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What is learning theory?

e Grew from theoretical CS community
e Emphasizes formal results on

— Amount of data needed

— Efficiency of algorithm WRT time/data

Separate community from “practical learning”
COLT (computational learning theory conference)

e Practical and theoretical influencing each other
(Who'd have thought??? ©)

Motivation

Originally learning theory was concerned with
theories of what was “learnable”

Different assumptions about models

— Adversarial

— Oracle

 Very little turned out to be “learnable” ®

e PAC learnability more reasonable

— Probably Approximately Correct

— Draw training, testing samples from same distribution
— Try to establish WHP bounds
— Embodied in current practice

Bias & Variance Review

L]

Example: Regression

* Suppose we draw m samples from an infinite
supply of training data

What is the right hypothesis space?

— Linear?

— Quadratic?

— Etc?

What should answer depend on?

— Background knowledge?

— Size of m?

Bias
We (might) want:
lim {E, [y(x: D)= h(®)])* =0

We “eventually get it right” w/enough data
Otherwise we are said to have bias

Is bias always bad???

Variance
e We would like (and usually get):

lim E,[(yox: D)~ B, [y )] |= 0

e Compares performance on training set
against other draws of same sized set

e Problem: mis finite




Example: 20 points
y =X+ 2 sin(1.5x) + N(0,0.2)

fttedt hypoihesis

frue function

Hypothesis space = linear in x

50 fits (20 examples each)

. . .
What are we seeing here?

Bias

o frue function

Variance

Dealing with Bias & Variance

Real data sets are finite

Means that bias and variance are positive
Can we trade one against another?
Example:

— Suppose data come from line + noise

- m=3

— What s best H?

e Constants (bias, moderate variance)
 Lines (no bias, higher variance)

Bias & Variance with real data

In the real world:
— Don’t know source characteristics
— Choosing a “fancier” H risks high variance
— Higher variance=
* Overfitting
* Fitting noise

When can we risk a big H?
COLT: Theoretical bounds (for discrete cases)

Practical techniques later
(not mutually exclusive with COLT!)




Tools of Learning Theory |

e Union bound, for events e;...e,

k
Pe,ve,v..ve)< Y P(e)

i=1

e (Trivial consequence of axioms of prob. theory)

Tools of Learning Theory Il

Let & be mean of m IID samples of a Bernouli RV
w.p. d(e.g. coin flip)

Chernoff bound (Hoeffding inequality):

P16-61> ¥) < 2exp(=2y°m)
Not a trivial result
Error drops off:

— Exponentially in y?
— Exponentiallyin m

Empirical Risk

e Empirical risk for hypothesis h on D
(= error on D):

()= E P(t# y(x)

e Many learning algorithms are empirical risk
minimizers (ML, SSE minimization)

y=argmin_, &(y)

Evaluating Hypotheses

* Treat each datum as a test of y,
e How reliable is &(y,)?

¢ |OW: How much do we trust our empirical
estimate of the quality of y;?

¢ Use Chernoff bound:

P(1&(y,)—€(y,) > y) < 2exp(-2y°m)

Evaluating our learner

e Suppose H is finite
o Learner picks “best” y, so all estimates must be “good”
e What is probability of getting a “bad” estimate:

Py, € Hst.1€(y)—e(y) > ) =PUE(y) =) >y V..V I1E(y)—(y) > 7)
<Y PUEY)-€(y)1>7)
< i2exp(—27zm)

=2kexp(=2y*m)

How much data???

¢ If all quality estimates are “good”, then when can we
trust that real risk = empirical risk???

* Suppose we want to guarantee answer w.p. 1-8

1—-8>1-2kexp(=2y*m)

1
m=>——-log—
2y &5

e “Sample Complexity” of our learner




How much trust?

e Solve fory
* WP 1-3
2k

1
[&(y)—€e(v.)IK .| —log =~
E(y)—&(y;) - 0g5

* Note log dependence on k!

Trust in our choice

e Suppose y* is “best” in H
¢ We pick something else b/c of finite m

EPI<SE@)+y
<E(y*)+y  (Since we didn’t pick y*)
Se(yH)+y+y
<e(y*)+2y

¢ Even if we didn’t pick the best y*, we still didn’t do
that badly

Putting it all together
e Suppose |H|=k

e Fix9d, v
¢ To achieve real performance within 2y

1 k
> 0(— log—
m (7/2 ogg)

Putting it all Together Il

e Learning theory bounds performance on
training set as function of performance on
test set

[1 2k
H) < E(Y —log==
EVSED)+ o 0g5

e Assuming |H|=k, WP 1-3
¢ Log dependence on k

Continuous Spaces

* So far, we have assumed H is finite
¢ Most algorithms we have studied are
smoothly parameterized
— Perceptron
— Logistic regression
— Etc.
* How do these results generalize?

First Cut

* Suppose we have n finite precision numbers
e Use b bits to represent each parameter

|K| =2 (Uh oh...)

¢ But, log dependence on k saves us:

1 k . ~ [ 2k
m=0(—log— W< &h)+. [—1og ==
(72 g5) E(h)<é&(h) o 08

e Sample complexity linearinn
e Performance bound linear in sqrt(n)




Where bits counting fails

* Suppose we have a perceptron with n inputs
¢ Duplicating input doesn’t change things

(no increased risk of overfitting)
¢ Does add one more continuous parameter

¢ |f were counting bits, for our bound:
— Leads to double counting
— Gratuitously loose bounds

Shattering

e What we need:
— Way of capturing intrinsic power of classifier
— Independent of parameterization

e Step 1: “shattering”

¢ Given set of training data D

¢ H shatters D if H can correctly classify all
possible labelings of D

VC Dimension

¢ VVC = Vapnik-Chervonenkis
® VC(H) = size of largest D shattered by H
¢ Note quantification:

— Existence of a single set at given size satisfies

— Proof typically requires demonstrating
impossibility of shattering large sets

¢ VC(H) can be infinite (nearest neighbor)

Shattering with planes
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Can correctly classify all possible labelings of 3 points!

VC Dimension of hyperplanes

e Our example generalizes to d dimensions

¢ For H = d dimensional hyperplanes
— Can shatter |D|=d+1
— Cannot shatter |D|=d+2 (e.g. XOR)
- VC(H)=d+1

VC Theory - Performance

e Suppose k=VC(H), WP 1-§

e <é)+0| [ Kr0g™+ Liog L
m “k m "0

e Compare with finite case, k=|H|

1 2k
5 <2094 | 1og 2K
EP)SED+ o og 5

e Remember for n finite precision parameters k=2b"




VC Theory — Sample Complexity

e Suppose VC(H)=k, fix §, ¥

¢ To achieve real performance within 2 y
¢ Need O(k) samples

e Compare with finite case:

1. &k
> 0(—log—
m (7/2 g(g)

k=2b" - linear dependence on n

Continuous Hypothesis Spaces Conclusion

“Natural” parameterization finite set of hypotheses
(due to finite precision) leads to linear sample
complexity in number of parameters

VC Theory:

— Cleaner, more general theory

— Typically gives similar bounds

Learning theory bounds:

— Sometimes loose

— Sometimes more qualitative than quantitative

Learning Theory Conclusions

e COLT helps us quantify:

— Power of a hypothesis space

— How much data we need for given level of trust
* What COLT doesn’t do:

— Tell us to search space of hypotheses

— How to improve our performance
¢ In practice:

— COLT bounds tend to be loose

— Not a substitute for empirical validation

— Gives good high level guidance




