Learning Theory

Ron Parr CPS 271

With content adapted from Lise Getoor, Tom Dietterich, Andrew Moore & Rich Maclin

What is learning theory?

- Grew from theoretical CS community
- · Emphasizes formal results on
 - Amount of data needed
 - Efficiency of algorithm WRT time/data
- Separate community from "practical learning"
- COLT (computational learning theory conference)
- Practical and theoretical influencing each other (Who'd have thought??? ②)

Motivation

- Originally learning theory was concerned with theories of what was "learnable"
- Different assumptions about models
 - Adversarial
 - Oracle
- Very little turned out to be "learnable" 🕾
- PAC learnability more reasonable
 - Probably Approximately Correct
 - Draw training, testing samples from same distribution
 - Try to establish WHP bounds
 - Embodied in current practice

Bias & Variance Review

- Example: Regression
- Suppose we draw m samples from an infinite supply of training data
- What is the right hypothesis space?
 - Linear?
 - Quadratic?
 - Etc?
- What should answer depend on?
 - Background knowledge?
 - Size of m?

Bias

• We (might) want:

$$\lim_{|D| \to \infty} \{ E_D [y(\mathbf{x}; D) - h(\mathbf{x})] \}^2 = 0$$

- We "eventually get it right" w/enough data
- Otherwise we are said to have bias
- Is bias always bad???

Variance

• We would like (and usually get):

$$\lim_{|D| \to \infty} E_D \big[\{ y(\mathbf{x}; D) - E_D \big[y(\mathbf{x}; D) \big] \}^2 \big] = 0$$

- Compares performance on training set against other draws of same sized set
- Problem: m is finite

Dealing with Bias & Variance

- Real data sets are finite
- Means that bias and variance are positive
- Can we trade one against another?
- Example:
 - Suppose data come from line + noise
 - m=3
 - What is best H?
 - Constants (bias, moderate variance)
 - Lines (no bias, higher variance)

Bias & Variance with real data

- In the real world:
 - Don't know source characteristics
 - Choosing a "fancier" H risks high variance
 - Higher variance=
 - Overfitting
 - Fitting noise
- When can we risk a big H?
- COLT: Theoretical bounds (for discrete cases)
- Practical techniques later (not mutually exclusive with COLT!)

Tools of Learning Theory I

• Union bound, for events $e_1...e_k$

$$P(e_1 \vee e_2 \vee ... \vee e_k) \leq \sum_{i=1}^k P(e_i)$$

• (Trivial consequence of axioms of prob. theory)

Tools of Learning Theory II

- Let θ̂ be mean of m IID samples of a Bernouli RV w.p. θ(e.g. coin flip)
- Chernoff bound (Hoeffding inequality):

$$P(\mid \theta - \hat{\theta} \mid > \gamma) \le 2 \exp(-2\gamma^2 m)$$

- Not a trivial result
- Error drops off:
 - Exponentially in γ^2
 - Exponentially in m

Empirical Risk

 Empirical risk for hypothesis h on D (= error on D):

$$\hat{\mathcal{E}}(y) = \mathop{E}_{x \in D} P(t \neq y(x))$$

• Many learning algorithms are empirical risk minimizers (ML, SSE minimization)

$$\hat{y} = \arg\min_{y \in H} \hat{\mathcal{E}}(y)$$

Evaluating Hypotheses

- Treat each datum as a test of y_i
- How reliable is $\hat{\varepsilon}(y_i)$?
- IOW: How much do we trust our empirical estimate of the quality of y_i?
- Use Chernoff bound:

$$P(|\hat{\varepsilon}(y_i) - \varepsilon(y_i)| > \gamma) \le 2 \exp(-2\gamma^2 m)$$

Evaluating our learner

- Suppose H is finite
- Learner picks "best" y, so all estimates must be "good"
- What is probability of getting a "bad" estimate:

$$\begin{split} P(\exists y_i \in \mathit{Hst}. \mid \hat{\mathcal{E}}(y_i) - \varepsilon(y_i) |> \gamma) &= P(\mid \hat{\mathcal{E}}(y_1) - \varepsilon(y_1) \mid> \gamma \vee ... \vee \mid \hat{\mathcal{E}}(y_k) - \varepsilon(y_k) \mid> \gamma) \\ &\leq \sum_{i=1}^k P(\mid \hat{\mathcal{E}}(y_i) - \varepsilon(y_i) \mid> \gamma) \\ &\leq \sum_{i=1}^k 2 \exp(-2\gamma^2 m) \\ &= 2k \exp(-2\gamma^2 m) \end{split}$$

How much data???

- If all quality estimates are "good", then when can we trust that real risk = empirical risk???
- Suppose we want to guarantee answer w.p. $1-\delta$

$$1 - \delta \ge 1 - 2k \exp(-2\gamma^2 m)$$

$$m \ge \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$

• "Sample Complexity" of our learner

How much trust?

- Solve for γ
- WP 1-δ

$$|\hat{\varepsilon}(y_i) - \varepsilon(y_i)| \le \sqrt{\frac{1}{2m} \log \frac{2k}{\delta}}$$

• Note log dependence on k!

Trust in our choice

- Suppose y* is "best" in H
- We pick something else b/c of finite m

$$\begin{split} \varepsilon(\hat{y}) &\leq \hat{\varepsilon}(\hat{y}) + \gamma \\ &\leq \hat{\varepsilon}(y^*) + \gamma \qquad \text{(Since we didn't pick y*)} \\ &\leq \varepsilon(y^*) + \gamma + \gamma \\ &\leq \varepsilon(y^*) + 2\gamma \end{split}$$

 Even if we didn't pick the best y*, we still didn't do that badly

Putting it all together

- Suppose |H|=k
- Fix δ, γ
- ullet To achieve real performance within 2 γ

$$m \ge O(\frac{1}{\gamma^2} \log \frac{k}{\delta})$$

Putting it all Together II

 Learning theory bounds performance on training set as function of performance on test set

$$\varepsilon(\hat{y}) \le \hat{\varepsilon}(\hat{y}) + \sqrt{\frac{1}{2m} \log \frac{2k}{\delta}}$$

- Assuming |H|=k, WP 1- δ
- Log dependence on k

Continuous Spaces

- So far, we have assumed H is finite
- Most algorithms we have studied are smoothly parameterized
 - Perceptron
 - Logistic regression
 - Etc.
- How do these results generalize?

First Cut

- Suppose we have n finite precision numbers
- Use b bits to represent each parameter
- |K| = 2^{bn} (Uh oh...)
- But, log dependence on k saves us:

$$m \ge O(\frac{1}{\gamma^2} \log \frac{k}{\delta})$$
 $\varepsilon(\hat{h}) \le \hat{\varepsilon}(\hat{h}) + \sqrt{\frac{1}{2m} \log \frac{2k}{\delta}}$

- Sample complexity linear in n
- Performance bound linear in sqrt(n)

Where bits counting fails

- Suppose we have a perceptron with n inputs
- Duplicating input doesn't change things (no increased risk of overfitting)
- Does add one more continuous parameter
- If we're counting bits, for our bound:
 - Leads to double counting
 - Gratuitously loose bounds

Shattering

- What we need:
 - Way of capturing intrinsic power of classifier
 - Independent of parameterization
- Step 1: "shattering"
- · Given set of training data D
- H shatters D if H can correctly classify all possible labelings of D

VC Dimension

- VC = Vapnik-Chervonenkis
- VC(H) = size of largest D shattered by H
- Note quantification:
 - Existence of a single set at given size satisfies
 - Proof typically requires demonstrating impossibility of shattering large sets
- VC(H) can be infinite (nearest neighbor)

Shattering with planes

Can correctly classify all possible labelings of 3 points!

VC Dimension of hyperplanes

- Our example generalizes to d dimensions
- For H = d dimensional hyperplanes
 - Can shatter |D|=d+1
 - Cannot shatter |D|=d+2 (e.g. XOR)
 - -VC(H) = d+1

VC Theory - Performance

• Suppose k=VC(H), WP 1-δ

$$\varepsilon(\hat{y}) \le \hat{\varepsilon}(\hat{y}) + O\left(\sqrt{\frac{k}{m} \log \frac{m}{k} + \frac{1}{m} \log \frac{1}{\delta}}\right)$$

• Compare with finite case, k=|H|

$$\varepsilon(\hat{y}) \leq \hat{\varepsilon}(\hat{y}) + \sqrt{\frac{1}{2m} \log \frac{2k}{\delta}}$$

• Remember for n finite precision parameters k=2^{bn}

VC Theory - Sample Complexity

- Suppose VC(H)=k, fix δ , γ
- $\bullet\,$ To achieve real performance within 2 $\gamma\,$
- Need O(k) samples
- Compare with finite case:

$$m \ge O(\frac{1}{\gamma^2} \log \frac{k}{\delta})$$

• k=2^{bn} – linear dependence on n

Continuous Hypothesis Spaces Conclusion

- "Natural" parameterization finite set of hypotheses (due to finite precision) leads to linear sample complexity in number of parameters
- VC Theory:
 - Cleaner, more general theory
 - Typically gives similar bounds
- Learning theory bounds:
 - Sometimes loose
 - Sometimes more qualitative than quantitative

Learning Theory Conclusions

- COLT helps us quantify:
 - Power of a hypothesis space
 - How much data we need for given level of trust
- What COLT doesn't do:
 - Tell us to search space of hypotheses
 - How to improve our performance
- In practice:
 - COLT bounds tend to be loose
 - Not a substitute for empirical validation
 - Gives good high level guidance