Math 259: Introduction to Analytic Number Theory

The contour integral formula for (x)

We now have several examples of Dirichlet series, that is, series of the form?
(o]
F(s) = Z apn”* (1)
n=1

from which we want to extract information about the growth of >  _ a, as
x—o00. The key to this is a contour integral. We regard F(s) as a function
of a complex variable s = o + it. For real y > 0 we have seen already that
|y=*| = y~. Thus if the sum (1) converges absolutely? for some real g, then
it converges uniformly and absolutely to an analytic function on the half-plane
Re(s) > o¢; and if the sum converges absolutely for all real s > og, then it
converges absolutely to an analytic function on the half-plane Re(s) > 0. Now
for y > 0 and ¢ > 0 we have

‘ 1, ify>1;

1 c+100 SdS_ ) 'fy_l. (2)
Sy Cimys— 2 ty=1
0, ify<l,

in the following sense: the contour of integration is the vertical line Re(s) = ¢,
and since the integral is then not absolutely convergent it is regarded as a
principal value:
c+1i00 c+iT
/ f(s)ds:= lim f(s)ds.
c—ioco T—oo JeiT

Thus interpreted, (2) is an easy exercise in contour integration for y # 1, and an
elementary manipulation of log s for y = 1. So we expect that if (1) converges
absolutely in Re(s) > o then

1 c+ioco ds
n = SF(s)— 3
Y=g, TFOT 3)

for any ¢ > oy, using the principal value of the integral and adding a, /2 to the
sum if x happens to be an integer. But getting from (1) and (2) to (3) involves
interchanging an infinite sum with a conditionally convergent integral, which is
not in general legitimate. Thus we replace fccjizo by fccji?, which legitimizes
the manipulation but introduces an error term into (2). We estimate this error
term as follows:

Lemma. For y,c,T > 0 we have

LT ds _fr+ O(y* min(1, zypoz57))s iy =1 n
O(y° min(1, m)), ify <1,

LAs noted by Serre, everything works just as well with “Dirichlet series” Yo aknlzs,
where nj, are positive reals such that ny—oo as k—oo. In that more general setting we would
seek to estimate 3, ., ap as z—oo0.

2We shall see later that the same results hold if absolute convergence is replaced by con-
ditional convergence throughout. For example, for every nonprincipal character x the series
for L(s,x) converges uniformly in the half-plane Re(s) > oo for each positive og.

. Y
21t Jo_ir S




the implied O-constant being effective and uniform in y,c,T.

(In fact the error’s magnitude is less than both y© and y¢/7T|logy|. Of course
if y equals 1 then the error term is regarded as O(1) and is valid for both
approximations 0,1 to the integral.)

Proof: Complete the contour of integration to a rectangle extending to real part
—Mify > 1or +M if y < 1. The resulting contour integral is 1 or 0 respectively
by the residue theorem. We may let M —oc and bound the horizontal integrals
by (xT)~! [ yet"dr; this gives the estimate y°/7T|logy|. Using a circular
arc centered at the origin instead of a rectangle yields the same residue with a
remainder of absolute value < y¢. O

This Lemma will let us approximate ) _ a, by (2mi)~ fC—HT SF(s)ds/s.
We shall eventually choose some T" and exploit the analytlc contlnuatlon of F
to shift the contour of integration past the region of absolute convergence to
obtain nontrivial estimates.

The next question is, which F' should we choose? Consider for instance ((s).
We have in effect seen already that if we take F'(s) = log((s) then the sum
of the resulting a,, over n < z closely approximates m(z). Unfortunately, while
¢(s) continues meromorphically to o < 1, its logarithm does not: it has essential
logarithmic singularities at the pole s = 1, and at zeros of {(s) to be described
later. So we use the logarithmic derivative of ((s) instead, which at each pole or
zero of ¢ has a simple pole with a known residue and thus a predictable effect
on our contour integral.

What are the coefficients a,, for this logarithmic derivative? It is convenient to
use not ¢'/¢ but —¢’/¢, which has positive coefficients. Using the Euler product
we find

(s d
O 2 gsloe - Zl"gp

That is,

= Zlongp ks,

So the coefficient of n~° is none other than the von Mangoldt function which

arose in the factorization of z!. Hence our contour integral

1 c+iT CI

P— ——(s)xSﬁ (c>1)

2mi c—iT C S

approximates ¢ (z). The error can be estimated by our Lemma (4): since
|A(n)| <logn, the error is of order at most

o
" T|log(z/n))|

[M]8

(z/n)°logn - min(1

)

n=1

which is O(T~'z¢log® ) provided 1 < T < z. (See the Exercises below.)



Taking ¢ = 1+ A/logz, so that 2° < z, we find:

I+ as +iT ’ d log?
(o) = - /1 _C_(s)xs?s+oA (“’ﬁ x) (5)

2w Ji A _up ¢

Tog =

Similarly for any Dirichlet character x we obtain a formula for

U(@,x) =Y x(n)A(n)

n<x

by replacing ¢(s) in (5) by L(s, x)-

To make use of this we’ll want to shift the line of integration to the left, where
|2®| is smaller. As we do so we shall encounter poles at s = 1 and at zeros of
¢(s) (or L(s, X)), and will have to estimate |¢'/C| (or |L'(s,x)/L(s, x)|) over the
resulting contour. This is why we are interested in the analytic continu-
ation of ((s) and likewise L(s,x) and in their zeros. We investigate these
matters next.

Remarks

We can already surmise that ¢(z) will be approximated by z—>_  2”/p, the sum
running over zeros p of ((s) counted with multiplicity, and thus that the Prime
Number Theorem is tantamount to the nonvanishing of {(s) on Re(s) = 1. The
fact that ¢(1 + ¢t) # 0 is also the key step in various “elementary” proofs or
the Prime Number Theorem such as [Newman 1980] (see also [Zagier 1997]).
Likewise for L(1 + it, x) and the asymptotic formula for 7(z,a mod g).

The formula for ¢ (z) as a contour integral can be viewed as an instance of
the inverse Mellin transform. Suppose F'(s) is a generalized Dirichlet series
> oo agny . converging for Re(s) > op. Let A(z) = > ay, and assume

nE<x
that A(x)—o0 as x—o0. In particular, o9 > 0. Now '
<, RS dx
F(s) = x %dA(z) = s x *A(x)—,
0 0 x

so F(s)/s is the Mellin transform of A(x). Thus we expect that

c+ioo s
Ax) = ! / xsF(s)d—

"o J i s
for ¢ > 0¢. Due to the discontinuities of A(x) at & = ny, this integral cannot
converge absolutely, but its principal value does equal A(z) at all ¢ {n;}.
Exercises

1. Verify that the error

oo

Z(z/n)“ logn - min(

n=1

1
L Tliog(a/m)

in our approximation of ¢ (x) is O(T~!a¢ log? x) provided 1 < T' < z. Explain
why the bound need not hold if T is large compared to z.



2. Use (4) to show that nevertheless 1 (x) is given by the principal value integral

1 c+iT </ s dS

P(z) = lim (s) 2 — (6)

T—oo 271 c—iT C S

for all z,¢ > 1.

3. Show that Y7 | u(n)n=* = 1/¢(s), with p1 being the Mobius function defined
in the previous set of exercises. Deduce an integral formula for ) __ u(n)
analogous to (6), and an approximate integral formula analogous to (5) but
with error only O(T 'z logz) instead of O(T 'z log? z).
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