphism, then Q is a proper progression if and only if φ(Q) is a
proper progression.

Here, we say that a generalized arithmetic progression Q = P1 + . . . + Pd is proper if
each q ∈ Q has a unique representation q = x1 + . . . xd where xi ∈ Pi. Thus, Q is a proper
progression if and only if |Q| = |P1| · · · |Pd|.
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In order to apply Freiman’s Theorem to subsets of ZD, it will be convenient for us to
consider the following k-homomorphism from ZD into Z. Given a finite set A ⊂ ZD such
that all coordinates of points in A are positive, define φb : A→ Z by

φb(a1, a2, . . . , aD) = a1 + a2b + . . . + aDbD−1

for b ∈ Z. In other words, we are simply sending the D-tuple (a1, a2, . . . , aD) to the in-
teger whose base b expansion corresponds to (a1, a2, . . . , aD). Then φb is certainly a k-
homomorphism for all k ∈ N. More importantly, if b is chosen large enough (k times the
absolute value of the largest coordinate of an element in A), then φb is a k-isomorphism
between A and φb(A). Indeed, this follows from the uniqueness of base b expansions.

Now, let C > 0 be given and let A be a subset of ZD for which |A + A| ≤ C|A|.
Assume that all coordinates of points in A are positive. We can then apply the Freiman
isomorphism φb to A, so that B = φb(A) is a subset of Z with the same cardinality as A.
Since φb preserves the additive structure of A, it is easy to see that |B + B| = |A + A|.
Therefore, we have |B + B| ≤ C|A| = C|B|, where B is a finite set of integers. By Freiman’s
Theorem, there exist constants d and K, depending only on C, and a generalized arithmetic
progression Q in Z of dimension at most d for which |Q| ≤ K|B| and B ⊂ Q. Now consider
the inverse map φ−1

b : Q → ZD which takes an integer in Q to the D-tuple corresponding
to its base b expansion. Of course, it is possible for the base b-expansion of some q ∈ Q to
exceed D in length. If this happens, then we simply allow the coefficient of bD−1 to exceed
b. This ensures that the image of Q is indeed a subset of ZD.

It is not difficult to show that the map φ−1
b is a k-isomorphism between Q and the image

of Q. And of course, R = φ−1
b (Q) contains the set A since φ−1

b sends B back up to A. Then
R is a generalized arithmetic progression in ZD that contains A. Furthermore, since φ−1

preserves cardinalities, we know that R has dimension at most d and |R| ≤ K|A|. Here, d
and K are the same constants as in the previous paragraph.

Now, if A ⊂ ZD has some elements with negative coordinates, we can still obtain
the same result. Indeed, simply shift A by a k-isomorphism (certainly, any shift is an
isomorphism) to obtain a set A′ ⊂ ZD where all coordinates of points in A′ are positive.
Then find a generalized arithmetic progression R′ in ZD as we did above that covers A′.
Finally, shift R′ back towards A using the inverse shift to obtain a progression R that covers
A. It is easy to see that R has the desired properties. Thus, Freiman’s Theorem holds for
subsets of ZD.

As it turns out, we will have to consider subsets A of ZD where |A− A| ≤ C|A| for
some constant C. Of course, Freiman’s Theorem directly tells us nothing about A since
we are assuming a bound on the difference set rather than on the sumset. Fortunately,
Ruzsa proved that the same result holds when we consider difference sets [21]. In fact, his
theorem is more general.

Theorem 3.4 (Ruzsa). Let C be a positive constant. Then there exist constants d ≤ 218C32

and K ≤ C52d which depend only on C such that for each pair of finite subsets A, B ⊂ Z with
|A| = |B| and |A + B| ≤ C|A|, there exists a proper generalized arithmetic progression Q with
dimension at most d for which |Q| ≤ K|A| and A ⊂ Q.

Note that by taking B = −A in this theorem we obtain the desired result for difference
sets. Our primary goal for the remainder of this section will now be to prove the Balog-
Szemerédi Theorem:
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Theorem 3.5. Let A be a subset of ZD with cardinality m such that ||A ∗ A||22 ≥ c0m3. Then
there are constants c and C depending only on c0, and a subset A′′ ⊂ A of cardinality at least cm
for which |A′′ − A′′| ≤ Cm.

Note here that the norm ||A ∗ A||22 has an important combinatorial interpretation. In-
deed, for each x ∈ ZD, we have

A ∗ A(x) = ∑
y∈ZD

A(y)A(y− x) = ∑
y−z=x

A(y)A(z),

which equals the number of pairs (y, z) ∈ A2 such that y− z = x. As a result,

||A ∗ A||22 = ∑
x∈ZD

[A ∗ A(x)]2 = ∑
x∈ZD

(
∑

y−z=x
A(y)A(z)

)(
∑

u−w=x
A(u)A(w)

)
= ∑

x∈ZD
∑

y−z=x=u−w
A(y)A(z)A(u)A(w) = ∑

y−z=u−w
A(y)A(z)A(u)A(w),

which equals the number the quadruples (u, w, y, z) ∈ A4 such that u− w = y− z. Thus,
the Balog-Szemerédi Theorem tells us that if A is a set in ZD containing many quadruples
(u, w, y, z) for which u− w = y− z, then there is a large subset A′′ of A whose difference
set is small. Of course, we can then apply Freiman’s Theorem to A′′ (we will use Ruzsa’s
form of it) to obtain the following beautiful corollary.

Corollary 3.2. Let A ⊂ ZD have cardinality m and suppose that there are at least c0m3 quadru-
ples (x, y, z, w) ∈ A4 such that x − y = z − w. Then there is a proper generalized arithmetic
progression Q of cardinality at most Cm and dimension at most d such that |A ∩Q| ≥ cm, where
the constants C, d, and c depend only on c0.

We now give the proof of Theorem 3.5, which will first require a technical lemma.

Lemma 3.10. Let X be a set of cardinality m, let δ > 0, and let A1, . . . , An be subsets of X such
that ∑n

x=1 ∑n
y=1 |Ax ∩ Ay| ≥ δ2mn2. Then there is a subset K ∈ [1, n] of cardinality at least

2−1/2δ5n such that for at least 90% of the pairs (x, y) ∈ K2, the intersection Ax ∩ Ay has size at
least δ2m/2. In particular, this result holds if |Ax| ≥ δm for each x ∈ [1, n].

Proof. For each j ∈ X, define Bj = {i : j ∈ Ai} to be the set of indices i for which Ai
contains j. Then let Ej = B2

j , so Ej ⊂ [1, n]2. Now, randomly choose five elements j1, . . . , j5
from X uniformly and independently, so that the probability of choosing a given j is 1/m.

Let Y = Ej1 ∩ · · · ∩ Ej5 ⊂ [1, n]2. Then (x, y) ∈ Y if and only if Ax and Ay both contain
all of j1, . . . , j5. We now consider probabilities associated with this set Y. Note that for any
(x, y) ∈ [1, n]2 and r ∈ {1, . . . , 5}, we have

Pr
(
(x, y) ∈ Ejr

)
= Pr

(
x ∈ Bjr and y ∈ Bjr

)
= Pr

(
jr ∈ Ax ∩ Ay

)
=
|Ax ∩ Ay|

m

so let pxy = |Ax ∩ Ay|/m be this probability. Since we have chosen the five jr uniformly
and independently, we see that

Pr ((x, y) ∈ Y) = [Pr
(
(x, y) ∈ Ejr

)
]5 = p5

xy.
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By assumption, we have ∑n
x,y=1 |Ax ∩ Ay| ≥ δ2mn2, so

n

∑
x,y=1

pxy =
n

∑
x,y=1

|Ax ∩ Ay|
m

≥ δ2n2.

Using Hölder’s inequality twice, we have

δ2n2 ≤
n

∑
x,y=1

pxy ≤
n

∑
x=1

( n

∑
y=1

p5
xy

)1/5 (
n4/5

) = n4/5
n

∑
x=1

(
n

∑
y=1

p5
xy

)1/5

≤ n4/5

( n

∑
x=1

n

∑
y=1

p5
xy

)1/5 (
n4/5

) = n8/5

(
n

∑
x,y=1

p5
xy

)1/5

and therefore,
n

∑
x,y=1

p5
xy ≥ δ10n2.

Thus, the expected size of Y is

E[|Y|] :=
n

∑
x,y=1

Pr ((x, y) ∈ Y) ≥ δ10n2.

Now, let Z = {(x, y) ∈ Y : |Ax ∩ Ay| < δ2m/2}, which is simply the set of pairs (x, y) in Y
such that pxy < δ2/2. For any (x, y) ∈ [1, n]2, we then have

Pr ((x, y) ∈ Z) = Pr
(

(x, y) ∈ Y and pxy <
δ2

2

)
= Pr

(
pxy <

δ2

2

)
· Pr

(
(x, y) ∈ Y

∣∣∣pxy <
δ2

2

)
≤ Pr

(
(x, y) ∈ Y

∣∣∣pxy <
δ2

2

)
≤
(

δ2

2

)5

since Pr ((x, y) ∈ Y) = p5
xy. As a result, the expected size of Z is

E[|Z|] :=
n

∑
x,y=1

Pr ((x, y) ∈ Z) ≤ δ10n2

32
.

We therefore see that

E[|Y| − 16|Z|] = E[|Y|]− 16E[|Z|] ≥ δ10n2

2
,

so in particular, there exist elements j1, . . . , j5 in X such that the corresponding sets Y and
Z satisfy |Y| ≥ 16|Z| and |Y| ≥ (δ10n2)/2.

Let K = Bj1 ∩ . . . ∩ Bj5 , so K2 = Ej1 ∩ . . . ∩ Ej5 = Y. We then have |K| =
√
|Y| ≥√

(δ10n2)/2 = 2−1/2δ5n, which is the desired lower bound on the size of K. We also see
that since Z is a subset of Y and |Y| ≥ 16|Z|, the size of Z is at most a sixteenth the size of
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Y. But the elements (x, y) of Z are precisely those in Y = K2 for which |Ax ∩ Ay| < δ2m/2.
Therefore, at least fifteen sixteenths of the elements (x, y) in K2 have |Ax ∩ Ay| ≥ δ2m/2,
as desired.

Now, suppose that |Ax| ≥ δm for each x ∈ [1, n]. We wish to show that

n

∑
x,y=1

|Ax ∩ Ay| ≥ δ2mn2.

For each j ∈ X, let R(j) = |Bj|, where, as before, Bj = {i : j ∈ Ai}. Thus, R(j) counts the
number of sets Ai to which j belongs. If we put a uniform distribution on X, then we can
view R as a random variable on X with expected value E[R] = (1/m) ∑j∈X R(j). We then
know that the variance of R satisfies

0 ≤ Var(R) = E[(R−E[R])2] = E[R2]−E[R]2,

so in particular, E[R2] ≥ E[R]2. Note, though, that

mE[R] = ∑
j∈X

R(j) =
n

∑
x=1
|Ax| ≥ δmn

by the principle of inclusion/exclusion and our assumption that |Ax| ≥ δm for each x.
Thus, E[R]2 ≥ δ2n2. Additionally, observe that

mE[R2] = ∑
j∈X

R(j)2 =
n

∑
x,y=1

|Ax ∩ Ay|.

Indeed, if R(j) = k, then there exist i1, . . . , ik such that j ∈ Ai1 ∩ · · · ∩ Aik , and as a result, j
contributes k2 to the sum ∑n

x,y=1 |Ax ∩ Ay|. As a result, we have

n

∑
x,y=1

|Ax ∩ Ay| = mE[R2] ≥ mE[R]2 ≥ δ2mn2,

which is what we wanted to show.

Lemma 3.10 will not only help us to give a new proof of Theorem 3.5, but it also will
allow us to obtain much better bounds on the constants C, d, and c than previous proofs
have done. Interestingly, the new proof is essentially a graph theoretic proof where we will
apply Lemma 3.10 to a set of vertices and their neighborhoods in a conveniently defined
graph.

Proof of Theorem 3.5. Let f : ZD → Z be defined by

f (x) = A ∗ A(x) = ∑
y∈ZD

A(y)A(y− x).

We can interpret f (x) as the number of distinct representations x has in the set A − A.
Thus, f is certainly non-negative, and by the assumption that ||A ∗ A||22 ≥ c0m3, we have
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|| f ||22 ≥ c0m3. It is also clear that f (x) ≤ m for each x ∈ ZD since ∑y∈ZD A(y)A(y− x) ≤
∑y∈ZD A(y) = m. Furthermore, we have

∑
x∈ZD

f (x) = ∑
x∈ZD

∑
y∈ZD

A(y)A(y− x) = ∑
y∈ZD

A(y) ∑
x∈ZD

A(y− x)

= ∑
y∈ZD

A(y)|y− A| = m ∑
y∈ZD

A(y) = m2,

so || f ||1 = m2. This leads us to the additional observation that || f ||22 = ∑x∈ZD f (x)2 ≤
m ∑x∈ZD f (x) = m3, so it is true that c0 ≤ 1.

Now, observe that the support of f is precisely the set A− A. It is entirely possible for
A− A to be large, though. Indeed, consider the set

A = {(0, ar) : a ∈ [1, m/2]} ∪ {(ar, 0) : a ∈ [1, m/2]}

for some r ∈ N. Then A contains many quadruples (u, w, y, z) ∈ A4 for which u− w =
y − z, so ||A ∗ A||22 is large (proportional to m3). But if r is large enough, A − A will be
proportional to m2. Thus, we can only hope to find a subset A′′ of A such that |A′′ − A′′|
is proportional to |A′′|. Fortunately, this can be done.

To find such an A′′, first observe that f (x) ≥ c0m/2 for at least c0m/2 values of x.
Indeed, if this was not true, then we would have

|| f ||22 = ∑
x∈ZD

f (x)2 = ∑
{x: f (x)≥c0m/2}

f (x)2 + ∑
{x: f (x)<c0m/2}

f (x)2

< m2
( c0m

2

)
+

c0m
2

 ∑
{x: f (x)<c0m/2}

f (x)

 ≤ c0m3

2
+

c0m
2
|| f ||1 = c0m3,

which contradicts our bound on || f ||22 from earlier. Let us call x a popular difference if
f (x) ≥ c0m/2, so there are at least c0m/2 popular differences. Observe that for any x ∈
ZD,

f (x) = ∑
y∈ZD

A(y)A(y− x) = ∑
z∈ZD

A(z)A(z + x) = f (−x),

by setting z = y− x. Hence, x is a popular difference if and only if −x is also. Now, define
a graph G with vertex set A by placing an edge between a and b if and only if a− b is a
popular difference (or equivalently, if and only if b− a is a popular difference).

We now wish to know how many edges there are in G. Recall that f (x) is the number
of representations x has in the set A− A, so in particular, f (0) = m, which is the number
of loops in G. And since f (x) = f (−x), we know that the number of non-loop edges in G
is given by

E0 =
1
2 ∑
{x 6=0: f (x)≥c0m/2}

f (x).

As a result, the total number of edges in G is

E =
1
2

f (0) +
1
2 ∑
{x: f (x)≥c0m/2}

f (x) ≥ m
2

+
1
2

( c0m
2

)2
.
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Now, let d(a) be the degree of vertex a in G, so we have

∑
a∈A

d(a) = 2E0 + #(loops) = 2E−m ≥
( c0m

2

)2
.

We now claim that there must be at least c2
0m/8 vertices a such that d(a) ≥ c2

0m/8. Indeed,
if not, we would have

∑
a∈A

d(a) = ∑
{a:d(a)≥c2

0m/8}
d(a) + ∑

{a:d(a)<c2
0m/8}

d(a)

< m
(

c2
0m
8

)
+

c2
0m
8

 ∑
{a:d(a)<c2

0m/8}
1


≤ c2

0m2

8
+

c2
0m2

8
=
( c0m

2

)2
,

which contradicts what we just found. Let δ = c2
0/8 and let X = {a ∈ A : d(a) ≥ δm},

so n = |X| ≥ δm. Let a1, . . . , an be the vertices in X and let A1, . . . , An be their respective
neighborhoods (that is, let Ai be the set of vertices in G that are joined to ai by an edge).
Since |Ai| ≥ δm, we can apply Lemma 3.10 to find a set A′ ⊂ X with |A′| ≥ δ5n/

√
2 ≥

δ6m/
√

2 such that for at least 90% of the pairs ai, aj ∈ A′, the intersection Ai ∩ Aj has size
at least δ2m/2. For simplicity, let α = δ6/

√
2, so |A′| ≥ αm.

We now define a second graph, H, with vertex set A′. Place an edge between ai and aj
if and only if |Ai ∩ Aj| ≥ δ2m/2. We again ask how many edges are in this graph. Similar
to before, the number of non-loop edges is given by

E0 =
1
2

#
(

(ai, aj) ∈ A′ × A′ : |Ai ∩ Aj| ≥
δ2m

2
and i 6= j

)
.

If we let L denote the number of loops in H, then the total number of edges is given by

E = L +
1
2

#
(

(ai, aj) ∈ A′ × A′ : |Ai ∩ Aj| ≥
δ2m

2
and i 6= j

)
=

1
2

L +
1
2

#
(

(ai, aj) ∈ A′ × A′ : |Ai ∩ Aj| ≥
δ2m

2

)
≥ 1

2
L +

1
2

9
10
|A′|2

since at least 90% of the pairs ai, aj ∈ A′ have |Ai ∩ Aj| ≥ δ2m/2. Letting d(a) denote the
degree of vertex a in H, we have

∑
a∈A′

d(a) = 2E0 + L = 2E− L ≥ 9
10
|A′|2.

We now claim that there are at least (1/2)|A′| vertices with degree at least (4/5)|A′|. In-
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deed, if not, then we would have

∑
a∈A′

d(a) = ∑
{a:d(a)≥(4/5)|A′|}

d(a) + ∑
{a:d(a)<(4/5)|A′|}

d(a)

< |A′|
(
|A′|

2

)
+

4|A′|
5

(
∑

{a:d(a)<(4/5)|A′|}
1

)

≤ |A
′|2

2
+

4|A′|
5

(
|A′| − 1

2
|A′|

)
=

9
10
|A′|2,

which contradicts what we just found. Thus, let A′′ be the set of a ∈ A′ such that d(a) ≥
(4/5)|A′|. Then we have |A′′| ≥ (1/2)|A′| ≥ αm/2, where we recall that α = δ5/

√
2. We

now wish to show that A′′ − A′′ has small cardinality (that is, on the order of |A′′|).
Let ai and aj be elements of A′′. Since the degrees of ai and aj in H are each at least

(4/5)|A′|, we know that there are at least (4/5)|A′| + (4/5)|A′| − |A′| = (3/5)|A′| ele-
ments ak ∈ A′ such that ak is joined to both ai and aj. For each such ak, this implies that

|Ai ∩ Ak| ≥
δ2m

2
and |Aj ∩ Ak| ≥

δ2m
2

.

Now, let b ∈ Ai ∩ Ak. By definition of Ai and Ak, we then know that b is joined to both ai
and ak in the graph G, so ai− b and ak− b are popular differences. Thus, f (ai− b) ≥ c0m/2
and f (ak − b) ≥ c0m/2, which implies that ai − b and ak − b each have at least c0m/2
representations in A− A (recall that f (x) is the number of distinct representations of x in
the set A− A). If ai− b = p− q and ak− b = r− s are such representations (so p, q, r, s ∈ A),
then we can write

ai − ak = ai − b− (ak − b) = p− q− (r− s).

Hence, there are at least (c0m/2)2 ways of writing ai− ak as p− q− (r− s) where (p, q, r, s) ∈
A4, p− q = ai − b and r− s = ak − b. Note also that if b1 and b2 are elements of Ai ∩ Ak,
then the set of quadruples (p, q, r, s) ∈ A4 where p− q = ai − b1 and r− s = ak − b1 is dis-
joint from the set of quadruples (p, q, r, s) ∈ A4 where p− q = ai − b2 and r− s = ak − b2.
Thus, if we sum over all b ∈ Ai ∩ Ak, we see that there are at least

|Ai ∩ Ak|
( c0m

2

)2
≥ δ2m

2
=

δ2c2
0m3

8

quadruples (p, q, r, s) ∈ A4 such that ai − ak = p− q− (r− s). Of course, the same is true
for aj − ak.

But now note that we can write ai − aj = ai − ak − (aj − ak), so for each pair of quadru-
ples (p, q, r, s) ∈ A4 and (t, u, v, w) ∈ A4 such that ai − ak = p− q− (r− s) and aj − ak =
t− u− (v− w), we have

ai − aj = p− q− (r− s)− [t− u− (v− w)] .

Thus, for each k, there are at least (δ2c2
0m3/8)2 ways of writing ai − aj as p− q− (r− s)−

[t− u− (v− w)] where (p, q, r, s, t, u, v, w) ∈ A8, p− q− (r− s) = ai − ak, and t− u− (v−
w) = aj− ak. Note again that if k1 and k2 are such that the vertices ak1 and ak2 in H are both
joined to ai and aj, then the set of such octuples corresponding to k1 is disjoint from the set
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of such octuples corresponding to k2. Hence, if we sum over all k such that ak is joined to
ai and aj in H, then we find that there are at least(

3
5
|A′|

)
δ4c4

0m6

64
≥ 3

320
αmδ4c4

0m6 >
1

120
αm7δ4c4

0

octuples (p, q, r, s, t, u, v, w) ∈ A8 such that ai − aj = p− q− (r− s)− [t− u− (v− w)].
This result holds for all differences ai − aj in A′′ − A′′. Of course, there are m8 octuples

in A8 and each such octuple (p, q, r, s, t, u, v, w) can satisfy ai − aj = p − q − (r − s) −
[t− u− (v− w)] for at most one difference ai − aj. As a result, we see that there are at
most

m8

1
120 αm7δ4c4

0
=

230120
√

2m
c24

0
<

238m
c24

0

differences in A′′ − A′′. Hence,

|A′′ − A′′| ≤ 238

c24
0

m

as desired. In addition, recall that we have

|A′′| ≥ αm/2 =
c12

0 m
2 · 86

√
2

>
c12

0
220 m,

so the theorem is proved with c = 2−20c12
0 and C = 238c−24

0 .

We now conclude this combinatorial section with the important corollary that links our
results from Lemma 3.1 and Theorem 3.5.

Corollary 3.3. Let B ⊂ ZN have cardinality βN, and let φ : B → ZN be a function with at least
c0N3 additive quadruples. Then there are constants γ and η depending only on β and c0, a mod-N
arithmetic progression P ⊂ ZN with |P| ≥ Nγ, and a linear function ψ : P→ ZN such that φ(s)
is defined and equal to ψ(s) for at least η|P| values of s ∈ P.

Proof. Let Γ be the graph of φ, so Γ = {(b, φ(b)) : b ∈ B}. For now, we consider Γ to be
a subset of Z2 rather than of (ZN)2. We then have |Γ| = |B| = βN, and since Γ ⊂ Z2,
we know from before that ||Γ ∗ Γ||22 is the number of quadruples (x, y, z, w) ∈ Γ4 for which
x− y = z− w. But this is simply the number of quadruples(

(b1, φ(b1)), (b2, φ(b2)), (b3, φ(b3)), (b4, φ(b4))
)
∈ Γ4

such that (b1, φ(b1))− (b2, φ(b2)) = (b3, φ(b3))− (b4, φ(b4)), which is equal to the number
of quadruples (b1, b2, b3, b4) ∈ B4 such that b1 − b2 = b3 − b4 and φ(b1)− φ(b2) = φ(b3)−
φ(b4). By rearranging these equalities, it is clear that this equals the number of quadruples
(b1, b4, b3, b2) ∈ B4 such that b1 + b4 = b3 + b2 and φ(b1) + φ(b4) = φ(b3) + φ(b2), which is
simply the number of φ-additive quadruples. By assumption, φ has at least c0N3 additive
quadruples, so

||Γ ∗ Γ||22 ≥ c0N3 =
c0

β3 |Γ|
3.
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By Corollary 3.2, we then know that there exists a proper generalized arithmetic progres-
sion Q = P1 + . . . + Pd with |Q| ≤ CN and |Γ ∩ Q| ≥ cN, where the constants d, C, and c
depend only on c0 and β.

Without loss of generality, we can assume that |Pi| ≤ |Pi+1| for each i ∈ [1, d − 1]
(rearranging the order of the sums in a sumset does not alter the sumset itself). Since Q is
a proper progression (that is, each element in Q has a unique representation as a sum of
elements in P1, . . . , Pd), we know that |Q| = |P1| · · · |Pd|, and therefore,

|Pd|d ≥ |Q| ≥ |Γ ∩Q| ≥ cN,

so |Pd| ≥ (cN)1/d. Now, for each x ∈ P1 + . . . + Pd−1, let Rx = x + Pd. Then we have
|Rx| = |Pd| ≥ (cN)1/d for each x, and Q = ∪Rx, where the union is taken over all x ∈
P1 + . . . + Pd−1. Furthermore, this is a disjoint union because of the fact that Q is proper.
We claim that there is an x such that |Γ ∩ Rx| ≥ cC−1|Rx|. If not, we would have

|Γ ∩Q| =
∣∣∣∣∣⋃x (Γ ∩ Rx)

∣∣∣∣∣ = ∑
x
|Γ ∩ Rx| < ∑

x
cC−1|Rx|

= cC−1|Q| ≤ cC−1(CN) = cN

which contradicts our assumption that |Γ∩Q| ≥ cN. Therefore, there is a one-dimensional
progression R such that |R| ≥ (cN)1/d and |Γ ∩ R| ≥ cC−1|R|.

Assume now that |Γ∩ R| ≥ 2. Let P be the projection of R onto the horizontal axis, and
let A be the projection of R onto the vertical axis. Since R is a one-dimensional progression,
we know that P and A are progressions also. Furthermore, since R and Γ share at least two
points, and Γ is the graph of a function, we know that R is not vertical. As a result, we must
have |P| = |R|. Define a function ψ : P → Z by letting ψ(s) be the integer in A such that
(s, ψ(s)) ∈ R. Note that this is well-defined because R is not vertical, and it is linear since
R is a one-dimensional progression. We then know that Γ contains |R ∩ Γ| pairs (s, ψ(s))
where s ∈ P. Since |R ∩ Γ| ≥ cC−1|R| = cC−1|P|, we see that there are at least cC−1|P|
values of s ∈ P for which ψ(s) = φ(s). Also, |P| ≥ (cN)1/d again by the fact that |P| = |R|.

Now suppose that Γ ∩ R = {(s, r)}. Let P = {s + q : q = 0, . . . , |R| − 1} so that P is
an arithmetic progression in Z and |P| = |R| ≥ (cN)1/d. Define a function ψ : P → Z by
ψ(s + q) = r + q, so ψ is certainly linear. Since (s, r) ∈ Γ, we know that φ(s) = r = ψ(s), so
φ and ψ agree on {s}, which is a set of size 1 ≥ cC−1|R| = cC−1|P|. Thus, the same result
still holds.

We have therefore found a progression P in Z that almost satisfies the conclusions of
the corollary; recall that we want P to be a mod-N progression. Note that for each pair
(s, ψ(s)) ∈ Γ ∩ R, we have s ∈ [0, N − 1] and φ(s) ∈ [0, N − 1] by the fact that Γ is the
graph of a function (embedded into Z2) from a subset of ZN into ZN . Thus, if we reduce
the elements of P modulo N, the values s ∈ P for which (s, ψ(s)) ∈ Γ ∩ R do not change,
and they form a progression in ZN . Let P′ be the set of such s, considered as a subset of ZN
rather than of Z, and since P′ is a progression, let P′ = {a + qr : q = 0, . . . , m− 1}. It is clear
that m ≤ |P|, so extend P′ to the mod-N progression P′′ = {a + qr : q = 0, . . . , |P| − 1}.
Also, extend ψ to a linear function ψ′′ : P′′ → Z so that ψ′′(s) = ψ(s) for each s ∈ P′. We
then know that |P′′| = |P| ≥ (cN)1/d and there are at least cC−1|P′′| values of s ∈ P′′ such
that ψ′′(s) = φ(s) (namely, those s for which (s, ψ(s)) ∈ Γ ∩ R).

As a result, we can set η to be cC−1, but our lower bound on |P′′| is not of the form
Nγ. In order to find such a γ, we do the following. Let N0 be the smallest integer such that
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cN0 > 1 (note that N0 depends only on c, which in turn depends only on c0 and β). Then,
let γ = log(cN0)/(log(Nd

0 )). For all N ≥ N0, we have γ ≤ log(cN)/(d log(N)), so Nγ ≤
(cN)1/d. Also, for each N < N0, we know that cN ≤ 1, so the statement that |P′′| ≥ (cN)1/d

is equivalent to the statement that |P′′| ≥ 1. This, in turn, is equivalent to |P′′| ≥ Nγ

because Nγ ≤ 1 if and only if log(cN)/d ≤ 0. Therefore, γ = log(cN0)/(d log(N0)) and
η = cC−1 are our desired constants, and these depend only on c0 and β.

Gowers mentions that the bounds in Theorem 3.4 (Ruzsa’s version of Freiman’s The-
orem) imply the existence of an absolute constant K that allow us to take γ = cK

0 and
η = exp

(
−(1/c0)K) in Corollary 3.3. These are the bounds that we will use at the end of

Gowers’s proof.

3.4 Quadratic Fourier Sums

Recall from the beginning of section 3.2 that if A fails to be quadratically α-uniform, then
there is a subset B ⊂ ZN with |B| ≥ (α/2)N and a function φ : B → ZN for which∣∣∣∆̃( f ; k)(φ(k))

∣∣∣ ≥ (α/2)1/2N whenever k ∈ B. In particular,

∑
k∈B

∣∣∣∆̃( f ; k)(φ(k))
∣∣∣2 ≥ (α/2)2N3.

From Proposition 3.1, we then know that B contains at least (α/2)8N3 φ-additive quadru-
ples. Then by Corollary 3.3, there are constants γ and η, depending only on α, for which
we can find a mod-N arithmetic progression P with |P| ≥ Nγ and a linear function
ψ : P → ZN such that φ(s) agrees with ψ(s) for at least η|P| values of s ∈ P. Our goal
in this section is to find an arithmetic progression on which the density of A actually in-
creases. To do this, we must use a type of quadratic Fourier analysis.

Proposition 3.2. Let A ⊂ ZN and let f be the balanced function of A. Let P be an arithmetic pro-

gression in ZN of cardinality T, and suppose there exist λ, µ such that ∑k∈P

∣∣∣∆̃( f ; k)(λk + µ)
∣∣∣2 ≥

βN2T. Then there exist quadratic polynomials ψ0, ψ1, . . . , ψN−1 : ZN → ZN for which

∑
s

∣∣∣∣∣ ∑
z∈P+s

f (z)ω−ψs(z)

∣∣∣∣∣ ≥ βNT√
2

.

Proof. For technical reasons, let Q = −P and η = −λ. Then we see that

∑
k∈Q

∣∣∣∆̃( f ; k)(ηk + µ)
∣∣∣2 ≥ βN2T.

By expanding the left-hand side, we have the following:

βN2T ≤ ∑
k∈Q

∣∣∣∣∣∑s
∆( f ; k)(s)ω−(ηk+µ)s

∣∣∣∣∣
2
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= ∑
k∈Q

(
∑

s
∆( f ; k)(s)ω−(ηk+µ)s

)(
∑

t
∆( f ; k)(t)ω−(ηk+µ)t

)
= ∑

k∈Q
∑
s,t

∆( f ; k)(s)ω−(ηk+µ)s∆( f ; k)(t)ω−(ηk+µ)t

= ∑
k∈Q

∑
s,t

f (s) f (s− k) f (t) f (t− k)ω−(ηk+µ)(s−t).

Let u = s− t so that if s is fixed, u varies over ZN as t does. Thus, this becomes

= ∑
k∈Q

∑
s,u

f (s) f (s− k) f (s− u) f (s− k− u)ω−(ηk+µ)u.

Since Q is an arithmetic progression modulo N, we can write it in the form Q = {x + d, x +
2d, . . . , x + Td}. This allows us to express the above sum as

=
T

∑
i=1

∑
s,u

f (s) f (s− x− id) f (s− u) f (s− x− id− u)ω−(ηx+ηid+µ)u.

Observe that for each u ∈ ZN , there are T ways of writing u = y + jd where y ∈ ZN and
j = 1, . . . , T. We can therefore write the sum as

=
T

∑
i=1

∑
s

f (s) f (s− x− id)

(
1
T ∑

y

T

∑
j=1

f (s− y− jd)

× f (s− x− id− y− jd)ω−(ηx+ηid+µ)(y+jd)

)

=
1
T ∑

s,y

T

∑
i,j=1

f (s) f (s− x− id) f (s− y− jd)

× f (s− x− id− y− jd)ω−(ηx+ηid+µ)(y+jd).

Define a function γ : ZN ×ZN → R by

γ(s, y) =
1

T2

∣∣∣∣∣ T

∑
i,j=1

f (s− x− id) f (s− y− jd)

× f (s− x− id− y− jd)ω−(ηx+ηid+µ)(y+jd)

∣∣∣∣∣.
We then have

βN2T ≤ 1
T ∑

s,y

∣∣∣∣∣ T

∑
i,j=1

f (s) f (s− x− id) f (s− y− jd)

× f (s− x− id− y− jd)ω−(ηx+ηid+µ)(y+jd)

∣∣∣∣∣
=

1
T ∑

s,y
| f (s)|γ(s, y)T2 ≤ T ∑

s,y
γ(s, y)
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since | f (s)| ≤ 1 for each s. Therefore, we see that (1/N2) ∑s,y γ(s, y) ≥ β, or in other
words, the average value of γ as it ranges over ZN ×ZN is at least β.

We now briefly move to a more general setting. Suppose that f1, f2, and f3 are real-
valued functions on ZN such that | fi(s)| ≤ 1 for all s and∣∣∣∣∣ T

∑
i,j=1

f1(i) f2(j) f3(i + j)ω−(ai+bj−2cij)

∣∣∣∣∣ ≥ δT2

for some real constants a, b, c, δ. Because 2ij = (i + j)2 − i2 − j2, we can write this as

δT2 ≤
∣∣∣∣∣ T

∑
i,j=1

f1(i) f2(j) f3(i + j)ω−(ai+bj−c[(i+j)2−i2−j2])
∣∣∣∣∣

=

∣∣∣∣∣ T

∑
i,j=1

f1(i)ω−(ai+ci2) f2(j)ω−(bj+cj2) f3(i + j)ωc(i+j)2

∣∣∣∣∣
=

∣∣∣∣∣ T

∑
i,j=1

f1(i)ω−(ai+ci2) f2(j)ω−(bj+cj2)

(
2T

∑
k=1

f3(k)ωck2

[
1
N ∑

r
ω−r(i+j−k)

])∣∣∣∣∣ ,

where we have substituted k for i + j. This is valid because we multiplied by the sum
1
N ∑r ω−r(i+j−k), which vanishes when k 6= i + j and is 1 when k = i + j. We can then write
this as

=
1
N

∣∣∣∣∣∑r

T

∑
i,j=1

2T

∑
k=1

f1(i)ω−(ai+ci2) f2(j)ω−(bj+cj2) f3(k)ωck2
ω−r(i+j−k)

∣∣∣∣∣ .

Now, let g1, g2, g3 : ZN → C be defined by g1(r) = ∑T
i=1 f1(i)ω−(ai+ci2)ω−ri, g2(r) =

∑T
j=1 f2(j)ω−(bj+cj2)ω−rj, and g3(r) = ∑2T

k=1 f3(k)ω−ck2
ω−rk so that we have

1
N

∣∣∣∣∣∑r

T

∑
i,j=1

2T

∑
k=1

f1(i)ω−(ai+ci2) f2(j)ω−(bj+cj2) f3(k)ωck2
ω−r(i+j−k)

∣∣∣∣∣
=

1
N

∣∣∣∣∣∑r
g1(r)g2(r)g3(r)

∣∣∣∣∣ ≤ 1
N
||g1||∞ ∑

r
|g2(r)| · |g3(r)|

≤ 1
N
||g1||∞

(
∑

r
|g2(r)|2

)1/2(
∑

r
|g3(r)|2

)1/2

=
1
N
||g1||∞||g2||2||g3||2.

Therefore, ||g1||∞||g2||2||g3||2 ≥ δT2N. We now wish to find a lower bound for ||g||∞, so
we will estimate ||g2||2 and ||g3||2. To do this, note first that for each r ∈ ZN , we have
g2(r) = h̃2(r) and g3(r) = h̃3(r) where h2 and h3 are given by

h2(r) =

{
f2(x)ω−(bx+cx2) if x ∈ [1, T]
0 otherwise

and

h3(x) =

{
f3(x)ω−cx2

if x ∈ [1, 2T]
0 otherwise
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As a result, we have the estimate

||g2||22 = ∑
r
|g2(r)|2 = ∑

r
|h̃2(r)|2 = N ∑

x
|h2(x)|2 = N

T

∑
x=1
|h2(x)|2 ≤ NT,

where we have used Parseval’s formula and the assumption that | f2(x)| ≤ 1 for all x ∈ ZN .
Similarly, we have an estimate on ||g3||2:

||g3||22 = ∑
r
|g3(r)|2 = ∑

r
|h̃3(r)|2 = N ∑

x
|h3(x)|2 = N

2T

∑
x=1
|h3(x)|2 ≤ 2NT.

Therefore, we see that δT2 ≤ 1
N ||g1||∞(NT)1/2(2NT)1/2 = ||g1||∞

√
2T, so in particular,

there exists some r ∈ ZN for which |g1(r)| ≥ δT/
√

2. By definition of g1, we then have∣∣∣∣∣ T

∑
i=1

f1(i)ω−(ai+ci2+ri)

∣∣∣∣∣ ≥ δT√
2

.

If we let φ(i) = (a + r)i + ci2, then we obtain a quadratic polynomial for which∣∣∣∣∣ T

∑
i=1

f1(i)ω−φ(i)

∣∣∣∣∣ ≥ δT√
2

.

We now wish to apply this fact to our original function f , the balanced function of
A. For each fixed pair s, y, let f1(i) = f (s − x − id), f2(j) = f (s − y − jd), and f3(k) =
f (s− x− y− kd). We then have∣∣∣∣∣ T

∑
i,j=1

f1(i) f2(j) f3(i + j)ω−(ai+bj−2cij)

∣∣∣∣∣
=

∣∣∣∣∣ T

∑
i,j=1

f (s− x− id) f (s− y− jd) f (s− x− y− id− jd)ω−(ai+bj−2cij)

∣∣∣∣∣ · ∣∣∣ω−ηxy−µy
∣∣∣

=

∣∣∣∣∣ T

∑
i,j=1

f (s− x− id) f (s− y− jd) f (s− x− id− y− jd)ω−(ηx+ηid+µ)(y+jd)

∣∣∣∣∣
= γ(s, y)T2

for a = ηyd, b = ηxd + µd, and c = −(1/2)ηd2. We can therefore apply the general fact
that we found, with δ = γ(s, y). This fact tells us that for each pair (s, y) in ZN ×ZN , there
is a quadratic polynomial φs,y such that∣∣∣∣∣ T

∑
i=1

f (s− x− id)ω−φs,y(i)

∣∣∣∣∣ ≥ γ(s, y)T√
2

.

Let γ(s) = (1/N) ∑y γ(s, y) be the average of γ(s, y) over y. We then know that given s,
there is a y for which ∣∣∣∣∣ T

∑
i=1

f (s− x− id)ω−φs,y(i)

∣∣∣∣∣ ≥ γ(s)T√
2

.
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Call this quadratic polynomial φs so that∣∣∣∣∣ T

∑
i=1

f (s− x− id)ω−φs(i)

∣∣∣∣∣ ≥ γ(s)T√
2

.

For each s, define the linear function hs(t) = −(1/d)(t + x− s), and let ψs be the quadratic
polynomial defined by ψs(t) = φs(hs(t)). We then have∣∣∣∣∣ T

∑
i=1

f (s− x− id)ω−ψs(s−x−id)

∣∣∣∣∣ =

∣∣∣∣∣ T

∑
i=1

f (s− x− id)ω−φs(hs(s−x−id))

∣∣∣∣∣
=

∣∣∣∣∣ T

∑
i=1

f (s− x− id)ω−φs(i)

∣∣∣∣∣ ≥ γ(s)T√
2

.

But notice that∣∣∣∣∣ T

∑
i=1

f (s− x− id)ω−ψs(s−x−id)

∣∣∣∣∣ =

∣∣∣∣∣∑z∈Q
f (s− z)ω−ψs(s−z)

∣∣∣∣∣ =

∣∣∣∣∣ ∑
z∈P+s

f (z)ω−ψs(z)

∣∣∣∣∣
since Q = −P. We therefore have∣∣∣∣∣ ∑

z∈P+s
f (z)ω−ψs(z)

∣∣∣∣∣ ≥ γ(s)T√
2

,

so summing over s, we find that

∑
s

∣∣∣∣∣ ∑
z∈P+s

f (z)ω−ψs(z)

∣∣∣∣∣ ≥ T√
2

∑
s

γ(s).

Note, however, that ∑s γ(s) is simply the product of N and the average value of γ(s, y)
over all pairs (s, y) ∈ ZN ×ZN . Earlier, we showed that this average value is at least β, so
we know that ∑s γ(s) is at least βN. This gives the desired result.

It should be noted here that the above proof is not entirely complete. Observe that
we allowed the coefficients of the quadratic functions ψs to be non-integer rationals, even
though we claimed that ψs : ZN → ZN . We can, however, modify the ψs in order to ensure
that they take values in ZN , but we will not concern ourselves with the details here.

As we shall see later, the existence of an arithmetic progression P and its corresponding
quadratic polynomials ψ0, . . . , ψN−1 will be important if A is not quadratically uniform. It
does not necessarily follow, however, that A has increased density on this progression P,
or even on any of its translates P + s. Instead, we will have to partition each progression
P + s into sub-progressions, and it will be one of these sub-progressions on which A has
increased density. Of course, we cannot partition P + s arbitrarily; our task now is to find
what properties these sub-progressions must have in order to guarantee that A will have
increased density on at least one of them. To do this, we begin with a discrete analogue of
a famous result due to Weyl.
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Theorem 3.6. Let N be sufficiently large, and let a ∈ ZN . Then for any t ≤ N, there exists a
p ≤ t such that

∣∣p2a
∣∣ ≤ Ct−1/8N, where C is an absolute constant.

Gowers omits the proof of this result, and we shall do the same here. He mentions,
though, that the bounds in this statement of the inequality are not the best known. His
larger paper [9] includes a proof of the result along with better bounds. This inequality
will help us divide progressions into sub-progressions, but we first need a lemma that is
essentially a combinatorial result.

Lemma 3.11. Let φ : ZN → ZN be linear of the form φ(x) = ax + b, and let r, s ≤ N. Then
for some m ≤ (8rN/s)1/2, the set {0, 1, . . . , r − 1} can be partitioned into arithmetic progres-
sions P1, . . . , Pm (in Z, not just in ZN) for which the diameter of φ(Pj) is at most s for every j.
Furthermore, the sizes of the Pj differ by at most one.

Proof. Let t =
⌈
(rN/2s)1/2⌉. Consider the elements φ(0), . . . , φ(t), but instead of consid-

ering them as elements of ZN , consider them as integers in the natural way. Since there
are t + 1 such integers, we know by the pigeon-hole principle that there exist i 6= j in [0, t]
such that |φ(i)− φ(j)| ≤ N/t. But by the linearity of φ, we then have

|φ(i− j)− φ(0)| = |φ(j− i)− φ(0)| = |φ(i)− φ(j)| ≤ N/t.

Thus, let u = |i− j| so that |φ(u)− φ(0)| ≤ N/t.
Now take the interval {0, 1, . . . , r− 1}, and split it into u congruence classes modulo u.

Then each congruence class has size either dr/ue or br/uc, and each class is an arithmetic
progression in Z with common difference u. Suppose now that P is a set consisting of
consecutive elements of one of these congruence classes with |P| ≤ dst/Ne. We can then
write P in the form P = {x + qu : q = 0, . . . , |P| − 1} where x is an integer in {0, 1, . . . , r−
1}. Then, for any q1, q2 ∈ [0, |P| − 1], we have

|φ(x + q1u)− φ(x + q2u)| = |a(x + q1u) + b− a(x + q2u)− b| = |ua(q1 − q2)|

≤ (|P| − 1) |ua| = (|P| − 1) |φ(u)− φ(0)| ≤ st
N
· N

t
= s,

so in particular, the diameter of φ(P) is at most s. We now wish to partition each congru-
ence class into progressions with size at most dst/Ne so that the total number of progres-
sions is at most (2rN/s)1/2 and the progressions differ in size by at most 1.

To do this, divide b2rN/(ust)c into br/uc, thereby obtaining integers m1 and m2 such
that ⌊ r

u

⌋
= m1

⌊
2rN
ust

⌋
+ m2

and 0 ≤ m2 < b2rN/(ust)c. Let C = {x + qu : q = 0, . . . , |C| − 1} be a given congruence
class, so that |C| = br/uc or |C| = dr/ue. Now lay down arithmetic progressions

Qj = {x + qu : q = jm1, . . . , (j + 1)m1 − 1}

for j = 0, 1, . . . , b2rN/(ust)c − 1. We have therefore covered the first m1 b2rN/(ust)c ele-
ments of C with b2rN/(ust)c progressions, each of size m1. As a result, there are either m2
or m2 + 1 elements of C that have not been covered (depending on the size of C). Recall
that m2 < b2rN/(ust)c, so the number of elements in C that have not been covered is at
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most the number of progressions that we have already laid down. As a result, we can shift
the progressions Qj to the right, and add at most one element to each progression so that
the new progressions Pj cover C completely. We still have b2rN/(ust)c progressions, but
now the size of |Pj| is either m1 or m1 + 1.

Since C was an arbitrary congruence class, it is clear that we can do this with each of
the u classes. We then obtain a partition of {0, 1, . . . , r − 1} into at most u · b2rN/(ust)c
arithmetic progressions. But by our choice of t, we have

u
⌊

2rN
ust

⌋
≤ 2rN

st
≤
(

8rN
s

)1/2

.

It therefore remains to be shown that the diameter of each φ(Pj) is at most s. To do this, we
need only to show that |Pj| ≤ dst/Ne. This will hold, though, if we show that m1 + 1 ≤
dst/Ne.

Suppose for a contradiction that m1 + 1 > dst/Ne, so that m1 ≥ dst/Ne. We then have

m1

⌊
2rN
ust

⌋
≥
⌈

st
N

⌉
·
⌊

2rN
ust

⌋
>

st
N

(
2rN
ust
− 1
)

=
r
u

+
(

r
u
− st

N

)
.

But by our choice of t and the fact that u ≤ t, we have ut ≤ rN/2s. Hence, st/N ≤ r/2u <
r/u, so we see that m1 b2rN/ustc > r/u, which is a contradiction since m2 ≥ 0. Thus, the
desired result holds.

Recall that by Proposition 3.2, certain conditions on a balanced function imply the ex-
istence of quadratic polynomials ψ0, . . . , ψN−1. We eventually will want to partition an
arithmetic progression into smaller progressions P1, . . . , Pm so that the diameter of ψs(Pj)
is not very large for any s and j. It is clear, then, that we want to extend Lemma 3.11
to quadratic polynomials. To do this, we will need to use the discrete version of Weyl’s
inequality, Theorem 3.6.

Proposition 3.3. There is an absolute constant C with the following property. Let ψ : ZN → ZN
be a quadratic polynomial and let r ∈ [1, N]. Then for some m ≤ Cr1−1/256, the set {0, 1, . . . , r−
1} can be partitioned into arithmetic progressions P1, . . . , Pm (in Z, not just in ZN) for which the
diameter of ψ(Pj) is at most Cr−1/128 for every j. Furthermore, the sizes of the Pj differ by at most
one.

Proof. Let ψ be given by ψ(x) = ax2 + bx + c. Then by Theorem 3.6, there exists a p ≤ r1/2

for which |ap2| ≤ C1r−1/16N, where C1 is some absolute constant. We now wish to split
the quadratic function into a ”constant” part and a ”linear” part. We certainly cannot do
this on all of ZN , but we can do it on progressions of common difference p. Observe that
for any x and s we have

ψ(x + sp) = a(x + sp)2 + b(x + sp) + c = as2 p2 + ax2 + 2axsp + bx + bsp + c.

Let θ(x, s) = ax2 + 2axsp + bx + bsp + c, so θ is linear in s, and ψ(x + sp) = s2(ap2) +
θ(x, s). Of course, the term s2(ap2) is not constant on progressions of common difference
p, but it is possible to bound this term. Indeed, note that for any u, the set {s2(ap2) : 0 ≤
s < u} has diameter given by

max
0≤s,t<u

∣∣s2(ap2)− t2(ap2)
∣∣ = max

0≤s,t<u

∣∣ap2∣∣ · ∣∣s2 − t2∣∣ ≤ C1u2r−1/16N.
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Now, suppose that 2 ≤ u ≤ r1/4. We claim that we can then partition the set {0, . . . , r− 1}
into arithmetic progressions of the form

Qj = {xj, xj + p, . . . , xj + (|Qj| − 1)p}

so that the size of Qj satisfies u− 1 ≤ |Qj| ≤ u. We do this by a process similar to that in
the previous lemma.

First, reduce {0, . . . , r − 1} modulo p and look at the resulting p congruence classes.
Then, divide u− 1 into br/pc to obtain integers m1 and m2 such that⌊

r
p

⌋
= m1(u− 1) + m2

and 0 ≤ m2 < u− 1. Now, let C = {x + qp : q = 0, . . . , |C| − 1} be a given congruence
class, so we know that |C| = br/pc or |C| = dr/pe. Lay down arithmetic progressions

Aj = {x + qp : q = j(u− 1), . . . , (j + 1)(u− 1)− 1}

for j = 0, 1, . . . , m1 − 1. These m1 progressions, each of size u − 1, then cover the first
m1(u− 1) elements of C. As a result, there are m2 or m2 + 1 elements of C that remain to
be covered. We claim that the number of elements remaining, though, is no greater than
the number of progressions that we have already laid down. Indeed, if this was not true,
then we would have m1 < m2 + 1. This would then give,⌊

r
p

⌋
< (m2 + 1)(u− 1) + m2 ≤ (u− 1)2 + u− 2 = u2 − u− 1 < r1/2 − 1.

But note that since p ≤ r1/2, we have⌊
r
p

⌋
≥
⌊

r1/2
⌋

> r1/2 − 1,

so we obtain r1/2− 1 < br/pc < r1/2− 1, which is a contradiction. Therefore, it is possible
to shift the progressions Aj to the right, and add at most one element to each progression,
so that the resulting progressions cover all of C. Since C was an arbitrary congruence class,
it is clear that we can perform this process for all p classes. This gives us the desired collec-
tion of progressions Qj with size u− 1 ≤ |Qj| ≤ u. Of course, each of these progressions
is a progression in the integers, not just in ZN .

Now, for each Qj = {xj, xj + p, . . . , xj + (|Qj| − 1)p}, consider the function θ(xj, s)
which is linear in s on the progression Qj. We can then extend θ(xj, s) to a linear function
φj that is defined on all of ZN such that θ(xj, s) = φj(xj + sp) for all s = 0, . . . , |Qj| −
1. Therefore, using the fact that the set {s2(ap2) : 0 ≤ s < u} has diameter at most
C1u2r−1/16N, we see that for any subset P ⊂ Qj,

diam(ψ(P)) ≤ C1u2r−1/16N + diam(φj(P)).

Let u =
⌈
r1/64⌉. For r large enough, we know that this implies 2 ≤ u ≤ r1/4 (for smaller

r, we can obtain the desired result simply by changing the constant C so that it swallows
up these cases). Now, apply Lemma 3.11 to each Qj. More specifically, divide each Qj into
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sub-progressions Pj1, . . . , Pjqj such that diam(φj(Pjt)) ≤ 2u1/2N for each t and the sizes
of the Pjt differ by at most one as t varies. Additionally, we can guarantee that qj, the
number of sub-progressions Pjt that we use, is at most (8ujN/(2u−1/2N))1/2 for each j.
Since uj ≤ u, this gives qj ≤ 2u3/4 for each j. Furthermore, since the larger progressions
Qj differ in size by at most one, we can also guarantee that the sizes of the Pjt differ by at
most one as j and t vary.

We then have, for each j and t,

diam(ψ(Pjt)) ≤ C1u2r−1/16N + 2u1/2N ≤ N
(

C1r−1/32r−1/16 + 2r−1/128
)

≤ (C1 + 2)r−1/128N.

It now remains to be shown that the total number of progressions Pjt that we have used
is bounded above by Cr1−1/128. Observe first that the number of sets Qj from before is
pm1 since there were p congruence classes and we partitioned each congruence class into
m1 progressions to obtain the Qj. Then, since qj ≤ 2u3/4 for each j, we see that the total
number of progressions, m, satisfies

m ≤ 2pm1u3/4 ≤ 2p
br/pc

u
u3/4 ≤ 2ru−1/4 = 2r

⌈
r1/64

⌉−1/4

≤ 2r
(

r1/64
)−1/4

= 2r1−1/256.

Note that we have used the inequality m1 ≤ br/pc /u, which follows from the fact that
m2 ≤ m1. Therefore, if we let C = 2 + C1, we find that m ≤ Cr1−1/256 and diam(ψ(Pjt)) ≤
Cr−1/128N, as desired.

In essence, Proposition 3.3 tells us that we can partition the interval [0, r− 1] into arith-
metic progressions on which the quadratic function ψ is almost constant. Therefore, we can
view this result as a quadratic analogue to what we did in the proof sketch of Lemma 2.1.
Continuing the analogy with the proof of that lemma, the next step for us is not surprising.

Corollary 3.4. Let ψ : ZN → ZN be a quadratic polynomial and let r ∈ [1, N]. Then for some
m ≤ Cr1−1/256, the set {0, 1, . . . , r− 1} can be partitioned into arithmetic progressions P1, . . . , Pm
for which the sizes of the Pj differ by at most one, and if f : ZN → D is any function with∣∣∣∣∣r−1

∑
x=0

f (x)ω−ψ(x)

∣∣∣∣∣ ≥ αr,

then
m

∑
j=1

∣∣∣∣∣∣∑x∈Pj

f (x)

∣∣∣∣∣∣ ≥ αr
2

.

Proof. By Proposition 3.3, we can find progressions P1, . . . , Pm that partition the interval
[0, r− 1] so that the sizes of the Pj differ by at most one and m ≤ Cr1−1/256. In addition, the
diameter of ψ(Pj) is at most Cr−1/128 for each j. Let r be large enough so that Cr−1/128 ≤
αN/4π. Since there are only finitely many r that do not satisfy this inequality, we can
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change the constant C to absorb these cases. Observe now that by the triangle inequality
and the fact that the collection P1, . . . , Pm partitions [0, r− 1], we have

αr ≤
∣∣∣∣∣r−1

∑
x=0

f (x)ω−ψ(x)

∣∣∣∣∣ ≤ m

∑
j=1

∣∣∣∣∣∣∑x∈Pj

f (x)ω−ψ(x)

∣∣∣∣∣∣.
For each j, choose a fixed xj ∈ Pj. Then for any x ∈ Pj, we have the estimate∣∣∣ω−ψ(x) −ω−ψ(xj)

∣∣∣ =
∣∣∣e−2πiψ(x)/N − e−2πiψ(xj)/N

∣∣∣ =
∣∣∣e−2πi(ψ(x)−ψ(xj))/N − 1

∣∣∣
=

√
2− 2 cos

(
2π(ψ(x)− ψ(xj))

N

)
= 2

∣∣∣∣sin
(

π(ψ(x)− ψ(xj))
N

)∣∣∣∣
≤ 2

∣∣∣∣π(ψ(x)− ψ(xj))
N

∣∣∣∣ ≤ 2π

N

(
αN
4π

)
=

α

2

where the last inequality comes from
∣∣ψ(x)− ψ(xj)

∣∣ ≤ diam(ψ(Pj)) ≤ Cr−1/128 ≤ αN/4π.

Since the function f takes values in the unit disk, we then have | f (x)| ·
∣∣∣ω−ψ(x) −ω−ψ(xj)

∣∣∣ ≤
α/2 if x ∈ Pj. As a result, we see that for each j,

α

2

∣∣Pj
∣∣ ≥ ∑

x∈Pj

∣∣∣ f (x)ω−ψ(x) − f (x)ω−ψ(xj)
∣∣∣ ≥

∣∣∣∣∣∣∑x∈Pj

(
f (x)ω−ψ(x) − f (x)ω−ψ(xj)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣∑x∈Pj

f (x)ω−ψ(x) − ∑
x∈Pj

f (x)ω−ψ(xj)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣∑x∈Pj

f (x)ω−ψ(x)

∣∣∣∣∣∣−
∣∣∣∣∣∣∑x∈Pj

f (x)ω−ψ(xj)

∣∣∣∣∣∣ .

Therefore, we have ∣∣∣∣∣∣∑x∈Pj

f (x)ω−ψ(xj)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣∑x∈Pj

f (x)ω−ψ(x)

∣∣∣∣∣∣− α

2

∣∣Pj
∣∣

for each j. This then gives the following:

m

∑
j=1

∣∣∣∣∣∣∑x∈Pj

f (x)

∣∣∣∣∣∣ =
m

∑
j=1

∣∣∣ω−ψ(xj)
∣∣∣ ·
∣∣∣∣∣∣∑x∈Pj

f (x)

∣∣∣∣∣∣ =
m

∑
j=1

∣∣∣∣∣∣∑x∈Pj

f (x)ω−ψ(xj)

∣∣∣∣∣∣
≥

m

∑
j=1

∣∣∣∣∣∣∑x∈Pj

f (x)ω−ψ(x)

∣∣∣∣∣∣−
m

∑
j=1

α

2

∣∣Pj
∣∣ ≥ αr− αr

2
=

αr
2

which is what we wanted to show.

3.5 Putting Everything Together

We are now ready to prove the main result of the paper.
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Theorem 3.7. There is an absolute constant C with the following property. If A ⊂ ZN has
cardinality δN where N ≥ exp exp exp

(
1/δC), then A contains an arithmetic progression of

length four.

Proof. First observe that If δ is close to one, then the theorem holds trivially. Also note that
that as long as C0 ≥ 1, we will have exp exp exp

(
1/δC0

)
≥ 200δ−3. Therefore, assume that

A ⊂ ZN has size |A| = δN where N ≥ exp exp exp
(
1/δC0

)
and C0 ≥ 1. Then by Corollary

3.1, we know that if A is quadratically 2−832δ448-uniform, A must contain a progression of
length four.

Let f be the balanced function of A. We can therefore assume that f is not quadratically
α-uniform, where α = 2−832δ448. By the discussion at the beginning of section 3.4, we
can find a subset B ⊂ ZN with |B| ≥ (α/2)N and a function φ : B → ZN for which∣∣∣∆̃( f ; k)(φ(k))

∣∣∣ ≥ (α/2)1/2N whenever k ∈ B. In particular,

∑
k∈B

∣∣∣∆̃( f ; k)(φ(k))
∣∣∣2 ≥ (α/2)2N3.

Additionally, recall that B must contain at least (α/2)8N3 φ-additive quadruples, and as a
result, there are constants γ and η, depending only on α, for which we can find a mod-N
arithmetic progression P with |P| ≥ Nγ and a linear function ψ : P → ZN such that φ(s)
agrees with ψ(s) for at least η|P| values of s ∈ P. Let |P′| be the set of such s and let ψ have
the form ψ(x) = λk + µ. We then see that

∑
k∈P

∣∣∣∆̃( f ; k)(λk + µ)
∣∣∣2 ≥ ∑

k∈P′

∣∣∣∆̃( f ; k)(λk + µ)
∣∣∣2 = ∑

k∈P′

∣∣∣∆̃( f ; k)(ψ(k))
∣∣∣2

≥ α

2
N2|P′| ≥ α

2
ηN2|P|

where the second-to-last inequality follows from the fact that P′ ⊂ B. Also recall from the
discussion directly following the proof of Corollary 3.3, there exists an absolute constant
K0 for which we can take γ = (α/2)8K0 and η = exp

(
−(2/α)8K0

)
. Using the fact that α =

2−832δ448, we can express these as γ = c−1
1 δK1 and η = exp

(
−c1/δK1

)
where c1 = 2843·8K0

and K1 = 448 · 8K0. Now, let K2 be another constant (not depending on δ) that is large
enough to ensure that γ ≥ δK2 and (α/2)η ≥ exp

(
−(1/δ)K2

)
. Setting β = (α/2)η and

T = |P|, we see that

∑
k∈P

∣∣∣∆̃( f ; k)(λk + µ)
∣∣∣2 ≥ βN2T.

Thus, by Proposition 3.2, we can find quadratic polynomials ψ0, ψ1, . . . , ψN−1 : ZN → ZN
for which

∑
s

∣∣∣∣∣ ∑
x∈P+s

f (x)ω−ψs(x)

∣∣∣∣∣ ≥ βNT√
2

.

For each s, we want to apply Corollary 3.4 to the progression P + s. Note that even though
we proved this corollary for intervals of the form {0, . . . , r − 1}, it applies just as well to
arithmetic progressions. If c2 denotes the absolute constant in Corollary 3.4, then we know
that for each s, there is a partition of the set P + s into progressions Ps1, . . . , Psms , where
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ms ≤ c2T1−1/256, for which the sizes of the Psj differ by at most one and if g : ZN → D

satisfies ∣∣∣∣∣ ∑
x∈P+s

g(x)ω−ψs(x)

∣∣∣∣∣ ≥ αsT,

then
ms

∑
j=1

∣∣∣∣∣∣ ∑
x∈Psj

g(x)

∣∣∣∣∣∣ ≥ αsT
2

.

Observe that as we vary s, the sets P + s simply shift. As a result, we may assume that
ms is the same for all s. Let this number be m. Also, note that for each s, the average
length of the progressions Psj is given by T/m, which is at least T/(c2T1−1/256) = c3T1/256,
where c3 = 1/c2 is an absolute constant. Now, by the fact that the progressions Psj differ
in size by at most one, we know that all of them must have size at least c3T1/256 and none
may be longer than twice this length. Furthermore, Corollary 3.4 ensures that each Psj is a
genuine progression in Z, not just in ZN . We now wish to show that it is on one of these
progressions Psj that A has increased density.

For each s, let

αs =
1
T

∣∣∣∣∣ ∑
x∈P+s

f (x)ω−ψs(x)

∣∣∣∣∣ .

We then have
m

∑
j=1

∣∣∣∣∣∣ ∑
x∈Psj

f (x)

∣∣∣∣∣∣ ≥ αsT
2

.

Summing over s, we then find that

∑
s

m

∑
j=1

∣∣∣∣∣∣ ∑
x∈Psj

f (x)

∣∣∣∣∣∣ ≥∑
s

αsT
2

=
1
2 ∑

s

∣∣∣∣∣ ∑
x∈P+s

f (x)ω−ψs(x)

∣∣∣∣∣ ≥ βNT
2
√

2
.

Now, for each s and j, let psj = ∑x∈Psj
f (x). Observe that for any x ∈ ZN , there are exactly

T = |P| elements s for which x ∈ P + s. Indeed, the set of such s is precisely x− P. Since the
progressions Ps1, . . . , Psm partition P + s for each s, we then know that for each s ∈ x− P,
there is a unique j for which x ∈ Psj. As a result, if we consider the elements covered by
Psj as we let s vary over ZN and j vary between 1 and m, we see that x is counted exactly
T times. This then implies that

∑
s

m

∑
j=1

psj = ∑
s

m

∑
j=1

∑
x∈Psj

f (x) = T ∑
x

f (x).

But we know that ∑x f (x) = f̃ (0) = 0 since f is the balanced function of A. Therefore,
∑s ∑m

j=1 psj = 0. Now, define qsj = max
(

psj, 0
)
. We then have

∑
s

m

∑
j=1

qsj =
1
2 ∑

s

m

∑
j=1

∣∣psj
∣∣ =

1
2 ∑

s

m

∑
j=1

∣∣∣∣∣∣ ∑
x∈Psj

f (x)

∣∣∣∣∣∣ ≥ βNT
4
√

2
.
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By averaging, we then know that there must exist an s and j for which

∑
x∈Psj

f (x) = qsj ≥
βT

4m
√

2
≥ βc3T1/256

4
√

2

where the last inequality follows from the fact that T/m ≥ c3T1/256. We therefore have

βc3T1/256

4
√

2
≤ ∑

x∈Psj

f (x) = ∑
x∈A∩Psj

(1− δ) + ∑
x∈Psj\A

(−δ) =
∣∣A ∩ Psj

∣∣− δ
∣∣Psj
∣∣ .

Recall, though, that the size of Psj must satisfy c3T1/256 ≤
∣∣Psj
∣∣ ≤ 2c3T1/256. As a result,

∣∣A ∩ Psj
∣∣ ≥ βc3T1/256

4
√

2
+ δ

∣∣Psj
∣∣ ≥ β

∣∣Psj
∣∣

8
√

2
+ δ

∣∣Psj
∣∣ = (βc4 + δ)

∣∣Psj
∣∣ ≥ (εc4 + δ) |Psj|

where c4 = 2−7/2 and ε = exp
(
−(1/δ)K2

)
. We have therefore found an arithmetic pro-

gression (recall that Psj is a genuine progression in Z, not just in ZN) on which the density
of A is increased.

We now wish to iterate the argument, as we did in the proof of Roth’s Theorem. Here
we give details. Replace the sets A and [1, N] with A ∩ Psj and Psj, respectively. Even
though Psj is not an interval itself, we can identify it with the interval [1, |Psj|]. We then
know that the density of A ∩ Psj in Psj is at least δ + c4ε and the size of Psj is at least
Nγ ≥ NδK2 .

Let δ0 = δ be the density of A in [1, N] that we begin with (that is, the density at the 0-th
step of the iteration) and let A0 = A and N0 = N. For each r ∈N, let Ar be the set that we
have replaced A with at the r-th step, and let Nr be the size of the progression Qr that we
have replaced [1, N] with. For example, we have A1 = A ∩ Psj, Q1 = Psj, and N1 = |Psj|.
Then let δr be the density of Ar in Qr, and let εr be the ε obtained at the r-th step of the
iteration. By definition, then, εr = exp

(
−(1/δr)K2

)
.

In order for the r-th step of the iteration to hold, we need Nr ≥ 200δ−3. Indeed, this
was the only hypothesis we assumed regarding the relationship between N and δ in the
0-th step. We now wish to show that as long as r ≤ exp

(
1/δK3

)
, where K3 = 2K2, the

desired inequality will hold.

Observe first that N1 = |Psj| ≥ Nδ
K2
0

0 . Continuing inductively, we see that Nr ≥ N
δ

K2
r−1

r−1
for each r ≥ 1. We claim now that

Nr ≥ N(δK2)r

for all r. The proof is by induction. When r = 0, the claim holds trivially. Now suppose
that it holds for some r. We then have

Nr+1 ≥ Nδ
K2
r

r ≥
(

N(δK2)r)δ
K2
r
≥
(

N(δK2)r)δK2

= N(δK2)r+1

where the last inequality follows from δr ≥ δ. Thus, the claim is true.
We now show that Nr ≥ 200δ−3 whenever r ≤ exp

(
1/δK3

)
, as long as we begin with

N large enough. Observe first that since δ is not close to one and K3 is large, we have

exp
(

1/δ4K3
)
≥ 2 exp

(
1/δ2K3

)
≥ exp

(
2/δK3

)
+ exp

(
1/δK3

)
.
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Therefore,
exp

(
1/δK3

)
exp

(
1/δK3

)
≤ exp

(
1/δ4K3

)
− exp

(
1/δK3

)
,

so if r ≤ exp
(
1/δK3

)
, then

r ≤
exp

(
1/δ4K3

)
− exp

(
1/δK3

)
exp (1/δK3)

≤
exp

(
1/δ4K3

)
− log log

(
1/δK3

)
log (1/δK3)

.

As a result, we have

K3r log (1/δ) ≤ exp
(

1/δ4K3
)
− log log

(
1/δK3

)
.

If we assume now that N ≥ exp exp exp
(
1/δ4K3

)
, then we see that log log N ≥ exp

(
1/δ4K3

)
.

Therefore, we obtain

K3r log (1/δ) ≤ log log N − log log
(

1/δK3
)

.

This then gives us
1

δK3r ≤
log N

log (1/δK3)
,

so by taking reciprocals, we have

δK3r ≥ K3 log (1/δ)
log N

≥
log
(
1/δ3)

log N
+

log 200
log N

since K3 is assumed to be large. We then see that(
δK3
)r

log N ≥ log 200 + log
(
1/δ3) ,

and as a consequence,

N(δK3)r

≥ 200δ−3.

We have therefore shown that if N ≥ exp exp exp
(
1/δ4K3

)
, then for each r ≤ exp

(
1/δK3

)
,

we have
Nr ≥ N(δK2)r

≥ N(δK3)r

≥ 200δ−3.

Hence, the r-th step of the iteration holds for these values of r.
We now wish to show that the iteration can be repeated at most exp

(
1/δK3

)
times.

If we are able to verify this, then the theorem will follow because of the fact that we are
allowed to perform the iteration this many times.

Recall that δr is the density of Ar in [1, Nr] and εr = exp
(
−(1/δr)K2

)
. By the increase in

density that resulted from the 0-th step of the argument, we have δ1 = δ0 + c4ε0. Contin-
uing inductively, we see that for each r ≥ 1, the density δr is precisely δr = δr−1 + c4εr−1.
We now claim that δr ≥ δ (1 + c4ε)r for each n. Again, we prove this inductively.

Of course, the claim holds when r = 0. Now, suppose that it holds for some r. Then we
have

δr+1 = δr + c4εr ≥ δ (1 + c4ε)r + c4εr.
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Observe, though, that since δr ≥ δ, we know that

εr = exp
(
−(1/δr)K2

)
≥ exp

(
−(1/δ)K2

)
= ε,

so
δr+1 ≥ δ (1 + c4ε)r + c4ε.

Since ε is small and δ is not close to one, we also have

δ
[
(1 + c4ε)r+1 − (1 + c4ε)r

]
≤ c4ε.

Thus, we have the desired result δr+1 ≥ δ (1 + c4ε)r+1. This tells us that at each step of the
iteration, the density increases by at least a factor of 1 + c4ε. We now claim that repeating
the iteration exp

(
1/δK3

)
times would give us a density greater than one.

Let r ≥ exp
(
1/δK3

)
= exp

(
1/δ2K2

)
. Using the fact that c4 = 2−7/2 is a small constant

and K2 is large, we have

r >
1
c4

exp
(

1/δK2+2
)
≥ 1

c4
exp

(
1/δK2+1 + 1/δ

)
≥ 1

c4
log (1/δ) exp

(
1/δK2+1

)
.

As a result, we see that

rc4 exp
(
−(1/δ)K2+1

)
> log (1/δ) .

Recall now, by properties of logarithms, that for x close to zero, log(1 + x) ≈ x. Indeed,
the Taylor expansion for this function is log(1 + x) = x − x2/2 + x3/3− x4/4 + . . ., so if
x is small, the higher-order terms are negligible. Since ε is small, we therefore have the
estimate

log(1 + c4ε) = log
(

1 + c4 exp
(
−(1/δ)K2

))
≥ c4 exp

(
−(1/δ)K2+1

)
,

where we have increased the power of 1/δ to take care of the higher-order terms. This
then gives us

log (1/δ) < r log (1 + c4ε) ,

which implies that δ (1 + c4ε)r > 1. Thus, the density δr is greater than one, which certainly
cannot happen when we iterate the argument.

Therefore, if we begin the iteration process with N large enough, as we continue to
iterate the argument, it must happen that some set Ar is quadratically 2−832δ448

r -uniform
in the progression Qr. Otherwise, we would continue the iteration through exp

(
1/δK3

)
steps, thereby obtaining a density greater than one. Taking C = 4K3 in the statement of the
theorem, we obtain the stated result.

Although the bounds that this proof gives are better than those in most other proofs
(e.g. the combinatorial proof by Szemerédi and the ergodic theoretic proof by Furstenberg),
they are not the best that Gowers has obtained. In his longer paper detailing the complete
proof of Szemerédi’s Theorem, he obtains the following bounds for progressions of length
four. Essentially, he is able to get rid of one exponential.

Theorem 3.8 (Bounds in [9] for Four-Term Progressions). Let δ > 0 and let A ⊂ [1, N]
have cardinality at least δN. If N ≥ exp exp

(
1/δC), where C is some absolute constant, then A

contains an arithmetic progression of length four.



Chapter 4

Extensions of Gowers’s Work

The most natural extension of Gowers’s work on progressions of length four is to progres-
sions of arbitrary length. As we have mentioned earlier, Gowers was able to do this in [9],
and surprisingly, the methods used in his argument for arbitrary k are generally analogous
(albeit, significantly more complicated) to the methods in the previous chapter.

The first necessity in dealing with progressions of arbitrary length is to find more gen-
eral types of uniformity. Recall that in Roth’s work on progressions of length three, unifor-
mity was a strong enough notion of randomness. For progressions of length four, however,
uniformity was not strong enough, so we had to introduce quadratic uniformity. As one
might expect, progressions of longer length require even stronger notions of randomness.
To develop such a notion, Gowers generalizes the ∆ operator we used earlier. Namely, for
a function f : ZN → C, define

∆( f ; a1, . . . , ad) = ∆(∆( f ; a1, . . . , ad−1); ad)

inductively. Note that the ∆ operator we used was simply the case of d = 1. Working out
the induction, it is possible to show that we can define ∆( f ; a1, . . . , ad) equivalently as

∆( f ; a1, . . . , ad)(s) = ∏
ε1,...,εd

(
Cε1+...+εd f

) (
s−

d

∑
i=1

aiεi

)

for s ∈ ZN , where the product is over all sequences ε1, . . . , εd with εi ∈ {0, 1} and C is the
operator that takes a complex-valued function to its pointwise complex conjugate. When
d = 1, we see that the only such sequences are ε1 = 0 and ε1 = 1. Thus, we have

∆( f ; a)(s) =
(
C0 f (s− a · 0)

) (
C1 f (s− a · 1)

)
= f (s) f (s− a)

which is precisely how we defined ∆ in the previous chapter. It is also easy to check that
when d = 2, the ∆ operator becomes

∆( f ; a, b)(s) = f (s) f (s− a) f (s− b) f (s− a− b)

and when d = 3, it is

∆( f ; a, b, c)(s) = f (s) f (s− a) f (s− b) f (s− c)

· f (s− a− b) f (s− a− c) f (s− b− c) f (s− a− b− c).
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Note here that our definition in the previous chapter for a function f being quadratically
α-uniform is equivalent to

∑
a,b

∣∣∣∣∣∑s
∆( f ; a, b)(s)

∣∣∣∣∣
2

≤ αN4.

More generally, we say that f : ZN → D is α-uniform of degree d if

∑
a1,...,ad

∣∣∣∣∣∑s
∆( f ; a1, . . . , ad)(s)

∣∣∣∣∣
2

≤ αNd+2.

We then say that a set A ⊂ ZN is α-uniform of degree d if its balanced function is. It
turns out that this notion of randomness is precisely what we need to extend Gowers’s
arguments from progressions of length four to progressions of arbitrary length.

As he did in his work on progressions of length four, Gowers then shows that if A is α-
uniform of degree d− 2 for a sufficiently small α, then A contains many mod-N arithmetic
progressions of length d. And of course, with α small enough, at least one of these will
be a progression in Z. As one might expect from the inductive definition of higher-degree
uniformity, most of the results obtained regarding uniform sets are direct analogues of
those found in the previous chapter. Thus, proving that a set must contain a progression of
length d if it is α-uniform of degree d− 2 for small α is not the difficult part of generalizing
Gowers’s methods. Instead, it is when A fails to be α-uniform of degree d − 2 that is
the more difficult situation to deal with. Gowers does this by generalizing the notion of
”quadratic bias” that we used in the previous chapter to polynomial bias. Namely, if A
fails to be α-uniform of degree d − 2, then we use polynomials of degree d − 2 to find a
progression on which A has increased density. After an impressive and intricate argument,
Gowers is able to establish the following result.

Theorem 4.1 (Szemerédi’s Theorem with Gowers’s Bounds). Let 0 < δ ≤ 1/2, let k be a
positive integer, and let A ⊂ [1, N] have cardinality at least δN. If N ≥ 2 ↑ 2 ↑ δ−1 ↑ 2 ↑ 2 ↑
(k + 9), then A contains an arithmetic progression of length k.

Here, the notation a ↑ b simply means ab. Of course, this is a gigantic bound on N,
and the most obvious question is whether or not this bound can be improved. In other
words, given δ and k, what is the smallest N0 for which any set A ⊂ [1, N] of size at least
δN contains a progression of length k if N ≥ N0? Note, of course, that the bound given
in Theorem 3.8 for progressions of length four is significantly better than the bound given
here for k = 4. But we can just as well ask whether or not this better bound can be further
improved.

According to Laba, as of January 2008, Gowers’s bounds were the best known for k ≥ 5
[15]. For k = 4, however, Green and Tao were able to improve Gowers’s bounds slightly
[11]. In this same paper, Green and Tao claimed to have a further improvement; namely,
if A ⊂ [1, N] has size at least δN and N ≥ exp(1/dC), then A contains a progression of
length four. Here, C is an absolute constant. As of now, these bounds seem to be the best
known.

We now briefly depart from discussing progressions of arbitrary length so that we can
focus on bounds for progressions of length three. We will present these in terms of bounds
on δ rather than on N for simplicity, but it is clear that we can go from one to the other
easily. Recall Roth’s Theorem from a previous chapter.
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Theorem 4.2 (Roth). Let N ∈ N and A ⊂ [1, N] have cardinality |A| ≥ δN, where δ >
c/(log log N). Then A contains an arithmetic progression of length three. Here, c is an absolute
constant.

This bound on δ is not the best known, though. In 1999, Bourgain proved that the
result holds if δ > (log log N)1/2/(log N)1/2 using much deeper Fourier analytic methods
than Roth originally did [3]. According to Tao, Bourgain’s bound is currently the best
known [27]. It is generally believed that these bounds can be significantly improved. This
belief is primarily a result of attempts to construct sets in Z with no three-term arithmetic
progression. Over sixty years ago, Behrend proved the following classic result [2].

Theorem 4.3 (Behrend). Let N be a sufficiently large integer. Then there are constants c, C
and a subset A ⊂ [1, N] of cardinality |A| ≥ cN exp(−C

√
log N) that contains no arithmetic

progressions of length three.

An immediate consequence of this construction is that the density δ in Roth’s Theo-
rem (and more generally in Szemerédi’s Theorem ) must be greater than exp(−C

√
log N).

Surprisingly, after sixty years of work on this problem, no one has been able to improve
Behrend’s construction significantly. In other words, no one can find a subset of [1, N] with
size much larger than exp(−C

√
log N) that does not contain any three-term progressions.

For this reason, many mathematicians believe that the bounds on δ in Roth’s Theorem can
be significantly improved, perhaps down to somewhere near exp(−C

√
log N). What may

be more surprising, though, is that Behrend’s construction is quite elementary. We are
therefore able to give the proof here.

Proof of Behrend’s Theorem. Observe first that no sphere in Rd can contain an arithmetic pro-
gression of length three. Indeed, suppose that there was a sphere

Sr = {(x1, . . . , xd) ∈ Rd : x2
1 + . . . + x2

d = r}

(without loss of generality, we can assume that it is centered at the origin) that contained
the progression

P = {(x1, . . . , xd), (x1 + r1, . . . , xd + rd), (x1 + 2r1, . . . , xd + 2rd)}.

Since x2
1 + . . . + x2

d = r = (x1 + r1)2 + . . . + (xd + rd)2, we know that

r2
1 + . . . + r2

d = −2(x1r1 + . . . + x2r2).

But also, (x1 + 2r1)2 + . . . + (xd + 2rd)2 = r, so

r2
1 + . . . + r2

d = −(x1r1 + . . . + xdrd).

This implies, however, that r2
1 + . . . + r2

d = 0, so P is a trivial progression. Thus, Sr contains
no non-trivial three-term arithmetic progressions.

We now wish to consider the set of integers

Sn,d,r = {(x1, . . . , xd) ∈ [1, n]d : x2
1 + . . . + x2

d = r}.

Note here that we are still using the notation [1, n] = {1, 2, . . . , n}. Then Sn,d,r is certainly
a subset of a sphere in Rd, so it contains no progressions of length three. We now want
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to map this set back to an interval [1, N] in Z; of course, we will want to use Freiman
isomorphisms to do this.

First, though, observe that if we let r range from n to dn2, the sets Sn,d,r cover the entire
cube [1, n]d. Since this cube has size nd, the pigeon-hole principle tells us that there must
be an R with |Sn,d,R| ≥ nd/(dn2). Consider the function φ : [1, n]d → Z defined by

φ(x1, . . . , xd) =
d

∑
i=1

xi(2n)i−1.

Recall from the previous chapter (section 3.3) that this is a Freiman homomorphism of
order 2, and if we restrict the codomain to be the image of φ, then it becomes a Freiman
isomorphism. As a result, φ(Sn,d,R) has cardinality at least nd/(dn2), and it contains no
three-term progressions. Furthermore, if we let N be large enough, then φ(Sn,d,R) is con-
tained in [1, N]. It turns out that N ≥ Cd

1 nd will work, for an absolute constant C1. There-
fore, if we set n = c1N1/d, where c1 = 1/C1 < 1, then we see that A = φ(Sn,d,R) is a subset
of [1, N] that contains no progressions of length three and has size

|A| ≥ cd−2
1

N
dN2/d .

It is not difficult to show, then, that there are constants c2, C2 such that

|A| ≥ c2N exp
(
−C2d− 2

d
log N − log d

)
.

If we then choose d approximately
√

log N, we have

|A| ≥ c2N exp
(
−C2

√
log N − 2

√
log N − log

√
log N

)
.

Again, it is possible to find constants c, C such that

|A| ≥ cN exp(−C
√

log N)

so the theorem is proved.

It is natural to ask whether this method can be extended to construct large subsets of
the integers that contain no arithmetic progressions of length k. It can, and according to
Tao, the largest subsets of [1, N] that are known to contain no k-term progressions have
size approximately N exp

(
−C(log N)1/(k−1)

)
. It seems likely, then, that Gowers’s bounds

for Szemerédi’s Theorem can be significantly improved for all k.
We transition now to a brief discussion about sets in the integers that contain arbitrarily

long arithmetic progressions. We say that a subset A ⊂ Z contains arbitrarily long arith-
metic progressions if A contains a k-term progression for all k ∈ N. If A has this property,
then we can think of A as a fairly structured set. A classic question in this field of study
is whether or not the prime numbers contain arbitrarily long progressions. In 2006, Green
and Tao answered this in the affirmative [12]. Interestingly, their proof used Szemerédi’s
Theorem (though certainly not in a straightforward way).

Theorem 4.4 (Green-Tao). The set of prime numbers contains arbitrarily long arithmetic progres-
sions.
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This result has been, arguably, the most important of the decade. It also gives strong
evidence that the primes are far from being randomly distributed; in fact, they contain a
large amount of structure. It is necessary to note that the Green-Tao Theorem is a special
case of a very general conjecture by Erdös and Turán in [6] that seems far from being
resolved.

Conjecture 4.1 (Erdös-Turán). Let A be a subset of the positive integers such that ∑n∈A 1/n =
∞. Then A contains arbitrarily long arithmetic progressions.

Of course, if P denotes the set of prime numbers, then ∑p∈P 1/p = ∞, so one may
consider the Green-Tao Theorem to be evidence that the Erdös-Turán Conjecture is true. It
is easy to see that the converse of this conjecture is not true though. Indeed, for each k ≥ 3,
let

Pk = {k4 − k + 1, k4 − k + 2, . . . , k4}.

Then Pk is an arithmetic progression of length k, so let

A =
⋃
k≥3

Pk.

But note that for each k, we have

∑
n∈Pk

1
n
≤ k

k3(k− 1)
=

1
k2(k− 1)

≤ 1
k2 .

Therefore,

∑
n∈A

1
n
≤∑

k

1
k2 < ∞

so A contains arbitrarily long arithmetic progressions but it’s reciprocals do not diverge.

4.1 Sumsets in Cyclic Groups of Prime Order

We now conclude with a discussion of sumsets in groups Zp, where p is prime. Recall
from section 3.3 in the previous chapter the following basic theorems.

Theorem 4.5. Let A and B be finite subsets of Z. Then |A|+ |B| − 1 ≤ |A + B| ≤ |A| · |B|.

Theorem 4.6. Let A and B be finite subsets of Z with |A| ≥ 2 and |B| ≥ 2. If |A + B| =
|A|+ |B| − 1, then A and B are arithmetic progressions of the same common difference.

It turns out that neither of these results is difficult to prove, primarily because nothing
strange happens when we sum two integers. For example, if we sum the sets A and B, we
know that the smallest element of A + B will be precisely the sum of the smallest element
of A and the smallest element of B. Similarly, the largest element of A + B will be the sum
of the largest element of A and the largest element of B. And of course, elements in A and
B that are between these two extremes will sum to an element that is between the extremes
in the sumset. Essentially, we are only saying that the sum is linear in regard to order.

Consider instead sumsets in the group ZN . As an example, take N = 10 and look at
A = {5, 6, 9} and B = {2, 3}. We then have A + B = {1, 2, 7, 8, 9}. In particular, the largest
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element in A and the largest element in B sums to the smallest element in A + B, while
the smallest element in A and the smallest element in B sums to the median of A + B. It
is clear that we have lost order-linearity of the sum due to ”wrap-around.” Namely, if a
sum becomes too large (exceeds N), then it reduces to a small number modulo N. As one
should expect, this simple phenomenon makes questions about sumsets in ZN much more
difficult than those about sumsets in Z. Despite this difficulty, though, there do happen to
be direct analogues to Theorems 4.5 and 4.6 in Zp, as long as p is prime. The first is due
(independently) to Cauchy and Davenport [18].

Theorem 4.7. Let A and B be non-empty subsets of Zp, where p is prime. Then |A|+ |B| − 1 ≤
|A + B| ≤ |A| · |B|.

The upper bound on |A + B| is, of course, just as trivial as it was in Theorem 4.5. The
lower bound, however, is significantly more difficult to prove. Still, it is not as hard as the
following result, which is due to Vosper.

Theorem 4.8 (Vosper). Let A and B be non-empty subsets of Zp, where p is prime, and suppose
that A + B 6= Zp. Then |A + B| = |A|+ |B| − 1 if and only if one of the following holds.

1. min (|A|, |B|) = 1,

2. |A + B| = p− 1 and A = Zp\ (c− B) where {c} = Zp\ (A + B),

3. A and B are both arithmetic progressions with the same common difference.

We can consider conditions 1 and 2 to be somewhat degenerate cases, so in general, it
is safe to think of arithmetic progressions with the same common difference as the ”only”
sets whose sumset is of minimal size. The traditional proofs of both the Cauchy-Davenport
Theorem and Vosper’s Theorem are entirely combinatorial. Recently, though, some work
in discrete Fourier analysis – namely, the finite uncertainty principle – has had a surprising
impact on these topics. In a 2005 paper, Tao established the following theorem [29].

Theorem 4.9 (Tao). Let f : Zp → C be a non-zero function, where p is prime. Then

|supp( f )|+
∣∣∣supp( f̂ )

∣∣∣ ≥ p + 1.

Conversely, if A and B are non-empty subsets of Zp with |A|+ |B| ≥ p + 1, then there exists a
function f : Zp → C for which supp( f ) = A and supp( f̂ ) = B.

Here, supp( f ) denotes the support of f – the set of elements in Zp on which f is non-
zero. Thus, the first part of this result is essentially saying that there is no non-zero function
from Zp to C such that both it and its Fourier transform vanish at many points. It is
important to note now that we have returned to the standard definition for the Fourier
transform f̂ , as given in definition 5 from chapter 1. As a surprising corollary to Tao’s
theorem, we can prove the Cauchy-Davenport Theorem easily.

Proof of Cauchy-Davenport via Tao’s Theorem. Let A and B be non-empty subsets of Zp. If
|A|+ |B| ≤ p + 1, let X = [0, p− |A|] and Y = [|B| − 1, p− 1]. Then we see that |X| =
p + 1− |A| and |Y| = p + 1− |B|. Furthermore, X ∩ Y = [|B| − 1, p− |A|], so |X ∩ Y| =
p + 2− |A| − |B| = |X|+ |Y| − p ≥ 1. Now suppose that |A|+ |B| > p + 1. In this case,



Sumsets in Cyclic Groups of Prime Order 78

let X = [1, p + 1− |A|] and Y = [p + 1− |A|, 2p + 1− |A| − |B|]. We then have |X| =
p + 1− |A| and |Y| = p + 1− |B| as in the previous case, but here, X ∩Y = {p + 1− |A|},
so |X ∩ Y| = 1. Note also, however, that |X|+ |Y| − p = p + 2− |A| − |B| ≤ 0. Therefore,
we can combine the two cases into the following statement. There exist sets X and Y
satisfying |X| = p + 1− |A|, |Y| = p + 1− |B|, and |X ∩Y| = max (|X|+ |Y| − p, 1).

Since |A| + |X| = p + 1 and |B| + |Y| = p + 1, Theorem 4.9 tells us that there exist
functions f , g : Zp → C for which supp( f ) = A, supp( f̂ ) = X, supp(g) = B, and
supp(ĝ) = Y. Consider the convolution f ? g, defined by

f ? g(s) = ∑
t

f (t)g(s− t).

Recall that by the properties of the convolution, we know that f̂ ? g(s) = f̂ (s) · ĝ(s). As
a result, supp( f̂ ? g) = X ∩ Y, and since |X ∩ Y| ≥ 1, we know that f ? g is non-zero. In
addition, observe that if s ∈ supp( f ? g), then f (t)g(s− t) 6= 0 for some t. This implies that
f (t) 6= 0 6= g(s− t), so in particular, t ∈ A and s− t ∈ B. Thus, s ∈ A + B. We therefore
have supp( f ? g) ⊂ A + B.

Using the first part of Theorem 4.9, we then see that

|A + B|+ |X ∩Y| ≥ |supp( f ? g)|+
∣∣∣supp( f̂ ? g)

∣∣∣ ≥ p + 1

since f ? g is non-zero. Consequently, we have

|A + B| ≥ p + 1− |X ∩Y| = p + 1−max (p + 2− |A| − |B|, 1)
= p + 1 + min (|A|+ |B| − p− 2,−1)
= min (|A|+ |B| − 1, p)

which is the desired inequality.

It is reasonable now to ask whether or not one may use similar ideas to obtain an
analytic proof of Vosper’s Theorem. It seems like this should be possible, but we have
been unable to do so. This remains an open problem.

Starting with these classical problems regarding sumsets in Zp, it is possible to go in
several different directions. We will discuss two in particular; the first branches off of the
Cauchy-Davenport Theorem, and the second branches off of Vosper’s Theorem.

Given sets A and B in Zp, we may wish to control the types of sums that we allow to
be in the sumset. For example, define the restricted sumset Â + B to be

Â + B = {a + b : a ∈ A, b ∈ B, and a 6= b}.

Of course, if A and B are disjoint, there is no difference between A + B and Â + B. If A and
B have a non-empty intersection, though, the restriction a 6= b may severely change the
size of the sumset. The following result, conjectured by Erdös and Heilbronn in 1964 [5]
and proved by Dias da Silva and Hamidoune in 1994 [4], is therefore slightly surprising.
In essence, it says that the minimal size of a restricted sumset is not much smaller than the
minimal size of a traditional sumset.
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Theorem 4.10 (Dias da Silva–Hamidoune). Let A be a non-empty subset of Zp, where p is

prime. Then
∣∣∣Â + A

∣∣∣ ≥ min (p, 2|A| − 3).

In 2006, Alon, Nathanson, and Ruzsa gave a simpler proof of this theorem using a new
”polynomial method” [1]. They were also able to solve several other types of modified
sumset problems. Their version of Theorem 4.10 is the following.

Theorem 4.11 (Alon–Nathanson–Ruzsa). Let A and B be non-empty subsets of Zp, where p is

prime and |A| 6= |B|. Then
∣∣∣Â + B

∣∣∣ ≥ min (p, |A|+ |B| − 2).

It is clear that if we take B = A\{a}, where a is any element in A, then we obtain
the result in Theorem 4.10. We should note here that Theorems 4.10 and 4.11 both have
generalizations to restricted sumsets of the form

̂A1 + . . . + An = {a1 + . . . + an : ai ∈ Ai and ai 6= aj for i 6= j}.

A different way to generalize restricted sumset problems is to alter the restriction we
place on the sums. Let f : Zp ×Zp → Zp be a polynomial in Zp[x, y], and for subsets A
and B in Zp, define

Â + B f = {a + b : a ∈ A, b ∈ B, and f (a, b) 6= 0}.

According to Lev, it is possible to use the polynomial method of Alon, Nathanson, and
Ruzsa to prove a lower bound on the cardinality of Â + B f . He then conjectures the fol-
lowing [17].

Conjecture 4.2 (Lev). Let A and B be non-empty subsets of Zp, where p is prime, and let f be an
arbitrary injective map from A to B. Then

|{a + b : a ∈ A, b ∈ B, and f (a) 6= b}| ≥ min (p− 2, |A|+ |B| − 3) .

We now ask whether or not these restricted sumset problems have analytic proofs.
Considering that Tao’s finite uncertainty principle, Theorem 4.9, gave an analytic proof of
the Cauchy-Davenport Theorem, it seems possible. It is not too surprising, then, that Guo
and Sun were recently able to obtain the following result by extending Tao’s methods [13].

Theorem 4.12 (Guo-Sun). Let A, B, and S be subsets of Zp, where p is prime, and A 6= ∅ 6= B.
Then

|{a + b : a ∈ A, b ∈ B, and a− b /∈ S}| ≥ min (p, |A|+ |B| − 2|S| − 1) .

It is clear that if we take S = ∅, then we obtain the Cauchy-Davenport Theorem, and
if we take S = {0}, then we get the result of Theorem 4.10. Unfortunately, Theorem 4.12
does not immediately give us information about restricted sumsets Â + B f or about those
in Lev’s conjecture. The primary problem is that in Guo and Sun’s result, the forbidden
set is, in some sense, fixed. Indeed, for a given b ∈ B, the only elements of A that we are
allowed to consider are a /∈ S + b. Thus, as we vary a ∈ A, the forbidden set does not
change. This is not the case, however, for Â + B f and for the sumsets in Lev’s conjecture.
Even if we fix b ∈ B, the forbidden set for a changes as a varies over A. Nevertheless,
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Theorem 4.12 is a strong result, and it suggests that we should be able to modify Tao’s
method further to deal with sumsets such as Â + B f and those in Lev’s conjecture.

We now return to problems regarding the traditional sumset A + B in Zp. From Vosper’s
Theorem, we know that if A + B has minimal size, then (apart from two degenerate cases)
A and B must be arithmetic progressions with the same common difference. What if we
relax the assumption that A + B is strictly minimal? In other words, what if A + B has size
|A|+ |B|, or |A|+ |B|+ 1? Then A and B are not progressions with the same difference,
but is it true that they are ”almost” arithmetic progressions. Essentially, we are asking for
a result in Zp that parallels Freiman’s Theorem for sumsets in Z. The following theorem
gives a partial affirmative answer to this question, and it seems appropriate that it bears
the names of both Freiman and Vosper [18].

Theorem 4.13 (Freiman-Vosper). Let A be a non-empty subset of Zp, where p is prime. Assume
that |A| ≤ p/35 and |A + A| = 2|A| − 1 + r ≤ (12|A|/5)− 3. Then A is contained in a mod-p
arithmetic progression of length |A|+ r.

Several mathematicians believe that it should be possible to find a more general re-
sult (that is, to get rid of the upper bound assumption on |A| and to improve the upper
bound on |A + A|) [17], [19]. In particular, the following conjecture would strengthen the
Freiman-Vosper Theorem.

Conjecture 4.3. Let A be a non-empty subset of Zp, where p is prime and is sufficiently large.
Assume that |A + A| ≤ min (p− 1, 3|A| − 4). Then A is contained in a mod-p arithmetic pro-
gression of length at most |2A| − |A|+ 1.

The only known proof of the Freiman-Vosper Theorem relies heavily on discrete Fourier
analysis. Unfortunately, these methods do not seem to be well-suited for Conjecture 4.3.
Instead, it is likely that purely combinatorial arguments are needed to generalize the Freiman-
Vosper Theorem. We therefore see that although discrete Fourier analysis plays a central
role in additive number theory, there are instances where other types of arguments may be
necessary.
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