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Preface

Why study fluid mechanics? The primary reason is not even technical,

it is cultural: a physicist is defined as one who looks around and under-

stands at least part of the material world. One of the goals of this book

is to let you understand how the wind blows and how the water flows

so that swimming or flying you may appreciate what is actually going

on. The secondary reason is to do with applications: whether you are

to engage with astrophysics or biophysics theory or to build an appara-

tus for condensed matter research, you need the ability to make correct

fluid-mechanics estimates; some of the art for doing this will be taught

in the book. Yet another reason is conceptual: mechanics is the basis of

the whole of physics in terms of intuition and mathematical methods.

Concepts introduced in the mechanics of particles were subsequently

applied to optics, electromagnetism, quantum mechanics etc; here you

will see the ideas and methods developed for the mechanics of fluids,

which are used to analyze other systems with many degrees of freedom

in statistical physics and quantum field theory. And last but not least:

at present, fluid mechanics is one of the most actively developing fields

of physics, mathematics and engineering so you may wish to participate

in this exciting development.

Even for physicists who are not using fluid mechanics in their work

taking a one-semester course on the subject would be well worth their ef-

fort. This is one such course. It presumes no prior acquaintance with the

subject and requires only basic knowledge of vector calculus and analy-

sis. On the other hand, applied mathematicians and engineers working

on fluid mechanics may find in this book several new insights presented

from a physicist’s perspective. In choosing from the enormous wealth of

material produced by the last four centuries of ever-accelerating research,

preference was given to the ideas and concepts that teach lessons whose

importance transcends the confines of one specific subject as they prove

useful time and again across the whole spectrum of modern physics. To

much delight, it turned out to be possible to weave the subjects into

a single coherent narrative so that the book is a novel rather than a

collection of short stories.
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2 Contents

Prologue

”The water’s language was a wondrous one,
some narrative on a recurrent subject...”

A. Tarkovsky 1

There are two protagonists in this story: inertia and friction. One

meets them first in the mechanics of particles and solids where their

interplay is not very complicated: inertia tries to keep the motion while

friction tries to stop it. Going from a finite to an infinite number of

degrees of freedom is always a game-changer. We will see in this book

how an infinitesimal viscous friction makes fluid motion infinitely more

complicated than inertia alone would ever manage to produce. Without

friction, most incompressible flows would stay potential i.e. essentially

trivial. At solid surfaces, friction produces vorticity which is carried away

by inertia and changes the flow in the bulk. Instabilities then bring about

turbulence, and statistics emerges from dynamics. Vorticity penetrating

the bulk makes life interesting in ideal fluids though in a way different

from superfluids and superconductors. On the other hand, compressibil-

ity makes even potential flows non-trivial as it allows inertia to develop

a finite-time singularity (shock), which friction manages to stop.

On a formal level, inertia of a continuous medium is described by

a nonlinear term in the equation of motion. Friction is described by a

linear term which, however, have the highest spatial derivatives so that

the limit of zero friction is singular. Friction is not only singular but also

a symmetry-breaking perturbation, which leads to an anomaly when the

effect of symmetry breaking remains finite even in the limit of vanishing

viscosity.

The first chapter introduces basic notions and describes stationary

flows, inviscid and viscous. Time starts to run in the second chapter

where we discuss instabilities, turbulence and sound. This is a short

version (about one half), the full version is to be published by the Cam-

bridge Academic Press.
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Basic equations and steady flows

In this Chapter, we define the subject, derive the equations of motion

and describe their fundamental symmetries. We start from hydrostatics

where all forces are normal. We then try to consider flows this way as

well, neglecting friction. That allows us to understand some features of

inertia, most important induced mass, but the overall result is a failure

to describe a fluid flow past a body. We then are forced to introduce

friction and learn how it interacts with inertia producing real flows. We

briefly describe an Aristotelean world where friction dominates. In an

opposite limit we discover that the world with a little friction is very

much different from the world with no friction at all.

1.1 Definitions and basic equations

Continuous media. Absence of oblique stresses in equilibrium. Pressure

and density as thermodynamic quantities. Continuous motion. Continu-

ity equation and Euler’s equation. Boundary conditions. Entropy equa-

tion. Isentropic flows. Steady flows. Bernoulli equation. Limiting velocity

for the efflux into vacuum. Vena contracta.

1.1.1 Definitions

We deal with continuous media where matter may be treated as homo-

geneous in structure down to the smallest portions. Term fluid embraces

both liquids and gases and relates to the fact that even though any

fluid may resist deformations, that resistance cannot prevent deforma-

tion from happening. The reason is that the resisting force vanishes with

the rate of deformation. Whether one treats the matter as a fluid or a
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solid may depend on the time available for observation. As prophetess

Deborah sang, “The mountains flowed before the Lord” (Judges 5:5).

The ratio of the relaxation time to the observation time is called the

Deborah number 1. The smaller the number the more fluid the material.

A fluid can be in equilibrium only if all the mutual forces between two

adjacent parts are normal to the common surface. That experimental

observation is the basis of Hydrostatics. If one applies a force parallel

(tangential) to the common surface then the fluid layer on one side of

the surface start sliding over the layer on the other side. Such sliding

motion will lead to a friction between layers. For example, if you cease

to stir tea in a glass it could come to rest only because of such tangential

forces i.e. friction. Indeed, if the mutual action between the portions on

the same radius was wholly normal i.e. radial, then the conservation of

the moment of momentum about the rotation axis would cause the fluid

to rotate forever.

Since tangential forces are absent at rest or for a uniform flow, it is

natural to consider first the flows where such forces are small and can be

neglected. Therefore, a natural first step out of hydrostatics into hydro-

dynamics is to restrict ourselves with a purely normal forces, assuming

velocity gradients small (whether such step makes sense at all and how

long such approximation may last is to be seen). Moreover, the intensity

of a normal force per unit area does not depend on the direction in a

fluid, the statement called the Pascal law (see Exercise 1.1). We thus

characterize the internal force (or stress) in a fluid by a single scalar

function p(r, t) called pressure which is the force per unit area. From

the viewpoint of the internal state of the matter, pressure is a macro-

scopic (thermodynamic) variable. To describe completely the internal

state of the fluid, one needs the second thermodynamical quantity, e.g.

the density ρ(r, t), in addition to the pressure.

What analytic properties of the velocity field v(r, t) we need to pre-

sume? We suppose the velocity to be finite and a continuous function of

r. In addition, we suppose the first spatial derivatives to be everywhere

finite. That makes the motion continuous, i.e. trajectories of the fluid

particles do not cross. The equation for the distance δr between two close

fluid particles is dδr/dt = δv so, mathematically speaking, finiteness of

∇v is Lipschitz condition for this equation to have a unique solution

[a simple example of non-unique solutions for non-Lipschitz equation is

dx/dt = |x|1−α with two solutions, x(t) = (αt)1/α and x(t) = 0 starting

from zero for α > 0]. For a continuous motion, any surface moving with

the fluid completely separates matter on the two sides of it. We don’t
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yet know when exactly the continuity assumption is consistent with the

equations of the fluid motion. Whether velocity derivatives may turn

into infinity after a finite time is a subject of active research for an in-

compressible viscous fluid (and a subject of the one-million-dollar Clay

prize). We shall see below that a compressible inviscid flow generally

develops discontinuities called shocks.

1.1.2 Equations of motion for an ideal fluid

The Euler equation. The force acting on any fluid volume is equal to

the pressure integral over the surface: −
∮
p df . The surface area element

df is a vector directed as outward normal:

df

Let us transform the surface integral into the volume one: −
∮
p df =

−
∫
∇p dV . The force acting on a unit volume is thus −∇p and it must

be equal to the product of the mass ρ and the acceleration dv/dt. The

latter is not the rate of change of the fluid velocity at a fixed point in

space but the rate of change of the velocity of a given fluid particle as it

moves about in space. One uses the chain rule differentiation to express

this (substantial or material) derivative in terms of quantities referring

to points fixed in space. During the time dt the fluid particle changes its

velocity by dv which is composed of two parts, temporal and spatial:

dv = dt
∂v

∂t
+ (dr · ∇)v = dt

∂v

∂t
+ dx

∂v

∂x
+ dy

∂v

∂y
+ dz

∂v

∂z
. (1.1)

It is the change in the fixed point plus the difference at two points dr

apart where dr = vdt is the distance moved by the fluid particle during

dt. Dividing (1.1) by dt we obtain the substantial derivative as local

derivative plus convective derivative:

dv

dt
=
∂v

∂t
+ (v · ∇)v .

Any function F (r(t), t) varies for a moving particle in the same way

according to the chain rule differentiation:

dF

dt
=
∂F

∂t
+ (v · ∇)F .
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Writing now the second law of Newton for a unit mass of a fluid, we

come to the equation derived by Euler (Berlin, 1757; Petersburg, 1759):

∂v

∂t
+ (v · ∇)v = −∇p

ρ
. (1.2)

Before Euler, the acceleration of a fluid had been considered as due to the

difference of the pressure exerted by the enclosing walls. Euler introduced

the pressure field inside the fluid. We see that even when the flow is

steady, ∂v/∂t = 0, the acceleration is nonzero as long as (v · ∇)v ̸= 0,

that is if the velocity field changes in space along itself. For example,

for a steadily rotating fluid shown in Figure 1.1, the vector (v · ∇)v

has a nonzero radial component v2/r. The radial acceleration times the

density must be given by the radial pressure gradient: dp/dr = ρv2/r.

p
v

p

Figure 1.1 Pressure p is normal to circular surfaces and cannot
change the moment of momentum of the fluid inside or outside the
surface; the radial pressure gradient changes the direction of velocity
v but does not change its modulus.

We can also add an external body force per unit mass (for gravity

f = g):

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ f . (1.3)

The term (v · ∇)v describes inertia and makes the equation (1.3) non-

linear.

Continuity equation expresses conservation of mass. If Q is the vol-

ume of a moving element then dρQ/dt = 0 that is

Q
dρ

dt
+ ρ

dQ

dt
= 0 . (1.4)

The volume change can be expressed via v(r, t).
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Q

A δ x

δ

B

y

The horizontal velocity of the point B relative to the point A is

δx∂vx/∂x. After the time interval dt, the length of the AB edge is

δx(1 + dt∂vx/∂x). Overall, after dt, one has the volume change

dQ = dt
dQ

dt
= δxδyδzdt

(
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

)
= Qdt div v .

Substituting that into (1.4) and canceling (arbitrary) Q we obtain the

continuity equation

dρ

dt
+ ρdiv v =

∂ρ

∂t
+ (v · ∇)ρ+ ρdivv =

∂ρ

∂t
+ div(ρv) = 0 . (1.5)

The last equation is almost obvious since for any fixed volume of space

the decrease of the total mass inside, −
∫
(∂ρ/∂t)dV , is equal to the flux∮

ρv · df =
∫
div(ρv)dV .

Entropy equation. We have now four equations (1.3,1.5) for five quan-

tities p, ρ, vx, vy, vz, so we need one extra equation. In deriving (1.3,1.5)

we have taken no account of energy dissipation neglecting thus internal

friction (viscosity) and heat exchange. Fluid without viscosity and ther-

mal conductivity is called ideal. The motion of an ideal fluid is adiabatic

that is the entropy of any fluid particle remains constant: ds/dt = 0,

where s is the entropy per unit mass. We can turn this equation into a

continuity equation for the entropy density in space

∂(ρs)

∂t
+ div(ρsv) = 0 . (1.6)

At the boundaries of the fluid, the continuity equation (1.5) is replaced

by the boundary conditions:

1) On a fixed boundary, vn = 0;

2) On a moving boundary between two immiscible fluids,

p1 = p2 and vn1 = vn2.

These are particular cases of the general surface condition. Let F (r, t) =
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0 be the equation of the bounding surface. Absence of any fluid flow

across the surface requires

dF

dt
=
∂F

∂t
+ (v · ∇)F = 0 ,

which means, as we now know, the zero rate of F variation for a fluid

particle. For a stationary boundary, ∂F/∂t = 0 and v ⊥ ∇F ⇒ vn = 0.

Eulerian and Lagrangian descriptions. We thus encountered two

alternative ways of description. The equations (1.3,1.6) use the coordi-

nate system fixed in space, like field theories describing electromagnetism

or gravity. That way of description is called Eulerian in fluid mechan-

ics. Another approach is called Lagrangian, it is a generalization of the

approach taken in particle mechanics. This way one follows fluid parti-

cles 2 and treats their current coordinates, r(R, t), as functions of time

and their initial positions R = r(R, 0). The substantial derivative is thus

the Lagrangian derivative since it sticks to a given fluid particle, that

is keeps R constant: d/dt = (∂/∂t)R. Conservation laws written for a

unit-mass quantity A have a Lagrangian form:

dA
dt

=
∂A
∂t

+ (v∇)A = 0 .

Every Lagrangian conservation law together with mass conservation gen-

erates an Eulerian conservation law for a unit-volume quantity ρA:

∂(ρA)

∂t
+ div(ρAv) = A

[
∂ρ

∂t
+ div(ρv)

]
+ ρ

[
∂A
∂t

+ (v∇)A
]
= 0 .

On the contrary, if the Eulerian conservation law has the form

∂(ρB)
∂t

+ div(F) = 0

and the flux is not equal to the density times velocity, F ̸= ρBv, then
the respective Lagrangian conservation law does not exist. That means

that fluid particles can exchange B conserving the total space integral —

we shall see below that the conservation laws of energy and momentum

have that form.

1.1.3 Hydrostatics

A necessary and sufficient condition for fluid to be in a mechanical equi-

librium follows from (1.3):

∇p = ρf . (1.7)



1.1 Definitions and basic equations 9

Not any distribution of ρ(r) could be in equilibrium since ρ(r)f(r) is not

necessarily a gradient. If the force is potential, f = −∇ϕ, then taking

curl of (1.7) we get

∇ρ×∇ϕ = 0.

That means that the gradients of ρ and ϕ are parallel and their level

surfaces coincide in equilibrium. The best-known example is gravity with

ϕ = gz and ∂p/∂z = −ρg. For an incompressible fluid, it gives

p(z) = p(0)− ρgz .

For an ideal gas under a homogeneous temperature, which has p =

ρT/m, one gets

dp

dz
= −pgm

T
⇒ p(z) = p(0) exp(−mgz/T ) .

For air at 0◦C, T/mg ≃ 8 km. The Earth atmosphere is described by

neither linear nor exponential law because of an inhomogeneous temper-

ature. Assuming a linear temperature decay, T (z) = T0 −αz, one gets a

real atmosphere
incompressible

(linear)

(exponential)
isothermal

z

p

Figure 1.2 Pressure-height dependence for an incompressible fluid
(broken line), isothermal gas (dotted line) and the real atmosphere
(solid line).

better approximation:

dp

dz
= −ρg = − pmg

T0 − αz
,

p(z) = p(0)(1− αz/T0)
mg/α ,

which can be used not far from the surface with α ≃ 6.5◦/km.

In a (locally) homogeneous gravity field, the density depends only on
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vertical coordinate in a mechanical equilibrium. According to dp/dz =

−ρg, the pressure also depends only on z. Pressure and density deter-

mine temperature, which then must also be independent of the horizon-

tal coordinates. Different temperatures at the same height necessarily

produce fluid motion, that is why winds blow in the atmosphere and

currents flow in the ocean. Another source of atmospheric flows is ther-

mal convection due to a negative vertical temperature gradient. Let us

derive the stability criterium for a fluid with a vertical profile T (z). If

a fluid element is shifted up adiabatically from z by dz, it keeps its en-

tropy s(z) but acquires the pressure p′ = p(z + dz) so its new density

is ρ(s, p′). For stability, this density must exceed the density of the dis-

placed air at the height z+dz, which has the same pressure but different

entropy s′ = s(z + dz). The condition for stability of the stratification

is as follows:

ρ(p′, s) > ρ(p′, s′) ⇒
(
∂ρ

∂s

)
p

ds

dz
< 0 .

Entropy usually increases under expansion, (∂ρ/∂s)p < 0, and for sta-

bility we must require

ds

dz
=

(
∂s

∂T

)
p

dT

dz
+

(
∂s

∂p

)
T

dp

dz
=
cp
T

dT

dz
−
(
∂V

∂T

)
p

g

V
> 0 . (1.8)

Here we used specific volume V = 1/ρ. For an ideal gas the coefficient

of the thermal expansion is as follows: (∂V/∂T )p = V/T and we end up

with

−dT
dz

<
g

cp
. (1.9)

For the Earth atmosphere, cp ∼ 103J/kg · Kelvin, and the convection

threshold is 10◦/km, not far from the average gradient 6.5◦/km, so that

the atmosphere is often unstable with respect to thermal convection3.

Human body always excites convection in a room-temperature air 4.

The convection stability argument applied to an incompressible fluid

rotating with the angular velocity Ω(r) gives the Rayleigh’s stability

criterium, d(r2Ω)2/dr > 0, which states that the angular momentum of

the fluid L = r2|Ω| must increase with the distance r from the rotation

axis 5. Indeed, if a fluid element is shifted from r to r′ it keeps its angular

momentum L(r), so that the local pressure gradient dp/dr = ρr′Ω2(r′)

must overcome the centrifugal force ρr′(L2r4/r′4).
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1.1.4 Isentropic motion

The simplest motion corresponds to s =const and allows for a substantial

simplification of the Euler equation. Indeed, it would be convenient to

represent ∇p/ρ as a gradient of some function. For this end, we need

a function which depends on p, s, so that at s =const its differential

is expressed solely via dp. There exists the thermodynamic potential

called enthalpy defined as W = E + pV per unit mass (E is the internal

energy of the fluid). For our purposes, it is enough to remember from

thermodynamics the single relation dE = Tds − pdV so that dW =

Tds+V dp [one can also show that W = ∂(Eρ)/∂ρ)]. Since s =const for

an isentropic motion and V = ρ−1 for a unit mass then dW = dp/ρ and

without body forces one has

∂v

∂t
+ (v · ∇)v = −∇W . (1.10)

Such a gradient form will be used extensively for obtaining conservation

laws, integral relations etc. For example, representing

(v · ∇)v = ∇v2/2− v × (∇× v) ,

we get

∂v

∂t
= v × (∇× v)−∇(W + v2/2) . (1.11)

The first term in the right-hand side is perpendicular to the veloc-

ity. To project (1.11) along the velocity and get rid of this term, we

define streamlines as the lines whose tangent is everywhere parallel to

the instantaneous velocity. The streamlines are then determined by the

relations

dx

vx
=
dy

vy
=
dz

vz
.

Note that for time-dependent flows streamlines are different from par-

ticle trajectories: tangents to streamlines give velocities at a given time

while tangents to trajectories give velocities at subsequent times. One

records streamlines experimentally by seeding fluids with light-scattering

particles; each particle produces a short trace on a short-exposure pho-

tograph, the length and orientation of the trace indicates the magnitude

and direction of the velocity. Streamlines can intersect only at a point

of zero velocity called stagnation point.

Let us now consider a steady flow assuming ∂v/∂t = 0 and take the



12 Basic equations and steady flows

component of (1.11) along the velocity at a point:

∂

∂l
(W + v2/2) = 0 . (1.12)

We see that W + v2/2 = E + p/ρ + v2/2 is constant along any given

streamline, but may be different for different streamlines (Bernoulli,

1738). Why W rather than E enters the conservation law is discussed

after (1.16) below. In a gravity field, W + gz + v2/2 =const. Let us

consider several applications of this useful relation.

Incompressible fluid. Under a constant temperature and a constant

density and without external forces, the energy E is constant too. One

can obtain, for instance, the limiting velocity with which such a liquid

escapes from a large reservoir into vacuum:

v =
√
2p0/ρ .

For water (ρ = 103 kgm−3) at atmospheric pressure (p0 = 105N m−2)

one gets v =
√
200 ≈ 14m/s.

Adiabatic gas flow. The adiabatic law, p/p0 = (ρ/ρ0)
γ , gives the

enthalpy as follows:

W =

∫
dp

ρ
=

γp

(γ − 1)ρ
.

The limiting velocity for the escape into vacuum is

v =

√
2γp0

(γ − 1)ρ

that is
√
γ/(γ − 1) times larger than for an incompressible fluid (because

the internal energy of the gas decreases as it flows, thus increasing the

kinetic energy). In particular, a meteorite-damaged spaceship looses the

air from the cabin faster than the liquid fuel from the tank. We shall

see later that (∂P/∂ρ)s = γP/ρ is the sound velocity squared, c2, so

that v = c
√
2/(γ − 1). For an ideal gas with n degrees of freedom,

W = E+ p/ρ = nT/2m+T/m so that γ = (2+n)/n. For bi-atomic gas

at not very high temperature, n = 5.
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Efflux from a small orifice under the action of gravity. Supposing

the external pressure to be the same at the horizonal surface and at the

orifice, we apply the Bernoulli relation to the streamline which origi-

nates at the upper surface with almost zero velocity and exits with the

velocity v =
√
2gh (Torricelli, 1643). The Torricelli formula is not of

much use practically to calculate the rate of discharge as the orifice area

times
√
2gh (the fact known to wine merchants long before physicists).

Indeed, streamlines converge from all sides towards the orifice so that

the jet continues to converge for a while after coming out. Moreover, that

converging motion makes the pressure in the interior of the jet somewhat

greater that at the surface so that the velocity in the interior is some-

what less than
√
2gh. The experiment shows that contraction ceases and

p

p

Figure 1.3 Streamlines converge coming out of the orifice.

the jet becomes cylindrical at a short distance beyond the orifice. That

point is called “vena contracta” and the ratio of jet area there to the

orifice area is called the coefficient of contraction. The estimate for the

discharge rate is
√
2gh times the orifice area times the coefficient of con-

traction. For a round hole in a thin wall, the coefficient of contraction is

experimentally found to be 0.62. The Exercise 1.3 presents a particular

case where the coefficient of contraction can be found exactly.

Bernoulli relation is also used in different devices that measure the

flow velocity. Probably, the simplest such device is the Pitot tube shown

in Figure 1.4. It is open at both ends with the horizontal arm facing up-

stream. Since the liquid does not move inside the tube than the velocity

is zero at the point labelled B. On the one hand, the pressure difference

at two pints on the same streamline can be expressed via the velocity at

A: PB − PA = ρv2/2. On the other hand, it is expressed via the height

h by which liquid rises above the surface in the vertical arm of the tube:

PB − PA = ρgh. That gives v2 = 2gh.
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h

. .B
v

A 

Figure 1.4 Pitot tube that determines the velocity v at the point A
by measuring the height h.

1.2 Conservation laws and potential flows

Kinematics: Strain and Rotation. Kelvin’s theorem of conservation of

circulation. Energy and momentum fluxes. Irrotational flow as a poten-

tial one. Incompressible fluid. Conditions of incompressibility. Potential

flows in two dimensions.

1.2.1 Kinematics

The relative motion near a point is determined by the velocity difference

between neighbouring points:

δvi = rj∂vi/∂xj .

It is convenient to analyze the tensor of the velocity derivatives by

decomposing it into symmetric and antisymmetric parts: ∂vi/∂xj =

Sij + Aij . The symmetric tensor Sij = (∂vi/∂xj + ∂vj/∂xi)/2 is called

strain, it can be always transformed into a diagonal form by an or-

thogonal transformation (i.e. by the rotation of the axes). The diagonal

components are the rates of stretching in different directions. Indeed, the

equation for the distance between two points along a principal direction

has a form: ṙi = δvi = riSii (no summation over i). The solution is as

follows:

ri(t) = ri(0) exp

[∫ t

0

Sii(t
′) dt′

]
.

For a permanent strain, the growth/decay is exponential in time. One

recognizes that a purely straining motion converts a spherical material

element into an ellipsoid with the principal diameters that grow (or
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decay) in time, the diameters do not rotate. Indeed, consider a circle of

the radius R at t = 0. The point that starts at x0, y0 =
√
R2 − x20 goes

into

x(t) = eS11tx0 ,

y(t) = eS22ty0 = eS22t
√
R2 − x20 = eS22t

√
R2 − x2(t)e−2S11t ,

x2(t)e−2S11t + y2(t)e−2S22t = R2 . (1.13)

The equation (1.13) describes how the initial fluid circle turns into the

ellipse whose eccentricity increases exponentially with the rate |S11 −
S22|.
The sum of the strain diagonal components is div v = Sii which deter-

mines the rate of the volume change: Q−1dQ/dt = −ρ−1dρ/dt = div v =

Sii.

t
exp(S   t)

exp(S   t)xx

yy

Figure 1.5 Deformation of a fluid element by a permanent strain.

The antisymmetric part Aij = (∂vi/∂xj − ∂vj/∂xi)/2 has only three

independent components so it could be represented via some vector ω:

Aij = −ϵijkωk/2. The coefficient −1/2 is introduced to simplify the

relation between v and ω:

ω = ∇× v .

The vector ω is called vorticity as it describes the rotation of the fluid

element: δv = [ω× r]/2. It has a meaning of twice the effective local an-

gular velocity of the fluid. Plane shearing motion like vx(y) corresponds

to strain and vorticity being equal in magnitude.

1.2.2 Kelvin’s theorem

That theorem describes the conservation of velocity circulation for isen-

tropic flows. For a rotating cylinder of a fluid, the momentum of mo-

mentum is proportional to the velocity circulation around the cylinder

circumference. The momentum of momentum and circulation are both

conserved when there are only normal forces, as was already mentioned
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t

vorticity
shear

shear

strain

Figure 1.6 Deformation and rotation of a fluid element in a shear
flow. Shearing motion is decomposed into a straining motion and
rotation.

at the beginning of Sect. 1.1.1. Let us show that this is also true for

every ”fluid” contour which is made of fluid particles. As fluid moves,

both the velocity and the contour shape change:

d

dt

∮
v · dl =

∮
v(dl/dt) +

∮
(dv/dt) · dl = 0 .

The first term here disappears because it is a contour integral of the

complete differential: since dl/dt = δv then
∮
v(dl/dt) =

∮
δ(v2/2) =

0. In the second term we substitute the Euler equation for isentropic

motion, dv/dt = −∇W , and use the Stokes formula which tells that

the circulation of a vector around the closed contour is equal to the flux

of the curl through any surface bounded by the contour:
∮
∇W · dl =∫

∇×∇W df = 0.

Stokes formula also tells us that
∮
vdl =

∫
ω·df . Therefore, the conser-

vation of the velocity circulation means the conservation of the vorticity

flux. To better appreciate this, consider an alternative derivation. Taking

curl of (1.11) we get

∂ω

∂t
= ∇× (v × ω) . (1.14)

This is the same equation that describes the magnetic field in a perfect

conductor: substituting the condition for the absence of the electric field

in the frame moving with the velocity v, cE + v × H = 0, into the

Maxwell equation ∂H/∂t = −c∇×E, one gets ∂H/∂t = ∇×(v×H). The

magnetic flux is conserved in a perfect conductor and so is the vorticity

flux in an isentropic flow. One can visualize vector field introducing

field lines which give the direction of the field at any point while their

density is proportional to the magnitude of the field. Kelvin’s theorem

means that vortex lines move with material elements in an inviscid fluid

exactly like magnetic lines are frozen into a perfect conductor. One way

to prove that is to show that ω/ρ (and H/ρ) satisfy the same equation
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as the distance r between two fluid particles: dr/dt = (r · ∇)v. This is

done using dρ/dt = −ρdiv v and applying the general relation

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B (1.15)

to ∇× (v × ω) = (ω · ∇)v − (v · ∇)ω − ω div v. We then obtain

d

dt

ω

ρ
=

1

ρ

dω

dt
− ω

ρ2
dρ

dt
=

1

ρ

[
∂ω

∂t
+ (v · ∇)ω

]
+
div v

ρ

=
1

ρ
[(ω · ∇)v − (v · ∇)ω − ω div v + (v · ∇)ω] +

div v

ρ
=

(
ω

ρ
· ∇
)
v .

Since r and ω/ρ move together, then any two close fluid particles chosen

on the vorticity line always stay on it. Consequently any fluid particle

stays on the same vorticity line so that any fluid contour never crosses

vorticity lines and the flux is indeed conserved.

1.2.3 Energy and momentum fluxes

Let us now derive the equation that expresses the conservation law of

energy. The energy density (per unit volume) in the flow is ρ(E+v2/2)].

For isentropic flows, one can use ∂ρE/∂ρ = W and calculate the time

derivative

∂

∂t

(
ρE +

ρv2

2

)
=
(
W + v2/2

)∂ρ
∂t

+ ρv · ∂v
∂t

= −div [ρv(W + v2/2)] .

Since the right-hand side is a total derivative then the integral of the

energy density over the whole space is conserved. The same Eulerian

conservation law in the form of a continuity equation can be obtained in

a general (non-isentropic) case as well. It is straightforward to calculate

the time derivative of the kinetic energy:

∂

∂t

ρv2

2
= −v

2

2
div ρv − v · ∇p− ρv · (v∇)v

= −v
2

2
div ρv − v(ρ∇W − ρT∇s)− ρv · ∇v2/2 .

For calculating ∂(ρE)/∂t we use dE = Tds − pdV = Tds + pρ−2dρ so

that d(ρE) = Edρ+ ρdE =Wdρ+ ρTds and

∂(ρE)

∂t
=W

∂ρ

∂t
+ ρT

∂s

∂t
= −Wdiv ρv − ρTv · ∇s .

Adding everything together one gets

∂

∂t

(
ρE +

ρv2

2

)
= −div [ρv(W + v2/2)] . (1.16)
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As usual, the rhs is the divergence of the flux, indeed:

∂

∂t

∫ (
ρE +

ρv2

2

)
dV = −

∮
ρ(W + v2/2)]v · df .

Note the remarkable fact that the energy flux is

ρv(W + v2/2) = ρv(E + v2/2) + pv

which is not equal to the energy density times v but contains an extra

pressure term which describes the work done by pressure forces on the

fluid. In other terms, any unit mass of the fluid carries an amount of

energyW+v2/2 rather than E+v2/2. That means, in particular, that for

energy there is no (Lagrangian) conservation law for unit mass d(·)/dt =
0 that is valid for passively transported quantities like entropy. This is

natural because different fluid elements exchange energy by doing work.

Momentum is also exchanged between different parts of fluid so that

the conservation law must have the form of a continuity equation written

for the momentum density. The momentum of the unit volume is the

vector ρv whose every component is conserved so it should satisfy the

equation of the form

∂ρvi
∂t

+
∂Πik

∂xk
= 0 .

Let us find the momentum flux Πik — the flux of the i-th component

of the momentum across the surface with the normal along k. Substi-

tute the mass continuity equation ∂ρ/∂t = −∂(ρvk)/∂xk and the Euler

equation ∂vi/∂t = −vk∂vi/∂xk − ρ−1∂p/∂xi into

∂ρvi
∂t

= ρ
∂vi
∂t

+ vi
∂ρ

∂t
= − ∂p

∂xi
− ∂

∂xk
ρvivk ,

that is

Πik = pδik + ρvivk . (1.17)

Plainly speaking, along v there is only the flux of parallel momentum

p + ρv2 while perpendicular to v the momentum component is zero at

the given point and the flux is p. For example, if we direct the x-axis

along velocity at a given point then Πxx = p + v2, Πyy = Πzz = p and

all the off-diagonal components are zero.

We have finished the formulations of the equations and their general

properties and will discuss now the simplest case which allows for an

analytic study. This involves several assumptions.
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1.2.4 Irrotational and incompressible flows

Irrotational flows are defined as having zero vorticity: ω = ∇×v ≡ 0.

In such flows,
∮
v · dl = 0 round any closed contour, which means, in

particular, that there are no closed streamlines for a single-connected

domain. Note that the flow has to be isentropic to stay irrotational (i.e.

inhomogeneous heating can generate vortices). A zero-curl vector field

is potential, v = ∇ϕ, so that the Euler equation (1.11) takes the form

∇
(
∂ϕ

∂t
+
v2

2
+W

)
= 0 .

After integration, one gets

∂ϕ

∂t
+
v2

2
+W = C(t)

and the space independent function C(t) can be included into the poten-

tial, ϕ(r, t) → ϕ(r, t)+
∫ t
C(t′)dt′, without changing velocity. Eventually,

∂ϕ

∂t
+
v2

2
+W = 0 . (1.18)

For a steady flow, we thus obtained a more strong Bernoulli theorem

with v2/2 + W being the same constant along all the streamlines in

distinction from a general case where it may be a different constant

along different streamlines.

Absence of vorticity provides for a dramatic simplification which we

exploit in this Section and the next one. Unfortunately, irrotational flows

are much less frequent than Kelvin’s theorem suggests. The main reason

is that (even for isentropic flows) the viscous boundary layers near solid

boundaries generate vorticity as we shall see in Sect. 1.5. Yet we shall

also see there that large regions of the flow can be unaffected by the vor-

ticity generation and effectively described as irrotational. Another class

of potential flows is provided by small-amplitude oscillations (like waves

or motions due to oscillations of an immersed body). If the amplitude

of oscillations a is small comparatively to the velocity scale of change l

then ∂v/∂t ≃ v2/a while (v∇)v ≃ v2/l so that the nonlinear term can

be neglected and ∂v/∂t = −∇W . Taking curl of this equation we see

that ω is conserved but its average is zero in oscillating motion so that

ω = 0.

Incompressible fluid can be considered as such if the density can

be considered constant. That means that in the continuity equation,
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∂ρ/∂t + (v∇)ρ + ρdiv v = 0, the first two terms are much smaller than

the third one. Let the velocity v change over the scale l and the time τ .

The density variation can be estimated as

δρ ≃ (∂ρ/∂p)sδp ≃ (∂ρ/∂p)sρv
2 ≃ ρv2/c2 , (1.19)

where the pressure change was estimated from the Bernoulli relation.

Requiring

(v∇)ρ ≃ vδρ/l ≪ ρdiv v ≃ ρv/l ,

we get the condition δρ ≪ ρ which, according to (1.19), is true as long

as the velocity is much less than the speed of sound. The second condi-

tion, ∂ρ/∂t ≪ ρdiv v , is the requirement that the density changes slow

enough:

∂ρ/∂t ≃ δρ/τ ≃ δp/τc2 ≃ ρv2/τc2 ≪ ρv/l ≃ ρdiv v .

That suggests τ ≫ (l/c)(v/c) — that condition is actually more strict

since the comparison of the first two terms in the Euler equation sug-

gests l ≃ vτ which gives τ ≫ l/c . We see that the extra condition

of incompressibility is that the typical time of change τ must be much

larger than the typical scale of change l divided by the sound velocity

c. Indeed, sound equilibrates densities in different points so that all flow

changes must be slow to let sound pass.

For an incompressible fluid, the continuity equation is thus reduced

to

divv = 0 . (1.20)

For isentropic motion of an incompressible fluid, the internal energy does

not change (dE = Tds+ pρ−2dρ) so that one can put everywhere W =

p/ρ. Since density is no more an independent variable, the equations can

be chosen that contain only velocity: one takes (1.14) and (1.20).

In two dimensions, incompressible flow can be characterized by a sin-

gle scalar function. Since ∂vx/∂x = −∂vy/∂y then we can introduce the

stream function ψ defined by vx = ∂ψ/∂y and vy = −∂ψ/∂x. Recall
that the streamlines are defined by vxdy − vydx = 0 which now corre-

spond to dψ = 0 that is indeed the equation ψ(x, y) =const determines

streamlines. Another important use of the stream function is that the

flux through any line is equal to the difference of ψ at the endpoints

(and is thus independent of the line form - an evident consequence of
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incompressibility):∫ 2

1

vndl =

∫ 2

1

(vxdy − vydx) =

∫
dψ = ψ2 − ψ1 . (1.21)

Here vn is the velocity projection on the normal that is the flux is equal

to the modulus of the vector product
∫
|v × dl|, see Figure 1.7. Solid

boundary at rest has to coincide with one of the streamlines.

x

y

1

2

vx

vy v

dx
dydl

Figure 1.7 The flux through the line element dl is the flux to the
right vxdy minus the flux up vydx in agreement with (1.21).

Potential flow of an incompressible fluid is described by a linear

equation. By virtue of (1.20) the potential satisfies the Laplace equation6

∆ϕ = 0 ,

with the condition ∂ϕ/∂n = 0 on a solid boundary at rest.

θ

y

x

v

Particularly beautiful is the description of two-dimensional (2d) po-

tential incompressible flows. Both potential and stream function exist in

this case. The equations

vx =
∂ϕ

∂x
=
∂ψ

∂y
, vy =

∂ϕ

∂y
= −∂ψ

∂x
, (1.22)

could be recognized as the Cauchy-Riemann conditions for the complex
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potential w = ϕ+ ıψ to be an analytic function of the complex argument

z = x + ıy. That means that the rate of change of w does not depend

on the direction in the x, y-plane, so that one can define the complex

derivative dw/dz, which exists everywhere. For example, both choices

dz = dx and dz = ıdy give the same answer by virtue of (1.22):

dw

dz
=
∂ϕ

∂x
+ ı

∂ψ

∂x
=
∂ϕ

ı∂y
+
∂ψ

∂y
= vx− ıvy = ve−ıθ , v = vx+ ivy =

dw̄

dz̄
.

Complex form allows one to describe many flows in a compact form and

find flows in a complex geometry by mapping a domain into a standard

one. Such transformation must be conformal i.e. done by an analytic

function so that the equations (1.22) preserve their form in the new

coordinates 7.

We thus get our first (infinite) family of flows: any complex func-

tion analytic in a domain and having a constant imaginary part on the

boundary describes a potential flow of an incompressible fluid in this

domain. Uniform flow is just w = (vx − ıvy)z. Few other examples:

1) Potential flow near a stagnation point v = 0 (inside the domain

or on a smooth boundary) is expressed via the rate-of-strain tensor Sij :

ϕ = Sijxixj/2 with div v = Sii = 0. In the principal axes of the tensor,

one has vx = kx, vy = −ky which corresponds to

ϕ = k(x2 − y2)/2 , ψ = kxy , w = kz2/2

The streamlines are rectangular hyperbolae. This is applied, in partic-

ular, on the boundary which has to coincide with one of the principal

axes (x or y) or both. The Figure presents the flows near the boundary

along x and along x and y (half of the previous one):
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2) Consider the potential in the form w = Azn that is ϕ = Arn cosnθ

and ψ = Arn sinnθ. Zero-flux boundaries should coincide with the stream-

lines so two straight lines θ = 0 and θ = π/n could be seen as boundaries.

Choosing different n, one can have different interesting particular cases.



1.2 Conservation laws and potential flows 23

Velocity modulus

v =

∣∣∣∣dwdz
∣∣∣∣ = n|A|rn−1

at r → 0 either turns to 0 (n > 1) or to ∞ (n < 1).
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Figure 1.8 Flows described by the complex potential w = Azn.

One can think of those solutions as obtained by a conformal trans-

formation ζ = zn which maps z-domain into the full ζ-plane. The po-

tential w = Azn = Aζ describes a uniform flow in the ζ-plane. Re-

spective z and ζ points have the same value of the potential so that

the transformation maps streamlines into streamlines. The velocity in

the transformed domain is as follows: dw/dζ = (dw/dz)(dz/dζ), that

is the velocity modulus is inversely proportional to the stretching fac-

tor of the transformation. That has two important consequences: First,

the energy of the potential flow is invariant with respect to conformal

transformations i.e. the energy inside every closed curve in z-plane is

the same as the energy inside the image of the curve in ζ-plane. Second,

flow dynamics is not conformal invariant even when it proceeds along

the conformal invariant streamlines (which coincide with particle trajec-

tories for a steady flow). Indeed, when the flow shifts the fluid particle

from z to z + vdt = z + dt(dw̄/dz̄), the new image,

ζ(z + vdt) = ζ(z) + dtv
dζ

dz
= ζ(z) + dt

dw̄

dz̄

dζ

dz
,

does not coincide with the new position of the old image,

ζ(z) + dt
dw̄

dζ̄
= ζ(z) + dt

dw̄

dz̄

dz̄

dζ̄
.

Despite the beauty of conformal flows, their applications are limited.

Real flow usually separates at discontinuities, it does not turn over the

corner for n < 1 and does not reach the inside of the corner for n > 1:
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recirculating standing eddy

n>1

The phenomenon of separation is due to a combined action of fric-

tion and inertia and is discussed in detail in Section 1.5.2. Separation

produces vorticity, which makes it impossible to introduce the potential

ϕ and use the complex potential w (rotational flows are not conformal

invariant).

1.3 Flow past a body

Here we go from two-dimensional to three-dimensional flows, starting

from the most symmetric case of a moving sphere and then consider

a moving body of an arbitrary shape. Our aim is to understand and

describe what we know from everyday experience: fluids apply forces

both when we try to set a body into motion and when we try to maintain

a motion with a constant speed. In addition to resistance forces, for non-

symmetric cases we expect to find a force perpendicular to the motion

(called lift), which is what keeps birds and planes from falling from the

skies. We consider the motion of a body in an ideal fluid and a body set

in motion by a moving fluid.

Flow is assumed to be four “i”: infinite, irrotational, incompressible

and ideal. The algorithm to describe such a flow is to solve the Laplace

equation

∆ϕ = 0 . (1.23)

The boundary condition on the body surface is the requirement that the

normal components of the body and fluid velocities coincide, that is at

any given moment one has ∂ϕ/∂n = un, where u is body velocity. After

finding the potential, one calculates v = ∇ϕ and then finds pressure

from the Bernoulli equation:

p = −ρ(∂ϕ/∂t+ v2/2) . (1.24)

It is the distinctive property of an irrotational incompressible flow that

the velocity distribution is defined completely by a linear equation. Due
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to linearity, velocity potentials can be superimposed (but not pressure

distributions).

1.3.1 Incompressible potential flow past a body

Before going into calculations, one can formulate several general state-

ments. First, note that the Laplace equation is elliptic which means that

the solutions are smooth inside the domains, singularities could exist on

boundaries only, in contrast to hyperbolic (say, wave) equations 8. Sec-

ond, integrating (1.23) over any volume one gets∫
∆ϕdV =

∫
div∇ϕdV =

∮
∇ϕ · df = 0 ,

that is the flux is zero through any closed surface (as is expected for an

incompressible fluid). That means, in particular, that v = ∇ϕ changes

sign on any closed surface so that extrema of ϕ could be on the boundary

only. The same can be shown for velocity components (e.g. for ∂ϕ/∂x)

since they also satisfy the Laplace equation. That means that for any

point P inside one can find P ′ having higher |vx|. If we choose the x-

direction to coincide at P with ∇ϕ we conclude that for any point inside

one can find another point in the immediate neighborhood where |v| is
greater. In other terms, v2 cannot have a maximum inside (but can have

a minimum). Similarly for pressure, taking Laplacian of the Bernoulli

relation (1.24),

∆p = −ρ∆v2/2 = −ρ(∇v)2 ,

and integrating it over volume, one obtains∮
∇p · df = −ρ

∫
(∇v)2dV < 0 ,

that is a pressure minimum could be only on a boundary (although

a maximum can occur at an interior point). For steady flows, v2/2 +

p/ρ =const so that the points of max v2 coincide with those of min p

and all are on a boundary 9. The knowledge of points of minimal pres-

sure is important for cavitation which is a creation of gas bubbles when

the pressure falls below the vapour pressure; when such bubbles then ex-

perience higher pressure, they may collapse producing shock waves that

do severe damage to moving boundaries like turbine blades and ships’

propellers. Likewise, we shall see in Section 2.3.2 that when local fluid

velocity exceeds the velocity of sound, shock is created; this is again

must happen on the boundary of a potential flow.
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1.3.2 Moving sphere

Solutions of the equation ∆ϕ = 0 that vanish at infinity are 1/r and its

derivatives, ∂n(1/r)/∂xn. Due to the complete symmetry of the sphere,

its motion is characterized by a single vector of its velocity u. Linearity

requires ϕ ∝ u so the flow potential could be only made as a scalar

product of the vectors u and the gradient, which is the dipole field:

ϕ = a

(
u · ∇1

r

)
= −a (u · n)

r2

where n = r/r. On the body, r = R and v · n = u · n = u cos θ. Using

ϕ=−ua cos θ/r2 and vR=2auR−3 cos θ, this condition gives a=R3/2.

θ
2r

R
2

3 (un)

3

φ = (Stokes, 1843)

v = R
3

r2 [3n(un)-u]

n

u

R

Now one can calculate the pressure

p = p0 − ρv2/2− ρ∂ϕ/∂t ,

having in mind that our solution moves with the sphere that is ϕ(r −
ut,u) and

∂ϕ

∂t
= u̇ · ∂ϕ

∂u
− u · ∇ϕ ,

which gives

p = p0 + ρu2
9 cos2 θ − 5

8
+ ρRn · u̇ .

The force is
∮
p df . For example,

Fx =

∮
p cos θ df = ρR3u̇π

∫
cos2 θ d cos θ = 2πρR3u̇/3 . (1.25)

If the radius depends on time too then Fx ∝ ∂ϕ/∂t ∝ ∂(R3u)/∂t. For a

uniformly moving sphere with a constant radius, Ṙ = u̇ = 0, the force is

zero:
∮
p df = 0. This flies in the face of our common experience: fluids
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do resist attempts to move through them. Maybe we obtained zero force

in a steady case due to a symmetrical shape?

1.3.3 Moving body of an arbitrary shape

At large distances from the body, a solution of ∆ϕ = 0 is again sought in

the form of the first non-vanishing multipole. The first (charge) term ϕ =

a/r cannot be present because it corresponds to the velocity v = −ar/r3
with the radial component vR = a/R2 providing for a non-vanishing flux

4πρa through a closed sphere of radius R; existence of a flux contradicts

incompressibility. So the first non-vanishing term is again a dipole:

ϕ = A · ∇(1/r) = −(A · n)r−2 ,

v = [3(A · n)n−A]r−3 .

For the sphere above, A = uR3/2, but for nonsymmetric bodies the

vectors A and u are not collinear, though linearly related Ai = αikuk,

where the tensor αik (having the dimensionality of volume) depends on

the body shape.

What can one say about the force acting on the body if only flow

at large distances is known? That’s the main beauty of the potential

theory that one often can say something about “here” by considering

field “there”. Let us start by calculating the energy E = ρ
∫
v2 dV/2

of the moving fluid outside the body and inside the large sphere of the

radius R. We present v2 = u2 + (v − u)(v + u) and write v + u =

∇(ϕ+ u · r). Using div v =divu = 0 one can write∫
r<R

v2 dV = u2(V − V0) +

∫
r<R

div[(ϕ+ u · r)(v − u)] dV

= u2(V − V0) +

∮
S+S0

(ϕ+ u · r)(v − u) df

= u2(V − V0) +

∮
S

(ϕ+ u · r)(v − u) df .

Substituting

ϕ = −(A · n)R−2 , v = [3n(A · n)−A]R−3 .

and integrating over angles,∫
(A · n)(u · n) dΩ = Aiuk

∫
nink dΩ = Aiukδik

∫
cos2 θ sin θ dθdφ

= (4π/3)(A · u) ,
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we obtain the energy in the form

E = ρ[4π(A · u)− V0u
2]/2 = mikuiuk/2 . (1.26)

Here we introduced the induced-mass tensor:

mik = 4πραik − ρV0δik .

For sphere, mik = ρV0δik/2 that is half the displaced fluid.

�����
�����
�����
�����

�����
�����
�����
�����

u S

S

0V
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0

E = ρ [2π (Αu) - V u 2
0 /2]V = 4 π R  /3

We now have to pass from the energy to the force acting on the body

which is done by considering the change in the energy of the body (the

same as minus the change of the fluid energy dE) being equal to the

work done by force F on the path udt: dE = −F · udt. The change

of the momentum of the body is dP = −Fdt so that dE = u · dP.

That relation is true for changes caused by the velocity change by force

(not by the change in the body shape) so that the change of the body

momentum is dPi = mikduk and the force is

Fi=−miku̇k , (1.27)

i.e. the presence of potential flow means only an additional mass but not

resistance.

How to generalize (1.27) for the case when both mik and u change?

Our consideration of the pressure for a sphere suggests that the proper

generalization is

Fi = − d

dt
mikuk . (1.28)

It looks as if mikuk is the momentum of the fluid yet it is not (it is

quasi-momentum), as explained in the next section 10.
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Equation of motion for the body under the action of an external force

f ,

d

dt
Mui = fi + Fi = fi −

d

dt
mikuk ,

could be written in a form that makes the term induced mass clear:

d

dt
(Mδik +mik)uk = fi . (1.29)

This is one of the simplest examples of renormalization in physics: the

body moving through a fluid acquires additional mass. For example, a

spherical air bubble in a liquid has the mass which is half of the mass

of the displaced liquid; since the buoyancy force is the displaced mass

times g then the bubble acceleration is close to 2g when one can neglect

other forces and the mass of the air inside.

Body in a flow. Consider now an opposite situation when the fluid

moves in an oscillating way while a small body is immersed into the

fluid. For example, a long sound wave propagates in a fluid. We do not

consider here the external forces that move the fluid, we wish to relate

the body velocity u to the fluid velocity v, which is supposed to be

homogeneous on the scale of the body size. If the body moved with

the same velocity, u = v, then it would be under the action of force

that would act on the fluid in its place, ρV0v̇. Relative motion gives the

reaction force dmik(vk − uk)/dt. The sum of the forces gives the body

acceleration
d

dt
Mui = ρV0v̇i +

d

dt
mik(vk − uk) .

Integrating over time with the integration constant zero (since u = 0

when v = 0) we get the relation between the velocities of the body and

of the fluid:

(Mδik +mik)uk = (mik + ρV0δik)vk .

For a sphere, u = v3ρ/(ρ + 2ρ0), where ρ0 is the density of the body.

For a spherical air bubble in a liquid, ρ0 ≪ ρ and u ≈ 3v.

1.3.4 Quasi-momentum and induced mass

In the previous Section, we obtained the force acting on an accelerat-

ing body via the energy of the fluid and the momentum of the body

because the momentum of the fluid, M = ρ
∫
v dV , is not well-defined
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for a potential flow around the body. For example, the integral of vx =

D(3 cos2 θ − 1)r−3 depends on the form of the volume chosen: it is zero

for a spherical volume and nonzero for a cylinder of the length L and

the radius R set around the body:∫ 1

−1

(3 cos2 θ − 1) d cos θ = 0 ,

Mx = 4πρD

∫ L

−L

dz

∫ R

0

rdr
2z2 − r2

(z2 + r2)5/2
=

4πρDL

(L2 +R2)1/2
. (1.30)

That dependence means that the momentum stored in the fluid depends

on the boundary conditions at infinity. For example, the motion by the

sphere in the fluid enclosed by rigid walls must be accompanied by the

displacement of an equal amount of fluid in the opposite direction, then

the momentum of the fluid must be −ρV0u = −4πρR3u/3 rather than

ρV0u/2. The negative momentum −3ρV0u/2 delivered by the walls is

absorbed by the whole body of fluid and results in an infinitesimal back-

flow, while the momentum ρV0u/2 delivered by the sphere results in a

finite localized flow. From (1.30) we can get a shape-independent an-

swer 4πρD only in the limit L/R → ∞. To recover the answer 4πρD/3

(=ρV0u/2 = 2πR3ρu/3 for a sphere) that we expect from (1.28), one

needs to subtract the reflux 8πρD/3 = 4πR3ρu/3 compensating the

body motion 11.
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It is the quasi-momentum of the fluid particles which is independent

of the remote boundary conditions and whose time derivative gives the

inertial force (1.28) acting on the body. Conservation laws of the mo-

mentum and the quasi-momentum follow from different symmetries. The

momentum expresses invariance of the Hamiltonian H with respect to

the shift of coordinate system. If the space is filled by a medium (fluid

or solid), then the quasi-momentum expresses invariance of the Hamil-

tonian with respect to a space shift, keeping the medium fixed. That

invariance follows from the identity of different elements of the medium.

In a crystal, such shifts are allowed only by the lattice spacing. In a

continuous medium, shifts are arbitrary. In this case, the system Hamil-
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tonian must be independent of the coordinates:

∂H
∂xi

=
∂H
∂πj

∂πj
∂xi

+
∂H
∂qj

∂qj
∂xi

= 0 , (1.31)

where the vectors π(x, t), q(x, t) are canonical momentum and coordi-

nate respectively. We need to define the quasi-momentum K whose con-

servation is due to invariance of the Hamiltonian: ∂Ki/∂t = ∂H/∂xi = 0.

Recall that the time derivative of any function of canonical variables is

given by the Poisson bracket of this function with the Hamiltonian:

∂Ki

∂t
= {Ki,H} =

∂Ki

∂qj

∂H
∂πj

− ∂Ki

∂πj

∂H
∂qj

=
∂H
∂xi

=
∂H
∂πj

∂πj
∂xi

+
∂H
∂qj

∂qj
∂xi

,

That gives the partial differential equations on the quasi-momentum,

∂Ki

∂πj
= −∂qj

∂xi
,

∂Ki

∂qj
=
∂πj
∂xi

,

whose solution is as follows:

Ki = −
∫
dxπj

∂qj
∂xi

. (1.32)

For isentropic (generally compressible) flow of an ideal fluid, the hamilto-

nian description can be done in Lagrangian coordinates, which describe

the current position of a fluid element (particle) r as a function of time

and its initial position R. The canonical coordinate is the displacement

q = r −R, which is the continuum limit of the variable that describes

lattice vibrations in the solid state physics. The canonical momentum is

π(R, t) = ρ0(R)v(R, t) where the velocity is v = (∂r/∂t)R ≡ ṙ. Here ρ0
is the density in the reference (initial) state, which can always be chosen

uniform. The Hamiltonian is as follows:

H =

∫
ρ0
[
W (q) + v2/2

]
dR , (1.33)

where W = E + p/ρ is the enthalpy. Canonical equations of motion,

q̇i = ∂H/∂πi and π̇i = −∂H/∂qi, give respectively ṙi = vi and v̇i =

−∂W/∂ri = −ρ−1∂p/∂ri. The velocity v now is an independent variable

and not a function of the coordinates r. All the time derivatives are for

fixedR i.e. they are substantial derivatives. The quasi-momentum (1.32)

is as follows:

Ki = −ρ0
∫
vj
∂qj
∂Ri

dR = ρ0

∫
vj

(
δij −

∂rj
∂Ri

)
dR , (1.34)
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In plain words, only those particles contribute quasi-momentum whose

motion is disturbed by the body so that for them ∂rj/∂Ri ̸= δij . The

integral (1.34) converges for spatially localized flows since ∂rj/∂Ri → δij
when R→ ∞. Unlike (1.30), the quasi-momentum (1.34) is independent

of the form of a distant surface. Using ρ0dR = ρdr one can also present

Ki = ρ0

∫
vj

(
δij −

∂rj
∂Ri

)
dR =

∫
ρvi dr− ρ0

∫
vj
∂rj
∂Ri

dR , (1.35)

i.e. indeed the quasi-momentum is the momentum minus what can be

interpreted as a reflux.

The conservation can now be established substituting the equation of

motion ρv̇ = −∂p/∂r into

K̇i = −ρ0
∫ (

v̇j
∂qj
∂Ri

+ vj
∂vj
∂Ri

)
dR

= −ρ0
∫ [

v̇j

(
∂rj
∂Ri

− δij

)
+ vj

∂vj
∂Ri

]
dR

= −
∫

∂p

∂ri
dr+

∫
∂

∂Ri

(
W − v2

2

)
dR (1.36)

= −
∫

∂p

∂ri
dr =

∮
p dfi .

In (1.36), the integral over the reference space R of the total derivative

in the second term is identically zero while the integral over r in the

first term excludes the volume of the body, so that the boundary term

remains which is minus the force acting on the body. Therefore, the sum

of the quasi-momentum of the fluid and the momentum of the body

is conserved in an ideal fluid. That means, in particular, a surprising

effect: when a moving body shrinks it accelerates. Indeed, when the

induced mass and the quasi-momentum of the fluid decrease then the

body momentum must increase.

This quasi-momentum is defined for any flow. For a potential flow, the

quasi-momentum can be obtained much easier than doing the volume

integration (1.34), one can just integrate the potential over the body

surface: K =
∫
ρϕ df . Indeed, consider very short and strong pulse of

pressure needed to bring the body from rest into motion, formally p ∝
δ(t). During the pulse, the body doesn’t move so its position and surface

are well-defined. In the Bernoulli relation (1.18) one can then neglect v2-

term:

∂ϕ

∂t
= −v

2

2
− p

ρ
≈ −p

ρ
,
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Integrating the relation ρϕ = −
∫
p(t) dt over the body surface we get

minus the change of the body momentum i.e. the quasi-momentum of

the fluid. For example, integrating ϕ = R3u cos θ/2r2 over the sphere we

get

Kx =

∫
ρϕ cos θ df = 2πρR3u

∫ 1

−1

cos2 θ d cos θ = 2πρR3u/3 ,

as expected. The difference between momentum and quasi-momentum

can be related to the momentum flux across the infinite surface due to

pressure which decreases as r−2 for a potential flow.

The quasi-momentum of the fluid is related to the body velocity via

the induced mass, Ki = mikuk, so that one can use (1.34) to evaluate

the induced mass. For this, one needs to solve the Lagrangian equation

of motion ṙ = v(r, t), then one can show that the induced mass can be

associated with the displacement of the fluid after the body pass. Fluid

particles displaced by the body do not return to their previous positions

after the body pass but are shifted to the direction of the fluid motion as

shown in Figure 1.9. The permanently displaced mass enclosed between

the broken lines is in fact the induced mass itself (Darwin, 1953).

initial final

Figure 1.9 Displacement of the fluid by the passing body. The dotted
line is the trajectory of the fluid particle. Two broken lines (chosen to
be symmetrical) show the initial and final positions of the particles
before and after the passage of the body.

Notice the loop made by every fluid particle; for a sphere, the hori-

zontal component of the fluid velocity changes sign when 3 cos2 θ = 1.

Note also the striking difference between the particle trajectories and

instantaneous streamlines (see also Exercise 1.6) 12.

Let us summarize: neglecting tangential forces (i.e. internal friction)

we were able to describe the inertial reaction of the fluid to the body

acceleration (quantified by the induced mass). For a motion with a con-

stant speed, we failed to find any force, including the force perpendicular
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to u called lift. If that was true, flying would be impossible. Physical in-

tuition also suggests that the resistance force opposite to u called drag

must be given by the amount of momentum transferred to the fluid in

front of the body per unit time:

F = CR2ρu2 , (1.37)

where C is some order-unity dimensionless constant (called drag coeffi-

cient) depending on the body shape13. This is the correct estimate for the

resistance force in the limit of vanishing internal friction (called viscos-

ity). Unfortunately, I don’t know any other way to show its validity but

to introduce viscosity first and then consider the limit when it vanishes.

That limit is quite non-trivial: even an arbitrary small friction makes an

infinite region of the flow (called wake) very much different from the po-

tential flow described above. Introducing viscosity and describing wake

will take the next two Sections.

1.4 Viscosity

In this section we try to find our way out of paradoxes of ideal flows

towards a real world. This will require considering internal friction that

is viscosity.

1.4.1 Reversibility paradox

Let us discuss the absence of resistance in a more general way. We have

made five assumptions on the flow: incompressible, irrotational, invis-

cid (ideal), infinite, steady. The last can be always approached with

any precision by waiting enough time (after body passes a few its sizes

is usually enough). An irrotational flow of an incompressible fluid is

completely determined by the instantaneous body position and velocity.

When the body moves with a constant velocity, the flow pattern moves

along without changing its form, neither quasi-momentum nor kinetic

energy of the fluid change so there are no forces acting between the

body and the fluid. Let us also show that an account of compressibility

does not give the drag resistance for a steady flow. That follows from

reversibility of the continuity and Euler equations: the reverse of the flow

[defined as w(r, t) = −v(r,−t)] is also a solution with the velocity at

infinity u instead of −u but with the same pressure and density fields.
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For the steady flow, defined by the boundary problem

div ρv = 0 , vn = 0 (on the body surface) , v → −u at infinity

v2

2
+

∫
dp

ρ(p)
= const ,

the reverse flow w(r) = −v(r) has the same pressure field so it must give

the same drag force on the body. Since the drag is supposed to change

sign when you reverse the direction of motion then the drag is zero in an

ideal irrotational flow. For the particular case of a body with a central

symmetry, reversibility gives D’Alembert paradox: the pressure on the

symmetrical surface elements is the same and the resulting force is a

pure couple 14.

If fluid is finite that is has a surface, a finite drag arises due to surface

waves. If surface is far away from the body, that drag is negligible.

Exhausting all the other possibilities, we conclude that without fric-

tion we cannot describe drag and lift acting on a body moving through

the fluid.

1.4.2 Viscous stress tensor

We define the stress tensor σij as having ij entry equal to the i compo-

nent of the force acting on a unit area perpendicular to j direction. The

diagonal components present normal stress, they are equal to each other

due to the Pascal law, we called this quantity pressure. Internal friction

in a fluid must lead to the appearance of the non-diagonal components

of the stress tensor: σik = −pδik + σ′
ik (here the stress is applied to the

fluid element under consideration so that the pressure is negative). That

changes the momentum flux, Πik = pδik − σ′
ik + ρvivk, as well as the

Euler equation: ∂ρvi/∂t = −∂Πik/∂xk.

To avoid infinite rotational accelerations, the stress tensor must be

symmetric: σij = σji. Indeed, consider the moment of force (with respect

to the axis at the upper right corner) acting on an infinitesimal element

with the sizes δx, δy, δz:
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Figure 1.10 Diagonal and non-diagonal components of the stress ten-
sor.
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If the stress tensor was not symmetric, then the moment of force

(σxz − σzx) δxδyδz is nonzero. That moment then must be equal to the

time derivative of the moment of momentum which is the moment of

inertia ρδxδyδz
[
(δx)2 + (δz)2

]
times the angular velocity Ω:

(σxz − σzx) δxδyδz = ρ δxδyδz
[
(δx)2 + (δz)2

] ∂Ω
∂t

.

We see that to avoid ∂Ω/∂t→ ∞ as (δx)2 + (δz)2 → 0 we must assume

that σxz = σzx.

To connect the frictional part of the stress tensor σ′ and the veloc-

ity v(r), note that σ′ = 0 for a uniform flow, so σ′ must depend on

the velocity spatial derivatives. Supposing these derivatives to be small

(comparatively to the velocity changes on a molecular level) one could

assume that the tensor σ′ is linearly proportional to the tensor of ve-

locity derivatives (Newton, 1687). Fluids with that property are called

newtonian. Non-newtonian fluids are those of elaborate molecular struc-

ture (e.g. with long molecular chains like polymers), where the relation

may be nonlinear already for moderate strains, and rubber-like liquids,

where the stress depends on history. For newtonian fluids, to relate lin-

early two second-rank tensors, σ′
ij and ∂vi/∂xj , one generally needs a
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tensor of the fourth rank. Yet another simplification comes from the fact

that vorticity (that is the antisymmetric part of ∂vi/∂xj) gives no con-

tribution since it corresponds to a solid-body rotation where no sliding

of fluid layers occurs. We thus need to connect two symmetric tensors,

the stress σ′
ij and the rate of strain Sij = (∂vi/∂xj + ∂vj/∂xi)/2. In

the isotropic medium, the principal axes of σ′
ij have to coincide with

those of Sij so that just two constants, η and µ, are left out of the scary

fourth-rank tensor:

σ′
ij = η(∂vi/∂xj + ∂vj/∂xi) + µδij∂vl/∂xl . (1.38)

Dimensionally [η] = [µ] = g/cm·sec. To establish the sign of η, consider a

simple shear flow shown in the Figure and recall that the stress is applied

to the fluid. The stress component σxz = ηdvx/dz is the x-component

of the force by which an upper layer of the fluid acts on the lower layer

so that it must be positive which requires η > 0.

z

xz

x

v(z)

σ  = ηdv/dz

1.4.3 Navier-Stokes equation

Now we substitute σ′ into the Euler equation

ρ

(
∂vi
∂t

+ vk
∂vi
∂xk

)
= − ∂

∂xk

[
pδik − η

(
∂vi
∂xk

+
∂vk
∂xi

)
− µδik

∂vl
∂xl

]
.

(1.39)

The viscosity is determined by the thermodynamic state of the system

that is by p, ρ. When p, ρ depend on coordinates so must η(p, ρ) and

µ(p, ρ). However, we consistently assume that the variations of p, ρ are

small and put η, µ constant. In this way we get the famous Navier-Stokes

equation (Navier, 1822; Stokes, 1845):

ρ
dv

dt
= −∇p+ η∆v + (η + µ)∇divv . (1.40)

Apart from the case of rarefied gases we cannot derive this equation

consistently from kinetics. That means only that we generally cannot

quantitatively relate η and µ to the properties of the material. One
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can estimate the viscosity of the fluid saying that the flux of molecules

with the thermal velocity vT through the plane (perpendicular to the

velocity gradient) is nvT , they come from a layer comparable to the

mean free path l, have velocity difference l∇u, which causes momen-

tum flux mnvT l∇u ≃ η∇u, where m is the molecule mass. Therefore,

η ≃ mnvT l = ρvT l. We also define kinematic viscosity ν = η/ρ which

is estimated as ν ≃ vT l. The thermal velocity is determined by the

temperature while the mean free path by the strength of interaction be-

tween molecules: the stronger the interaction the shorter is l and the

smaller is the viscosity. In other words, it is more difficult to transfer

momentum in a system with stronger interaction. For example, air has

ν = 0.15 cm2/sec so it is 15 times more viscous than water which has

ν = 0.01 cm2/sec. The Navier-Stokes equation is valid for liquids as well

as for gases as long as the typical scale of the flow is much larger than

the mean free path.

The Navier-Stokes equation has higher-order spatial derivatives (sec-

ond) than the Euler equation so that we need more boundary conditions.

Since we accounted (in the first non-vanishing approximation) for the

forces between fluid layers, we also have to account for the forces of

molecular attraction between a viscous fluid and a solid body surface.

Such force makes the layer of adjacent fluid to stick to the surface: v = 0

on the surface (not only vn = 0 as for the Euler equation)15. The solu-

tions of the Euler equation do not generally satisfy that no-slip boundary

condition. That means that even a very small viscosity must play a role

near a solid surface.

Viscosity adds an extra term to the momentum flux, but (1.39,1.40)

still have the form of a continuity equation which conserves total mo-

mentum. However, viscous friction between fluid layers necessarily leads

to some energy dissipation. Consider, for instance, a viscous incompress-

ible fluid with divv = 0 and calculate the time derivative of the energy

at a point:

ρ

2

∂v2

∂t
= −ρv · (v∇)v − v · ∇p+ vi

∂σ′
ik

∂xk

= −div

[
ρv

(
v2

2
+
p

ρ

)
− (v · σ′)

]
− σ′

ik

∂vi
∂xk

. (1.41)

The presence of viscosity results in the momentum flux σ′ which is ac-

companied by the energy transfer, v · σ′, and the energy dissipation

described by the last term. Because of this last term, this equation does

not have the form of a continuity equation and the total energy integral
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is not conserved. Indeed, after the integration over the whole volume,

dE

dt
= −

∫
σ′
ik

∂vi
∂xk

dV = −η
2

∫ (
∂vi
∂xj

+
∂vj
∂xi

)2

dV

= −η
∫
ω2dV < 0 . (1.42)

The last equality here follows from ω2 = (ϵijk∂jvk)
2 = (∂jvk)

2−∂k(vj∂jvk),
which is true by virtue of ϵijkϵilm = δjlδkm − δjmδkl and ∂ivi = 0.

The Navier-Stokes equation is a nonlinear partial differential equation

of the second order. Not many steady solutions are known. Particularly

easy is to find solutions in the geometry where (v · ∇)v = 0 and the

equation is effectively linear. In particular, symmetry may prescribe that

the velocity does not change along itself. One example is the flow along

an inclined plane as a model for a river.

h p
0

v

z

x
α

river-bed

river

Everything depends only on z. The stationary Navier-Stokes equation

takes a form

−∇p+ η∆v + ρg = 0

with z and x projections respectively

dp

dz
+ ρg cosα = 0 ,

η
d2v

dz2
+ ρg sinα = 0 .

The boundary condition on the bottom is v(0) = 0. On the surface, the

boundary condition is that the stress should be normal and balance the

pressure: σxz(h) = ηdv(h)/dz = 0 and σzz(h) = −p(h) = −p0. The
solution is simple:

p(z) = p0 + ρg(h− z) cosα , v(z) =
ρg sinα

2η
z(2h− z) . (1.43)

Let us see how it corresponds to reality. Take water with the kinematic
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viscosity ν = η/ρ = 10−2 cm2/sec. For a rain puddle with the thick-

ness h = 1mm on a slope α ∼ 10−2 we get a reasonable estimate

v ∼ 5 cm/sec. For slow plain rivers (like Nile or Volga) with h ≃ 10m

and α ≃ 0.3 km/3000 km ≃ 10−4 one gets v(h) ≃ 100 km/sec which

is evidently impossible (the resolution of that dramatic discrepancy is

that real rivers are turbulent as discussed in Sect. 2.2.2 below). What

distinguishes puddle and river, why they are not similar? To answer this

question, we need to characterize flows by a dimensionless parameter.

1.4.4 Law of similarity

One can obtain some important conclusions about flows from a dimen-

sional analysis. Consider a steady flow past a body described by the

equation

(v · ∇)v = −∇(p/ρ) + ν∆v

and by the boundary conditions v(∞) = u and v = 0 on the surface

of the body of the size L. For a given body shape, both v and p/ρ

are functions of coordinates r and three variables, u, ν, L. Out of the

latter, one can form only one dimensionless quantity, called the Reynolds

number

Re = uL/ν . (1.44)

This is the most important parameter in this book since it determines

the ratio of the nonlinear (inertial) term (v · ∇)v to the viscous friction

term ν∆v. Since the kinematic viscosity is the thermal velocity times

the mean free path then the Reynolds number is

Re = uL/vT l .

We see that within the hydrodynamic limit (L ≫ l), Re can be both

large and small depending on the ratio u/vT ≃ u/c.

Dimensionless velocity must be a function of dimensionless variables:

v = uf(r/L,Re) - it is a unit-free relation. Flows that correspond to

the same Re can be obtained from one another by simply changing

the units of v and r, such flows are called similar (Reynolds, 1883).

In the same way, p/ρ = u2φ(r/L,Re). For a quantity independent of

coordinates, only some function of Re is unknown - the drag or lift

force, for instance, must be F = ρu2L2f(Re). This law of similarity is

exploited in modelling: to measure, say, a drag on the ship one designs,
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one can build a smaller model yet pull it faster through the fluid (or use

a less viscous fluid).

Reynolds number, as a ratio of inertia to friction, makes sense for all

types of flows as long as u is some characteristic velocity and L is a scale

of the velocity change. For the inclined plane flow (1.43), the nonlinear

term (and the Reynolds number) is identically zero since v ⊥ ∇v. How

much one needs to perturb this alignment to make Re ≃ 1? Denoting

π/2 − β the angle between v and ∇v we get Re(β) = v(h)hβ/ν ≃
gαβh3/ν2. For a puddle, Re(β) ≃ 50β while for a river Re(β) ≃ 1012β.

It is then clear that the (so-called laminar) solution (1.43) may make

sense for a puddle, but for a river it must be distorted by even tiny

violations of this symmetry (say, due to a non-flat bottom).

river−bed
river

v

Figure 1.11 Non-flat bottom makes the velocity changing along itself,
which leads to a nonzero inertial term (v · ∇)v in the Navier-Stokes
equation.

Gravity brings another dimensionless parameter, the Froude number

Fr = u2/Lg; the flows are similar for the same Re and Fr. Such pa-

rameters (whose change brings qualitative changes in the regime even

for fixed geometry and boundary conditions) are called control parame-

ters 16.

The law of similarity is a particular case of the so-called π-theorem:

Assume that among all m variables {b1, . . . , bm} we have only k ≤ m

dimensionally independent quantities - that means that the dimension-

alities [bk+1], . . . [bm] could be expressed via [b1], . . . [bk] like [bk+j ] =∏l=k
l=1 [bl]

βjl . Then all dimensionless quantities can be expressed in terms

of m − k dimensionless variables π1 = bk+1/
∏l=k

l=1 b
β1l

l , . . . πm−k =

bm/
∏l=k

l=1 b
βm−k,l

l .

1.5 Stokes flow and wake

We now return to the flow past a body armed by the knowledge of in-

ternal friction. Unfortunately, the Navier-Stokes equation is a nonlinear
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partial differential equation which we cannot solve in a closed analytical

form even for a flow around a sphere. We therefore shall proceed the way

physicists often do: solve a limiting case of very small Reynolds num-

bers and then try to move towards high-Re flow. Remind that we failed

spectacularly in Section 1.3 trying to describe high-Re flow as an ideal

fluid. This time we shall realize, with the help of qualitative arguments

and experimental data, that when viscosity is getting very small its ef-

fect stays finite. On the way we shall learn new notions of a boundary

layer and a separation phenomenon. The reward will be the resolution

of paradoxes and the formulas for the drag and the lift.

1.5.1 Slow motion

Consider such a slow motion of a body through the fluid that the

Reynolds number, Re = uR/ν, is small. That means that we can ne-

glect inertia. Indeed, if we stop pushing the body, friction stops it after

a time of order R2/ν, so that inertia moves it by the distance of order

uR2/ν = R · Re, which is much less than the body size R. Formally,

neglecting inertia means omitting the nonlinear term (v · ∇)v in the

Navier-Stokes equation. That makes our problem linear so that the fluid

velocity is proportional to the body velocity: v ∝ u. The viscous stress

(1.38) and the pressure are also linear in u and so must be the drag

force:

F =

∫
σdf ≃

∫
dfηu/R ≃ 4πR2ηu/R = 4πηuR .

That crude estimate coincides with the true answer given below by (1.49)

up to the dimensionless factor 3/2. Linear proportionality between the

force and the velocity makes the low-Reynolds flows an Aristotelean

world.

Now, if you wish to know what force would move a body with Re ≃ 1

(or 1/6π for a sphere), you find amazingly that such force, F ∼ η2/ρ,

does not depend on the body size (that is the same for a bacteria and a

ship). For water, η2/ρ ≃ 10−4 dyn.

Swimming means changing shape in a periodic way to move. Motion on

micro and nano scales in fluids usually correspond to very low Reynolds

numbers when

∂v/∂t ≃ (v∇)v ≃ u2/L≪ ν∆v ≃ νu/L2 .
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Such swimming is very different from pushing water backwards as we

do at finite Re. First, there is no inertia so that momentum diffuses

instantly through the fluid. Therefore, it does not matter how fast or

slow we change the shape. What matters is the shape change itself i.e.

low-Re swimming is purely geometrical. Second, linearity means that

simply retracing the changes back (by inverting the forces i.e. the pres-

sure gradients) we just retrace the motion. One thus needs to change

a shape periodically but in a time-irreversible way that is to have a

cycle in a configuration space. Microorganisms do that by sending pro-

gressive waves along their surfaces. Every point of a surface may move

time-reversibly (even by straight lines), time direction is encoded in the

phase shift between different points. For example, spermatozoid swims

by sending helical waves down its tail 17. See Exercise 1.10 for another

example.

Creeping flow. Consider the steady Navier-Stokes equation without a

nonlinear term:

η∆v = ∇p . (1.45)

Let us find the flow around a sphere. In the reference frame of the sphere,

the flow at infinity is assumed to have the velocity u. Denote v = u+v′.

n

R

u θ

vv’

u

We wish to repeat the trick we made in considering the potential flow by

reducing a vector problem to a scalar one. We do it now by exploiting

linearity of the problem. The continuity equation, div v = 0, means

that the velocity field can be presented in the form v′ = curlA (note

that the flow is not assumed potential). The axial vector A(r,u) has

to be linear in u. The only way to make an axial vector from r and

u is r × u so that it has to be A = f ′(r)n × u. We just reduced our

problem from finding a vector field v(r) to finding a scalar function of

a single variable, f(r). The vector f ′(r)n can be represented as ∇f(r)
so v′ = curlA = curl[∇f × u]. Since u = const, one can take ∇ out:
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v′ = curl curl (fu). If we now apply curl to the equation η∆v = ∇p we

get the equation to solve

∆ curl v = 0 .

Express now v via f :

curl v = ∇×∇×∇f × u = (grad div −∆)∇f × u = −∆∇f × u .

So our final equation to solve is

∆2∇f × u = 0 .

Since ∇f ∥ n so ∆2∇f cannot always be parallel to u and we get

∆2∇f = 0 . (1.46)

Integrating it once and remembering that the velocity derivatives vanish

at infinity we obtain ∆2f = 0. In spherical coordinates ∆ = r−2∂rr
2∂r

so that ∆f = 2a/r - here again one constant of integration has to be

zero because velocity v′ itself vanishes at infinity. Eventually,

f = ar + b/r .

Taking curl of A = f ′(r)n× u = (a− br−2)n× u we get

v = u− a
u+ n(u · n)

r
+ b

3n(u · n)− u

r3
. (1.47)

The last term is the potential part. Boundary condition v(R) = 0 gives

u-component 1− a/R− b/R3 = 0 and n-component −a/R+ 3b/R3 = 0

so that a = 3R/4 and b = R3/4. In spherical components

vr = u cos θ

(
1− 3R

2r
+
R3

2r3

)
,

vθ = −u sin θ
(
1− 3R

4r
− R3

4r3

)
. (1.48)

The pressure can be found from η∆v = ∇p, but it is easier to note

that ∆p = 0. We need the solution of this equation with a dipole source

since equal positive and negative pressure changes are generated on the

surface of the sphere:

p = p0 +
c(u · n)
r2

,

where c = −3ηR/2 from p−p0 = ηu∇∆f . Fluid flows down the pressure

gradient. The vorticity is a dipole field too:

∆ curl v = ∆ω = 0 ⇒ ω = c′
[u× n]

r2
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with c′ = −3R/2 from ∇p = η∆v = −η curl ω.

Stokes formula for the drag. The force acting on a unit surface is the

momentum flux through it. On a solid surface v = 0 and Fi = −σiknk =

pni − σ′
iknk. In our case, the only nonzero component is along u:

Fx =

∫
(−p cos θ + σ′

rr cos θ − σ′
rθ sin θ) df

= (3ηu/2R)

∫
df = 6πRηu . (1.49)

Here, we substituted σ′
rr = 2η∂vr/∂r = 0 at r = R and

p(R) = −3ηu

2R
cos θ ,

σ′
rθ(R) = η

(
1

r

∂vr
∂θ

+
∂vθ
∂r

− vθ
r

)
= −3ηu

2R
sin θ .

The viscous force is tangential while the pressure force is normal to

the surface. The vertical components of the forces cancel each other at

every point since the sphere pushes fluid strictly forward so the force is

purely horizontal. The viscous and pressure contributions sum into the

horizontal force 3ηu/2R, which is independent of θ, i.e. the same for

all points on the sphere. The viscous force and the pressure contribute

equally into the total force (1.49). That formula is called Stokes law, it

works well until Re ≃ 0.5.

1.5.2 Boundary layer and separation phenomenon

It is clear that the law of decay v ∝ 1/r from (1.47) cannot be realized

at arbitrary large distances. Indeed, our assumption of small Reynolds

number requires

v∇v ≃ u2R/r2 ≪ ν∆v ≃ νuR2/r3 ,

so that (1.47) is valid for r ≪ ν/u. One can call ν/u the width of the

viscous boundary layer. The Stokes flow is realized inside the boundary

layer under the assumption that the size of the body is much less than

the width of the layer. So what is the flow outside the viscous boundary

layer, that is for r > ν/u? Is it potential? The answer is “yes” only for

very small Re. For finite Re, there is an infinite region (called wake)

behind the body where it is impossible to neglect viscosity whatever the

distance from the body. The reason for that is that viscosity produces

vorticity in the boundary layer:
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At small Re, the process that dominates the flow is vorticity diffu-

sion away from the body. The Stokes approximation, ω ∝ [u × n]/r2,

corresponds to symmetrical diffusion of vorticity in all directions. In

particular, the flow has a left-right (fore -and-aft) symmetry. For finite

Re, it is intuitively clear that the flow upstream and downstream from

the body must be different since body leaves vorticity behind it. There

should exist some downstream region reached by fluid particles which

move along streamlines passing close to the body. The flow in this re-

gion (wake) is essentially rotational. On the other hand, streamlines that

do not pass through the boundary layer correspond to almost potential

motion.
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Figure 1.12 Symmetric streamlines for an ideal flow (left) and ap-
pearance of separation and a recirculating vortex in a viscous fluid
(right).

Let us describe qualitatively how the wake arises. The phenomenon

called separation is responsible for wake creation (Prandtl, 1905). Con-

sider, for instance, a flow around a cylinder shown in Figure 1.12. The

ideal fluid flow is symmetrical with respect to the plane AB. The point

D is a stagnation point. On the upstream half DA, the fluid particles ac-

celerate and the pressure decreases according to the Bernoulli theorem.

On the downstream part AC, the reverse happens, that is every particle

moves against the pressure gradient. Small viscosity changes pressure

only slightly across the boundary layer. Indeed, if the viscosity is small,

the boundary layer is thin and can be considered as locally flat. In the

boundary layer v ≈ vx and the pressure gradient, ∇p = −ρ(v∇)v−η∆v,
has only x component that is ∂p/∂z ≈ 0. In other words, the pressure
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inside the boundary layer is almost equal to that in the main stream,

that is the pressure of the ideal fluid flow. But the velocities of the fluid

particles that reach the points A and B are lower in a viscous fluid than

in an ideal fluid because of viscous friction in the boundary layer. Then

those particles have insufficient energy to overcome the pressure gradient

downstream. The particle motion in the boundary layer is stopped by

the pressure gradient before the point C is reached. The pressure gradi-

ent then becomes the force that accelerates the particles from the point

C upwards producing separation 18 and a recirculating vortex. A similar

mechanism is responsible for recirculating eddies in the corners 19 shown

at the end of Sect. 1.2.4.

Reversing the flow pattern of separation one obtains attachment: jets

tend to attach to walls and merge with each other. Consider first a jet in

an infinite fluid and denote the velocity along the jet u. The momentum

flux through any section is the same:
∫
u2 df = const. On the other

hand, the energy flux,
∫
u3 df , decreases along the jet due to viscous

friction. That means that the mass flux of the fluid,
∫
u df , must grow

— a phenomenon known as entrainment 20. When the jet has a wall (or

another jet) on one side, it draws less fluid into itself from this side and

so inclines until it is getting attached as shown in the Figure:

wall−attaching jet

In particular, jet merging explains a cumulative effect of arm-piercing

shells which contain a conical void covered by a metal and surrounded

by explosives. Explosion turns metal into a fluid which moves towards

the axis where it creates a cumulative jet with a high momentum den-

sity (Lavrent’ev 1947, Taylor 1948), see Figure 1.13 and Exercise 1.14.

Similarly, if one creates a void in a liquid by, say, a raindrop or other

falling object then the vertical momentum of the liquid that rushes to

fill the void creates a jet seen in Figure 1.14.
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cone

jet

explosion region

Figure 1.13 Scheme of the flow of a cumulative jet in the reference
frame moving with the cone.

Figure 1.14 Jet shooting out after the droplet fall. Upper image -
beginning of the jet formation, lower image - jet formed.

1.5.3 Flow transformations

Let us now use the case of the flow past a cylinder to describe briefly

how the flow pattern changes as the Reynolds number goes from small

to large. The flow is most symmetric for Re ≪ 1 when it is steady and

has an exact up-down symmetry and approximate (order Re) left-right
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symmetry. Separation and occurrence of eddies is a change of the flow

topology, it occurs around Re ≃ 5. The first loss of exact symmetries

happens around Re ≃ 40 when the flow is getting periodic in time.

This happens because the recirculating eddies don’t have enough time to

spread, they are getting detached from the body and carried away by the

flow as the new eddies are generated. Periodic flow with shedding eddies

has up-down and continuous time shift symmetries broken and replaced

by a combined symmetry of up-down reflection and time shift for half a

period. Shedding of eddies explains many surprising symmetry-breaking

phenomena like, for instance, an air bubble rising through water (or

champaign) in a zigzag or a spiral rather than a straight path 21. For the

flow past a body, it results in a double train of vortices called Kármán

vortex street 22 behind the body as shown in Figure 1.15.

Figure 1.15 Kármán vortex street behind a cylinder at Re = 105.

As the Reynolds number increases further, the vortices are getting un-

stable and produce an irregular turbulent motion downstream as seen in

Figure 1.16 23. That turbulence is three-dimensional i.e. the translational

invariance along the cylinder is broken as well. The higher Re the closer

to the body turbulence starts. At Re ≃ 105, the turbulence reaches the

body which brings so-called drag crisis: since a turbulent boundary layer

is separated later than a laminar one, then the wake area gets smaller

and the drag is lower 24.

1.5.4 Drag and lift with a wake

We can now describe the way Nature resolves reversibility and D’Alembert

paradoxes. Like in Sect.1.3, we again consider the steady flow far from
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Figure 1.16 Flow past a cylinder at Re = 104.

the body and relate it to the force acting on the body. The new exper-

imental wisdom we now have is the existence of the wake. The flow is

irrotational outside the boundary layer and the wake. First, we consider

a laminar wake i.e. assume v ≪ u and ∂v/∂t = 0; we shall show that the

wake is always laminar far enough from the body. For a steady flow, it

is convenient to relate the force to the momentum flux through a closed

surface. For a dipole potential flow v ∝ r−3 from Section 1.3, that flux

was zero for a distant surface. Now wake gives a finite contribution. The

total momentum flux transported by the fluid through any closed sur-

face is equal to the rate of momentum change which is equal to the force

acting on the body:

Fi =

∮
Πikdfk =

∮ [
(p0 + p′)δik + ρ(ui + vi)(uk + vk) dfk . (1.50)

Mass conservation means that ρ
∮
vk dfk = 0. Far from the body v ≪ u
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X

Figure 1.17 Scheme of the wake.
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and

Fi =

(∫ ∫
X0

−
∫ ∫

X

)
(p′δix + ρuvi) dydz . (1.51)

Drag with a wake. Consider the x-component of the force (1.51):

Fx =

(∫ ∫
X0

−
∫ ∫

X

)
(p′ + ρuvx) dydz .

Outside the wake we have potential flow where the Bernoulli relation,

p + ρ|u + v|2/2 = p0 + ρu2/2, gives p′ ≈ −ρuvx so that the integral

outside the wake vanishes. Inside the wake, the pressure is about the

same (since it does not change across the almost straight streamlines

like we argued in Section 1.5.2) but vx is shown below to be much larger

than outside so that

Fx = −ρu
∫ ∫

wake

vx dydz . (1.52)

Force is positive (directed to the right) since vx is negative. Note that

the integral in (1.52) is equal to the deficit of fluid flux Q through the

wake area (i.e. the difference between the flux with and without the

body). That deficit is x-independent which has dramatic consequences

for the potential flow outside the wake, because it has to compensate

for the deficit. That means that the integral
∫
v df outside the wake

is also r-independent which requires v ∝ r−2. That corresponds to the

potential flow with the source equal to the flow deficit: ϕ = Q/r. We

have thrown away this source flow in Sect. 1.3 but now we see that it

exceeds the dipole flow ϕ = A ·∇(1/r) (which we had without the wake)

and dominates sufficiently far from the body.

flow flow

C

Stokes wake

Re

Figure 1.18 Sketch of the drag dependence on the Reynolds number.

The wake breaks the fore-and-aft symmetry and thus resolves the

paradoxes providing for a nonzero drag in the limit of vanishing viscosity.
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It is important that the wake has an infinite length, otherwise the body

and the finite wake could be treated as a single entity and we are back

to paradoxes. The behavior of the drag coefficient C(Re) = F/ρu2R2 is

shown in Fig. 1.18. Notice the drag crisis which gives the lowest C. To

understand why C → const as Re → ∞ and prove (1.37), one ought to

pass a long way developing the theory of turbulence briefly described in

the next Chapter.

The lift is the force component of (1.51) perpendicular to u:

Fy = ρu

(∫
X0

−
∫
X

)
vydydz . (1.53)

It is also determined by the wake — without the wake the flow is poten-

tial with vy = ∂ϕ/∂y and vz = ∂ϕ/∂z so that
∫
vydydz =

∫
vzdydz = 0

since the potential is zero at infinities. We have seen in (1.28) that purely

potential flow produces no lift. Without the friction-caused separation,

birds and planes would not be able to fly. Let us discuss the lift of the

wings which can be considered as slender bodies long in z-direction. The

lift force per unit length of the wing can be related to the velocity cir-

culation around the wing. Indeed, adding and subtracting (vanishing)

integrals of vx over two y = ± const lines we turn (1.53) into

Fy = ρu

∮
v · dl . (1.54)

Circulation over the contour is equal to the vorticity flux through the

contour, which is again due to wake. One can often hear a simple expla-

nation of the lift of the wing as being the result of v2 > v1 ⇒ P2 < P1.

This is basically true and does not contradict the above argument.
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The point is that the circulation over the closed contour ACDB is non-

zero: v2l2 > v1l1. That would be wrong, however, to argue that v2 > v1
because l2 > l1 — neighboring fluid elements A,B do not meet again at

the trailing edge; C is shifted relative to D. Nonzero circulation around

the body in translational motion requires wake. For a slender wing, the

wake is very thin like a cut and a nonzero circulation means a jump of

the potential ϕ across the wake 25. Note that for having lift one needs
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to break up-down symmetry. Momentum conservation suggests that one

can also relate the lift to the downward deflection of the flow by the

body.

One can have a nonzero circulation without a wake simply by rotation.

When there is a nonzero circulation, then there is a deflecting (Magnus)

force acting on a rotating moving sphere. That force is well known to all

ball players from soccer to tennis. The air travels faster relative to the

center of the ball where the ball surface is moving in the same direction

as the air. This reduces the pressure, while on the other side of the

ball the pressure increases. The result is the lift force, perpendicular

to the motion (As J J Thomson put it, ”the ball follows its nose”).

One can roughly estimate the magnitude of the Magnus force by the

u Ω

Figure 1.19 Streamlines around a rotating body.

pressure difference between the two sides26, which is proportional to the

translation velocity u times the rotation frequency Ω:

∆p ≃ ρ[(u+ΩR)2 − (u− ΩR)2]/2 = 2ρuΩR . (1.55)

Magnus force is exploited by winged seeds who travel away from the

parent tree superimposing rotation on their descent 27, it also acts on

quantum vortices moving in superfluids or superconductors. See Exercise

1.11.

Moral: wake existence teaches us that small viscosity changes the flow

not only in the boundary layer but also in the whole space, both inside

and outside the wake. Physically, this is because vorticity is produced in

the boundary layer and is transported outside 28. Formally, viscosity is a

singular perturbation that introduces the highest spatial derivative and

changes the boundary conditions. On the other hand, even for a very

large viscosity, inertia dominates sufficiently far from the body 29.
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Exercises

1.1 Proceeding from the fact that the force exerted across any plane

surface is wholly normal, prove that its intensity (per unit area) is

the same for all aspects of the plane (Pascal Law).

1.2 Consider self-gravitating fluid with the gravitational potential ϕ

related to the density by

∆ϕ = 4πGρ,

G being the constant of gravitation. Assume spherical symmetry

and static equilibrium. Describe the radial distribution of pressure

for an incompressible liquid.

1.3 Find the discharge rate from a small orifice with a cylindrical

tube, projecting inward. Assume h, S and the gravity acceleration

g given. Whether such a hole corresponds to the limiting (smallest

or largest) value of the “coefficient of contraction” S′/S? Here S

is the orifice area and S′ is the area of the jet where contraction

ceases (vena contracta).

S S’

h

Figure 1.20 Borda mouthpiece

1.4 Prove that if you put a little solid particle — not an infinitesimal

point — at any place in the liquid it will rotate with the angular

velocity Ω equal to the half of the local vorticity ω = curl v⃗: Ω =

ω/2.

1.5 There is a permanent source of water on the bottom of a large

reservoir. Find the maximal elevation of the water surface for two

cases:

i) a straight narrow slit with the constant influx q (g/cm· sec) per
unit length;
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ii) a point-like source with the influx Q (g/sec) The fluid density

is ρ, the depth of the fluid far away from the source is h. Gravity

acceleration is g. Assume that the flow is potential.

1.6 Sketch streamlines for the potential inviscid flow and for the viscous

Stokes flow in two reference systems, in which: i) fluid at infinity

is at rest; ii) sphere is at rest. Hint: Since the flow past a sphere is

actually a set of plane flows, one can introduce the stream function

analogous to that in two dimensions. If one defines a vector whose

only component is perpendicular to the plane and equal to the

stream function then the velocity is the curl of that vector and the

streamlines are level lines of the stream function.

1.7 A small heavy ball with the density ρ0 connected to a spring has

the oscillation frequency ωa. The same ball attached to a rope

makes a pendulum with the oscillation frequency ωb. How those

frequencies change if such oscillators are placed into an ideal fluid

with the density ρ? What change brings an account of a small

viscosity of the fluid (ν ≪ ωa,ba
2 where a is the ball radius and ν

is the kinematic viscosity).

1.8 Underwater explosion released the energy E and produced a gas

bubble oscillating with the period T , which is known to be com-

pletely determined by E, the static pressure p in the water and the

water density ρ. Find the form of the dependence T (E, p, ρ) (with-

out numerical factors). If the initial radius a is known instead of

E, can we determine the form of the dependence T (a, p, ρ)?

1.9 At t = 0 a straight vortex line exists in a viscous fluid. In cylindrical

coordinates, it is described as follows: vr = vz = 0, vθ = Γ/2πr,

where Γ is some constant. Find the vorticity ω(r, t) as a function

of time and the time behavior of the total vorticity
∫
ω(r)r dr.

2θ1

4 5

3

Figure 1.21 Subsequent shapes of the swimmer.

1.10 To appreciate how one swims in a syrup, consider the so-called

Purcell swimmer shown in Figure 1.22. It can change its shape by

changing separately the angles between the middle link and the
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arms. Assume that the angle θ is small. Numbers correspond to

consecutive shapes. In a position 5 it has the same shape as in

1 but moved in space. Which direction? What distinguishes this

direction? How the displacement depends on θ?

1.11 In making a free kick, good soccer players are able to utilize the

Magnus force to send the ball around the wall of defenders. Ne-

glecting vertical motion, estimate the horizontal deflection of the

ball (with the radius R = 11 cm and the weight m = 450 g ac-

cording to FIFA rules) sent with the speed v0 = 30 m/s and the

side-spin Ω = 10 revolutions per second towards the goal which is

L = 30 m away. Take the air density ρ = 10−3 g/cm3.

sail

keel

wind

Figure 1.22 Left panel: the sailor holds the sail against the wind
which is thus coming from behind her back. Right panel: scheme of
the position of the board and its sail with respect to the wind.

1.12 Like flying, sailing also utilizes the lift (perpendicular) force acting

on the sails and the keel. The fact that wind provides a force per-

pendicular to the sail allows one even to move against the wind.

But most optimal for starting and reaching maximal speed, as all

windsurfers know, is to orient the board perpendicular to the wind

and set the sail at about 45 degrees, see Figure 1.22. Why? Draw

the forces acting on the board. Does the board move exactly in the

direction at which the keel is pointed? Can one move faster than

wind?

1.13 Find the fall velocity of a liquid water droplet with the radius
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0.01mm in the air. Air and water viscosities and densities are re-

spectively ηa = 1.8 · 10−4 g/s · cm, ηw = 0.01 g/s · cm and ρ =

1.2 · 10−3 g/cm3, ρw = 1g/cm3.

1.14 Describe the motion of an initially small spherical water droplet

falling in a saturated cloud and absorbing the vapor in a swept

volume so that its volume grows proportionally to its velocity and

its cross-section. Consider quasi-steady approximation when the

droplet acceleration is much less than the gravity acceleration g.

1.15 Consider plane free jets in an ideal fluid in the geometry shown in

the Figure. Find how the widths of the outgoing jets depend on

the angle 2θ0 between the impinging jets.

θ 0

h

h rh l
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Unsteady flows

Fluid flows can be kept steady only for very low Reynolds numbers

and for velocities much less than sound velocity. Otherwise, either flow

undergoes instabilities and is getting turbulent or sound and shock waves

are excited. Both sets of phenomena are described in this Chapter.

A formal reason for instabilities is nonlinearity of the equations of fluid

mechanics. For incompressible flows, the only nonlinearity is due to fluid

inertia. We shall see below how a perturbation of a steady flow can grow

due to inertia, thus causing an instability. For large Reynolds numbers,

development of instabilities leads to a strongly fluctuating state of tur-

bulence.

An account of compressibility, on the other hand, leads to another

type of unsteady phenomena: sound waves. When density perturbation

is small, velocity perturbation is much less than the speed of sound and

the waves can be treated within the framework of linear acoustics. We

first consider linear acoustics and discuss what phenomena appear as

long as one accounts for a finiteness of the speed of sound. We then

consider nonlinear acoustic phenomena, creation of shocks and acoustic

turbulence.

2.1 Instabilities

At large Re most of the steady solutions of the Navier-Stokes equation

are unstable and generate an unsteady flow called turbulence.
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2.1.1 Kelvin-Helmholtz instability

Apart from a uniform flow in the whole space, the simplest steady flow

of an ideal fluid is a uniform flow in a semi-infinite domain with the

velocity parallel to the boundary. Physically, it corresponds to one fluid

layer sliding along another. Mathematically, it is a tangential velocity

discontinuity, which is a formal steady solution of the Euler equation.

It is a crude approximation to the description of wakes and shear flows.

This simple solution is unstable with respect to arguably the simplest

instability described by Helmholtz (1868) and Kelvin (1871). The dy-

namics of the Kelvin-Helmholtz instability is easy to see from Figure 2.1

where + and − denote respectively increase and decrease in velocity

and pressure brought by surface modulation. Velocity over the convex

velocity pressure
+

+_1
_

v =v

v =0 ρ22

1ρ

Figure 2.1 Tangential velocity discontinuity (left) and the physics of
Kelvin-Helmholtz instability (right).

part is higher and the pressure is lower than over the concave part. Such

pressure distribution further increases the modulation of the surface.

The perturbations v′ and p′ satisfy the following system of equations

divv′ = 0 ,
∂v′

∂t
+ v

∂v′

∂x
= −∇p′

ρ
.

Applying divergence operator to the second equation we get ∆p′ = 0.

That means that the elementary perturbations have the following form

p′1 = exp[i(kx− Ωt)− kz] ,

v′1z = −ikp′1/ρ1(kv − Ω) .

Indeed, the solutions of the Laplace equation which are periodic in one

direction must be exponential in another direction.

To relate the upper side (indexed 1) to the lower side (indexed 2)

we introduce ζ(x, t), the elevation of the surface, its time derivative is

z-component of the velocity:

dζ

dt
=
∂ζ

∂t
+ v

∂ζ

∂x
= v′z , (2.1)

that is v′z = iζ(kv − Ω) and p′1 = −ζρ1(kv − Ω)2/k. On the other side,
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we express in a similar way p′2 = ζρ2Ω
2/k. The pressure is continuous

across the surface:

ρ1(kv − Ω)2 = −ρ2Ω2 ⇒ Ω = kv
ρ1 ± i

√
ρ1ρ2

ρ1 + ρ2
. (2.2)

Positive ImΩ means an exponential growth of perturbations i.e. insta-

bility 1. The largest growth rate corresponds to the largest admissible

wavenumber. In reality the layer, where velocity increases from zero to

v, has some finite thickness δ and our approach is valid only for kδ ≪ 1. It

is not difficult to show that in the opposite limit, kδ ≫ 1 when the flow

can be locally considered as a linear profile, it is stable (see Rayleigh

criterium below). Therefore, the maximal growth rate corresponds to

kδ ≃ 1, i.e. the wavelength of the most unstable perturbation is compa-

rable to the layer thickness.

Figure 2.2 Array of vortex lines is instable with respect to the dis-
placements shown by straight arrows.

A complementary insight into the physics of the Kelvin-Helmholtz in-

stability can be obtained from considering vorticity. In the unperturbed

flow, vorticity ∂vx/∂z is concentrated in the transitional layer which is

thus called vortex layer (or vortex sheet when δ → 0). One can consider a

discrete version of the vortex layer as a chain of identical vortices shown

in Figure 2.2. Due to symmetry, such infinite array of vortex lines is

stationary since the velocities imparted to any given vortex by all others

cancel. Small displacements shown by straight arrows in Figure 2.2 lead

to an instability with the vortex chain breaking into pairs of vortices

circling round one another. That circling motion makes an initially sinu-

soidal perturbation to grow into spiral rolls during the nonlinear stage of

the evolution as shown in Figure 2.3 taken from the experiment. Kelvin-

Helmholtz instability in the atmosphere is often made visible by corru-

gated cloud patterns as seen in Figure 2.4, similar patterns are seen on

sand dunes. It is also believed to be partially responsible for clear air tur-

bulence (that is atmospheric turbulence unrelated to moist convection).

Numerous manifestations of this instability are found in astrophysics,

from the interface between the solar wind and the Earth magnetosphere

to the boundaries of galactic jets.
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Figure 2.3 Spiral vortices generated by the Kelvin-Helmholtz insta-
bility.

Vortex view of the Kelvin-Helmholtz instability suggests that a uni-

directional flow depending on a single transverse coordinate, like vx(z),

can only be unstable if it has vorticity maximum on some surface. Such

vorticity maximum is an inflection point of the velocity since dω/dx =

d2vx/dz
2. That explains why flows without inflection points are linearly

stable (Rayleigh, 1880). Examples of such flows are plane linear profile,

flows in a pipe or between two planes driven by the pressure gradients,

flow between two planes moving with different velocities etc 2.

Our consideration of the Kelvin-Helmholtz instability was completely

inviscid which presumes that the effective Reynolds number was large:

Re = vδ/ν ≫ 1. In the opposite limit when the friction is very strong,

the velocity profile is not stationary but rather evolves according to the

equation ∂vx(z, t)/∂t = ν∂2vx(z, t)/∂z
2 which describes the thickness

growing as δ ∝
√
νt. Such diffusing vortex layer is stable because the

friction damps all the perturbations. It is thus clear that there must

exist a threshold Reynolds number above which instability is possible.

We now consider this threshold from a general energetic perspective.

2.1.2 Energetic estimate of the stability threshold

Energy balance between the unperturbed steady flow v0(r) and the su-

perimposed perturbation v1(r, t) helps one to understand the role of

viscosity in imposing an instability threshold. Consider the flow v0(r)

which is a steady solution of the the Navier-Stokes equation (v0 ·∇)v0 =

−∇p0/ρ+ ν∆v0. The perturbed flow v0(r) + v1(r, t) satisfies the equa-

tion:

∂v1

∂t
+ (v1 · ∇)v0 + (v0 · ∇)v1 + (v1 · ∇)v1

= −∇p1
ρ

+ ν∆v1 . (2.3)
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Figure 2.4 Lower cloud shows the pattern of breaking waves gener-
ated by the Kelvin-Helmholtz instability.

Making a scalar product of (2.3) with v1 and using incompressibility one

gets:

1

2

∂v21
∂t

= −v1iv1k
∂v0i
∂xk

− 1

Re

∂v1i
∂xk

∂v1i
∂xk

− ∂

∂xk

[
v21
2
(v0k + v1k) + p1v1k − v1i

Re

∂v1i
∂xk

]
.

The last term disappears after the integration over the volume:

d

dt

∫
v21
2
dr = T − D

Re
, (2.4)

T = −
∫
v1iv1k

∂v0i
∂xk

dr , D =

∫ (
∂v1i
∂xk

)2

dr .

The term T is due to inertial forces and the term D is due to viscous

friction. We see that for stability (i.e. for decay of the energy of the

perturbation) one needs friction dominating over inertia:

Re < ReE = min
v1

D

T
. (2.5)

The minimum is taken over different perturbation flows. Since both T

and D are quadratic in the perturbation velocity then their ratio de-

pends on the orientation and spatial dependence of v1(r) but not on

its magnitude. For nonzero energy input T one must have ∂v0/∂r ̸= 0

(uniform flow is stable) and the perturbation velocity oriented in such

a way as to have both the component v1i along the mean flow and the
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component v1k along the gradient of the mean flow. One may have pos-

itive T if the perturbation velocity is oriented relative to the mean flow

gradient as, for instance, in the geometry shown in Fig. 2.5. While the

v
dv

T~−v

v

v 1x
1

1z
> 0

0

0x

d z

Figure 2.5 Orientation of the perturbation velocity v1 with respect
to the steady shear v0 that provides for an energy flux from the shear
to the perturbation.

flow is always stable for Re < ReE , it is not necessary unstable when

one can find a perturbation that breaks (2.5); for instability to develop,

the perturbation must also evolve in such a way as to keep T > D. As a

consequence, the critical Reynolds numbers are usually somewhat higher

than those given by the energetic estimate.

2.1.3 Landau law

When the control parameter passes a critical value the system undergoes

an instability and goes into a new state. Generally, one cannot say much

about this new state except for the case when it is not very much different

from the old one. That may happen when the control parameter is not

far from critical. Consider Re > Recr but Re−Recr ≪ Recr. Just above

the instability threshold, there is usually only one unstable mode. Let

us linearize the equation (2.3) with respect to the perturbation v1(r, t)

i.e. omit the term (v1 · ∇)v1. The resulting linear differential equation

with time-independent coefficients has the solution in the form v1 =

f1(r) exp(γ1t− ıω1t). The exponential growth has to be restricted by the

terms nonlinear in v1. The solution of a weakly nonlinear equation can be

sought in the form v1 = f1(r)A(t). The equation for the amplitude A(t)

has to have generally the following form: d|A|2/dt = 2γ1|A|2+ third-

order terms + . . .. The fourth-order terms are obtained by expanding

further v = v0 + v1 + v2 and accounting for v2 ∝ v2
1 in the equation

on v1. The growth rate turns into zero at Re = Recr and generally

γ1 ∝ Re − Recr while the frequency is usually finite at Re → Recr.

We can thus average the amplitude equation over the time larger than

2π/ω1 but smaller than 1/γ1. Since the time of averaging contains many
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periods, then among the terms of the third and fourth order only |A|4
gives nonzero contribution:

d|A|2
dt

= 2γ1|A|2 − α|A|4 . (2.6)

Since the time of averaging is much less than the time of the modulus

change, then one can remove the overbar in the left-hand side of (2.6)

and solve it as a usual ordinary differential equation. This equation has

the solution

|A|−2 = α/2γ1 + const · exp(−2γ1t) → α/2γ1 .

The saturated value changes with the control parameter according to

the so-called Landau law:

|A|2max =
2γ

α
∝ Re−Recr .

If α < 0 then one needs −β|A|6 term in (2.6) to stabilize the instability

d|A|2
dt

= 2γ1|A|2 − α|A|4 − β|A|6 . (2.7)

The saturated value is now

|A|2max = − α

2β
±

√
α2

4β2
+

2γ1
β

.

Stability with respect to the variation of |A|2 within the framework of

(2.7) is determined by the factor 2γ1 − 2α|A|2max − 3β|A|4max. Between

B and C, the steady flow is metastable. Broken curve is unstable.

|A| |A|

Re ReB C

α>0 α<0

The above description is based on the assumption that at Re−Recr ≪
Recr the only important dependence is γ1(Re) very much like in the Lan-

dau’s theory of phase transitions (which also treats loss of stability). The

amplitude A, which is non-zero on one side of the transition, is an analog

of the order parameter. Cases of positive and negative α correspond to

the phase transitions of the second and first order respectively.
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2.2 Turbulence

As Reynolds number increases beyond the threshold of the first instabil-

ity, it eventually reaches a value where the new periodic flow is getting

unstable in its own turn with respect to another type of perturbation,

usually with smaller scale and consequently higher frequency. Every new

instability brings about an extra degree of freedom, characterized by the

amplitude and the phase of the new periodic motion. The phases are de-

termined by (usually uncontrolled) initial perturbations. At very large

Re, a sequence of instabilities produces turbulence as a superposition of

motions of different scales. The resulting flow is irregular both spatially

and temporally so we need to describe it statistically.

Figure 2.6 Instabilities in three almost identical convective jets lead
to completely different flow patterns. Notice also appearance of pro-
gressively smaller scales as the instabilities develop.

Flows that undergo instabilities are usually getting temporally chaotic

already at moderate Re because motion in the phase space of more than

three interacting degrees of freedom may tend to sets (called attrac-

tors) more complicated than points (steady states) or cycles (periodic

motions). Namely, there exist attractors, called strange or chaotic, that

consist of saddle-point trajectories. Such trajectories have stable direc-

tions by which the system approaches attractor and unstable directions

lying within the attractor. Because all trajectories are unstable on the

attractor, any two initially close trajectories separate exponentially with

the mean rate called the Lyapunov exponent. To intuitively appreciate

how the mean stretching rate can be positive in a random flow, note that

around a saddle-point more vectors undergo stretching than contraction

(Exercise 2.1). Exponential separation of trajectories means instability
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and unpredictability of the flow patterns. The resulting fluid flow that

corresponds to a strange attractor is regular in space and random in

time, it is called dynamical chaos 3. One can estimate the Lyapunov ex-

ponent for the Earth atmosphere by dividing the typical wind velocity

20m/sec by the global scale 10000 km. The inverse Lyapunov exponent

gives the time one can reasonably hope to predict weather, which is

107m/(20m/sec) = 5 · 105 sec, i.e. about a week.

When the laminar flow is linearly stable at largeRe (like uni-directional

flows without inflection points), its basin of attraction shrinks when Re

grows so that small fluctuations are able to excite turbulence which then

sustains itself. In this case, between the laminar flow and turbulence

there is no state with simple spatial or temporal structures.

2.2.1 Cascade

Here we discuss turbulence at very large Re. It is a flow random in space

and in time. Such flows require statistical description that is an ability

to predict mean (expectation) values of different quantities. Despite five

centuries of an effort (since Leonardo Da Vinci) a complete description

is still lacking but some important elements are established. The most

revealing insight into the nature of turbulence presents a cascade picture,

which we present in this section. It is a useful phenomenology both from

a fundamental viewpoint of understanding a state with many degrees

of freedom deviated from equilibrium and from a practical viewpoint of

explaining the empirical fact that the drag force is finite in the inviscid

limit. The finiteness of the drag coefficient, C(Re) = F/ρu2L2 → const

at Re→ ∞ (see Figure 1.18), means that the rate of the kinetic energy

input per unit mass, ϵ = Fu/ρL3 = Cu3/2L, stays finite when ν →
0. Where all this energy goes if consider not an infinite wake but a

bounded flows, say, generated by a permanently acting fan in a room?

Experiments (and everyday experience) tells us that a fan generates some

air flow whose magnitude stabilizes after a while which means that the

input is balanced by the viscous dissipation. That means that the energy

dissipation rate ϵ = ν
∫
ω2 dV/V stays finite when ν → 0 (if the fluid

temperature is kept constant).

Historically, understanding of turbulence started from an empirical

law established by Richardson (observing seeds and balloons released in

the wind): the mean squared distance between two particles in turbu-

lence increases in a super-diffusive way: ⟨R2(t)⟩ ∝ t3. Here the average

is over different pairs of particles. The parameter that can relate ⟨R2(t)⟩
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and t3 must have dimensionality cm2s−3 which is that of the dissipation

rate ϵ: ⟨R2(t)⟩ ≃ ϵt3. Richardson law can be interpreted as the increase

of the typical velocity difference δv(R) with the distance R: since there

are vortices of different scales in a turbulent flow, the velocity differ-

ence at a given distance is due to vortices with comparable scales and

smaller; as the distance increases, more (and larger) vortices contribute

the relative velocity, which makes separation faster than diffusive (when

the velocity is independent of the distance). Richardson law suggests

the law of the relative velocity increase with the distance in turbulence.

Indeed, R(t) ≃ ϵ1/2t3/2 is a solution of the equation dR/dt ≃ (ϵR)1/3;

since dR/dt = δv(R) then

δv(R) ≃ (ϵR)1/3 ⇒ (δv)3

R
≃ ϵ . (2.8)

The last relation brings the idea of the energy cascade over scales, which

goes from the scale L with δv(L) ≃ u down to the viscous scale l de-

fined by δv(l)l ≃ ν. The energy flux through the given scale R can be

estimated as the energy (δv)2 divided by the time R/δv. For the so-

called inertial interval of scales, L ≫ R ≫ l, there is neither force nor

dissipation so that the energy flux ϵ(R) = ⟨δv3(R)⟩/R may be expected

to be R-independent, as suggested by (2.8). When ν → 0, the viscous

scale l decreases, that is cascade is getting longer, but the amount of the

flux and the dissipation rate stay the same. In other words, finiteness

of ϵ in the limit of vanishing viscosity can be interpreted as locality of

the energy transfer in R-space (or equivalently, in Fourier space). By

using an analogy, one may say that turbulence is supposed to work as

a pipe with a flux through its cross-section independent of the length of

the pipe 4. Note that the velocity difference (2.8) is expected to increase

with the distance slower than linearly, i.e. the velocity in turbulence is

non-Lipschitz on average, see Sect. 1.1, so that fluid trajectories are not

well-defined in the inviscid limit 5.

The cascade picture is a nice phenomenology but can one support it

with any derivation? That support has been obtained by Kolmogorov in

1941 who derived the exact relation that quantifies the flux constancy.

Let us derive the equation for the correlation function of the velocity at

different points for an idealized turbulence whose statistics is presumed

isotropic and homogeneous in space. We assume no external forces so

that the turbulence must decay with time. Let us find the time derivative

of the correlation function of the components of the velocity difference
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Figure 2.7 Cascade.

between the points 1 and 2,

⟨(v1i − v2i)(v1k − v2k)⟩ =
2⟨v2⟩
3

δik − 2⟨v2iv1k⟩ .

The time derivative of the kinetic energy is minus the dissipation rate:

ϵ = −d⟨v2⟩/2dt. To get the time derivative of the two-point velocity

correlation function, take the Navier-Stokes equation at some point r1,

multiply it by the velocity v2 at another point r2 and average it over



2.2 Turbulence 69

time intervals 6 larger than |r1 − r2|/|v1 − v2| and smaller than L/u:

∂

∂t
⟨v1iv2k⟩ = − ∂

∂x1l
⟨v1lv1iv2k⟩ −

∂

∂x2l
⟨v1iv2kv2l⟩

−1

ρ

∂

∂x1i
⟨p1v2k⟩ −

1

ρ

∂

∂x2k
⟨p2v1i⟩+ ν(∆1 +∆2)⟨v1iv2k⟩ .

Statistical isotropy means that the vector ⟨p1v2⟩ has nowhere to look

but to r = r1 − r2, the only divergence-less such vector, r/r3, does not

satisfy the finiteness at r = 0 so that ⟨p1v2⟩ = 0. Due to the space

homogeneity, all the correlation functions depend only on r = r1 − r2.

∂

∂t
⟨v1iv2k⟩ = − ∂

∂xl

(
⟨v1lv1iv2k⟩+ ⟨v2iv1kv1l⟩

)
+ 2ν∆⟨v1iv2k⟩ . (2.9)

We have used here ⟨v1iv2kv2l⟩ = −⟨v2iv1kv1l⟩ since under 1 ↔ 2 both

r and a third-rank tensor change sign (the tensor turns into zero when

1 → 2). By straightforward yet lengthy derivation 7 one can rewrite (2.9)

for the moments of the longitudinal velocity difference called structure

functions,

Sn(r, t) = ⟨[r · (v1 − v2)]
n/rn⟩ .

It gives the so-called Kármán-Howarth relation

∂S2

∂t
= − 1

3r4
∂

∂r

(
r4S3

)
− 4ϵ

3
+

2ν

r4
∂

∂r

(
r4
∂S2

∂r

)
. (2.10)

The average quantity S2 changes only together with a large-scale motion

so
∂S2

∂t
≃ S2u

L
≪ S3

r

at r ≪ L. On the other hand, we consider r ≫ l, or more formally

we consider finite r and take the limit ν → 0 so that the last term

disappears. We assume now that ϵ has a finite limit at ν → 0 and obtain

Kolmogorov’s 4/5-law:

S3(r) = −4ϵr/5 . (2.11)

That remarkable relation tells that turbulence is irreversible since S3

does not change sign when t→ −t and v → −v. If one screens a movie

of turbulence backwards, we can tell that something is indeed wrong!

That is what is called “anomaly” in modern field-theoretical language:

a symmetry of the inviscid equation (here, time-reversal invariance) is

broken by the viscous term even though the latter might have been

expected to become negligible in the limit ν → 0.



70 Unsteady flows

Here the good news end. There is no analytic theory to give us other struc-

ture functions. One may assume following Kolmogorov (1941) that ϵ is the only

quantity determining the statistics in the inertial interval, then on dimensional

grounds Sn ≃ (ϵr)n/3. Experiment give the power laws, Sn(r) ∝ rζn but with

the exponents ζn deviating from n/3 for n ̸= 3. Moments of the velocity dif-

ference can be obtained from the probability density function (PDF) which

describes the probability to measure the velocity difference δv = u at the dis-

tance r: Sn(r) =
∫
unP(u, r) du. Deviations of ζn from n/3 means that the

PDF P(δv, r) is not scale invariant i.e. cannot be presented as (δv)−1 times

the dimensionless function of the single variable δv/(ϵr)1/3. Apparently, there

is more to turbulence than just cascade, and ϵ is not all one must know to pre-

dict the statistics of the velocity. We do not really understand the breakdown

of scale invariance for three-dimensional turbulence yet we understand it for

a simpler one-dimensional case of Burgers turbulence described in Sect. 2.3.4

below 8. Both symmetries, one broken by pumping (scale invariance) and an-

other by friction (time reversibility) are not restored even when r/L → 0 and

l/r → 0.

2.2.2 Turbulent river and wake

With the new knowledge of turbulence as a multi-scale flow, let us now

return to the large-Reynolds flows down an inclined plane and past the

body.

River. Now that we know that turbulence makes the drag at large Re

much larger than the viscous drag, we can understand why the behavior

of real rivers is so distinct from a laminar solution from Sect. 1.4.3.

At small Re, the gravity force (per unit mass) gα was balanced by the

viscous drag νv/h2. At large Re, the drag is v2/h which balances gα so

that

v ≃
√
αgh . (2.12)

Indeed, as long as viscosity does not enter, this is the only combination

with the velocity dimensionality that one can get from h and the effective

gravity αg. For slow plain rivers (the inclination angle α ≃ 10−4 and the

depth h ≃ 10m), the new estimate (2.12) gives reasonable v ≃ 10 cm/s.

Another way to describe the drag is to say that molecular viscosity

ν is replaced by turbulent viscosity νT ≃ vh ≃ νRe and the drag is

still given by viscous formula νv/h2 but with ν → νT . Intuitively, one

imagines turbulent eddies transferring momentum between fluid layers.
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Figure 2.8 Sketch of the wake behind a body.

Wake. Let us now describe the entire wake behind a body at Re =

uL/ν ≫ 1. Since Re is large then Kelvin’s theorem holds outside the

boundary layer — every streamline keeps its vorticity. Streamlines are

thus divided into those of zero and nonzero vorticity. A separated region

of rotational flow (wake) can exist only if streamlines don’t go out of

it (yet they may come in so the wake grows as one goes away from the

body). Instability of the Kelvin-Helmholtz type make the boundary of

the wake wavy. Oscillations then must be also present in the velocity

field in the immediate outside vicinity of the wake. Still, only large-scale

harmonics of turbulence are present in the outside region, because the

flow is potential (∆ϕ = 0) so when it changes periodically along the wake

it decays exponentially with the distance from the wake boundary. The

smaller the scale the faster it decays away from the wake. Therefore, all

the small-scale motions and all the dissipation are inside the turbulent

wake. The boundary of the turbulent wake fluctuates in time. On the

snapshot sketch in Figure 2.8 the wake is dark, broken lines with arrows

are streamlines, see Figure 1.16 for a real wake photo.

Let us describe the time-averaged position of the wake boundary Y (x).

The average angle between the streamlines and x-direction is v(x)/u

where v(x) is the rms turbulent velocity, which can be obtained from

the condition that the momentum flux through the wake must be x-

independent since it is equal to the drag force F ≃ ρuvY 2 like in (1.52).

Then

dY

dx
=
v(x)

u
≃ F

ρu2Y 2
,
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so that

Y (x) ≃
(
Fx

ρu2

)1/3

, v(x) ≃
(
Fu

ρx2

)1/3

.

One can substitute here F ≃ ρu2L2 and get

Y (x) ≃ L2/3x1/3 , v(x) ≃ u(L/x)2/3 .

Note that Y is independent on u for a turbulent wake. Current Reynolds

number, Re(x) = v(x)Y (x)/ν ≃ (L/x)1/3uL/ν = (L/x)1/3Re, decreases

with x and a turbulent wake turns into a laminar one at x > LRe3 =

L(uL/ν)3 — the transition distance apparently depends on u.

Inside the laminar wake, under the assumption v ≪ u we can neglect

ρ−1∂p/∂x ≃ v2/x in the steady Navier-Stokes equation which then turns

into the (parabolic) diffusion equation with x playing the role of time:

u
∂vx
∂x

= ν

(
∂2

∂z2
+

∂2

∂y2

)
vx . (2.13)

At x≫ ν/u, the solution of this equation acquires the universal form

vx(x, y, z) = − Fx

4πηx
exp

[
−u(z

2 + y2)

4νx

]
,

where we have used (1.52) in deriving the coefficient. A prudent thing

to ask now is why we accounted for the viscosity in (2.13) but not in the

stress tensor (1.50). The answer is that σxx ∝ ∂vx/∂x ∝ 1/x2 decays

fast while
∫
dyσyx =

∫
dy∂vx/∂y vanishes identically.

We see that the laminar wake width is Y ≃
√
νx/u that is the wake

is parabolic. The Reynolds number further decreases in the wake by the

law vxY/ν ∝ x−1/2. Recall that in the Stokes flow v ∝ 1/r only for r <

ν/u, while in the wake vx ∝ 1/x ad infinitum. Comparing laminar and

turbulent estimates, we see that for x ≪ LRe3, the turbulent estimate

gives a larger width: Y ≃ L2/3x1/3 ≫ (νx/u)1/2. On the other hand, in a

turbulent wake the width grows and the velocity perturbation decreases

with the distance slower than in a laminar wake.

2.3 Acoustics

2.3.1 Sound

Small perturbations of density in an ideal fluid propagate as sound waves

that are described by the continuity and Euler equations linearized with
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x1/3

L LRe3
x

L
1/2x

turbulent

Y laminar

Figure 2.9 Wake width Y versus distance from the body x.

respect to the perturbations p′ ≪ p0, ρ
′ ≪ ρ0:

∂ρ′

∂t
+ ρ0divv = 0 ,

∂v

∂t
+

∇p′

ρ0
= 0 . (2.14)

To close the system we need to relate the variations of the pressure and

density i.e. specify the equation of state. If we denote the derivative of

the pressure with respect to the density as c2 then p′ = c2ρ′. Small

oscillations are potential so we introduce v = ∇ϕ and get from (2.14)

ϕtt − c2∆ϕ = 0 . (2.15)

We see that indeed c is the velocity of sound. What is left to establish

is what kind of the derivative ∂p/∂ρ one uses, isothermal or adiabatic.

For a gas, isothermal derivative gives c2 = P/ρ while the adiabatic law

P ∝ ργ gives:

c2 =

(
∂p

∂ρ

)
s

=
γp

ρ
. (2.16)

One uses an adiabatic equation of state when one can neglect the heat

exchange between compressed (warmer) and expanded (colder) regions.

That means that the thermal diffusivity (estimated as thermal velocity

times the mean free path) must be less than the sound velocity times

the wavelength. Since the sound velocity is of the order of the thermal

velocity, it requires the wavelength to be longer than the mean free path,

which is always so. Newton already knew that c2 = ∂p/∂ρ. Experimen-

tal data from Boyle showed p ∝ ρ (i.e. they were isothermal) which

suggested for air c2 = p/ρ ≃ 290 m/s, well off the observed value 340

m/s at 20C. Only hundred years later Laplace got the true (adiabatic)

value with γ = 7/5.
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All velocity components, pressure and density perturbations also sat-

isfy the wave equation (2.15). A particular solution of this equation is

a monochromatic plane wave, ϕ(r, t) = cos(ikr− iωt). The relation be-

tween the frequency ω and the wavevector k is called dispersion relation;

for acoustic waves it is linear: ω = ck. In one dimension, the general so-

lution of the wave equation is particularly simple:

ϕ(x, t) = f1(x− ct) + f2(x+ ct) ,

where f1, f2 are given by two initial conditions, for instance, ϕ(x, 0) and

ϕt(x, 0). Note that only vx = ∂ϕ/∂x is nonzero so that sound waves in

fluids are longitudinal. Any localized 1d initial perturbation (of density,

pressure or velocity along x) thus breaks into two plane wave packets

moving in opposite directions without changing their shape. In every

such packet, ∂/∂t = ±c∂/∂x so that the second equation (2.14) gives

v = p′/ρc = cρ′/ρ. The wave amplitude is small when ρ′ ≪ ρ which

requires v ≪ c. The (fast) pressure variation in a sound wave, p′ ≃ ρvc,

is much larger than the (slow) variation ρv2/2 one estimates from the

Bernoulli theorem.

Luckily, one can also find the general solution in the spherically sym-

metric case since the equation

ϕtt =
c2

r2
∂

∂r

(
r2
∂ϕ

∂r

)
(2.17)

turns into htt = c2∂2h/∂r2 by the substitution ϕ = h/r. Therefore, the

general solution of (2.17) is

ϕ(r, t) = r−1[f1(r − ct) + f2(r + ct)] .

The energy density of sound waves can be obtained by expanding

ρE + ρv2/2 up to the second-order terms in perturbations. We neglect

the zero-order term ρ0E0 because it is constant and the first-order term

ρ′∂(ρE)/∂ρ = w0ρ
′ because it is related to the mass change in a given

unit volume and disappears after the integration over the whole volume.

We are left with the quadratic terms:

Ew =
ρ0v

2

2
+
ρ′2

2

∂2(ρE)

∂ρ2
=
ρ0v

2

2
+
ρ′2

2

(
∂w0

∂ρ

)
s

=
ρ0v

2

2
+
ρ′2c2

2ρ0
.

The energy flux with the same accuracy is

q = ρv(w + v2/2) ≈ ρvw = w′ρ0v + w0ρ
′v .

Again we disregard w0ρ
′v which corresponds to w0ρ

′ in the energy and
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disappears after the integration over the whole volume. The enthalpy

variation is w′ = p′(∂w/∂p)s = p′/ρ ≈ p′/ρ0 and we obtain

q = p′v .

The energy and the flux are related by ∂Ew/∂t+div p
′v = 0. In a plane

wave, Ew = ρ0v
2 and q = cEw. The energy flux is also called acoustic

intensity. To amplify weak sounds and damp strong ones, our ear senses

loudness as the logarithm of the intensity for a given frequency. This

is why the acoustic intensity is traditionally measured not in watts per

square meter but in the units of the intensity logarithm called decibels:

q(dB) = 120 + 10 log10 q(W/m2).

The momentum density is

j = ρv = ρ0v + ρ′v = ρ0v + q/c2 .

Acoustic perturbation that exists in a finite volume not restricted by

walls has a nonzero total momentum
∫
q dV/c2, which corresponds to

the mass transfer. Comment briefly on the momentum of a phonon in

solids, which is defined as a sinusoidal perturbation of atom displace-

ments. Monochromatic wave in these (Lagrangian) coordinates has zero

momentum 9. A perturbation, which is sinusoidal in Eulerian coordi-

nates, has a nonzero momentum at second order (where Eulerian and

Lagrangian differ). Indeed, let us consider the Eulerian velocity field

as a monochromatic wave with a given frequency and a wavenumber:

v(x, t) = v0 sin(kx − ωt). The Lagrangian coordinate X(t) of a fluid

particle satisfies the following equation:

Ẋ = v(X, t) = u sin(kX − ωt) . (2.18)

This is a nonlinear equation, which can be solved by iterations, X(t) =

X0 +X1(t) +X2(t) assuming v ≪ ω/k. The assumption that the fluid

velocity is much smaller than the wave phase velocity is equivalent to

the assumption that the fluid particle displacement during the wave

period is much smaller than the wavelength. Such iterative solution gives

oscillations at first order and a mean drift at second order:

X1(t) =
u

ω
cos
(
kX0 − ωt

)
,

X2(t) =
ku2t

2ω
+
ku2

2ω2
sin 2

(
kX0 − ωt

)
. (2.19)

We see that at first order in wave amplitude the perturbation propagates

while at second order the fluid itself flows.
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2.3.2 Riemann wave

As we have seen, an infinitesimally small one-dimensional acoustic per-

turbation splits into two simple waves which then propagate without

changing their forms. Let us show that such purely adiabatic waves of a

permanent shape are impossible for finite amplitudes (Earnshaw para-

dox): In the reference frame moving with the speed c one would have a

steady motion with the continuity equation ρv =const= C and the Eu-

ler equation vdv = dp/ρ giving dp/dρ = (C/ρ)2 i.e. d2p/dρ2 < 0 which

contradicts the second law of thermodynamics. It is thus clear that a

simple plane wave must change under the action of a small factor of

nonlinearity.

Consider 1d adiabatic motion of a compressible fluid with p = p0(ρ/ρ0)
γ .

Let us look for a simple wave where one can express any two of v, p, ρ via

the remaining one. This is a generalization for a nonlinear case of what

we did for a linear wave. Say, we assume everything to be determined by

v that is p(v) and ρ(v). Euler and continuity equations take the form:

dv

dt
= −1

ρ
c2(v)

dρ

dv

∂v

∂x
,

dρ

dv

dv

dt
= −ρ∂v

∂x
.

Here c2(v) ≡ dp/dρ. Excluding dρ/dv one gets

dv

dt
=
∂v

∂t
+ v

∂v

∂x
= ±c(v)∂v

∂x
. (2.20)

Two signs correspond to waves propagating in the opposite directions.

In a linear approximation we had ut + cux = 0 where c =
√
γp0/ρ0.

Now, we find

c(v) =

√
γp

ρ
=

√
γ
p0 + δp

ρ0 + δρ

= c

(
1 +

δp

2p0
− δρ

2ρ0

)
= c+ v

γ − 1

2
, (2.21)

since δρ/ρ0 = v/c. The local sound velocity increases with the amplitude

since γ > 1, that is the positive effect of the pressure increase overcomes

the negative effect of the density increase.

Taking a plus sign in (2.20) we get the equation for the simple wave

propagating rightwards 10

∂v

∂t
+

(
c+ v

γ + 1

2

)
∂v

∂x
= 0 . (2.22)

This equation describes the simple fact that the higher the amplitude



2.3 Acoustics 77

of the perturbation the faster it propagates, both because of higher ve-

locity and of higher pressure gradient (J S Russel in 1885 remarked that

“the sound of a cannon travels faster than the command to fire it”).

That means that the fluid particle with faster velocity propagates faster

and will catch up slower moving particles. Indeed, if we have the initial

distribution v(x, 0) = f(x) then the solution of (2.22) is given by an

implicit relation

v(x, t) = f

[
x−
(
c+ v

γ + 1

2

)
t

]
, (2.23)

which can be useful for particular f but is not of much help in a general

case. Explicit solution can be written in terms of characteristics (the

lines in x− t plane that correspond to constant v):(
∂x

∂t

)
v

= c+ v
γ + 1

2
⇒ x = x0 + ct+

γ + 1

2
v(x0)t , (2.24)

where x0 = f−1(v). The solution (2.24) is called simple or Riemann

wave.

x

t

x

v(x,0)

Figure 2.10 Characteristics (upper panel) and the initial velocity dis-
tribution (lower panel).

In the variables ξ = x− ct and u = v(γ + 1)/2 the equation takes the

form
∂u

∂t
+ u

∂u

∂ξ
=
du

dt
= 0

which describes freely moving particles. Indeed, we see that the charac-

teristics are straight lines with the slopes given by the initial distribution

v(x, 0), that is every fluid particle propagates with a constant velocity.

It is seen that the parts where initially ∂v(x, 0)/∂x were positive will
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decrease their slope while the negative slopes in ∂v(x, 0)/∂x are getting

steeper.

v
v(x,t)

x

v(x,0)

Figure 2.11 Evolution of the velocity distribution towards wave-
breaking.

The characteristics are actually Lagrangian coordinates: x(x0, t). The

characteristics cross in x − t plane (and particles hit each other) when

(∂x/∂x0)t turns into zero that is

1 +
γ + 1

2

dv

dx0
t = 0 ,

which first happens with particles that corresponds to dv/dx0 = f ′(x0)

maximal negative that is f ′′(x0) = 0. When characteristics cross, we

have different velocities at the same point in space which corresponds to

a shock.

General remark: Notice the qualitative difference between the prop-

erties of the solutions of the hyperbolic equation utt − c2uxx = 0 and

the elliptic equations, say, Laplace equation. As was mentioned in Sec-

tion 1.3.1, elliptic equations have solutions and its derivatives regular

everywhere inside the domain of existence. On the contrary, hyperbolic

equations propagate perturbations along the characteristics and charac-

teristics can cross (when c depends on u or x, t) leading to singularities.

2.3.3 Burgers equation

Nonlinearity makes the propagation velocity depending on the ampli-

tude, which leads to crossing of characteristics and thus to wave break-

ing: any acoustic perturbation tends to create a singularity (shock) in

a finite time. Account of higher spatial derivatives is necessary near a

shock. In this lecture, we account for the next derivative, (the second

one) which corresponds to viscosity:

∂u

∂t
+ u

∂u

∂ξ
= ν

∂2u

∂ξ2
. (2.25)
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This is the Burgers equation, the first representative of the small fam-

ily of universal nonlinear equations (two other equally famous mem-

bers, Korteveg-de-Vries and Nonlinear Schrödinger Equations are con-

sidered in the next Chapter where we account, in particular, for the

third derivative in acoustic-like perturbations). Burgers equation is a

minimal model of fluid mechanics: a single scalar field u(x, t) changes

in one dimension under the action of inertia and friction. This equation

describes wide classes of systems with hydrodynamic-type nonlinearity,

(u∇)u, and viscous dissipation. It can be written in a potential form

u = ∇ϕ then ϕt = −(∇ϕ)2/2 + ν∆ϕ ; in such a form it can be consid-

ered in 1 and 2 dimensions where it describes in particular the surface

growth under uniform deposition and diffusion 11: the deposition contri-

bution into the time derivative of the surface height ϕ(r) is proportional

to the flux per unit area, which is inversely proportional to the area:

[1 + (∇ϕ)2]−1/2 ≈ 1− (∇ϕ)2/2, as shown in Figure 2.12.

dx

x

d
df

φ

φ

Figure 2.12 If the x-axis is along the direction of the local sur-
face change then the local area element is df =

√
(dx)2 + (dϕ)2 =

dx
√

1 + (∇ϕ)2.

Burgers equation can be linearized by the Hopf substitution u =

−2νφξ/φ :

∂

∂ξ

φt − νφξξ

φ
= 0 ⇒ φt − νφξξ = φC ′(t) ,

which by the change φ → φ expC (not changing u) is brought to the

linear diffusion equation:

φt − νφξξ = 0 .
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The initial value problem for the diffusion equation is solved as follows:

φ(ξ, t) =
1√
4πνt

∫ ∞

−∞
φ(ξ′, 0) exp

[
− (ξ − ξ′)2

4πνt

]
dξ′ (2.26)

=
1√
4πνt

∫ ∞

−∞
exp

[
− (ξ − ξ′)2

4πνt
− 1

2ν

∫ ξ′

0

u(ξ′′, 0) dξ′′

]
dξ′ .

Despite the fact that the Burgers equation describes a dissipative

system, it conserves momentum (as any viscous equation does), M =∫
u(x) dx. If the momentum is finite, then any perturbation evolves into

a universal form depending only on M and not on the form of u(ξ, 0).

At t→ ∞, (2.26) gives φ(ξ, t) → π−1/2F [ξ(4νt)−1/2] where

F (y) =

∫ ∞

−∞
exp

[
−η2 − 1

2ν

∫ (y−η)
√
4νt

0

u(η′, 0) dη′

]
dη

≈ e−M/4ν

∫ y

−∞
e−η2

dη + eM/4ν

∫ ∞

y

e−η2

dη . (2.27)

Solutions with positive and negative M are related by the transform

u→ −u and ξ → −ξ.

1/2(2Mt) ξ

u
(2M/t)

1/2

Note that M/ν is the Reynolds number and it does not change while

the perturbation spreads. This is a consequence of momentum conser-

vation in one dimension. In a free viscous decay of a d-dimensional flow,

usually velocity decays as t−d/2 while the scale grows as t1/2 so that the

Reynolds number evolves as t(1−d)/2. For example, we have seen that

the Reynolds number decreases in a wake behind the body.

When M/ν ≫ 1 the solution looks particularly simple, as it acquires

a sawtooth form. In the interval 0 < y < M/2ν (i.e. 0 < ξ <
√
2Mt) the

first integral in (2.27) is negligible and F ∼ exp(−y2) so that u(ξ, t) =

ξ/t. For both ξ < 0 and ξ >
√
2Mt we have F ∼ const + exp(−y2) so

that u is exponentially small there.

An example of the solution with an infinite momentum is a steady

propagating shock. Let us look for a traveling wave solution u(ξ − wt).
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Integrating the Burgers equation once and assuming u → 0 at least at

one of the infinities, we get −uw + u2/2 = νuξ. Integrating again:

u(ξ, t) =
2w

1 + C exp[w(ξ − wt)/ν]
(2.28)

We see that this is a shock having the width ν/w and propagating with

the velocity which is half the velocity difference on its sides. A simple

explanation is that the shock front is the place where a moving fluid

particle hits a standing fluid particle, they stick together and continue

with half velocity due to momentum conservation. The form of the shock

front is steady since nonlinearity is balanced by viscosity.

w

w

u

2w

ξ
ν

Burgers equation is Galilean invariant, that is if u(ξ, t) denotes a so-

lution so does u(ξ − wt) + w for an arbitrary w. In particular, one can

transform (2.28) into a standing shock, u(ξ, t) = w tanh(wξ/2ν).

2.3.4 Acoustic turbulence

The shock wave (2.28) dissipates energy with the rate ν
∫
u2x dx indepen-

dent of viscosity, see (2.29) below. In compressible flows, shock creation

is a way to dissipate finite energy in the inviscid limit (in incompress-

ible flows, that was achieved by turbulent cascade). The solution (2.28)

shows how it works: velocity derivative goes to infinity as the viscosity

goes to zero. In the inviscid limit, the shock is a velocity discontinuity.

Consider now acoustic turbulence produced by a pumping correlated

on much larger scales, for example, pumping a pipe from one end by

frequencies Ω much less than cw/ν, so that the Reynolds number is

large. Upon propagation along the pipe, such turbulence evolves into a

set of shocks at random positions with the mean distance between shocks

L ≃ c/Ω far exceeding the shock width ν/w which is a dissipative scale.
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For every shock (2.28),

S3(x) =
1

L

∫ L/2

−L/2

[u(x+ x′)− u(x′)]3 dx′ ≈ −8w3x/L ,

ϵ =
1

L

∫ L/2

−L/2

νu2x dx ≈ 2w3/3L , (2.29)

which gives:

S3 = −12ϵx . (2.30)

This formula is a direct analog of the flux law (2.11). As well as in

Sect. 2.2.1, that would be wrong to assume Sn ≃ (ϵx)n/3, since shocks

give much larger contribution for n > 1: Sn ≃ wnx/L, here x/L is the

probability to find a shock in the interval x.

Generally, Sn(x) ∼ Cn|x|n + C′
n|x| where the first term comes from the

smooth parts of the velocity (the right x-interval in Figure 2.13) while the
second comes from O(x) probability to have a shock in the interval x.

shock

x

u

Figure 2.13 Typical velocity profile in Burgers turbulence.

The scaling exponents, ξn = d lnSn/d lnx, thus behave as follows: ξn = n
for 0 ≤ n ≤ 1 and ξn = 1 for n > 1. Like for incompressible (vortex)
turbulence in Sect. 2.2.1, that means that the probability distribution of
the velocity difference P (δu, x) is not scale-invariant in the inertial inter-
val, that is the function of the re-scaled velocity difference δu/xa cannot be
made scale-independent for any a. Simple bi-modal nature of Burgers tur-
bulence (shocks and smooth parts) means that the PDF is actually deter-
mined by two (non-universal) functions, each depending on a single argu-
ment: P (δu, x) = δu−1f1(δu/x) + xf2(δu/urms). Breakdown of scale invari-
ance means that the low-order moments decrease faster than the high-order
ones as one goes to smaller scales. That means that the level of fluctuations
increases with the resolution: the smaller the scale the more probable are
large fluctuations. When the scaling exponents ξn do not lie on a straight line,
this is called an anomalous scaling since it is related again to the symmetry
(scale invariance) of the PDF broken by pumping and not restored even when
x/L → 0.
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Alternatively, one can derive the equation on the structure functions similar
to (2.10):

∂S2

∂t
= −∂S3

3∂x
− 4ϵ+ ν

∂2S2

∂x2
. (2.31)

Here ϵ = ν⟨u2
x⟩. Equation (2.31) describes both a free decay (then ϵ depends on

t) and the case of a permanently acting pumping which generates turbulence

statistically steady for scales less than the pumping length. In the first case,

∂S2/∂t ≃ S2u/L ≪ ϵ ≃ u3/L (where L is a typical distance between shocks)

while in the second case ∂S2/∂t = 0. In both cases, S3 = −12ϵx+ 3ν∂S2/∂x.

Consider now limit ν → 0 at fixed x (and t for decaying turbulence). Shock

dissipation provides for a finite limit of ϵ at ν → 0 which gives (2.30). Again,

a flux constancy fixes S3(x) which is universal that is determined solely by ϵ

and depends neither on the initial statistics for decay nor on the pumping for

steady turbulence. Higher moments can be related to the additional integrals

of motion, En =
∫
u2n dx/2, which are all conserved by the inviscid Burgers

equation. Any shock dissipates the finite amount ϵn of En in the limit ν →
0 so that one can express S2n+1 via these dissipation rates for integer n:

S2n+1 ∝ ϵnx (see the exercise 2.5). That means that the statistics of velocity

differences in the inertial interval depends on the infinitely many pumping-

related parameters, the fluxes of all dynamical integrals of motion.

For incompressible (vortex) turbulence described in Sect. 2.2.1, we

have neither understanding of structures nor classification of the conser-

vation laws responsible for an anomalous scaling.

2.3.5 Mach number

Compressibility leads to finiteness of the propagation speed of pertur-

bations. Here we consider the motions (of the fluid or bodies) with the

velocity exceeding the sound velocity. The propagation of perturbations

in more than 1 dimension is peculiar for supersonic velocities. Indeed,

consider fluid moving uniformly with the velocity v. If there is a small

disturbance at some place O, it will propagate with respect to the fluid

with the sound velocity c. All possible velocities of propagation in the

rest frame are given by v + cn for all possible directions of the unit

vector n. That means that in a subsonic case (v < c) the perturbation

propagates in all directions around the source O and eventually spreads

to the whole fluid. This is seen from Figure 2.14 where the left circle

contains O inside. However, in a supersonic case, vectors v + cn all lie

within a 2α-cone with sinα = c/v called the Mach angle. Outside the
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O cn αO cn

v v

Figure 2.14 Perturbation generated at O in a fluid that moves with
a subsonic (left) and supersonic (right) speed v. No perturbation can
reach the outside of the Mach cone shown by broken lines.

Mach cone shown in Figure 2.14 by broken lines, the fluid stays undis-

turbed. Dimensionless ratio v/c = M is called the Mach number, which

is a control parameter like Reynolds number, flows are similar for the

same Re and M.

Figure 2.15 Circles are constant-phase surfaces of an acoustic pertur-
bation generated in a fluid that moves to the right with a subsonic
(left) and supersonic (right) speed. Alternatively, that may be seen
as sound generated by a source moving to the left.

If sound is generated in a moving fluid (by, say, periodic pulsations),

the circles in Figure 2.15 correspond to the lines of a constant phase. The

figure shows that the wavelength (the distance between the constant-

phase surfaces) is smaller to the left of the source. For the case of a

moving source this means that the wavelength is shorter in front of the

source and longer behind it. For the case of a moving fluid that means the

wavelength is shorter upwind. The frequencies registered by the observer

are however different in these two cases:

i) When the emitter and receiver are at rest while the fluid moves, then

the frequencies emitted and received are the same; the wavelength up-
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wind is smaller by the factor 1−v/c because the propagation speed c−v
is smaller in a moving fluid.

ii) When the source moves towards the receiver while the fluid is still,

then the propagation speed is c and the smaller wavelength corresponds

to the frequency received being larger by the factor 1/(1 − v/c). This

frequency change due to a relative motion of source and receiver is called

Döppler effect. This effect is used to determine experimentally the fluid

velocity by scattering sound or light on particles carried by the flow 12.

When receiver moves relative to the fluid, it registers the frequency

which is different from the frequency ck measured in the fluid frame. Let

us find the relation between the frequency and the wavenumber of the

sound propagating in a moving fluid and registered in the rest frame.

The monochromatic wave is exp(ik · r′−ckt) in a reference frame moving

with the fluid. The coordinates in moving and rest frames are related

as r′ = r − vt so in the rest frame we have exp(ik · r − ckt − k · vt) =
exp(ik · r− ωkt), which means that the frequency measured in the rest

frame is as follows:

ωk = ck + (k · v) . (2.32)

This change of the frequency, (k · v), is called Döppler shift. When sound

propagates upwind, one has (k · v) < 0, so that a standing person hears

a lower tone than those gone with the wind. Another way to put it is

that the wave period is larger since more time is needed for a wavelength

to pass our ear as the wind sweeps it.

Consider now a wave source that oscillates with the frequency ω0 and

moves with the velocity u. The wave in a still air has the frequency

ω = ck. To relate ω and ω0, pass to the reference frame moving with the

source where ωk = ω0 and the fluid moves with −u so that (2.32) gives

ω0 = ck − (k · u) = ω[1 − (u/c) cos θ], where θ is the angle between u

and k.

Let us now look at (2.32) for v > c. We see that the frequency

of sound in the rest frame turns into zero on the Mach cone (also

called the characteristic surface). Condition ωk = 0 defines the cone

surface ck = −k · v or in any plane the relation between the compo-

nents: v2k2x = c2(k2x+k
2
y). The propagation of perturbation in x-y plane

is determined by the constant-phase condition kxdx + kydy = 0 and

dy/dx = −kx/ky = ±c/
√
v2 − c2 which again correspond to the broken

straight lines in Figure 2.15 with the same Mach angle α = arcsin(c/v) =

arctan(c/
√
v2 − c2). We thus see that there is a stationary perturbation
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along the Mach surface, acoustic waves inside it and undisturbed fluid

outside.

Let us discuss now a flow past a body in a compressible fluid. For a

slender body like a wing, flow perturbation can be considered small like

we did in Sect. 1.5.4, only now including density: u+v, ρ0+ρ
′, P0+P

′.

For small perturbations, P ′ = c2ρ′. Linearization of the steady Euler

and continuity equations gives 13

ρ0u
∂v

∂x
= −∇P ′ = −c2∇ρ′ , u

∂ρ′

∂x
= −ρ0divv . (2.33)

Taking curl of the Euler equation, we get ∂ω/∂x = 0 i.e. x-independent

vorticity. Since vorticity is zero far upstream it is zero everywhere (in a

linear approximation) 14. We thus have a potential flow, v = ∇ϕ, which
satisfies (

1−M2
)∂2ϕ
∂x2

+
∂2ϕ

∂y2
= 0 . (2.34)

Μ>1

u u

Μ<1

δ
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Figure 2.16 Subsonic (left) and supersonic (right) flow around a slen-
der wing.

Here the Mach number, M = u/c, determines whether the equation

is elliptic (when M < 1 and the streamlines are smooth) or hyperbolic

(when M > 1 and the streamlines are curved only between the Mach

planes extending from the ends of the wing and straight outside).

In the elliptic case, the change of variables x→ x(1−M2)−1/2 turns

(2.34) into Laplace equation, divv = ∆ϕ = 0, which we had for an

incompressible case. To put it simply, at subsonic speeds, compressibility

of the fluid is equivalent to a longer body. Since the lift is proportional

to the velocity circulation i.e. to the wing length then we conclude that

compressibility increases the lift by (1−M2)−1/2.

In the hyperbolic case, the solution is

ϕ = F (x−By) , B = (M2 − 1)−1/2 .

The boundary condition on the body having the shape y = f(x) is

vy = ∂ϕ/∂y = uf ′(x), which gives F = −Uf/B. That means that
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the streamlines repeat the body shape and turn straight behind the rear

Mach surface (in the linear approximation). We see that passing through

the Mach surface the velocity and density have a jump proportional to

f ′(0). That means that Mach surfaces (like planes or cones described

here) are actually shocks.One can relate the flow properties before and

after the shock by the conservation laws of mass, energy and momentum

called in this case Rankine-Hugoniot relations. That means that if w is

the velocity component normal to the front then the fluxes ρw, ρw(W +

w2/2) = ρw[γP/(γ − 1)ρ + w2/2] and P + ρw2 must be continuous

through the shock. That gives three three relations that can be solved

for the pressure, velocity and density after the shock (Exercise 2.4). In

particular, for a slender body when the streamlines deflect by a small

angle δ = f ′(0) after passing through the shock, we get the pressure

change due to the velocity decrease:

∆P

P
∝
u2 − (u+ vx)

2 − v2y
c2

= M2

[
1−

(
1− δ√

M2 − 1

)2

− δ2

]

≈ 2δM2

√
M2 − 1

. (2.35)

The compressibility contribution to the drag is proportional to the pres-

sure drop and thus the drag jumps when M crosses unity due to appear-

ance of shock and the loss of acoustic energy radiated away between the

Mach planes. Drag and lift singularity atM → 1 is sometimes referred to

as ”sound barrier”. Apparently, our assumption on small perturbations

does not work at M → 1. For comparison, recall that the wake contri-

bution into the drag is proportional to ρu2, while the shock contribution

is proportional to PM2/
√
M2 − 1 ≃ ρu2/

√
M2 − 1.

We see that in a linear approximation, the steady-state flow pertur-

bation does not decay with distance. Account of nonlinearity leads to

the conclusion that the shock amplitude decreases away from the body.

We have learnt in Sect. 2.3.2 that the propagation speed depends on the

amplitude and so must the angle α, which means that the Mach surfaces

are straight only where the amplitude is small, which is usually far away

from the body. Weak shocks are described by (2.27) with ξ being coor-

dinate perpendicular to the Mach surface. Generally, Burgers equation

can be used only for M− 1 ≪ 1. Indeed, according to (2.27,2.28), the

front width is

ν

u− c
=

ν

c(M− 1)
≃ lvT
c(M− 1)

,
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Figure 2.17 Interferogram shows a jump in the air density due to a
symmetric shock on a wedge

which exceeds the mean free path l only for M − 1 ≪ 1 since the

molecular thermal velocity vT and the sound velocity c are comparable

(see also Sect. 1.4.4). To be consistent in the framework of continuous

media, strong shocks must be considered as discontinuities.

Exercises

2.1 i) Consider two-dimensional incompressible saddle-point flow (pure

strain): vx = λx, vy = −λy and the fluid particle with the coordi-

nates x, y that satisfy the equations ẋ = vx and ẏ = vy. Whether

the vector r = (x, y) is stretched or contracted after some time T

depends on its orientation and on T . Find which fraction of the

vectors is stretched.

ii) Consider two-dimensional incompressible flow having both per-

manent strain λ and vorticity ω: vx = λx+ωy/2, vy = −λy−ωx/2.
Describe the motion of the particle, x(t), y(t), for different relations

between λ and ω.

2.2 Consider a fluid layer between two horizontal parallel plates kept

at the distance h at temperatures that differ by Θ. The fluid has

kinematic viscosity ν, thermal conductivity χ (both measured in

cm2/sec) and the coefficient of thermal expansion β = −∂ ln ρ/∂T ,
such that the relative density change due to the temperature dif-

ference, βΘ, far exceeds the change due to hydrostatic pressure

difference, gh/c2, where c is sound velocity. Find the control pa-
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rameter(s) for the appearance of the convective (Rayleigh-Bénard)

instability.

2.3 Consider a shock wave with the velocity w1 normal to the front in

a polytropic gas having the enthalpy

W = cpT = PV
γ

γ − 1
=
P

ρ

γ

γ − 1
=

c2

γ − 1
,

where γ = cp/cv. Write Rankine-Hugoniot relations for this case.

Express the ratio of densities ρ2/ρ1 via the pressure ratio P2/P1,

where the subscripts 1, 2 denote the values before/after the shock.

Express P2/P1, ρ2/ρ1 and M2 = w2/c2 via the pre-shock Mach

number M1 = w1/c1. Consider limits of strong and weak shocks.

2.4 For Burgers turbulence, express the fifth structure function S5 via

the dissipation rate ϵ4 = 6ν[⟨u2u2x⟩+ ⟨u2⟩⟨u2x⟩].
2.5 In a standing sound wave, fluid locally moves as follows: v =

a sin(ωt). Assuming small amplitude, ka ≪ ω, describe how a

small spherical particle with the density ρ0 moves in the fluid

with the density ρ (find how the particle velocity changes with

time). Consider the case when the particle material is dissolved

into the fluid so that its volume decreases with the constant rate

α: V (t) = V (0)− αt. The particle is initially at rest.

2.6 There is an anecdotal evidence that early missiles suffered from an

interesting malfunction of the fuel gauge. The gauge was a simple

floater (small air-filled rubber balloon) whose position was sup-

posed to signal the level of liquid fuel during the ascending stage.

However, when the engine was warming up before the start, the

gauge unexpectedly sank to the bottom, signalling zero level of fuel

and shutting out the engine. How do engine-reduced vibrations re-

verse the sign of effective gravity for the floater?

P0

h

Consider an air bubble in the vessel filled up to the depth h by
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a liquid with density ρ. The vessel vertically vibrates according to

x(t) = (Ag/ω2) sin(ωt), where g is the static gravity acceleration.

Find the threshold amplitude A necessary to keep the bubble near

the bottom. The pressure on the free surface is P0.
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Epilogue

Now that we have learnt basic mechanisms and elementary interplay be-

tween nonlinearity, dissipation and dispersion in fluid mechanics, where

one can go from here? It is important to recognize that this book de-

scribes only few basic types of flows and leaves whole sets of physical

phenomena outside of its scope. It is yet impossible to fit all of fluid

mechanics into the format of a single story with few memorable protag-

onists. Here is the brief guide to further reading, more details can be

found in Endnotes.

Comparable elementary textbook (which is about twice larger in size)

is that of Acheson [1], it provides extra material and some alternative

explanations. For a deep and comprehensive study of fluid mechanics as

a branch of theoretical physics one cannot do better than using another

timeless classics, volume VI of the Landau-Lifshits course [10]. Apart

from a more detailed treatment of the subjects covered here, it contains

variety of different flows, the detailed presentation of the boundary layer

theory, the theory of diffusion and thermal conductivity in fluids, rela-

tivistic and superfluid hydrodynamics etc. In addition to reading about

fluids, it is worth looking at flows, which is as appealing aesthetically as

it is instructive and helpful in developing physicist’s intuition. Plenty of

visual material, both images and videos, can be found in [9, 19] and Gal-

leries at http://www.efluids.com/. And last but not least: the beauty of

fluid mechanics can be revealed by simply looking at the world around

us and doing simple experiments in a kitchen sink, bath tube, swim-

ming pool etc. It is likely that fluid mechanics is the last frontier where

fundamental discoveries in physics can still be made in such a way.

After learning what fluid mechanics can do for you, some of you may

be interested to know what you can do for fluid mechanics. Let me briefly

mention several directions of the present-day action in the physics of flu-

ids. Considerable analytical and numerical work continues to be devoted

to the fundamental properties of the equations of fluid mechanics, par-

ticularly to the existence and uniqueness of solutions. The subject of

a finite-time singularity in incompressible flows particularly stands out.

Those are not arcane subtleties of mathematical description but the

questions whose answers determine important physical properties, for
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instance, statistics of large fluctuations in turbulent flows. On the one

hand, turbulence is a paradigmatic far-from-equilibrium state where we

hope to learn general laws governing non-equilibrium systems; on the

other hand, its ubiquity in nature and industry requires knowledge of

many specific features. Therefore, experimental and numerical studies of

turbulence continue towards both deeper understanding and wider ap-

plications in geophysics, astrophysics and industry, see e.g. [4, 8, 21]. At

the other extreme, we have seen that flows at very low Reynolds num-

ber are far from being trivial; needs of biology and industry triggered

an explosive development of micro-fluidics bringing new fundamental

phenomena and amazing devices. Despite a natural tendency of theo-

reticians towards limits (of low and high Re, Fr,M), experimentalists,

observers and engineers continue to discover fascinating phenomena for

the whole range of flow control parameters.

The domain of quantum fluids continues to expand including now su-

perfluid liquids, cold gases, superconductors, electron droplets and other

systems. Quantization of vorticity and a novel factor of disorder add to

the interplay of nonlinearity, dispersion, dissipation. Many phenomena

in plasma physics also belong to a domain of fluid mechanics. Quantum

fluids and plasma can often be described by two interconnected fluids

(normal and superfluid, electron and ion) which allows for rich set of

phenomena.

Another booming subject is the studies of complex fluids. One im-

portant example is a liquid containing long polymer molecules that are

able to store elastic stresses providing fluid with a memory. That elastic

memory provides for inertia (and nonlinearity) of its own and introduces

the new dimensionless control parameter, Weissenberg number, which is

the product of fluid strain and the polymer response time. When the

Weissenberg number increases, instabilities takes place (even at very

low Reynolds number) culminating in so-called elastic turbulence [17].

Another example is a two-phase flow with numerous applications, from

clouds to internal combustion engines; here a lot of interesting physics

is related to relative inertia of two phases and very inhomogeneous dis-

tribution of droplets, particles or bubbles in a flow.

And coming back to basics: our present understanding of how fish

and microorganisms swim and how birds and insects fly is so poor that

further research is bound to bring new fundamental discoveries and new

engineering ideas.
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Solutions of exercises

”... a lucky guess is never merely luck.”

Jane Austen

1.1.

Consider a prism inside the fluid.

F

S

S S
F

F

1

23 3
2

1

Forces must sum into zero in equilibrium which means that after being

rotated by π/2 force vectors form a closed triangle similar to that of

the prism. Therefore, the forces are proportional to the areas of the

respective faces and the pressures are equal.

1.2.

The force −∇ψ must balance the gradient of pressure

d

dr

(
r2dp

ρdr

)
= −4πGr2ρ , p =

2

3
πGρ2(R2 − r2) . (4.1)

1.3.

The discharge rate is S′√2gh. Energy conservation gives us v =
√
gh

at the vena contracta. This velocity squared times density times area

S′ gives the momentum flux which must be determined by the force

exerted by the walls on the fluid. The difference between the orifice,

drilled directly in the wall as in Fig. 1.3, and the tube, projecting inward
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(called Borda’s mouthpiece), is that in the latter case one can neglect

the motion near the walls so that the force imbalance is the pressure

p = ρgh times the hole area S. We thus get ρv2S′ = ρghS and S′ = S/2.

Generally, the motion near the walls diminishes the pressure near the

exit and makes the force imbalance larger. The reaction force is therefore

greater and so is the momentum flux. Since the jet exits with the same

velocity it must have a larger cross-section, so that S′/S ≥ 1/2 (for a

round hole in a thin wall it is empirically known that S′/S ≃ 0.62).

The above general argument based on the conservation laws of energy

and momentum works in any dimension. For Borda’s mouthpiece in

two dimensions, one can describe the whole flow neglecting gravity and

assuming the (plane) tube infinite, both assumptions valid for a flow not

far from the corner. This is a flow along the tube wall on the one side

and detached from it on the other side in distinction from a symmetric

flow shown in Figure 1.8 with n = 1/2. Flow description can be done

using conformal maps shown in the following figure:

−planeζ

−1 1

z−plane w−plane
ψ=S’v

ψ=−S’v

S’

The tube walls coincide with the streamlines and must be cuts in ζ-

plane because of jumps in the potential. That corresponds to w ∝ ln ζ,

the details can be found in Section 11.51 of [13]. For a slit in a thin wall,

2d solution can be found in Section 11.53 of [13] or Section 10 of [10],

which gives the coefficient of contraction π/(π + 2) ≈ 0.61.

1.4.

Simply speaking, vorticity is the velocity circulation (=vorticity flux)

divided by the area while the angular velocity Ω is the velocity circula-

tion (around the particle) divided by the radius a and the circumference

2πa:

Ω =

∫
u dl/2πa2 =

∫
ω df/2πa2 = ω/2 .

A bit more formally, place the origin inside the particle and consider the

velocity of a point of the piece with radius vector r. Since the particle

is small we use Taylor expansion vi(r) = Sijrj + Aijrj where Sij =

(∂irj+∂jri)/2 and Aij = (∂irj−∂jri)/2. Rigid body can not be deformed

thus Sij = 0. The only isometries that do not deform the body and do not
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shift its center of mass are the rotations. The rotation with the angular

velocity Ω gives Aikrk = ϵijkΩjrk. On the other hand, the vorticity

component

ωi ≡ [∇× v]i = ϵijk∂jvk =
1

2
ϵijk(∂jvk − ∂kvj) .

Using the identity ϵijkϵimn = δjmδkn − δjnδmk and

ϵimnωi =
1

2
(δjmδkn − δjnδmk)(∂jvk − ∂kvj) = ∂mvn − ∂nvm ,

we derive Aikrk = ϵijkωjrk/2 and Ω = ω/2.

1.5.

Use Bernoulli equation, written for the point of maximal elevation

(when v = 0 and the height is H) and at infinity: 2gH = 2gh+ v2∞.

i) Flow is two-dimensional and far from the slit has only a horizontal

velocity which does not depend on the vertical coordinate because of

potentiality. Conservation of mass requires v∞ = q/2ρg and the elevation

H − h = q2/8gρ2h2.

ii) There is no elevation for a potential flow in this case since the velocity

goes to zero at large distances (as an inverse distance from the source).

A fountain with an underwater source is surely due to a non-potential

flow.

1.6.

In the reference frame of the sphere, the velocity of the inviscid po-

tential flow is as follows:

vr = u cos θ
(
1− (R/r)

3
)
,

vθ = −u sin θ
(
1 +

(
R3/2r3

))
.

Streamlines by definition are the lines where

v × df =
(
vr r̂+ vθ θ̂

)
×
(
drr̂+ dθθ̂

)
= rvrdθ − vθdr = 0 ,



96 Solutions of exercises

which gives the equation

dθ

dr
= − 2r3 +R3

2r (r3 −R3)
tan θ ,

whose integration gives the streamlines

−
∫ θ2

θ1

dθ
2

tan θ
=

∫ r2

r1

dr
2r3 +R3

r (r3 −R3)(
sin θ1
sin θ2

)2

=
r2(r1 −R)

(
r21 + r1R+R2

)
r1(r2 −R) (r22 + r2R+R2)

.

It corresponds to the the stream function in the sphere reference frame

as follows: ψ = −ur2 sin2 θ(1/2−R3/r3). The streamlines relative to the

sphere are in the right part of Figure 4.1.

Figure 4.1 Streamlines of the potential flow around a sphere in the
reference frame where the fluid is at rest at infinity (left) and in the
reference frame moving with the sphere (right).

In the reference frame where the fluid is at rest at infinity,

vr = −u cos θ (R/r)3 , vθ = −(1/2)u sin θ (R/r)
3
.

Integrating

dθ

dr
= − tan θ

2r
,

one obtains the stream function ψ = −uR3 sin2 θ/2r whose streamlines

are shown in the left part of Figure 4.1.

From the velocity of the viscous Stokes flow given by (1.48), one can

obtain the stream function. In the reference frame where the fluid is at

rest at infinity, ψ = urR sin2 θ(3/4−R3/3r3), the streamlines are shown

in the figure below.
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Apparently, the main difference is that inviscid streamlines are loops

(compare with the loops made by trajectories as shown in Fig. 1.9),

while viscous flow is one-way.

In the sphere reference frame, the Stokes stream function is ψ =

−ur2 sin2 θ(1/2−3R/4r+R3/4r3) and the streamlines are qualitatively

similar to those in the right part of Figure 4.1 .

1.7.

The equation of motion for the ball on a spring is mẍ = −kx and the

corresponding frequency is ωa =
√
k/m. In a fluid,

mẍ = −kx− m̃ẍ , (4.2)

where m̃ = ρV/2 is the induced mass of a sphere. The frequency of

oscillations in an ideal fluid is

ωa,fluid = ωa

√
2ρ0

2ρ0+ρ , (4.3)

here ρ is fluid density and ρ0 is the ball’s density.

The equation of motion for the pendulum is mlθ̈ = −mgθ. In a fluid,

it is

mlθ̈ = −mgθ + ρV gθ − m̃lθ̈ (4.4)

where ρV gθ is the Archimedes force, −m̃lθ̈ inertial force. From mlθ̈ =

−mgθ we get ωb =
√
g/l, while when placed in the fluid we have that

frequency of oscillations is

ωb,fluid = ωb

√
2(ρ0−ρ)
2ρ0+ρ (4.5)

Fluid viscosity would lead to some damping. When the viscosity is

small, ν ≪ ωa,ba
2, then the width of the boundary layer is much less then

the size of the body: ν/ωa,ba ≪ a. We then can consider the boundary
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layer as locally flat and for a small piece near a flat surface we derive

∂vx
∂t

= ν
∂2vx
∂y2

,

vx(y, t) = u exp
{
−
[
(1 + i)y/δ + iωt

]}
, δ =

√
2η/ρ0ω . (4.6)

Such fluid motion provides for the viscous stress on the body body sur-

face

σyx = η
∂vv(0, t)

∂y
= (i− 1)vx(0, t)

√
ωηρ/2 ,

which leads to the energy dissipation rate per unit area

−σyxvy = u2
√
ωηρ/8 .

An estimate of the energy loss one obtains multiplying it by the surface

area. To get an exact answer for the viscous dissipation by the oscillating

sphere, one needs to find the velocity distribution around the surface,

see e.g. Sect. 24 of [10].

1.8.

Dimensional analysis and simple estimates. In the expression

T ∝ Eαpβργ , three unknowns α, β, γ can be found from considering

three dimensionalities (grams, meters and seconds), which gives

T ∝ E1/3p−5/6ρ1/2 .

Analogously, T ∝ ap−1/2ρ1/2. Note that here c ∝
√
p/ρ is the sound

velocity so that the period is a/c. The energy is pressure times volume:

E = 4πa3p/3. That way people measure the energy of the explosions

underwater: wait until the bubble is formed and then relate the bubble

size, obtained by measuring bubble oscillations, to the energy of the

explosion.

Sketch of a theory. The radius of the bubble varies like: r0 = a +

b exp(−iωt), where a is the initial radius and b≪ a is a small amplitude

of oscillations with the period T = 2π/ω. The induced fluid flow is radial,

if we neglect gravity, v = vr(r, t). Incompressibility requires v(r, t) =

A exp(−iωt)/r2. On the surface of the bubble, dr0/dt = v(r, t), which

gives A = −iba2ω. So the velocity is as follows

v(r, t) = −ib(a/r)2ω exp(−iωt) (4.7)

Note that (v ·∇)v ≃ b2ω2/a≪ ∂tv ≃ bω2, since it corresponds to the
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assumption b≪ a (|(v·∇)v| ∝). Now we use the linearized Navier-Stokes

equations and spherical symmetry and get:

pwater = pstatic − ρω2b
(

a2

r

)
e−iωt (4.8)

where pstatic is the static pressure of water - unperturbed by oscillations.

Since ρair/ρwater = 10−3, then the bubble compressions and expansions

can be considered quasi-static, pbubbler0
3γ = pstatica

3γ , which gives:

pbubble = pstatic
(
1− 3γ(b/a)e−iωt

)
(4.9)

Now use the boundary condition for the bubble-water interface at r = a

−pbubbleδik = −pwaterδik + η(∂kvi + ∂ivk) , (4.10)

where η is the water dynamic viscosity. The component σrr gives ρ(aω)
2+

4iη − 3γp = 0 with the solution

ω =

(
− 2ηi

a2ρ
±

√
3γp

ρa2
− 4η2

a4ρ2

)
. (4.11)

For large viscosity, it describes aperiodic decay; for η2 < 3γpρa2/4 the

frequency of oscillations is as follows:

ω = 2π/T (a, p, ρ) =

√
3γp

ρa2
− 4η2

a4ρ2
. (4.12)

Viscosity increases the period which may be relevant for small bubbles,

see [20] for more details.

1.9.

The Navier-Stokes equation for the vorticity in an incompressible fluid,

∂tω + (v · ∇)ω − (ω · ∇)v = ν∆ω

in the cylindrically symmetric case is reduced to the diffusion equation,

∂tω = ν∆ω ,

since (v · ∇)ω = (ω · ∇)v = 0. The diffusion equation with the delta-

function initial condition has the solution

ω(r, t) =
Γ

4πνt
exp

(
− r2

4νt

)
,

which conserves the total vorticity:

Ω(t) = 2π

∫ ∞

0

ω(r, t)rdr =
Γ

2νt

∫ ∞

0

exp

(
− r2

4νt

)
rdr = Γ .
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Generally, for any two-dimensional incompressible flow, the Navier-

Stokes equation takes the form ∂tω + (v · ∇)ω = ν∆ω, which conserves

the vorticity integral as long as it is finite.

1.10.

The shape of the swimmer is characterized by the angles between the

arms and the middle link. Therefore, the configuration space is two-

dimensional. Our swimmer goes around a loop in this space with the

displacement proportional to the loop area which is θ2. Transformation

y → −y, θ1 → −θ1, θ2 → −θ2 produces the same loop, therefore y-

displacement must be zero. Since it is easier to move when the non-

moving arm is aligned with the body (i.e. either θ1 or θ2 is zero), then

it is clear that during 1 → 2 and 4 → 5 the swimmer shifts to the left

less than it shifts to the right during 2 → 3 and 3 → 4, at least when

θ ≪ 1. Therefore the total displacement is to the right or generally in the

direction of the arm that moved first. Further reading: Sect. 7.5 of [1];

Purcell, E. M. (1977) Life at low Reynolds number, American Journal

of Physics, vol 45, p. 3; Childress, S. (1981) Mechanics of swimming and

flying (Cambridge Univ. Press).

Anchoring the swimmer one gets a pump. Geometrical nature of swim-

ming and pumping by micro-organisms makes them a subject of a non-

Abelian gauge field theory with rich connections to many other phenom-

ena, see Wilczek, F. and Shapere, A. (1989) Geometry of self-propulsion

at low Reynolds number, Journal of Fluid Mechanics, vol 198, p. 557.

1,5

θ2 1θ
3

2

4

1.11.

Simple estimate. The lift force can be estimated as ρvΩRR2 ≃ 3

N. The rough estimate of the deflection can be done by neglecting the

ball deceleration and estimating the time of flight as T ≃ L/v0 ≃ 1 s.

Further, neglecting the drag in the perpendicular direction we estimate
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that the acceleration ρv0ΩR
3/m ≃ 6.7m · s−2 causes the deflection

y(T ) =
ρv0ΩR

3T 2

2m
≃ ρΩR3L2

2mv0
= L

ΩR

v0

ρR2L

2m
≃ 3.35 m . (4.13)

Sketch of a theory. It is straightforward to account for the drag

force, Cρv2πR2/2, which leads to the logarithmic law of displacement:

v̇ = − v2

L0
, v(t) =

v0
1 + v0t/L0

,

x(t) = L0 ln(1 + v0t/L0) . (4.14)

Here L0 = 2m/CρπR2 ≃ 100 m with C ≃ 0.25 for Re = v0R/ν ≃ 2 ·105.
The meaning of the parameter L0 is that this is the distance at which

drag substantially affects the speed; non-surprisingly, it corresponds to

the mass of the air displaced, ρπR2L, being of the order of the ball mass.

We get the travel time T from (4.14): v0T/L0 = exp(L/L0)−1 > L/L0.

We can now account for the time-dependence v(t) in the deflection.

Assuming that the deflection in y-direction is small comparing to the

path travelled in x direction, we get

d2y(t)

dt2
=
ρΩR3v(t)

m
=

ρΩR3v0
m(1 + v0t/L0)

,

y(0) = ẏ(0) = 0 ,

y(t) = L0
ΩR

v0

2

πC
[(1 + v0t/L0) ln(1 + v0t/L0)− v0t/L0] . (4.15)

It turns into (4.13) in the limit L≪ L0 (works well for a penalty kick).

For longer L one also needs to account for the drag in the y-direction

which leads to the saturation of ẏ at the value ∼
√
ΩRv. Still, such

detailed consideration does not make much sense because we took a

very crude estimate of the lift force and neglected vertical displacement

gT 2/2, which is comparable with the deflection.

Remark. Great soccer players are able also to utilize the drag crisis

which is a sharp increase of the drag coefficient C from 0.15 to 0.5 when

Re decreases from 2.5·105 to 1.5·105 (ball velocity drops from 37.5 m/s to

22.5 m/s). As a result, some way into its path the ball sharply decelerates

and the Magnus force comes even more into effect. The phenomenon of

drag crisis is also used for making a long shot over the goalkeeper who

came out too far from the goal; in this case, the ball smoothly rises up

and then falls down steeply (see Figure). A topspin adds Magnus force

which enhances this effect.
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1.12.

Lift force on the keel exists only if the board moves not exactly in

the direction in which it is pointed. The direction of the force acting

on the keel can be understood considering the deflection of water in the

reference frame of the keel — water comes from the direction of motion

and leaves along the keel. The direction of the force acting on the keel is

opposite to the direction of deflection of water by the keel. That force,

Fkeel, acting mainly to the side (left in the Figure), must be counteracted

by the force acting by the wind on the sail. Wind leaves along the sail

and its deflection determines Fsail. For a board in a steady motion, the

vector Fkeel +Fsail points in the direction of motion and it is balanced

by the drag force. Decreasing the drag one can in principle move faster

than the wind since Fsail does not depend on the board speed (as long

as one keeps the wind perpendicular in the reference frame of the board).

On the contrary, when the board moves downwind, it cannot move faster

than the wind.

wind

keel

sail Fsail

keelF

direction of motion

deflection of 
water flow in
the board frame

For details, see B.D. Anderson, The physics of sailing, Physics Today,

February 2008, 38-43.
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1.13.

Simple answer. If droplet was a solid sphere, one uses the Stokes

force and gets the steady fall velocity from the force balance

6πRηau = mg , u =
2ρwgR

2

9ηa
≃ 1.21 cm/s . (4.16)

Justification and correction. The Reynolds number is Re ≃ 0.008,

which justifies our approach and guarantees that we can neglect finite-

Re corrections. Note that Re ∝ vR ∝ R3, so that Re ≃ 1 already for

R = 0.05mm. Sphericity is maintained by surface tension, the relevant

parameter is the ratio of the viscous stress ηwu/R to the surface tension

stress α/R, that ratio is ηwu/α ≃ 0.00017 for α = 70 g/s2. Another

unaccounted phenomenon is an internal circulation in a liquid droplet.

Viscous stress tensor σrθ must be continuous through the droplet surface,

so that the velocity inside can be estimated as the velocity outside times

the small factor ηa/ηw ≃ 0.018 ≪ 1, which is expected to give 2%

correction to the force and to the fall velocity. Let us calculate this.

The equation for the motion of the fluid inside is the same as outside:

∆2∇f = 0, see (1.46). The solution regular at infinity is (1.47) i.e.

va = u− a
u+ n̂(u · n̂)

r
+ b

3n̂(u · n̂− u)

r3

while the solution regular at zero is f = Ar2/4 +Br4/8, which gives

vw = −Au+Br2(n̂(u · n̂)− 2u .

Four boundary conditions on the surface (zero normal velocities and con-

tinuous tangential velocities and stresses) fix the four constants A,A, a, b

and gives the drag force

F = 8πaηu = 2πuηaR
2ηa + 3ηw
ηa + ηw

. (4.17)

which leads to

u =
2ρR2g

3ηa

(
3ηa + 3ηw
2ηa + 3ηw

)
≃ 2ρR2g

9ηa

(
1 +

1

3

ηa
ηw

)
≃ 1.22

cm

s

Inside circulation acts as a lubricant decreasing drag and increasing fall

velocity. In reality, however, water droplets often fall as solid spheres

because of a dense ”coat” of dust particles accumulated on the surface.

1.14.

Basic Solution. Denote the droplet radius r and its velocity v. We
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need to write conservation of mass ṙ = Av and the equation of motion,

dr3v/dt = gr3 − Bvr, where we assumed a low Reynolds number and

used the Stokes expression for the friction force. Here A,B are some

constants. One can exclude v from here but the resulting second-order

differential equation is complicated. To simplify, we assume that the

motion is quasi-steady so that gravity and friction almost balance each

other. That requires v̇ ≪ g and gives v ≈ gr2/B. Substituting that

into the mass conservation gives dr/dt = Agr2/B. The solution of this

equation gives an explosive growth of the particle radius and velocity:

and r(t) = r0/(1− r0Agt/B). This solution is true as long as v̇ ≪ g and

Re = vr/ν ≪ 1.

Detailed Solution. Denote ρw, ρ, ρv respectively densities of the liq-

uid water, air and water vapor. Assume ρw ≫ ρ ≫ ρv. Mass conser-

vation gives dm = ρvπr
2vdt = ρw4πr

2dr so that dr/dt = vρv/4ρw.

Initially, we may consider low-Re motion so that the equation of mo-

tion is as follows: dr3v/dt = gr3 − 9νρvr/2ρ0. Quasi-static approxima-

tion is v ≈ 2gr2ρw/9νρ according to (4.16), which gives the equation

dr/dt = gr2ρv/18νρ independent of ρw. The solution of this equation

gives an explosive growth of the particle radius and velocity:

r(t) = r0

(
1− ρv

ρ

r0gt

18ν

)−1

, v(t) =
ρw
ρ

2gr20
9ν

(
1− ρv

ρ

r0gt

18ν

)−2

.

This solution is true as long as v̇ = 4grṙρ0/9νρ = 2g2r3ρvρ0/81ν
2ρ2 ≪

g. Also, when r(t)v(t) ≃ ν the regime changes so that mg = Cρπr2v2,

v ∝
√
r and r ∝ t2, v ∝ t.

1.15

Pressure is constant along the free jet boundaries and so the velocity

is constant as well. Therefore, the asymptotic velocities in the outgoing

jets are the same as in the incoming jets. Conservation of mass, energy

and horizontal momentum give for the left/right jets respectively

hl = h(1 + cos θ0) , hr = h(1− cos θ0) ,

where h is the width of the incoming jet. Therefore, a fraction (1 −
cos θ0)/2 of the metal cone is injected into the forward jet.

One can describe the whole flow field in terms of the complex velocity

v which changes inside a circle whose radius is the velocity at infinity,

u (see, e.g. Chapter XI of [13]). On the circle, the stream function is
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piecewise constant with the jumps equal to the jet fluxes:

ψ = 0 for 0 ≤ θ ≤ θ0 , ψ = −hu for θ0 ≤ θ ≤ π ,

ψ = (hl − h)u for π ≤ θ ≤ 2π − θ0 , etc.

We can now find the complex potential everywhere in the circle by using

the Schwartz formula:

w(v) =
i

2π

∫ 2π

0

ψ(θ)
u exp(iθ) + v

u exp(iθ)− v
dθ

=
u

π

{
hr ln

(
1− v

u

)
+ hl ln

(
1 +

v

u

)
− h ln

[(
1− v

u
eiθ0
)(

1− v

u
e−iθ0

)]}
.

To relate the space coordinate z and the velocity v we use v = −dw/dz
so that one needs to differentiate w(v) and then integrate once the re-

lation dz/dv = −v−1dw/dv using z = 0 at v = 0:

πz

h
= (1− cos θ0) ln

(
1− v

u

)
− (1 + cos θ0) ln

(
1 +

v

u

)
+ eiθ0 ln

(
1− v

u
eiθ0
)
+ e−iθ0 ln

(
1− v

u
e−iθ0

)
.

2.1.

We have seen in Sect. 1.2.1 that in a locally smooth flow, fluid ele-

ments either stretch/contract exponentially in a strain-dominated flow

or rotate in a vorticity-dominated flow. This is true also for the flows in

phase space, discussed at the beginning of Sect. 2.2.

i) Since x(t) = x0 exp(λt) and y(t) = y0 exp(−λt) = x0y0/x(t) then

every streamline (and trajectory) is a hyperbole. A vector initially form-

ing an angle φ with the x axis will be stretched after time T if cosφ ≥
[1+exp(2λT )]−1/2, i.e. the fraction of stretched directions is larger than

half. That means, in particular, that if one randomly changes directions

after some times, still the net effect is stretching.
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y

x

y

x 0

0

x(t)y(t)=x y 
hyperbole

0 0

ϕ

ii) The eigenvectors of this problem evolve according to exp(±iΩt)
where

Ω2 = 4ω2 − λ2 . (4.18)

We see that fluid rotates inside vorticity-dominated (elliptic) regions

and is monotonically deformed in strain-dominated (hyperbolic) regions.

The marginal case is a shear flow (see Figure 1.6) where λ = 2ω and the

distances grow linearly with time.

In a random flow (either in real space or in phase space), a fluid el-

ement visits on its way many different elliptic and hyperbolic regions.

After a long random sequence of deformations and rotations, we find

it stretched into a thin strip. Of course, this is a statistical statement

meaning that the probability to find a ball turning into an exponentially

stretching ellipse goes to unity as time increases. The physical reason

for it is that substantial deformation appears sooner or later. To reverse

it, one needs to meet an orientation of stretching/contraction directions

in a narrow angle (defined by the ellipse eccentricity), which is unlikely.

Randomly oriented deformations on average continue to increase the ec-

centricity. After the strip length reaches the scale of the velocity change

(when one already cannot approximate the velocity by a linear profile),

strip starts to fold continuing locally the exponential stretching. Even-

tually, one can find the points from the initial ball everywhere which

means that the flow is mixing.

2.2.

Dimensional reasoning. With six parameters, g,β,Θ,h,ν, χ and

three independent dimensions, cm, sec and Kelvin degree, one can com-

bine three different dimensionless parameters, according to the π-theorem

of Sect. 1.4.4. That is too many parameters for any meaningful study.

Basic physical reasoning suggests that the first three parameters

can come up only as a product, gβΘ, which is a buoyancy force per
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unit mass (the density cannot enter because there is no other parameter

having mass units). We now have four parameters, βgΘ, h, ν, χ and two

independent dimensions, cm, sec, so that we can make two dimensionless

parameters. The first one characterizes the medium and is called the

Prandtl number:

Pr = ν/χ . (4.19)

The same molecular motion is responsible for the diffusion of momentum

by viscosity and the diffusion of heat by thermal conductivity. Never-

theless, the Prandtl number varies greatly from substance to substance.

For gases, one can estimate χ as the thermal velocity times the mean

free path, exactly like for viscosity in Section 1.4.3, so that the Prandtl

number is always of order unity. For liquids, Pr varies from 0.044 for

mercury to 6.75 for water and 7250 for glycerol.

The second parameter can be constructed in infinitely many ways as it

can contain an arbitrary function of the first parameter. One may settle

on any such parameter claiming that it is a good control parameter for a

given medium (for fixed Pr). However, one can do better than that and

find the control parameter which is the same for all media (i.e. all Pr).

The physical reasoning helps one to choose the right parameter. It is

clear that convection can occur when the buoyancy force, βgΘ, is larger

than the friction force, νv/h2. It may seem that taking velocity v small

enough, one can always satisfy that criterium. However, one must not

forget that as the hotter fluid rises it looses heat by thermal conduction

and gets more dense. Our estimate of the buoyancy force is valid as

long as the conduction time, h2/χ, exceeds the convection time, h/v,

so that the minimal velocity is v ≃ χ/h. Substituting that velocity into

the friction force, we obtain the correct dimensionless parameter as the

force ratio which is called the Rayleigh number:

Ra =
gβΘh3

νχ
. (4.20)

Sketch of a theory. The temperature T satisfies the linear convection-

conduction equation

∂T

∂t
+ (v · ∇)T = χ∆T . (4.21)

For the perturbation τ = (T − T0)/T0 relative to the steady profile

T0(z) = Θz/h, we obtain

∂τ

∂t
− vzΘ/h = χ∆τ . (4.22)
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Since the velocity is itself a perturbation, so that it satisfies the in-

compressibility condition, ∇ · v = 0, and the linearized Navier-Stokes

equation with the buoyancy force:

∂v

∂t
= −∇W + ν∆v + βτg , (4.23)

where W is the enthalpy perturbation. Of course, the properties of the

convection above the threshold depend on both parameters, Ra and Pr,

so that one cannot eliminate one of them from the system of equations. If,

however, one considers the convection threshold where ∂v/∂t = ∂τ/∂t =

0, then one can choose the dimensionless variables u = vh/χ and w =

Wh2/νχ such that the system contains only Ra:

−uz = ∆τ , ∇ · v = 0,
∂w

∂z
= ∆uz + τRa ,

∂w

∂x
= ∆ux . (4.24)

Solving this with proper boundary conditions, for eigenmodes built out

of sin(kx), cos(kx) and sinh(qz), cosh(qz) (which describe rectangular

cells or rolls), one obtains Racr as the lowest eigenvalue, see e.g. [10],

Sect. 57.

Note the difference between the sufficient condition for convection on-

set, Ra > Racr, formulated in terms of the control parameter Ra, which

is global (a characteristics of the whole system), and a local necessary

condition (1.9) found in Sect. 1.1.3.

2.3.

Consider the continuity of the fluxes of mass, normal momentum and

energy:

ρ1w1 = ρ2w2 , P1 + ρ1w
2
1 = P2 + ρ2w

2
2 , (4.25)

W1 + w2
1/2 =

ρ2w2

ρ1w1

(
W2 + w2

2/2
)
=W2 + w2

2/2 . (4.26)

Excluding w1, w2 from (4.25),

w2
1 =

ρ2
ρ1

P2 − P1

ρ2 − ρ1
, w2

2 =
ρ1
ρ2

P2 − P1

ρ2 − ρ1
, (4.27)

and substituting it into the Bernoulli relation (4.26) we derive the rela-

tion called the shock adiabate:

W1 −W2 =
1

2

(
P1 − P2)(V1 + V2) . (4.28)

For given pre-shock values of P1, V1, it determines the relation between

P2 and V2. Shock adiabate is determined by two parameters, P1, V1,
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as distinct from the constant-entropy (Poisson) adiabate PV γ =const,

which is determined by a single parameter, entropy. Of course, the after-

shock parameters are completely determined if all the three pre-shock

parameters, P1, V1, w1, are given.

Substituting W = γP/ρ(γ − 1) into (4.28) we obtain the shock adia-

bate for a polytropic gas in two equivalent forms:

ρ2
ρ1

=
βP1 + P2

P1 + βP2
,

P2

P1
=
ρ1 − βρ2
ρ2 − βρ1

, β =
γ − 1

γ + 1
. (4.29)

Since pressures must be positive, the density ratio ρ2/ρ1 must not exceed

1/β (4 and 6 for monatomic and diatomic gases respectively). If the pre-

shock velocity w1 is given, the dimensionless ratios ρ2/ρ1, P2/P1 and

M2 = w2/c2 = w2

√
ρ2/γP2 can be expressed via the dimensionless

Mach number M1 = w1/c1 = w1

√
ρ1/γP1 by combining (4.27,4.29):

ρ1
ρ2

= β +
2

(γ + 1)M2
1

,
P2

P1
=

2γM2
1

γ + 1
− β , M2

2 =
2 + (γ − 1)M2

1

2γM2
1 + 1− γ

.

(4.30)

To have a subsonic flow after the shock, M2 < 1, one needs a supersonic

flow before the shock, M1 > 1.

Thermodynamic inequality γ > 1 guarantees the regularity of all

the above relations. The entropy is determined by the ratio P/ργ , it

is actually proportional to log(P/ργ). Using (4.30) one can show that

s2 − s1 ∝ ln(P2ρ
γ
1/P1ρ

γ
2) > 0 which corresponds to an irreversible con-

version of the mechanical energy of the fluid motion into the thermal

energy of the fluid.

See Sects. 85,89 of [10] for more details.

2.4.

Simple estimate. We use a single shock, which has the form u =

−v tanh(vx/2ν) in the reference frame with the zero mean velocity. We

then simply get ⟨u2u2x⟩ = 2v5/15L so that

ϵ4 = 6ν[⟨u2u2x⟩+ ⟨u2⟩⟨u2x⟩] = 24v5/5L .

Substituting v5/L = 5ϵ4/24 into S5 = −32v5x/L we get

S5 = −20ϵ4x/3 = −40νx[⟨u2u2x⟩+ ⟨u2⟩⟨u2x⟩] . (4.31)

Sketch of a theory. One can also derive the evolution equation for

the structure function, analogous to (2.10) and (2.31). Consider

∂tS4 = −(3/5)∂xS5−24ν[⟨u2u2x⟩+⟨u21u22x⟩]+48ν⟨u1u2u21x⟩+8ν⟨u31u2xx⟩ .



110 Solutions of exercises

Since the distance x12 is in the inertial interval then we can neglect

⟨u31u2xx⟩ and ⟨u1u2u21x⟩, and we can put ⟨u21u22x⟩ ≈ ⟨u2⟩⟨u2x⟩. Assuming

that

∂tS4 ≃ S4u/L≪ ϵ4 ≃ u5/L ,

we neglect the lhs and obtain (4.31). Generally, one can derive

S2n+1 = −4ϵnx
2n+ 1

2n− 1

2.5.

We write the equation of motion (1.29):

d

dt
ρ0V (t)u = ρV (t)v̇ +

d

dt
ρV (t)

v − u

2
. (4.32)

The solution is

u(t) = a sinωt
3ρ

ρ+ 2ρ0
+
a

ω
(cosωt− 1)

2ρ

ρ+ 2ρ0

α

V (0)− αt
. (4.33)

It shows that the volume change causes the phase shift and amplitude

increase in oscillations and a negative drift. The solution (4.33) looses

validity when u increases to the point where ku ≃ ω.

2.6.

Rough estimate can be obtained even without proper understand-

ing the phenomenon. The effect must be independent of the phase of

oscillations i.e. of the sign of A, therefore, the dimensionless parameter

A2 must be expressed via the dimensionless parameter P0/ρgh. When

the ratio P0/ρgh is small we expect the answer to be independent of

it, i.e. the threshold to be of order unity. When P0/ρgh ≫ 1 then the

threshold must be large as well since large P0 decreases any effect of

bubble oscillations, so one may expect the threshold at A2 ≃ P0/ρgh.

One can make a simple interpolation between the limits

A2 ≃ 1 +
P0

ρgh
. (4.34)

Qualitative explanation of the effect invokes compressibility of the

bubble (Bleich, 1956). Vertical oscillations of the vessel cause periodic

variations of the gravity acceleration. Upward acceleration of the vessel

causes downward gravity which provides for the buoyancy force directed

up and vice versa for another half period. It is important that related

variations of the buoyancy force do not average to zero since the volume
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of the bubble oscillates too because of oscillations of pressure due to col-

umn of liquid above. The volume is smaller when the vessel accelerates

upward since the effective gravity and pressure are larger then. As a re-

sult, buoyancy force is lower when the vessel and the bubble accelerate

up. The net result of symmetric up-down oscillations is thus downward

force acting on the bubble. When that force exceeds the upward buoy-

ancy force provided by the static gravity g, the bubble sinks.

Theory. Consider an ideal fluid where there is no drag. The equation

of motion in the vessel reference frame is obtained from (1.29,4.32) by

adding buoyancy and neglecting the mass of the air in the bubble:

d

2dt
V (t)u = V (t)G(t) , G(t) = g + ẍ . (4.35)

Here V (t) is the time-dependent bubble volume. Denote z the bubble

vertical displacement with respect to the vessel, so that u = ż, positive

upward . Assume compressions and expansions of the bubble to be adia-

batic, which requires the frequency to be larger than thermal diffusivity

κ divided by the bubble size a. If, on the other hand, the vibration fre-

quency is much smaller than the eigenfrequency (4.12) (sound velocity

divided by the bubble radius) then one can relate the volume V (t) to

the pressure and the coordinate at the same instant of time:

PV γ(t) = [P0 + ρG(h− z)]V γ = (P0 + ρgh)V γ
0 .

Assuming small variations in z and V = V0 + δV sin(ωt) we get

δV = V0
Aρgh

γ(P0 + ρgh)
. (4.36)

The net change of the bubble momentum during the period can be ob-

tained by integrating (4.35):∫ 2π/ω

0

V (t′)G(t′) dt′ =
2πV0g

ω
(1− δV A/2V0) + o

(
A2
)
. (4.37)

The threshold corresponds to zero momentum transfer, which requires

δV = 2V0/A. According to (4.36), that gives the following answer:

A2 = 2γ

(
1 +

P0

ρgh

)
. (4.38)

At this value of A, the equation (4.35) has an oscillatory solution z(t) ≈
−(2Ag/ω2) sin(ωt) valid when Ag/ω2 ≪ h. Another way to interpret

(4.38) is to say that it gives the depth h where small oscillations are

possible for a given amplitude of vibrations A. Moment reflection tells
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that these oscillations are unstable i.e. bubbles below h has their down-

ward momentum transfer stronger and will sink while bubbles above

rise.

Notice that the threshold value does not depend on the frequency

and the bubble radius (under an implicit assumption a≪ h). However,

neglecting viscous friction is justified only when the Reynolds number

of the flow around the bubble is large: aż/ν ≃ aAg/ων ≫ 1, where ν

is the kinematic viscosity of the liquid. Different treatment is needed

for small bubbles where inertia can be neglected comparing to viscous

friction and (4.35) is replaced by

4πνa(t)ż = V (t)G(t) = 4πa3(t)G/3 . (4.39)

Here we used the expression (4.17) for the viscous friction of fluid

sphere with the interchange water ↔ air. Dividing by a(t) and integrat-

ing over period we get the velocity change proportional to 1− δaA/a =

1− δV A/3V0. Another difference is that a
2 ≪ κ/ω for small bubbles, so

that heat exchange is fast and we must use isothermal rather than adia-

batic equation of state i.e. put γ = 1 in (4.36). That gives the threshold

which is again independent of the bubble size:

A2 = 3

(
1 +

P0

ρgh

)
. (4.40)
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1 Translated by A. Shafarenko

Chapter 1

1 The Deborah number was introduced by M. Reiner. All real solids
contain dislocations which make them flow. Whether perfect crystals can
flow under an infinitesimal shear is a delicate question, which is the
subject of ongoing research.

2 To go with a flow, using Lagrangian description, may be more difficult
yet it is often more rewarding than staying on a shore. Like sport and
some other activities, fluid mechanics is better doing (Lagrangian) than
watching (Eulerian), according to J-F. Pinton.

3 Temperature decays with height only in the troposphere that is until
about −50◦ at 10-12 km, then it grows in the stratosphere until about 0◦

at 50 km
4 Convection excited by a human body at room temperature is always

turbulent, as can be seen in a movie in [9], Section 605.
5 More details on the stability of rotating fluids can be found in Sect. 9.4 of

[1] and Sect. 66 of [5] for details.
6 Actually, the Laplace equation was first derived by Euler for the velocity

potential.
7 Conformal transformations stretch uniformly in all directions at every

point but the magnitude of stretching generally depends on a point. As a
result, conformal maps preserve angles but not the distances. These
properties had been first made useful in naval cartography (Mercator,
1569) well before the invention of the complex analysis. Indeed, to
discover a new continent it is preferable to know the direction rather
than the distance ahead.

8 Second-order linear differential operator
∑

ai∂
2
i is called elliptic if all ai

are of the same sign, hyperbolic if their signs are different and parabolic
if at least one coefficient is zero. The names come from the fact that a
real quadratic curve ax2 + 2bxy + cy2 = 0 is a hyperbola, an ellipse or a
parabola depending on whether ac− b2 is negative, positive or zero. For
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hyperbolic equations, one can introduce characteristics where solution
stays constant; if different characteristics cross then a singularity may
appear inside the domain. Solutions of elliptic equations are smooth,
their stationary points are saddles rather than maxima or minima. See
also Sects. 2.3.2 and 2.3.5.

9 Detailed discussion of minima and maxima of irrotational flows is in [3],
p. 385

10 Presentation in Sect. 11 of [10] is misleading in not distinguishing
between momentum and quasi-momentum.

11 That one can use the conservation of momentum inside an elongated
cylindrical surface around the solid body follows from the consideration
of the momentum flux through this surface. The contribution of the

pressure, π
∫R
0
[p(L, r)− p(−L, r)]dr2 = πρ

∫R
0
[ϕ̇(−L, r)− ϕ̇(L, r)]dr2 =

πρu̇[1− (1−R/L)−1/2] vanishes in the limit L/R → ∞. The pressure
contribution does not vanish for other surfaces, see Sect. 7.1 of [15].

12 Further reading on induced mass and quasi-momentum: [12] and Sects.
2.4-2.6. of [15].

13 The argument that the momentum transfer requires the resistance force
to be proportional to the velocity squared goes back to Newton.

14 The general statement on a zero resistance force acting on a body
steadily moving in an ideal fluid sometimes is called D’Alembert paradox,
even though D’Alembert established it only for a body with a central
symmetry.

15 No-slip can be seen in a movie in [9], Section 605. The no-slip condition is
a useful idealization in many but not in all cases. Depending on the
structure of a liquid and a solid and the shape of the boundary, slip can
occur which can change flow pattern and reduce drag. Rich physics, and
also numerical and experimental methods used in studying this
phenomenon are described in Sect. 19 of [18].

16 One can see liquid jets with different Reynolds numbers in Sect. 199 of [9].
17 Movies of propulsion at low Reynolds numbers can be found in Sect. 237

of [9].
18 Photographs of boundary layer separation can be found in [19] and

movies in [9], Sects. 638-675.
19 Another familiar example of a secondary circulation due to pressure

mismatch is the flow that carries the tea leaves to the center of a teacup
when the tea is rotated, see e.g. Sect. 7.13 of [6].

20 More details on jets can be found in Sects. 11,12,21 of D.J. Tritton,
Physical Fluid Dynamics (Oxford Science Publications, 1988).

21 Shedding of eddies and resulting effects can be seen in movies in
Sects. 210,216,722,725 of [9].

22 Elementary discussion and a simple analytic model of the vortex street
can be found in Sect. 5.7 of [1], including an amusing story told by von
Kármán about the doctoral candidate (in Prandtl’s laboratory) who tried
in vain to polish the cylinder to make the flow non-oscillating. Kármán
vortex street is responsible for many acoustic phenomena like the roar of
propeller or sound caused by a wind rushing past a tree.

23 Words and Figs 1.15,1.16, don’t do justice to the remarkable
transformations of the flow with the change of the Reynolds number, full
set of photographs can be found in [19] and movies in [9],
Sects. 196,216,659. See also Galleries at http://www.efluids.com/
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24 One can check that for Re < 105 a stick encounters more drag when
moving through a still fluid than when kept still in a moving fluid (in the
latter case the flow is usually turbulent before the stick so that the
boundary layer is turbulent as well). Generations of scientists, starting
from Leonardo Da Vinci, believed that the drag must be the same
(despite experience telling otherwise) because of Galilean invariance,
which, of course, is applicable only to an infinite uniform flow, not to real
streams.

25 One can generalize the method of complex potential from Sect. 1.2.4 for
describing flows with circulation, which involves logarithmic terms. A
detailed yet still compact presentation is in Sect. 6.5 of [3].

26 Newton argued that a rotating ball curves because the side that moves
faster meets more resistance. Since he considered the resistance force
proportional to the velocity squared that is to the pressure, this gives the
same estimate (1.55) for the Magnus force.

27 Lively book on the interface between biology and fluid mechanics is S.
Vogel, Life in moving fluids (Princeton Univ. Press, 1981).

28 It is instructive to think about similarities and differences in the ways
that vorticity penetrating the bulk makes life interesting in ideal fluids
and superconductors. An evident difference is that vorticity is continuous
in a classical fluid while vortices are quantized in quantum fluids

29 Further reading on flow past a body, drag and lift: Sect. 6.4 of [3] and
Sect. 38 of [10].

Chapter 2

1 Description of numerous instabilities can be found in [5] and in Chapters
8 of [6, 16].

2 Stability analysis for pipe and plane shear flows with the account of
viscosity can be found in Sect. 28 of [10] and Sect. 9 of [1].

3 For a brief introduction into the theory of dynamical chaos see e.g.
Sects. 30-32 of [10], full exposure can be found in E. Ott, Chaos in
dynamical systems (Cambridge Univ. Press, 1992). See also Exercise 3.7.

4 Compact lucid presentation of the phenomenology of turbulence can be
found in Sreenivasan’s Chapter 7 of [16]. Detailed discussion of flux in
turbulence and further references can be found in [4, 8].

5 While deterministic Lagrangian description of individual trajectories is
inapplicable in turbulence, statistical description is possible and can be
found in [4, 7].

6 It is presumed that the temporal average is equivalent to the spatial
average, property called ergodicity.

7 Detailed derivation of the Kármán-Howarth relation and Kolmogorov’s
4/5-law can be found in Sect. 34 of [10] or Sect. 6.2 of [8].

8 We also understand the breakdown of scale invariance for the statistics of
passive fields carried by random flows, see [7].

9 Momentum and quasi-momentum of a phonon are discussed in Sect. 4.2
of [14]. For fluids, wave propagation is always accompanied by a (Stokes)
drift quadratic in wave amplitude.

10 More detailed derivation of the velocity of Riemann wave can be found in
Sect. 101 of [10].

11 Burgers equation describes also directed polymers with t being the
coordinate along polymer and many other systems.
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12 On experimental uses of the Döppler effect see [18].
13 Our presentation of a compressible flow past a body follows Sect. 3.7 of

[1], more details on supersonic aerodynamics can be found in Chapter 6
of [16].

14 Passing through the shock, potential flow generally acquires vorticity
except when all the streamlines cross the shock at the same angle as is
the case in the linear approximation, see [10], Sects. 112-114.
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