LOGARITHMIC VECTOR. FIELDS 1

Logarithmic vector fields and multiplication
table.

Singularities in Geometry and Topology, World Scientific, 2007, pp.749-778
Dedicated to the 61st birthday of Kyoji Saito

Susumu TANABE

Abstract

This is a review article on the Gauss-Manin system associated to the
complete intersection singularities of projection. We show how the logarith-
mic vector fields appear as coefficients to the Gauss-Manin system (Theorem
2.3). We examine further how the multiplication table on the Jacobian quo-
tient module calculates the logarithmic vector fields tangent to the discrimi-
nant and the bifurcation set (Proposition 3, Proposition 7). As applications,
we establish signature formulae for Euler characteristics of real hypersurfaces
(Theorem 4.1) and real complete intersections (Theorem 5.1) by means of
these fields.

1 Introduction

This is a review article on the Gauss-Manin system associated to the isolated
complete intersection singularities (i.c.i.s.) of projection and objects tightly related
with them. The notion of i.c.i.s. of projection has been picked up among general
i.c.i.s. by Viktor Goryunov [1, 2] as good models to which many arguments on the
hypersurface singularities can be applied (see for example Theorem 2.1, Lemma
1). All isolated hypersurface singularities can be considered as a special case of the
i.c.i.s. of projection. Many of important quasihomogeneous i.c.i.s. are also i.c.i.s.
of projection.

The main aim of this article is to transmit the message that the multiplication
tables defined on different quotient rings calculate important data both on ana-
lytic and topological characterisation of the i.c.i.s. of projection. We show that
the multiplication table on the Jacobian quotient module in (O, )" calculates
the logarithmic vector fields (i.e. the coefficients to the Gauss-Manin system de-
fined for the period integrals) tangent to the discriminant and the bifurcation set
(Proposition 3, Proposition 7) of the i.c.i.s. of projection. This idea is present
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already in the works by Kyoji Saito [3] and James William Bruce [4] for the case
of hypersurface singularities (i.e. k = 1).

On the other hand, as applications, we establish signature formulae for Euler
characteristics of real hypersurfaces (Theorem 4.1) and real complete intersections
(Theorem 5.1) by means of logarithmic vector fields. These are paraphrase of
results established by Zbigniew Szafraniec [5].

It is well known in the study of real algebraic geometry, Oleg Viro’s patch-
working method ([6]) furnishes us with a relatively simple and effective method
to construct various nonsingular real plane projective algebraic curves of a given
degree m with different isotopy types. As this method is based on perturbations
of singular curves with quasihomogeneous singularities, our study on the versal
deformation of hypersurface singularities fits into the context of real algebraic
geometry. We shall notice that Viro’s patch working method does not describe
all possible curves corresponding to the full deformation parameter values outside
the real discriminant.

The deformation parameter values s € R* that can be treated by Viro’s method
are located (on a quasihomogeneous curve) in certain specially selected real com-
ponents of the complement to the discriminant. This situation is explained by
the essential use of regular triangulation of the Newton polyhedron of the defining
equation F'(x,s) in his construction. At the end of §6, Example 2, we indicate
cases of real curves with different Euler characteristics that are impossible to dis-
tinguish after patch working method. We hope that this approach would give a
new complementary tool to the topological study of real algebraic curves.

The author expresses his gratitude to Aleksandr Esterov who drew his attention
to the utility of multiplication table and proposed the first version of Theorem 5.1.
The main part of this work has been accomplished during author’s stay at the
International Centre for Theoretical Physics (Trieste) and Hokkaido University
where the author enjoyed fruitful working condition. The author expresses his
deep gratitude to the concerned institutions and to Prof.Toru Ohmoto who gave
him an occasion to report part of results at RIMS (Kyoto) conference.

2 Complete intersection of projection

Let us consider a k—tuple of holomorphic germs

(2.1) fla,w) = (filw,w),--- fule,w) € (Ox)"

in the neighbourhood of the origin for X = (C"*!,0). This is a 1- parameter
deformation of the germ

(22) f(O)(x) = (fl(xa 0)? 7fk($70)) < (OX')k
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for X = (C",0).
After [1] we introduce the notion of R,equivalence of projection. Let p :
C"™! — C be a non degenerate linear projection i.e. dp # 0.

Definition 1 We call the diagram
Y < Cn+1 N C,

the projection of the variety Y — C"™! on the line. Two wvarieties Y;,Ys belong
to the same R, equivalence class of projection if there exists a bi-holomorphic
mapping from C""t to C"*1 that preserves the projection and induces a translation
p — p + const on the line.

In this way, we are led to the definition of an equivalence class up to the following
ideal,

P ) '
(2.3) Ty = OX((%l, ) 8xn> + " (mero) - (Ox)
and the sub-ring,
of
+ . il

that is nothing but the tangent space to the germ of R, equivalence class of
projection. We introduce the spaces

(2.5) Qs = (0x)"/T,

(2.6) Q7 = (Ox)"/T}.

We remark that though T}T is not necessarily an ideal the quotient Q;f can make
sense. Assume that @); is a finite dimensional C vector space. In this case, we
call the number 7 := dich;{ the R, — co-dimension of projection. We denote by
(€1(z,u), -, € (x,u)) the basis of the C-vector space Q;{. If 7 < o0, it is easy to

see that flz,u) = 0 (resp. f(z,0) = 0) has isolated singularity at 0 € X (resp.
0 € X). We shall denote by p the multiplicity of the critical point (z,u) = 0 of
the height function v on Xy := {(z,u) € X; fi(z,u) = --- = fr(z,u) = 0}. Let us

—

consider a R, - versal deformation of f((z)

Fi(z,s)

= F2<I7S)
(27) F(SL’,U,t) = f_to)(x)+€0(x,u)+t151(x,u)+ ’ '+tTgT(x7u> = : )

Fu(z, )
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— —

with éy(x,u) = f(z,u) — f(z,0). We consider the deformation of Xy as follows
(2.8) X, = {(z,u) € X; F(z,u,t) =0},

that is also a (74 1)-dimensional deformation of the germ X, := {z € X; fi(z,0) =
-+« = fr(z,0) = 0}. The following fact is crucial for further arguments.

Theorem 2.1 ([1], Theorem 2.1) For the k-tuple of holomorphic germs (2.1) with
0 < p < 400, we have the equality = 7 + 1.

As a consequence we have p1 = dimcQy.

Recently a conceptual understanding in terms of homological algebra of this
phenomenon appeared. See [7], §3.

Further, in view of the Theorem 2.1 we make use of the notation, S =
(C™10) = (C*0),s = (u,t) € S, so = u,s; = t;,1 < i < 7. We will denote
the deformation parameter space t € T = (CT,0).

-

Let I, C Ox be the ideal generated by kx k minors of the matrix (2222 ... M).

Bx;u ) Oxn
Proposition 1 ([1], Proposition 1.2 ) We have the equality
Ox
fl(xa U), ) fk(xa U)) + ICO .

_ i _ i
I imcQ ¢ szX(

—

Let us denote by Cr(F) the set of critical locus of the projection 7 : | . X; —
S. That is to say

OF (z, s) OF (z, s)

(2.9) Cr(F) ={(z,u,t); (x,u) € X¢, rank( . R .

) < k}.

We denote by D C S the image of projection W(C’I‘(ﬁ )) which is usually called
discriminant set of the deformation X; of projection. It is known that for the R, -
versal deformation, D is defined by a principal ideal in Og generated by a single
defining function A(s) [8], (4.8). Under this situation we define Og— module of
vector fields tangent to the discriminant D which is a sub-module of Derg the
vector fields on S with coefficients from Og.

Definition 2 We define the logarithmic vector fields associated to D as follows,
Derg(log D) = {v € Derg;v(A) € Og - A}.

We call that a meromorphic p—form w with a simple pole along D belongs to the
Ogmodule of the logarithmic differential forms Q% (log D) associated to D iff the
following two conditions are satisfied

DA - w e QF,
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2)dA - w € Q5

or equivalently
A dw e Q5

For the Og-module of the logarithmic differential forms the following fact is
known.

Theorem 2.2 (See [9] for the case k = 1, [8, 10] for the case k general) The
module Derg(log D) is a free Og-module of rank . Furthermore there exists a
p-tuple of vectors vy, - -+, 0, € Derg(log D) such that

A(s) = det(ty, -+, U,).

Proposition 2 (see [11] for the case k =1, [1] for general k)
For every v; € Derg(log D), 1 < j < p, there exists its lifting U; € Derg, o

—

tangent to the critical set Cr(F'). More precisely, the following decomposition holds,

. n oF k i .
Uj(Fy(z, 8)) = th(x, S)a_xq + Zag.q)(x, S)E. +bj (2,8, F), 1 <qg<k
p=1 p

r=1

—

for some hy j(x,5) € O, 5, bjg(x,5,F) € Og, 5 @0, . me. In this notation,
YL 0
UV =V — Z hj,p(fE, S)%
p=1 b

Conwversely, to every vector field {TJ € Derg, g tangent to the critical set Cr(ﬁ) we
can associate a vector field v; € Derg(log D) as its push down.

This is a direct consequence of the preparation theorem (see [12]). Further on in
this article we denote by U(F(x,s)) the action of a vector field ¥ € Derg ¢ on a
function F(x,s).

Lemma 1 ([1]) The discriminant A(s) defined in Theorem 2.2 can be expressed
by a Weierstrass polynomial,

A(s) = u + dy()u ™ + -+ d,(t),
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This can be deduced by another way by making use of (5.5) for the case of CI
(5.1). Namely we have A(s) = detP(s). From this lemma we deduce immediately

—

the existence of an “Euler” vector field even for non-quasihomogeneous f(z,u) that
plays essential role in the construction of the higher residue pairing by K.Saito[13].

Lemma 2 (Fork =1, see [13] (1.7.5)) There is a vector field vy = (u+03(t)) 2+
S 0i(t)Z € Derg(log D) such that

U1 (A(s)) = pA(s).

Proof. It is clear that for a vector field ¥, € Derg(log D) with the component
(u+ o0(t)):2 whose existence is guaranteed by Theorem 3,1 [1] , the expression
U1(A(s)) must be divisible by A(s). In calculating the term of v;(A(s)) that may
contain the factor u*, we see that

T1(A(s)) = pu! + dy (w4 -+ d,, (1)
Thus we conclude that d;(t) = pud;(t), 1 <i<p. m
Now we introduce the filtered Og-module of fibre integrals HP for a multi-
index of negative integers A = (A1, -+, \x) € (Zo)F.

[g(s) = /tm oz, 8)Fy(x, s)™ - Fi(x, s)Md,

for ¢(x,s) € O, ¢ Let us denote by X@ := {2 € X; F,(z,s) = 0} a smooth hy-
persurface defined for s € D. In this situation we define the Leray’s tube operation
isomorphism (see [15, 14]),
t: Hyp(N,X@) — H,(X\U_ X©),
gl — t(7).
The concrete construction of the operation ¢t can be described as follows. First we
consider the co-boundary isomorphism of the homology groups,

5 Hn—k(ml;:lX(q)> N n_k+1(m§:2x(q) \ X(l)).

A cycle v in ﬂ’;:lX @ is mapped onto a cycle §(7) of one higher dimension that
is obtained as a S* bundle over 7. Repeated application of § yields an iterated
co-boundary homomorphism,

Hn—k(ﬂZ:1X(q))—>6 n—k—i-l(ﬂ];:QX(Q) \ X(l))—>5 ..
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N L 1(x(k \Uk lX ) 5Hn(X'\U’;:1X(Q)).

The Leray’s tube operation is a k—time iterated 6 homomorphism i.e. ¢t = §™. The
Froissart decomposition theorem ([14], §6-3) shows that the collection of all cycles
of Ho(X \UE_ X (@) are obtained by the application of iterated § homomorphism

operations to the cycles from Hn_p(f( NX@nx@...AnxX®) p=0-- k.

Further without loss of generality, we consider the situation where a versal
deformation of a mapping f(o)(:v) can be written down in the following special
form for s = (u,t) € S,

Fy(z,t) +u

o Fy(x,t
F( f_to +Zt464 +ue0 ) 2(' )

Fu(z.,t)

for

{éo(2),--- & (2)} € @,
where &(z) = *(1,0,---,0). We adopt the notation Fy(z,t) +u = Fi(z,s). One
may consult [8] (6.7) to see that F(z, s) really gives a versal deformation of f10(x)

by virtue of the definitions (2.3), (2.5). )
Let us recall the Brieskorn lattice defined for the singularity X

o
— X
dFy(z,5) A+ NdFy(z,8) A AU 4 (Fi(z,s), - Fr(a, s))0s

that is known to be a Og free module of rank /i :the Milnor number of the singularity

Xy ([17], Proposition 2.6). We denote its basis by (¢y(z)dz, - - - ,wu(:r;)dx).
Now let us introduce a notation of the multi-index —1 = ( 1,---—1) € (Zo).
We consider a vector of fibre integrals Iy :=" (Ifb:l)(s), s If% )( )). The following

theorem for & = 1 has been announced in [3] (4.14) without proof.

Theorem 2.3 For every v € Derg(log D), we have the following inclusion rela-
tion

7 HEY — HH
That is to say for every vU; € Derg(log D), there exists a p X fi matriz with
holomorphic entries B;(s) € Mat(u, ji) @ Og such that

Uj(Iy) = Bj(s)ly,1 < j < p.
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Proof. First we remark the following equality that yields from Proposition 2,

@-( ) (ar)Fl(x,s)1-««Fk(x,t)1d;c) -

n
p

_ /t( () Y1) e L)

p=1
k k k
+/ Flé(m)(ZZaﬂFrFql)der/ FSTF (e u,t, Fde
t(v) g=1 r=1 t() g=1
= [ Fo) Y1 gl ) )
t() p=1
k
+ /( (3 o)
v r=1

The last equality can be explained by the vanishing of the integral
/ Frteoo1-v. Fq’2 M Flo(x, u)(aj,)dr =0,
t(v)
because of the lack of the residue along F.(z,s) = 0 and
/t( )F*qulFQQFq*1¢(a:, w)(b9 (2, s))dz =0,
v

in view of the lack of at least one of residues either along F,, = 0 or along F,, = 0.

These equalities are derived from the property of the Leray’s tube ¢(v) which

needs co-dimension k residue to give rise to a non-zero integral. We consider the
P

class in W of an n—form d(¢p(x) Y0, (=1)P " h;p(2, s)dx, . dx,) which permits a
representation like

ji k
Z Ay(s)e(z)dx + dFy(z, 8) N+ -+ NdFg(x,s) A dw + Z Fy(x, )V,
/=1 q=1
for w € Q’;{k_l, Vg € 2%. Thus we get the following equality

n

/t ) Frd(o(x) S (~ 1) hyp(, s)day - - day) =

p=1

~
||M:
LN
=
—
V)
S—
~
pl
[ay
—
V)
SN—
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Which ev1dently belongs to H(Y. This can be seen from the fact that both
S Fal, 5) )F~15, and Ju FYdFy(2,s) A -+ A dFy(x,s) A dw vanish. The first
because of lack of the r651due along Fj(z,s) = 0 and the second by virtue of the
Stokes theorem. m

As will be indicated below, the versal deformation (2.7) is not mini-versal defor-
mation of f((z) and we have in general i > i (See [17], §5.1). Let us restrict the
deformation (2.7) to a subspace of a versal deformation 77 C S with a coordinate
system (t},--- ,t3) € T" so that every t; coincides with some s;,. This can be done
in view of the fact that the Milnor number is larger than the Tjurina number of
FO(z). Let us denote the restriction of Iy to 7" by Ly (#') and that of D to T” by
D'

Corollary 1 The vector of fibre integrals Ly (t') satisfies the following Pfaff system
of Fuchsian type
dly(t') = Q- Iy (t),

for some Q € End(C*) ®o,, Qp.(log D).

Proof. In modifying all arguments above into the case for the deformation pa-
rameter space T’ we get the following version of the above Theorem 2.3, That is
to say for every o; € Dery/(log D'), there exists a ji X fi matrix with holomorphic
entries Bj(t') € Mat(,u, ft) ® Ops such that

F(Ta(t) = By Tat), 1 < j < i

Let us rewrite the relation obtained above into the form,

w
-1 -1
(t) = § :wqﬂfm ()
r=1

for some w,, € Q% (—D’) meromorphic 1-forms with poles along D’. These w,,
satisfy the following relations,

(I V() = (), dIy, — J,qurﬂ V() 1<j,q<

tz

If (7, wq,) € O for all ¥ € Derpi(log D') 1 < j < fi then wy, € Qy(log D') in
view of the modified verswn of Theorem 2.2 which requires only the deformation
by T" of fO(z) be versal. =

Let us introduce a filtration as follows HW = @/\IJF_._HFA HX . For this
rough filtration we have the following generalisation of the Griffiths’ transversality
theorem ([16] Theorem 3.1).
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Corollary 2 For every ¢ € Derg(log D), we have the following inclusion relation
7 HY — HW,
Proof. For 0,1y € HF=Y and ¥, € Derg(log D) we have
Uy(0s; 1) = [Up, Os; 1o + 05,00 (1s)

= [Ug, 85].]Iq> + 85]. (Bg(s)ﬂp) = [Ug, 85].]Iq> + (asng(S))Lp + Bg(S)(astp).

As the commutator [vy,ds;] is a first order operator, the term above [vy, d;,]/e
belongs to H(*~Y. The term Os;By(s)1e € H(F) again belongs to H(~*~D. Thus
we see Uy(0s,lo) € HF=D_ In an inductive way, for any A < —k we prove the

statement. m

3 Multiplication table and the logarithmic vec-
tor fields

Let us consider the C vector space

P = Ox
T [Co + OX(fl(:E) + u, f2($)7 T >fk<x>>

and fix its basis. We remark here that the basis of & can be represented by
functions from O ¢ as we can erase the variable u by the relation f(z) = uin ®. It
turns out that we can regard {¢o(x), -, ¢-(z)} as a free basis of the Og module
®(s) treated in the Proposition 6 below. Under these circumstances, we introduce
holomorphic functions 7/,(s) € Og in the following way.

(3.1)

(3:2) di(@)8(x) =) i i(s)@x)

OF (z,s) OF (z, s)

mOd(OXXS<—8x1 R B

JFi(z,8), -+, Fr(x, 8))).

The functions 7¢.(s) € Og exist due to the versality of the deformation F(z, s).

12
We denote by

(3.3) T;(s) = (Ti{j(s))og]‘,zgv’

a p x g matrix which is called the matrix of multiplication table. We denote
the discriminant associated to this deformation by D C S.
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Further on we will make use of the abbreviation mod(d, F(z, s)) instead of mak-

ing use of the expression mod(OXXs@g(fls), - BFQS‘»’ 2 Fy(x,8), -, Fu(x,8))).

After Proposition 2 the vector field v; constructed in Lemma 2 has its lifting
o € Der g, . Let us denote by ¥’ U =0, — T € Oz, ® Dery.

Lemma 3 There exists a vector valued function M(x, F(z,s)) € (O, cr)* such
that

~

(F(z,s)) = M(z, F(z,s)) mod(d,F(z,s)),

with . . .
M(z,F(z,s)) = M°- F(x,s) + M (z, F(z,s)),

where M° € GL(k,C): a non-degenerate matriz and M*(z, F(z,s)) € (O @m2)*.
Especially the first row of M° = (1,0,--- ,0).

Proof. First of all we remember a theorem due to [17] §1.1, [3] Proposition 2.3.2
which states that the Krull dimension of the ring of holomorphic functions on the
critical set Cr(F) is equal to g — 1 and this ring is a Cohen- Macaulay ring. Let
us denote by L = ,C%. We have (k + L)tuple of k X k— minors jgii(x,s) ---
Jrar(z, s) of the matrix (aa F(z,s),- - ,Bi F(z,s)) such that

Cr(ﬁ) = V(<F1(£L’, 5)7 o 7Fk(x7 5)7jk+1(x7 S)? T ajk+L<x7 S)))
The lemma 2 yields that the lifting 1A71 of the vector field ¢ satisfies the relations,
<F1(37, 8)7 e 7Fk($> S)?jk+1(x7 5)7 T 7jk+L(':C7 S>>

= (Bu(Fi(w,8)), - 00 (F(,9)), 01 G (2.9)), - 01 Grr (2, 9)).

As it has been seen from the above Proposition 2, the vector @ is tangent to Cr(F).
If the above equality does not hold, it would entail the relation

{s € S;A(s) =0}

;T‘-(V(@:}’I(Fl(‘r? S))7 e 751(Fk(x7 S))vé’l(]’k-‘—l(l’a 5))7 T 731(jk+L(x7 S))>)),
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after elimination theoretical consideration. This yields

k+L
U1 (Fy(z, s)) ZCngxs)—l—quF Z jgﬂ?S 1 <q<k,
=1 t=k+1
k+L
vljpxs Z jz$8+mp(a:F)k+1<p<k+L
(=k+1

for m,,(a;,ﬁ) € Oy ®@m%, 1 <r < k+ L and some constants C’g,l < ¢ < k.

First we see that the expression 0, (jp(x,s)) cannot contain terms of F(z,s) like
F,(0,s) in view of the situation that the versality of the deformation makes all
linear in = variable terms dependent on some of deformation parameters. Secondly
the non-degeneracy of the matrix M := (C})1<q.¢<k is necessary so that the above
equality among ideals holds. From this relation and the preparation theorem, we
see

6 (Fir, ) = MO+ iz ) + Mz, F(z, 5 zhu o 208)
J

with MY (z, F(z,s)) = (my(z, F),--- ,my(z, F)) € (05 @ m2)*.

More precisely we can state that C1 =1, C¥ = 0,2 < ¢ < k. The dependence
of some coefficients of {71 on F;(z,t) is necessary so that Cf # ( for some 2 < ¢ < k.
But this is impossible because if not it would mean that some of the coefficients of

7, contains factor Fy(z,s),-- , Fi(z, s) that contradicts the construction of @ in
OF (z,s)

Proposition 2. This can be seen from the fact that the expressions rrrmat I

mgix’s), 8%21’5), e BF(;(I ) do not contain the deformation parameters present in
n 1 Sp

the polynomials Fy(x,s), -, Fix(z,s). m

Lemma 4 A basis of logam’thmz’c vector fields vy, -+ ,U; € Derg(log D) can be

produced from the functions ot(s) defined as follows,

T

G(E(2,9)) - dilw) = M(w, F(z,5)) - dilx) = Y 0f(s)é + T (F(x, )

=0

o!(s)é mod(d,F(z,s)),
=0
where the vector valued function M(z, F(z,s)) denotes the one defined in the
Lemma & and v; = Zzzl hj,(x, s)a%p is a certain vector field with holomorphic
coefficients.
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Proof. We remark the following relation,

0(F(x, 5))g:(x)

T T

Il
o
S
—~
)
~—
g
—~
8
~—
<
—
8
~—
S
SN
—~
S
s
ﬁj
—~
8
VA
~—
~—

<.

The relation (3.2) above entails,
Mz, F(z,5)) - 6:(x) = 303 (o)t (s)én(a) mod(d,F(z, s)).
(=0 j=0

As ¢;(x) can be considered to be a basis of Og module ®(s) above (see Proposi-
tion 6), vectors (o9(s), - ,07(s)), 0 <i < 7 are Og linearly independent at each

)

generic point S\ D. If we put

then the vector field 7; Derg . o

_ZU +¢z( )

is tangent to Cr(F). The only non-trivial relations that may arise between ; and
T i 4 is
¢i(x) iy = dur ()T,

These vectors give rise to the same push down vector field in Derg(log D). Namely,

W*(QSZ(.T)’{_J;/) ZZR’LZ 2J
7=0 ¢=0
for the coefficients Rf ; .(s) determined by

Zvl $;)¢i(x) Py ZZR” y z)mod(d, F(z, s)).

7=0 ¢=0
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—

This means that ¥y, - - , ¥, form a free basis of DerXXs(Cr(ﬁ)) hence vy, - -+ , Uy
that of the module Derg(log D). m

This lemma gives us a correspondence between ¢;(x) € ® and v; € Derg(log D),
therefore it is quite natural to expect that the mixed Hodge structure on ® would
induce that on Derg(log D), and would hence contribute to describe B;(s) of
Theorem 2.3, 1 in a precise manner. A good understanding of this situation is
indispensable to characterise the rational monodromy of solutions to the Gauss-
Manin system in terms of the mixed Hodge structure on ¢. Confer to Proposition
8 below.

We formulate the lemma 4 into the following form (see [4] Theorems A2, A4,
9] (3.19), [3] (4.5.3) Corollary 2 for k = 1 and [8] (6.13), [1] Theorem 3.2 for k
general).

Proposition 3 There exist holomorphic functions w;(s) € Og, 0 < j < 7 such
that the components of the matriz

(3.4) (s) = ij(S)Tj(S),

give rise to a basis of logarithmic vector fields Uy, - - , v, € Derg(log D). Namely,
if we write ¥(s) = (Jf(s))0<i o< » then the expression

(3.5) U; = iaf(s)i,
=0 (93@

consists a base element of the Og module Derg(log D).

—

Especially in the case of quasihomogeneous singularity f(z,u) we have the
following simple description of the vector field that can be deduced from Lemma
4. To do this, it is enough to remark that the vector field v; is the Euler vector
field by definition and v (s,) = ZE;;; sy, where w(s;) denotes the quasihomogeneous
weight of the variable s;.

Proposition 4 (/2] Theorem 2.4) In the case of quasihomogeneous singularity
(2.1), the basis (3.5) of Ders(log D) can be calculated by

T

oi(s) = w(s;)s;7li(s).

J=0

Furthermore, the vector valued function M (z, ﬁ(m, s)) of Lemma 3 has the expres-
s10m,

—

M(:L’,F((E,S)) = Mo-ﬁ(gj,s) = diag (w(fl)a"' 7w(fk))'ﬁ(x7s)'
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4 Multiplication table and the topology of real
hypersurfaces

In this section we continue to consider the situation where p =7+ 1 for k =1 in
(2.5). We associate to the versal deformation of the hypersurface singularity

(4.1) F(x,s) = f(x)+ Z siei(x),

the following matrix X(s) = (0£(s))o<is<- after the model (3.2),

T

(4.2) F(z,s)e;(x) = Z ol(s)es(z) mod(d,F(z,s)).

(4.3) ei(z)ej(x) = erj(t)eg(x) mod(d, F(z,s)).

=0

Further on we make use of the convention eg(x) = 1 and s = (sg,t). We denote the
deformation parameter space t € T = (C",0).

We recall the Milnor ring for £ = 1 whose analogy has been introduced in (2.5)
(and in the case k general, ®(s) will be introduced in Proposition 6),

T OF (x,s OF (z,8)\ *
OXXS( a(ggl)v"'7 ag;n )>

We introduce the Bezoutian matrix B (s) whose (7,7) element is defined by the
trace of the multiplication action F'(z, s)e;(x)e;(x)- on the Milnor ring Qr,

F(z,s)ei(z)e;(x) = (Y of(s)ec(w))es ()

=> oi(s)>_ 7, (t)er(z))mod(d, F(z, s)).
c=0 r=0
For the sake of simplicity we will use the following notation,

(4.4) T"(t) = (Tep(t))o<eb<r

To clarify the structure of the Bezoutian matrix B (s) we introduce a matrix

(4.5) T(t) = <Z Q(t)¢’"(t)> ,



LOGARITHMIC VECTOR FIELDS 16

with the notation
(4.6) G(t) = tr(en(x)) =D 7l (1)

The (4, j) element of the matrix 7'(t) (4.5) equals to tr(e;(x)e;(x)-) on the Milnor
ring Qp. It is possible to show that {t € T;det(T(t)) = 0} coincides with the
bifurcation set of F'(x, s) outside the Maxwell set (see Proposition 7 below). Thus
we get the Bezoutian matrix

(4.7) B (s) = X(s) - T(1).

Following statement is a simple application of Morse theory to the multiplication
table see [5] Theorem 2.1. From here on we assume that |s| is small enough and
denote by X = {z € C™|z| < 6} a closed ball such that all critical points of
F(x, s) are located inside X.

Proposition 5 sign %(s) - T'(t) ={ number of real critical points in F(x,s) > 0,
x € X NR"} -{ number of real critical points in F(z,s) <0, x € X NR"}. Here
sign(A) denotes the signature of a symmetric matriz A i.e. the difference between

the number of positive and negative eigenvalues.

Let us denote by h(x,t) the determinant of the Hessian

2
h(z,t) := det O F(z,s) :
axz@xj 1<ij<n

We associate the following p holomorphic functions hy(t),--- ,h.(t) € Og to the
function h(x,t),

(4.8) h(z,t) = hy(t)eo(x) mod(d,F(x,s)).
=0
Further by means of (4.7) we introduce the matrix

(4.9) B (t) =) n'()r' (1),

where
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We consider the matrix B (s) = (-)o<qp<- whose (a, b)—element is defined by the
trace of the following expression on the Milnor ring Qr,

(4.10)  h(z,t)F(z,s)eq(x Z he(t)es(x Z o) Z Top(t)em())

zm o5(s)TIh (0 ed(z)en (@)

3
K
K

he(t)og(s)To (1) Z sz(t>er($) mod(d, F(z,s)).

{=0 c¢=0 m=0
If we take the trace of this, we get

PEACH I NOLAGIHPEMGIAG)
=0 m=0 (=0 r=0
After (4.8) and (4.9) this matrix has the following expression,
(4.11) BPF(s) = %(s) - BY(¢).
We consider the following closures of semi-algebraic sets,
W_o:={z € XNR" F(z,s) = 0},
Wso:={z € XNR"; F(x,s) >0}, Weq:= {x € X NR"; F(z,s) <0}
Theorem 4.1 The following expression of the Euler characteristics for W, holds,

sign(BH(t)) + sign(BAT (s))
5 :
sign(BA (1)) — sign(B7 (s))
5 :

X(W>o) — x(W=o) =

X(Weo) =x(W=o) = (=1)"

Proof. After Szafraniec [5], or simply applying Morse theory to the real fibres of
F(z,s), we have the following equalities,

S (sgnh(a,1))

xEcritical points of F'(x,s)

= sign(tr(h(z,t)e;(x) - €;(x)))1<ij<n = > (—1)2).

xEcritical points of F(x,s)
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Here we denoted by tr(h(x,t)e;(z) - ej(x)-) the trace of a matrix defined by the
multiplication by the element h(z,t)e;(x) - e;(x) considered mod(d, F(x,s)) for the
basis e;(x),1 <i < p.

Z (sgn h(x,t))(sgn F(z,s))

zEcritical points of F'(x,s)
= sign(tr(h(z, ) F(z, s)ei(x) - €;(x)))1<ij<n
- Z (—=1)*@ (sgn F(z, s)).

x€Ecritical points of F'(x,s)

We denoted by tr(h(z,t)F(z, s)e;(x) - e;(z)-) the trace of a matrix defined by the
multiplication by the element h(z,t)F(x,s)e;(z) - e;(x) considered mod(d,F(x,s))
for the basis e;(x),1 < i < p. The exponent A(z) is the Morse index of the function
F(z,s) at  and sgn h(z,t) = (=1)*@), =

5 Topology of real complete intersections

Let us reconsider the situation (3.1) for the deformation of the CI,

Fi(z,t) —u
— FQ(I,t)
(5.1) Fla,u,t) = : |
Fi(z.t)

with s = (u,t) € S. Define the ideal I, (t) C Og, g generated by k x k minors of

. /OF(z,0,t OF (z,0,t
the matrix ( gf:’l’),...’ 6(2))

We have the following isomorphisms

P = Ox
- Ox(filx) —u, fo(x), -, fr(x)) + 1c,(0)
(5.2) S Ox

~ O (fal@), -, fil@)) + 10, (0)

where I, (0) is the corresponding ideal in O ;. The dimension of this space is equal
to p introduced in Proposition 1. As for this number we remember that it can be
expressed by means of the Milnor number of the singularity X, := {z € X; fy(z) =
-+ = fi(z) = 0} and the Milnor number of the function f; restricted on Xj i.e.
that of the singularity X, := {z € X; fi(z) = fo(z) = - - - = fu(z) = 0},

= p(X1) + p(Xo).
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This formula is known under the name of Lé-Greuel formula [18, 17].
Let us denote by ¢;(x) € ®,1 < i < u a basis of ®.
Proposition 6 We have the following free Os module of rank p,

Oz
(s) = Oz g(Fa(z,t),- - ,;k(%t)) + 1oy (1)

Proof. We reproduce the argument by [4], Lemma A 1. First of all we see that
the module ®(s) is a finitely generated Og module. This can be shown by a
combination of the Weierstrafl-Malgrange preparation theorem and the fact that
for each fixed s € S the space

Ox

(5.3) O (Fo(z,1), - B, 1)) + Iey (1)

is a finite dimensional (< ) C vector space (see [5]).
The above space (5.3) is isomorphic to the direct sum of C vector spaces,
P o
OX,ac’<F2(xv t)7 B Fk<x’ t))ﬂc’ + ICo(t)

{a'3(a’ 5)eCr(F)}

CL‘/

Since this direct sum has dimension g = the multiplicity of the critical point
(z,u) = 0 of the height function on Xy, as mentioned at the very beginning of the
paper, it follows that {¢;(x)}o<i<, form in fact a C basis of (5.3). Now we see that
they form in fact ®(s) freely. If not, there exist holomorphic functions {a;(s) }o<i<-
such that >, a;(s)¢;(x) = 0 in ®(s). It would contradict the fact that for each
fixed s, {¢i(x)}o<i<- are linearly independent in (5.3). m

Let us consider the multiplication table

(5.4) (F1(z,t) — u)di(x)
= Z pf(5>¢€<x> mOd(OXx,S’(F?(xv t)? e 7Fk‘(x7 t)) + I, (t))

Thus the matrix

(5.5) P(s) == (pi(s))oziecr = (7 (t) — w- 0y 0)o<ie<r,

is defined. In analogy with (3.3), we define another multiplication table

(56) ¢Z('r>¢J(x) = wa,j(t)gbf(x) mOd(OXXS<F2('r7t)’ U 7Fk(x’ t)> + ICo(t))'
=0
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We will denote by W¢(t) the matrix (wg,(t))o<sp<-. Hence,

(5.7) (Fi(2,t) = u)ga(2)dp(x) = Y pl(s) () du(2)
(5.7) = 0a(s) D wip(t)pelx) mod(Og,s(Falw,t), -+, Filw,t)) + Iey (1)):

(5.8) Celt) = tr(e(z)) = D wly(t).

Thus

T

(5.9) tr((Fy (2, 8) = u)da(2)dp(2):) = Y pals) D wip(t)G:(D).

c=0

We introduce the notation,

T

(5.10) T(t) =) CtWe(t).
c=0
;From here on we assume that |s| is small enough and denote by X = {z €

C"; |x| < d} a closed ball such that all critical points of Fy(z,t) —u on Fy(z,t) =
-+ = Fy(z,t) = 0 are located inside X.

In combining the results of [5], theorem 2.1, Theorem 2.4, Theorem 3.1, with
our above arguments we get the following.

Theorem 5.1 1. The discriminant set of the deformation of projection X, is given
by the matriz (5.5),

(5.11) D = {s € S;det(P(s)) = 0}.

2. { number of positive critical points of Fi(x,t) —u on Fy(z,t) =
Fip(z,t) =0, v € X NR"} - { number of negative critical points of Fy(z,t) —u on
Fy(z,t) == Fi(zx,t) =0, z€ XNR" }

= sign(P(s) - T(t)).
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In opposition to the case k = 1, we cannot write down a simple formula for
Euler characteristic of closures of semi-algebraic sets,

W, ={z e XNR"; Fi(z,t) —ux0, Fy(x,t) = = Fy(x,t) = 0},

with x =>, < =. As a matter of fact, it is quite easy to establish an analogous
theorem to [5] Theorem 3.3 on x(W>q) & x(W<o) by the aid of matrices introduced
above. We leave this task as an exercise in view of complicated form of the analogy
to the Hessian.

The bifurcation set By, is defined as Bp, := {t € T; number of critical points

of Fy(z,t) —u on Fy(x,t) = -+ = Fg(x,t) = 0 is strictly less than p} \ By. Here
By denotes the Maxwell set of Fi(z,t) — u, namely By, := {t € T; two critical
values of Fi(x,t) —u on Fy(x,t) = --- = Fy(x,t) = 0 coincides }.

Proposition 7 The bifurcation set has the following expression

(5.12) Bp, = {t € T:;det T(t) = 0}.

Proof. We consider the critical set
Co(t) == {x € X;dF\(x,t) NdFy(z,t) A--- A dFy(z,t) = 0,
Fy(x,t) = -+ = Fy(x,t) = 0}.

Here we remark that the critical set Cy(t) has codimension n in X for a fixed
generic value ¢ and it is a set of points. After [5] Corollary 2.5, the rank of T'(¢) is
equal to the number of points {p € Cy(t)}. Therefore T'(t) degenerates if and only
if |Co(t)| < p which means our statement. m

Regretfully, to the moment we cannot state how to deduce the basis of Derg(log D)
from the matrix P(s). Consequently we cannot establish the relationship between
the Gauss-Manin system and the topology of the real algebraic sets. This fact is
due to the situation mentioned in the Remark 1 below.

To remedy the situation, we state a proposition on the multiplication table and
the coefficients to the Gauss-Manin system.

Let us consider the multiplication between ¢; and ¥; by the following way,

0(¢i(x)h;p(z, 5))

(5.13) o, =

= Z R;j(8)¢T<x>m0d(o)~(><s<p2(xa t)? T Fk(x> t)) + [Co (t))

Here 0, = >t h;p(z,s)5> denotes the vector field that has been defined in

Tp
Lemma 4.
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Proposition 8 The Gauss-Manin system for the period integrals I d()i_l)(s) intro-
duced in the Theorem 2.3 is expressed by means of multiplication tables (5.6) and
(5.13) as follows,

I
=" ((tr M®) - wlj(s) + RE,()) IS V(s) 1< jq <
/=1

Here tr M° stands for the trace of the non-degenerate matriz M° defined in Lemma
3.

Proof. First of all we remark the following chain of equalities,

a —
_)j ¢z 1d ) gbz ( _F_1> d
- ( t(7) v t(v) ( )aSg ZB

k

b 8F (x,s
- 2 /m) DFFD oyl ds¢ ))dx'

=1

Here we remember Lemmata 3, 4 and see that the above expression equals to

k
/( bi(z)d;( <ZF ZC’SFZ(LS)+mq(x,ﬁ(x,s)))> Fldx

(=1

k
- / ¢i(x) Y (=)' dF, Ny (da)Fy B
t(v) q=1

As the terms with Cf, £ # ¢ (resp. terms with mg(z, F(z,5)) € Og ®m% ) vanish
because of the lack of residues along Fy(z,s) = 0 (resp. some other F,.(z,s) = 0),
the last expression in its turn equals to

/t( )¢i(x)¢j(:v)(z CIF,(x,8))F; ' Ftde + /t( )d(czﬁi(:v)ia,.(dx))F‘l

ZCQ/( i () (x 1dm+2/ 2)F'dz
"

=" ((tr M) -wl;(t) + RE () 15,V (s).

(=1
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Remark 1 The rank of C—module of Leray coboundaries t(7) € Hn()N(\U’qul{x €
X; F,(z,s) = 0}) is equal to u(Xp): the Milnor number of the singularity X
due to the tube operation isomorphism ¢ : defined in Lemma 2. In view of the
Leé-Greuel formula mentioned in connection with (5.2), the dimension p of the
space ® is bigger than u(X,) as it represents the sum of the ranks of (n — k)—
dimensional cycles and (n — k 4+ 1)—dimensional cycles. Thus we have no exact
duality between the integrands and the integration cycles. This means that the
Gauss-Manin system of the above Proposition 8 is defined only for the Riemann
period matrix of size p x pu(Xo).

To get the the Gauss-Manin system defined for the Riemann period matrix of
size 11(Xo) x 11(Xo), one need to consider the multiplication table on the Brieskorn-
Greuel lattice

2%

N dFy(xz,s) A+ NdFy(z,s) A dQ}_k_1 + (Fi(z,s), -+, Fy(x, s)}Q”X’

H

that is known to be a Og free module of rank j(X,). This procedure can be done
in an analogous way to that in Proposition 8. For the case of quasihomogeneous
i.c.i.s., the concrete calculus of the the Gauss-Manin system is done by means of
Brieskorn-Greuel lattice in [19].

6 Examples
1. Let us consider the simplest example of the Pham-Brieskorn singularity,
F(x1,79) = 25 + 25 4+ u + bry 29 + ey + das,

with deformation parameters s = (u,t) = (u,b,c,d). We calculate the data (4.4),
(2.4), (4.10), (4.11) as follows.

1 0 0 0

1 0 —1/3d 0  1/9bc
T =

0 0 —1/3c¢ 1/9bd

0 1/9bc 1/9bd 1/9dc

1 0 0

2

L 0 0 1/9b

0
1
0 0 -1/3b —1/3¢
0 1/9b* —1/3¢ 1/9bd
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0 0 1 0
, 0 —-1/3b 0 —1/3d
T =
1 0 0 1/9p?
0 —1/3d 1/9b* 1/9bc
000 1
001 0
™=
010 0
100 1/90?
Y(s)
3u 2d 2¢ b
—2/3d*+1/9b%c 3u+1/90° —bd 2c
| —2/32+1/90%d —be 3u+1/90° 2d
5/9bed —2/3 4+ 1/30%d —2/3d>+1/3b*c 3u+1/9b
8 b 16 be 16 bd b* + 16 dc
16 be —8b%d b* + 16 dc 8/3b%c — 16/3 bd>
B =
16 bd b! + 16 dc —8b%c 8/3b%d — 16/3 bc?
b*+16dc 8/3b%c —16/3bd*> 8/3b°d —16/3bc* X b dc+ 1/91°)
bl.l b1.2 b1.3 b1.4
byt bog bys b
BHF (g — V(). B — 2.1 022 023 024
() = 2(s) byt byz bss bys |
b4.1 b4.2 b4.3 b4.4
where

4
bi1=24ub* +80bcd +b° b1y = by = —% d*b* + 14/3 b*c + 48 ubc + 32 dc?,

4
biz=bz1 = —% *b* +14/3b*d + 48 ubd + 32 d*c,
152 32 32

big=0bs1 = 5 b*dc — 3 be® — 3 bd® + 3ub* + 48 udc 4+ 1/90",
112 4 1
bo = ==~ bed® + % b’c? — 24 b*du — gb5d,



LOGARITHMIC VECTOR FIELDS 25

152 2 2
bas =bz2 = %bsdc— %bc3 — 3gbd3 + 3ub* + 48 udc +1/90",

b2.4 = b4.2 = b3.4 = b4.3

106 32 17 176
= —2—7 02b4 — ? CSd + ﬁ bGd + ? b20d2 + 8Ub3d — ]_6 UbCQ,
112 64 17
b3.3 = —? bd02 + 3 bSd2 — 3 b5C — 24 b2CU

245 32 32 56 1
byis = — bed + 16 bAd? — = 3b® — =v3d® + = ub’d 1/3ub® + —bv°.
14= o cd + c 9 c 5 + 3 ub“de + 1/3ub® + 1

After Theorem 4.1 the signature of this matrix gives us the Euler characteristic
of real algebraic sets defined by F(x,s) >,<,=0.
We calculate the determinants of these matrices.

det(B') = 1/9 (256 b°d® + 768 d*c? + 96 b*de — b° + 256 *1?)”

det(3(s)) =
1 23 11
8/3b%c*d — ——= b¥cd + 8/3d*ch® + = b*d*c® + 32ubc’d® — — ub’cd — 30 u*b*de
243 27 9
_ L Vod® — L bicd — 32 d*c + 240 d® +1/3u*0° + 9u’b® + L ub’
243 243 9 243

20 20 16 16

—5 UC3b3 — 3 U,bgdg + 24 c3u2 + 8]_ U4 + ? dG + 3 C6

The discriminant of the polynomial det(X)(s) with respect to the variable u is
calculated as follows,
Dscrim(det(X), u)

= 27(d — ¢)*(d* + dc + ¢*)?(256 b*d® + 768 d*c* + 96 b*dc — b° + 256 *b*).
These results combined with the Proposition 7 calculate the Maxwell set,
M = {s € C%(d—c)* (d® + dc+?)* = 0}.

Example 2. The versal deformation of the singularity Fg.
We consider the following deformation,

F(x,y,t) +u=2"+y* + gry* + dy* + cxy + by + az + u.

with ¢t = (a,b,¢,d, g). As F(z,y,0) is a quasihomogeneous polynomial in (z,y),
we attribute to the deformation parameters (u,t) € S corresponding quasihomo-
geneous weights. This means that there is a C* action on the space of deformation
parameters S. This allows us to consider X = C? | § = CS in the arguments of §4.
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Thus we deal with the global parameter values t € C®. Essentially all the infor-
mations on the multiplication table (4.3) are contained in the following equivalence
relations,

2= —-1/3gy* —1/3cy — 1/3a mod(d,F(z,y,t),d,F(z,y,t))

v =(—1/2g9y —1/4c)x —1/2dy — 1/4b

2y = (1/12gc +1/6 g*y)x +1/12gb — 1/3cy® + (1/6dg — 1/3 a)y

22y = (1/6 ¢*y* +1/4 gey+1/12)z+(1/6 dg—1/3 a)y*+(1/12 gb+1/6 cd)y+
1/12 cb

vy} = ((—=1/2d—1/12¢%)y—1/24 g*c—1/4b)x +1/4 gcy® + (1/6 ga+1/12 2 —
1/12 g?d)y — 1/24 g*b + 1/12 ca

w2y = (1/4g9cy® + (1/3ga — 1/3g%°d +1/12¢* —1/36 ¢°)y — = g*c+ 1/6 ca —
1/12g%0 — 1/12dgc)x + (1/12gb+ 1/6 cd + 1/12 g*c)y® + (—1/36 g*d + 1/18 g*a +
1/3ad+1/36 g*c* — 1/6d*g +1/12cb)y + 1/36 g*ca — 1/12dgb — = g*b + 1/6 ab

zyt = ((-1/12¢% — 1/2d)y? + (—1/4b — 1/6 g*c)y — 1/16 gc*)x + (1/12* —
1/12g%d + 1/6 ga)y* + (—1/24 g*b — 1/8dgc + 1/12 ca)y — 1/16 gcb

2?7yt = ((1/12¢% +1/3ga — 1/36 ¢° — 1/3 g*d)y*+
11

7
( a9 c 1/8¢°b+1/6ca 5l dgc)y

—1/12gcb — 1/32 g*c® — 1/24 Pd)x

1
+(1/3ad — 1/6d*g +1/18 g°a — 1/36 g*d + 1/12¢cb + ﬁ g*c)y?

1

+(—=1/12¢cd* — 1/16 g°cd + 1/6.ab — 1/8dgb + 1/48 gc* + % g*ca — 5g4b)y

—1/48 gb* — 1/24 cdb + 1/48 gc*a — 1/32 g>ch.

We can write down these results in the form of matrices (4.4) and the polynomials
Ce(t), 1 <k <6, (4.6),

1 O 0 0 0 0
_a by be
0 —3 0 12 0 2,
_b ac __ bg”
100 0 0 1 12 24
T =1 b 0 be ac _ by’
12 12 12 24 D1
0 0 _b ac _ bg? _beg
4 1 2 16
0 be ac_bg? _beg  _bed  bg 4 ac’g  beg?
i 2 12 24 b1 16 24 8 18 s
h __ab bdg acg? bgt
where p1 = 75 — 57 + % — T
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[0 1 0 0 0 0 i
C C2
1 0 0 - 0 bﬁ )
2_ |00 0 0 i Ry
05 0 2 1% Pz
O 02 b_Z 2 _Z_ﬁ 02 2d _b16 2 .3
|0 5 —1-%7 P2 % T T B as -
ac cd bg? cgt
where py = 93 — 55 — 57 — i,
2
C2:g§~
[0 0 1 0 0 0
c a d cd b
0 - 0 —5+% Od T+
7_3_ 1 0 0 0 D) T
- a d cd b )
0 _5_1_79 0 F_’_l_g 71 T3
0 0 —%l T —g T2
| 0 %d—l-%g Ty r3 r2 re |
where
2 ag dg?
r = — i -
126 127
ac cdg bg?
/]“ —_— —— —_—
‘T 12 8 24
be ad d? 2 qg? 3 dgt
o bead g g ag dgt
12 6 12 72 36 72
ab cd®> g bdg acg® cdg® bgt
ry=— — - - — :
T2 12 T 48 12 18 24 144
A
[0 0 0 0 0
2 C
0 0 1 % 0 dTg .
g _d_ g
= ; 912 ’ 2; d_293 2 ag_ df _ g
L5 0 T, 213 wmte 6, m
0 0 _9 _d_g _c _b_ cg”
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where
5c? 2a d g2 5
Te=Tos=T3a=Tuz=Tso=Ts1 =35 + 32 -4 - &,
d? 11262 | ag® _ dg* 4
Tog="Tgo="0 +22d <94 9~ L ag” 49" 9"
’T ’@+22adid29_i11029236_|_ ag3_6dg4 _997216’
4,4 = 79 3 3 1136d b62 9 216
—ac _ 1lcag 09" _ cg"
Tis=Tsa=%—"1" — 5 ~
Tyo = Tog = 5 ~ Uple — 4
T55_d2_5029_a92_|_d93_|_£
5 = 12 3 3 72
_ __ab _ cd? 25¢3g  5bdg 5acg® Tcdg® 5bg*  cg®
T =To4a = 2, 37:‘ 1442 P 125d'2|'2 125 s s 18 752d 36 2
_ _3c2d _ Tbcg _ 2adyg g% _5c%g°> _ag g 90
T56 = To5 = 8§, 12 3 2+ b%2 23 24, d12 + - t i
_— 5¢® _ bbed _ ad® _ Vg actg | d°g
Tos = 144 12 3 g t— @ t 7t
+a292 _3502dg2 _ 17bcg’ __ badg +d2g4 _590295 _ag6 +dg7+ g0
9 72 72 18 8 864 54 72 2592

It is a conceptually easy exercise to calculate further B¥(s) and BHT(s) to es-
tablish correspondence between parameter value s = (a,b, ¢, d, g,u) and the Euler
characteristic of a semi-algebraic set defined by F(z,y,t) + u.

For instance, for the values

—06<a<1,(bedgu)=(—0.4,01,0.1,-0.1,-10),

we calculate with computer (Mathematica computation achieved by Galina Fil-
ipuk) x(Wso) = x(W<o) = 0, while for the values

-1<a<-08,(b,c,d, g,u)=(-04,0.1,0.1,-0.1,—10),

we have x(Wsg) =1, x(W<o) = —1.
For the values

1<a<—08,(b,ecdgu)=(—04,0.1,0.1,-0.1,8.5),
we have x(Wsg) = —1, x(W<o) =1, and
—-06<a<1,(bcd gu)=(-04,0.1,0.1,-0.1,8.5),

we have X(WZO> = O,X(Wg()) =0.

It is worthy noticing that the first two cases (resp. last two cases) give us
examples of topologically different isotopy types of the real curve for the same sign
combination of coefficients (-, —,+,+,—,—) (resp. (—,—,+,+,—,+)). These
examples show the cases that Viro’s patchworking method could not distinguish.
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