
Math 259: Introduction to Analytic Number Theory

The contour integral formula for ψ(x)

We now have several examples of Dirichlet series, that is, series of the form1

F (s) =
∞∑
n=1

ann
−s (1)

from which we want to extract information about the growth of
∑
n<x an as

x→∞. The key to this is a contour integral. We regard F (s) as a function
of a complex variable s = σ + it. For real y > 0 we have seen already that
|y−s| = y−σ. Thus if the sum (1) converges absolutely2 for some real σ0, then
it converges uniformly and absolutely to an analytic function on the half-plane
Re(s) ≥ σ0; and if the sum converges absolutely for all real s > σ0, then it
converges absolutely to an analytic function on the half-plane Re(s) > σ0. Now
for y > 0 and c > 0 we have

1
2πi

∫ c+i∞

c−i∞
ys
ds

s
=


1, if y > 1;
1
2 , if y = 1;
0, if y < 1,

(2)

in the following sense: the contour of integration is the vertical line Re(s) = c,
and since the integral is then not absolutely convergent it is regarded as a
principal value: ∫ c+i∞

c−i∞
f(s) ds := lim

T→∞

∫ c+iT

c−iT
f(s) ds.

Thus interpreted, (2) is an easy exercise in contour integration for y 6= 1, and an
elementary manipulation of log s for y = 1. So we expect that if (1) converges
absolutely in Re(s) > σ0 then∑

n<x

an =
1

2πi

∫ c+i∞

c−i∞
xsF (s)

ds

s
(3)

for any c > σ0, using the principal value of the integral and adding ax/2 to the
sum if x happens to be an integer. But getting from (1) and (2) to (3) involves
interchanging an infinite sum with a conditionally convergent integral, which is
not in general legitimate. Thus we replace

∫ c+i∞
c−i∞ by

∫ c+iT
c−iT , which legitimizes

the manipulation but introduces an error term into (2). We estimate this error
term as follows:

Lemma. For y, c, T > 0 we have

1
2πi

∫ c+iT

c−iT
ys
ds

s
=

{
1 +O(yc min(1, 1

T | log y| )), if y ≥ 1;

O(yc min(1, 1
T | log y| )), if y ≤ 1,

(4)

1As noted by Serre, everything works just as well with “Dirichlet series”
∑∞
k=0 akn

−s
k ,

where nk are positive reals such that nk→∞ as k→∞. In that more general setting we would
seek to estimate

∑
nk<x

ak as x→∞.
2We shall see later that the same results hold if absolute convergence is replaced by con-

ditional convergence throughout. For example, for every nonprincipal character χ the series
for L(s, χ) converges uniformly in the half-plane Re(s) > σ0 for each positive σ0.
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the implied O-constant being effective and uniform in y, c, T .

(In fact the error’s magnitude is less than both yc and yc/πT | log y|. Of course
if y equals 1 then the error term is regarded as O(1) and is valid for both
approximations 0, 1 to the integral.)

Proof : Complete the contour of integration to a rectangle extending to real part
−M if y ≥ 1 or +M if y ≤ 1. The resulting contour integral is 1 or 0 respectively
by the residue theorem. We may let M→∞ and bound the horizontal integrals
by (πT )−1

∫∞
0
yc±rdr; this gives the estimate yc/πT | log y|. Using a circular

arc centered at the origin instead of a rectangle yields the same residue with a
remainder of absolute value < yc. �

This Lemma will let us approximate
∑
n<x an by (2πi)−1

∫ c+iT
c−iT xsF (s) ds/s.

We shall eventually choose some T and exploit the analytic continuation of F
to shift the contour of integration past the region of absolute convergence to
obtain nontrivial estimates.

The next question is, which F should we choose? Consider for instance ζ(s).
We have in effect seen already that if we take F (s) = log ζ(s) then the sum
of the resulting an over n < x closely approximates π(x). Unfortunately, while
ζ(s) continues meromorphically to σ ≤ 1, its logarithm does not: it has essential
logarithmic singularities at the pole s = 1, and at zeros of ζ(s) to be described
later. So we use the logarithmic derivative of ζ(s) instead, which at each pole or
zero of ζ has a simple pole with a known residue and thus a predictable effect
on our contour integral.

What are the coefficients an for this logarithmic derivative? It is convenient to
use not ζ ′/ζ but −ζ ′/ζ, which has positive coefficients. Using the Euler product
we find

−ζ
′(s)
ζ(s)

=
∑
p

d

ds
log(1− p−s) =

∑
p

log p
p−s

1− p−s
=
∑
p

log p
∞∑
k=1

p−ks.

That is,

−ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)n−s.

So the coefficient of n−s is none other than the von Mangoldt function which
arose in the factorization of x!. Hence our contour integral

1
2πi

∫ c+iT

c−iT
−ζ
′

ζ
(s)xs

ds

s
(c > 1)

approximates ψ(x). The error can be estimated by our Lemma (4): since
|Λ(n)| ≤ log n, the error is of order at most

∞∑
n=1

(x/n)c log n ·min(1,
1

T | log(x/n)|
)

which is O(T−1xc log2 x) provided 1 < T < x. (See the Exercises below.)
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Taking c = 1 +A/ log x, so that xc � x, we find:

ψ(x) =
1

2πi

∫ 1+ A
log x+iT

1+ A
log x−iT

−ζ
′

ζ
(s)xs

ds

s
+OA

(
x log2 x

T

)
. (5)

Similarly for any Dirichlet character χ we obtain a formula for

ψ(x, χ) :=
∑
n<x

χ(n)Λ(n)

by replacing ζ(s) in (5) by L(s, χ).

To make use of this we’ll want to shift the line of integration to the left, where
|xs| is smaller. As we do so we shall encounter poles at s = 1 and at zeros of
ζ(s) (or L(s, χ)), and will have to estimate |ζ ′/ζ| (or |L′(s, χ)/L(s, χ)|) over the
resulting contour. This is why we are interested in the analytic continu-
ation of ζ(s) and likewise L(s, χ) and in their zeros. We investigate these
matters next.

Remarks

We can already surmise that ψ(x) will be approximated by x−
∑
ρ x

ρ/ρ, the sum
running over zeros ρ of ζ(s) counted with multiplicity, and thus that the Prime
Number Theorem is tantamount to the nonvanishing of ζ(s) on Re(s) = 1. The
fact that ζ(1 + it) 6= 0 is also the key step in various “elementary” proofs or
the Prime Number Theorem such as [Newman 1980] (see also [Zagier 1997]).
Likewise for L(1 + it, χ) and the asymptotic formula for π(x, a mod q).

The formula for ψ(x) as a contour integral can be viewed as an instance of
the inverse Mellin transform. Suppose F (s) is a generalized Dirichlet series∑∞
k=0 akn

−s
k , converging for Re(s) > σ0. Let A(x) =

∑
nk<x

ak, and assume
that A(x)→∞ as x→∞. In particular, σ0 ≥ 0. Now

F (s) =
∫ ∞

0

x−sdA(x) = s

∫ ∞
0

x−sA(x)
dx

x
,

so F (s)/s is the Mellin transform of A(x). Thus we expect that

A(x) =
1

2πi

∫ c+i∞

c−i∞
xsF (s)

ds

s

for c > σ0. Due to the discontinuities of A(x) at x = nk, this integral cannot
converge absolutely, but its principal value does equal A(x) at all x /∈ {nk}.

Exercises

1. Verify that the error

∞∑
n=1

(x/n)c log n ·min(1,
1

T | log(x/n)|
)

in our approximation of ψ(x) is O(T−1xc log2 x) provided 1 < T < x. Explain
why the bound need not hold if T is large compared to x.
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2. Use (4) to show that nevertheless ψ(x) is given by the principal value integral

ψ(x) = lim
T→∞

1
2πi

∫ c+iT

c−iT
−ζ
′

ζ
(s)xs

ds

s
(6)

for all x, c > 1.

3. Show that
∑∞
n=1 µ(n)n−s = 1/ζ(s), with µ being the Möbius function defined

in the previous set of exercises. Deduce an integral formula for
∑
n<x µ(n)

analogous to (6), and an approximate integral formula analogous to (5) but
with error only O(T−1x log x) instead of O(T−1x log2 x).
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