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2.1 INTRODUCTION 

2.1.1 The concept of a fluid 
 
A fluid is a substance in which the constituent molecules are free to move relative to each other. 
Conversely, in a solid, the relative positions of molecules remain essentially fixed under non-
destructive conditions of temperature and pressure. While these definitions classify matter into fluids 
and solids, the fluids sub-divide further into liquid and gases. 
 
Molecules of any substance exhibit at least two types of forces; an attractive force that diminishes 
with the square of the distance between molecules, and a force of repulsion that becomes strong 
when molecules come very close together. In solids, the force of attraction is so dominant that the 
molecules remain essentially fixed in position while the resisting force of repulsion prevents them 
from collapsing into each other. However, if heat is supplied to the solid, the energy is absorbed 
internally causing the molecules to vibrate with increasing amplitude. If that vibration becomes 
sufficiently violent, then the bonds of attraction will be broken. Molecules will then be free to move in 
relation to each other - the solid melts to become a liquid. 
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When two moving molecules in a fluid converge on each other, actual collision is averted (at normal 
temperatures and velocities) because of the strong force of repulsion at short distances. The 
molecules behave as near perfectly elastic spheres, rebounding from each other or from the walls of 
the vessel. Nevertheless, in a liquid, the molecules remain sufficiently close together that the force of 
attraction maintains some coherence within the substance. Water poured into a vessel will assume 
the shape of that vessel but may not fill it. There will be a distinct interface (surface) between the 
water and the air or vapour above it. The mutual attraction between the water molecules is greater 
than that between a water molecule and molecules of the adjacent gas. Hence, the water remains in 
the vessel except for a few exceptional molecules that momentarily gain sufficient kinetic energy to 
escape through the interface (slow evaporation). 
 
However, if heat continues to be supplied to the liquid then that energy is absorbed as an increase in 
the velocity of the molecules. The rising temperature of the liquid is, in fact, a measure of the 
internal kinetic energy of the molecules. At some critical temperature, depending upon the applied 
pressure, the velocity of the molecules becomes so great that the forces of attraction are no longer 
sufficient to hold those molecules together as a discrete liquid. They separate to much greater 
distances apart, form bubbles of vapour and burst through the surface to mix with the air or other 
gases above. This is, of course, the common phenomenon of boiling or rapid evaporation. The liquid 
is converted into gas. 
 
The molecules of a gas are identical to those of the liquid from which it evaporated. However, those 
molecules are now so far apart, and moving with such high velocity, that the forces of attraction are 
relatively small. The fluid can no longer maintain the coherence of a liquid. A gas will expand to fill 
any closed vessel within which it is contained. 
 
The molecular spacing gives rise to distinct differences between the properties of liquids and gases. 
Three of these are, first, that the volume of gas with its large intermolecular spacing will be much 
greater than the same mass of liquid from which it evaporated. Hence, the density of gases 
(mass/volume) is much lower than that of liquids. Second, if pressure is applied to a liquid, then the 
strong forces of repulsion at small intermolecular distances offer such a high resistance that the 
volume of the liquid changes very little. For practical purposes most liquids (but not all) may be 
regarded as incompressible. On the other hand, the far greater distances between molecules in a 
gas allow the molecules to be more easily pushed closer together when subjected to compression. 
Gases, then, are compressible fluids.  
 
A third difference is that when liquids of differing densities are mixed in a vessel, they will separate 
out into discrete layers by gravitational settlement with the densest liquid at the bottom. This is not 
true of gases. In this case, layering of the gases will take place only while the constituent gases 
remain unmixed (for example, see Methane Layering, Section 12.4.2). If, however, the gases 
become mixed into a homogenous blend, then the relatively high molecular velocities and large 
intermolecular distances prevent the gases from separating out by gravitational settlement. The 
internal molecular energy provides an effective continuous mixing process. 
 
Subsurface ventilation engineers need to be aware of the properties of both liquids and gases. In 
this chapter, we shall confine ourselves to incompressible fluids. Why is this useful when we are well 
aware that a ventilation system is concerned primarily with air, a mixture of gases and, therefore, 
compressible? The answer is that in a majority of mines and other subsurface facilities, the ranges of 
temperature and pressure are such that the variation in air density is fairly limited. Airflow 
measurements in mines are normally made to within 5 per cent accuracy. A 5 per cent change in air 
density occurs by moving through a vertical elevation of some 500 metres in the gravitational field at 
the surface of the earth. Hence, the assumption of incompressible flow with its simpler analytical 
relationships gives acceptable accuracy in most cases. For the deeper and (usually) hotter facilities, 
the effects of pressure and temperature on air density should be taken into account through 
thermodynamic analyses if a good standard of accuracy is to be attained. The principles of physical 
steady-flow thermodynamics are introduced in Chapter 3. 
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2.1.2 Volume flow, Mass flow and the Continuity Equation 
 
Most measurements of airflow in ventilation systems are based on the volume of air (m3) that passes 
through a given cross section of a duct or airway in unit time (1 second). The units of volume flow, Q, 
are, therefore, m3/s. However, for accurate analyses when density variations are to be taken into 
account, it is preferable to work in terms of mass flow - that is, the mass of air (kg) passing through 
the cross section in 1 second. The units of mass flow, M, are then kg/s. 
 
The relationship between volume flow and mass flow follows directly from the definition of density, ρ,  

  
3m

kg
volume
massρ =            (2.1) 

and 

  
3m

s
s

kg
Q
M

flowvolume
flowmassρ ==  

  
giving M  =  Q ρ   kg/s                    (2.2) 
 
In any continuous duct or airway, the mass flows passing through all cross sections along its length 
are equal, provided that the system is at steady state and there are no inflows or outflows of air or 
other gases between the two ends. If these conditions are met then 
 
  ρQM =    = constant    kg/s              (2.3) 
 
This is the simplest form of the Continuity Equation. It can, however, be written in other ways. A 
common method of measuring volume flow is to determine the mean velocity of air, u, over a given 
cross section, then multiply by the area of that cross-section, A, (Chapter 6): 
 

  Q  =  u A      
m
s

  m    or    
m
s

2
3

              (2.4) 

Then the continuity equation becomes 
 
  M  =  ρ u A   =   constant kg/s               (2.5) 
 
As indicated in the preceding subsection, we can achieve acceptable accuracy in most situations 
within ventilation systems by assuming a constant density. The continuity equation then simplifies 
back to 
 
  Q =  u A    =   constant      m3/s               (2.6) 
 
This shows that for steady-state and constant density airflow in a continuous airway, the velocity of 
the air varies inversely with cross sectional area. 
 

2.2 FLUID PRESSURE 

 2.2.1 The cause of fluid pressure 
 
Section 2.1.1 described the dynamic behaviour of molecules in a liquid or gas. When a molecule 
rebounds from any confining boundary, a force equal to the rate of change of momentum of that 
molecule is exerted upon the boundary. If the area of the solid/fluid boundary is large compared to 
the average distance between molecular collisions then the statistical effect will be to give a uniform 
force distributed over that boundary. This is the case in most situations of importance in subsurface 
ventilation engineering. 
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Two further consequences arise from the bombardment of a very large number of molecules on a 
surface, each molecule behaving essentially as a perfectly elastic sphere. First, the force exerted by 
a static fluid will always be normal to the surface. We shall discover later that the situation is rather 
different when the dynamic forces of a moving fluid stream are considered (Section 2.3). Secondly, 
at any point within a static fluid, the pressure is the same in all directions. Hence, static pressure is a 
scalar rather than a vector quantity. 
 
Pressure is sometimes carelessly confused with force or thrust. The quantitative definition of 
pressure, P, is clear and simple 
 

  P
Force
Area

=
N

m2                (2.7) 

 
In the SI system of units, force is measured in Newtons (N) and area in square metres. The resulting 
unit of pressure, the N/m2, is usually called a Pascal (Pa) after the French philosopher, Blaise 
Pascal (1623-1662). 
 

2.2.2 Pressure head 
 
If a liquid of density ρ is poured into a vertical tube of cross-sectional area, A, until the level reaches 
a height h, the volume of liquid is 
 
  volume = h A     m3 

 
Then from the definition of density (mass/volume), the mass of the liquid is 
 
  mass  =  volume x density 
 
    =  h A ρ     kg 
 
The weight of the liquid will exert a force, F, on the base of the tube equal to  
mass x gravitational acceleration (g) 
 
  F  =  h A ρ g     N 
 
But as pressure = force/area, the pressure on the base of the tube is 
 

  P
F
A

g h= = ρ
N

m
or Pa2             (2.8) 

 
Hence, if the density of the liquid is known, and assuming a constant value for g,  then the pressure 
may be quoted in terms of h, the head of liquid. This concept is used in liquid type manometers 
(Section 2.2.4) which, although in declining use, are likely to be retained for many purposes owing to 
their simplicity. 
 
Equation (2.8) can also be used for air and other gases. In this case, it should be remembered that 
the density will vary with height. A mean value may be used with little loss in accuracy for most mine 
shafts. However, here again, it is recommended that the more precise methodologies of 
thermodynamics be employed for elevation differences of more than 500 m. 
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 2.2.3 Atmospheric pressure and gauge pressure 
 
The blanket of air that shrouds the earth extends to approximately 40 km above the surface. At that 
height, its pressure and density tend towards zero. As we descend towards the earth, the number of 
molecules per unit volume increases, compressed by the weight of the air above. Hence, the 
pressure of the atmosphere also increases. However, the pressure at any point in the lower 
atmosphere is influenced not only by the column of air above it but also by the action of convection, 
wind currents and variations in temperature and water vapour content. Atmospheric pressure near 
the surface, therefore, varies with both place and time. At the surface of the earth, atmospheric 
pressure is of the order of 100 000 Pa. For practical reference this is often translated into 100 kPa 
although the basic SI units should always be used in calculations. Older units used in meteorology 
for atmospheric pressure are the bar (105 Pa) and the millibar (100 Pa).  
 
For comparative purposes, reference is often made to standard atmospheric pressure. This is the 
pressure that will support a 0.760 m column of mercury having a density of 13.5951 x 103 kg/m3 in a 
standard earth gravitational field of 9.8066 m/s2. 
 
Then from equation (2.8) 
 
One Standard Atmosphere = ρ x g x h 
 
         = 13.5951 x 103 x 9.8066 x 0.760 
 
         = 101.324 x 103   Pa 
 
or          101.324     kPa. 
 
The measurement of variations in atmospheric pressure is important during ventilation surveys 
(Chapter 6), for psychrometric measurements (Chapter 14), and also for predicting the emission of 
stored gases into a subsurface ventilation system (Chapter 12). However, for many purposes, it is 
necessary to measure differences in pressure. One common example is the difference between the 
pressure within a system such as a duct and the exterior atmosphere pressure. This is referred to as 
gauge pressure.. 
 
   Absolute pressure = Atmospheric pressure + gauge pressure      (2.9) 
 
 If the pressure within the system is below that of the local ambient atmospheric pressure then the 
negative gauge pressure is often termed the suction pressure or vacuum and the sign ignored. 
 
Care should be taken when using equation 2.9 as the gauge pressure may be positive or negative. 
However, the absolute pressure is always positive. Although many quoted measurements are 
pressure differences, it is the absolute pressures that are used in thermodynamic calculations. We 
must not forget to convert when necessary. 

 2.2.4. Measurement of air pressure. 

 2.2.4.1. Barometers 
 
Equation (2.8) showed that the pressure at the bottom of a column of liquid is equal to the product of 
the head (height) of the liquid, its density and the local value of gravitational acceleration. This 
principle was employed by Evangelista Torricelli (1608-1647), the Italian who invented the mercury 
barometer in 1643.. Torricelli poured mercury into a glass tube, about one metre in length, closed at 
one end, and upturned the tube so that the open end dipped into a bowl of mercury. The level in the 
tube would then fall until the column of mercury, h, produced a pressure at the base that just 
balanced the atmospheric pressure acting on the open surface of mercury in the bowl. 
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The atmospheric pressure could then be calculated as (see equation (2.8) ) 
 
   P = ρ g h     Pa  
 
 where, in this case, ρ is the density of mercury. 
 
Modern versions of the Torricelli instrument are still used as standards against which other types of 
barometer may be calibrated. Barometric (atmospheric) pressures are commonly quoted in 
millimetres (or inches) of mercury. However, for precise work, equation (2.8) should be employed 
using the density of mercury corresponding to its current temperature. Accurate mercury barometers 
have a thermometer attached to the stem of the instrument for this purpose and a sliding micrometer 
to assist in reading the precise height of the column. Furthermore, and again for accurate work, the 
local value of gravitational acceleration should be ascertained as this depends upon latitude and 
altitude. The space above the mercury in the barometer will not be a perfect vacuum as it contains 
mercury vapour. However, this exerts a pressure of less than 0.00016 kPa at 20 ºC and is quite 
negligible compared with the surface atmospheric pressure of near 100 kPa. This, coupled with the 
fact that the high density of mercury produces a barometer of reasonable length, explains why 
mercury rather than any other liquid is used. A water barometer would need to be about 10.5m in 
height. 
 
Owing to their fragility and slowness in reacting to temperature changes, mercury barometers are 
unsuitable for underground surveys . An aneroid barometer consists of a closed vessel which has 
been evacuated to a near perfect vacuum. One or more elements of the vessel are flexible. These 
may take the form of a flexing diaphragm, or the vessel itself may be shaped as a helical or spiral 
spring. The near zero pressure within the vessel remains constant. However, as the surrounding 
atmospheric pressure varies, the appropriate element of the vessel will flex. The movement may be 
transmitted mechanically, magnetically or electrically to an indicator and/or recorder. 
 
Low cost aneroid barometers may be purchased for domestic or sporting use. Most altimeters are, in 
fact, aneroid barometers calibrated in metres (or feet) head of air. For the high accuracy required in 
ventilation surveys (Chapter 6) precision aneroid barometers are available. 
 
Another principle that can be employed in pressure transducers, including barometers, is the 
piezoelectric property of quartz. The natural frequency of a quartz beam varies with the applied 
pressure. As electrical frequency can be measured with great precision, this allows the pressure to 
be determined with good accuracy.  
 

 2.2.4.2. Differential pressure instruments 
 
 Differences in air pressure that need to be measured frequently in subsurface ventilation 
engineering rarely exceed 7 or 8 kPa and are often of the order of only a few Pascals. The traditional 
instrument for such low pressure differences is the manometer. This relies upon the displacement of 
liquid to produce a column, or head, that balances the differential pressure being measured. The 
most rudimentary manometer is the simple glass U tube containing water, mercury or other liquid. A 
pressure difference applied across the ends of the tube causes the liquid levels in the two limbs to 
be displaced in opposite directions. A scale is used to measure the vertical distance between the 
levels and equation (2.8) used to calculate the required pressure differential. Owing to the past 
widespread use of water manometers, the millimetre (or inch) of water column came to be used 
commonly as a measure of small pressure differentials, much as a head of mercury has been used 
for atmospheric pressures. However, it suffers from the same disadvantages in that it is not a 
primary unit but depends upon the liquid density and local gravitational acceleration. 
 
When a liquid other than water is used, the linear scale may be increased or decreased, dependent 
upon the density of the liquid, so that it still reads directly in head of water. A pressure head in one 
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fluid can be converted to a head in any other fluid provided that the ratio of the two densities is 
known. 
 
   p  =  ρ1  g h1   =     ρ2  g h2  Pa 
 

or   h h2
1

2
1=

ρ
ρ

m                  (2.10) 

 
For high precision, the temperature of the liquid in a manometer should be obtained and the 
corresponding density determined. Equation (2.10) is then used to correct the reading, h1 where ρ1 is 
the actual liquid density and ρ2 is the density at which the scale is calibrated. 
 
Many variations of the manometer have been produced. Inclining one limb of the U tube shortens its 
practicable range but gives greater accuracy of reading. Careful levelling of inclined manometers is 
required and they are no longer used in subsurface pressure surveys. Some models have one limb 
of the U tube enlarged into a water reservoir. The liquid level in the reservoir changes only slightly 
compared with the balancing narrow tube. In the direct lift manometer, the reservoir is connected by 
flexible tubing to a short sight-glass of variable inclination which may be raised or lowered against a 
graduated scale. This manipulation enables the meniscus to be adjusted to a fixed mark on the 
sight-glass. Hence the level in the reservoir remains unchanged. The addition of a micrometer scale 
gives this instrument both a good range and high accuracy. 
 
One of the problems in some water manometers is a misformed meniscus, particularly if the 
inclination of the tube is less than 5 degrees from the horizontal. This difficulty may be overcome by 
employing a light oil, or other liquid that has good wetting properties on glass. Alternatively, the two 
limbs may be made large enough in diameter to give horizontal liquid surfaces whose position can 
be sensed electronically or by touch probes adjusted through micrometers. 
 
U tube manometers, or water gauges as they are commonly known, may feature as part of the 
permanent instrumentation of main and booster fans. Provided that the connections are kept firm 
and clean, there is little that can go wrong with these devices. Compact and portable inclined gauges 
are available for rapid readings of pressure differences across doors and stoppings in underground 
ventilation systems. However, in modern pressure surveying (Chapter 6) manometers have been 
replaced by the diaphragm gauge. This instrument consists essentially of a flexible diaphragm, 
across which is applied the differential pressure. The strain induced in the diaphragm is sensed 
electrically, mechanically or by magnetic means and transmitted to a visual indicator or recorder. 
 
In addition to its portability and rapid reaction, the diaphragm gauge has many advantages for the 
subsurface ventilation engineer. First, it reflects directly a true pressure (force/area) rather than 
indirectly through a liquid medium. Secondly, it reacts relatively quickly to changes in temperature 
and does not require precise levelling. Thirdly, diaphragm gauges can be manufactured over a wide 
variety of ranges. A ventilation survey team may typically carry gauges ranging from 0 - 100 Pa to 0 - 
5 kPa (or to encompass the value of the highest fan pressure in the system). One disadvantage of 
the diaphragm gauge is that its calibration may change with time and usage. Re-calibration against a 
laboratory precision manometer is recommended prior to an important survey. 
 
Other appliances are used occasionally for differential pressures in subsurface pressure surveys. 
Piezoelectric instruments are likely to increase in popularity. The aerostat principle eliminates the 
need for tubing between the two measurement points and leads to a type of differential barometer. In 
this instrument, a closed and rigid air vessel is maintained at a constant temperature and is 
connected to the outside atmospheres via a manometer or diaphragm gauge. As the inside of the 
vessel remains at near constant pressure, any variations in atmospheric pressure cause a reaction 
on the manometer or gauge. Instruments based on this principle require independent calibration as 
slight movements of the diaphragm or liquid in the manometer result in the inside pressure not 
remaining truly constant. 
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 2.3 FLUIDS IN MOTION 

 2.3.1. Bernoulli's equation for ideal fluids 
 
As a fluid stream passes through a pipe, duct or other continuous opening, there will, in general, be 
changes in its velocity, elevation and pressure. In order to follow such changes it is useful to identify 
the differing forms of energy contained within a given mass of the fluid. For the time being, we will 
consider that the fluid is ideal; that is, it has no viscosity and proceeds along the pipe with no shear 
forces and no frictional losses. Secondly, we will ignore any thermal effects and consider mechanical 
energy only. 
 
Suppose we have a mass, m, of fluid moving at velocity, u, at an elevation, Z, and a barometric 
pressure P. There are three forms of mechanical energy that we need to consider. In each case, we 
shall quantify the relevant term by assessing how much work we would have to do in order to raise 
that energy quantity from zero to its actual value in the pipe, duct or airway. 
 
 Kinetic energy  
If we commence with the mass, m, at rest and accelerate it to velocity u in t seconds by applying a 
constant force F, then the acceleration will be uniform and the mean velocity is 
 

  
0

2 2
+

=
u u m

s
 

 
Then 
   distance travelled = mean velocity x time  
 

           =
u

t
2

m  

 
Furthermore, the acceleration is defined as  
 

  
increase in velocity

time
u
t

= m / s2  

 
The force is given by 
   
  F = mass x acceleration  
   

   = m
u
t

N  

 
and the work done to accelerate from rest to velocity u is 
 
  WD = force x distance  Nm  
 

   = m
u
t

u
tx 2  

   = m
u 2

2
Nm or J             (2.11) 

 
 The kinetic energy of the mass m is, therefore,  m u2/2 Joules. 
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 Potential energy 
Any base elevation may be used as the datum for potential energy. In most circumstances of 
underground ventilation engineering, it is differences in elevation that are important. If our mass m is 
located on the base datum then it will have a potential energy of zero relative to that datum. We then 
exert an upward force, F, sufficient to counteract the effect of gravity. 
 
    F = mass x acceleration 
 
   = m g      N 
 
where g is the gravitational acceleration.  
 
In moving upward to the final elevation of Z metres above the datum, the work done is 
 
  WD = Force x distance 
 
    =  m g Z     Joules               (2.12) 
 
This gives the potential energy of the mass at elevation Z. 
 
Flow work 
Suppose we have a horizontal pipe, open at both ends and of cross sectional area A as shown in 
Figure 2.1. We wish to insert a plug of fluid, volume v and mass m into the pipe. However, even in 
the absence of friction, there is a resistance due to the pressure of the fluid, P, that already exists in 
the pipe. Hence, we must exert a force, F, on the plug of fluid to overcome that resisting pressure. 
Our intent is to find the work done on the plug of fluid in order to move it a distance s into the pipe.  
 
 
 
 
 
 
 
 
 
  
The force, F, must balance the pressure, P, which is distributed over the area, A. 
 
  F = P A    N 
 
  Work done = force x distance 
 
        =    P A s    J or Joules 
 
However, the product As is the swept volume v, giving 
 
  WD = P v 
 
Now, by definition, the density is  

    ρ =
m
v

kg
m3  

or 

    v
m

=
ρ

 

 

P
A 

F 
v 

s 

Figure 2.1 Flow work done on a fluid entering a pipe
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Hence, the work done in moving the plug of fluid into the pipe is 
 

    WD =
P m
ρ

   J               (2.13) 

 
 or                 P/ρ Joules per kilogram. 
 
 As fluid continues to be inserted into the pipe to produce a continuous flow, then each individual 
plug must have this amount of work done on it. That energy is retained within the fluid stream and is 
known as the flow work. The appearance of pressure, P, within the expression for flow work has 
resulted in the term sometimes being labelled "pressure energy". This is very misleading as flow 
work is entirely different to the "elastic energy" stored when a closed vessel of fluid is compressed. 
Some authorities also object to the term "flow work" and have suggested "convected energy" or, 
simply, the "Pv work". Note that in Figure 2.1 the pipe is open at both ends. Hence the pressure, P, 
inside the pipe does not change with time (the fluid is not compressed) when plugs of fluid continue 
to be inserted in a frictionless manner. When the fluid exits the system, it will carry kinetic and 
potential energy, and the corresponding flow work with it. 
 
Now we are in a position to quantify the total mechanical energy of our mass of fluid, m. From 
expressions (2.11, 2.12 and 2.13) 
 
  
 

       = + +
mu

mZg m
P2

2 ρ
J  (2.14) 

 
If no mechanical energy is added to or subtracted from the fluid during its traverse through the pipe, 
duct or airway, and in the absence of frictional effects, the total mechanical energy must remain 
constant throughout the airway. Then equation (2.14) becomes 
 

  




++






ρ
PgZum

2

2
     =   constant       J           (2. 15) 

 
Another way of expressing this equation is to consider two stations, 1 and 2 along the pipe, duct or 
airway. Then 
 

  












++=












++
2

2
2

2
2

1

1
1

2
1

22 ρ
P

gZ
u

m
ρ
P

gZ
u

m  

 
Now as we are still considering the fluid to be incompressible (constant density), 
   
  ρ1   =   ρ2   =   ρ     (say) 
giving 
 

  
kg
J0)(

2
21

21

2
2

2
1 =

−
+−+

−
ρ
PP

gZZ
uu

       (2.16) 

 
Note that dividing by m on both sides has changed the units of each term from J to J/kg. 
Furthermore, if we multiplied throughout by ρ then each term would take the units of pressure. 
Bernoulli's equation has, traditionally, been expressed in this form for incompressible flow.  
 

potential 
energy 

total mechanical 
energy =

kinetic 
energy +

flow 
work +
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Equation (2.16) is of fundamental importance in the study of fluid flow. It was first derived by Daniel 
Bernoulli (1700-1782), a Swiss mathematician, and is known throughout the world by his name. 
 
As fluid flows along any closed system, Bernoulli's equation allows us to track the inter-relationships 
between the variables.  Velocity u, elevation Z, and pressure P may all vary, but their combination as 
expressed in Bernoulli's equation remains true. It must be remembered, however, that it has been 
derived here on the assumptions of ideal (frictionless) conditions, constant density and steady-state 
flow. We shall see later how the equation must be amended for the real flow of compressible fluids. 
 

2.3.2. Static, total and velocity pressures. 
 
Consider the level duct shown on Figure 2.2. Three gauge pressures are measured. To facilitate 
visualization, the pressures are indicated as liquid heads on U tube manometers. However, the 
analysis will be conducted in terms of true pressure (N/m2) rather than head of fluid. 
 
 

In position (a), one limb of the U tube is connected perpendicular through the wall of the duct. Any 
drilling burrs on the inside have been smoothed out so that the pressure indicated is not influenced 
by the local kinetic energy of the air. The other limb of the manometer is open to the ambient 
atmosphere. The gauge pressure indicated is known as the static pressure, ps. 
 
In position (b) the left tube has been extended into the duct and its open end turned so that it faces 
directly into the fluid stream. As the fluid impacts against the open end of the tube, it is brought to 
rest and the loss of its kinetic energy results in a local increase in pressure. The pressure within the 
tube then reflects the sum of the static pressure and the kinetic effect. Hence the manometer 
indicates a higher reading than in position (a).The corresponding pressure, pt, is termed the total 
pressure. The increase in pressure caused by the kinetic energy can be quantified by using 
Bernoulli's equation (2.16). In this case Zl = Z2, and u2 = 0. Then  
 

   
2

2
112 u

ρ
PP

=
−   

 
The local increase in pressure caused by bringing the fluid to rest is then 
 

   Pa
2

2
1

12
u

ρPPpv =−=  

 

pt ps pv 

(c)(b) (a) 

u1 

Figure 2.2  (a) static,  (b) total and  (c) velocity pressures 
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This is known as the velocity pressure and can be measured directly by connecting the manometer 
as shown in position (c). The left connecting tube of the manometer is at gauge pressure pt and the 
right tube at gauge pressure ps. It follows that 
 
   pv  =  pt - ps 
 
or    pt  = ps + pv     Pa               (2.18) 
 
In applying this equation, care should be taken with regard to sign as the static pressure, ps, will be 
negative if the barometric pressure inside the duct is less than that of the outside atmosphere.  
 
If measurements are actually made using a liquid in glass manometer as shown on Figure 2.2 then 
the reading registered on the instrument is influenced by the head of fluid in the manometer tubes 
above the liquid level. If the manometer liquid has a density ρ1, and the superincumbent fluid in both 
tubes has a density ρd, then the head indicated by the manometer, h, should be converted to true 
pressure by the equation 
 
   Pa)( 1 hgρρp d−=            (2.19) 
 
Reflecting back on equation (2.8) shows that this is the usual equation relating fluid head and 
pressure with the density replaced by the difference in the two fluid densities. In ventilation 
engineering, the superincumbent fluid is air, having a very low density compared with liquids. Hence, 
the ρd term in equation (2.19) is usually neglected. However, if the duct or pipe contains a liquid 
rather than a gas then the full form of equation (2.19) should be employed. 
 
A further situation arises when the fluid in the duct has a density, ρd, that is significantly different to 
that of the air (or other fluid), ρa, which exists above the liquid in the right hand tube of the 
manometer in Fig. 2.2(a). Then 
 
   Pa)()( 21 hgρρhgρρp add −−−=          (2.20) 
 
where h2 is the vertical distance between the liquid level in the right side of the manometer and the 
connection into the duct. 
 
Equations (2.19) and (2.20) can be derived by considering a pressure balance on the two sides of 
the U tube above the lower of the two liquid levels. 
 

 2.3.3. Viscosity 
Bernoulli's equation was derived in Section 2.3.1. on the assumption of an ideal fluid; i.e. that flow 
could take place without frictional resistance. In subsurface ventilation engineering almost all of the 
work input by fans (or other ventilating devices) is utilized against frictional effects within the airways. 
Hence, we must find a way of amending Bernoulli's equation for the frictional flow of real fluids. 
 
The starting point in an examination of 'frictional flow' is the concept of viscosity. Consider two 
parallel sheets of fluid a very small distance, dy, apart but moving at different velocities u and  
u + du (Figure 2.3). An equal but opposite force, F, will act upon each layer, the higher velocity sheet 
tending to pull its slower neighbour along and, conversely, the slower sheet tending to act as a brake 
on the higher velocity layer.  
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If the area of each of the two  sheets in near contact is A, then the shear stress is defined as 
τ (Greek 'tau') where  
 
 

   
2m

N
A
Fτ =                (2.21) 

 
Among his many accomplishments, Isaac Newton (1642-1727) proposed that for parallel motion of 
streamlines in a moving fluid, the shear stress transmitted across the fluid in a direction 
perpendicular to the flow is proportional to the rate of change of velocity, du/dy (velocity gradient) 
 

   
2m

N
dy
duµ

A
Fτ ==            (2.22) 

 
where the constant of proportionality, µ, is known as the coefficient of dynamic viscosity (usually 
referred to simply as dynamic viscosity). The dynamic viscosity of a fluid varies with its temperature. 
For air, it may be determined from 
 

  µair   =    (17.0  +  0.045 t)  x  10-6   
2m

Ns  

 
and for water 

  
2

3

m
Ns10x2455.0

766.31
72.64 −









−

+
=

t
µwater      

 
where t = temperature (ºC) in the range 0 - 60 ºC 
 
The units of viscosity are derived by transposing equation (2.22) 
 

  
22 m

Nsor
m
sm

m
N

du
dyτµ =  

 
A term which commonly occurs in fluid mechanics is the ratio of dynamic viscosity to fluid density. 
This is called the kinematic viscosity, υ  (Greek 'nu') 
 

   υ
kg
smNor

kg
m

m
Ns 3

2ρ
µ

=  

 
As 1 N = 1 kg x 1 m/s2,  these units become  

        
s

m
kg
ms

s
mkg

2

2
=  

dy F 
F 

u + du 

u  

Figure 2.3  Viscosity causes equal but opposite forces to be exerted  
on adjacent laminae of fluid. 
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It is the transmission of shear stress that produces frictional resistance to motion in a fluid stream. 
Indeed, a definition of an 'ideal fluid' is one that has zero viscosity. Following from our earlier 
discussion on the molecular behaviour of fluids (Section 2.1.1.), there would appear to be at least 
two effects that produce the phenomenon of viscosity. One is the attractive forces that exist between 
molecules - particularly those of liquids. This will result in the movement of some molecules tending 
to drag others along, and for the slower molecules to inhibit motion of faster neighbours. The second 
effect may be visualized by glancing again at Figure 2.3. If molecules from the faster moving layer 
stray sideways into the slower layer then the inertia that they carry will impart kinetic energy to that 
layer. Conversely, migration of molecules from the slower to the faster layer will tend to retard its 
motion. 
 
In liquids, the molecular attraction effect is dominant. Heating a liquid increases the internal kinetic 
energy of the molecules and also increases the average inter-molecular spacing. Hence, as the 
attractive forces diminish with distance, the viscosity of a liquid decreases with respect to 
temperature. In a gas, the molecular attractive force is negligible. The viscosity of gases is much 
less than that of liquids and is caused by the molecular inertia effect. In this case, the increased 
velocity of molecules caused by heating will tend to enhance their ability to transmit inertia across 
streamlines and, hence, we may expect the viscosity of gases to increase with respect to 
temperature. This is, in fact, the situation observed in practice. 
 
In both of these explanations of viscosity, the effect works between consecutive layers equally well 
in both directions. Hence, dynamic equilibrium is achieved with both the higher and lower velocity 
layers maintaining their net energy levels. Unfortunately, no real process is perfect in fluid 
mechanics. Some of the useful mechanical energy will be transformed into the much less useful heat 
energy. In a level duct, pipe or airway, the loss of mechanical energy is reflected in an observable 
drop in pressure. This is often termed the 'frictional pressure drop' 
 
Recalling that Bernoulli's equation was derived for mechanical energy terms only in Section 2.3.1, it 
follows that for the flow of real fluids, the equation must take account of the frictional loss of 
mechanical energy. We may rewrite equation (2.16) as 
 

  
kg
J

22 12
2

2

2
21

1

2
1 F

ρ
P

gZ
u

ρ
P

gZ
u

+++=++      (2.23) 

 
where Fl2 = energy converted from the mechanical form to heat (J/kg).  
 
The problem now turns to one of quantifying the frictional term F12. For that, we must first examine 
the nature of fluid flow. 
 

 2.3.4. Laminar and turbulent flow. Reynolds Number 
 
In our everyday world, we can observe many examples of the fact that there are two basic kinds of 
fluid flow. A stream of oil poured out of a can flows smoothly and in a controlled manner while water, 
poured out at the same rate, would break up into cascading rivulets and droplets. This example 
seems to suggest that the type of flow depends upon the fluid. However, a light flow of water falling 
from a circular outlet has a steady and controlled appearance, but if the flowrate is increased the 
stream will assume a much more chaotic form. The type of flow seems to depend upon the flowrate 
as well as the type of fluid. 
 
Throughout the nineteenth century, it was realized that these two types of flow existed. The German 
engineer G.H.L. Hagen (1797-1884) found that the type of flow depended upon the velocity and 
viscosity of the fluid. However, it was not until the 1880's that Professor Osborne Reynolds of 
Manchester University in England established a means of characterizing the type of flow regime 
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through a combination of experiments and logical reasoning. Reynolds' laboratory tests consisted of 
injecting a filament of colored dye into the bell mouth of a horizontal glass tube that was submerged 
in still water within a large glass-walled tank. The other end of the tube passed through the end of 
the tank to a valve which was used to control the velocity of water within the tube. At low flow rates, 
the filament of dye formed an unbroken line in the tube without mixing with the water. At higher flow 
rates the filament of dye began to waver. As the velocity in the tube continued to be increased the 
wavering filament suddenly broke up to mix almost completely with the water. 
 
In the initial type of flow, the water appeared to move smoothly along streamlines, layers or laminae, 
parallel to the axis of the tube. We call this laminar flow. Appropriately, we refer to the completely 
mixing type of behavior as turbulent flow. Reynolds' experiments had, in fact, identified a third 
regime - the wavering filament indicated a transitional region between fully laminar and fully turbulent 
flow. Another observation made by Reynolds was that the break-up of the filament always occurred, 
not at the entrance, but about thirty diameters along the tube. 
 
The essential difference between laminar and turbulent flow is that in the former, movement across 
streamlines is limited to the molecular scale, as described in Section 2.3.3. However, in turbulent 
flow, swirling packets of fluid move sideways in small turbulent eddies. These should not be 
confused with the larger and more predictable oscillations that can occur with respect to time and 
position such as the vortex action caused by fans, pumps or obstructions in the airflow. The turbulent 
eddies appear random in the complexity of their motion. However, as with all "random" phenomena, 
the term is used generically to describe a process that is too complex to be characterized  by current 
mathematical knowledge. Computer simulation packages using techniques known generically as 
computational fluid dynamics (CFD) have produced powerful means of analysis and predictive 
models of turbulent flow. At the present time, however, many practical calculations involving 
turbulent flow still depend upon empirical factors. 
 
The flow of air in the vast majority of 'ventilated' places underground is turbulent in nature. However, 
the sluggish movement of air or other fluids in zones behind stoppings or through fragmented strata 
may be laminar. It is, therefore, important that the subsurface ventilation engineer be familiar with 
both types of flow. Returning to Osborne Reynolds, he found that the development of full turbulence 
depended not only upon velocity, but also upon the diameter of the tube. He reasoned that if we 
were to compare the flow regimes between differing geometrical configurations and for various fluids 
we must have some combination of geometric and fluid properties that quantified the degree of 
similitude between any two systems. Reynolds was also familiar with the concepts of "inertial  
(kinetic) force", ρu2/2  (Newtons per square metre of cross section)  and "viscous force",  

dyduµτ /=  (Newtons per square metre of shear surface). Reynolds argued that the dimensionless 
ratio of "inertial forces" to "viscous forces" would provide a basis of comparing fluid systems 
 

   
du
dy

µ
uρ

forceviscous
forceinertial 1

2

2
=              (2.24) 

 
Now, for similitude to exist, all steady state velocities, u, or differences in velocity between locations, 
du, within a given system are proportional to each other. Furthermore, all lengths are proportional to 
any chosen characteristic length, L. Hence, in equation (2.24) we can replace du by u, and dy by L. 
The constant, 2, can also be dropped as we are simply looking for a combination of variables that 
characterize the system. That combination now becomes 
 

   
u
L

µ
uρ 12  

or 

   Re=
µ

Luρ                    (2.25) 
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As equation (2.24) is dimensionless then so, also, must this latter expression be dimensionless. This 
can easily be confirmed by writing down the units of the component variables. The result we have 
reached here is of fundamental importance to the study of fluid flow. The dimensionless group ρuL/µ 
is known universally as Reynolds Number, Re. In subsurface ventilation engineering, the 
characteristic length is normally taken to be the hydraulic mean diameter of an airway, d, and the 
characteristic velocity is usually the mean velocity of the airflow. Then 
 

   
µ

duρ
=Re  

 
 
At Reynolds Numbers of less than 2 000 in fluid flow systems, viscous forces prevail and the flow will 
be laminar. The Reynolds Number over which fully developed turbulence exists is less well defined. 
The onset of turbulence will occur at Reynolds Numbers of 2 500 to 3 000 assisted by any vibration, 
roughness of the walls of the pipe or any momentary perturbation in the flow. 
 
 
Example   
A ventilation shaft of diameter 5m passes an airflow of 200 m3/s at a mean density of 1.2 kg/m3 and 
an average temperature of 18 ºC. Determine the Reynolds Number for the shaft. 
 
Solution  
For air at 18 ºC 
 
 µ  =  (17.0  +  0.045 x 18) x 10-6  
  =  17.81 x 10-6   Ns/m2  
 

Air velocity,   
4/5

200
2πA

Qu ==    =   10.186 m/s 

 

    6
6

10432.3
1081.17

5186.102.1Re ×=
×

××
==

−µ
duρ  

 
This Reynolds Number indicates that the flow will be turbulent.  
 

2.3.5. Frictional losses in laminar flow, Poiseuille's Equation.  
 
Now that we have a little background on the characteristics of laminar and turbulent flow, we can 
return to Bernoulli's equation corrected for friction (equation (2.23)) and attempt to find expressions 
for the work done against friction, F12. First, let us deal with the case of laminar flow. 
 
Consider a pipe of radius R as shown in Figure 2.4. As the flow is laminar, we can imagine 
concentric cylinders of fluid telescoping along the pipe with zero velocity at the walls and maximum 
velocity in the center. Two of these cylinders of length L and radii r and r + dr are shown. The 
velocities of the cylinders are u and u - du respectively. 
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The force propagating the inner cylinder forward is produced by the pressure difference across its 
two ends, p, multiplied by its cross sectional area, 2rπ . This force is resisted by the viscous drag of 
the outer cylinder, τ , acting on the 'contact' area 2π rL. As these forces must be equal at steady 
state conditions,     
   22 rπLτrπ = p 

However,  
dr
duµτ −=    (equation (2.22) with a negative du) 

giving 

   
L
pr

dr
duµ

2
=−  

or    
s
m

2
dr

µ
r

L
pdu −=             (2.26) 

 
For a constant diameter tube, the pressure gradient along the tube p/L is constant. So, also, is µ for 
the Newtonian fluids that we are considering. (A Newtonian fluid is defined as one in which viscosity 
is independent of velocity). Equation (2.26) can, therefore, be integrated to give 

   Cr
µL

pu +−=
22

1 2
                (2.27) 

 
At the wall of the tube, r = R and u = 0. This gives the constant of integration to be 
 

   
µ

R
L
pC

4

2
=  

 
Substituting back into equation (2.27) gives 
 

   
s
m)(

4
1 22 rR

L
p

µ
u −=             (2.28) 

 
Equation (2.28) is a general equation for the velocity of the fluid at any radius and shows that the 
velocity profile across the tube is parabolic (Figure 2.5). Along the centre line of the tube, r = 0 and 
the velocity reaches a maximum of  
 

u

u - du dr R 

P P - p 

L 

dr 

r
r

R 

Figure 2.4  Viscous drag opposes the motive effect of applied pressure difference 
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s
m

4
1 2

max R
L
p

µ
u =             (2.29) 

 
 

The velocity terms in the Bernoulli equation are mean velocities across the relevant cross-sections. It 
is, therefore, preferable that the work done against viscous friction should also be expressed in 
terms of a mean velocity, um. We must be careful how we define mean velocity in this context. Our 
convention is to determine it as 
 

   
s
m

A
Qum =                (2.30) 

 
where Q = volume airflow (m3/s) and A = cross sectional area (m2) 
 
We could define another mean velocity by integrating the parabolic equation (2.28) with respect to r 
and dividing the result by R. However, this would not take account of the fact that the volume of fluid 
in each concentric shell of thickness dr increases with radius. In order to determine the true mean 
velocity, consider the elemental flow dQ through the annulus of cross sectional area 2π r dr at 
radius r and having a velocity of u (Figure 2.4) 
 
   drrπudQ 2=  
 
Substituting for u from equation (2.28) gives 
 

   
µ
πdQ

4
2

= drrrR
L
p )( 22 −  

 

   
µ
πQ

4
2

= drrrR
L
p R

)( 3

0

2 −∫  

 
Integrating gives 
 

   
µ

Rπ
Q

8

4
=

s
m

L
p               (2.31) 

 
This is known as the Poiseuille Equation or, sometimes, the Hagen-Poiseuille Equation. J.L.M. 
Poiseuille (1799-1869) was a French physician who studied the flow of blood in capillary tubes.  
 
 
 
 

R 

r 

umax

u

Figure 2.5  The velocity profile for laminar flow is parabolic 
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For engineering use, where the dimensions of a given pipe and the viscosity of fluid are known, 
Poiseuille's equation may be written as a pressure drop - quantity relationship. 
 

   =p Q
Rπ

Lµ
4

8  

or 
   PaQRp L=               (2.32) 
 

where  
54 m

Ns8
Rπ

LµRL =   and is known as the laminar resistance of the pipe.  

 
Equation (2.32) shows clearly that in laminar flow the frictional pressure drop is proportional to the 
volume flow for any given pipe and fluid. Combining equations (2.30) and (2.31) gives the required 
mean velocity 
 

   
µ

Rπum 8

4
=

L
p

2
1
Rπ

  
s
m

8

2

L
p

µ
R

=          (2.33) 

or 
 

   Pa
8

2
L

R
uµ

p m=               (2.34) 

 
This latter form gives another expression for the frictional pressure drop in laminar flow. 
 
To see how we can use this equation in practice, let us return the frictional form of Bernoulli's 
equation  
 

   
kg
J)(

)(
2 12

21
21

2
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gZZ
uu
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−

+−+
−

  (see equation (2.23) ) 

 
Now for incompressible flow along a level pipe of constant cross-sectional area,  
  Z1 = Z2   and   u1 = u2 = um 
then 
 

   
kg
J)(

12
21 F

ρ
PP

=
−            (2.35) 

 
However, (P1 - P2) is the same pressure difference as p in equation (2.34). 
 
Hence the work done against friction is 
 

   
kg
J8

212 L
Rρ
uµ

F m=            (2.36) 

 
Bernoulli's equation for incompressible laminar frictional flow now becomes  
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    (2.37) 
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If the pipe is of constant cross sectional area, then u1 = u2 = um and the kinetic energy term 
disappears. On the other hand, if the cross-sectional area and, hence, the velocity varies along the 
pipe then um may be established as a weighted mean. For large changes in cross-sectional area, the 
full length of pipe may be subdivided into increments for analysis. 
 
Example.  
A pipe of diameter 2 cm rises through a vertical distance of 5m over the total pipe length of 2 000 m. 
Water of mean temperature 15ºC flows up the tube to exit at atmospheric pressure of 100 kPa. If the 
required flowrate is 1.6 litres per minute, find the resistance of the pipe, the work done against 
friction and the head of water that must be applied at the pipe entrance. 
 
Solution.  
It is often the case that measurements made in engineering are not in SI units. We must be careful 
to make the necessary conversions before commencing any calculations. 
 
Flowrate   Q = 1.6 litres/min  

    
s

m10667.2
601000

6.1 3
5−×=

×
=  

 
Cross sectional area of pipe 4/2dπA =   = 242 m10142.34/)02.0( −×=×π  
 

Mean velocity, u = 88084.0
10142.3
10667.2

4

5
=

×

×
=

−

−

A
Q   m/s 

 
(We have dropped the subscript m. For simplicity, the term u from this point on will refer to the mean 
velocity defined as Q/A) 
 
Viscosity of water at 15 ºC (from Section 2.3.3.) 
 

    
2

33

m
Ns10138.1102455.0

766.3115
72.64 −− ×=×








−

+
=µ  

 
Before we can begin to assess frictional effects we must check whether the flow is laminar or 
turbulent. We do this by calculating the Reynolds Number 

   
µ
udρ

=Re  

 
where ρ = density of water (taken as 1 000 kg/m3) 
 

   4911
10138.1

02.088084.01000Re
3

=
×

××
=

−
 (dimensionless) 

 
As Re is below 2 000, the flow is laminar and we should use the equations based on viscous friction. 
 
Laminar resistance of pipe (from equation (2.32)) 
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Frictional pressure drop in the pipe (equation (2.32)) 
 
   Pa4611510667.210580 56 =×××== −−QRp L  
 
Work done against friction (equation (2.36)) 
 

   
kg
J461.15

)01.0(1000
200088084.0101384.188
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212 =
×
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==

−

Rρ
uLµF  

 
This is the amount of mechanical energy transformed to heat in Joules per kilogram of water. Note 
the similarity between the statements for frictional pressure drop, p, and work done against friction, 
Fl2.  We have illustrated, by this example, a relationship between p and Fl2 that will be of particular 
significance in comprehending the behaviour of airflows in ventilation systems, namely 
 

   12F
ρ
p

=  

 
In fact, having calculated p as 15 461 Pa, the value of F12 may be quickly evaluated as 
 

   
kg
J461.15

1000
46115

=  

To find the pressure at the pipe inlet we may use Bernoulli's equation corrected for frictional effects  
 

   
kg
J)(

2 12
21

21

2
2

2
1 F

ρ
PP

gZZ
uu

=
−

+−+
−

   (see equation (2.23) ) 

In this example  

   
m521
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and   P2 = 100 kPa = 100 000 Pa 
 

giving  
kg
J461.15

1000
000100

81.95 1
12 =

−
+×−=

P
F  

 
This yields the absolute pressure at the pipe entry as 
 
   Pa105.164 3

1 ×=P  
 
or     164.5   kPa 
 
If the atmospheric pressure at the location of the bottom of the pipe is also 100 kPa, then the gauge 
pressure, pg, within the pipe at that same location 
 
   pg = 164.5 - 100 = 64.5 kPa 
 
This can be converted into a head of water, h1, from equation (2.8) 
 
   1hgρpg =  
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   waterofm576.6
81.91000

105.64 3

1 =
×
×

=
−

h  

 
Thus, a header tank with a water surface maintained 6.576 m above the pipe entrance will produce 
the required flow of 1.6 litres/minute along the pipe. 
 
The experienced engineer would have determined this result quickly and directly after calculating the 
frictional pressure drop to be 15 461 Pa. The frictional head loss 
 

   waterofm576.1
81.91000

46115
=

×
==

gρ
ph  

 
The head of water at the pipe entrance must overcome the frictional head loss as well as the vertical 
lift of 5 m. (An intuitive use of Bernoulli's equation).  Then 
 
   waterofm576.6576.151 =+=h  
 

 2.3.6. Frictional losses in turbulent flow 
 
The previous section showed that the parallel streamlines of laminar flow and Newton's perception of 
viscosity enabled us to produce quantitative relationships through purely analytical means. 
Unfortunately, the highly convoluted streamlines of turbulent flow, caused by the interactions 
between both localized and propagating eddies have so far proved resistive to completely analytical 
techniques. Numerical methods using the memory capacities and speeds of supercomputers allow 
the flow to be simulated as a large number of small packets of fluids, each one influencing the 
behaviour of those around it. These mathematical models, using numerical techniques known 
collectively as computational fluid dynamics (CFD), may be used to simulate turbulent flow in given 
geometrical systems, or to produce statistical trends. However, the majority of engineering 
applications involving turbulent flow still rely on a combination of analysis and empirical factors. The 
construction of physical models for observation in wind tunnels or other fluid flow test facilities 
remains a common means of predicting the behaviour and effects of turbulent flow. 
 

 2.3.6.1. The Chézy-Darcy Equation 
 
The discipline of hydraulics was studied by philosophers of the ancient civilizations. However, the 
beginnings of our present treatment of fluid flow owe much to the hydraulic engineers of eighteenth 
and nineteenth century France. During his reign, Napolean Bonaparte encouraged the research and 
development necessary for the construction of water distribution and drainage systems in Paris. 
 
Antoine de Chézy (1719-1798) carried out a series of experiments on the river Seine and on canals 
in about 1769. He found that the mean velocity of water in open ducts was proportional to the square 
root of the channel gradient, cross sectional area of flow and inverse of the wetted perimeter. 
 

   
L
h

per
Au ∝  

 
where  h = vertical distance dropped by the channel in a length L  (h/L = hydraulic gradient) 
 
   per = wetted perimeter (m) 
 
and   ∝  means 'proportional to' 
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Inserting a constant of proportionality, c, gives 
 

   
s
m

L
h

per
Acu =             (2.38) 

 
where c is known as the Chézy coefficient. 
 
Equation (2.38) has become known as Chézy's equation for channel flow. Subsequent analysis shed 
further light on the significance of the Chézy coefficient. When a fluid flows along a channel, a mean 
shear stress τ  is set up at the fluid/solid boundaries. The drag on the channel walls is then 
 
   Lperτ  
 
where per is the "wetted" perimeter 
 
This must equal the pressure force causing the fluid to move, pA, where p is the difference in 
pressure along length L. 
 
   NpALperτ =               (2.39) 
 
(A similar equation was used in Section 2.3.5. for a circular pipe). 
 
But   Pahgρp =    (equation (2.8)) 
 

giving  
2m

N
L
hgρ

per
Aτ =               (2.40) 

 
If the flow is fully turbulent, the shear stress or skin friction drag, τ , exerted on the channel walls is 
also proportional to the inertial (kinetic) energy of the flow expressed in Joules per cubic metre. 
 

   
233 m

N
or

m

Nm

m

J
2

2
=∝ uρτ  

 

or   
2

2

m
N

2
uρfτ =               (2.41) 

 
where f is a dimensionless coefficient which, for fully developed turbulence, depends only upon the 
roughness of the channel walls. 
 
Equating (2.40) and (2.41) gives 
 

   
L
hg

per
Auf =

2

2
 

 

or   
s
m2

L
h

per
A

f
gu =             (2.42) 
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Comparing this with equation (2.38) shows that Chézy's  coefficient, c, is related to the roughness of 
the channel. 
 

   
s

m2 2
1

f
gc =               (2.43) 

 
The development of flow relationships was continued by Henri Darcy (1803-1858), another French 
engineer, who was interested in the turbulent flow of water in pipes. He adapted Chézy 's work to the 
case of circular pipes and ducts running full. Then 4/2dπA = ,  per dπ= and the fall in elevation 
of Chézy's channel became the head loss, h (metres of fluid) along the pipe length L.   Equation 
(2.42) now becomes 
 

   
L
h

dπ
dπ

f
gu 1

4
2 2

2 =  

 

or    fluidofmetres
2

4 2

dg
uLfh =           (2.44) 

 
 
 
This is the well known Chézy-Darcy equation, sometimes also known simply as the Darcy equation 
or the Darcy-Weisbach equation. The head loss, h, can be converted to a frictional pressure drop, p, 
by the now familiar relationship, hgρp =  to give 
 

   Pa
2

4 2uρ
d

Lfp =               (2.45) 

 
or a frictional work term 
 

   
kg
J

2
4 2

12
u

d
fL

ρ
pF ==            (2.46) 

 
The Bernoulli equation for frictional and turbulent flow becomes 
 

   
kg
J

2
4)(

)(
2

2
21

21

2
2

2
1 u

d
fL

ρ
PP

gZZ
uu

=
−

+−+
−

    (2.47) 

 
where u is the mean velocity. 
 
The most common form of the Chézy-Darcy equation is that given as (2.44). Leaving the constant 2 
uncancelled provides a reminder that the pressure loss due to friction is a function of kinetic energy 
u2/2. However, some authorities have combined the 4 and the f into a different coefficient of friction 
 λ ( = 4f) while others, presumably disliking Greek letters, then replaced the symbol λ by (would you 
believe it?) , f. We now have a confused situation in the literature of fluid mechanics where f may 
mean the original Chézy-Darcy coefficient of friction, or four times that value. When reading the 
literature, care should be taken to confirm the nomenclature used by the relevant author. Throughout 
this book, f is used to mean the original Chézy-Darcy coefficient as used in equation (2.44).  
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In order to generalize our results to ducts or airways of non-circular cross section, we may define a 
hydraulic radius as 
 

   m
per
Arh =               (2.48) 

     
44

2 d
dπ

dπ
==  

 
Reference to the "hydraulic mean diameter" denotes 4A/per. This device works well for turbulent 
flow but must not be applied to laminar flow where the resistance to flow is caused by viscous action 
throughout the body of the fluid rather than concentrated around the perimeter of the walls. 
 
Substituting for d in equation (2.45) gives 
 

   Pa
2

2uρ
A

perfLp =            (2.49) 

 
This can also be expressed as a relationship between frictional pressure drop, p, and volume flow, 
Q. Replacing u by Q/A in equation (2.49) gives 
 

   Pa
2

2
3

Qρ
A
perfLp =  

or   Pa2QρRp t=            (2.50) 

where  4
3

m
2

−=
A
perfLRt            (2.51) 

 
This is known as the rational turbulent resistance of the pipe, duct or airway and is a function only of 
the geometry and roughness of the opening. 
 

 2.3.6.2. The coefficient of friction, f. 
 
It is usually the case that a significant advance in research opens up new avenues of investigation 
and produces a flurry of further activity. So it was following the work of Osborne Reynolds. During 
the first decade of this century, fluid flow through pipes was investigated in great detail by engineers 
such as Thomas E. Stanton (1865-1931) and J.R. Pannel in the United Kingdom, and Ludwig 
Prandtl (1875-1953) in Germany. A major cause for concern was the coefficient of friction, f. 
 
There were two problems. First, how could one predict the value of f for any given pipe without 
actually constructing the pipe and conducting a pressure-flow test on it. Secondly, it was found that f 
was not a true constant but varied with Reynolds Number for very smooth pipes and, particularly, at 
low values of Reynolds Number. The latter is not too surprising as f was introduced initially as a 
constant of proportionality between shear stress at the walls and inertial force of the fluid (equation 
(2.41)) for fully developed turbulence. At the lower Reynolds Numbers we may enter the transitional 
or even laminar regimes. 
 
Figure 2.6 illustrates the type of results that were obtained. A very smooth pipe exhibited a 
continually decreasing value of f. This is labelled as the turbulent smooth pipe curve. However, for 
rougher pipes, the values of f broke away from the smooth pipe curve at some point and, after a 
transitional region, settled down to a constant value, independent of Reynolds Number. This 
phenomenon was quantified empirically through a series of classical experiments conducted in 
Germany by Johann Nikuradse (1894-1979), a former student of Prandtl.  Nikuradse took a number 
of smooth pipes of diameter 2.5, 5 and 10 cm, and coated the inside walls uniformly with grains of 
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graded sand. The roughness of each tube was then defined as e/d where e was the diameter of the 
sand grains and d the diameter of the tube. The advantages of dimensionless numbers had been 
well learned from Reynolds. The corresponding f - Re relationships are illustrated on Figure 2.6. 

 
The investigators of the time were then faced with an intriguing question. How could a pipe of given 
roughness and passing a turbulent flow be "smooth" (i.e. follow the smooth pipe curve) at certain 
Reynolds Numbers but become "rough" (constant f) at higher Reynolds Numbers? The answer lies 
in our initial concept of turbulence - the formation and maintenance of small, interacting and 
propagating eddies within the fluid stream. These necessitate the existence of cross velocities with 
vector components perpendicular to the longitudinal axis of the tube. At the walls there can be no 
cross velocities except on a molecular scale. Hence, there must be a thin layer close to each wall 
through which the velocity increases from zero (actually at the wall) to some finite velocity sufficiently 
far away from the wall for an eddy to exist. Within that thin layer the streamlines remain parallel to 
each other and to the wall, i.e. laminar flow. 
 
Although this laminar sublayer is very thin, it has a marked effect on the behaviour of the total flow in 
the pipe. All real surfaces (even polished ones) have some degree of roughness. If the peaks of the 
roughness, or asperities, do not protrude through the laminar sublayer then the surface may be 
described as "hydraulically smooth" and the wall resistance is limited to that caused by viscous 
shear within the fluid. On the other hand, if the asperities protrude well beyond the laminar sublayer 
then the disturbance to flow that they produce will cause additional eddies to be formed, consuming 
mechanical energy and resulting in a higher resistance to flow. Furthermore, as the velocity and, 

Figure 2.6 Variation of f with respect to Re as found by Nikuradse 

Figure 2.6  Variation of f with respect to Re as found by Nikuradse 

 

Figure 2.6 variation of f with respect to Re as found by Nikuradse 
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hence, the Reynolds Number increases, the thickness of the laminar sublayer decreases. Any given 
pipe will then be hydraulically smooth if the asperities are submerged within the laminar sublayer 
and hydraulically rough if the asperities project beyond the laminar sublayer. Between the two 
conditions there will be a transition zone where some, but not all, of the asperities protrude through 
the laminar sublayer. The hypothesis of the existence of a laminar sublayer explains the behaviour 
of the curves in Figure 2.6. The recognition and early study of boundary layers owe a great deal to 
the work of Ludwig Prandtl and the students who started their careers under his guidance. 
 
Nikuradse's work marked a significant step forward in that it promised a means of predicting the 
coefficient of friction and, hence, the resistance of any given pipe passing turbulent flow. However, 
there continued to be difficulties. In real pipes, ducts or underground airways, the wall asperities are 
not all of the same size, nor are they uniformly dispersed. In particular, mine airways show great 
variation in their roughness. Concrete lining in ventilation shafts may have a uniform e/d value as low 
as 0.001. On the other hand, where shaft tubbing or regularly spaced airway supports are used, the 
turbulent wakes on the downstream side of the supports create a dependence of airway resistance 
on their distance apart. Furthermore, the immediate wall roughness may be superimposed upon 
larger scale sinuosity of the airways and, perhaps, the existence of cross-cuts or other junctions. The 
larger scale vortices produced by these macro effects may be more energy demanding than the 
smaller eddies of normal turbulent flow and, hence, produce a much higher value of f. Many airways 
also have wall roughnesses that exhibit a directional bias, produced by the mechanized or drill and 
blast methods of driving the airway, or the natural cleavage of the rock. 
 
For all of these reasons, there may be a significant divergence between Nikuradse's curves and 
results obtained in practice, particularly in the transitional zone. Further experiments and analytical 
investigations were carried out in the late 1930's by C.F. Colebrook in England. The equations that 
were developed were somewhat awkward to use. However, the concept of "equivalent sand grain 
roughness" was further developed by the American engineer Lewis F. Moody in 1944. The ensuing 
chart, shown on Figure 2.7, is known as the Moody diagram and is now widely employed by 
practicing engineers to determine coefficients of friction. 
 

 2.3.6.3. Equations describing f - Re relationships 
 
The literature is replete with relationships that have been derived through combinations of analysis 
and empiricism to describe the behavior of the coefficient of friction, f, with respect to Reynolds' 
Number on the Moody Chart. No attempt is made here at a comprehensive discussion of the merits 
and demerits of the various relationships. Rather, a simple summary is given of those equations that 
have been found to be most useful in ventilation engineering. 
 
 
 Laminar Flow 
 
The straight line that describes laminar flow on the log-log plot of Figure 2.7 is included in the Moody 
Chart for completeness. However, Poiseuille's equation (2.31) can be used directly to establish 
frictional pressure losses for laminar flow without using the chart. The corresponding f-Re 
relationship is easily established. Combining equations (2.34) and (2.45) gives 
 

   Pa
2

48 2

2
uρ

d
fL

R
uLµp ==  
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Substituting R = d/2 gives 
 

   
udρ
µf 16=  

or   
Re
16

=f    dimensionless              (2.52) 

 
 
 Smooth pipe turbulent curve 
 
Perhaps the most widely accepted equation for the smooth pipe turbulent curve is that produced by 
both Nikuradse and the Hungarian engineer Theodore Von Kármán (1881-1963). 
 

   4.0)(Relog41
10 −= f

f
 

 
 
 
 

Figure 2.7  Type of chart developed by Moody. 
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This suffers from the disadvantage that f appears on both sides of the equation. Paul R.H. Blasius 
(1873-1970), one of Prandtl's earlier students, suggested the approximation for Reynolds Numbers 
in the range 3 000 to 105. 

   
25.0Re

0791.0
=f                    (2.54) 

while a better fit to the smooth pipe curve for Reynolds Numbers between 20 000 to 107 is given as 

   
2.0Re

046.0
=f  

  
Rough pipes 
 
When fully developed rough pipe turbulence has been established, the viscous forces are negligible 
compared with inertial forces. The latter are proportional to the shear stress at the walls (equation 
(2.41)). Hence, in this condition f becomes independent of Reynolds Number and varies only with 
e/d. A useful equation for this situation was suggested by Von Kármán. 
 

   
2

10 )14.1)/(log2(4
1

+
=

ed
f              (2.55) 

 
The most general of the f - Re relationships in common use is the Colebrook White equation. This 
has been expressed in a variety of ways, including 
 

   







+−=

fd
e

f 4Re
7.182log274.1

4
1

10           (2.56) 

and 

   







+−=

f
de

f Re
255.1

7.3
/log41

10             (2.57) 

 
 Here again, f, appears on both sides making these equations awkward to use in practice. It was, in 
fact, this difficulty that led Moody into devising his chart. 
 
The advantage of the Colebrook White equation is that it is applicable to both rough and smooth 
pipe flow and for the transitional region as well as fully developed turbulence. For hydraulically 
smooth pipes, e/d =0, and the Colebrook White equation simplifies to the Nikuradse relationship of 
equation (2.53). On the other hand, for high Reynolds Numbers, the term involving Re in equation 
(2.57) may be ignored. The equation then simplifies to 
 

   
2

10 7.3
/log4

−
















=
def                (2.58) 

 
This gives the same results as Von Kármán's rough pipe equation (2.55) for fully developed 
turbulence. 
 
Example  
A vertical shaft is 400 m deep, 5 m diameter and has wall roughenings of height 5 mm.  An airflow of  
150 m3/s passes at a mean density of 1.2 kg/m3.  Taking the viscosity of the air to be 17.9 x 10-6 
Ns/m2 and ignoring changes in kinetic energy, determine: 
 
(i)  the coefficient of friction, f 
(ii) the turbulent resistance, Rt  (m-4) 
(iii) the frictional pressure drop p (Pa)  
(iv) the work done against friction, F12 (J/kg) 
(v) the barometric pressure at the shaft bottom if the shaft top pressure is 100 kPa. 
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Solution  
For a 400 m deep shaft, we can assume incompressible flow (Section 2.1.1.) 
 

 Cross-sectional area, 2
2

m635.19
4
5

=
×

=
πA  

 Perimeter,    per m708.155 == π  

 Air velocity,    m/s639.7
635.19

150
===

A
Qu  

 
In order to determine the regime of flow, we must first find the Reynolds Number 
 

   6
6

10561.2
109.17

5639.72.1Re ×=
×

××
==

−µ
udρ  

 
(i)  Coefficient of friction, f: 
At this value of Re, the flow is fully turbulent (Section 2.3.4.). We may then use the Moody Chart to 
find the coefficient of friction, f. However, for this we need the equivalent roughness  

   001.0
5
105 3

=
×

=
−

d
e  

Hence at e/d = 0.001 and Re = 2.561 x l06 on Figure 2.7 we can estimate f = 0.0049. (Iterating 
equation (2.57) gives f = 0.00494. As the friction coefficient is near constant at this Reynolds 
Number, we could use equation (2.55) to give f = 0.00490 or equation (2.58) which gives f = 
0.00491). . 
 
(ii)  Turbulent resistance, Rt: (equation (2.51)) 
 

   4
33

m036002.0
)635.19(2

708.154000049.0
2

−=
××

==
A
perLfRt  

 
(iii) Frictional pressure drop, p: (equation (2.50)) 
 
   Pa91.54)150(2.1036002.0 22 =××== QρRp t  
 
 
 (iv) Work done against friction, F12 :  (equation (2.46)) 
 

   
kg
J76.45

2.1
91.54

12 ===
ρ
pF  

 
(v) Barometric pressure at shaft bottom, P2 :  This is obtained from Bernoulli's equation (2.47) with 
no change in kinetic energy. 
 

   12
21

21 )( F
ρ

PP
gZZ =

−
+−  

 
giving   112212 )( PρFρgZZP +−−=  

          00010091.54)2.181.9400( +−××=  
    kPa654.104orPa6541042 =P  
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