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Abstract

We propose an image-based, facial reenactment system

that replaces the face of an actor in an existing target video

with the face of a user from a source video, while preserv-

ing the original target performance. Our system is fully au-

tomatic and does not require a database of source expres-

sions. Instead, it is able to produce convincing reenactment

results from a short source video captured with an off-the-

shelf camera, such as a webcam, where the user performs

arbitrary facial gestures. Our reenactment pipeline is con-

ceived as part image retrieval and part face transfer: The

image retrieval is based on temporal clustering of target

frames and a novel image matching metric that combines

appearance and motion to select candidate frames from the

source video, while the face transfer uses a 2D warping

strategy that preserves the user’s identity. Our system ex-

cels in simplicity as it does not rely on a 3D face model, it is

robust under head motion and does not require the source

and target performance to be similar. We show convincing

reenactment results for videos that we recorded ourselves

and for low-quality footage taken from the Internet.

1. Introduction

Face replacement for images [5, 4] and video [24, 2, 9]

has been studied extensively. These techniques substitute

a face or facial performance in an existing target image or

videowith a different face or performance from a source im-

age or video, and compose a new result that looks realistic.

As a particularly challenging case, video face reenactment

replaces a face in a video sequence, while preserving the

gestures and facial expressions of the target actor as much

as possible. Since this process requires careful frame-by-

frame analysis of the facial performance and the genera-

tion of smooth transitions between composites, most exist-

ing techniques demand quite some manual interaction.

In this paper, we present an entirely image-based method

for video face reenactment that is fully automatic and

achieves realistic results, even for low-quality video input,

such as footage recorded with a webcam. Given an exist-

ing target sequence of an actor and a self-recorded source

sequence of a user performing arbitrary face motion, our

approach produces a new reenacted sequence showing the

facial performance of the target actor, but with the face of

the user inserted in it. We adhere to the definition of face

replacement given by Dale et al. [9] and only replace the

actor’s inner face region, while conserving the hair, face

outline, and skin color, as well as the background and illu-

mination of the target video. We solve this problem in three

steps: First, we track the user and the actor in the source and

target sequence using a 2D deformable shape model. Then,

we go over the target sequence and look in the source se-

quence for frames that are both similar in facial expression

and coherent over time. Finally, we adapt the head pose and

face shape of the selected source frames to match those of

the target, and blend the results in a compositing phase.

Our reenactment system has several important advan-

tages: 1) Our 2D tracking step is robust under moderate

head pose changes and allows a freedom in camera view

point. As opposed to existing methods, our system does not

require that the user and the target actor share the same pose

or face the camera frontally. 2) Our matching step is formu-

lated as an image retrieval task, and, as a result, source and

target performances do not have to be similar or of com-

parable timing. The source sequence is not an exhaustive

video database, but a single recording that the user makes of

himself going through a short series of non-predetermined

facial expressions. Even in the absence of an exact match,

our system synthesizes plausible results. 3) Our face trans-

fer step is simple, yet effective, and does not require a 3D

face model to map source pose and texture to the target.

This saves us the laborious task of generating and track-

ing a personalized face model, something that is difficult to

achieve for existing, prerecorded footage. 4) None of the

above steps needs any manual interaction: Given a source

and target video, the reenactment is created automatically.

We further make the following contributions: 1) We in-

troduce a novel distance metric for matching faces between

videos, which combines both appearance and motion infor-

mation. This allows us to retrieve similar facial expressions,
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while taking into account temporal continuity. 2) We pro-

pose an approach for segmenting the target video into tem-

poral clusters of similar expression, which are compared

against the source sequence. This stabilizes matching and

assures a more accurate image selection. 3) A final con-

tribution is an image-based warping strategy that preserves

facial identity as much as possible. Based on the estimated

shape, appearance is transferred by image blending.

The paper is organized as follows: Sec. 2 and 3 dis-

cuss related work and give a brief overview of our system.

Sec. 4, 5, and 6 describe the three main steps in our pipeline.

In Sec. 7, we present results and a validation for existing and

self-recorded footage, before concluding in Sec. 8.

2. Related Work

Face replacement for image and video can be roughly di-

vided into two categories. A first category is facial puppetry

[24, 23, 26, 14, 21, 16], which aims to transfer expressions

and emotions of a user (puppeteer) to a virtual character

(puppet). Such methods are used to animate digital avatars

in games, movies and video conferences. Face swapping

methods [6, 5, 4, 13, 2, 9], on the other hand, try to exchange

two faces in different images or videos such that the re-

placed result looks sufficiently realistic. Swapping different

faces is useful for online identity protection, while swap-

ping the same face (or parts of it) between different videos

is interesting for dubbing, retargeting and video montage.

At the intersection of both categories lies face reenactment

[9], which replaces an actor’s face by swapping it with that

of a user, while at the same time preserving the actor’s facial

expressions and emotions. Here, the original facial perfor-

mance needs to be accurately emulated (puppetry), and the

new face with different identity needs to be inserted as nat-

urally as possible in the original video (swapping).

Methods for face replacement in video can be further di-

vided based on the underlying face representation:

A first type of methods tracks a morphable 3D model

of the face that parameterizes identity, facial expressions

and other nuances. Such systems can produce accurate 3D

textured meshes and can establish a one-to-one expression

mapping between source user and target actor, thereby sim-

plifying and speeding up expression transfer. The genera-

tion of such a model, however, can be time consuming and

is either done by learning a detailed 3D multilinear model

from example data spanning a large variety of identities

and expressions [24, 9], or by purposely building a person-

specific blend shape model from scans of a specific actor

using specialized hardware [11, 13, 2, 26, 25]. Moreover,

the difficulty of stably tracking a 3D model over time gen-

erally necessitates a fair amount of manual interaction.

A second type of approaches finds similarities in head

pose and facial expression between two videos solely based

on image information. These image-based methods track

the face using optical flow [16] or a sparse set of 2D facial

features [21], and often include an image matching step to

look up similar expressions in a database [14, 16]. Many

image-based face replacement systems do not allow much

head motion and assume that the actors in both videos share

a similar frontal head pose [16]. As a result, substantial

differences in pose and appearance may produce unrealis-

tic composites or blending artifacts. If the task is to cre-

ate a new facial animation, additional temporal coherence

constraints must be embedded in the objective to minimize

possible in-between jumps along the sequence [15, 3].

As far as we are aware, only the 3D morphable model

technique of Dale et al. [9] could be used for face reen-

actment thus far. Their approach uses complex 3D mesh

tracking, is not fully automatic, requires comparable source

and target head poses, and was mainly demonstrated on se-

quences of similar performance. Our method, on the other

hand, is purely image-based, and thus less complex, fully

automatic, and equipped with a face tracking and trans-

fer step that are robust to changes in head pose. More-

over, our image retrieval step works on source and target

sequences with notably different performances. In this re-

spect, our method is closely related to the work of Efros et

al. [10], Kemelmacher-Shlizerman et al. [14] and Li et al.

[16]. As opposed to these works, we do not use a dedicated

source database, but only a short sequence of the user per-

forming arbitrary expressions and head motion. Contrary

to [14], we further combine appearance and motion simi-

larities in our matching metric to enforce temporally coher-

ent image look-up. Finally, we produce a proper compos-

ite of the user’s face in the target sequence, while previous

works [14] and [16] only produce an, often stop-motion-

like, assembly of source frames. Berthouzoz et al. [3] use

hierarchical clustering to find frames of similar expression

and head pose to produce smooth transitions between video

segments, but the obtained clusters lack temporal continu-

ity. Expression mapping [17] is another related technique,

which transfers a target expression to a neutral source face.

However, this technique does not preserve the target head

motion and illumination, and has problems inside the mouth

region, where teeth are not visible. Furthermore, our image

retrieval step transfers subtle details of the user’s facial ex-

pressions, which can differ between individual users.

3. Overview of our Face Reenactment System

Our system takes as input two videos showing facial per-

formances of two different persons: a source sequence S
of the user, and a target sequence T of an actor. The goal

is to replace the actor’s inner face region with that of the

user, while preserving the target performance, scene ap-

pearance and lighting as faithfully as possible. The result

is the reenactment sequenceR. The source and target video

are not assumed to depict the same performance: We can
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Figure 1. Overview of the proposed system.

produce reenactments for different target videos from only

a single source video, which is assumed to show the user

going through a short series of random facial expressions

while facing the camera. The target sequence can be general

footage depicting a variety of expressions and head poses.

Our approach consists of three subsequent steps (Fig. 1):

1. Face Tracking (Sec. 4): A non-rigid face tracking al-

gorithm tracks the user and actor throughout the videos

and provides facial landmark points. These landmarks

are stabilized to create a sequence of annotated frames.

2. Face Matching (Sec. 5): The appearance of the main

facial regions is encoded as a histogram of local binary

patterns, and target and source frames are matched by

a nearest neighbor search. This is rendered more stable

by dividing the target sequence into chunks of similar

appearance and taking into account face motion.

3. Face Transfer (Sec. 6): The target head pose is trans-

ferred to the selected source frames by warping the fa-

cial landmarks. A smooth transition is created by syn-

thesizing in-between frames, and blending the source

face into the target sequence using seamless cloning.

4. Non-Rigid Face Tracking

To track user and actor in the source and target sequence,

respectively, we utilize a non-rigid 2D face tracking algo-

rithm proposed by Saragih et al. [20], which tracks n=66

consistent landmark locations on the human face (eyes,

nose, mouth, and face outline, see Fig. 2 (a)). The approach

is an instance of the constrained local model (CLM) [8],

using the subspace constrained mean-shift algorithm as an

optimization strategy. Specifically, it is based on a 3D point

distribution model (PDM), which linearly models non-rigid

shape variations around 3D reference landmark locations,

X̄i, i = 1, . . . , n, and composes them with a global rigid

transformation:

xi = sPR
(

X̄i +Φiq
)

+ t . (1)

Here, xi is the estimated 2D location of the i-th landmark,

and s, R, t and q the PDM parameters, corresponding to

the scaling, the 3D rotation, the 2D translation, and the non-

rigid deformation parameters. Further, Φi denotes the sub-

matrix of the basis of variation to the i-th landmark and P
is the orthogonal projection matrix. To find the most likely

landmark locations, the algorithm uses trained local fea-

ture detectors in an optimization framework that enforces

a global prior over the combined landmark motion. We re-

mark that we only use the 2D landmark output (x1, ...,xn)
of the tracker, and not the underlying 3D PDM.

The facial landmarks are prone to noise and inaccuracies,

especially for expressions on which the face tracker was not

trained. This can render the face matching (see Sec. 5) and

face transfer (see Sec. 6) less stable. To increase tracking

accuracy, we therefore employ a correction method simi-

lar to that proposed by Garrido et al. [12], which refines

the landmark locations using optical flow between automat-

ically selected key frames, i.e., frames for which the local-

ization of the facial features detected by the face tracker

is reliable, such as a neutral expression. To improve the

smoothness of the landmark trajectories, we do not use the

estimated optical flow value at the exact landmark location

xi, like Garrido et al., but assign a weighted average of the

flow in a circular neighborhood around xi. This neighbor-

hood of size r ·p is built by distributing p points evenly on

circles with radial distances of 1, 2, . . . , r from xi. In our

experiments we choose r=2 and p=8, and weigh the flow
values by a normalized Gaussian centered at xi.

5. Face Matching

A central part of our reenactment system is matching

the source and target faces under differences in head pose.

Here, we find a trade-off between exact expression match-

ing, and temporal stability and coherence. The tracking

step of the previous section provides us with facial land-

marks which represent the face shape. Instead of compar-

ing shapes directly, we match faces based on appearance

and landmark motion, depicting the facial expression and

its rate of change, respectively. Another contribution of the

matching step is a temporal clustering approach that renders

the matching process more stable.
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(a) (b)
Figure 2. (a) Annotated reference frame. (b) Expressive face

aligned to the reference. Left to right: estimated landmarks, tri-

angulation, and detected regions of interest. The mouth, eyes and

nose regions are split into 3×5, 3×2 and 4×2 tiles, respectively.

5.1. Image Alignment and Feature Extraction

Before extracting meaningful facial features, the source

and target frames are first aligned to a common reference

frame. For this purpose, we choose the first frame in the

source sequence, which is assumed to depict the user at

rest. Unlike methods that align source and target using a

morphable 3D model [14], we compute a 2D affine trans-

formation for each frame that optimally maps the set of de-

tected landmarks onto the reference shape. Since this trans-

formation is global, it does not change the expression in the

aligned frames. This alignment is only necessary for the

temporal clustering and frame selection of Sec. 5.2, but is

not applied for the subsequent steps of our system.

To extract facial features in the aligned frames, we con-

sider four regions of interest of fixed size, which are com-

puted as the bounding boxes of the landmark locations cor-

responding to the mouth, eyes and nose in the reference

frame. After padding these regions by 10 pixels, we split

them into several tiles, as shown in Fig. 2. As feature de-

scriptor for a region of interest, we choose histograms of

Local Binary Patterns (LBPs) [18], which have been found

suitable for tasks such as texture classification and face

recognition [1, 14, 22, 15]. An LBP encodes the relative

brightness around a given pixel by assigning a binary value

to each neighboring pixel, depending on whether its inten-

sity is brighter or darker. The result is an integer value for

the center pixel between 0 and 2l, where l is the number of

pixels in a circular neighborhood. We use a uniform code

[14], which assigns an own label to every combination for

which the number of transitions between 0 and 1 is at most

two, and a single label for all other combinations. For a

neighborhood size of l=8, this results in an LBP histogram

h of 59 bins for each tile. Empirically, we found that a

uniform code lacks in discriminative power to match ex-

pressions from a wider set other than the distinctive neutral,

sadness, happiness, anger, etc. To include information at a

finer scale of detail, we additionally compute a normal LBP

histogram for a neighborhood size of l=4, thereby extend-
ing h to 75 bins. By concatenating the histograms for all

m tiles that make up a region of interest, an LBP feature

descriptorH=(h1, . . . , hm) for that region is created.

5.2. Temporal Clustering and Frame Selection

Matching source and target frames directly may lead to

abrupt frame-to-frame expression changes in the reenact-

ment. The reasons for this are: 1) We experienced a sensi-

tivity of LBP feature descriptors w.r.t. the detected regions

of interest, which can result in slightly different source se-

lections for similar target expressions (comparable effects

were reported by Li et al. [16]). 2) The source sequence

is sparse and may not contain an exact match for each tar-

get expression. 3) There is no temporal consistency in the

image selection. To overcome these shortcomings, we sta-

bilize the matching process by a temporal clustering ap-

proach, which finds the source frame that is most similar

to a small section of target frames. Additionally, we en-

force temporal continuity by extending the appearance met-

ric with a motion similarity term, which takes into account

the change in expression.

Temporal Clustering. To stabilize the selection of source

frames, we divide the target sequence into consecutive sec-

tions of similar expression and appearance, and look for

the source frame that best matches a whole target section.

To measure the similarity between two consecutive target

frames f t
T
, f t+1

T
∈ T , we compute the appearance distance

dapp(f
t
T
, f t+1

T
) =

4
∑

j=1

wj dχ2

(

Hj(f
t
T
), Hj(f

t+1
T

)
)

, (2)

whereHj(f) is the LBP feature descriptor for the j-th of the
four regions of interest in f , wj an accompanying weight,

and dχ2 the normalized chi-squared distance between two

histograms. The weights for mouth, eyes and nose regions

were experimentally set to 0.6, 0.15 and 0.1, respectively.
We propose an agglomerative clustering approach that

preserves temporal continuity and proceeds hierarchically.

Assuming that each frame is initially a separate cluster, each

subsequent iteration joins the two consecutive clusters that

are closest according to the metric in Eq. (2). As a linkage

criterion, the appearance distance between two consecutive

clusters C1 and C2 is defined as the average of the pairwise

distances dapp between all frames in C1 and all frames in

C2. The two clusters are merged if 1) they only contain a

single frame or 2) the variance of dapp within the merged

cluster is smaller than the maximum of the variances within

the separate clusters. The last criterion keeps the frames

within a cluster as similar as possible, and once it is not

met, the algorithm terminates. The result is a sequence of

target sections Ck, with k an index running in temporal di-

rection over the number of clusters. We observed that the

length of a cluster C varies inversely proportionally to the

change in expression and the timing of speech within C (see

the supplemental material for an analysis of the number of

detected clusters and their lengths).
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Frame Selection. To select a source frame fk
S

∈ S that

matches a target section Ck, we compute an aggregated sim-

ilarity metric over all target frames in a cluster:

d(C, fS) =
∑

fT ∈C

dapp(fT , fS) + τ dmot(vC ,vS) . (3)

Here, dapp(f1, f2) is the appearance distance defined in

Eq. (2) and dmot(v1,v2) a motion distance that measures

the similarity between two vector fields. The vector field vC

describes the motion of the n facial landmarks between two

consecutive clusters. The motion of the i-th landmark vCi

is computed as the difference of its average positions in the

current cluster Ck and the previous cluster Ck−1. The vector

field vS describes the motion of the n facial landmarks be-

tween two consecutively selected source frames, i.e. for the

i-th landmark, vSi is the difference of its position in f
k
S
and

fk−1
S

. Note that vC and vS are computed for normalized

landmark locations in the aligned source and target frames.

The motion distance dmot is defined as

dmot(vC ,vS) = 1−
1

3

3
∑

j=1

exp
(

− dj(vC ,vS)
)

, (4)

where d1=
1

n

∑

i ‖vCi−vSi‖ measures the Euclidean dis-

tance, d2=
1

n

∑

i(1−vCi ·vSi/‖vCi‖‖vSi‖) the angular dis-
tance, and d3=

1

n

∑

i |‖vCi‖−‖vSi‖| the difference in mag-

nitude between the motion fields vC and vS . The motion

distance dmot therefore measures how similar the change in

expression in the selected source frames is compared to the

change in expression between target clusters. It is impor-

tant to understand that consecutively selected frames fk−1
S

and fk
S
do not have to be consecutive in the original source

sequence S. Our matching metric is thus suitable for source

and target sequences that have an entirely different timing

and speed. Both the aggregated appearance distance and

motion distance in Eq. (3) are normalized to [0, 1] and the

weighting factor τ was set to 0.8 for all experiments.

Given fk−1
S

, the source frame with the minimal total dis-

tance d(Ck, fS) over all fS ∈ S, is chosen as the best match

fk
S
and assigned to the central timestamp of Ck. If Ck con-

sists of a single frame, fk
S
is assigned to this timestamp.

6. Face Transfer

After selecting the best representative source frames, we

transfer the face of the user to the corresponding target

frames and create the final composite. First, we employ

a 2D warping approach which combines global and local

transformations to produce a natural shape deformation of

the user’s face that matches the actor in the target sequence.

The estimated shape is then utilized to transfer the user’s

appearance and synthesize a compelling transition.

6.1. Shape and Appearance Transfer

While only methods relying on complex 3D face models

can handle large differences in head pose between source

and target [9], we present a simple, yet effective, image-

based strategy that succeeds in such cases. Inspired by work

on template fitting [5, 26], we formulate face transfer as a

deformable 2D shape registration that finds a user shape and

pose that best correspond to the shape and pose of the actor,

while preserving the user’s identity as much as possible.

Shape Transfer. For each target frame f t
T
∈ T , we want

to estimate the n 2D landmark locations (xt
R1, ...,x

t
Rn) of

the user’s face in the reenactment sequence R. To achieve

this, we propose a warping energy composed of two terms:

a non-rigid term and an affine term. The non-rigid term

penalizes deviations from the target shape:

Enr=

n
∑

i=1

∥

∥xt
Ri−

(

α1 x
t−1

T i +α2 x
t
T i+α3 x

t+1

T i

)∥

∥

2
, (5)

where xt
T i denotes the i-th landmark in the target frame at

time t and αj ,
∑

j αj = 1, are normalized weights (0.1,

0.8 and 0.1 in our experiments). The affine term penalizes

deviations from the selected source shape:

Er=
n
∑

i=1

∥

∥xt
Ri −

(

β1 M
k−1xk−1

Si + β2 M
kxk

Si

)∥

∥

2
, (6)

where xk−1

Si (resp. xk
Si) is the i-th landmark in the selected

source frame immediately preceding (resp. following) the

current timestamp t, and M a global affine transformation

matrix which optimally aligns the corresponding source and

target shapes. As the selected source frames are only as-

signed to the central timestamp of a temporal cluster, no

selected source shape may correspond to the current target

frame f t
T
, so this term effectively interpolates between the

closest selected source shapes, thereby preserving the user’s

identity. The weights βj ,
∑

j βj=1, depend linearly on the

relative distance from t to the central timestamps of Ck−1

and Ck, being 0 or 1 if t coincides with one of the cluster

centers. Combining the two terms together with their corre-

sponding weights wnr and wr, yields the total energy

Etot(x
t
Ri) = wnr Enr + wr Er , (7)

where wnr + wr = 1. A closed-form solution to Eq. (7) for

the optimal landmark locations (xt
R1, ...,x

t
Rn) exists.

Appearance Transfer. Once we have the optimal shape

of the face in the reenactment sequence, we transfer the ap-

pearance of the selected source frames by inverse-warping

the corresponding source texture [21] using a triangulation

of the landmark points (see Fig. 2 (b)). For the in-between
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Figure 3. Comparison of warping approaches. Left: Selected user

frame. Right: Target pose. Middle left to right: non-rigid warping

(Eq. (5)), affine warping (Eq. (6)), and our approach (Eq. (7)).

Figure 4. Seam generation. Top: User at rest, source mask with

landmarks closest to the boundary in red, and eroded mask. Bot-

tom left: Target frame and mask. Bottom Right: Transferred

source frame and mask. Bottom middle: Final blending seam.

frames, we create a smooth transition in appearance by

interpolating the texture from the closest selected source

frames using the same triangulation of the landmarks.

Note that a shape and appearance transfer as described

here are generally not possible with conventional warping

approaches, such as global non-rigid warping and global

affine warping, as shown in Fig. 3. The former creates un-

realistic distortions in texture since it fits the source shape

exactly to the target shape, while the latter may fail un-

der strong perspective views and create odd deformations

whenever the source and target shape do not agree.

6.2. Compositing

We produce a convincing composite, where the main fa-

cial source features, represented by the eyes, nose, mouth,

and chin are seamlessly implanted on the target actor. The

lighting of the target sequence, and the skin appearance

and hair of the target actor, should be preserved. For this

purpose we use Poisson seamless cloning [19]. We cre-

ate a tight binary mask for the source sequence containing

the main facial features of the user at rest, such as eyes,

mouth, nose and eyebrows. We then perform an erosion

with a Gaussian structuring element that is constrained by

the landmark locations in the facial features. Thresholding

this mask gives us a seam for blending (see Fig. 4, top).

To obtain a seam for each frame in the reenactment, the

precomputed source mask is transferred by inverse-warping

(see Sec. 6.1). We prevent the seam from running outside

the target face by intersecting it with a mask containing the

main facial features of the target actor (see Fig. 4, bottom).

For increased insensitivity to the source illumination, we

transform the source and target frames into the perception-

based color space of [7] before performing Poisson blend-

ing [19]. The blended image is converted back to RGB

space, resulting in the final composite (see Fig. 1). To avoid

artifacts across the seam, we blend the boundary pixels us-

ing a Gaussian with a standard deviation of 9 pixels.

7. Results

We evaluate our method on two types of data: We use

videos that were prerecorded in a studio with an SLR cam-

era to demonstrate the reenactment quality on existing high-

quality footage. We also reenact faces in videos taken from

the Internet using a random performance of a user captured

with a webcam. This demonstrates our system’s ease of use

and its applicability to online content. Our system was im-

plemented in C++ and tested on a 3.4 GHz processor.

Existing Video. We recorded two male and two female

users performing random facial gestures and speech under

similar ambient lighting to simulate existing high-quality

HD footage. As source sequences, we selected a snippet

of about 10 s from the first two recordings and used the

second recordings as target. Fig. 5 shows the two reenact-

ment results of 22 and 12 s. Note that our system is able

to reproduce the target performance in a convincing way,

even when head motion, expression, timing, and speech of

user and actor differ substantially. Computation time for the

face tracking step was about 4 s per frame, while the com-

bined face matching and face transfer took 4.5 min in total

for both results. To appreciate the temporal quality of these

and additional results, we refer to the supplementary video.

Low-Quality Internet Video. Fig. 6 shows results for

two target videos downloaded from the Internet. The

user recorded himself with a standard webcam (20 fps,

640×480) for 10 s, and the reenactments were produced for

subsequences of 18 and 8 s. Both target videos exhibit dif-

ferent speech, head pose, lighting and resolution than the

recorded source sequence. Our system nevertheless pro-

duces plausible animations, even in the presence of quite

some head motion, such as in the Obama sequence. Face

matching and face transfer took between 4 and 7 min.

Validation. A user study in the supplementary material

shows with statistical significance that our temporal clus-

tering of Sec. 5.2 and combined appearance and motion

distance of Eq. (3) outperform a frame-by-frame matching

with the appearance metric of Eq. (2). Reenactment results

for 5 existing and 2 web videos were rated by 32 partici-

pants w.r.t. the original target performance in terms of mim-
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Figure 5. Existing HD video (22 s on the left, 12 s on the right). Top: Example frames from the target sequence. Middle: Corresponding

selected source frames. Bottom: Final composite. Weights in Eq. (7): wnr=0.65, wr=0.35 (left) and wnr=0.55, wr=0.45 (right).

Figure 6. Low-quality Internet video (18 s from Obama’s speech on the left (http://youtu.be/qxtydXN3f1U), 8 s excerpt from “A Few Good

Men” on the right (http://youtu.be/5j2F4VcBmeo)). Top: Example frames from the target sequence. Middle: Corresponding selected

source frames. Bottom: Final composite. Weights in Eq. (7): wnr=0.65, wr=0.35 (left) and wnr=0.45, wr=0.55 (right).

icking fidelity, temporal consistency and visual artifacts on

a scale from 1 (not good) to 5 (good). The average scores

over all results were 3.25 for our full system, 2.92 without

temporal clustering and 1.48 without motion distance.

The supplementary material presents an analysis of the

source video length, and demonstrates that increasing the

amount of source frames improves the quality of the reen-

actment, both in realism and temporal smoothness. The

supplementary material also shows that reenactment and

target are almost indistinguishable when source and target

are the same sequence. For two such self-reenactments of

10 s and 22 s, our system produced 1 and 36 mismatches on

59 and 214 computed clusters, respectively (a mismatch is

a selected frame not contained in the cluster). Mismatches

were mostly visually very similar to the corresponding clus-

ter centers, such that the final reenactment is close to a

perfect frame-by-frame synthesis. Also for the case where

source and target depict the same person under similar con-

ditions, the reenactment resembles the target closely.

Finally, we compared our system to the 3D approach of

Dale et al. [9] on data provided by the authors, depicting

two different subjects reciting the same poem. Our auto-

matic reenactment system produces a convincing result that

is visually very close in quality to their semi-automatic re-

sult. Since the system of Dale et al. is designed to trans-

fer the source face together with the complete source per-

formance, while our approach preserves the target perfor-

mance, both results might differ slightly in a frame-by-

frame comparison (see the supplementary video).

Discussion. Despite differences in speech, timing and

lighting, our system creates credible animations, provided

that the lighting remains constant or changes globally. Lo-

cal variations can lead to wrong color propagation across

the seam and can produce flicker and less realistic reenact-

ments. Ghosting artifacts may also appear in the mouth
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region stemming from blending and temporal inconsisten-

cies. In the future, we aim to drive the mouth separately, and

make the compositing step more robust to lighting changes.

Although our aim is to closely reproduce the facial ex-

pressions in the target sequence, our reenactment results can

differ from the original performance due to the source se-

quence not containing a matching expression, or the lim-

ited precision of our matching metric. Even under per-

fect matching conditions, our system will preserve person-

specific nuances and subtle specialties of the source expres-

sions, which not only differ in detail from the target expres-

sions, but also between individual users of the system.

8. Conclusion

We proposed an image-based reenactment system that

replaces the inner face of an actor in a video, while preserv-

ing the original facial performance. Our method requires

no user interaction, nor a complex 3D face model. It is

based on expression matching and uses temporal clustering

for matching stability and a combined appearance and mo-

tion metric for matching coherence. A simple, yet effective,

image-warping technique allowed us to deal with moderate

head motion. Experiments showed convincing reenactment

results for existing footage, obtained by using only a short

input video of a user making arbitrary facial expressions.
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