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Preface

This is a solution manual for Tom Apostol’s Introduction to Analytic Number Theory. Since
graduating, I decided to work out all solutions to keep my mind sharp and act as a refresher.
There are many problems in this book that are challenging and worth doing on your own,
so I recommend referring to this manual as a last resort. The most up to date manual can
be found at gregorvhurst.com. Please report any errors you may find.

Clearly some problems are harder than others so I used the following markers to indicate
exercises | found hard:

(+) denotes problems I found particularly challenging.

(++) denotes what I considered to be the most challenging problem of the chapter.

Furthermore I kept track of the exercises from which I learned the most, which are naturally
the ones I recommend the most:

Exercise 1.24  Exercise 1.30 Exercise 2.8 Exercise 3.12  Exercise 4.24
Exercise 4.25  Exercise 4.26  Exercise 4.27  Exercise 4.28  Exercise 4.29
Exercise 4.30  Exercise 5.13  Exercise 5.18  Exercise 5.19  Exercise 5.20
Exercise 6.18  Exercise 10.8  Exercise 10.9  Exercise 10.13 Exercise 11.15

Exercise 11.16 Exercise 12.12 Exercise 12.19 FExercise 13.10 Exercise 14.5
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Chapter 1
The Fundamental Theorem of
Arithmetic

In there exercises lower case latin letters a, b, c, ..., x,y, 2 represent integers.
Prove each of the statements in Exercises 1 through 6.

Exercise 1.1. If (a,b) = 1 and if ¢ | @ and d | b, then (¢,d) = 1.

Proof. Since a and b are relatively prime, there are integers x and y such that ax + by = 1.
Also because ¢ | a and d | b, we have a = cn and b = dm for some integers n and m. Thus
c(nzx) + d(my) = 1, which implies (¢, d) = 1. O

Exercise 1.2. If (a,b) = (a,c¢) = 1, then (a,bc) = 1.

Proof. Since a is relatively prime to both b and ¢, there are integers xy, s, y1, y2 such that
ar; +by; =1 and axs + cys = 1.

Multiplying gives

(azy + byr)(aza + cyp) = 1 = a’x125 + acrrys + abrays + beyrys = 1
= a(ar1z2 + cr1y2 + brayr) + (be)(y1y2) = 1
= (a,bc) = 1.

Exercise 1.3. If (a,b) = 1, then (a®,b*) = 1 for all n. > 1,k > 1.

Proof. Suppose p | a™ and p | b* for some prime p. Then p | a and p | b, as p is prime. This
implies p | (a,b), a contradiction. ]

Exercise 1.4. If (a,b) = 1, then (a +b,a — b) is either 1 or 2.
Proof. Since (a,b) = 1, there are integers x and y such that az + by = 1. Then

(a+b)(z+y)+ (a—b)(z —y) = (az + bz + ay + by) + (ax — bz — ay + by)
= 2az + 2by = 2.

Thus (a + b,a —b) < 2,1i.e. (a+b,a—0b) is either 1 or 2. O
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2 Chapter 1 Solutions

Exercise 1.5. If (a,b) = 1, then (a + b,a* — ab + b?) is either 1 or 3.

Proof. Let g = (a+b,a*>—ab+b*). Since (a+b)*— (a® —ab+b*) = 3ab, we have g | 3ab. This
means each prime factor p of ¢ must divide 3, a, or b. However without loss of generality , if
p | athen p | (a+b) —a = b. This contradicts (a,b) = 1, and so p 1 ab. Therefore (g, ab) = 1,
which means g | 3,i.e. g =1 or g = 3. O

Exercise 1.6. If (a,b) = 1 and if d | a + b, then (a,d) = (b,d) = 1.

Proof. Let g = (a,d), which means ¢ | a and ¢ | d. Additionally, d | a + b implies b = nd — a
for some integer n, and so g | b. Thus g | (a,b), which forces g = 1. The same argument
shows (b,d) = 1. O

Exercise 1.7. A rational number a/b with (a,b) = 1 is called a reduced fraction. If the sum
of two reduced fractions in an integer, say (a/b) + (¢/d) = n, prove that |b| = |d|.

Proof. Since n = (ad + be)/(bd), both b and d divide ad + be. This means b | ad and d | be,
but since (a,b) = (¢,d) = 1 we must have b | d and d | b. Therefore |b| = |d|. O

Exercise 1.8. An integer is called squarefree if it is not divisible by the square of any
prime. Prove that for every n > 1 there exist uniquely determined a > 0 and b > 0 such
that n = a%b, where b is squarefree.

Proof. Suppose n > 1 and n = p{* - --pp*. Define

a = pll'al/QJ . .pll%ak/2j

a1 mod 2 «yj, mod 2
1 .

and b=p Dy

We then have n = a?b since «; = 2 |;/2] + (o mod 2). Moreover, b is square free.
Now suppose n = c*d for ¢ > 0 and d > 0. Then a?b = c*d which means a® | ¢*d.

However, d is squarefree so it follows that a? | ¢®. Similarly ¢? | a?, thus |a?| = |¢?|. This
forces a = c as they are both positive. Substituting a = ¢ into a?b = c*d shows b = d. Hence
this decomposition is unique. O]

Exercise 1.9. For each of the following statements, either give a proof or exhibit a counter

example.
(a) If b* | n and a® | n and a® < b?, then a | b.
(b) If b? is the largest square divisor of n, then a? | n implies a | b.

Solution.
(a) False: Let n =36, a =2, and b = 3.
(b) If n = p{* -+ pi* and b* is the largest square divisor of n, then by Exercise 1.8,

b=p /P pi
If a2 | n, then a = pi* - - - pl* where 8; < |@;/2]. Thus a | b.

Exercise 1.10. Given z and y, let m = ax + by, n = cx + dy, where ad — bc = £1.
Prove that (m,n) = (z,v).



Proof. Observe m and n are expressed as linear combinations of z and y. This means
(z,y) | m and (x,y) | n, which implies (z,y) | (m,n).
Treating m = ax + by and n = cx + dy as a system of linear equations, solving gives

Furthermore, since ad — be = £1, then © = +(dm — bn) and y = +(an — em). So applying
the exact argument from above, we conclude (m,n) | (x,y). This can only happen when
|(z,y)| = |(m,n)|, and since ged’s are positive, (z,y) = (m,n). O

Exercise 1.11. Prove that n* + 4 is composite if n > 1.
Proof. Factoring shows
nt+4=(n*+4n* +4) — 4n?
= (n* +2)* — (2n)
= (n*+2n+2)(n* —2n +2).
Observe for n > 1, both factors are larger than 1 and so n* + 4 is composite. O

In Exercises 12, 13, and 14, a, b, ¢, m, n denote positive integers.

Exercise 1.12. For each of the following statements, either give a proof or exhibit a counter
example.

(a) If ™ | ™ then a | b.

(b) If n™ | m™ then n | m.

(c) If a™ | 2b™ and n > 1, then a | b.

Solution.
(a) True: Suppose a = p{* ---pp*. Then a™ | b" implies b" = p{** - - - pp** - q?ﬂl e ql"ﬂl. This
means b = pi* .- p* 'qlﬁ1~~qlﬁl, ie alb.
(b) False: Let n = 8 and m = 12.
(c) True: If a is odd then (a,2) =1 and a™ | b", hence (a) implies a | b.
Now suppose a = 2°d where s > 0 and d is odd. Since a” | 20",

20" =2"d"m

for some integer m. Thus
= 2n(s—1)+(n—1)dnm‘

Since n — 1 > 0, 2=D+(=1) ig not an nth power, which means m must be even. Therefore
bn — 2nsdn(m/>n — an(m/)n’
and so a | b.

Exercise 1.13. If (a,b) =1 and (a/b)™ = n, prove that b = 1.

If n is not the mth power of a positive integer, prove that n'/™ is irrational.



4 Chapter 1 Solutions

Proof. If (a/b)™ = n, then a™ /0™ — n/1 = 0. Thus by Exercise 1.7, [b™] = 1, and so b = 1.
Next suppose n'/™ = a/b where (a,b) = 1. Then n = (a/b)™, which we now know implies
b = 1. Therefore n = a™, i.e. n is an mth power. n

Exercise 1.14. If (a,b) = 1 and ab = ¢", prove that a = 2™ and b = y™ for some x and y.
[Hint: Consider d = (a,c).]

and b = qlfl e qlbl where all p; and ¢; are distinct. Then

k

Proof. Suppose a = pi* - - p}

n

_a ag b by
C _pll...pk 'qll'”ql7

and so
oo I g i,
Since each p; and g; are distinct, n | a; and n | b;. Therefore a and b are nth powers. O]

Exercise 1.15. Prove that every n > 12 is the sum of two composite numbers.

Proof. 1f n is even, then n =4+ (n —4) and n — 4 > 2 is even. On the other hand, if n is
odd, then n =9+ (n —9) and n — 9 > 2 is even. O

Exercise 1.16. Prove that if 2" — 1 is prime, then n is prime.
Proof. Suppose n is composite and n = ab for some a > 1 and b > 1. Then
" —1= (29" —1=(2% —1)(290"V 4 20D ...y 90 1),
Since both factors are greater than one, 2" — 1 must be composite. O

Exercise 1.17. Prove that if 2" + 1 is prime, then n is a power of 2.

Proof. Suppose n = 2°d where d is odd and d > 1. Then
o 1 1= (28) 41 = (2F £ 1)(2FWD 9P WD .y 9P 92 4
Furthermore since d > 1 is odd,
(220D _92@=2y 4 (922 9Py 415044041 =1

Hence both factors are larger than 1 and so 2" 4+ 1 is composite. Thus if 2" + 1 is prime,
then d =1, i.e. n is a power of 2. O]

Exercise 1.18. If m # n compute the ged (a®” + 1,a*" + 1) in terms of a. [Hint: Let
A, = a* + 1 and show that A, | (A, —2) if m > n.]



Solution. Let g = (A, Ay), where m > n and define Ay, = a?" +1. Now
An—2=d" -1
= (a®)*" " ~1
= (@ + 1)@ @D @2 @) g2 )
= A, (a¥FTTD T g g2 ),
and hence A, | (A,, —2). This shows g | A,, —2 and g | A,,, thus by linearity g | 2. If a

is even, then A, is odd and hence g = 1. On the other hand, if a is odd, then Ay is even,
giving g = 2.

Exercise 1.19. The Fibonacci sequence 1,1,2,3,5,8,13,21,34, ... is defined by the recur-
sion formula a,.1 = a, + a,_1, with a; = a3 = 1. Prove that (a,,a,y1) = 1 for each
n.

Proof. Induct on n. It’s clear (a;,as) = 1. Let n > 1 and assume (a,,_1,a,) = 1. Then
(anaan—l—l) - (anyan + an—l) - (anyan—l) = 1.
O

Exercise 1.20. Let d = (826,1890). Use the Euclidean algorithm to compute d, then
express d as a linear combination of 826 and 1890.

Solution. Applying the Euclidean algorithm,

1890 = 2 - 826 + 238
826 = 3 - 238 + 112
238=2-112+ 14
112 =8-14+ 0,

hence d = 14. Through back substitution,

14 =238 — 2112
= (1890 — 2 - 826) — 2(826 — 3 - 238)
— (1890 — 2 - 826) — 2(826 — 3 - (1890 — 2 - 826))
= 7-1890 — 16 - 826.

Exercise 1.21. The least common multiple (lem) of two integers a and b is denoted by |a, b]
or by aMb, and is defined as follows.

[a,b] = |ab|/(a,b) ifa#0andb#0
[a,b] =0 ifa=00rb=0.

Prove that the lem has the following properties:

(a) If a = [[2, pf* and b = [[32, pb* then [a,0] = [[2, pf, where ¢; = max{a;, b;}.
(b) (aDb)Me = (aMc)D(bMe).

(¢) (aMb)Dec = (aDc)M (bDc).

(D and M are distributive with respect to each other.)
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Proof.
(a) If ¢; = max{a;, b;} and m; = min{a;, b;}, then by definition [a, b] = [[22, p{* " ™. Now
it’s easy to see a; + b; = ¢; + m;, and hence [a,b] = [[.2, .

For the next parts assume a = [[55, p®, b = [[25, p, and ¢ = [[2, ps.

(b) We have
(a,8).¢] = [T o™ TTpr] = T ottt

([Cl, C], [b, C]) _ (Hp;nax{ai,ci}’ Hp;nax{bi,ci}> _ Hp;nin{max{ai,ci},max{bi,ci}}'

To show these exponents are equal, we will compare the two in a table.

and

ordering | max{min{a;, b;},¢;} | min{max{a;, ¢;}, max{b;, ¢;} }
a; > by > ¢ b; b;
a; > ¢; > b b; b;
by > a; > ¢ b; b;
bi > ci > a a; a;
ci > a; > b b; b;
c; > by > a; a; a;

This shows max{min{a;, b;}, ¢;} = min{max{a;, ¢;}, max{b;, ¢;}} and the result follows.

(¢) We have
(1a.0.¢) = ([T o T ) = [T mesteot)

[(CL, C), (b, C)] _ [H pgnin{ai,ci}7 sznin{bi,ci}] _ Hp?ax{min{ai,ci},min{bi,ci}}.

To show these exponents are equal, we will compare the two in a table.

and

ordering | min{max{a;, b;},¢;} | max{min{a;, ¢;}, min{b;, ¢;} }
a; > by > ¢ Ci Ci
a; > ¢; > b; b; b;
by > a; > ¢ Ci ¢
b; > ¢; > a; b; b;
¢ = a; > b b; b;
c; > by > a; b; b;

This shows min{max{a;, b;}, ¢;} = max{min{a;, ¢;}, min{b;, ¢;}} and the result follows. [
Exercise 1.22. Prove that (a,b) = (a + b, [a, b]).
Lemma 1.22. If (¢,d) = 1, then (¢ + d,cd) = 1.

Proof of Lemma. Suppose p | ¢ +d and p | cd for some prime p. Then without loss of
generality p | ¢, and so p | (¢ +d) — ¢ = d. This means p | (¢, d), a contradiction. O



Proof of Ezercise. Note by Theorem 1.4 (c) if ¢ > 0, then (ac, bc) = ¢(a,b). Now if g = (a, b),
then a = gn and b = gm for some integers n and m. By Lemma 1.22

(a+b,[a,b]) = (a+0b,ladb|/g)

g(n+m), £gnm)

(
g(n+m,nm)
g

]

Exercise 1.23. The sum of two positive integers is 5264 and their least common multiple
is 200 340. Determine the two integers.

Solution. We have a + b = 5264 and [a,b] = 200340. So by Exercise 1.22,
200340 = ab/ (5264, 200 340) = ab/28,

and therefore
a+b=5264 and ab= 5609520.

Assuming a < b, solving the system gives a = 1484 and b = 3780.

Exercise 1.24.++) Prove the following multiplicative property of the ged:

a k b h
w0 = w000 (5. 55) ()
In particular this shows that (ah,bk) = (a, k)(b, h) whenever (a,b) = (h, k) = 1.

Lemma 1.24. If n, m, and g > 0 are integers, then g = (n,m) if and only if (n/g, m/g) = 1.
Proof of Lemma. By Theorem 1.4 (c),
(n.m) =g <= (9(n/g),9(m/g)) =g < g(n/g,m/g) =g < (n/g,m/g) =1.
[
Proof of Ezercise. Let ay = a/(a,b),b; = b/(a,b),h; = h/(h,k), k1 = k/(h,k). Then apply-

ing Lemma 1.24,

a k b h
(ah,bk) = (@, b) (k. ¥) ((a, b Th, k)) ((a, b’ <h,k>>
<~ (CLlhl, blkl) = (CLl, k1)<b1, hl)

— ( aq hl b1 ]{?1 ) -1
(ah kl) <b17 hl)7 (51, hl) (Cll, kl) '

a _ _h _ b _ _k . Y,
(a1,1k1) = (b1,}11) B = (blylhl) 0= (alvlk’l)' Then by Lemma 1.24,

(,6) =1 and (v,0)=1.

Now define a =
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Additionally, note

a b

“Caen TGy

for some d; and ds, so Lemma 1.24 shows («, 5) = 1 and similarly (,4) = 1. This means
ary and 36 can share no positive divisors other than 1, that is (a7, 89) = 1. O

Prove each of the following statements in Exercises 25 through 28. All integers are positive.
Exercise 1.25. If (a,b) = 1 there exist x > 0 and y > 0 such that az — by = 1.

Proof. If a = 1 then take x = b+ 1 and y = 1, so we can assume a > 1 and b > 1. Since
(a,b) = 1, there are z and y such that ax+by = 1. If x > 0 and y < 0, we're done. Otherwise
we make a few quick observations.

e r # 0 and y # 0 because a # 1 and b # 1.
e 1z and y can’t both be negative since this implies azx + by < 0.
e r and y can’t both be positive since this implies az + by > 1.

So at this stage we must conclude x < 0 and y > 0. Define z,, = x 4+ bn and y, = y — an for
some integer n. Then

azx, + by, = ax + abn + by — abn = ax + by = 1,

so choosing n large enough to force x,, > 0 and y,, < 0 gives the result. O

Exercise 1.26. If (a,b) = 1 and 2 = 3° then x = n® and y = n® for some n. [Hint: Use
Exercises 25 and 13.]

Proof. Suppose (a,b) = 1. Then by Exercise 1.25, there are positive ¢ and d such that

ac — bd = 1. We then have

xad — ybd — yac—l.
Raising both sides to the power 1/a, yields z? = y°-y~/%, or in other words y'/* = y°/2¢ € Q.

By Exercise 1.13, this implies y is an ath power and so y = n® for some positive n. Finally
% = yb — nab — (nb)a’
hence raising both sides to the power 1/a gives z = n°. O]

Exercise 1.27.4)
(a) If (a,b) = 1 then for every n > ab there exist positive x and y such that n = ax + by.
(b) If (a,b) = 1 there are no positive x and y such that ab = az + by.



Proof.
(a) Let n > ab and consider the sequence

S={n—-ib|1<i<a}.

Each member of S will have a different remainder when divided by a, since (a,b) = 1 and
adding n simplify shifts the conjugacy classes. Since |S| = a, we deduce there is a unique
element in S that is divisible by a. That is to say there is n — yb € S such that n — yb = ax.
Since 1 <y < a we have ax = n — yb > 0, which means = > 0.

(b) Suppose ab = ax + by, where x > 0 and y > 0. Then a(b — x) = by which means a | by,
but since (a,b) = 1 we have a | y. If y = az, dividing through by a gives b = = + bz. Thus
b(1 — z) = z, which means 1 > z as > 0. This is a contradiction since y > 0 implies z > 0.
Thus ab = ax + by has no solution for x > 0 and y > 0. O

Exercise 1.28.c1) If a > 1 then (a™ — 1,a" — 1) = a™™ — 1.

Proof. If m = n, the result is immediate. Suppose m > n and m = gn +r with 0 < r < n.
Then
a” —1=a"" —1
=a"(a™—1)4 (a" = 1)
=a (@' +--+a+1D(a"—1)+(a" —1).
Since 0 < r < n, we have 0 < a"—1 < a”—1. By the Euclidean algorithm, if we continue this

process, we’ll arrive at the ged. But this process is also performing the Euclidean algorithm
on the exponents, starting with m and n. From here we see (a™ —1,a" —1) = amm —1. O

Exercise 1.29. Given n > 0, let S be a set whose elements are positive integers < 2n such
that if @ and b are in S and a # b then a { b. What is the maximum number of integers that
S can contain? [Hint: S can contain at most one of the integers 1,2,22 23 ... at most one
of 3,3-2,3-22, ... etc.]

Solution. Define
Sm:{m,Q-m,22-m,...} for1 <m<n.

Notice we can only have at most one element from each S, in S, since if z,y € S, and
x <y, then z | y. This means |S| < n. Now let

S={k|n+1<k<2n}

Note |S| = n and no element divides another since a nontrivial multiple of any element is
not in .S. Thus for any n, the maximum size of S is n.

Exercise 1.30.+) If n > 1 prove the sum

is not an integer.
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Proof. Rewrite H,, as
(n!/1)+ (n!/2) + -+ (n!/n)

n!

H, =

Let m be the exponent of the highest power of 2 in {1,2,...,n}. If 2! is the largest power
of 2 that divides n!, then [ > m. Thus the highest power of 2 that divides the integer n!/2™
is 217 If n > 1, for any k # 2™, the highest power of 2 that divides the integer n!/k is at
least 2/~™*1. So we can factor out 2!~™ from the numerator of H,, leaving the k = 2™ term
odd and every other term even. Thus after cancelation, the numerator of H, is odd, while
the denominator stays even. This means H,, ¢ Z for n > 1. ]



Chapter 2
Arithmetical Functions and Dirichlet
Multiplication

Exercise 2.1. Find all integers n such that
(a) ©(n) =n/2, (b) ¢(n) = ¢(2n), (c) p(n) =12

Solution.

(a) Suppose n = 2°d, where d is odd. If p(n) = n/2, then 2 | n, which forces s > 0. Thus
o(n) = p(2°)p(d) = 257 p(d). This means 2°'p(d) = n/2, which implies p(d) = d. This
can only happen when d = 1, since ¢(d) < d — 1 for d > 1. Therefore p(n) = n/2 if and
only if n = 2° for some s > 0.

(b) Again suppose n = 2°d, where d is odd. If s = 0, then p(n) = ¢(d) and p(2n) =
0(2)p(d) = o(d). If s > 0, then p(n) = 25 1p(d) and ¢(2n) = 2°p(d). So we see
o(n) = ¢(2n) if and only if n is odd.

(c) Suppose ¢(n) = 12, then [[,,(p* — p» 1) = 2.2.3. Note, it could happen that
p® — p®~ ! = 1. This can only happen when p = 2 and @ = 1. So if we find an odd n that
satisfies our problem, 2n will satisfy it too.

e Solve p* — p®~1 = 12: This can only happen for p = 13 and a = 1. Thus n = 13 and
n = 26 are solutions.

1

e Solve p® — p»~1 = 3: Then p*~!(p — 1) = 3, and since 3 is prime, either p*~! =1 or

p — 1= 1. From here it’s easy to see there is no solution.
e Solve p® — p?»~! =2 and ¢* — ¢! = 6: By inspection, the solutions are
{p,a} ={2,2} or {pa}={31}

and
{g.0} ={3.2} or {q0}={7.1}.

Grouping distinct primes above, solutions are n = 36, n = 28, n = 21, and n = 42.

11
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Exercise 2.2. For each of the following statements either give a proof or exhibit a counter
example.

(a) If (m,n) =1 then (p(m), p(n)) = 1.

(b) If n is composite, then (n,p(n)) > 1.

(c) If the same primes divides m and n, then np(m) = me(n).

Solution.

(a) False: Take m = 3 and n = 5, then (p(m), p(n)) = (2,4) =
(b) False: Take n = 15, then (n,p(n)) = (15,8) = 1.

(c) True: Since p | m if and only if p | n,

G H0) -10-5) -

plm pln

Exercise 2.3. Prove that

Proof. Suppose n = p{* - --pi* where a; > 0. Then since ”—: * 1 is multiplicative,

2(d
H (d)) HZ,U

21]0(‘0

-1

d|n

1—1>

1 n
:gl—l/pi - o(n)

Exercise 2.4. Prove that ¢(n) > n/6 for all n with at most 8 distinct prime factors.

Proof. Note cp(l) =1 > 1/6. Now suppose n > 1 has at most 8 distinct prime factors, then

et

pln
>2—1 3—1 5—-1 7—-1 11—-1 13—1 17—1 19—-1
- 2 3 5 7 11 13 17 19
55296 55296 1

323323 ~ 331776 6
[l

Exercise 2.5.¢+) Define v(1) = 0, and for n > 1 let v(n) be the number of distinct prime
factors of n. Let f = u* v and prove that f(n) is either 0 or 1.
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Proof. Note that f(1) = p(1)v(1) = 0. We will now show f(n) = I(k) for n = py---py,
k > 0, and p; distinct. Suppose n is the product of & > 0 distinct primes. Then n = pm for
some prime p { m and thus

i ()l

= Zp,(d)u <p- %) + ZM(Pd)V %)
. djm

= Sty (1 () + 3ty ()
= dm

= uld)+ > p(d)y (%) = 2_nldy (%)
e i djm

= I(m).

Here we used p(pd) = p(p)u(d) = —p(d) and v(pz) = 1+v(z) for (p,d) = (p,x) = 1. Finally
suppose n = p*m for some a > 1. Then partitioning the divisors of n by the power of p in
their factorizations,

Sutw () =3 3wt (3)

dln =0 pid|n
(p,d)=1

= 21: > ulp'dv (p‘” : %)

i=0 djm

=> v (p“ : ZL

In the final steps we again used p(pd) = u(p)u(d) = —u(d) for (p,d) =1 and

(o) () ()

for (p,m) =1and a > 1.

Exercise 2.6. Prove that

S u(d) = ()

d?|n
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and, more generally,

ZM { if m* | n for some m > 1,

otherwise.
dk|n

The last sum is extended over all positive divisors d of n whose kth power also divide n.

Proof. 1f all prime factors of n have an exponent is less than &, then 3, u(d) = p(1) = 1.
Otherwise suppose exactly r prime factors have an exponent greater than or equal to k.
Since p(d) is zero when d is not squarefree,

;“(d) = 2 nld) = (8) + (D(—l) + (g)(—l)2 ot (;)(—1)’“ —(1—1) =0.

dk|n
d O-free

]

Exercise 2.7. Let p(p,d) denote the value of the Mdbius function at the ged of p and d.
Prove that for every prime p we have

1 ifn=1,
> uldpu(p,d) =2 ifn=p"a>1,
dn 0 otherwise.

Lemma 2.7. For p prime, u(p,-) is multiplicative.

Proof of Lemma. Let d = p*-¢}" - . If a > 1 then (p,d) = p and thus
k
p(p,d) =—1=—1-1--- ) [ nw.a)
=1

If a = 0 then (p,d) = 1 and thus

k
plp.d)=1=1---1= ] u(p,¢")
i=1

Therefore p(p, -) is multiplicative. ]
Proof of Ezercise. It n =1, 3, wu(d)u(p,d) = p(1)p(p, 1) = 1. If n = p* where a > 1, then

> u(d)pu(p,d) = Z u(p)p(p,p') = n(Dp(p. 1) + p(p)u(p, p) = 2.

din
Otherwise by the Lemma 2.7, the sum in question is multiplicative, so
k
> udplp,d) =2 or )] D ud) =
dn =Ly
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Exercise 2.8.++) Prove that

Zp, )log™(d) =0

dn

if m > 1 and n has more than m distinct prime factors. [Hint: Induction.]

Proof. If m = 0, then n must have at least one prime factor, so as the sum in question equals
I(n), it must be zero. Now assume the claim holds for all natural numbers less than m + 1
and consider the case where n has k > m + 1 distinct prime factors. Since p(d) = 0 when d
is not square free, assume n = p; - - - pr. Then

> p(d)log™ H(d) =) [u(d) log™ (d)] log(d)

dn dln

= log(ps) [1(d) log™ ()]

dln p;ld

Here we are summing over all d and p; such that d | n, p; | d, and hence p; | n. Instead, first
sum over p; | n, then over each divisor d where p; | d. This gives

> log(p) [u(d) log™(d)] = > > " log(ps) [1(d) log™ (d)]

dln p;ld piln dlﬁi
= log(pi Zu ) log™(
piln P; Id
= log(pi) Y, wlpid)log™ (pid)
piln d|(n/pi)
m m —i .
= Sloal) 3 @y ( ) log™ (py) log?(d)
piln aAlnfp) I J
m . .
— Y log( Z (j) log™ 7 (p) S pu(d) log/(d).
piln = d|(n/p:)
By the induction hypothesis the innermost sum is zero, hence the claim is proven. O

Exercise 2.9.¢+) If x is real, x > 1, let ¢(x,n) denote the number of positive integers < z
that are relatively prime to n. [Note that ¢(n,n) = ¢(n).] Prove that

D=Sun 2] i Yo (30 -t
dn

dn
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Proof. We have

[z/d]
Soud |5 =23 wla)
dn dn k=1
lz)
=3 3w 1)
k=1 d|(n,k)

The change in order of summation at (1) is justified in the proof of Theorem 2.3.
Now let

Se=A{12,..., x|}, Ain(d)={ke€S.|(k,n)=d}, and f,.(d)=]|A..(d)|
Then >, fon(d) = [z], since {A;,(d)} partitions S,. Moreover

Jon(d) =#{k |0 < k <z and (k,n) = d}
=#{k/d|0< k/d<z/dand (k/d,n/d) =1}
= #{q]0<g<wz/dand (¢,n/d) =1}
= p(x/d,n/d).

Therefore 3, ¢ (%2,2) = |z]. O
In Exercises 10, 11, 12, d(n) denotes the number of positive divisors of n.
Exercise 2.10. Prove that [, ¢t = ndm/2,
2
dn) _ _ (™) = L I
Proof. n —Hn—Ht <t>—<Ht)<Ht)—<Ht> . O
tln tin tln tln tin
Exercise 2.11. Prove that d(n) is odd if, and only if, n is a square.

Proof. Count divisors of n in pairs: ¢ and n/t. Each pair will have distinct members unless
t = n/t. Thus d(n) is odd if and only if there is a divisor ¢ such that t = n/t,i.e. n =t>. O

2
Exercise 2.12. Prove that }_, d(t)? = <Zt|n d(t)) .
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Proof. Letting n = p{* - - - p%, then since d is multiplicative,

(@ = w)(m) = [T = ) ) = [T D20k + 1)
-1 i=1 k=0
=11 ( kit 1)) = [T (@ w)pt)”
i=1 \k=0 i=1
= ((dxu)(m)’,
where we used the identity S0 % = (320, i)%. O

Exercise 2.13. Product form of the Mébius inversion formula. If f(n) > 0 for all n and if
a(n) is real, a(1) # 0, prove that

Hf “("/d if, and only if, f(n Hg bin/d)

dln dln
where b = a~!, the Dirichlet inverse of a.

Proof. Suppose g(n) = Hdm f(d)*™/4) Since f > 0 (and hence g > 0), we can take logs of
both sides. Since log takes products to sums, we have

= [ f(@)** = logg = (log f) xa

dln

1

Now because a(1) # 0, there is an inverse b = a~', which tells us

logg = (log f) xa <= (logg) *b=log f.
Taking the exponential of both sides completes the proof. n
Exercise 2.14. Let f(x) be defined for all rational z in 0 < x <1 and let
£10) w0 £40)
=1\ W=

(a) Prove that F* = p % I, the Dirichlet product of p and F.
(b) Use (a) or some other means to prove that pu(n) is the sum of the primitive nth roots of

unity:
Z e2mkz/n

(kn) 1
Lemma 2.14. For n > 1, the set
S ={kn/d|ddividesn, 1 <k <d, (k,d) =1},

is equal to {1,...,n}.



18 Chapter 2 Solutions

Proof of Lemma. If 1 < m <mn, let m/n = k/d where (k,d) = 1. Then m = kn/d and thus
{1,...,n} CS.

Next, suppose kin/d; € S and ken/dy € S where kyn/d; = ken/dy. This implies
kidy = kody, and so since (k;,d;) = 1, the d’s must divide each other and the k’s must
divide each other. Therefore d; = dy and k; = ko, so each element of S is unique. Since

1 < kn/d < n, this shows S C {1,...,n}. O
Proof of Exercise.
(a) We have
* “( kn/d
werm=Yrw=y 3 r(5) =3 3 s ().
dln dln (kd_) L din (kd_) L

By Lemma 2.14,

n

> Z (=) =3 (£) - Foo

din =
(k d) 1

Through Mobius inversion we find F* = p* F.
(b) Letting f(z) = €™ then F(n) =Y _, ™™ = I(n) (a well known identity). Thus

p(n) = (pxI)(n) = (u* F)(n) = F*(n).
Remark. An alternate proof is to apply Lemma 3.12 on F*(n). O

Exercise 2.15. Let @g(n) denote the sum of the kth powers of the numbers < n and
relatively prime to n. Note that ¢o(n) = ¢(n). Use Exercise 14 or some other means to

prove that
pp(d) _1F 4.4 nf
Z de nk )

dln

Proof. Let F(n)=>"_ (%)k Then by Exercise 2.14,

F(n) = (ux F*)( Z Z ( )

(m, d)

1 k Spk(d)
dln (mmd) L dln

Exercise 2.16. Invert the formula in Exercise 15 to obtain, for n > 1,

v1(n) = %ngp(n), and  pq(n) = —n o(n) + — H (1—p).

Derive a corresponding formula for ¢s(n).
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Solution. Letting Ni(n) = n(n 4+ 1)/2, then by Exercise 2.15 we have ¢1 x N = Ny, which
implies o1 = Ny * N~' = Ny % (uN). Thus

i)~ ta 0 3) )

dn
~5n 2 (§) <5 2 ()

= %ngp(n) + %nl(n)

Since I(n) = 0 for n > 1, the result follows.
Letting Ny(n) = n(n+1)(2n+1)/6, then by Exercise 2.15 we have @ * N2 = Ny, which
implies o = Ny * (N?)7! = Ny x (uN?). So

pa(n) = éz d(d+1)(2d + 1)u (%) (g)Q
dln

_ %M%du 5+ n(G) + e (5)u(5)

dn dln

= ) + g 1(n) + on [T (Ve )0

2 7
1 1 1
= 5”290(”) + 5"21(”) +tgn [Ta-n),

Since I(n) = 0 for n > 1, the result follows.
Letting N3(n) = n*(n+1)%/4, then by Exercise 2.15 we have 3% N = N3, which implies
@3 = N3 (N3)~1 = N3« (uN?). So

= s n (3) (2)

d|n

= S () e g S () + S () ()

dln

= neln) + 3 T() + 3 [ (N o)

1 1 1
= Z—lnggo(n) + En?’l(n) + Z—an [[a-p).
p

1 1
= an’go(n) + ZnZ H(l —p), forn>1.

pln

FExercise 2.17. Jordan’s totient Jj is a generalization of Euler’s totient defined by

Je(n) = n” H(l —p M.

pln
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(a) Prove that
n\k L
Tn) =" () (3) and n* =3 Ji(d).
dln d|n
(b) Determine the Bell series for Jj.

Proof.
(a) The claim is trivial for n = 1, so assume n > 1. Since both J;, and p* N* are multiplica-
tive, we only need to look at prime powers:

an k
p a a—
Sl (5) = u60) + u) )
d|p®
_ pak . p(a—l)k
=p™(1-p7")
= Ju(p").
The second identity follows directly through Mobius inversion.
(b) Since Jy, = px N*, (Ji)p(x) = pp(x) N (x). Using

> 1
k Rt o o &
,up(x)zl—aj‘ and NP(x)InZ:()(p) Zz :]_—pkl'7
we have 1
—x
(‘]k)p<x) = l_pkx'

]

Exercise 2.18. Prove that every number of the form 2°71(2¢ — 1) is perfect if 2¢ — 1 is
prime.

a—1 a—1 a—1
Proof. Verifying directly, o(n) = E 2"+ (27 -1) E 2 =2¢ g 28 =2%. Sy 2n. O
=0 i=0 =0

Exercise 2.19. Prove that if n is even and perfect then n = 2971(2% — 1) for some a > 2.
It is not known if any odd perfect numbers exist. It is known that there are no odd perfect
numbers with less then 7 prime factors.

Proof. Suppose n = 2%"1d for a > 2 and n is perfect, i.e. n is even and o(n) = 2n. Then
2°d = o(n) = 0(2* Yo(d) = (2* — 1)o(d).
Since (2% —1,2%) = 1, we have 2 — 1 | d and so d = (2% — 1)m. Substituting for d shows
(2 = 1)o(d) = 2%(2* — 1)m,

which implies o(d) = 2*m. Now since m and d are both divisors of d, 2°m = o(d) > m +d,
but m+d = m+ (2% — 1)m = 2%m, which forces o(d) = m + d. This means d can’t have any
other divisors, and so m = 1. We conclude that d = 2°—1 is prime, and n = 2¢71(2—1). O
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Exercise 2.20. Let P(n) be the product of the positive integers which are < n and relatively
prime to n. Prove that
A\ #(n/d)
P(n) =n?" ]| (d—>
dn :

Proof. By Exercise 2.13, since pu~! = u,

n‘P(n) dd nm g d‘P(d)
Now
P(d) R
11 de@ 11 (@) 11 *
din din (k’?:;:l
nnt
d k=1 d
I (k,d)=1
B ﬁ kn/d
dn k=1 n
(k,d)=1
By Lemma 2.14, kn/d attains the values 1,2,...,n exactly once, and so

Pd) +k n
waznﬁ:ﬁ'
dln k=1
O

Exercise 2.21. Let f(n) = [/n] — [V/n — 1]. Prove that f is multiplicative but not com-
pletely multiplicative.

Lemma 2.21. f is the square indicator. That is f(n) = 1 if n is a square and f(n) =0
otherwise.

Proof of Lemma. Suppose n is not a square and m? is the largest square less than n. Let
n =m? + k, then
m* <m’*+k—1<m?+k<(m+1)>

Therefore

m<vn—1<+yn<m+1,
which means m = [v/n — 1| = [/n], ie. f(n)=0.

Now suppose n = m? is a square, then (m — 1)> < m? — 1 < m?. Therefore

m—1<+vn—1<+y/n=m,
which means [vn— 1] =m —1and [\/n| =m, ie. f(n)=1 O
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Proof of Exercise. Since f is the square indicator, by Theorem 2.19, f = A x u and hence is
multiplicative. Now f(4) = 1 and f(2)f(2) = 0, so f is multiplicative but not completely
multiplicative. [

Exercise 2.22. Prove that

oi(n) = Y pldyo (5).
dln

and derive a generalization involving o,(n). (More than one generalization is possible.)

Proof. Since 0, = u* N* and N = ¢ % u, we have

> el (5) = @ oa=x(ux N

dn
= (p*xu)x N* = N x N“
_ n\« _ o« 11—«
Y a(h) =y
din dn
=n%0y_o(n).
Letting 1 — a — «,
n
ga(n) — po-l dz (p(d)(jl,a (E) .
Taking av = 1 gives us the result. [

Exercise 2.23. Prove the following statement or exhibit a counter example. If f is multi-
plicative, then F'(n) = [, f(d) is multiplicative.

Solution. False: Let f(n) = p(n), then F(6) =4 and F(2)F(3) = 2.

Exercise 2.24. Let A(x) and B(z) be formal power series. If the product A(z)B(x) is the
zero series, prove that at least one factor is zero. In other words, the ring of formal power
series has no zero divisors.

Proof. Suppose B(x) # 0 and let by be the first non-zero term in the series expansion of B.
Then B(x) = 2% 3. biyxr’ = 2*B(z). Since A(x)B(z) = 0 if and only if A(z)B(z) = 0,
without loss of generality assume by # 0.

Now A(z)B(z) = 0 tells us each series coefficient is zero, i.e. > ;_,agb,— = 0 for all
n > 0. We shall show a; = 0 via strong induction. For n = 0 we have ayby = 0, which
implies ag = 0, as we know by # 0. Now suppose ap = 0 for all 0 < k < n. Then

n

0= Z agbn—r = aybo,
k=0

which again since by # 0, tells us a, = 0. Therefore A(x) = 0. O
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Exercise 2.25. Assume f is multiplicative. Prove that:
(a) f~1(n) = p(n)f(n) for every squarefree n.
(b) f71(p*) = f(p)* = f(»*) for every prime p.

Proof.
(a) Since n is squarefree, then for any divisor d, (d,n/d) = 1. Hence

(f * (nf))(n) =D uld) f ( )

dn

= 3" u(d)f(n)

dln
= f(n)I(n)
= I(n).
(b) We will compute f~!(p?) by the method described in Theorem 2.8.
1. Since f is multiplicative, f(1) = 1, which tells us f~1(1) = 1.

2. 7Y p)=—fp) [ (1) = —f(p).
3. [N ) = —(f) ) + flp) f () = f(p)® = f(p?).
0

Exercise 2.26. Assume f is multiplicative. Prove that f is completely multiplicative if,
and only if, f~*(p®) = 0 for all primes p and a > 2.

Proof. Suppose f is completely multiplicative. Then f~!(p®) = u(p®)f(p*) = 0 for a > 2.
Now suppose f~1(p?) = 0 for all primes p and a > 2. Then by Execrcise 2.25 (b)
f(p)? = f(p*) =0, ie f(p*) = f(p)*. Inductively, for a > 2 we have

- Z (%)@

- Z_:f(p“‘i)f‘l(pi)

= —(fOf W)+ ) D)
= —(f(") + f)* " (= f(0))
= fp)* = f(p).
Therefore f(p®) = f(p)® and hence f is completely multiplicative. ]

Exercise 2.27.
(a) If f is completely multiplicative, prove that

f-(gxh)=(f-g9)x(fh)

for all arithmetical functions g and h, where f - g denotes the product, (f-g)(n) = f(n)g(n).
(b) If f is multiplicative and if the relation in (a) holds for ¢ =  and h = u~!, prove that
f is completely multiplicative.
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Proof.
(a) By the definition of Dirichlet convolution,

()7 m)) = 3 Fdgld) () (3)
dln
= f(n)> _g(d)h (%)

dln
= f(n)(g * h)(n).
(b) Supposing
fo(uep™) =)= (f-p),
then fI = (uf)* f. Now since f(1) =1, (uf) * f = I. This means f~! = pf, and hence by
Theorem 2.17, f is completely multiplicative. O

Exercise 2.28.
(a) If f is completely multiplicative, prove that

(f9) ' =fg"
for every arithmetical function g with g(1) # 0.

(b) If f is multiplicative and the relation in (a) holds for g = u~!, prove that f is completely
multiplicative.

Proof.
(a) Suppose g(1) # 0. Then g~! exists and

((f-g9)*=(f- gil))(n) = Z f(d)g(d)f (g) g (%)
dln

Therefore (f-g) = f-g~ %
(b) Supposing (f -u)~' = f - u, then (uf) * f = I. Hence by Theorem 2.17, f is completely
multiplicative. O

Exercise 2.29. Prove that there is a multiplicative arithmetical function g such that

> sk = Y fida (4)

din

for every arithmetical function f. Here (k,n) is the ged of n and k. Use this identity to
prove that

n

> (knu((k,n)) = p(n).

k=1
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Proof. Using the second part of this problem for intuition, take g = . Partitioning k via
it’s ged with n gives

> f((kn) ZZf ((k,n))

1<k<n

(k,n)=d
= Z J@ 3,1
d‘n 1<k<n
(k,m)=d

The proof of Theorem 2.2 shows

2 r=e(3)

(k,n)=d

and hence
n

> (k) = Y F(@d)e (%)

k=1 din
Finally, let f(n) = nu(n) and apply the above identity:

> (kn)u((k,n)) = (Np) x ) (n) = (N~' x p)(n) = p(n).

k=1

]

Exercise 2.30. Let f be multiplicative and let g be any arithmetical function. Assume that

(a) F@™) = fp)f(P") — g(p) f(p" ") for all primes p and all n > 1.
Prove that for each prime p the Bell series for f has the form

1
(b) folx) =

1= f(p)z + g(p)a*
Conversely, prove that (b) implies (a).

Proof. By the uniqueness theorem of Bell series of multiplicative functions,

F@™) = fo) f") = 9p) f(p" )
= fpl) =1+ [Pz + Y _(FOFE") —9p) f" )"

[e.o]

= fole) =1+ f(p)z+ f(p fo )z" = g(p)a® > f(p")w
= fplx) =1+ f(p)afy(x >—g<p>x2fp< )

= ()= !

1 — f(p)x + g(p)x?
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Exercise 2.31.¢+) (Continuation of Exercise 2.30.) If ¢ is completely multiplicative prove
that statement (a) of Fxercise 2.30 implies

Fm)fm) = Y7 gdf (%5).

d|(m,n)

where the sum is extended over the positive divisors of the ged (m, n). [Hint: Consider first
the case m = p®, n = p°.]

Proof. First, assume m = p® and n = p® for some prime p and a > b. Then (m,n) = p® and
SO

To prove the identity in the problem statement, fix a and induct on b. Suppose b = 1, then
by assumption

Z g FP ) = g() f (™) + g(p) F(0" ) = fF() f ().

! b= b—2
= Zg(p)if (P 4 9(p) D g(e) F™ ) = g(p) 39 o) ()
= Zg(p)lf (p*H02) 4 g(p)P f(pTP20-1-2)

zzO
=) g) f).

So by induction, the identity holds for prime powers. What remains to be shown is that the
right hand side is multiplicative with respect to m and n.
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Let m =pi*---pi*, n = i -pZ’“ where a;, b; > 0, and define ¢; = max{a;, b;}. Then

Ck

Z g(d)f (%) — Z . Z g(pil . 'pzk)f(p?ﬁbl_%l . .ka+bk—2ik)

d|(m,n) 11=0 i,=0
(&) Ci
= D gl g ) FpPTTR) e f (R
11=0 1 =0
k ¢
i a;+b;—2i,;
=TID 9wy
j=11i;=0

I > s s/

= a
d‘(pj P )

hence the both sides are multiplicative with respect to m and n and the result follows. [

Exercise 2.32. Prove that
o mn
oa(m)oa(n) = 3 do, <?).
d|(m,n)

Proof. Since N is completely multiplicative and o, is multiplicative, by Fxercise 2.31 it’s
enough to show

Ua(pn+1) - Ua(p)o-a(pn) - pa0a<pn_1)~
For a = 0,
oo(p)oo(p") —oo(P" 1) =2(n+1) —n=n+2=oo(p"").
Otherwise
200 (n+)a __ no
a1y P11 p L P 1
oa(p)oa(p”) — pPoa(p" ") = : —p*-

-1 pr—1 p* -1
(" + DE"D = 1) —p(p — 1)
pr—1
p(n+2)a +p(n+1)a _ pa — 1= p(nJrl)a _ poz

= =1
p(n+2)a -1

pr—1

= o,(p"t).

Exercise 2.33. Prove that Liouville’s function is given by the formula

= (2)

d?|n
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Proof. By Theorem 2.19, f = X x u, where f is the square indicator function. Thus
A(n) = (f * p)(n)

= flu(5)

din
:%;M(%).

]

Exercise 2.34. This exercise describes an alternate proof to Theorem 2.16 which states that
the Dirichlet inverse of a multiplicative function is multiplicative. Assume g is multiplicative
and let f =g~ 1.

(a) Prove that if p is prime then for £ > 1 we have

(b) Let h be the uniquely determined multiplicative function which agrees with f at the
prime powers. Show that h % g agrees with the identity function I at the prime powers and
deduce that h * g = I. This shows that f = h so f is multiplicative.

Proof.
(a) Since f = ¢g~!, we have f * g = I. Thus for p prime and k > 1,

Sa@r () =0 = Y athieh ) -0

d|p*

(b) Suppose p is prime and k > 1. Then since f = g !,

k

k
0="> g f("") = g ") = (hxg)(").

t=0 t=0

Because h and g are multiplicative, (h % ¢)(1) = 1, and so h * g agrees with the identity
function at prime powers. Since h and g are multiplicative, so is h % g, and hence hx g = I.
Finally since Dirchlet inverses are unique, f = h and is therefore multiplicative. ]

Exercise 2.35. If f and g are multiplicative and if a and b are positive integers with a > b,
prove that the function h given by

=51 (3 (3)

is also multiplicative. The sum is extended over those divisors d of n for which d* divides n.
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Proof. Let (m,n) =1. For all ¢| m and d | n, (m/c,n/d) =1 and thus

(2@ e(@) ) (2 @) (@)

aln

—;fm o(a) 7 (&) (&)

=)o (22)
) ()

d%|n

= > (%

ta mn

= h(mn).

In the second to last step we used the one-to-one correspondence between the divisors
(cd)® | mn and t* | mn for (m,n) = 1. O

MOBIUS FUNCTIONS OF ORDER k.
If £ > 1 we define pyg, as follows:

k(1)
px(n)
1 (n)

—_

1,
0 if p**! | n for some prime p,
(-

)" if n = ph - pfprfi, 0<a; <k,

i>r

pr(n) = 1 otherwise.

In other words, p(n) vanishes if n is divisible by the (k+1)st power of some prime; otherwise,
tr(n) is 1 unless the prime factorization of n contains the kth powers of exactly r distinct
primes, in which case pg(n) = (—1)". Note that p; = p, the usual Mobius function.

Prove the properties of the functions uy described in the following exercises.

Exercise 2.36. If k > 1 then ug(n*) = p(n).

Proof. We will show p,(n*) = pp_1(n*7!) for k& > 1, then inductively the result follows.
Assuming k > 1, consider the following cases.

o If n =1, then pp(1%) =1 = 1 (1¥71).

o If y1;(n*) = 0, then there is a prime p such that p**1 | n*, which implies p* | n*~1. This
means pi_1(n*1) = 0.

o If py(nF) = (=1)7, then n* = pf -+ - pF L., P for 0 < a; < k. Now since n* is a k;th

power, we must have a; = 0. Thus n* = p¥...p* which means n*~! = pk 1 copht

and hence pg_;(n*=1) = (—1)".
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Exercise 2.37. Each function py is multiplicative.

Proof. Suppose (m,n) = 1 and m,n > 1, as the claim is trivial for m or n equal to 1. If
pF*tL | m for some prime p, then p*** | mn and so up(mn) = 0 = pg(m)ur(n). Otherwise

suppose
cpE Hp and n=qj--q" qu

i>r 1>19

for 0 < a;,b; <k, r1,m5 > 0. Since (m,n) = 1, all kth prime powers are distinct and a; # 0
implies b; = 0 and vice versa. Therefore

pu{mm) = (<1772 = (<17 (=1)"* = pe(m)ae(n).

Exercise 2.38. If kK > 2 we have
n n
m =D (Ge) e ()
dk|n

Proof. By Exercise 2.37 the left hand side is multiplicative and by FExercise 2.35 the right
hand side is multiplicative, so it suffices to prove this for prime powers. Denote the right
hand side by rhs, and consider the three cases.

e Suppose n = p* for 0 < a < k. Then since 1 is the only kth power to divide p®,
u(p*) = 1 and rhs = 1 (p)* = (£1)* = 1.

e Since 1 and p* are the only kth powers to divide p*, observe ux(p*) = —1 and
rhs = 1 (P°)” + e (Ve (P71 = 04+ 1(=1) = — L.

e Suppose n = p® for a > k. Then ui(p*) = 0 and
la/k]

rhs = Z pe—1 (P pra (p°7).
i=0

Now

a—i>a—la/k] >a—a/k
a(k —1)
==
>k—1,

hence a — i > k. Therefore py,_1(p*~*) = 0, which forces rhs = 0.
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Exercise 2.39. If kK > 1 we have

k()] =Y u(d).

dk+1in

Proof. Since m* | n for some m > 1 if and only if p* | n for some prime p, by Fxercise 2.6

0 if p** | n for some prime p,
> uld) = .
1 otherwise.

dk+1in
By definition it’s clear this is exactly |ug(n)]. O

Exercise 2.40. For each prime p the Bell series for py is given by

1 — 2zF 4 Ft1

1—=x

(ta1)p () =

Proof. Evaluating p; at prime powers, we see

_:r’“—l L 1 — 2k 4 gkt

()pla) = S am — b = T k=

r—1 1—=x




Chapter 3
Averages of Arithmetical Functions

Exercise 3.1. Use Euler’s summation formula to deduce the following for x > 2.

1 1 1
() 3 250 :§1og2x+A+o<oiz

), where A is a constant.

1 1 .
(b) ; nlogn log(logz) + B + O (xlogm)’ where B is a constant.
Proof.
(a) Given dt(ltg )= logt , then by Euler summation
1 1 —1 1
R - Em/ (t = ) (o — o))
n<w s
logt log z
log T+ (t— LtJ +0 - .
Now

o -1 1
/(t—H) togtdt’ /Zitdt

_ g logrtl
x
_0 (logx) ,
x
hence the result follows.
(b) Given ( th}g 2) = _tzkl’(g)gt; tl, then by Euler summation
1 o1 v logt+ 1 1
= —dt — t— |t dt —
nzgznlogn /1 tlogt /1 ( LJ)15210 2t e LxJ)xlogx

1 1 1
= log(log x) — </ / )t— ogt+ dt—i—O( )
t2log?t xlogx

32
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Now

1 1 ] 1
/(t_u)ogt+ t‘g/ ogt+ gt

t t2log?t
1
xrlogx

=0 (s102):
xlogx

hence the result follows.

Exercise 3.2. If x > 2 prove that

d 1
Z ﬂ =3 log? z 4+ 2C'log x + O(1), where C' is Euler’s constant.

n
n<x

Proof. Changing order of summation as in Theorem 3.3 and using Exercise 3.1 (a),

BRI

n<x d<z q<w/d

-3 (10g( )+C+0(d)>
:Z<logxd+0_10§d+0(i>)

d<z

1 logd
:(Ing+C>ZC_1_Z O;gi +0(1

d<z d<z

= (logz + C) (logm+0+0 (%)) - (%log2x+0(1)) +0(1)

1 1\ 1
—logz + Clogz + O ( °§x> L Clogz+C*+0 <5) — 5 logz+0(1)

1
=3 log® z 4+ 2Clog x + O(1).

Exercise 3.3. If z > 2 and a > 0, # 1, prove that

dn) a'"*logx 9 o
; = (@) o).
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Proof. Changing order of summation as in Theorem 3.3 and using Theorem 3.2 (b),

Y S

- L L
} Z (T @0 ()
_ 1“’__2 ; ~ () ; 0
:fl_c; (10g9{:+0+0(%))+((0¢)<fla +¢(a) + O )>+O( oy
= xlla_kf“r +C- f 1_2 +0(@™) +¢(a) - 5 1_a + (@) 4+ 0(z~%) + O(z'~)
- xllcf(;ga’ () + 0.

Exercise 3.4. If x > 2 prove that:

x x?

@) S um | 2] = 55+ Ofalog).

) S |2] - s Ogog

Proof.
(a) Using Theorem 3.2 (a)(c),

o0 [£f = S (22000 (2) (2} St {2

n<x n<x
=2° 3 M—:1022:M—|—O (:pzl> +0 (Zl)
N n? n? n
n=1 n>x n<lz n<z
=z T Zﬁ + O(z log )
n=1 n>x
2
x 9 1
) +a2°-0 (x) + O(xlog x)
2
T

= 0 + O(xlog ).
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(b) Again, using Theorem 3.2 (a)(c),

I R S S

—o3 )y o ()
= % +z-0 <§> + O(log )
= é + O(log z)

Exercise 3.5. If x > 1 prove that:

a) Y o(n)=

n<x

ZSO

n<z

SIS

n<m

il

n<zx

These formulas, together with those in Exercise 4, show that, for z > 2,

Proof.

2_¢) =35

n<x n<x

+ O(zlog x) and Z @ = ﬁ + O(log ).

(a) Changing order of summation as in Theorem 3.3,

S e = D> wd)

n<z n<z dn

=) uldyg

g.d<z
=> ud) > q
d<z q<z/d

|z/d] (|x/d] + 1)

= u(d)- !

SOSUICIRE) ol

d<z d<z

Sl

n<x
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(b) Changing order of summation as in Theorem 3.3,

o(1) = pld)
P D) S

n<x n<z d|n

Proof. Changing order of summation as in Theorem 3.3 and using Theorem 3.2 (¢),

1) 1 e pld)
2 T g =2 T

n<x n<x dn qgfz
_ Z p(d) 1
2
d<z d q<z/d q

= M logz —logd+ C + O 1
d? x

:(1ogx+0)2$_z%logd+0(i

d<z d<z

_M_i“(d;ﬂl_aogw&) MdHZ@JrO(l)

C(z) ? d>z d? d>z ? z
logx + C logx + C 1
:——A — —

a0 o (T )

logz +C <logx+0> < 1 )
=—————A+O0(——— | +0(— ).

¢(2) x VT

Since log(z)/x is the main error term, we are done. O
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Exercise 3.7. In a later chapter we will prove that > >~ u(n)n ™ = 1/¢(a) if @ > 1.
Assuming this, prove that for z > 2 and a > 1, a # 2, we have

on) 2 1 (la—1)
2o T2-al® )

Proof. Changing order of summation as in Theorem 3.3 and using Theorem 3.2 (b),

n 1 n d
SO WILEED P

+O(z'*log ).

ne e
— ; pld q;c/d =
— ; “@ ((“”2/d_>l_a +Cla—1)+ O((x/d)l_o‘))
_ 2”32__2 > /LC(;) +§(a—1)d< Cga +O< - a;u )
- 2552__2 C(_12) + 2552__2 > uc(l;i) s (?<;)1) +¢(a—1) 2 % +0(z'"logz)
;Q__aﬁ +0(2'") + % +¢(a—1)O(1) + Oz log z) .

Exercise 3.8. If « <1 and = > 2 prove that

90<n) ‘%2706 1 -
= 1 .
2y 2= al(2) + O(x“logx)

Proof. Starting off just as in the proof of Exercise 3.7 and using Theorem 3.2 (c)(d),

p(d)
de Z

q 1
n<zx d<z q<z/d

L L )

—
d<z

2?7 o p(d) 1—a N H(d)
“9-a e ¢ >
d<z d<z
21 e )
_2—04{(2)_2—&; 7 —l—O(m 1ogx)
G + O(xlfa) + O(xlfa log :1:)
T 2-a((2) '
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Exercise 3.9. In a later chapter we will prove that the infiite product Hp(l —p~?), extended
over all primes, converges to the value 1/{(2) = 6/7?. Assuming this result, prove that

“o(n) ifn>2.

(a) < <Z
n en) 6 n
[Hint: Use the formula p(n) = n[],,(1 - p~!) and the relation

1 1 1
l+ax+22+--= = +I2 with z = —.
l—2 1-—2 P

(b) If x > 2 prove that

Proof.
(a) Let n = p{*---pp* for £ > 0, then

no 1 1+1/p
p(n) Hl—l/p gl—l/zﬁ

< H (1- 1/p2)_1H(1+ 1/p)

p|n

:_H 1+1/p) = _.%H(paurpail)

pln pi|n

G —H ptiTh 4 4 1)
p1|n
Lyppt =1 _mon)
6

n

IA
|=l

AN
o3,

piln

Also

n 1 1 1
w155 )

pln pln

ST+ 4+ 97)

piln

1 .
e =2
n n

pi|n
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(b) Using the above upper bound and changing order of summation as in Theorem 3.3,

6 n o(n) d

— — < — L = —

m n<x gp(n) 7; n gd: qd
qd<z

d<z q<r/d
= Z (logw —logd + C + O(é>>
d<z L
d
= (logz+C) | Zlogd—l—O(Zgg).
d<z d<z
Applying Theorem 3.15 gives
sz < (logz + C) |z] — xzlogz + O(x)
= —{z}logz + C |z| + O(x)
=0(x).
]
Exercise 3.10. If x > 2 prove that
Z B O(log x).
= on)
Proof. Using the same approach in the proof of Exercise 3.9 (b) and Theorem 3.2 (a)(b),
= Z -y Z
n<x < d<z q<x/d
_ (z/d)”! 2
_ Z - ( ——+¢() +0((d/2)")
d<z
_ 1 ¢@2), 0(d)
-3 (-3+42+22
d<z
=0(1) + O(log ) + O(1)
= O(logz) .
O

Exercise 3.11. Let ¢1(n) =n3_,, [n(d)|/d.
(a) Prove that ¢ is multiplicative and that ¢1(n) =n][,, (1 + p ).

(b) Prove that
S uoo ()

d?|n



40 Chapter 3 Solutions

where the sum is over those divisors of n for which d? | n.

(c) Prove that
> = > ud)S (55) . where S(a) = > a(k),

n<x dg\/f k<z

then use Theorem 3.4 to deduce that, for x > 2,

Z v1(n) = 22((24)> 2 + O(z log ).

n<x

As in Exercise 7, you may assume the result > 7 pu(n)n=® = 1/¢(«) for a > 1.

Proof. Let n = p{* - - - pp*.
(a) Notice ¢1 = |u|* N, and since both || and N are multiplicative, so is ;. Therefore since

p1(p*) = p*(1+p7h),
we have ¢;(n) =n]],,(1 +p ).
(b) Since ¢ is multiplicative, if we can show the right hand side is multiplicative then it

suffices to show the claim holds for prime powers.
So suppose (m,n) = 1. If ¢ | m and d | n then (¢,d) = 1 and so

q%}n“(q)"(%) d%;“(d)"(%) =;§M<qd>a(%)- (2

Next, observe (d,m) = 1 and (¢,n) = 1, hence ¢* | m and d? | n if and only if (¢d)? | nm.
Additionally since (qd)? spans over all square divisors of mn, (2) is equal to

> uhe (55).

t2|mn

which shows the sum is multiplicative.
Now let F'(n) be the right hand side of the claim. Then

pir(1)=1=F(1) and ¢i(p) =p+1=0(p) = F(p)
for any prime p. For a > 1, ¢i(p) = p* + p*~! and
F(p*) = p(1)o(p) + ulp)o(p®~?) = p™ +p* ",

since p is zero for any higher prime power. Thus both sides agree on prime powers.

(c) From (b) we have .
PAOEDSPPTCLICIR

n<wz n<z d?|n
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Since d* | n implies n = qd?, we can extend the sum over all pairs ¢, d with gd*> < x. Thus

Y ein) =Y uld)olg)

n<lz q,d

= qzjzu(d) > alg)
2<z q<z/d2

- ()
d?<z

-3 s ()
N

Applying Theorem 3.4 and Theorem 3.2 (c), we have

>eiln) = > wd)s ()

n<zx d< [z
¢(2) 22 T T
=2 (Tﬁ +0( 5108 (ﬁ)))
— C(22)x2 MCEZ? +O| zlogx Z % +0| =z Z —u(dz;ogd
i<z i<z i<z

= CQ(C2()Z) + §(22)3: Z u;4d) + O(xzlogx) + O(x)

d>\/x
= C;?gj) +0 (x2 Z % + O(xlogx)

d>+\/z
= CQ(CQ()Z) +0(2* $—3/2) + O(xlog )
_ ¢(2)2?
= @) + O(xlog x)

]

Exercise 3.12.¢+) For real s > 0 and integer £ > 1 find an asymptotic formula for the

partial sums
1

nS
n<z
(n,k)=1

with an error term that tends to 0 as x — oo. Be sure to include the case s = 1.

Lemma 3.12. If f is an arithmetical function, then

Do f) =) uld) Y flgd).

(n"k%ﬂﬁ:l d|k q<z/d
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Proof of Lemma. We have

Y fn) =" I((nk)f(n)

n<z n<x

(n,k)=1
=2 2. mdfn

n<z d|(n,k)

=2 > ud)f

n<z dln
d|k

For a fixed divisor d of k& we must sum over all those n in the range 1 < n < x which are
multiples of d. If we write n = ¢d, it’s equivalent to sum over all ¢ where 1 < ¢ < z/d.

Therefore
SN udim) =30 > uld)f(gd)

n<zx din dlk q<x/d
e o |k q<z/

Proof of Exercise. By Lemma 3.12

1 _yomd 5~ 1
@%1 " ; * ";”/d "

If s =1 then by Theorem 3.2 (a),

> %:Z@ (logx—logd—FC'—l—O(g))

n<e dlk

(n,k)=1
wu(d w(d logd 1
1 ) —
~ (g +.0) 30 M - ST DB o1

dlk dlk
k 1
- SOE{: )(logx—l—C) + M1 +O(;) ,

where M, ;1 is a constant dependent on k.
If s # 1 then by Theorem 3.2 (b),

M x/d 1 s d°
. +((s) + O —
> =3 (o))
- 133—3 Z“ild) +¢(s) %—FO(I_S)
dlk dlk
p(k) 17

= 1. + ()M + O (277),

where M}, s is a constant dependent on £ and s. O
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PROPERTIES OF THE GREATEST-INTEGER FUNCTION

For each real x the symbol [z] denotes the greatest integer < z. Exercises 13 through 26
describe some properties of the greatest-integer function. In these exercises x and y denote
real numbers, n denotes an integer.

Exercise 3.13. Prove each of the following statements:
(a) If z = k + y where k is an integer and 0 <y < 1, then k = [z].
) [z +n] = [z] +n.

(b

. — ] if x = [2],
() [=a] = —[z] =1 if z # [2].
(@) [o/n] = [la] /] it n > 1.

Proof.
(a) Since 0 <y < 1, it’s clear k <z < k+1. Thus k is the greatest integer < z, i.e. k = |z].
(b) Let k= |z|,y=x—k,and z=z+n=(k+n)+y. By (a) |z] =k +n, and so

lz+n]=|z]=k+n=|z|+n.
(c) Suppose x = |z ], then since |z] is an integer, so is  and hence so is —z. From here it’s
easy to see
2] =~ =—Ls].

Now suppose x # |z]. Let k = || and y = v—k, where 0 <y < 1. Thensince 0 < 1—y < 1,
by (a) we have

[z =-k-yl=1lk-D+(A-y]=-k-1=—z] -1

(d) Letting |z] = gn+r for an integer 0 < r < n implies z = gn+ (r+y) for some 0 < y < 1.
Since 0 < (r +y)/n < 1, by (a)

lz/n] = la+(r+y)/n] =q.
Also since 0 < r/n < 1, again by (a)

Llz] /n) = la+r/n] =q

Exercise 3.14. If 0 < y < 1, what are the possible values of [z] — [x — y]?

Solution. Let {z} =z — |z] and {z —y} = (x —y) — |z — y], where 0 < {z} ,{z —y} < L.
Then |z| — |r —y] =y + {x — y} — {z}. Adding the inequalities
O<y<l O0<{z—-y}<l, —-1<—-{2}<0

we see —1 < |z| — |z —y|] <2and thus 0 < |z| — [z —y] < 1.
If v =3/4,y=1/2 then |z| — [z —y] =0. Ifz =1,y =1/2 then |z] — |z —y] = 1.
Thus all possible values of |z| — |z — y] are 0 or 1.
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Exercise 3.15. The number {x} = z — [z] is called the fractional part of x. Tt satisfies the
inequalities 0 < {z} < 1, with {z} = 0 if, and only if, x is an integer. What are the possible
values of {z} + {—2}7

Solution. Assume the result from Exercise 3.13 (c). If 2 = [«], then
{z} +{—2} =2 —[2] + (—2) — [-2]
=z —[z] —x+[z] =0.
If 2 # | 2], then
{r} +{—z} =z —[2] + (—2) — [-2]

=r—[z]—x+z]+1=1

Exercise 3.16.
(a) Prove that [2z] — 2 [z] is either 0 or 1.
(b) Prove that [2z] + [2y] > [z] + [y] + [z + y].

Proof.
(a) We have
[22] — 2[x] = 22 — {22} — 2(z — {z}) = 2{z} — {22}.

Adding 0 < 2{z} <2 and —1 < — {2z} <0 gives —1 < [2z] — 2[z| < 2. Thus
0 < [2z] —2[z] < 1.

(b) Suppose z = m + a and y = n + b where 0 < a,b < 1. By symmetry we have four cases
to consider:

a,b<1/2
a<1/2,b6>1/2, anda+b<1
a<1/2,b6>1/2, anda+b>1
a,b>1/2

=W D

=2m+2n=m+n+ (m+n) = |z| + |y| + [z + y]
=2m+©2n+1)>m+n+(m+n)=|z|+ |y + |z +y]

=2m+ (2n+1)=m+n+(m+n+1)=lz]+[y] + [z +y]

[\
— o o
[\
&
(I
+
— o o
[\
NS
T i

=@2m+1)+2n+1)>m+n+m+n+1)=|z]+y] + v +y]

Exercise 3.17. Prove that [z] + [z + 1] = [22] and, more generally,

n—1

[a: + %1 = [nz] .

k=0
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Proof. Let i be the largest integer such that {z} + £ < 1. Then 0 <4 < n and

et =gt 2l

Z Lo+ (G5, +§; (e + ()45 1))

=(+1)|z]+(n—i—-1)(|z] +1)

=nlz]+n—i1—1

=nr—n{z}+n—i—1

= |nz| +{nz} —n{z}+n—i—1.
Since {z} + £ < 1 < {2} + =, then —1 < —n{z} +n —i—1 < 0. Adding this to
0 < {nz} < 1, we have

—1<{nz} —n{z}+n—-—i—-1<1.

However it is evident from the above chain of equalities that {nz} —n{z} +n—i—11is an

integer, and so it must equal 0. The result then follows. O

Exercise 3.18. Let f(z) =z — [z] — 5. Prove that

n—1

dof (x+§) = f(nx)

k=0
and deduce that

<1 forall m>1and all real z.

Xm:f (2”x+ %)

()R D) Bl

k=0 k=0 k=0

+n—1 L J n
=nx — |nz| — =
2 2

na) - &

=nxr — |nx| — =

2

= f(nx).

This means f (2"z) + f (2"z + 3) = f(2(2"z)) and so

S (2% ¥ %) S () - £(2)
= f(2"2) - f(22)
=2y — |27y — % — 2z + |2z + %

= {2"z} — {22}.
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Adding the inequalities 0 < {2""'z} < 1 and —1 < — {22} < 0 we obtain

$ ()

n=1

<1

]

Exercise 3.19.++) Given positive odd integers h and k, (h,k) =1, let a = (k —1)/2,b =
(h—1)/2.

(a) Prove that S2°_ [hr/k] + S20_, [kr/h] = ab. [Hint: Lattice points.]

(b) Obtain a corresponding result if (h, k) = d.

Proof.
(a) Consider the line segment s in R? with endpoints (0,0) and (h, k). Since (h,k) = 1, by
Theorem 3.8, s does not intersect any lattice points other then its endpoints.

Define the rectangle R to be the rectangle with corners at (1,1) and (h, k). Counting,
we see the number of lattice points with even entries inside R is ab. Now the first sum in
question counts the number of lattice points with even entries in R on or above s, whereas
the second sum counts the number of lattice points with even entries on or below the line.
Since there are no lattice points on s, these sums add to ab.

(b) Define s and R as in (a) and let d = (h, k). Looking at the proof of Theorem 3.8, we
see s will cross a lattice point inside R precisely d times. Of these, (d — 1)/2 will have even
entries and so the technique in (a) would count these twice. Thus

a b
hr kr d—1
3 M 'y M —as L
r=1 r=1

Exercise 3.20. If n is a positive integer prove that [\/ﬁ ++vn+1 ] = [\/471 + 2 }

Proof. Note
2
<\/ﬁ+\/n+1> =2n+2vVn2 +n+1,

so since (n+1/2)? < n?+n < (n+ 1)* we have

2
dn+2< <\/ﬁ+\/n+1) <4n+3.

Moreover v/4n + 3 — v/4n + 2 < 1, which implies

VI FZ | < Vi VaFl< |[VInE2 |41
We conclude [n++vn+1 | = [Vin+2 |. O

Exercise 3.21. Determine all positive integers n such that [/n ] divides n.
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Solution. Let k? be the greatest square < n and @ = n — k*. Then k* < n < (k+ 1)? and so
0<a<2k+1and k <+/n<k+1, which means k = [\/n]. Now

> k| (n—Fk)
<~ kla
<= a=0or k or 2k.

Thus |[/n] divides n if and only if n = k* n = k* + k, or n = k? + 2k. Solving for k, then
|v/n] divides n if and only if one of n, 4n + 1, or 4n + 4 is a square.

Exercise 3.22. If n is a positive integer, prove that

[Sn + 13] - [n — 12— [";517]]

25 3

is independent of n.

Proof. Let f(n) be the expression in question. We can see f(n) has period < 25 by applying
Exercise 3.13 (b):

(n+25)—17
Fn 425 — | B2 13 (n+25) 12— [—25 J
n = —
i 25 3
_|8n+13 | _|nt25-12- %5+ 1]
Sl 25 | 3
_ 813 | |nt25-12- |27 —1
25 | 3
8n + 13 n—12— [ 2327
= 8| — = 8
| 25 + | 3 +
n—17
_ 8n + 13 L8 n—12—L25J _g
| 25 3
= f(n).
Testing n = 1,2,...,25 in Mathematica, we see f(n) is constant over the integers.
In[l]:= f[n_] := Floor[(8n+1l3)/25]-Floor[ (n-12-Floor[(n-17)/251)/3]

In[2]:= SameQ @@ f[Range[25]]
Oout [2]= True
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Exercise 3.23. Prove that

>oAm) ) = [Va].

n<x

Proof. Let s(n) be the square indicator function, then by Theorem 2.19 s(n) = >, A(d).
We then have

L\/ﬂ = # of squares < x

=Y _s(n)

n<x

=> ) Md).

n<z dln
Applying Theorem 3.11 shows

PIPIRCESSPIOIEIE

n<z d|n n<x

[
Exercise 3.24. Prove that
SINEIED SR
n n2l’
n<z n<
Proof. Let s(n) be the square indicator function and S(z) =}~ s(n). Then
| Vx| = # of squares < z = S(z).
By Theorem 3.11,
x x x
2 WEJ =325 (5) =2 sm [
n<z n<z n<lz
Now s(n) =1 if n = m? and is 0 otherwise, thus
x x x
> |7] =3 | = X L)
n<z m2<gz mS\/E
m>0
[

Exercise 3.25. Prove that

and that



49

Proof. For the first sum, apply Exercise 3.26 with a = 2. Also by Exercise 3.26
"k nn—1) 1
2|5 - [l
k=1

but the fractional part of n(n — 1)/6 is either 0 or 1/3 and so 1/24 can be ignored. O

Exercise 3.26.+) If a =1,2,...,7 prove that there exists and integer b (depending on a)
such that

zn: {E} B {(2n+b)2}

“—~ |a B 8a '

Proof. Let n = ga + r where 0 < r < a. Then for any 0 < k < ga, we have k = ma + ' for
some m < g and 0 < 7’ < a. Thus

alEEwE SIS

I
]
:
7

aq® — aq + 2qr + 2q
2
4a’q* — 4a’q + 8aqr + 8aq
8a '

(3)

We now look for values of b such that (2n + b)? minus the numerator of (3) is positive for
any ¢ and r. To do this we see when this difference factored into a square in Mathematica.

In[3]:= squarePolyQ[poly_] :=
MatchQ[FactorList [poly], {({_?Positive, _} | {_, _?EvenQ})..}]

In[4]:= Column@Reap[Do]|
If[squarePolyQl[ (2q a+2r+b) "2-(4a"29°2-4a”"2g+8a g r+8a q)l,
Sow[Row[{"a =", a, ", b =", b}]]

1,
{al lr 7}1 {bl _101 10}
1100-1,111
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Out[4]= a =1, b =1
a=2, b=20
a=3, b=-1
a=4, b = -2
a=>5, b=-3
a==6, b= -4
a=7, b=-5

~

So choosing b = 2 — a is our candidate. Mathematica already found
0 < 4a’q® — 4a’q + Saqr + Saq — (2n + b)?,
but we need to show this difference is smaller than 8a. In doing so,

2 2.2 42
0§(2n+b) _ da’q 4aq+8aqr+8aq<

8a 8a

L,

or rearranging terms,

4a’q® — 4a’q + Saqr + 8aq < (2n +b)? _ 4a’q® — 4a*q + 8aqr + Saq
8a - 8a 8a

+ 1,

forcing (2n + b)?/(8a) to have the desired floor.
Since (a — 2r —2)? is maximized at r =a—1for 0 <r < a— 1,

(2n +2 —a)? — (4a’q® — 4a*q + 8aqr + 8aq) = (a — 2r — 2)?
<(a—2(a—1)-2)?

=a-a < 8a.

So since their difference is small enough, we see choosing b = 2 — a gives us the result. [




Chapter 4
Some Elementary Theorems on the
Distribution of Prime Numbers

Exercise 4.1. Let S = {1,5,9,13,17,...} denote the set of all positive integers of the form
4n+ 1. An element p of S is called an S-prime if p > 1 and if the only positive divisors of p,
among the elements of S, are 1 and p. (For example, 49 is an S-prime.) An element n > 1
in S which is not an S-prime is called an S-composite.

(a) Prove that every S-composite is a product of S-primes.

(b) Find the smallest S-composite that can be expressed in more than one way as a product
of S-primes.

This example shows that unique factorization does not hold in S.

Proof.

(a) By definition, if n is S-composite then there is a d € S such that 1 < d < n and d | n.
Let n = kd and since n = d = 1 mod 4, we see k = 1 mod 4, i.e. kK € S. Applying this
process on k, d, and so on, it will eventually terminate since there are only finitely many
numbers between 1 and n. This shows n can be written as a product of S-primes.

(b) If x = y = 3 mod 4 then zy = 1 mod 4. So the idea is to find the three smallest primes
congruent to 3 mod 4 and taking their products. These primes are 3 and 7. To ensure this
number is in S we need an even number of factors congruent to 3 mod 4, so we take 32 =9
instead of 3 and 72 = 49 instead of 7. Hence the smallest S-composite that can be expressed
in more than one way as a product of S-primes is

441 =9-49 =21 - 21.

Exercise 4.2. Consider the following finite set of integers:
T=1{1,7,11,13,17,19, 23, 29}.

(a) For each prime p in the interval 30 < p < 100 determine a pair of integers m, n, where
m > 0 and n € T, such that p = 30m + n.

(b) Prove the following statement or exhibit a counter example:

Every prime p > 5 can be expressed in the form 30m + n, where m > 0 and n € T.

51
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Proof.
(a) We show this in Mathematica.

In[l]:= With[{primes = Prime[Range[PrimePi[31], PrimePi[100]]1},
apostolCh4Num2Format [QuotientRemainder [#, 30]& /@ primes]
]

Out[l]=

31=30x1+1 37=30x1+7 41=30*x1+11 43=30x1+13 47=30x1+17
53=30%1+23 59=30%1+29 61=30%2+1 67=30%2+7 71=30%x2+11
73=30%2+13 79=30%x2+19 83=30%x2+23 89=30%x2+29 97=30%3+7

(b) Suppose 6 < p < 30, then observe p € T and p = 30 - 0 4+ p. Now assume p > 30 and let
p =30n+r where n > 0 and 0 < r < 30. Since p is prime and n > 0, we require (30,7) = 1.
Observing T'={m | 0 < m < 30, (30,m) = 1}, we must have r € T, and so the claim holds
for all p > 5. [

Exercise 4.3. Let f(z) = 22 + x + 41. Find the smallest integer > 0 for which f(x) is
composite.

Proof. We show x = 40 using Mathematica.

In[2]:= f[x_] := x"2 + x + 41

In[3]:= VectorQ[f[Range[0, 39]], PrimeQ] && !PrimeQ[f[40]]
Out [3]= True

]

Exercise 4.4. Let f(x) = ap + a1z + - -+ + a,x™ be a polynomial with integer coefficients,
where a, > 0 and n > 1. Prove that f(z) is composite for infinitely many integers .

Proof. Consider three cases:

e Suppose ag = 0. Then f(z) = z(a; + -+ + a,z" ') and so x | f(x) which means f(z)
is composite whenever z is composite.

e Suppose |ag| # 1. Then for any integer m,
f(mCLO> =agp - (1 +ma;+ -+ man<ma0)nfl)’

where the right factor is larger than 1 in absolute value for large enough m. From here
we see f(x) is composite infinitely often.

e Suppose |ap] = 1. Pick an integer k such that |f(k)| # 1 and let g(y) = f(y + k).
Expanding gives a polynomial in terms of y with constant coefficient

ap + ark + -+ a,k" = f(k).

Applying one of the above cases on g shows it is composite infinitely often, and since
f is g shifted k£ units horizontally, it must also be composite infinitely often. O
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Exercise 4.5. Prove that for every n > 1 there exist n consecutive composite numbers.

Proof. Define C,, = {(n+ 1) +k | 2 < k < n+ 1}. Notice |C,,| = n and each element is
composite since k | (n + 1)! + k. O

Exercise 4.6. Prove that there do not exist polynomials P and () such that

P(x)
m(x) = forx=1,2,3,...
= QW)
Proof. Suppose deg(P) = m and deg(Q) = n, then ggz; = O(z™ ™). Theorem 4.6 implies

m(x) cannot be asymptotic to ggg as

T

o) =01 ) #0am)

log x
O

Exercise 4.7.+) Let a1 < ay < --- < a, < x be a set of positive integers such that no a;
divides the product of the others. Prove that n < 7(x).

Proof. Fix x and denote the hypothesis of the problem by H,. Suppose k = 7(z) and

11 12 A1k

ar =Py - P2" o P
—_ Q21 22 Q2

Qg = P17« P27 - Py
— nOnl Qn2 (7% %

Qp =DpP1" - D" o PR

Observe for each a; that there must be a j such that a;; > Zl# o, otherwise a; | Hl# a;.
without loss of generality assume g > > anr- If @ = a;/py™*, then by this observation,
{a}}~}' still satisfies H,. Each time we apply this process, the new sequence will still satisfy
H,.

Assuming n > k then applying the above process k — 1 times would yield a sequence of
of the form {p* ?;1’““ for some prime p. This clearly does not satisfy H, sincen—k+1>1
so we conclude n < k. O

Exercise 4.8. Calculate the highest power of 10 that divides 1000!.

Proof. Note we can reduce this to finding the highest power of 5 that divides 1000! since 2
appears more in factorial than 5. From Theorem 3.14 we have log 1000! = > 45, (p) log p,
where «(p) is the highest power of p to divide 1000! and is given by

log 1000J
log p

o= > |5

pm
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So

. 1000

ad) => L—E)m J

=1

1000 N 1000 n 1000 n 1000
5 25 125 625

00+40+8+1
49.

(I
O N —— 3

Exercise 4.9. Given an arithmetic progression of integers
h,h+k,h+2k,...,h+nk,...,

where 0 < k£ < 2000. If h + nk is prime for n =¢,t + 1,...,t + r prove that » < 9. In other
words, at most 10 consecutive terms of this progression can be primes.

Proof. 1f h +tk < 11, direct verification shows the claim so assume h +tk > 11 and r > 10.
Then for each prime p < 11 we have p{ h+nk forn =1t¢,t+1,...,t+r. Now suppose pt k
for some p < 11, which means [ := k! mod p exists. Choosing i = —(h + tk)l mod p gives
0<¢<10 and

h+ (t+i)k=(h+tk)— (h+tk)lk=(h+tk) — (h+tk) =0 mod p,

a contradiction. Thus p | k for all p < 11, which implies £ > 2-3-5-7-11 = 2310, another
contradiction, and so r < 9 since this only forces primes < 10 to divide k. O

Exercise 4.10. Let s, denote the nth partial sum of the series

= 1
ZT(T—}-l)‘

r=1

Prove that for every integer k > 1 there exist integers m and n such that s,, — s, = 1/k.

Proof. Noticeﬁ:%—ﬁandsosnzl—n%l. Ifk>1thenk®>—k—1>0,k—2>0,
and

1 11

. A

]

Exercise 4.11.+) Let s, denote the sum of the first n primes. Prove that for each n there
exists an integer whose square lies between s, and s,.1.

2
pn+1_1
n<|——— .

Lemma 4.11. If n > 3, then
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Proof of Lemma. Since s, is a sum of primes, we can bound it by summing over 2, 3, and
all odd numbers < p,, not divisible by 3:

[(Pnt+1+1)/6] [(Pr+1+1)/6]

sn<2+3+ Y (Bk—1)+ Y (6k+1)

k=1 k=1
2

Pn+1 + 1 Pn+1 + 1

el T 7| 4|2~ —

Dny1 + 1 ?
6

:5+6{

Pt +8Pus1 +37
= c '

Now for any z > 25, (224 8z +37)/6 < (x — 1)?/4 and so verifying by hand for n =4,...,9
proves the claim. O

Proof of Exercise. Assume n > 3 and let k = L,/s J The goal is to show 2k + 1 < p,11,
which would place (k + 1)? between s,, and s,4;. Now isolating p,; in the proof of Lemma
4.11, we have 2,/s,, + 1 < pp11, and so

2k +1<2{/sp +1 < ppi1.

Inductively (with base cases n = 1, 2, 3), assume there is a square between s, and ;1.
The above inequality then gives us the result. Verifying the base cases, s, = 2, 5, 10, 17 and
the squares in between are 4, 9, 16. Thus there is always a square between s,, and s,,1. [

Remark. One should note that for any m > 0, eventually m squares will always lie between
S, and S,41. This is done by showing

2
Png1 —M
Sp < | ————
(5)
eventually holds, which can be proven through partial summation on s, or a applying a

tighter sieve (dependent on m) as in Lemma 4.11. The advantage to the sieve is it gives
information as to when the inequality becomes starts to hold.

Prove each of the statements in Exercises 12 through 16. In this group of exercises you may
use the prime number theorem.

Exercise 4.12. If a > 0 and b > 0, then 7(az)/7(bx) ~ a/b as x — .

Proof. Assuming the prime number theorem we have

7(ax) _ax log(bx)
mw(bx)  bxlog(ax)

~Y

a
7
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Exercise 4.13. If 0 < a < b, there exists an zy such that 7(az) < 7(bx) if x > x.

Proof. Notice for any ¢ > 0 that
. logx
lim

=1
z—oo log cx

and so
1

log cx B log x

o(1).

So assuming the prime number theorem we have

7(br) — w(az) = (b— a)— —|—0< ° ):(b—a—l—o(l))

log = log = logz

Now, choose xy such that for all > xg, the o(1) term is less than b — a in absolute value.
This gives 7(ax) < w(bz) for all x > x. O

Exercise 4.14. If 0 < a < b, there exists an xg such that for x > x( there is at least one
prime between az and bx.

Proof. Given 0 < a < b, by Exercise 4.13 there is an x such that m(ax) < w(bx) for all
x > wg. Since 7 is an integer valued function, then 7(bx) — m(ax) > 1 for all x > x,
implying there is at least one prime between ax and bzx. O]

Exercise 4.15. Every interval [a,b] with 0 < a < b, contains a rational number of the form
p/q, where p and ¢ are primes.

Proof. Assume the result from FExercise 4.13 and pick x¢ such that w(azx) < w(bx) for all
x > xo. Let ¢ be any prime larger than z5. Choose a prime p to lie in the interval [ag, bq],
which gives p/q € [a, b]. O

Exercise 4.16.
(a) Given a positive integer n there exists a positive integer k& and a prime p such that
10Fn < p < 10¥(n + 1).

(b) Given m integers ay, . .., a,, such that 0 < a; < 9fori =1,2,...,m, there exists a prime
p whose decimal expansion has aq, ..., a,, for its first m digits.
Proof.

(a) By Exercise 4.13 there is an zg such that m(nz) < 7w((n + 1)z) for all x > xy. Let
k = [logyo o], then 10* > x, and so there is a prime p such that 10*n < p < 10%(n + 1).

(b) Let n = >, a;10™" and choose k and p as in (a). Then p will have the desired first m
digits. O]

Exercise 4.17. Given an integer n > 1 with two factorizations n = [[}_, p; and n = H§:1 G,
where the p; are primes (not necessarily distinct) and the ¢; are arbitrary integers > 1. Let
a be a nonnegative real number.

(a) If @ > 1 prove that

r t
<> g
i=1 i=1

(b) Obtain a corresponding inequality relating these sums if 0 < o < 1.
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Proof.
(a) Suppose g; = p;, - - - p;;. It suffices to show

J J
>opt <aqi=]]r
k=1 k=1
Inducting on j, for j = 2 suppose without loss of generality p;, > p;,. Then
fe% fe% o o : fel Piy “
pi, + 5, < pip;, ifand only if 1 < pf — p_ .
11

Since p;, > pi, and p;, > 1, it’s clear the right hand side is larger than 1 and thus the claim
holds for j = 2.
Now assume the claim holds for all ; < n. Then

n+1

Doph = ph vt
k=1 k=1
<H pik> + i,
k=1
< (szk> “Di
k=1

n+1

(0%
- Hpik’
k=1

where we inductively assumed the claim held true for j = n and 57 = 2. O]

IN

(b) Assume r > t, as the problem is trivial otherwise. Fix n and each ¢; and define

fla)y=>"pf=> g,
i=1 =1

and note f(«) is monotonic. The assumption r > t gives f(0) > 0 and (a) gives f(1) < 0,
hence f is a monotonically decreasing function. This means there is a unique o (dependent
on n and ¢;) where the inequality in (a) flips.

Unfortunately, finding ag is very tough and perhaps is impossible to do as we demonstrate
in Mathematica.

(» n = 840, gl = 14, g2 = 60 x)
In[5]:= Reduce[2"a + 2o + 2" + 3" + 57 + 77 == 14" + 607, o]

During evaluation of In[5]:= Reduce::nsmet: This system cannot be
solved with the methods available to Reduce. >>
Out [5]= Reduce[3*2"a + 3o + 57a + 77 == 14"a + 60", o]
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For this reason, we will explore some computational results instead. The code below will
find aq for a given n by randomly choosing ;.

(» returns {{gi}, ogp} *)

In[6] := Apostol4l7[n_] := Module[{fac, rand},
rand = fac = Flatten[ConstantArray @Q@Q@ FactorInteger[n]];
While[Length[fac] == Length[rand],

rand = Times @Q@@ RandomPartition[RandomSample[fac]]

1;

{rand, o /. FindRoot [Total[fac"a] == Total[rand o], {o, .4},
WorkingPrecision —-> 10]}

]
RandomPartition[l_List] := SplitBy[l, RandomInteger[]&]

For n = 840 and {q1, ¢2, g3} = {2, 5, 84}, the inequality flips at ag ~ 0.42466:

In[7]:= Apostol417[840]
Oout[7]= {{2, 5, 84}, 0.4246600508}

We can test many instances by plotting ¢ versus «aq for a fixed n, where a point (¢, ag) below
represents a value of o given ¢ many random g;.

@g Figure 1: n = 840
10+ e
09F o
L °
08[ PR .
L /// °
0.7+ - :
: : .
B . .
06: e : : .
L - [ °
05 0 | s .
L //! ° !
i g :
04+ 7 H ° °
L _ ° °
// L[] Py L]
, L4 | | ! .
¥ ) 3 4 5 Haill

min: 0.3216421714, max: 1.000000000
line of best fit: y ==0.15395325+0.172134985t

Avoiding prime numbers, we now hold n to be even. Plotting the smallest possible ag
for a fixed n shows there’s a nice downward trend as n increases, but is quite erratic as this
is inherent to prime factorization.
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min(eq)
0.55
\
0.50 {
045 -
0.40 -
035+
0.30 -

025

1 | | | | | | | | | | | | | | | | | | |
o' 200 400 600 800 1000 n
Figure 2: Plot of the smallest possible o for a fixed n.

Exercise 4.18. Prove that the following two relations are equivalent:

e

(b) 19(x):x+0( ’ )

log

Proof. Assuming either relation implies the prime number theorem and so Theorem 4.4
yields 7(z) ~ ¥(z)/logx. The result follows directly from this assertion. O

Exercise 4.19. If x > 2, let

Li(z) = / . (the logarithmic integral of x).
5 logt

(a) Prove that

©odt 2
Li(z) = —— + /
2

B log x log’t log?2’

and that, more generally,

L,_:)sln_lk! N
l(z)_loga: +k2::logkm e 9 log"+1t+ "

1

[ sm=o()
9 log"t log" x

where (), is independent of x.
(b) If x > 2 prove that
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Proof.
(a) Integrating by parts with u = = and dv = dt gives
: x Todt 2
Li(z) = + / — = —.
log 5 log“t log2
Now inductively assume
— K [T
= — tn — + (5,
kz:% log"t! /2 log" ™ ¢

with base case n = 1. Evaluating [ logff—ilt by parts with u = 10g’+1t and dv = dt gives

/x dt x 2 bt 1)/3” dt
—= — n _—
5 logn—I—l logn—I—l T log"H 2 5 1Ogn+2

Thus

P log"™" x
n—1
k! x Toodt
=z + n! +(n+1 / +C,
kZ:O 10gk+1 x (10gn+1$ logn-i-l 2 ( ) ) 10gn+2t)
n—1
k! n! Toodt 2n/!
= +2x + (n+1)! /
; log"ttz " log"tt ( ) log" ™2 ¢ log" ™ 2
"Nk Toodt
=z )y ———+ n+1!/ — + Chi1.
kz:% long“1 T ( ) 9 log"”t i
(b) Applying L’Hopital’s rule we have
S dt/log"t 1/log"
i 2 /1087 [log"z __
T—00 l‘/lOg x T—00 1/1Ogniv—n/log”
1
= lim ——
z—o0 1 —n/logx
= 1.

Hence

/ Todt x
o log"t log"z’

Fxercise 4.20. Let f be an arithmetical function such that

Zf )logp = (ax + b)logz + cx + O(1) for x > 2.

p<lz
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Prove that there is a constant A (depending of f) such that, if z > 2,

Todt 1
Zf =ax + a—l—c)( ’ +/ )+blog(logx)+A+O< )
log x 5 log?t log =

p<x

Proof. Let h(z) = 1/logx and g(n) = f(n)logn if n is prime and 0 otherwise. Define
Zg = (ax + b)logx + cx + R(z), where R(x) = O(1).
n<lx
Then by Abel’s summation formula,
G(x) / "G
S 1) = Satmn =g+ [T

Looking at both parts separately,

1 1
G(x):(cw:—i-b) oga:+cx+0()_a$+b+ SN
log x log x log x log

and

T G(t) “(at +b)logt + ct + R(t)
5—dt = 5 dt
o tlogt 2 tlog”t

T dt T dt T dt * R(t)
=a| —+b [ — +c — + —dt
5 logt 5 tlogt o log™t o tlog™t
By Exercise 4.19, the first integral evaluates to
ax N / Todt 2a
a —_—— ——
log 5 log?t log2

and the second integral evaluates to blog(logx) — blog(log2). The integral with the error
term R(t) can be rewritten as

v t o t o t
[ RO g [ R,
o tlogt o tlog™t « tlog“t

:C+O< ! )
log x

Combining all constants into A, we see

Todt 1
Zf =ax+ (a+c) a +/ + blog(logz) + A+ O
log 9 10 log x

p<lz

1
— az + (a4 ¢)Li(z) 4+ blog(logz) + A+ O (logl‘> .
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Exercise 4.21. Given two real-valued functions S(z) and T'(z) such that

T(x)= ZS (%) for all = > 1.

n<x
If S(x) = O(z) and if ¢ is a positive constant, prove that the relation
S(z) ~cx as r — o0

implies
T(xz) ~ cxlogx as © — 0.

Proof. We have S(x) = cx + o(z) and so

)= (5+(2)

n<x
:cle+0<le>
ngzn ngxn

= cxlogx + o(zlog ).
Thus T'(x) ~ cxlogx. O

Exercise 4.22. Prove that Selberg’s formula, as expressed in Theorem 4.18, is equivalent
to each of the following relations:

(a) () log:c—l—;w (%) logp = 2zlogz + O(x) .
(b) VY(z)logx + pgzx V (j—;) logp = 2zlogz + O(x).

Proof. Let (c) denote the left hand sides of Selberg’s formula. Using Theorem 4.9, which
says ¥ (x) = O(z), we will show both (¢) — (a) = O(z) and (¢) — (b) = O(x). The first
difference gives

log,
@@= v (=) ox
p<zr m=2
logy x -
Y3 v ()
p<zx m=2

TerelS5)

p<z

o)

= rlp=1)

= O(x).
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Moving on to the second difference,

(©) — (b) = (b(x) - 1ogx+zzz9< )1ogp

p<x m=2

Applying Theorem 4.1, ¢(z) —9(x) = O(\/E log? x), to the first part and applying the same
technique as above to the second part, we have

(c) = (b) = O(Vzlog®z) + O(z) = O(x) .

Exercise 4.23. Let M(x) =}, _, pu(n). Prove that
T
M(x)l M({—)An) = )
(@)loga + 3 (%) Atm) = 0@)

and that

M(z)logz + > M <%) logp = O(z).

p<w

[Hint: Theorem 4.17.]

Proof. By Theorems 3.11 and 3.12,
x x
S M () =3 |7 -
n<x n<x
Coupling this with Theorem 4.17, to prove the first claim it’s enough to show
Zu log< > O(x).
d<zx

This is evident through Stirling’s approximation:

> ) log (%) = (Zlog( ))
:O<ijlogx—210gd>

d<z
= O(zlogz + O(logz) — zlogz + x + O(log z))
=0(x).

Next, to prove the second claim notice

ZM(E) ZM()log ZM< )log D).

n<x p<zx pM<z
m>1
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So it’s enough to show

> a1 () toxts) = Oo).

pM <=z
m>1

Applying similar technique as in the proof of Fxercise 4.22 we have

ZM(p)log Zlogpkiﬂ ( )

pM<zx p<lz

S o3 2)

p<x

ofr )

Exercise 4.24.+) Let A(x) be defined for all > 0 and assume that

= ZA (%) = axloga:+bx+o<lozx) as T — 00,

n<zx

where a and b are constants. Prove that

logx—l—ZA( ) ) = 2azlogx + o(xlogx) as x — oc.

n<x

Verify that Selberg’s formula of Theorem 4.18 is a special case.

Lemma 4.24. For z > 1,

22—10g< )zlog%&—l—QC’logx—kA—i—o(l),

for some constants A and C.

Proof of Lemma. Applying Exercise 3.1 to estimate Y log(n)/n, we have

22%10g (%) :210gx2%—2zloin

n<x n<x n<x

1 1
=2logx (logzx+0+0(g)) -2 <§log2x+A+0(1)>

=log”x +2Clogz + A+ o(1).
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Proof of Exercise. By Theorem 4.17, it’s enough to show
x
Z,u ) log ( ) <E> = 2axlogx + o(xlogx).

Expanding the left hand side we obtain
d d d
D (2) e (2) St ()22

which will be analyzed in reverse order. Quickly looking at the error term, distributing gives

a bound of
0<xz ) =o(zlogx).

d<z

Shifting focus to the second term, we will show ), * (d log (%) = O(1) through a general-
ized Mobius inversion. Theorem 2.23 states for a completely multiplicative function a(n),

G(z) = Za(n)F <ﬁ> if and only if F(x Zu ( > :

n<zx n<x

Applying this with a(n) = 1/n and F(x) = 1 we have

Z% =logx + C + o(1) if and only if Z @ <10g <%) +C + 0(1)) =1

n<x n<x

Thus

Z@log(%) —(C+o(1 ZM

n<x n<z

where we used Theorem 3.13 which states ) u(n)/n is bounded.
We will now show »_,_, @ log? (%) = 2logx + O(1) through this generalized Mdbius
inversion. By Lemma 4.24

22—10g< ):log2x+2010gx+A+o(1),

so through this generalized Mobius inversion we have

Z’u log® < ) 210gm—2'u (2Clg< )+A+0( ))

:210gx—202'u7)10g <%> +(A+O(1))Z%

n<x

=2logz + O(1) + O(1).
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From here we see

Z,u ) log ( ) (g) = ax(2logx + O(1)) + bzO(1) + o(x log x)

d<z

= 2axlogx + o(xlogx) .

Finally, from Theorem 4.11, 1 satisfies the hypothesis of the problem with a = 1 and b = —1.
So substituting A = 1 and a = 1 derives Selberg’s formula. O]

Exercise 4.25. Prove that the prime number theorem in the form ¢ (z) ~ z implies Sel-
berg’s asymptotic formula in Theorem 4.18 with an error term o(z logx) as x — oo.

Proof. Assuming the prime number theorem, ¥ (z) = = 4 o(x), then

z)logx + Z¢ (%) A(n) = (v + o(x))log z + Z (g + 0(%)) A(n)

n<x n<x

:xlogm—i-o(a:logx)—l—xzw+0<x2¥>

n<x n<x
=zlogx + z(logz + O(1)) + o(x log z)
=2zlogz + o(xzlogx) .

O

Remark. The prime number theorem implies a statement weaker than Selberg’s formula,
which is quite telling.

Exercise 4.26. In 1851 Chebyshev proved that if ¢)(z)/z tends to a limit as  — oo then
this limit equals 1. This exercise outlines a simple proof of this result based on the formula

Zw (%) =zlogx + O(x) (5)

n<x
which follows from Theorem 4.11.
(a) Let 0 = limsup(¢)(x)/z). Given € > 0 choose N = N(¢) so that x > N implies

T—00
¥(z) < (§ 4 €)x. Split the sum in (5) into two parts, one with n < x/N, the other with
n > x/N, and estimate each part to obtain the inequality

Z@/}( > (0 +¢)xlogx + z(N).

n<z

Comparing this with (5), deduce that § > 1.
(b) Let v = liminf(¢)(x)/x) and use an argument similar to that in (a) to deduce that v < 1.
T—00

Therefore, if )(z)/x has a limit as x — oo then v = § = 1.
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Proof. By Theorem 4.9, there are positive constants c¢;, ¢y such that coz < ¥(z) < ¢z
eventually holds for all . Thus both the liminf and limsup of ¢(z)/x exist.

(a) Let 0 = limsup#(x)/z and € > 0. By definition of limsup, there exists N = N, such
that for all z > N, ¢(z) < (0 + ¢)x. Then

o)== X ()

n<z n<z/N z/N<n<z

< Z(5+5>5+ > w(x/iN>

n<z/N z/N<n<z

=@ +e)z Y. —+Z¢

n<z/N n<z

1
=(0+¢e)z (log% + C—i—O(;)) + zp(N)
=(0+e)xlogr + zy(N) — (d + &)z (logN — C +o(1))
< (6§ +e)xlogz + xp(N).
Applying Theorem 4.11 we have zlogx + O(x) < (§ + €)xlogx + z¢(N) for a fixed £ > 0.
Dividing by zlogz gives 1 < d + ¢+ O(@), and letting  — oo gives 1 < § + €. Finally,

since € can be as small as we like, 6 > 1.

(b) Let v = liminf ¢)(x)/z and € > 0. By definition of liminf, there exists N = N such that
for all x > N, ¢(x) > (v —¢)z. Then

To()- o) T o)

n<z/N z/N<n<z

> > (-9
n<z/N
1

n<z/N

- (2 e of2))

=(y—¢e)rloge — (y—e)z(logN —C +0o(1)).

Applying Theorem 4.11 we have zlogz 4+ O(z) > (7 — e)zlogx + O(z) for a fixed € > 0.

Dividing by zlogx gives 1 > v — e + O( , and letting x — oo gives 1 > v — . Finally,

log =
since € can be as small as we like, v < 1. O

In Exercises 27 through 30, let A(z) =3 _ a(n), where a(n) satisfies

a(n) >0 for all n > 1, (6)
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and

ZA <%) = Za(n) [ﬂ :axlogx+bx+0(lozx) as r — 00. (7)

n<x n<x

When a(n) = A(n) these relations hold with @ = 1 and b = —1. The following exercises show
that (6) and (7), together with the prime number theorem, ¥ (z) ~ z, impliy A(z) ~ az, a
result due to Basil Gordon. This should be compared with Theorem 4.8 (Shapiro’s Tauberian
theorem) which assumes only (6) and the weaker condition ) _ A(z/n) = axlogx + O(x)
and concludes that Cx < A(z) < Bz for some positive constants C' and B.

Exercise 4.27. Prove that

(a) ZA(%) Am) =Y A(%) An)+ Y W (%) a(n) + O(x)

n<x n<\T n<yT

and use this to deduce the relation

(b) A:(Ex) + :vljgx ;A <%> Aln) + xlolgw ;fd) (%) a(n) = 2a +ol).

Proof.
(a) The left hand side can be rewritten as follows:

> AMA(T) =D AW@) Y alg) = D Ald)alg).

n<z d<z g<z/d qd<z

Applying the hyperbola method described in Theorem 3.17 with a = b = /z, then

> Adalg) = Y A(S)Am) + D v (5) aln) —v(VE)AVE).

qd<z n<yx n<yT

Looking at 1(y/z)A(y/x ), assuming the prime number theorem then 1(1/z) ~ /x. Also by
Theorem 4.8, A(y/x) = O(y/x ). This gives an error term that is O(z).
(b) By Exercise 4.24,

A(z)logz + Z A <%> A(n) = 2azxlogx + o(xlogx).
n<x

Substituting the result of (a) and dividing both sides by x log x proves the claim. ]

Exercise 4.28. Let a = liminf(A(x)/x) and let 8 = limsup(A(x)/x).
T—00 T—00

(a) Choose any € > 0 and use the fact that

X

A<?><(6+5)% and ¢(%)<(1+5)%
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for all sufficiently large =/t to deduce, from Exercise 27(b), that

B a € ae
—4+ -4+ -+ — > 2a.
a+2+2+2+2>a

Since ¢ is arbitrary this implies

6 a
— 4+ = > 2a.
o+ 5 + 52 a
[Hint: Let © — oo in such a way that A(z)/z — a.]

(b) By a similar argument, prove that

a a
X8y
5+2—|—2_ a

and deduce that & = 8 = a. In other words, A(z) ~ ax as x — oc.

Proof. By Theorem 4.8, there are positive constants b, ¢ such that cx < A(z) < bx eventu-
ally holds for all . Thus both the liminf and limsup of A(x)/x exist.

(a) Let € > 0 then there is an N such that for all z > N2, A(z) < (B+¢)x and ¢ (z) < (1+¢)z.
Let {zx}72, be a sequence such that A(zg)/xr — o as k — oo, which means

Alzy)

T

=a+o(l).

Now, for z;, > N? and any n </, then z3/n > \/z,, > N and thus

rogm 2 A A < g 3 69 () A

<V n</z,

_ B+te Z A(n)
log xy, e, n

= P og a, + O(1))

log

—(B+¢) (% -I—o(l)) |

Similarly, applying Theorem 4.8,

m > v (%) a(n)<m > 49 (%) atn)

n<y/x, n<Vy,

- 1+4¢ Z CL(TL)
~ logxy, > n
n<y/x;,
1+¢

= o (alog Vi, + O(1)

:(L+@(g+oug.
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Hence a + g + 5§+ 5+ % +o(l) >2a+o0(1). Letting  — oo (but keeping ¢ fixed), then
letting € — 0 gives us the result.

(b) Similar to (a), let € > 0 and choose N such that for all z > N? A(z) > (a — &)z
and ¢¥(z) > (1 —e)z. Let {xx}32, be a sequence such that A(xy)/zr — 5 as k — oo.

£

. . 8 | a @ . .
Applying the same bounds as in (a) we get a4+ 5+ § — § — & < 2a. Letting ¢ — 0 gives us
o+ g + 5 < 2a. From here we have

a a b6 a
“il<u<a+lyl
ﬁ+2+2_a_04—|—2+2

Rearranging terms and multiplying by 2 gives § < 3a —a — 3 < a. However by construction
a < 3, and so f =3a — a — = . This implies &« = § = a and hence A(x) ~ az. ]

Exercise 4.29. Take a(n) = 1 + p(n) and verify that (7) is satisfied with @ = 1 and
b= 2C — 1, where C is Euler’s constant. Show that the result of Exercise 28 implies

1
Jim 5 2 uw) =0

This gives an alternate proof of Theorem 4.14.

Proof. Let M(x) =% _, pu(n). We first derive bounds on three sums.

1. Just as in the proof of Theorem 3.3, by the hyperbola method,

ZL%J :Z Z 1:Zd(m):xlogx—k(QC’—l)x—i-O(\/E).

n<x n<z d<z/n m<x

2. By Theorem 3.12,

S [2] =1

n<wz
3. By Theorem 3.11, . .
>oM(5) = 7] =1
These give

ZA(%) :Z {%J —l—ZM(%) =zlogz + (2C — 1)z + O(Vx)

n<z n<lz n<lz

and
x T x
Za(n) LEJ = Z {EJ + Zu(n) {EJ =zlogz + (2C — 1)z + O(Vx) .
n<lx n<lx n<x
Therefore (7) is satisfied with a = 1 and b = 2C — 1 and so by Excrcise 4.28, A(x) ~ x. This

means |z | + M(z) =z + o(z) and thus M (x) = o(z). O
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Exercise 4.30.++) Suppose that in Fxercise 4.28, we do not assume the prime number
theorem. Instead, let
() ()

v =liminf —=, ¢ = limsup
Z—Hoo x T—500 x

(a) Show that the argument suggested in FExercise 4.28 leads to the inequalities

8 ad o ay
9059 LW g,
atgtg 22 fro+5 <2

(b) From the inequalities in part (a) show that § — a < ad — ay and deduce that
ay <a < B <ad
This shows that among all numbers a(n) satisfying (2) and (3) with a fixed a, the most

widely separated limits of indetermination,
A(z)

A
lim inf (z) and limsup —=,
T—00 x Z—00 x

occur when a(n) = aA(n). Hence to deduce A(z) ~ ax from (2) and (3) it suffices to treat
only the special case a(n) = aA(n).

Lemma 4.30. Selberg’s formula implies v + 6 = 2.

Proof of Lemma. Choose x to tend to infinity so that ¢ (x)/z — ~. Fix ¢ > 0 and choose
N = N. such that for all x > N, ¢(x) < (0 + ¢)z. Using a variation of Selberg’s formula
from Exercise 4.22 and the same idea in Exercise 4.26 we have

2zlogx + o(xlogx) = logx—i-zw( )logp
p<lz
x)logx + Z w( )logp+ Z ( )logp
pr/N z/N<p<z
)
< yxlogx + o(xlogx) + Z O+eu p+ Z ( )logp
p<z/N z/N<p<z

< ~zxlogx + o(xlogx) + (6 +¢€)x <10g % + O(l)> + (N (z)
=(y+d+e)rlogz +o(xlogz).

Here we used Theorem 4.10, which says  _ log(p)/p = logz + O(1). Dividing by z logx
gives v+ 0 + e+ o0(1) > 2+ o(1), and letting x — oo then € — 0 then shows v+ ¢ > 2.

On the other hand we can choose z to tend to infinity so that ¢ (z)/x — § and N = N,
such that for all x > N, ¢(z) > (7 — ¢)z. Then mirroring the above argument,

(0 4+~ —¢)rlogz + o(zlogzx) < 2xlogx + o(xlog z) ,
which leads to v + ¢ < 2. We conclude
v+ =2.



72 Chapter 4 Solutions

Proof of Fxercise.

(a) Replacing 1+ ¢ with 0 +¢ and 1 — ¢ with v — € in the proof of Exercise 4.28 immediately
implies these inequalities.

(b) Adding the inequalities from (a) we have

a ay B ad
2 — 4+ — <2 -+ —.
a+5+2+2_a+0z+2+2

Rearranging terms and multiplying by 2 gives § — a < ad — a7y.
Now using Lemma 4.30, substituting 6 = 2 — 7 into o + g + “7‘5 > 2a shows

20+ f+a(2 — ) > 4a.
Adding this to 8 + § + %' < 2a gives

a a
4a+ﬁ+§+%§2a+2a+6+a(2—fy),

and solving for «, we have avy < a.
Substituting v =2 — § into 8 + § + % < 2a shows

26+ a+a(2—-9) < 4a.
. . B as .
Adding this to o + 5+ % > 2a gives

J
4a+a+§+%22a+26+0¢+a(2—5),

and solving for 5, we have 8 < ad. By construction a < 3, and so ay < a < 8 < ad. n
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Congruences

Exercise 5.1. Let S be a set of n integers (not necessarily distinct). Prove that some
nonempty subset of S has a sum which is divisible by n.

Proof. Let S = {s1,82,...,8,} and define a; = s1 + 59+ -+ s; for 1 < i < n. If a; is
divisible by n for some k, we are done. Otherwise, by the pigeonhole principle there exists
¢ and j such that ¢ > j and @; = @; mod n. Thus a; — a; = 0 mod n, or in other words
Sit+1 + -+ 5; =0 mod n. O

Exercise 5.2. Prove that 5n® + 7n® = 0 mod 12 for all integers n.

Proof. By Theorem 5.2 (d), it’s enough to show this holds for n = 1,2,...,11. We show this
in Mathematica.

In[l]:= f[n_] := 5n"3 + 7n"5
In[2]:= Mod[f[Range[l1l2]], 12]
Out[2]= {0,0,0,0,0,0,0,0,0,0,0,0}

Exercise 5.3.
(a) Find all positive integers n for which n'® = n mod 1365.
(b) Find all positive integers n for which n'7 = n mod 4080.

Solution.
(a) Since 1365 = 3 -5 -7 - 13, it’s equivalent to solve n'® =n mod 3, 5, 7, 13.
e Since n'® = (n?)% - n =n mod 3, all n are solutions mod 3.

e Since n'?* = (n*)3 - n =n mod 5, all n are solutions mod 5.

e Since n'? = (n%)? - n =n mod 7, all n are solutions mod 7.

13

e By Fermat’s little theorem, n'° = n mod 13, thus all n are solutions mod 13.

Therefore all integers n satisfy n'®> = n mod 1365.
(b) Since 4080 = 2*-3-5 - 17, it’s equivalent to solve n'” = n mod 3, 5, 16, 17.

73
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e Since n'” = (n?)® - n = n mod 3, all n are solutions mod 3.

e Since n'” = (n*)* - n =n mod 5, all n are solutions mod 5.

e By Fermat’s little theorem, n'” = n mod 17, thus all n are solutions mod 17.

Therefore it’s equivalent to solve n'” =

of 16 and odd integers.

n mod 16. By inspection, all solutions are multiples

Exercise 5.4.

(a) Prove that ¢(n) = 2 mod 4 when n = 4 and when n = p® where p is a prime,
p =3 mod 4.

(b) Find all n for which ¢(n) = 2 mod 4.

Proof.

(a) If n = 4 then p(n) = 2. Instead suppose n = p®, where p is a prime, p = 3 mod 4. Then
o(n) = p»(p —1). Since p*~! = 1,3 mod 4, then ¢(n) is either 1-2 or 3 -2 mod 4. But
6 = 2 mod 4 and so ¢(n) =2 mod 4.

(b) Consider the four cases.
e Suppose n = p®m, where p = 1 mod 4 and p is relatively prime to m. Then
p(n) =p*(p—1Dp(m) =p*"-0-p(m) =0 mod 4.

Thus if n is divisible by a prime congruent to 1 mod 4 then ¢(n) # 2 mod 4.

e Suppose n = p*q®m for primes p, ¢ = 3 mod 4 which are relatively prime to m. Then
p(n) = o)) p(m) =2-2-¢p(m) =0 mod 4.

So if n is divisible by more than one prime congruent to 3 mod 4 then ¢(n) # 2 mod 4.

e Suppose n = 2°p?, where s > 0, a > 0, and p is a prime, p = 3 mod 4. Then
on) =2"tp(p*) =2"""-2=2° mod 4.
Thus for ¢(n) = 2 mod 4 to hold we require s = 1.

e Suppose n = 2%, where s > 0. Then ¢(n) = 257! and thus for ¢(n) = 2 mod 4 to hold
we require n = 4.

Hence p(n) = 2 mod 4 if and only if n = 4, n = p?, or n = 2p® for a > 0 and some prime
p =3 mod 4. O]

Exercise 5.5. A yardstick divided into inches is again divided into 70 equal parts. Prove
that among the four shortest divisions two have left endpoints corresponding to 1 and 19
inches. What are the right endpoints of the other two?
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Solution. Take a yardstick marked at every inch. Next make a mark at every %th of an
inch. The yardstick has now been non-uniformly partitioned. We are asked to find where

the four shortest divisions lie.

./ J I J Jf/ J J/ /[ [ ||
0 | > 3 4 5 6
Figure 3: The first six inches of the marked yardstick.

36
70
36 [ 2 1

e (e
v 704—70 35

So the smallest possible division length is 1/35. The goal now is to solve |70x — 36y| = 2.
Note that |70z — 36y| = 2 can be rewritten as

Let = and y be integers such that x and =y are endpoints of a division. Then (36, 70) = 2

implies

70x — 36y =2 or 70x — 36y = —2.
First, look at 70x — 36y = 2. By inspection, 70(—1) — 36(—2) = 2 and thus z = —1 and

y = —2 is a solution. Next, to find all solutions, we solve 70(—1 4+ m) — 36(—2 4+ n) = 2 for

integers n and m. This gives n = i’—gm and thus m = 18k and n = 35k for some integer k.

Hence the solutions are of the form
r=18k —1, y =35k —2, for some k € Z.
Similarly, the solutions to 70x — 36y = —2 are of the form
x=1+18k, x =2+ 35k, for some k € Z.

Since x and %y both lie on the yardstick, it must be that 0 < x < 36 and 0 < y < 70. Thus
the only valid solutions are

(z,y) = (17,33), (35,68), (1,2), (19, 37).

These correspond to the divisions
594 1224 36 666
ST, == L2, |19, —
5o ] ) o
respectively.

Remark. This problem can also be solved using Mathematica

In[3]:= Block[{marklocs, divs},
marklocs = Union[Join[Range[0, 36], Range[0, 36, 36/70111;
divs = Partition[marklocs, 2, 1];
divs[Ordering[divs, 4, Subtract @@ #1 > Subtract @R #2&]]

]
Out [3]1= {{1224/35, 35}, {19, 666/35}, {594/35, 17}, {1, 36/35}}
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Exercise 5.6. Find all x which simultaneously satisfy the system of congruences
r=1 mod 3, xr =2 mod 4, r =3 mod 5.

Solution. By the Chinese remainder theorem there is a unique solution mod 60. Following
the method described in the proof of Theorem 5.26, we define the following.

Let M; = 20, My = 15, and M3 = 12. This gives M] = 2, M} = 3, and M} = 3. The
solution mod 60 is thus

r=1-20-2+2-15-3+3-12-3 =58 mod 60.
So all solutions are x = 60k + 58 for all integers k.

Exercise 5.7. Prove the converse of Wilson’s theorem: If (n — 1)! + 1 = 0 mod n, then n
s prime if n > 1.

Lemma 5.7. If n is composite and n # 4 then n | (n — 1)L
Proof of Lemma. Suppose n = ab for 1 < a < b < n. Then
(n=1l=(ab)(1)(2)---(a=D(a+1)---(b=1)(b+1)---(n—1),
hence n | (n — 1)!. Otherwise n = p? for some prime p > 2. This means p? — 1 > 2p and so
(=1 = PO~ D+ 1) 2= D)2+ 1) 07~ 1)
Therefore n | (n — 1), O

Proof of Exercise. Let n be composite. For n =4, (4 — 1)! + 1 = 3 mod 4. Otherwise, by
Lemma 5.7, (n — 1)+ 1 = 1 mod n. Thus if n is composite then (n — 1)! + 1 # 0 mod n.
[

Exercise 5.8. Find all positive integers n for which (n — 1)! + 1 is a power of n.

Proof. By Exercise 5.7, n | (n—1)!'+ 1 if and only if n is prime. Thus we may assume n = p
for some prime p. Suppose (p — 1)! + 1 = p* for some prime p > 5. Then
(p—2)=p""+-+p+1
="' -D+-+p-D)+1-1)+k
By Lemma 5.7, p— 1| (p — 2)! and thus p — 1 | k. We conclude k > p — 1, a contradiction
since (p— 1)! +1 < pP~L.

Testing p = 2, 3, 5 then (p — 1)! 4+ 1 is 2, 3, 25, respectively. Thus (n —1)! + 1 is a power
of n if and only if n = 2, 3, 5. O]

Exercise 5.9. If p is an odd prime, let ¢ = (p — 1)/2. Prove that
(@)? 4+ (=1)?=0 mod p.

This gives ¢! as an explicit solution to the congruence 2% +1 = 0 mod p when p = 1 mod 4,
and it shows ¢! = £1 mod p if p = 3 mod 4. No simple general rule is known for determining
the sign.
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Proof. Suppose p = 4n + 1, then ¢ = (2n)!. By Wilson’s theorem,

-1=(p-1!
=(1-2---2n)((2n+1)---4n)
=12 2n)((p—2n)---(p—1))

(120 20)((~2m) - (~1)
= ((2n)))*(=1)*"
=¢*> mod p

1.2.2n- (20 + 1)) (=20 — 1) -+ (=1))
(2n + 1)2(=1)™

= —¢°> mod p.

(

(1-2
=1-2-2n-2n+1))((p—2n—-1)---(p—1))

(

(

Hence (¢!)? + (—=1)? = 0 mod p. O
Exercise 5.10. If p is odd, p > 1, prove that
123252 ... (p— 2)? = (=1)?®™V/2 mod p

and
224%6% ... (p— 1)? = (=1)P*Y/2 mod p.

Proof. Suppose p = 4n + 1, then by Wilson’s theorem,

—1=(p-1)!
=(1-3---(dn—1))(2-4---4n)
=@-3---Mn—-1)((p—4n+1)-(p—4n—=3)---(p—1))
=(1-3---(4n—-1)((-4n+1) - (=4n—3)---(-1))
= 173°5 - (p — 2)*(=1)*" (8)
=1%23%5% .- (p—2)* mod p.

Instead, substituting 2k+1 = p—2k establishes 224?62 - - - (p—1)* = —1 mod p for p = 4n+1.
Now if p = 4n + 3, then the same exact methodology applies here, except there are now

an odd number of even terms and an odd number of odd terms. Thus we have (—1)*"*! in
(8) instead of (—1)?". The result then follows. O

Exercise 5.11. Let p be a prime, p > 5, and write

TR I
2 3 p  ps

Prove that p3 | (r — s).
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Proof. Let H, be the nth harmonic number. By Theorem 5.25, p!H, 1 = 0 mod p*. Adding
(p — 1)! to both sides gives p!H, = (p — 1)! mod p?, i.e. there is an integer k such that

p'H, = (p—1)! + kp®.
Thus
1 (p—D'+kp?

1 1
44+t t ==
2 3 p p(p —1)!

Let g = ged((p— 1)! + kp®, (p — 1)!). Now g | (p— 1)!, which means g { p. Thus since g | kp®
we have g | k. Defining ¢ = (p — 1)!/g and m = k/g gives

1 1 1 + mp? T
1 4+ -4+ -4+ - = Q_____JZ_ = —,
2 3 p Pq ps

where the right hand side is in lowest terms. Hence r — s = mp? = 0 mod p?. O]
Exercise 5.12. If p is a prime, prove that
(n> = [E} mod p.
p p

Also if p* | [n/p] prove that

Lemma 5.12. Suppose b | a and (b,n) = 1. If be = 1 mod n then a/b = ac mod n.

Proof of Lemma. Let a = bd. Then a/b = d and ac = d(bc) = d mod n. O

Proof of Ezercise. Suppose n = pq+ r where 0 < r < p. Then |n/p| = ¢ and

(Z) B p!(zgzq:rrz!p)!

12

ZHH(qurT—i)
= I wa+r—i)

" 0<i<p
i#Er

_ (pill)! Og (pg + 1 — 9). 9)

Notice {pg+7r—1i |0 <1i < pand i # r} forms a reduced residue system mod p and so

H (pg+r—1i)=(p—1)! mod p.
0<i<p
iET
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Thus by Wilson’s theorem and Lemma 5.12,

()

Next suppose ¢ = p“d, then by (9)

q(=1)(=1) = ¢ mod p.

()7 | o

" 0<i<p
i#Er

Since p* is relatively prime to (p — 1)!, the quantity on the right is an integer and hence

p* | (0). O

Exercise 5.13.+) Let a, b, n be positive integers such that n divides a — 0". Prove that n
also divides (a" — 0")/(a —b).

Proof. Let n = p®m where p{m and (a — b,n) = p®g where p{ g. It’s enough to show

po | a™ — "

Assume 3 > 0, as it is trivial otherwise. Since p” | @ — b, then a = b + kp? for some k.
Consequently

a" ==Y (") ki pPipn=i
J

J=1

ISR | RS R e
j=1 T

" Bj
=> 0
: J!
Jj=1
Let M be the highest power of p dividing a™ — b", then

M > min {a—{—ﬁj— \_logpjj}.

1<5<n
Since 5 > 0,
M>oa+ 51I§Hji£n {j — |log, 7]}

- — ~
_a+ﬁlr§nj1£n{2 log, j}

Now j — log, j is minimized over the positive integers at j = 1 and j = 2 with value 1. This
means M > « + 3, and hence p**# | a® — b". Therefore n | (a" — b")/(a — b). O



80 Chapter 5 Solutions

Exercise 5.14. Let a, b, and ¢ be positive integers and define
Tp=ar,_1+b forn=12,...
Prove that not all x,, can be primes.

Proof. If x; is not prime, we are done. Otherwise suppose p = axy + b is prime. We have
pta and thus ¢?~! = 1 mod p. Then

Tpp-1ys1 = AP g 4 aPPDp @b 4 ab+ b
p—1
_ ap(p_1)+1x0 + ap(p—l)b + Z (ai(p—1)+p—2 4ot ai(p—1)+1 + a’i(p—l))b
i=0
=arg+b+plad® >+ +a*+a+1)b
=arg+b=0 mod p,

and since z,, is a monotonically increasing sequence, x,,—1)+1 must be composite. O

Exercise 5.15. Let n, r, a denote positive integers. The congruence n? = n mod 10¢
implies n” = n mod 10* for all r. Find the values of r such that n” = n mod 10* implies
n? = n mod 10°.

Solution. Consider the three possible cases on r.

e Let r be odd and choose n to satisfy n = —1 mod 10*. Then n” = n mod 10%, but
n? # n mod 10°.

o Let 7 = 10k + 6, a = 2, and n = 16. Inducting on %, note n"~! = 1 mod 10%. Hence
n” =n mod 10%, but observe n? # n mod 10°.

e Let r = 10k + m, where m € {0,2,4,8}. If n"~! = 1 mod 10%, then |n| | 10k + m — 1.
However |n| | ¢(10%) = 4 - 10°7!, hence for m € {0,2,4,8} it must be that |n| = 1.
Therefore in this case, the only solutions to n” =n mod 10* are n =0 or n = 1.

We conclude n” = n mod 10* implies n? = n mod 10% if and only if 7 is even and not

congruent to 1 mod 5.

Exercise 5.16. Let n, a, d be given integers with (a,d) = 1. Prove that there exists an
integer m such that m = a mod d and (m,n) = 1.

Proof. Define S = {a+td|t=1,2,...,(nd)/d}. Since (a,d) = 1, by Theorem 5.32 there is
an m € S such that (m,nd) = 1. This implies (m,n) = 1. O

Exercise 5.17. Let f be an integer-valued arithmetical function such that
f(m+n)= f(n) modm

for allm > 1,n > 1. Let g(n) be the number of values (including repetitions) of f(1), f(2),...
divisible by n, and let h(n) be the number of these values relatively prime to n. Prove that

, f(n)
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Proof. Let n = p{* ---p* and define g(k,n) to be the number of values (including repeti-
tions) of f(1), f(2),..., f(n) divisible by k. Through the principle of cross-classification,

h(n) =n — Z g(pi,m) + Z g(pipj,n) — ...+ (=DFg(p1 - pr,n).

1<i<k 1<i<j<k

Suppose k | n. By assumption we can partition {f(1), f(2),..., f(n)} into n/k subsets which
are congruent mod k. This implies

glk.n) = Zo(k),

hence

hn)=n— 3 §g<pi>+ S L gopy) — e (1)

1<i<k It 1<i<j<k PiPi

g(p1- - pr).
PL Dk

Since p is zero for all other factors of n, we have

9(d)
h(n) =n Z ,u(d)T.

d|n

]

FExercise 5.18.¢+) Given an odd integer n > 3, let k& and t be the smallest positive integers
such that both kn 4+ 1 and tn are squares. Prove that n is prime if, and only if, both k£ and
t are greater than n/4.

Proof. If n is prime, then n? | tn which implies n | t. Thus ¢ > n > n/4. Also, by Theorem
5.21, 22 = 1 mod n has exactly the two solutions =1 mod n. So if kn 4+ 1 = a?, then a = £1
mod n. Thus a > n — 1, which implies kn + 1 > (n — 1)%. Isolating k, we see k > n — 2.
Finally since n > 3, then n — 2 > n/4 and therfore k > n/4.

If n is composite, consider the three cases.

e Suppose n = p?® for a prime p. Taking ¢ = 1 gives the smallest integer such that tn is
a square and t < n/4, as n > 4.

e Suppose n = p?***+! for a prime p. Taking ¢t = p gives the smallest integer such that tn
is a square. Since p > 2 thent =p < p- (p?/4) = p*/4 < n/4.

e Suppose n = p®m for m > 2 and p{ m. By the Chinese remainder theorem, there is a
unique y such that
n

y=1 modp*, y=-1 modm, |y|<2

This gives y> = 1 mod n. Now if y = 1 then y = 1 mod m, which is impossible since
m > 2. Therefore y # 1 and similarly y # —1, so taking k = (y*>—1)/n gives a positive
integer such that kn+ 1 is a square. Additionally, under the assumption |y| < n/2, we
have k < y?/n < n/4.
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Thus if n is composite then at least one of k, ¢ is less than n/4. ]

Exercise 5.19.++) Prove that each member of the set of n — 1 consecutive integers
n'+2n4+3,...,nl+n

is divisible by a prime which does not divide any other member of the set.

Proof. For each 2 < k < n, consider the three cases.

e Suppose k is prime and k£ > n/2. Then k | n! + k and k ¥ n! + j for j # k since
n! 4+ 2k > n!+ 7. In this case we are done.

e Suppose k is prime and k£ < n/2. Then since 2k < n, for any prime p < n, p | n!/k
and hence p 1 n!/k + 1. It follows that n!/k + 1 has a prime factor larger than n. This
implies n! + k£ does as well.

e Suppose k is composite. Similar to the above case, for any prime p < n, p | n!/k. Thus
p1n!/k+1 and so n! + k has a prime factor larger than n.

Now suppose k is not a prime larger than n/2. Let p, > n be a prime dividing n! + k. Since
|(n!'+ j) — (n! 4+ k)| < n we have

n'+j7Zn!+k modp, forj#Ek.
Therefore py | n! + k and py, { n! + j for j # k. O

Exercise 5.20.+) Prove that for any positive integers n and k, there exists a set of n
consecutive integers such that each member of this set is divisible by k distinct prime factors
no one of which divides any other member of the set.

Proof. Fix n and induct on k, where the base case k = 1 is proven in Exercise 5.19. Suppose
Sk‘ - {81a827 .. .,Sn}
satisfies the claim for £ with corresponding primes p; ; for 1 <i <n and 1 < j < k. Define
Sk+1 = {tl,tg, ce ,tn}, where tz = Sn! -+ Si,
a set of consecutive integers. It’s clear each p; ; divides t; and p; ; does not divide ¢; for I # <.
Applying the exact process in FExercise 5.19, since s; is composite, there is a prime P; > s,
that divides ¢;. Furthermore, since |t; — ¢;| < n we have

t; Zt;, mod P, forl # 1.

Thus each member of Sk, is divisible by £+ 1 distinct prime factors no one of which divides
any other member Sj.. ]

Remark. The last two exercises both prove there are infinitely many primes.
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Exercise 5.21. Let n be a positive integer which is not a square. Prove that for every
integer a relatively prime to n there exist integers x and y satisfying

ar=y modn with 0 <z <+/nand0 < |yl <+/n.

Proof. Consider ax —y for 0 < z,y < |/n], which gives (|y/n]| + 1)? possible values for
(z,y). Since \/n < [v/n] + 1, then n < (|/n] + 1)

Now, there are at most n values ax — y can attain mod n, so by the pigeonhole principle
there must be at least two distinct expressions ax — y that are congruent mod n. Suppose
axy — Y1 = axy — y2 mod n for {x1, 11} # {x2,y2}. This gives

a(ry — x2) =1 — y» mod n,

and so take x = |x1 — 9| and y = £|y; — yo|. Observe 0 < x < y/n and 0 < |y| < /n, so all
that remains is to show the inequalities are strict.

e Supposing x = 0, then 7 = 29 and y; — yo = 0 mod n. So y; = kn + y, for some
integer k. However since 0 < y1,y2 < |v/n], we must have & = 0 and thus y; = vo.
This contradicts {x1,y1} # {x2, 92}

e Supposing y = 0, then y; = y» and a(xr; — x2) = 0 mod n. Now since (a,n) = 1 we
must have 1 — x5 = 0 mod n. We conclude x; = x5, another contradiction.

e Since n is not a square and both z and y are integers, we have z # /n and |y| # /n.
Therefore 0 < z < y/n and 0 < |y| < /n. O

Exercise 5.22. Let p be a prime, p = 1 mod 4, let ¢ = (p — 1)/2, and let a = ¢!.
(a) Prove that there exist positive integers x and y satisfying 0 < z < \/pand 0 <y < /p
such that

a’z? —y* =0 mod p.

(b) For the z and y in part (a), prove that p = 2% + y?. This shows that every prime p = 1
mod 4 is the sum of two squares.
(c) Prove that no prime p = 3 mod 4 is the sum of two squares.

Proof.

(a) Since ¢! and p are relatively prime then by Exercise 5.21 there are integers x and y
satisfying 0 < x < /p and 0 < |y| < /p such that ax =y mod p. Hence p divides ax — y,
which divides a?2? — 4? and so a?2? — y? = 0 mod p.

(b) By Exercise 5.9, a*> = —1 mod p and so —z% — y?> = 0 mod p. This implies p | 2% + 2.
However, since 0 < = < \/p and 0 <y < ,/p then 0 < 2?4+ y* < 2p, forcing p = 2% + y*.

(c) Given any integers a and b then

a®,b>=0,1 mod 4.

Thus
a>+b*=0,1,2# 3 mod 4.

That is if p = 3 mod 4 then p cannot be expressed as the sum of two sqaures. O



Chapter 6
Finite Abelian Groups and Their
Characters

Exercise 6.1. Let G be a set of nth roots of a nonzero complex number. If G is a group
under multiplication, prove that G is the group of nth roots of unity.

Proof. For x # 0 define G, = {z € C | 2" = 2z} and assume G, is a group. If z,w € G,,
then by closure z"w™ = x. Since 2" = x = w" we also have z"w" = 2%. Thus 2% = z, and
hence x = 1. Direct verification shows G is a group. m

Exercise 6.2. Let G be a finite group of order n with identity element e. If aq,...,a,
are n elements of G, not necessarily distinct, prove that there are integers p and ¢ with
1 <p < q < nsuch that ayapi---a, = e.

Proof. Let A = {ay,as,...,a,} and define b; = ajas---a; for 1 <i <n. If by = e for some
k, we are done. Otherwise, by the pigeonhole principle there exists ¢ and p such that p < ¢
and b, = b,. Thus bqb;1 = e, or in other words ap41---a, = e. O]

Remark. Taking G = (Z/nZ,+) proves Exercise 5.1.

Exercise 6.3. Let G be the set of all 2 x 2 matrices (CCL Z), where a, b, ¢, d are integers

with ad — bc = 1. Prove that G is a group under matrix multiplcation. This group is
sometimes called the modular group.

Proof. The condition ad — bc = 1 is equivalent to having determinant 1. We now show G
satisfies the group axioms.

e Closure: If A, B € G then det(A) = det(B) = 1. Since the determinant is multiplica-
tive, det(AB) = det(A) det(B) =1 and so AB € G.

o Associativity: Matrix multiplication is associative, which can be verified directly.

e Fxistence of identity: Since det(lz) =1, I, € G.

o FEuzistence of inverses: If A = (Z Z) € G, let B = (_dc _ab). We have det(B) =

ad — bc = 1 and thus B € G. Observe AB = I, which means B = A~! € G. O

84
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Exercise 6.4. Let G = (a) be a cyclic group generated by a. Prove that every subgroup of
G is cyclic. (It is not assumed G is finite.)

Proof. Let 1 < H < G and m be the smallest positive integer such that ¢ € H. If be H
then b = a™ for some n € Z, as b € G.

If n =gm +r, where 0 < r < m, then a” = (a™)%". This implies a" = (a) %a™ € H.
By the minimality of m, we must have r = 0 and so a™ = (a™)?. Therefore H = (a™). [

Exercise 6.5. Let G be a finite group of order n and let G’ be a subgroup of order m.
Prove m | n (Lagrange’s theorem). Deduce that the order of every element of G divides n.

Lemma 6.5. For G’ < @G, the set P = {zG’ | x € G} partitions G.

Proof of Lemma. Pick z,y € G such that G’ N yG’ # (). This means there are g;, g € G’
such that g, = yg,. Multiplying both sides by g; ' gives

z =gy 'ygs = ygs, where g3 € G'.

Now for any element g € G’, xg = y(g39) € yG’', thus G’ C yG’'. Similarly yG' C G’ and
hence xG’ = yG’. This means either 2G’ = yG’ or zG' NyG' = 0. H

Proof of Ezercise. For any x € G, since x is invertible, the set G’ has order |G'|. By
Lemma 6.5 {xG' | x € G} partitions G, and thus |G| = k|G| for some integer k.

Now choose x € G and let n = |z| = |(z)|. By Lagrange’s theorem, |(x)| divides |G|.

[

Fxercise 6.6. Let G be a finite group of order 6 with identity element e. Prove that either
G is cyclic, or else there are two elements a and b in G such that

G = {a,a* a* b, ab,a’b},
with a® = b®> = e. Which of these elements is ba?

Proof. By Exercise 6.8 (Cauchy’s theorem) there exists a,b € G such that |a| = 3 and |b] = 2.
We have b € (a) since 2t |(a)|. Furthermore, b € (a)b and so by Lemma 6.5 (a) N {a)b = ().
This means G = {a) U (a)b = {e,a, a? b, ab, a®b}, whether G is cyclic or not.

Assuming G is not cyclic we now rule out cases to conclude ba = a?b.

e Supposing ba = e, then multiplying both sides by b yields a = b, a contradiction.

e Supposing ba = a, then multiplying both sides by a? yields b = e, a contradiction.
e Supposing ba = a?, then multiplying both sides by a? yields b = a, a contradiction.
e Supposing ba = b, then multiplying both sides by b yields a = e, a contradiction.

e If ba = ab, then G is abelian. This would mean (ab)? = a?b* = a? and (ab)® = a®b® = b,
which implies |ab| = 6. This is a contradiction since G # (ab). O
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Exercise 6.7. A group table for a finite group G = {ay,...,a,} of order n is an n X n
matrix whose ¢j-entry is a;a;. If a;a; = e prove that aja; = e. In other words, the identity
element is symmetrically located in the group table. Deduce that if n is even the equation
22 = e has an even number of solutions.

Proof. Suppose a;a; = e. Then
a;(aja;) = (a;a5)a; = a;,

and multiplying both sides by a; ' shows a;a; = e.

Now given a; € G, there is a unique a; € G such that a;a; = e, hence the number of times
e appears in the group table is n. By symmetry, the number e’s above the main diagonal is
the same as the number of e’s below the main diagonal. Adding these thus produces an even
number. Since n is even, the number of €’s on the main diagonal must be even too. That is
to say the number of solutions to 2 = e is even. O

Exercise 6.8. Generalizing Fxercise 6.7, let f(p) denote the number of solutions of the
equation 2P = e, where p is a prime divisor of n, the order of G. Prove that p | f(p)
(Cauchy’s theorem). [Hint: Consider the set S of ordered p-tuples (ay,...,a,) such that
a; € G and a; ---a, = e. There are n?~! p-tuples in S. Call two such p-tuples equivalent if
one is a cyclic permutation of the other. Show that f(p) equivalence classes contain exactly
one member and that each of the others contains exactly p members. Count the number of
members of S in two ways and deduce p | f(p).]

Proof. Following the hint, let (a4, ..., a,) € S. Since every element of G is invertible, we can
choose ay,...,a, ; freely, which forces a, = (a;---a,_1)~*. This implies |S| = n?~!, since
there are n choices for each freely chosen a;.

Define ¢ : S — S such that gb((al,...,ap)) = (ag,...,ap,a1). For A/B € S, we say
A~ Bif B=¢™(A) for some m. Let [A]={B € S| A~ B}.

Suppose for A = (aq,...,a,), ¢™(A) = A for some 0 < m < p. By Exercise 1.25, there
exists £ > 0 and y > 0 such that max — py = 1. Since ¢~ % = id,

B(A) = G7I(A) = ¢ (67(A)) = 6™ (A) = A
Therefore
a1 = a2, = A3,...,0p = A7.

This means A = (z,z,...,x) for some x € G, and so |[A]| = 1. Furthermore there are f(p)
many [A] such that |[A]| = 1.
Now suppose ¢™(A) # Aforall 0 <m <p. If 1 <k < j < pand ¢/(A) = ¢F(A), then
#~F(A) = A. This means j — k = 0 and so each ¢*(A) is unique. This shows |[A]| = p.
Thus partitioning S by ~ implies

n~h = ps + f(p).

Since p | n, we see p | f(p). O
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Exercise 6.9. Let GG be a finite group of order n. Prove that n is odd if, and only if, each
element of G is square. That is, for each a in G there is an element b in G such that a = b%.

Proof. Let n =2m+1, x € G and y = z~!. Then by Exercise 6.5 (Lagrange’s theorem), |y
divides 2m + 1 and so

v =P = ()

Conversely, suppose every element in GG is a square. This means the map ¢ : G — G defined
by ¢(g) = ¢* is surjective. Therefore the only solution to z* = e is z = e. Hence G does not
contain an element of order 2, so by Exercise 6.8 (Cauchy’s theorem) n is odd. O

Exercise 6.10. State and prove a generalization of Fxercise 6.9 in which the condition “n
is odd” is replaced by “n is relatively prime to k” for some k > 2.

Statement: Let G be a finite group of order n. Prove that n is relatively prime to & if and
only if each element of GG is a kth power.

Proof. Suppose (n,k) =1and n=km+r for 0 <r < k. Let x € G and y = x~*. Then by
Exercise 6.5 (Lagrange’s theorem), |y| divides km + r and so

There are a and b such that ar + bk = 1 and so
T = xar+bk — (yam)k(xb)k — <yamxb)k — (:L,bfam)k.

Conversely, suppose every element in G is a kth power. This means the map ¢ : G — G
defined by ¢(g) = g"* is surjective. Therefore the only solution to ¥ = e is * = e. This
implies for any prime divisor p of k, the only solution to 2? = e is x = e. Hence G does not
contain an element of order p, so by Exercise 6.8 (Cauchy’s theorem), p { n. We conclude
(n,k) = 1. O

Exercise 6.11. Let G be a finite group of order n, and let S be a subset containing more
than n/2 elements of G. Prove that for each ¢ in G there exist elements a and b in S such
that ab = g.

Proof. Suppose for some g € G that ab # g for all a,b € S. We have
G={g1,---,9j,h,...,hx}, where g7 = g and h] # g.

By the hypothesis we have g; ¢ S and so S C {h;}. Now for each h; there is a unique h; # h;
such that h;h; = g. Therefore if h; € S, then h; & S. Thus pairing the h; accordingly gives
S| < {hi}l/2 <nj2. O

Exercise 6.12. Let G be a group and let S be a subset of n distinct elements of G with
the property that a € S implies a=* € S. Consider the n? product (not necessarily distinct)
of the form ab, where a € S and b € S. Prove that at most n(n — 1)/2 of these products
belong to S.



88 Chapter 6 Solutions

Proof. Consider the n? — n pairs a,c € S such that a # c. If there exists b € S such that
ab = ¢, then ¢b™! = a, where b=! & S. That is to say if ab = ¢ for a,b,c € S, then there is
no element x € S such that cx = a. This means at most half of these pairs have b € S such
that ab = c. Additionally note if a = ¢, then there is no b € S such that ab = c. m

Exercise 6.13. Let fi,..., f,, be the characters of a finite group G of order m, and let
a be an element of G of order n. Theorem 6.7 shows that each number f,(a) is an nth
root of unity. Prove that every nth root of unity occurs equally often among the numbers

fi(a), fala), ..., fm(a). [Hint: Evaluate the sum

i i fr(ak:)e—Zmik/n

r=1 k=1

2mi/n

in two ways to determine the number of times e occurs.|

Proof. Define e(x) = €*™@ and let S be the sum from the hint. Changing order of summation

we have
m

S = Z —k/n) Y f(d").

r=1

By Theorem 6.13, since |a| = n, the inner sum is 0 if £ < n and m if k¥ = n. Hence
S =me(n/n) =m.
On the other hand if f.(a) = e(j./n), we have

£

r=1 k=1

The inner sum is geometric and evaluates to n if 7, = 1 and 0 otherwise. Coupling this with

S = m tells us e(1/n) occurs exactly m/n times within fi(a), fa(a), ..., fm(a).
Next, replace e(—k/n) in S with e(—kxz/n) for 1 < x < n. Applying the same technique
shows e(xz/n) occurs exactly m/n times within fi(a), fa(a), ..., fm(a). O

Remark. This exercise provides an alternate proof that the order of any element of a finite
group divides the order of the group.

Exercise 6.14. Construct tables showing the values of all the Dirichlet characters mod &
for k =8, 9, and 10.

Solution. We construct the tables in Mathematica.

apostolCh6Numl4Format [Table [
DirichletCharacter[#, Jj, Range[#]1]1, {3j, 1, EulerPhi[#]}
J& /@ {8, 9, 10}]
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x(n)mod9

x(n) mod 8 1 1 0 1 1 0 1 1 0

in 2inm 2inm
1 0 1 0 1 0 1 0 1 e’ 0 es e s 0 e 3 -1 0

2im 2 2im

1 0o -1 0 -1 0 1 0 1 e3 0 e3 e 0 es 1 0
1 0 -1 0 1 0 -1 0 1 -1 0 1 -1 0 1 -1 0
1 0 1 0 -1 0 -1 0 1 e 3 0 es e>s 0 e 3 1 0

i EE 2ir
1 e 0 e 35 es3 0 e -1 0

X(n)mod 10

Exercise 6.15. Let x be any nonprincipal character mod k. Prove that for all integers
a < b we have

Proof. For this exercise assume 1 < a,b < k, since the sum has period k. Suppose there are
at most ¢(k)/2 numbers relatively prime to k inclusively between a and b. Then

< Ix(n)
Yo

a<n<b
(n,k)=1

< p(k)/2.

Suppose there are more than ¢(k)/2 numbers relatively prime to k inclusively between a and
b. This means there are less than ¢(k)/2 numbers n relatively prime to k& where 1 <n < a
or b < n < k. Since Y is nonprincipal we have 25;1 x(n) =0, thus

x(n Zx

)_l

a—

n=1 n=>b+1
k
< Z\x N+ D [x(n)
n=b+1
Z 1+ > 1
1<n<a b<n<k
(n,k)=1 (n,k)=1

o (k) /2. =
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Exercise 6.16. If x is a real-valued character mod k then x(n) = £1 or 0 for each n, so
the sum

is an integer. This exercise shows that 125 = 0 mod k.

(a) If (a, k) = 1 prove that ax(a)S = S mod k.

(b) Write k = 2%¢ where ¢ is odd. Show that there is an integer a with (a, k) = 1 such that
a =3 mod 2% and a = 2 mod ¢. Then use (a) to deduce that 125 = 0 mod k.

Proof.

(a) Given (a,k) = 1, for each 1 < m < k there is a unique n such that am = n mod k and
1 < n < k. Moreover, since x has period k, x(am) = x(n). Thus summing over all am for
1 <m <k gives

k k
Z amy(am) = an(n) mod k.
m=1 n=1

Using the fact that y is completely multiplicative implies ax(a)S = S mod k.

(b) By the Chinese remainder theorem, there is an a such that ¢ = 3 mod 2% and a = 2
mod ¢. Additionally since a is relatively prime to 2¢ and ¢, it must be relatively prime to
k = 2%.

By (a) we know (ax(a) —1)S = 0 mod k. We will use this to show 2* and ¢ both
divide 12S. If a < 3, it’s clear 2* | 12S. Otherwise, we know « > 3. Then since a = 3
mod 2%,

25 mod 2¢  if x(a)=1
(ax(@) ~ 1) = L
—4S mod 2¢ if x(a) = —1.

Since 2 | (ax(a) — 1)S, we must have 2*72 | S. This implies 2* | 12S.
From (a) we have ¢ | (ax(a) —1)S. Since a = 2 mod ¢,

S mod q if x(a) =1
(ax{a) - 1)S = )
—3S mod ¢ if x(a) = —1.
Thus if 3 | ¢ we must have (¢/3) | S and if 3 1 ¢ we have ¢ | S. Both cases imply ¢ | 12S.
By Theorem 5.9, 125 = 0 mod 2% and 125 = 0 mod ¢ imply 125 = 0 mod k. m

Exercise 6.17. An arithmetical function f is called periodic mod k if k > 0 and f(m) =
f(n) whenever m = n mod k. The integer k is called a period of f.

(a) If f is periodic mod k, prove that f has a smallest positive period ko and that ko | k.
(b) Let f be a periodic and completely multiplicative, and let k be the smallest positive
period of f. Prove that f(n) = 0 if (n,k) > 1. This shows that f is a Dirichlet character
mod k.

Proof.
(a) If f is periodic, by the well ordering principal there is a smallest positive period kq. Let
g = (k, ko). Since g can be expressed as a linear combination of k and kg, f has a period of
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g. The minimality of kg, thus forces g = ko. Hence ky | k.
(b) Suppose there is a prime p that divides both n and k. Then for any integer m,

f(p)f(m) = f(pm) = f(pm + k) = f(p)f(m + k/p).

This implies f(p) = 0 since otherwise f would have a smaller period k/p. Thus since p | n
and f is completely multiplicative, f(n) = 0. ]

Exercise 6.18.++)

(a) Let f be a Dirichlet character mod k. If k is squarefree, prove that k is the smallest
positive period of f.

(b) Give an example of a Dirichlet character mod k for which k is not the smallest positive
period of f.

Lemma 6.18. Let x(n; k) denote x(n) mod k. If k = pi* --- p% then there are characters
x; mod p3’ such that

x(n; k) = ij(n;p?j) for all n.
j=1

Proof of Lemma. For each j, by the Chinese remainder theorem there is a unique n; mod &
satisfying
nj=n mod p;’ and n; =1 mod p{" fori# j.
Given a character x(n; k), define x;(n) = x(n;; k). It is clear y; is completely multiplicative.
Furthermore since solving the simultaneous congruences
T=n +p;-lj mod p?j and n; =1 mod p{"

gives © = n; mod k, we have x;(n+p;’) = x;(n). Thus by Exercise 6.17 (b) x; is a Dirichlet
character whose smallest period is at most p?j . We then have

HXJ(”?pJO,‘j) — HX(nj; /{3) =X (Hnj; k;) .
Jj=1 j=1 J=1

By construction H§:1 n; = n mod p?j for each j and so by Theorem 5.9 H§:1 n; =n mod k,
which proves the lemma. O

Proof of Fxercise.
(a) Let k = py - - - p, be squarefree and choose a charachter xy mod k. By Lemma 6.18 there
are characters x; mod p; such that

x(n; k) = ij(n;pj)-

Let g be a proper divisor of k. Applying the Chinese remainder theorem, pick a such that
a =1 mod p; if p; | ¢ and @ = 0 mod p; otherwise. This gives (a, k) > 1 and so x(a) = 0.
However if (p;,q) = 1 then (a + ¢,p;) =1, i.e. x;(a+ ¢;p;) # 0. Additionally if p; | ¢ then

Xjla+q:p;) = x;(a;p;) = 1.
This implies x(a + ¢; k) # 0, so we conclude the smallest period of x is k.
(b) It can be seen in Exercise 6.14 that y3 mod 8 has period 4. O



Chapter 7
Dirichlet’s Theorem on Primes in
Arithmetic Progressions

In Exercises 1 through 8, h and k are given positive integers, (h, k) = 1, and A(h, k) is the
arithmetic progession A(h,k) = {h+ kz | z =0,1,2,...}. Exercises 1 through 4 are to be
solved without Dirichlet’s theorem.

Exercise 7.1. Prove that, for every integer n > 1, A(h, k) contains infinitely many numbers
relatively prime to n.

Proof. Let p denote a prime and define
A={p:p|n plk (=pth}
B={p:pln, plh (=ptk)}
C={p:pln, ptkh}.

Notice A, B, and C' partition the prime divisors of n. For a set S, define Pg = Hpe gD, then
by the Chinese remainder theorem there are infinitely many x simultaneously satisfying

=1 mod Py
=1 mod Pg
z =0 mod FPg.

We then have
h modp ifpe A

kx+h=¢k modp ifpeB
h modp ifpe(C.
This means if p | n then p t kx + h, which implies (kx + h,n) = 1. O

Exercise 7.2. Prove that A(h,k) contains an infinite subset {aj,as,...} such that
(ai,aj) =1 lfl#j

Proof. Construct this infinite subset S as follows. Let a; = h. Next suppose we have
constructed {ay,as,---a,} C S. By Exercise 7.1 there is a number a,.; € A(h, k) such that

(an-i-la ﬁai> =1L
i—1

92
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This implies (an11,a;) = (a;,anr1) = 1 for any i < n. We let a, 41 be a member of S and
continue this process indefinitely. ]

Exercise 7.3. Prove that A(h, k) contains an infinite subset which forms a geometric pro-
gression (a set of numbers of the form ar™, n = 0,1,2,...). This implies A(h, k) contains
infinitely many numbers having the same prime factors.

Proof. Since h(k 4+ 1)" = h mod k, we see h(k + 1)" € A(h, k) for all n > 0. O

Exercise 7.4. Let S be any infinite subset of A(h, k). Prove that for every positive integer
n there is a number in A(h, k) which can be expressed as a product of more than n different
elements of S.

Proof. Let S = {s1,s2,...} C A(h, k). We have for any m € N that

mep(k)+1 mep(k)+1
S 1= H s; = H h =h mod k.
i=1 i=1
Hence S,, € A(h, k) and taking any m > (n — 1)/p(k) gives mp(k) + 1 > n. O

Exercise 7.5. Dirichlet’s theorem implies the following statement: If h and k > 0 are any
two integers with (h, k) = 1, then there exists at least one prime number of the form kn + h.
Prove that this statement also implies Dirichlet’s theorem.

Proof. Assume the hypothesis of the exercise and suppose Dirichlet’s theorem is false. Then
there are integers h, k, and p such that (h,k) = 1 and p is the largest prime in A(h, k).
Defining b’/ = k + p and k' = pk, it’s clear (h',p) = (h/, k) = 1 and so (KW', k") = 1. Moreover
observe A(W', k") C A(h, k). Therefore since the smallest element in A(R/, k') is k +p > p,
every element in A(h/, k') must be composite. This is a contradiction, which means Dirichlet’s
theorem must be true. O]

Exercise 7.6. If (h,k) =1, k > 0, prove that there is a constant A (depending on h and
on k) such that, if z > 2,

1 1 1
- = loglogx+A+O( )
2 p (k) log

p<w
p=h mod k

Proof. Let f(z) = 1/logx and a(n) = log(n)/n if n = h mod k is prime and 0 otherwise.
By Dirichlet’s Theorem,

Z a(n) = @(1@ logz + R(z), where R(z) =0O(1).

n<x
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Applying Abel’s summation formula,

1 1 | 1
= [ —1 +0(1 —|-/— ——logt+ R(t) ) dt
log (sﬁ(/f) %82+ Ol )> 2 tlog’t (w(/f) o ())

1 1 1 Todt > R(t) /°° R(t)
-~ 410 + + dt+ [ ——dt
(k) (1ogx> gp(k)/z tlogt /2 tlog?t . tlogt
1 1 loglog x — loglog 2 (/‘X’ dt )
=——+0 + +C+0 =
(k) (10g93> (k) . tlogt

1
loglog:p+A+O( )
log

1
o(k)
0

Exercise 7.7. Construct an infinite set .S of primes with the following property: If p € S
and ¢ € S then (3(p —1),5(¢— 1) =(p.g-1)=(p-1q9 =1

Solution. Let S ={q1,q2,...} where 2 < ¢ < g < --- and

i1 =26, [ » -1,

P<qn
p prime

where t,, is chosen so that ¢, is prime.
We now show S satisfies the required properties. Let n > m.
e Since 2 < ¢, and ¢y, | g, + 1, by linearity ¢, 1 g, — 1, i.e. (¢go — 1,¢m) = 1.
o Since ¢m —1 < qn, @uf gm — 1, 1€ (gn —1,¢5) = 1.

e Let r be a prime divisor of %(qn —1). Then by linearity r can’t divide any prime less
than or equal to g,—1, and so 7 > g,_1. This means 7 { (g, — 1) since

1

E(qm - 1) < dm S dn—1-

Therefore ((q, — 1), 2(gm — 1)) = 1.
Remark. Unfortunately, this is a very impractical solution. In a straightforward implemen-
tation, choosing ¢; = 7 means ¢z is a 170 digit integer! We show this in Mathematica.

Infl]:= gll] = 7;
Do [
k = 2xProduct [Prime[i], {i, 3, PrimePi[g[n - 1111}1;
t = 1; While[!PrimeQ[k+t - 1], t++];

gln] = kxt - 1,
{n, 2, 3}
1;
q /@ Range[3]
Out[1l]= {7, 419, 419376750413657087<k134>178028407044929539}
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Exercise 7.8. Let f be an integer-coefficient polynomial of degree n > 1 with the following
property: For each prime p there exists a prime ¢ and an integer m such that f(p) = ¢™.
Prove that ¢ = p, m = n and f(z) = 2" for all x. [Hint: If ¢ # p then ¢™*! divides
f(p+tqg™™) — f(p) for each t = 1,2,...]

Proof. Suppose f(p) = ¢™ for p # g and m > 0 (we can find m > 0 since f can only equal 1
finitely many times). Applying binomial expansion,

" flp 4+t = f(p) fort=1,2,... (10)

By Dirichlet’s theorem, since (p, ¢) = 1, there are infinitely many primes of the form p+t¢™*?.

Suppose p + t¢g™! is prime, then f(p + t¢™') = r* for some prime r.

By (10), r® = ¢"™(ag+1) for some integer a. This means ¢ | °, and so ¢ = r. Furthermore,
for both sides to have the same prime factorization, we require a = 0 which implies s = m.
Thus f(p +tqg™™') = ¢™ for infinitely many ¢. This means f = ¢™, which contradicts n > 1.
We conclude p = ¢, that is for any prime p, f(p) = p™ for some m dependent on p.

Next, note
i £ P%)
k—oo pz

= (C for some C > 0,

and so for large enough p, f(p) = p". This implies f(z) = 2", since a polynomial is
determined by finitely many points. O]



Chapter 8
Periodic Arithmetic Functions and
Gauss Sums

2mi/n

Exercise 8.1. Let z =e¢ and prove that

Lemma 8.1. If x # 1 then

nz—i - n(z"t — z") — 2" 4
¥ = .
k=1 (z —1)2

Proof of Lemma. Given 2" —1 = (x — 1)(2" ' +--- + 2 + 1), then

—_

3

" —1
2k =

0

r—1"

=~
Il

Differentiating both sides with respect to x then multiplying both sides by z gives the result.

]
Proof of Exercise. If x = e*™/™ then 2™ = 1 and "' = z. Thus by Lemma 8.1
n-1 L on(@vt —gn) -t g
Z k" = @1
k=1
nx—1)—z+x
R
. on
-1
O

Exercise 8.2. Let ((¢)) = 2 — [z] — 5 if 2 is not an integer, and let ((z)) = 0 otherwise. Note
that ((z)) is a periodic function of x with period 1. If k and n are integers, with n > 0, prove

that
n—1
1 2
<(E>> ==Y ot M gin ka. (11)
n 2n -~ n n
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Lemma 8.2. If £ > 0 then

k
sin(2k + 1)z =sinz + 2sinx Z cos 2jx.
j=1

Proof of Lemma. Applying a product to sum identity we have

k k
2sinx Z cos2jx = Z (sin(2j + 1)z —sin(2j — 1)z) = sin(2k 4+ 1)x — sin x,
j=1 j=1
where the intermediate sum telescopes. O

Proof of Ezercise. If n | k then both sides in (11) are 0, so we can assume n { k. Now by
Exercise 3.13 (¢) (k/n)) = —(—k/n)), and since sin is also odd, we can reduce the problem
to the case where k& > 0.

Let 2 = ™ and assume n { k and k > 0. Applying a product to sum identity gives

. cos z sin 2kx
cotrsin2kr = ——m——
sin x

sin(2k + 1)z 4 sin(2k — 1)z
2sinx

k
=1—cos2kx + QZCOSij,

j=1

where Lemma 8.2 was applied. Furthermore, since cos2rz = Re (™) we have

2 2mim n—1 ifn|j
Z cos = )
— n —1 otherwise.

Therefore

n—1 n—1 k :
21k 2rk 2
E Cot@sin Thm = (1 — COS Thm + 2 g CcoS ﬂjm)

: =(n— 1)(1)+2§:§C°S’2Wim
:n+2((n—1) EJ +(=1 (k_ EJD
B L
H

Dividing both sides by —2n proves (11). O
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Exercise 8.3. Let cx(n) denote Ramanujan’s sum and let M(z) = > _ p(n), the partial
sums of the Mobius function.
(a) Prove that

n

ch(m) = %dM (g) :

k=1

In particular, when n = m, we have

ick(m) = ZdM (%) .

k=1 dim

(b) Use (a) to deduce that

(c) Prove that

Proof.
(a) By Theorem 8.6, c(m) = 3_ ;1) 4t (%). Thus

TR WA E A

k=1 d|(m.k) k=1 dlm
d|k

For a fixed divisor d of m we must sum over all those k in the range 1 < k < n which are
multiples of d. If we write k& = q¢d, it’s equivalent to sum over all ¢ where 1 < ¢ < n/d.

Therefore .
S d (g) - ¥ =S (4.

k=1 d|m dlm g<n/d
dlk

(b) By (2 )
1 1 m
Ech(m) = % m_/dM (E> :

Applying Mobius inversion gives

)= 3 DS )

dlm k=1

(c) Just as in (a)

3
o
w
VR
ISH=
v

-

m=1 m=1 d|lm
d|k
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This time fixing a divisor d of k, we must sum over all those m in the range 1 < m < n which
are multiples of d. If we write m = gd, it’s equivalent to sum over all ¢ where 1 < ¢ < n/d.

Therefore .

22 (q) -2 2 w(3) S (5) il

m=1 d| dlk q<n/d
i |k g<n/

]

Exercise 8.4. Let n, a, d be given integers with (a,d) = 1. Let m = a + qd where ¢ is the
product (possibly empty) of all primes which divide n but not a. Prove that

m=a modd and (m,n)=1.

Proof. Since m = a + qd, by defnition m = a mod d. Now suppose p | n for some prime p.
If p | a, then by definition p { ¢d and so by linearity p t m. If p { a then again by definition
p | gd and so by linearity p f m. Therefore (m,n) = 1. O

Exercise 8.5. Prove there exists no real primitive character x mod k if k = 2m, where m
is odd.

Proof. We show each character mod £ is not primitive. Let y be a character mod k and pick
a and b such that (a,k) = (b, k) = 1 and a = b mod m. This implies a and b are odd. Hence
if a = b+ rm for some 7, then r must be even. This means k | rm, and so a = b mod k.
From here x(a) = x(b), which by Theorem 8.16 means m is an induced modulus of y. [

Exercise 8.6. Let y be a character mod k. If k; and ks are induced moduli for y prove
that so too is (kq, k2), their ged.

Lemma 8.6. Let a be an integer such that (a,k) =1 and a = 1 mod (ky, k2). Then there
are integers x and y such that a = 1 4 zky + yko and (1 + zky, k) = 1.

Proof of Lemma. Let g = (ki, ko) and k = dydy, where dj is the product of all primes dividing
ko and (dykq, k2) = g. There are integers ¢, u, and v such that a = 1+tg and g = udy ki +vks.
Letting x = tud; and y = tv gives

a = 1—i—xk1—|—yk2.
Now by linearity (1 + zk;,d;) = 1. Additionally, using 1 4+ zk; = a — yko, linearity shows
(]_ + {Ekfl, ]{32) = (a — yk?27 ]{?2) = (CL, k?g) =1.

This means (1 + xky,dy) = 1, since ko and dy share prime divisors and it follows that
(1 + Ikl, dldg) = 1. ]

Proof of Ezercise. Let g = (ki, k2) and choose a such that (a, k) = 1 and a = 1 mod g. Then
by Lemma 8.6, there are integers x and y such that a = 1 + zk; + yko and (1 + zky, k) = 1.
Since k; and ko are both induced moduli, we then have

Therefore by definition ¢ is an induced modulus. O
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Exercise 8.7. Prove that the conductor of x divides every induced modulus for .

Proof. Let ki be the conductor of x and ks be an induced modulus for xy. By Exercise
8.6, (k1,k2) is also an induced modulus. Since (ki,ks) < ki, the minimality of k; forces
]{Zl = (kl, kg) Therefore kl | k’z. ]

In Exercises 8 through 12, assume that k& = kiks - -- k., where the positive integers k; are
relatively prime in pairs: (k;, k;) = 1 if i # j.

Exercise 8.8.
(a) Given any integer a, prove that there is an integer a; such that

a;=a mod k; anda; =1 mod k; for all j # 1.
(b) Let x be a character mod k. Define x; by the equation
xi(a) = x(a;),
where a; is the integer of part (a). Prove that y; is a character mod k;.
Proof. Replace p;* with k; in Lemma 6.18. O

Exercise 8.9. Prove that every character y mod k can be factored uniquely as a product
of the form x = x1x2 - x», where x; is a character mod &;.

Proof. Replace p;" with k; in Lemma 6.18. H

Exercise 8.10.¢+) Let f(x) denote the conductor of x. If x has the factorization in Exercise
5.0, prove that f(x) = J(x1) -+ f(x,):

Proof. Choose a such that (a,k) = 1 and a = 1 mod f(x1)--- f(x,). This implies a = 1
mod f(x;), thus x;(a) = 1. This means

x(a) = xi(a)- - xr(a) = 1.

Hence f(x1) - f(x,) is an induced modulus for x and therefore f(x) | f(x1) - f(x+)-
Now define e(z) = €™ and choose a such that (a,k) = 1 and @ = 1 mod f(x). Since
f(x) is an induced modulus for x and y; is a k;th root of unity, there are ¢; such that

1=x(a) =xa(a) - xr(a)

o(3)o(2)

:€<k1}.kricmﬂ’%>-

m=1 Jj#Em

This implies &; | >} _; ¢m [1 2, k5, and by linearity k; | ¢; [];,; k;. Since (k;, k;) = 1 for
Jj # 1 we have k; | ¢;, and so

1 =e(ci/ki) = xi(a).
Therefore f(x) is an induced modulus for x;, hence f(x;) | f(x). Moreover (f(x:), f(x;)) =1
for j # ¢ implies f(x1)--- f(xr) | f(x). We conclude f(x) = f(x1) - f(x+)- O
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Exercise 8.11.+) If x has the factorization in Exercise 8.9, prove that for every integer a

we have
! k
6(a0) = [T (1 ) 6o
i=1

7

where a; is the integer of Exercise 8.8.

Lemma 8.11. If k = k1ky - - - k,., where k; are pairwise relatively prime, then the set

runs through a complete system of residues mod k.

Proof of Lemma. 1f Y., m;k/k; = > ,_, nik/k; mod k, then k | >, ,(m; — n;)k/k;. By
linearity k; | m; — n;. Since 1 < m;,n; < k;, we must have m; = n;. Thus for 1 < m; < k;,
all k numbers ) ©,_, m;k/k; are incongruent and form a complete set of residues mod k. [

1§mi§kz}

Proof of Erxercise. Let e(x) = ¢*™®. By Lemma 8.11 we have

Gla,x) = Z x(me ()

1=
_ k1 . iﬁx mﬂf)e ami)

mi=1 myr=1i=1 l kl kl

r k k1 kr r ams
()5 S e ()

=1 mi=1  my=1i=1

Since the last sum is separable,

G(a,x) = ilei (%) mkz_l xi(my)e (a;:’) .

Finally, observe a; = a mod k; implies e(am;/k;) = e(a;m;/k;). Hence

ot =T () 35 womre (%52)
(e

(2
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Exercise 8.12. If y has the factorization in Exercise 8.9, prove that x is primitive mod &
if, and only if, each y; is primitive mod k;. [Hint: Theorem 8.19 or Exercise 8.10.]

Proof. By Exercise 8.10, f(x) = f(x1) -+ f(x»), and so

b= f0a)f0w) = T =1

= f(Xi)

Now by Exercise 8.7, f(x:) | ki. Therefore

H ki — ki — 1 for all i
e A9'0) fxa)

< k; = f(x;) for all .

O
Exercise 8.13. Let x be a primitive character mod k. Prove that if N < M we have
M
2
S X 2 o
m N+1
m=N+1
Proof. Since x is primitive, by Theorem 8.21 ‘ngx X(m)} < Vklogk. Therefore
M M
x(m) 1
<
> Ml LTS o)
m=N+1 m=N+1
1 M N
<
<y (;x(m) + mzlx(m)D
2
klog k.
< N 1\/_ og
O

Exercise 8.14. This exercise outlines a slight improvement in Pélya’s inequality. Refer to
the proof of Theorem 8.21. After inequality (26) write

1 1 M2t
< < .
Z Fml = Z sinZ% " sin ¥ +/1 sin 2t

n<k/2 n<k/2 k k k

Show that the integral is less than —(k/m)log(sin(7/(2k))) and deduce that

> x(n)

n<x

2
<Vk+ =Vklogk.
m

This improves Pélya’s inequality by a factor of 2/7 in the principal term.



Proof. Since 1/sin x is monotonically decreasing when 0 < z < 7/2,

Now
/k/Q dt /{;1 ; mt k/2 kl <tn(ﬂ>>
= —1lo an [ — =—1lo a
, sinZt o7 & 2k 1 - 2k/) )
and so
! +/’“” U L g (s () + R rog (cos (2))
= B — in
sin 7 1 sin %t simz w & 2k & 2k
< L —Elo <sm<7r>)
sinT 7w & 2k

k

Furthermore, just as in Theorem 8.21, the bound sint > 2t/7 for 0 < t < m/2 gives

> 1f(n <sm<27;)><k+klogk.

n<k/2
Using this estimate in the proof of Theorem 8.21 then gives

S () <_ S |f(n |f k/2)|

n<w n<k/2 \/E

<23 1s

n<k/2

<Vk+ —\/Elogk.
T

Note, just as in Theorem 8.21, f(k/2) only appears in (12) if k is even.
Exercise 8.15.¢++) The Kloosterman sum K (m,n; k) is defined as follows:

/
m n; ]ﬂ § 6271'1 (mh+nh')/k

h mod k
(h,k)=1
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(12)

where ' is the reciprocal of h mod k. When k | n this reduces to Ramanujan’s sum cg(m).

Derive the following properties of Kloosterman sums:
(a) K(m,n; k) = K(n,m; k).
(b) K(m,n; k) = K(1,mn; k) whenever (m, k) =
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(c) Given integers n, ky, ko such that (ki, ko) = 1, show that there exists integers n; and nq
such that
n= nlkg + ngkf mod ki ks,

and that for those integers we have
K(m,n; kiks) = K(m,nq; ki) K(m, no; ka).

This reduces the study of Kloosterman sums to the special case K(m,n;p®), where p is
prime.

Lemma 8.15. If (ky, ko) = 1, then the set
S=A{hki+gka |1 <g<ki,1 <h<ky(g9,k1)=(hko) =1}
runs through a complete system of residues relatively prime to kik,.
Proof of Lemma. By Lemma 8.11 the set
{hk1 +ghko [ 1 < g < k1,1 < h < ko}

runs through a complete system of residues mod kiky. Next let (g, k1) = (h, ko) = 1. Since
(hky+gks, k1) = (hky1+gka, ko) = 1, we have (hk;+gko, k1ke) = 1. This means every element
of S is relatively prime to kiks. Since |S| = @(k1)e(ka) = @(ki1ks) and each elements are
pairwise incongruent mod kiks, the lemma follows. O

Proof of Fxercise.
(a) Since (h',k) = 1, we see (h')*h mod k runs through a complete system of residues
relatively prime to k. Therefore

K(TTL, n; k) _ Z e27ri(m(h’)2h+nh2h’)/k _ Z 627ri(mh/+nh)/k _ K(n,m, k)

h mod k h mod k
(h,k)=1 (h,k)=1

(b) Since (m, k) = 1 and (h,k) = 1, we see m'h mod k runs through a complete system of
residues relatively prime to k. Therefore

K(m,n, k) _ Z e2ﬂi(mm’h+nmh’)/k _ Z 627ri(h+mnh’)/k _ K(lu mn; k)

h mod k h mod k
(h,k)=1 (h,k)=1

(c) Since (k?,k2) = 1, there are integers z, y such that xk? 4+ yk2 = 1. Define n; = ny,
ny = nx, and e(z) = €*™*. We then have

maqg-+n / mh—i—n h/
K(m,nl;kl)K(m,nz;k’Q): Z Z 6( gkl > + ko 2 )

g mod k1 h mod kg
(g:k1)=1 (h,kg)=1

_ Z Z . m(gks + hky) n n1g'ks + nah'ky
N ke ks k1Ko

g mod k1 h mod kg
(9:k1)=1 (h,k2)=1

-2 > o)

g mod kq h mod kg
(g,k1)=1 (h,kg)=1
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where A = gky + hky and B = ny1g'ky + nah'ky.
By Lemma 8.15 A runs through a complete system of residues relatively prime to kiks.
Hence, if we can show B = C'A’ mod k1 ko, then

(mA +CA
6 —_—

K (m,na; k) K (m,no; ko) = Z ok
1R2

A mod k1 kg
(Ak1ko)=1

) = K(m, O, ]{Zlk'g).

Since (gko + hk1)A’ = 1 mod kiko, we have gks A’ = 1 mod k; and so ky = g’A mod k.
From here we see

k3 = kog A mod kik, and similarly & = kih/A mod kiks.
From this we deduce
C = ngk? +n1ki = (n1g'ka + nph’'k))A = BA mod kyks,
and the proof follows. n

Exercise 8.16. If n and k are integers n > 0, the sum
G(k,n) _ Z€2ﬂikr2/n
r=1

is called a quadratic Gauss sum. Derive the following properties of quadratic Gauss sums:
(a) G(k;mn) = G(km;n)G(kn;m) whenever (m,n) = 1. This reduces the study of Gauss
sums to the special case G(k; p®), where p is prime.

(b) Let p be an odd prime, pt k, a > 2. Prove that G(k;p*) = pG(k; p®~?) and deduce that

P if « is even,
G(k;p®) =
(k") {p(o‘_l)/QG(k;p) if o is odd.

/2

Further properties of the Gauss sum G(k;p) are developed in the next chapter where it is
shown that G(k;p) is the same as the Gauss sum G(k, x) with a certain Dirichlet character
x mod p. (See Exercise 9.9.)

Proof.
(a) By Lemma 8.11, the set {sm+tn |1 < s <mn and 1 <t <m} runs through the complete
system of residues mod mn. Therefore

G(k’, mn) _ Z 627rikr2/(mn)
r=1

n m
— § :E :eka(szmQ+2mnst+t2n2)2/(mn)

s=1 t=1
n m
: 2 e 42
— E 627r7,kms /n § 627rzk’nt /m
s=1 t=1

= C;(km, n)G(kn;m).
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(b) Let 14+ p* !t <r <p*+p>landr =p* s+t wherel <s<pand1l <t <p*!
Through the division algorithm s and t are uniquely determined. Thus letting r run through
a complete system of residues mod p® is the same as letting s and ¢ run through complete
systems of residues mod p and mod p®~!, respectively. Then r? = p?*~252 4 2p*~ st +? and

pa pa+pa—l

1022 [ 1022 [

pa) _ E 627r2k7’ /p _ E 627rzk:7" /P
r=1 r=1+pa—1

P
— § § 627rik(p2°‘_232+2pa_1st+t2)/pa

t=1 s=1
Pt P
. 2 re% .
_ § eZﬂzkt /p 2 €4Trzkst/p )
t=1 s=1

If p | t then e*™*st/P = 1 which implies the inner sum is p. On the other hand, if p { ¢ then
letting s vary allows 2kst to run through all residue classes mod p. Thus the inner sum is
the sum of the pth roots of unity and hence equals 0. This means we only need to sum over
the ¢ where p | t. Summing over ¢t = px for 1 < x < p*~2 gives

=p Z 2mik(px)? pz 2mikx? /p*—2 _ G(/{:;pa_2).

Now observe
G(k;p®) = pGk; p°~2) = p*Gk; p* %) = - - = pl/A G (J; po2Lo/2),
Therefore if « is even, then |a/2] = /2 and so
G(k;p®) = p*?G(k;1) = p™/2.
If a is odd, then |a/2] = (o —1)/2 and so

G(k;p®) = p VPG (k; p).



Chapter 9
Quadratic Residues and the
Quadratic Reciprocity Law

Exercise 9.1. Determine those odd primes p for which (—3|p) = 1 and those for which
(=3[p) = —1.

Solution. Let p be an odd prime. By quadratic reciprocity we have

(=3lp) = (—1]p) (3| p)
= (1) D102 (p)3)
=(p|3).

Therefore
1 if p=1 mod 3
(=3|p) =< -1 ifp=2 mod 3
0 if p=3 mod 3.

Exercise 9.2. Prove that 5 is a quadratic residue of an odd prime p if p = £1 mod 10, and
that 5 is a nonresidue if p = 43 mod 10.

Solution. Let p be an odd prime. By quadratic reciprocity we have (5|p) = —(—1)®=Y/2 (p| 5).
The exponent of —1 means we need to consider p mod 2, and (p|5) means we need to con-
sider p mod 5. Hence it is enough to consider p mod 10. Checking all values mod 10 gives
the result.

Exercise 9.3. Let p be an odd prime. Assume that the set G = {1,2,...,p — 1} can be
expressed as the union of two nonempty subsets S and T, S # T, such that the product
(mod p) of any two elements in the same subset lies in S, whereas the product (mod p) of
any element in S with any element in 7" lies in 7. Prove that S consists of the quadratic
residues and T consists of the nonresiudes mod p.

Proof. Since the Legendre symbol is completely multiplicative, it’s clear the quadratic residues

and nonresidues mod p satisfy the stipulations of S and 7', respectively. This shows existence
of such S and T, so all we need to show is S and T are uniquely defined.

107
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Let ¢ € G. Since g is either an element of S or T', by definition we must have ¢g? € S.
This means S contains all quadratic residues mod p. Now suppose there exists x € S such
that (z|p) = —1. Since T is nonempty there is a y € T and we must have (y|p) = —1.
By definition of 7" we have xy € T, but (zy|p) = 1, a contradiction. This means S cannot
contain any quadratic nonresidues mod p. We conclude S must be the group of quadratic
residues mod p and hence T is the set of quadratic nonresidues mod p. O

Exercise 9.4. Let f(x) be a polynomial which takes integer values when z is an integer.
(a) If @ and b are integers, prove that

> (flax+b)p) = Y (f@)p) if (a,p)=

z mod p z mod p

and that

3" (af@)p)=(alp) Y (f(@)p) foralla.

z mod p z mod p
(b) Prove that
Z (ax +blp)=0 if (a,p) =1.

z mod p

(c) Let f(x) = x(ax +b), where (a,p) = (b,p) = 1. Prove that

—_

p—1

> (f@)p) =D (a+bzp) = —(a|p).

1

bS]

r=1

8
Il

[Hint: As z runs through a reduced residue system mod p, so does 2/, the reciprocal of x
mod p.]

Proof.
(a) Since (a,p) = 1, letting x run through a complete residue system mod p means ax + b

does too. Furthermore, by Theorem 5.2, if ax + b = y mod p, then f(ax +b) = f(y) mod p.
These two observations give

Y. (flaz+b)p)= > (f@)lp).

z mod p z mod p

Next, since the Legendre symbol is completely multiplicative,

" (af(@)p)=(alp) Y (f()lp) foralla.

z mod p z mod p

(b) Let f(x) =z and (a,p) = 1. By (a) we have

> (ax+blp)= Y (z|p) =

z mod p z mod p
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(c) Using the hint of the problem and the fact that (z|p) = (2/| p),

> (w(az+0)|p) =D (2/(ax +b)|p) = («'|p) (az’ +b| p)
=> (z[p)(az’ +b|p) = (x(az’ +1b)|p)
=) (a+bz[p)=—(alp)+ ) (a+bz|p)

[y

= —(alp) + ) (z|p)=—(a|p).

bS]

i
o

]

Exercise 9.5. Let o and 3 be integers whose possible values are +1. Let N(a, 3) denote
the number of integers x among 1,2,...,p — 2 such that

(z]p) =« and (z+1|p) = B,

where p is an odd prime. Prove that

AN(a,B) = S {1+ a (al )1+ 8 (x + 1)},

and use Exercise 4 to deduce that
4N(a,f) =p—2—F—af —a(=1|p).
In particular this gives

p—4—(-1p)
: :
N(=1,-1) = N(=1,1) = P=2 +4(—1\p)

N(1,—1) =1+ N(1,1).

N(1,1) =

Proof. Let 0 < x < p— 1. Notice a = (x| p) implies 1 + a (x| p) = 2 and « # (z|p) implies
14+ a(x|p) = 0. Since the same scenario occurs for 1 + 5 (z + 1|p), we have

4 ifa=(z|p) and = (x+1|p)

) (13)
0 otherwise.

{I1+a(zpH{l+B(z+1p)} = {

Since the upper case of (13) occurs exactly N(«, ) times when 0 < z < p — 1,

AN(@.B) = S {1+ a (el p)} {1+ 8 (z + 1|p)).
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Expanding the summand of the right hand side gives

Zl+az x| p) +BZ x + 1| p) +Ozﬁz (x+1)|p)
—p—2—a(-1|p) - ﬁ+aﬁz (z+1)|p).
Applying Exercise 9.4 (¢) with a = b = 1 gives the result. O
Remark. Since N(1,1) in an integer, this is a round about proof that (—1|p) = (—1)®~1/2,

Exercise 9.6. Use Fxercise 9.5 to show that for every prime p there exists integers x and
y such that 2 +y* + 1 = 0 mod p.

Proof. If p = 1 mod 4, there exists  and y such that 2> = 0 mod p and y?> = —1 mod p.
This gives 2° + y?> = —1 mod p.

If p = 3 mod 4, then by FExercise 9.5 there is a z such that (z|p) = 1 and (2 + 1|p) = —1.
Since (—1|p) = —1, we have (—z — 1|p) = 1. Choosing = and y such that z*> = z mod p

and y2 = —z — 1 mod p gives 2? + y?> = —1 mod p. O

Exercise 9.7. Let p be an odd prime. Prove each of the following statements.

p—1
(a) ZT(T|p) =0 if p=1mod 4.
r=1
p—1
—1
(b) T:% if p=1 mod 4.
(ip=t
p—1 p—1
(c) r?(rlp)=p» r(rlp) if p=3mod4.
r=1 r=1
p—1 3 p—1
3 _ 2 e
(d) r (T|P)—§Z7‘ (r|p) if p=1mod 4.

r=1

\3
I
—

(e) Zr (r|p) —Zer (rlp) — 227” (r|p) if p=3 mod 4.

[Hmt p — r runs through the numbers 1 2,...,p—1 with r.]
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Proof. For each part we will use the hint and (r|p) = (=1)®=V/2 (p —r|p).
(a) For p =1 mod p, we have

p—1 p—1
r(rlp)=) (—r)(p—rlp)
r=1 r=1
p—1
=> (p—r)(rlp)
r=1
p—1 p—1
=p> _(rlp)=> r(r|p)
r=1 r=1
p—1
=—) r(rlp)
r=1
This means > *_} 7 (r|p) = 0.
(b) For p =1 mod p, we have
p—1 p—1 p—1 p—1
dor= 2 bmn=p 3 1= )
(=1 (ip=t Gt (=

Since there are (p — 1)/2 quadratic residues mod p, the result follows.
(c) For p = 3 mod p, we have

P (r|p) = Z<p — ) (p—rlp)
:—pt(p—r)?mm
— p: (r|p) + 2p§7’ (r|p) — 2?2 (7] p)
- 2pp17“(7“|p) - p:?ﬂ(ﬂp)-

Solving for S°P_1 72 (7| p) gives the result.
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(d) For p =1 mod p, we have

-1

P (rlp) =Y (p—1)*(p—rlp)

—_
bS]

p—

r=1 r=1
p—1
=) (p—r)*(r|p)
r=1
p—1
=" (rlp) —3p® Z (7] p) +3pz (r]p) -
r=1

p—

Applying (a) we know
p—1
Zr r|p) =0,
r=1

hence solving for 327_1 73 (| p) gives the result.
(e) For p =3 mod p, we have

S ort(rlp) =Y _(p—r)*(p—rlp)

7=0 r=1
4 4 4 p—1
=S () o )
j=1 J r=1
Applying (c¢) we know
p—1 p—1
pzr(rlp) = (rlp).
r=1 r=1

Substituting this and solving for S27~1 r* (7| p) gives the result.

pzzr(rlp)+3p27’2(rlp)—ZT?’(T’\p)-

Chapter 9 Solutions

—_

p—

r* (rlp)

ﬁ
Il

Exercise 9.8. Let p be an odd prime, p =3 mod 4, and let ¢ = (p — 1) /2.

(a) Prove that
q

(=200} Y7 019 =p—5 2 S 1)

r=1

[Hint: As r runs through the numbers 1,2, ..., ¢ then r and p — r together run through the

numbers 1,2,...,p— 1, as do 2r and p — 2r.|
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(b) Prove that

() -2 r () =3 (r]p).

r=1
Proof.
(a) Let p be a prime such that p = 3 mod 4. This means (p — r|p) = — (7| p) and hence
q q
Y (p=r)(p—rlp)=)_r(rlp) pz r|p).
r=1 r=1

Therefore applying the first part of the hint gives

r(rlp) =Y _r(rlp)+ Z(p—r)( —r[p)
:22 (rp) pz r|p).

On the other hand, applying the last part of the hlnt ylelds

ir(ﬂp) = 2r(2r|p)+ > (p—2r) (p—2r[p)

=2(2[p) Y _r(rlp) —p(2(p) > (rlp) +2(2[p) > 7 (r|p)
=42[p)> r(rlp) +p2p) Y (r]p). (14)

Equating both identities implies
q q q q
2> r(rlp)—p>_ (rlp) =4(2[p) Y _r(rlp)+p(2p) > _(rlp),
r=1 r=1 r=1 r=1
which is an equivalent result.
(b) By (14) we have

—1

bS]
Q

q

r(rlp) =4(2p) Y r(rlp)+p(2p) > (rp).

1 r=1

ﬁ
Il

Substituting (a) gives

Zr r|p) =4(2|p) (g 2|p Z 7““’) +p(2p) ) (rlp)
Z

r=1
q

QZ r|p),

2’p r=1

where in the last step we multiplied numerator and denominator by (2|p). O
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Exercise 9.9. If p is an odd prime, let x(n) = (n|p). Prove that the Gauss sum G(n, x)
associated with y is the same as the quadratic Gauss sum G(n;p) introduced in Exercise
8.16 if (n,p) = 1. In other words, if p { n we have

p
Gn.x)= > x(m)eX™mm/v =" e2m/e — G(n;p).
m mod p r=1
Proof. Let (n,p) =1 and e(x) = ™. We have
p—1 p—1 p—1
G(n,x) =Y _ (m|p)e(mn/p) = e(mn/p) — e(mn/p).
m=1 m=1 m=1
(mlp)=1 (mip)=—1

Since 327 e(mn/p) = 0, G(n, x) can be rewritten as

G(n,x) =142 Z (mn/p).

(m\p) 1

Next let ¢ = (p—1)/2. Since both {12,22,...,¢*} and {(¢g+1)?, (¢+2)?, ..., (p—1)*} consist
of all quadratic residues mod p,

p
Ze (nr?/p) =1 +QZ€ (nr?/p)
r=1 r=1

=1+2 Z (nm/p) = G(n, x).

m=1
(m|p)=1

]

Exercise 9.10. Evaluate the quadratic Gauss sum G(2;p) using one of the reciprocity laws.
Compare the result with the formula G(2;p) = (2|p) G(1;p) and deduce that (2|p) =
(=1)®*=1/8 if p is an odd prime.

Proof. Section 9.11 tells us

G(2;p) = (2|p) G(L;p) = (=P V5B (2]p).

Evaluating G(2; p) another way, by Theorem 9.16,

G2 = st =L (25) 56,

where
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Observe for a fixed m, S(a, m) has period 2m, so in our case it’s enough to consider p mod 8.
Evaluating each case directly we obtain

(1+4)v/2 ifp=1 modp
(i—1)v2 ifp=3 modp
(=1 —14)v/2 ifp=>5 mod p
(1—4)v2 ifp=7 mod p,
which implies
VP if p=1 mod p
—iy/p ifp=3 modp
G(2;p) = VP _
—/p ifp=5 modp
iv/p ifp=7 mod p.

A more compact formula is G(2; p) = (—1)P*~1/4, /p. Equating both formulas for G(2;p),
(1) (21p) = (-1,

or in other words ,
(21p) = (—1)* D
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Primitive Roots

Exercise 10.1. Prove that m is prime if and only if exp,,(a) = m — 1 for some a.
Proof. If m is prime, then there is a primitive root a. By the definition of primitive root
exp,,(a) = p(m) =m — 1.

Conversely, suppose exp,,(a) =m — 1. Then

m —1=exp,(a) < p(m) <m—1,
so in particular ¢(m) = m — 1. This can only happen if m is prime. O
Exercise 10.2. If (a,m) = (b,m) = 1 and if (exp,,(a), exp,,(b)) = 1, prove

exp,,(ab) = exp,,(a) exp,,(b).
Proof. Let x = exp,,(a), y = exp,,(b), and k = exp,,(ab). Note
(ab)™ = (a®)? (b¥)" =1 mod m,

so k | zy. Now
a*¥ = (ab)* =1 mod m,

which means z | ky. Since (z,y) = 1 we have x | k, and similarly we can deduce y | k. Since
(x,y) =1, we have zy | k. We conclude k = xy. ]

Exercise 10.3. Let g be a primitive root of an odd prime p. Prove that —g is also a
primitive root of p if p = 1 mod 4, but that exp,(—g) = (p —1)/2 if p = 3 mod 4.

Proof. Let d be a divisor of p — 1. Since g is a primitive root and
@ 1=1 modp and ¢PV2=_-1 mod p,

then |g?| = £1 mod p implies d = p — 1 or d = (p — 1)/2. This means we only need to test

these exponents to find exp,(—g).
If p=1 mod 4, then

(—g)P/2 = =172 = _1 mod p.
This means exp,(—g) =p — 1, i.e. —g is a primitive root. If p = 3 mod 4, then

(_g)(pfl)/2 = —¢®P 12 =1 mod p.
This means exp,(—g) = (p — 1)/2. O
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Exercise 10.4.

(a) Prove that 3 is a primitive root mod p if p is a prime of the form 2" + 1, n > 1.

(b) Prove that 2 is a primitive root mod p if p is a prime of the form 4¢ + 1, where ¢ is an
odd prime.

Proof.
(a) If p is prime, by FExercise 1.17 p is of the form 22 41 for some k > 0. Then Exercise
10.10 tells us it’s enough to show 3 is a quadratic nonresidue mod p. Since

22" +1= (-1 +1=2 mod 3,

by quadratic reciprocity (3|p) = (p|3) = (2|3) = —1.

(b) The proper divisors of ¢(p) are 1,2,4,2¢g. Thus to show 2 is a primitive root, we need
to show 2 raised to each of these powers are not congruent to 1. Now it’s easy to see 2! and
22 are not congruent to 1 mod p. Also since the only prime of this form less than 16 is 13,
it’s easy to see 2* # 1 mod p. Finally, by Euler’s criterion 22¢ = (2|p) mod p and

(21p) = (~)F D8 = (<) = 1,
[

Exercise 10.5. Let m > 2 be an integer having a primitive root, and let (a,m) = 1. We
write aRm is there exists an x such that a = 2> mod m. Prove that:

(a) aRm if, and only if, a*™/2 = 1 mod m.

(b) If aRm the congruence x? = a mod m has exactly two solutions.

(c) There are exactly ¢(m)/2 integers a, incongruent mod m, such that (a, m) = 1 and aRm.

Proof. Let g be a primitive root mod m.
(a) If aRm, then a = 2% mod m for some x. This implies a¥(™)/2 = 2¥(™) =1 mod m. Now
suppose a¥™/2 =1 mod m and ¢ = ¢* mod m. Substituting gives

g**m/2 =1 mod m,

and by Theorem 10.1, k¢p(m)/2 = 0 mod ¢(m). Thus kp(m) = 2np(m) for some n, which
means k = 2n. We conclude aRm, since a = (¢")* mod m.

(b) Suppose a = ¢g** = (g”)2 mod m and suppose further that a = (gk)2 mod m. This
means ¢?*~ = 1 mod m. By Theorem 10.1, 2(k — n) = 0 mod ¢(m), which implies
k =n+c@(m)/2 for some c. Therefore there is exactly one solution where 1 < k < ¢(m)/2
and exactly one solution where ¢(m)/2 < k < o(m).

(c) It’s clear g*" Rm for all n, so there are at least ¢(m)/2 of the desired incongruent integers.
Now suppose g?**! = 22 mod m. If x = ¢ mod m, then 2k+1 = 25 mod (m). This would
imply ¢(m) divides an odd number, which can’t happen. We conclude ¢?**'N Rm, and so
there are exactly ¢(m)/2 integers a, incongruent mod m, such that (a,m) =1 and aRm. O

Exercise 10.6. Assume m > 2, (a,m) = 1, aRm. Prove that the congruence z°> = a
mod m has exactly two solutions if, and only if, m has a primitive root.
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2=¢a mod m

Proof. If m has a primitive root, then FExercise 10.5 (b) shows the congruence x
has exactly two solutions. Now suppose the congruence 22 = a mod m does not have exactly
two solutions. Since the solutions come in pairs £z, the congruence 2> = @ mod m has at
least 4 solutions, so there are at most ¢(m)/2 — 1 integers a, incongruent mod m, such that
(a,m) =1 and aRm. This is the contrapositive of the statement in Exercise 10.5 (¢), so we

conclude that m does not have a primitive root. O

Exercise 10.7. Let S,(p) = S.2_1 k", where p is an odd prime and n > 1. Prove that

Su(p) = 0 modp ifnz#0 modp—1,
= —1 modp ifn=0 modp-—1.

Proof. It n =0 mod p — 1, then for (k,n) =1, k" =1 mod p — 1. This means

3
L

Sn(p) = 1=-1 mod p.
Now suppose n # 0 mod p — 1 and let g be a primitive root. We then have
Vg n
Su(p) = ) ¢ = Z——" mod p.

Since n #Z 0 mod p — 1 we know ¢" # 1 mod p. Therefore by applying Lemma 5.12,

n

9" =g

a0 LU D7 =(g"—¢")(¢g"—1)7" =0 mod p.

O

Exercise 10.8. Prove that the sum of the primitive roots mod p is congruent to u(p — 1)
mod p.

Proof. Let g be a primitive root mod p and S be the sum in question, that is

p—1
S = Z g~

(k,p(p))=1

Then by Lemma 3.12,

S=> ud Y g

dlp—1 k<p 1)/d
= > Y
o -1
dlp—1
9 (g" 1t —1)
=u(p—1) p1+2 —1. (15)

dlp—1
d<p—1
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Now since g is a primitive root, ¢ #Z 1 mod p for all positive d < p — 1. This means
(g2 —1,p) = 1 and so we can apply Lemma 5.12 to see

E =@ -1Dg'-1)""=0 mod p.
gt =1
Hence it follows from (15) that S = u(p — 1) mod p. O

Exercise 10.9. If p is an odd prime > 3 prove that the product of the primitive roots mod
p is congruent to 1 mod p.

Proof. Let P be the product in question and g be a primitive root mod p. We then have

P= 1:[ mod p,

(k, w(p)) 1

that is P is a power of g with exponent
p—1
e= Z k.
k=1
(k,e(p))=1

By Lemma 3.12,

e=>Y pd) > kd

dlp—1 k<(p—1)/d
— 1) d;u(d)p‘}T”
= - >dzlu<d>]%1+§<p— )3 uld

1
=5 -Delp-1),
and so P = g#®=D®=1/2 mod p. If p > 3, then p(p — 1) is even and therefore
P = (gp_1)¢(p—1)/2 =1 mod p.
]

Exercise 10.10. Let p be an odd prime of the form 22" + 1. Prove that the set of primitive
roots mod p is equal to the set of quadratic nonresidues mod p. Use this result to prove that
7 is a primitive root of every such prime.

Remark. The last part of this exercise is only true for k£ > 0.

Lemma 10.10. If n is an integer, then 2" = 1,2,4 mod 7.
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Proof of Lemma. Let n = 3q + r, where 0 < r < 2. Then since ¢(7) = 3,
2"=2"=1,2,4 mod 7.
0

Proof of Exercise. If g is a primitive root, then ¢»~1/2 2 1 mod p. Thus by Euler’s criterion
(gl p) = —1. On the other hand, if (g| p) = —1, again by Euler’s criterion g?"="/2 # 1 mod p.
Now observe every proper divisor d of ¢(p) is a power of 2 and hence d divides (p—1)/2. Thus
g* =1 mod p would imply g®~"/? =1 mod p, a contradiction. This means exp,(g) = ¢(p),
i.e. g is a primitive root.

Next, by quadratic reciprocity

_ (_1)3-D/2 _ )=l ifp=3
= o {(p|7) if p > 3.

Furthermore, 22° % 1 mod 7, since 2¥ # 0 mod ©(7). Thus Lemma 10.10 implies
p=22"+1=3,5 mod 7.

Since 3 and 5 are both quadratic nonresidues mod 7, we have

mp)—{l S

-1 ifp>3.

This means 7 is a primitive root of the prime 22" 4 1 if and only if k£ > 0. O]

Exercise 10.11. Assume d | ¢(m). If d = exp,,(a) we say that a is a primitive root of the
congruence
z*=1 mod m.

Prove that if the congruence
29 =1 mod m

has a primitive root then it has ¢(p(m)) primitive roots, incongruent mod m.
Proof. This follows directly from Theorem 10.9. O

Exercise 10.12. Prove the properties of indices described in Theorem 10.10. Let g be a
primitive root mod m. If (a,m) = (b,m) = 1 show

(a) ind, (ab) = ind, (@) + ind, (b) mod ¢p(m).

(b )md (a") = nind, (a) mod p(m).

(c )md (1) =0 and ind, (g) = 1.
(d) ind, (1) = p(m)/2 if m > 2.
(

e) If ¢’ is also a primitive root mod m then

ind, (a) = indy (a) -ind, (¢') mod p(m).
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Proof.
(a) By definition we have

indg ( md (a) ,indg(b) —

g =gb= g = gindg(a)—i-indg(b)

mod m.
Since g is a primitive root, Theorem 10.1 implies ind, (ab) = ind, (a) + ind, (b) mod ¢(m).
(b) We have

gindg(a”) =q" = (gindg(a))n _ gn indg(a) mod m.

Again we use Theorem 10.10 to obtain ind, (a™) = n ind, (@) mod ¢(m).

(c) This part is clear, as ¢° = 1 and g' = g.

(d) Let s = ind, (—1). Then ¢* = —1 mod m and squaring both sides gives ¢** = 1 mod m.
Theorem 10.1 implies

25 =0 mod ¢p(m). (16)

Since m > 2, ¢(m) is even, thus choosing s = ¢(m)/2 gives the smallest positive s that
satisfies (16).

(e) We have
gindg(a) =q=(g )md /(a)
_ ( mdg<g>>‘“d o' (@)
= ¢y (@inds(9) 1od m.
By Theorem 10.1, ind, (a) = indy (a) - ind, (¢') mod ¢(m). O

Exercise 10.13.¢++) Let p be an odd prime. If (h,p) =1 let
Sh)y={r"|1<n<p—-1,(n,p—1)=1}.

If h is a primitive root of p the numbers in the set S(h) are distinct mod p (they are, in fact,
the primitive roots of p). Prove that there is an integer h, not a primitive root of p, such
that the numbers in S(h) are distinct mod p if, and only if, p = 3 mod 4.

Proof. Suppose p = 3 mod 4 and g is a primitive root. By [ixercise 10.3 exp,(—g) = (p—1)/2,
therefore —g is not a primitive root. We will show all numbers in S(—g) are distinct mod p.
Now suppose

(—=g)" = (—g)™ mod p, where 1 <n<m<p-—1.

Since exp,(—g) = (p — 1)/2, by Theorem 10.1,

-1
n=m mode

Recalling 1 <n<m<p-—1,wehave m=n+ (p—1)/2.

If (n,p—1) =1, then n must be odd. Since (p — 1)/2 is also odd, we have m is even,
hence (m,p — 1) # 1. In a similar fashion, assuming (m,p — 1) = 1 shows (n,p — 1) # 1.
This means at most one of (—g)" and (—¢)™ is a member of S(—g).
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Suppose p = 1 mod p and exp,(h) =d < p— 1. For h" € S(h) we have by the lemma of
Theorem 10.3
expp(h)
(n@p——l)

Theorem 10.4 thus implies that S(h) contains at most ¢(d) different elements mod p. How-
ever, by construction S(h) contains ¢(p — 1) elements. By the pigeonhole principal if we can
show ¢(d) < p(p — 1), we are done.

Write p — 1 = 4p{* ---pd and d = 2%?1 .- pPr. where p; are distinct odd primes and

a; > 0. Note d < p — 1 implies 2 > [ or there is an 7 such that «; > ;. We have

0(2%) H;o;*1 —1)
510

exp,(h") = =d.

<2Hp (p; — 1)

where the inequality is strict since ¢(2°) =1 for 2 > § and o(p) < @(p®) for oy > ;. O

Exercise 10.14. If m > 1let py, ..., pr be the distinct prime divisors of ¢(m). If (g,m) =1
prove that ¢ is a primitive root of m if, and only if, g does not satisfy any of the congruences
¢?™/Pi =1 mod m fori =1,2,..., k.

Proof. If g is a primitive root, it’s clear g™/ % 1 mod m for all i = 1,2, ..., k. For the
other direction, suppose g has order d, where d | ¢(m) and d # p(m). If p; | ¢(m)/d, then
observe d | ¢(m)/p;. Since g? = 1 mod m, this implies g#"™/Pi = 1 mod m. O

Exercise 10.15. The prime p = 71 has 7 as a primitive root. Find all primitive roots of 71
and also find a primitive root for p? and for 2p2.

Solution. There are ¢(p(71)) = 24 primitive roots mod 71 and we find them in Mathematica.

In[l]:= Sort[PowerMod[7, #, 71]1& /@ Select[Range[70], CoprimeQ[#,70]&]]
out[1l]= {7, 11, 13, 21, 22, 28, 31, 33, 35, 42, 44, 47, 52, 53, 55, 56,
59, 61, 62, 63, 65, 67, 68, 69}

Now since 777! = 49 mod p?, by Theorem 10.6, 7 is a primitive root mod p?. By Theorem
10.7, this implies 7 is also a primitive root mod 2p?.

Exercise 10.16. Solve each of the following congruences:
(a) 8z =7 mod 43.

(b) z® = 17 mod 43.

(c) 8 = 3 mod 43.
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Solution. Through Table 10.1 we are given 3 is a primitive root mod 43.
(a) The corresponding index relation is

ind; (z) = ind3 (7) — ind3 (8) mod 42.
From Table 10.2 we find inds (7) = 35 and inds (8) = 39, so
inds () = 35 — 39 = 38 mod 42.

Again from Table 10.2 we find x = 17 mod 43.
(b) The corresponding index relation is

8 ind; (z) = inds (17) = 38 mod 42.

Applying Theorem 5.4, dividing both sides 2 gives 4 inds () = 19 mod 21. Multiplying both
sides by 16 shows indz (x) = 10 mod 21. This gives possible index values 10 and 31. From
Table 10.2 we find x = 10, 33 mod 43 are the only solutions.

(c) We have indj3 (8) = 39 and inds (3) = 1. The corresponding index relation is thus

392 =1 mod 42.

Since (39,42) = 3, 39 is not invertible mod 42, hence no solution exists.

Exercise 10.17. Let ¢ be an odd prime and suppose that p = 4¢ + 1 is also prime.

(a) Prove that the congruence x> = —1 mod p has exactly two solutions, each of which is a
quadratic nonresidue of p.

(b) Prove that every quadratic nonresidue of p is a primitive root of p, with the exception
of the two nonresidues in (a).

(c) Find all the primitive roots of 29.

Proof.

(a) Since p = 1 mod 4, (—1|p) = 1. By Theorem 5.21 (Lagrange’s Theorem), there are
at most two solutions. Since x, —x both satisfy the congruence, there are exactly two
solutions. Now if ¢ is a primitive root, then we can take x = g®»~1/* = ¢% as a solution.
Since ind, () = ¢ is odd, z is a quadratic nonresidue mod p. Finally —x is also a quadratic
nonresidue mod p since (—z|p) = (—1|p) (z|p) = —1.

(b) Let g be a primitive root. All primitive roots are of the form g*, where (k,4q) = 1. This
means k£ needs to be odd and relatively prime to ¢q. Each quadratic nonresidue mod p whose
exponent is relatively prime to ¢ are the only numbers to satisfy this stipulation. Finally,
the quadratic nonresidues that aren’t primitive roots are hence g7, ¢3¢ and both satisfy the
congruence in (a).

(c) Since 29 = 4 -7+ 1, we can apply (b). Using Mathematica we will find all quadratic
nonresidues whose square is not —1 mod 29.
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In[2]:= Module[{G = Range[28]},
(# remove the quadratic residues x)
G = Complement [G, Mod[G"2, 29]];
(* remove elements whose square is -1 x)
Select [G, Mod[#72, 29] != 28 &]
]
Out[2]= {2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27}

O
Exercise 10.18. (Extension of FExercise 10.17.) Let ¢ be an odd prime and suppose that
p = 2"q+ 1 is prime. Prove that every quadratic nonresidue a of p is a primitive root of p if

a* # 1 mod p.

Proof. Let a be a quadratic nonresidue mod p such that a?" # 1 mod p. Since p(p) = 2"q,
applying Fxercise 10.14 to show a is a primitive root, it’s enough to establish

a?®/2 £ 1 mod p and a?®/? £ 1 mod p.

Now because a is a quadratic nonresidue, a?®/2 = ¢»=1/2 = —_1 mod p. Additionally since
©(p)/q = 2", we have a?®)/9 # 1 mod p. This means a is a primitive root. ]

Exercise 10.19. Prove that there are only two real primitive characters mod 8 and make
a table showing their values.

Proof. Theorem 10.13 tells us there are four real characters mod 8. Since there are exactly
©(8) = 4 characters mod 8, every character must be real. Consequently, it is enough to find
the numbers of primitive characters mod 8.

Now by Theorem 10.15, a character x,. mod 8 is primitive if and only if ¢ is odd. Since
the possible values of a and ¢ are both 1 and 2, we conclude there are exactly two primitive
characters mod 8, which occur when ¢ = 1.

These characters correspond to the rows 2 and 4 of y mod 8 in Exercise 6.14. O]

Exercise 10.20. Let x be a real primitive character mod m. If m is not a power of 2 prove
that m has the form

2y pr
where the p; are distinct odd primes and o« = 0, 2, or 3. If & = 0 show that

x(=1) = [T

plm

and find a corresponding formula for y(—1) when o = 2.

Lemma 10.20. Let p be an odd prime, o > 0, and x be a character mod p®. Then x is
real and primitive if and only if @« = 1 and x(n) = (n|p) for all n.
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Proof of Lemma. For the converse direction, it is clear (n|p) is real. Furthermore since (n|p)
is nonprincipal and p is prime, by Theorem 8.14 it must be primitive. Looking at the forward
direction, let x; be a real primitive character mod p®, where x;, is defined in Chapter 10.
Since xp, is real, by Theorem 10.12 we find h = 0 or h = p(p®)/2. Additionally since yy, is
primitive, by Theorem 10.14 we have p 1 h. This forces h = p(p*)/2. However

so to satisfy p { h we require a = 1. Since there is a unique real nonprincipal character
mod p (Theorem 10.12) and (n|p) is real, we must have x(n) = (n|p) for all n. O

Proof of Exercise. Let m = 2%p{* -- - p&r, where p; is an odd prime and write

X:w-xl..-xr7

where 9 is a character mod 2 and x; is a character mod pj". By Exercise 8.12 x is primitive
mod m if and only if ¥ is primitive mod 2% and y; is primitive mod p;* for all i.

By Lemma 10.20 x; is real and primitive if and only if a; = 1 and x;(n) = (n|p;).
Turning out attention to 1, we can write 1) = 1), ., where this is defined in Chapter 10. If
a = 0 or a = 2, then by inspection ¥ must be real and primitive, whereas if & = 1, then
¥ is not primitive. If a > 3, by Theorem 10.13, 1, is real if and only if ¢ = ¢(2%)/2 or
c = p(2%)/4. Moreover by Theorem 10.15, 9, is primitive if and only if ¢ is odd. Now for
a >3, ¢(2%)/2 is never odd and ¢(2%)/4 is odd if and only if & = 3. Thus for ¢, . to be real
and primitive, it must be that o = 3.

Now
x(=1) = o) [] (~11p) = w(~1) [[ (1) "2

plm plm

By inspection if a = 0, then ¢(—1) =1 and if a = 2, then ¢(—1) = —1.
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Dirichlet Series and Euler Products

Exercise 11.1. Derive the following identities, valid for o > 1.

(a) C(s) = 8/100 x[ﬁl dz.

1 o0
(b) E — =35 m(2) dx, where the sum is extended over all primes.
ps 1 st

p

1 =S OOM(x)I whnere xTr) = n
© g = [ e where M(@) = X, o)

(d)

_C/(S)_S < h(x) o where d() — i
(s) /1 e de, where ¥(z) =3, ., A(n).

(e) L(s,x)=s /100 ﬁs(ff dx, where A(z) =3 . x(n).

Show that (e) is also valid for o > 0 if y is a non principal character. [Hint: Theorem 4.2.]

a, = O(zlogx) and F(s) => "7 a,n~% If A(z) = O(1)

n=1

Lemma 11.1. Let A(z) =3 ,
let ¢ = 0, otherwise let ¢ = 1. Then for o > c,

F(s) = s /1 . ;‘(fl) da.

Proof of Lemma. By Abel’s summation formula,

N N
s —s Afz)
E ayn®=AN)N"°+ 8/1 s dx.

n=1

Suppose A(z) = O(1). We have A(N)N~* — 0 as N — oo for ¢ > 0. Also

N A(x) N
/1 JSPES] dx = O(/1 xs+1dx> ’

and thus converges for ¢ > 0 as N — co. Hence letting N — oo gives the result.
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We're given A(z) = O(zlogz) so for 0 > 1, A(IN)N~* — 0 as N — oco. Also

N N
/ A<x>d1‘ =0 / —1ngdx ,
1 Is—i—l 1 xs

and thus converges for ¢ > 1 as N — co. Hence letting N — oo gives the result.

Proof of Fxercise.

(a) This follows directly from Lemma 11.1 with a, = 1.

(b) This follows directly from Lemma 11.1 with a, indicating whether n is prime.

(c) This follows directly from Lemma 11.1 with a,, = p(n).

(d) This follows directly from Lemma 11.1 with a, = A(n).

(e) Let a, = x(n). If x is a nonprincipal character mod k, then |A(z)| < p(k) = O(1).
is principal, then A(z) = ¢(k) |x/k] +O(1). The result then follows from Lemma 11.1.

Exercise 11.2. Assume that the Y~ | f(n) converges with sum A, and let A(z) = >
(a) Prove that the Dirichlet series F(s) = Y -~ f(n)n™® converges for each s with

and that
Z f(n) =A- s/ R($1) dz,
ns st

n=1

n<
g

where R(x) = A — A(x). [Hint: Theorem 4.2.]
(b) Deduce that F(o) — A as 0 — 0.
(c) If o >0 and N > 1 is an integer, prove that

F(S):Zf(”)_A

(V) = Aly)
ns N3 / d

+ s ys+1 .

n=1 N

(d) Write s = o +it, take N = 1+ [|¢|] in (c¢) and show that
|[F(o+it)|=0(Jt|'7) if0<o<l.

Proof.
(a) For 0 > 0 and N > 1, by Abel’s summation formula

n A(N N Az
S =R [

:[A—A]—FM—FS/NMOZ:B

Ns strl
“ dr  A(N) N A(z)
=A-A
S/l xs+1 + Ns +S/1 :L-S+1 dZL’
A(N) N A— A(z) < A(z)
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If x
O

2 f(1).

>0
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For o > 0, A(N)N~* — 0 and [ A(z)z~*"'dz — 0 as N — co. This gives
= ©®A-A
Zf@ :A—s/ A-Al),,
n=1 1

n xs—i—l

(b) Let € > 0 be arbitrary. Fix N so that for all z > N, |R(z)| < . We then have for o > 0

* R(z) N R(2)| < dx
‘O'[ Fdl" <0'/1 de—i—a&/N ng+1
N
o [ e

1

o+l No :

Since this holds for o > 0, letting & — 0% on both sides of the inequality gives

0/00 R(x)dx

<
o+l =

lim
o—0t

Since ¢ was chosen arbitrarily it can be as small as we like, hence the limit must be 0. The
result then follows directly form (a).
(¢) Foro >0and 1 < N < M, by Abel’s summation formula

Z;fyi?:) 1f£?)+ EN:H fgsl)
f(n) A(N)+A(M)+S/MA(y)d

ns B Ns Ms ya+1 Y-

NE

3
I

] =

1

Noting 0 > 0 and A(x) = O(1), let M — oo. As a consequence A(M)M~—* — 0 and the
integral converges, which finishes the proof.
(d) Since Y >, f(n) converges, we have f(n) — 0 as n — oo and thus

S
Il

M = max|f(n)] < co.

So by (c) and Theorem 3.2 (b), for o > 0 and o # 1,
N
: [f(n)] | [AV) /OO |A(y)|
F ] < d
| (o+z>!_; v b sl oy

<oy ool of [ 2)

=O0(N"7)+0(1) +O(|t) O(N77).
Now N ~ |t]| as t — 00, so it follows that |F(c + it)| = O([t|'~7). O

Exercise 11.3.

(a) Prove that the series > n~1~% has bounded partial sums if ¢ # 0. When ¢ = 0 the partial
sums are unbounded.

(b) Prove that the series Y n~!7% diverges for all real ¢t. In other words, the Dirichlet series
for ((s) diverges everywhere on the line o = 1.
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Proof.
(a) Fix t # 0. By Abel’s summation formula with a(n) =1 and f(z) = 277" we have

N N
Z ntt = NNV (14 dt) / |z] 27 "dx
n=1 1

N N
=N""+ (1+it) / vy — (1 +it) / {r} 27> "dx
1 1
< 1+t .. 144t o o <
:N”—iNlu—%—(l%—it) (/ —/ ) {x} 27> "dx
1 N

it )
= (i/t) N~ + C + o(1)
= 0(1).

Therefore the partial sums are bounded.
(b) From above,

D n = (i) N+ C + o(1)

n=1

= (i/t)(cos(tlog N) —isin(tlog N)) + C + o(1) .

Thus as N — oo both real and imaginary parts of the partial sums will oscillate without
approaching a single value, that is Y >-  n™ '~ diverges. O

Exercise 11.4. Let F(s) =Y 2, f(n)n™® where f(n) is completely multiplicative and the
series converges absolutely for o > o,. Prove that if 0 > g, we have

F'(s) — f(m)A(n)
F(s) ; B

Proof. Example 2 following Theorem 11.14 shows for o > o,, F(s) = %), where

6y = 3 LA,

n=2

Thus
F'(5) = eCCG/ (5) = F(s)G'(s),

or in other words

F'(s) _ N~ f(m)A(n)
o =

n
n=1

O

In the following exercises, A(n) is Liouville’s function, d(n) is the number of divisors of
n, v(n) and k(n) are defined as follows: v(1) =0, k(1) = 1; if n = p{* - - - pi* then v(n) =k
and k(n) = ajay - - - ay.

Prove that the identities in Exercises 5 through 10 are valid for ¢ > 1.
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Exercise 11.5. i dif) = g?;i;

Lemma 11.5. For all x with |z| < 1,

- x
nx'" = ———.
nZ:O (x —1)2
Proof of Lemma. Differentiating the geometric series term by term,

g"o na"! = 1
—1)2°
— (x—1)
Multiplying both sides by x gives the result. O

Proof of Exercise. Since (m,n) = 1 implies (m? n?) = 1, it’s clear d(n?) is multiplicative.
Also note
d(n?) < n?,

s0 >_>°  d(n*)n* converges for o > 3. Hence for o > 3, by Theorem 11.7,

>4

n=1 p m=0

_H22m+1

where Lemma 11.5 was applied in the last step. Multiplying numerator and denominator by
—2s —5

i L
IZI (p* — 1 a 1;[ (1—p)3
= (H(l — p‘s)‘3> (H(l - p‘25)>

&)
¢(2s)
Since the right hand side is a Dirichlet series that converges for ¢ > 1, by the uniqueness of

Dirichlet series the left hand side must converge for ¢ > 1. This means the identity holds
for all s with o > 1. O

1
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Proof. Let a, indicate whether n is prime. For ¢ > 1,

& 2y(n) 2
Exercise 11.7. = ¢(s)

n* o ((2s)

n=1
Lemma 11.7.1. Given an integer b, the function ™ is multiplicative.

Proof of Lemma. Let m and n be relatively prime positive integers. Since m and n share no
common prime divisors and v counts distinct prime divisors, it’s evident that

v(mn) = v(m) 4+ v(n).

Therefore
bl/(mn) _ bu(m)+u(n) _ bu(m)bl/(n)

Lemma 11.7.2. For n > 1,

2700 =3 |u(d)].

din

Proof of Lemma. By Lemma 11.7.1, 220 is multiplicative. Since |p|*wu is also multiplicative
it’s enough to prove the identity for prime powers. Now if n = p™ for some prime p,

S uld)=14+1=2=2"")

d|p™
O

Remark. This can also by proved by comparing Bell series, which is shown in Example 3
following Theorem 2.25.
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Proof of Exercise. By Lemma 11.7.1 2¥(™ is multiplicative, and additionally by Lemma

11.7.2
2/ =3 " |u(n)| < d(n) < d(n?).

din

Thus by comparison, Excrcise 11.5 implies » >, 2¥(Mp = converges for ¢ > 1. Hence for
o > 1, by Theorem 11.7,

Multiplying numerator and denominator by p=2*(p* — 1),

p°+1 1 —p2
= -1la=m

(I (Mo

_ ()
((2s)°

20 _ ¢
&(s)

Proof. We can deduce >"°7  2"(™)\(n)n=* converges absolutely for ¢ > 1 and that 2 \(n)
is multiplicative through Fxercise 11.7. Hence for o > 1, by Theorem 11.7,

=27 \( V™) \(p™
I IR

Exercise 11.8. Z

n=1 p m=0
I 1)
p m=1 p
2
(-
p p +1
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Multiplying numerator and denominator by p=2¢(1 — p~*),
Hps -1 H (1—p*)?
S o _ m—2s
D +1 ’ 1—p
= (H(l - p‘%)*) (H(l —p‘5)2>
p p

_((29)
2(s)
]
. = k(n 5)((2s)((3s
Exercise 11.9. Zl 7(15) = 5 )C§(62)C< )

Proof. 1t’s clear k(n) is multiplicative. Furthermore if n = p{* - - - pi*,

k(n) =aray---ap < (a1 + 1)(ag +1) -+ (ax + 1) = d(n) < d(n?).

S

Thus by comparison, Excrcise 11.5 implies Y2, k(n)n~* converges for o > 1. Hence for

o > 1, by Theorem 11.7,

By Lemma 11.5,

Multiplying numerator and denominator by p=%(p3* — 1)(p® + 1),

p23_p5+1: 1_p—65
1;[ (p* —1)° 1;[ (I=p*)A—p )1 —p)
_ ((5)¢(25)¢(3s)
¢(6s)

=3/ Wk(n) _ ()

Exercise 11.10. .
xerci ~ C(3s)

n=1
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Proof. We can deduce 3" k(n) is multiplicative through Lemma 11.7. Now note using the
beginning of the proofs of Exercise 11.7 and FExercise 11.9,

3"Wk(n) < (2”("))2 k(n) < d(n)® < n’.

Thus >°°° | 3" k(n)n=* converges for o > 4. Hence for o > 4, by Theorem 11.7,

=1;I<1+2§Z@>-

By Lemma 11.5,

>, 3m 3p°
FOSETANY, [FRT
It 25 -T1(+ 525
_ p2s+ps+1

(-1

Multiplying numerator and denominator by p=3*(1 + p®),

p25+p5+1_ 1_p—35
76— =1l
= (H(l —ps)3> (H(l —p?’s))

_30)
((3s)
Since the right hand side is a Dirichlet series that converges for ¢ > 1, by the uniqueness of
Dirichlet series the left hand side must converge for ¢ > 1. This means the identity holds
for all s with o > 1. O]

Exercise 11.11. Express the sum of the series Y °° 3"k (n)A\(n)n~* in terms of the Rie-
mann zeta function.

Solutzon We can deduce Y o7 3" g (n)A(n)n=* converges absolutely for ¢ > 1 and that
3"k (n)\(n) is multiplicative through Fxercise 11.10. Hence for ¢ > 1, by Theorem 11.7,

31/(n)l€ 31/ m m
IR [Ty )

n=1 p m=0

B = 3m(—1)™
—@<1+;—pm )

(- ())

p m=
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By Lemma 11.5,

1}(1+§3m<;3)m)zﬂ<1—%)

p

P> — p + 1
e
Multiplying numerator and denominator by p=° ( —1)3(p* )( - 1),
p*—p -1 —p 63) p)?
];[ p + 1 H —35 p—2s)3
B
C(6s)¢3(s)

Exercise 11.12. Let f be a completely multiplicative function such that f(p) = f(p)? for
each prime p. If the series Y f(n)n~° converges absolutely for ¢ > o, and has sum F(s),
prove that F(s) # 0 and that

f(n F(23) )
Z Fis) if 0 > o,.

Proof. Since f is completely multiplicative, for ¢ > o, we have

) S

n=1 dln

= —f(”zj(”) = f(1)=1.

This means F(s) # 0.
Now observe f (n))\(n) is completely multiplicative. Hence for ¢ > o,, by Theorem 11.7,

- f( 1 _ 1
Z H L—f(App— 1;[ L+ f(p)p~s

_ L F) _yp t-fp
_1;[1+f(p)p‘8 F(s) Ell—f(p)%‘?s

]

Exercise 11.13. Let f be a multiplicative function such that f(p) = f(p)? for each prime
p. If the series > u(n)f(n)n=* converges absolutely for o > o, and has sum F(s), prove
that whenever F(s) # 0 we have

if o > o,.

f(n Iu _ F(2s)
Z F(s)



136 Chapter 11 Solutions

Proof. Since f(n)u(n) is multiplicative, applying Theorem 11.7 when o > o,
S -
HZ s fH(l—f(p)p ).
p m=0 p
Similarly, the Euler product of > > | f(n)|u(n)n~* is given by

> w =[]0+ fp) ifo> o

p

So assuming F'(s) # 0, for o > o,,

— f(n)|un)| 1 A+ fp)p) A= fp)p~*)
Z; n® =11 1— f(p)p~

7l fp)Pp
_Ill—f@mﬂ
Crrl-fp
_Ill—f@mﬂ

p

[]

Exercise 11.14. Let f be a multiplicative function such that > f(n)n=® converges abso-
lutely for o > o,. If p is prime and o > o, prove that

1 + f —s Z f _ f(p)p—s) i f(”)ﬂ(n),“(p; n)’

ns

where p(p, n) is the Mébius function evaluated at the ged of p and n. [Hint: Euler products.]
Proof. By Lemma 2.7, u(p,n) is multiplicative in n. So for ¢ > o,, by Theorem 11.7,

z; f(”)M(Z H Z flq p,q)

q m=0

=:(1+-f0ﬂp’s)II(1—-f0ﬂq’s) (17)

q#p

and
IR
=[Ja- (18)

Multiplying both sides of (17) by 1 — f(p)p~* and both sides of (18) by 1+ f(p)p~* gives the
result. O
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Exercise 11.15.¢++) Prove that

—w 1 Q2
2.2 = )

in terms of the Riemann zeta function.

Proof. For brevity denote the summation symbols by >~ and let g = (my,...,m,). For

o; > 1 we have
Zm—sl... —ST—Z] —51... T—ST
DD WITITEERES

m; dlg

Now d | g if and only if d | m; for all ¢. Thus for a fixed divisor d of g we must sum over all
m; of the form dg;. Hence

SO uldymytt - omy = ZZM (dqi)~* -+ (dg,)™™

m; d|g d=1 gq;
Sr E M —(s14+s2++sr)

C(sl)---é(sr)
C(s1+ - +s)

In particular this shows

]

Remark. This exercise reminds me of a short proof that ((4) = 71/90, due to Eugenio
Calabi. It is interesting enough to reproduce here.

Theorem. If £ > 1, then
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Proof. We will prove the result for £ = 2 and sketch the proof of the general result. The
proof resembles Exercise 11.15 since ¢?(2) and ((4) appear below. Define

1 1 1

f(m,n) = - + S22 + 5
and observe 1
f(m,n) — f(m+n,n)— f(mym+n) = —5
This gives
1
2 _
(2= Z m2n2
m,n>0
= > fmn)= Y flmtnn) = Y f(m,m+n)
m,n>0 m,n>0 m.n>0
= > flmn) = D flmn)— Y f(m,n)
m,n>0 m>n>0 n>m>0
5
:Zf(nvn):§C(4)
n>0

So in particular assuming ¢(2) = 72/6 shows ¢(4) = 7*/90.
Now in general for k£ > 1, define

2k—2

f(m,n):;—l—%z ! + !

ngk 1 - mran r m2k71n'

r=

It can be seen that

k-1
1
f(m,n)— f(m+n,n) — f(m,m+n) = ]ZIW;
which leads to -
c@cek —2)) = 2 e om)

1

.
Il

FExercise 11.16. Integrals of the form

(19) 6= [ s

where A(z) is Riemann-integrable on every compact interval [1,a], have some properties
analogous to those of Dirichlet series. For example, they possess a half-plane of absolute
convergence o > o, and a half-plane of convergence o > o, in which f(s) is analytic. This
exercise describes an analogue of Theorem 11.13 (Landau’s theorem,).

Let F(s) be represented in the half-plane ¢ > o, by (19), where o is finite, and assume
that A(x) is real-valued and does not change sign for x > xy. Prove that f(s) has a singularity
on the real axis at the point s = o..
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Proof. without loss of generality assume A(z) > 0 for x > xy. We shall mirror the argument
made in the proof of Theorem 11.13. That is we will prove the following:

Let F(s) be represented in the half-plane o > ¢ by the integral

where ¢ is finite, and assume that A(x) > 0 for all x > xy. If F(s) is analytic in some
disk about the point s = ¢, then the integral converges in the half-plane o > ¢ — ¢ for
some € > 0. Consequently, if the integral has a finite abscissa of convergence o., then
F(s) has a singularity on the real axis at the point s = o..

Let a = 1+ ¢. Since F' is analytic at a it can be represented by an absolutely convergent
power series expansion about a,

© (g
Fe) =3 T (s~ o (20)

k=0

and the radius of convergence of this power series exceeds 1 since F' is analytic for ¢ > ¢ and
also in some disk centered at s = c¢. (See Figure 4.) Since the integral converges absolutely,
when taking derivatives we can differentiate under the integral sign. Hence taking repeated
derivatives gives

F®(q) = (=1 /10O A(x)(log z)*z~*dx,

so (20) can be rewritten as

F(s) = ;/100 %A(m)(log x)f x5 dy. (21)

Since the radius of convergence exceeds 1, this formula is valid for some real s = ¢ — ¢ where
e > 0 (see Figure 1.) Then a—s = 1+« for this s and the summation in (21) has nonnegative
terms for x > xy. Therefore we can interchange the sum and integral to obtain

Flc—¢) = /100 AI(SZU) i {1+ 5]3;!10g :U}kdx _ /100 if)e(l'i'e)logmdl‘ _ /1"0 A(x)dx‘

T
k=0

In other words, the integral floo A(x)x~*dx converges for s = ¢ — ¢, hence it also converges
in the half-plane 0 > ¢ — ¢.

Now suppose the integral has a finite abscissa of convergence o.. Taking the contrapos-
itive of what was just proven shows F'(s) is not analytic at s = .. This means the radius
of convergence of the power series of F' centered at s = 1 4 0. cannot be greater than 1. In
fact since F'(s) is analytic for all ¢ > 0., we see the radius of convergence of the power series
must be 1. Since the radius of convergence is equal to the shortest distance to a singularity;,
we conclude F'(s) has a singularity at the point s = o.. O
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i
|
|
: ~ ~
|
| e .
|/ \
i
V4 \
-
; [ \ .
/ e . } known analyticity of F
3 \c a=1l+c 3
N /
\ /
N\ /

Figure 4. The radius of convergence exceeds 1.

Exercise 11.17. Let A(n) = > 4, d*A(d) where A(n) is Liouville’s function. Prove that if

o > max{1l,Re(a) + 1}, we have

= \(n $)((2s — 2a
3 (n) _ C(s)¢( )

and

)
Proof. Since A\, = ux N®)\, for 0 > max{1, Re(a) + 1}, by Theorem 11.5,

= \(n =1 =, no\(n = \n
S () (M) -y

n=1 n=1 n=1 n=1

Z An) A, (n 25)((s —a
3 (MAaln) _ ((25)¢(s —a)

Applying FExercise 11.12 then shows

2 Aa(n $)((2s — 2a
S=Auln) _ C(6)¢(20 ~20)

n ((s—a)

n=1

Looking at the second sum, observe \ is completely multiplicative and A(d?) = 1 for all d.

Hence if d | n,
A (%) =\ (%) Ad?) = A(nd).
From here we find
A Aa(n) = 3" d*A(nd) = > d°A (%) — (N® % \)(n).
dn djn

Thus for ¢ > max{1,Re(a) + 1}, by Theorem 11.5,

Z A1) Xa(n 2. no = \n 25)((s —a
3 (LS<)=<Z;) (Z ?gbs)):« >C<(<> )

n=1



Chapter 12
The Functions ((s) and L(s, x)

Exercise 12.1. Let f(n) be an arithmetical function which is period modulo k.
(a) Prove that the Dirichlet series Y f(n)n™° converges absolutely for o > 1 and that

i ffl?) — ke if(r)g (s, %) if o> 1.

(b) If 32F_, f(r) = 0 prove that the Dirichlet series 3 f(n)n~* converges for ¢ > 0 and that
there is an entire function F'(s) such that F'(s) = > f(n)n=* for o > 0.

Proof.
(a) Since f(n) is periodic, there is an M such that |f(n)| < M for all n. Thus

n

and it follows that the sum converges absolutely for ¢ > 1. This means we can rearrange
the sum in this region with out altering it. Through the division algorithm we thus have

2 f(n) s flgk + )
; ns _;q;(qk—i-r)s
i >
- ;f(r) ; (gk + r)®
- k [e'S) 1
=k ;f(r)qzo (q—f—T//{?)S

(b) The convergence for ¢ > 0 follows directly from Lemma 11.1. Since this sum can be
expressed as a finite linear combination of Hurwitz zeta functions, Theorem 12.4 implies it
must be analytic for all s # 1. However since Dirichlet series are analytic in their half-plane
of convergence, we know this sum is analytic at s = 1 and hence can be extended to an
entire function. O

141
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Exercise 12.2. If z isreal o > 1, let F(x, s) denote the periodic zeta function,

e 627rinz
Plz,s) =)
(x,$) 2

If 0 <a<1and o > 1 prove that Hurwitz’s formula implies

(1 —5s)

F(a,s):W

{e”i(ks)/ZC(l —s,a) + em(sfl)/QC(l —s,1— a)} )

Proof. By Theorem 12.6 for 0 <a <1 and o > 1,

[(s
(2m)!

C(1—s,a)= )_S {e‘ms/zF(a, s) + ™2 F(—a, s)}.
Since 0 < a < 1, the same type of formula can be used on ((1 — s,1 — a). The plan

is to substitute this formula into the right hand side of the proposed equality to show it
equals F'(a,s). We will do this in Mathematica.

In[l]:=pz =T[1 - s]1/(2 )" (1 - s) (Expln I (1 - s)/2] Cl1 - s, al +
Exp[on I (s - 1)/2] C¢[1 - s, 1 - al);

In[2]:= thml26 = ([1 - s, b_] :> T'[s]/(2 nn)"s (Exp[-un I s/2] F[b, s] +
Exp[on I s/2] Fl-b, sl);

Now we will apply thm126 on pz and simplify. The simplifications used are standard
algebraic ones and I'(s)I'(1 — s) = 7/ sin(7s).

In[3]:= pz = FullSimplify[pz /. thml26]
Out[3]= (E°"(2 I m s) F[la -1, s] + E°(I n s) (F[1 - a, s] - F[-a, s]) -
Fla, s])/(E"(2 I m s) - 1)

Next we will use that F'(z, s) has period 1 in x. After this and cancelation we get the result.

In[4]:= pz = Cancel[pz /. Flb_ + _Integer, s] :> F[b, sl]
Out[4]= Fla, s]

]

Exercise 12.3. The formula in Exercise 12.2 can be used to extend the definition of F'(a, s)
over the entire s-plane if 0 < a < 1. Prove that F'(a, s), so extended, is an entire function of s.

Proof. For 0 < a <1,

N 2ira ( 2iraN
2mina __ € € — 1) _

Ze o e2ita _ 1 - O(l) :

n=1
Using this when applying Abel’s summation formula shows

eQﬂ'ina
=0(z7%).
— (=)

n<x
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This means F'(s) is a convergent Dirichlet series for o > 0, and hence is analytic there. Thus
we only need to show the extended definition of F'(a, s) is analytic for ¢ < 0. Now in this
region, I'(1 — s) is analytic everywhere and ((1 — s, -) is analytic for s # 0. This shows we
only need to show F(a, s) is analytic at s = 0 in order to show F'(a, s) is entire.

By Theorem 12.4, ((s,a) has a simple pole at s = 1 with residue 1. Therefore there are
entire functions Ry (s,a) and Ry(s,a) such that

((1—s,a)= —% + Ri(s,a) and ((1—s,1—a)= —% + Ry(s,a).

Substituting shows there is an entire function Rs(s,a) such that
F(l — S) em(l_s)/z + 671'2'(8—1)/2
(2m)t= {_ s
_Il-s) { 2sin(7s/2)

F(a,s) =

+Rg(s,a)}

= 2 . + Rg(S,CL)} :

We see F'(a, s) has a removable singularity at s = 0, hence by Riemann’s theorem on remov-
able singularities F'(a, s) can be extended to an analytic function at s = 0. ]

Exercise 12.4. f 0<a<land 0<b<1let

®(a,b,s) = L(s) {C(s,a)F(b,14+s)+((s,1—a)F(1-0b,149)},

(2m)*
where F' is the function in Exercise 12.2. Prove that
®(a, b, s) 52
— =™ —s5,1—0 1— —5.b

+ e T2 (—s,1 = b)C(a,1 — a) + C(—s,b)C(s,a)},

and deduce that ®(a,b, s) = (1 — b, a, —s). This functional equation is useful in the theory
of elliptic modular functions.

Proof. To demonstrate the identity we will first substitute the formula derived in Exercise
12.2 into ®(a, b, s), then manipulate. This is shown in Mathematica.

In[5]:= pzR = Fla_, s_] :>T[1 - s]/(2 n)"(1 - s) (Explo I (1 - s)/2]%*
([1 - s, a] + Exp[o I (s - 1)/2] C[1 - s, 1 - al);

In[6]:

Phi = I'[s]/(2 m)"s (C[s, a] Flb, 1 + s] +
([s, 1 — al F[1 - b, 1 + s]);

(» substitute =x)
In[7]:= Phi = Phi /. pzR;

(» distribute Gammas and collect in terms of Exp *)

In[8]:= PhiG = Collect[Expand[Phi/ (T'[s] T'[-s])], Power[E, _1]

Out[8]= E"(I m s/2) ({[-s, bl ([s, 1 - a] + C[-s, 1 - bl ([s, a]) +
E°(-I nw s/2) ({[-s, 1 - bl ([s, 1 - a] + C[-s, bl [s, al)
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Now observe the mapping a — 1 — b,b +— a,s — —s permutes the ( terms that share the
same power of e amongst each other. Again Mathematica is used to demonstrate.

In[9] := SameQ[PhiG, PhiG /. {a —> 1 — b, b —> a, s —> —-s}]
out[9]= True

Since I'(s)['(—s) is also invariant under this transformation, we conclude

d(a,b,s) = P(1 —b,a,—s).

In Exercises 5, 6 and 7, {(s) denotes the entire function introduced in Section 12.8,

1
£(s) = ~s(s — 1)a~*/T (f> C(s).
2 2
Exercise 12.5. Prove that £(s) is real on the lines t = 0 and 0 = 1/2, and that £(0) =
€)= 1/2
Lemma 12.5. If f(s) is entire and real valued on the real line, then

f(s)=f(5) forallsecC.

Proof of Lemma. Since f(s) is entire, we can use the Cauchy-Riemann equations to show
f(3) is entire too. Moreover since f(s) is real valued on the real line, f(s) — f(5) = 0
everywhere on the real line. Since non-zero entire functions have isolated zeros, we conclude

f(s)=f(3) forallsecC.

]

Proof. Since £(s) = &(1 —s), to show £(s) is real on the line ¢ = 0, it’s enough to take o > 0.
Now clearly (s/2)7~*/? is real valued when ¢ = 0. Noting for ¢ > 0 that

['(s) = /000 e *dr and (s—1)((s) = 215—5__1 . Z (—nls)",
n=1

it’s also clear (s — 1)I'(s/2)((s) is real valued for t = 0 (s — 1 cancels the pole of ((s)).
Now since £(s) is entire and real valued on the real line, by Lemma 12.5 we have

£(s) =&(5) forall s e C.

Applying this and the functional equation of £(s) we see

€(1/2+it) = €(1 — (1/2 + it))
(1/2 — it)
(1/2 —it)
£(1/2+it)

1/2 +1it).

mmmm

This means £(1/2 + it) must be real.
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To calculate £(0), use the recurrence relation I'(s + 1) = sI'(s) to see

£(s) = (s — )7/ (g + 1) ¢(s).

Thus since ((0) = —1/2,

]

Exercise 12.6. Prove that the zeros of £(s) (if any exist) are all situated in the strip
0 < 0 < 1 and lie symmetrically about the lines ¢t = 0 and o = 1/2.

Proof. Using the functional equation &(s) = £(1 — s), if £(s) = 0, then (1 — s) = 0. This
means the zeros are symmetric about the line o = 1/2.
Now in the proof of Exercise 12.5 it was shown

£(s) =&(5)  forall s e C.

Thus £(s) = 0 implies £(5) = 0, i.e. the zeros of £(s) are symmetric about the real line. [

Exercise 12.7. Show that the zeros of ((s) in the critical strip 0 < o < 1 (if any exist) are
identical in position and order of multiplicity with those of (s).

Proof. Observe s(s — 1)7~*/2/2 is entire and has no zeros in the critical strip. Furthermore
I'(s/2) is meromorphic with poles at —n/2 for all nonnegative integers n and is non-zero
everywhere. Thus the only possible zeros of £(s) in the critical strip can come from ((s) and
the multiplicity is preserved since s(s—1)7~*/2'(s/2)/2 is non-zero analytic in this strip. [

Fxercise 12.8. Let x be a primitive character mod k. Define

B o ify(-1) =1,
a_a(X)_{l if y(—1) = —1.

(a) Show that the functional equation for L(s, x) has the form

(s —a)

L(1 —s,X) = 6()()2(27‘(’)_8]{38_% cos ( 5

) I'(s)L(s, x), where [e(x)| = 1.

(b) Let

(s, x) = <E>(S+GWF (S ; a) L(s, x)-

Show that £(1 —s,%) = (x)&(s, x)-
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Proof.
(a) By Theorem 12.11

k5710 (s)

L<1_87Y> = (271')8

{em™/2 1 x(~1)e™/?} G(1,X)L(s, X)-

Now observe
2 cos(ms/2) ifa=0

—mis/2 — Tis/2 __
e +x(—1)e =
x(=1) {2 cos(m(s —1)/2) ifa=1,

which leads to

L(1—sY) = (G(\;’;)) 2(27)* k% cos (T) T(s)L(s, x).

By Theorem 8.11, |G(1,%)| = Vk, which shows we can take ¢(x) = G(1,%)/Vk.
(b) From above we have

sa-sm - (£) T (55 etwremreos (T2 s
)

- o m(s—a)\ I'((1 —s+a)/2)(s)
o () e .

Next, we consider the two cases for a separately to show the expression in the brackets is 1.

=e(x)&(s; x) {

e Suppose a = 0. Applying the duplication formula and the functional equation,

() i () ()
VE G
2571 /7

cos (ms/2)

Substituting this inside the brackets of (22) gives the result.

e Suppose a = 1. Applying the duplication formula and the functional equation,

[(1—-s/2)I'(s) s s ['(s)
M(s+a)/2) (r(-3)r @) T(s/2)T((s + 1)/2)
s [(s)
sin (7s/2) 21=5y/7L(s)
2371\/%
cos (m(s—1)/2)

Substituting this inside the brackets of (22) gives the result. O
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Exercise 12.9. Refer to Exercise 12.8.
(a) Prove that &£(s,x) #0if 0 > 1 or o < 0.
(b) Describe the location of the zeros of L(s, x) in the half-plane o < 0.

Proof.
(a) Since characters are completely multiplicative, for o > 1,
1 f: p(n)x(n)
L(87 X) n=1 ns .

Since this series converges for 0 > 1 and hence is analytic, it must be that L(s, x) is nonzero
for ¢ > 1. Combining this with the fact that (k/7)®*%/2I'((s + a)/2) is never zero shows
€(s, x) is nonzero for o > 1. Furthermore for o > 1,

5(1 -5 X) = 6(%)5(&%) 7é 0:

i.e. £(s,x) is not zero for o < 0.

(b) By definition it’s easy to see £(s, x) is analytic for o > 1 and by its functional equation,
(s, x) must be analytic for ¢ < 0. However I'((s + a)/2) has poles at s = a — 2n for all
n > —a/2. This means L(s, x) must cancel these poles by having zeros at these locations.
Moreover since £(s, x) is nonzero, L(s, x) can’t be zero anywhere else. Hence for o < 0,

L(s,x) =0 if and only if s =a — 2n for some n > —a/2.

]

Exercise 12.10. Let x be a non primitive character modulo k. Describe the location of the
zeros of L(s, x) in the half-plane o < 0.

Proof. Write x(n) = ¥(n)x1(n) where ¢ is primitive and x; is principal mod k. Then by

Theorem 12.9
25,0 = Lis.0) [T (1- 227

pS
plk

and so L(s,x) = 0 if and only if L(s,%) = 0. Hence for ¢ < 0, noting a(¢)) = a(x) and
applying by Exercise 12.9 (b),

L(s,x) =0 if and only if s =a — 2n for some n > —a/2.

Exercise 12.11. Prove the Bernoulli polynomials satisfy the relations

B,(1 —z)=(—1)"B,(x) and By, 1(%) = 0 for every n > 0.
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Proof. By definition we have

o0 tn t (l—r)t t —xt
S Bu(1-a) == _ (e

n! et —1 et —1
n=0

Equating coefficients shows
B,(1—z)=(-1)"B,(x).

Applying this result for an odd index 2n + 1 gives
Boyt1(1/2) = (=1)*"" By 11(1/2) = = Banya(1/2),
which means By, 1(1/2) = 0. O

Exercise 12.12. Let B,, denote the nth Bernoulli number. Note that

B4:;1:1,

30

S

1_1
273 B

These formulas illustrate a theorem discovered in 1840 by von Staudt and Clausen (inde-
pendently). If n > 1 we have
1
B2n = In - )
> 5

p—1[2n
where [,, is an integer and the sum is over all primes p such that p — 1 divides 2n. This

exercise outlines a proof due to Lucas.
(a) Prove that

n k
1 k
B, = — —-1)" "
ey ()
k=0 r=0
[Hint: Write z = log{1 + (¢” — 1)} and use the power series for z/(e” —1).]
(b) Prove that

"L k!
B =

where c(n, k) is an integer.

(c) If a, b are integers with @ > 2, b > 2 and ab > 4, prove that ab | (ab — 1)!. This shows
that in the sum of (b), every term with k + 1 composite, k > 3, is an integer.

(d) If p is prime, prove that

i( 1)T<p—1)n_ —1 modp ifp—1]|n,n>0,
- —
e r 0 modp ifp—11n.

(e) Use the above results or some other method to prove the von Staudt-Clausen theorem.
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Lemma 12.12.1. The Stirling numbers of the second kind, S(n,k), are defined as the
number of ways to partition n elements into k£ nonempty sets. A well known formula is

stnut) =3 -0 ()

Proof of Lemma. The number of ordered partitions of n into k nonempty sets is kS (n, k).
To derive the formula, we will count another way using the inclusion-exclusion principal.
Now note finding an ordered partition of n into k£ nonempty sets is equivalent to finding
an onto function from n into k. To derive the formula, we will start out with all £ functions
and apply the inclusion-exclusion principal to narrow down the onto functions. For each
1 < j < k, there are (k — 1)" functions that do not include j in it’s image. Thus we will
subtract off (lf)(k: — 1)" total functions we’ve counted so far. Continuing in this fashion we

will add and subtract (f)(kz — )" functions for 1 <i < k — 1. This leads to

KIS (n, k) = zk:(—nk-f <’;)rn

r=0
O
Lemma 12.12.2. For n > 0 and m > 0,
n+m
S (7o
r=0 r
Proof of Lemma. Fix m and induct on n. Since m > 0, when n = 0,
> (M) - -
r=0 r
Assuming the result is true for n, then
(n+1)+m n+(m+1)
(n+1)4+m n+(m+1)
—1) n+l _ —1) n— (.
S (M) S e (M ) <
r=0 r=0
O

Remark. An alternate proof is to notice the proof of Lemma 12.12.1 did not require k < n.

Proof of Fxercise.
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(a) Following the hint we have

n! et —1

iBnt” _ log{1+ (¢! — 1)} _ i (1 —et)*

S by (s
-2y e ()En

Chapter 12 Solutions

where Lemma 12.12.2 was used in the last step. Equating coefficients gives the result.
(b) Observe c(n, k) = (=1)*S(n, k). Hence by Lemma 12.12.1, ¢(n, k) is an integer.

lvd

(c) See Lemma 5.7.
(d) If p—1]|n, then 7™ =1 mod p for 0 < r <p— 1. Thus

r=

If p—11n, then

r= =

1

p:(—l)r(p; 1)Tn =1+ izé(_w(p; 1) Cvnyp

= —1 mod p.

i p—1 p! p—1
(—1)”( )r” (—1)7"( )r”_q(p_l) mod p,
r r
0 0

where ¢ = [n/(p—1)] and 0 <n —q(p — 1) <p—1. Thus by Lemma 12.12.2,

p—1 1
(_1>r (p - )rnq(pl) — O,
T
r=0

which finishes the proof.

(e) Let S =4{0 <k <2n|k+1is composite and k + 1 # 4}. Then from (a) - (d),

p—1

—_

p—1<2n p r=0
p is prime

=S ezt X e (M) e (C)
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where I! is an integer. Now

- 3
E (—1)T( )7’2"5—3—32"50 mod 4,
r

which means the last sum in (23) is an integer. ]

Exercise 12.13. Prove that the derivative of the Bernoulli polynomial B/ (x) is nB,_1(z)
if n > 2.

Proof. By definition we have

ZB/ a temt _ t261t
n' et —1 et —1

Equating coefficients for n > 1 gives the result. m

Exercise 12.14. Prove that the Bernoulli polynomials satisfy the addition formula

By(r+y) = i (Z) By(x)y" ™.

k=0
Proof. By definition we have

n text-‘ryt tezt—i—yt

t t
ZB :L’—i—y t_l_et_ley

Equating coefficients gives the result. O]

Exercise 12.15. Prove that the Bernoulli polynomials satisfy the multiplication formula
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Proof. By definition we have

t
p(t/m)em”’( /m)
et/m —1

o (t/m)"
= Z;m Bn(m:c)T.

Equating coefficients of ¥ gives

m—1
B,(mz) = mP! Z B, (x + E) :
m
k=0

Exercise 12.16. Prove that if » > 1 the Bernoulli numbers satisfy the relation

i 22k By 1
= (2k)1(2r +1—2k)1  (2r)

Proof. Note By = —1/2 and Bay1 = 0 for all £ > 0. Thus we can include odd k in the sum
on the left hand side to get

2r+1

z’”: 22k B, Z 2k B,
2k)!1(2r + 1 — 2k)! (2r)! El(2r+1—k
k=0
2r+1
1 1 2 +1\ .,
_ ok B
(2r)!+(2r+1'z( 3 ) k

1, 92r+1 22*:1 2+ 1\, (1 =k
e @t =\ k 2

1 22r+1
= +
2r)!  (2r+1)!
By Exercise 12.11, By,41(1/2) = 0 which completes the proof. O

Bo,i1(1/2).

Remark. Applying Theorem 12.17 gives the recurrence relation

r—1 2(— k+1 —21:« k)

2= (@) = 2r T 1 2k)

k=0
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Fxercise 12.17. Calculate the integral fol rB,(z)dr in two ways and deduce the formula

i D B, :Bp-i-l
r)p+2—r p+1

r=0

Proof. The result can be verified directly for p < 2. By Exercise 12,13, B/ (z) = pB,_1(z),
which implies an antiderivative of By(z)dx is By1(z)/(p + 1). Additionally by Theorem
12.14, B,(0) = B,(1) for p > 2. Hence integrating by parts we see

/0 1 vB,(z)dz = x%ﬂf)}: . /0 1 B,(z)dz

_ Bpn Bpii(x) '
_p+1_{ p+1 10
_ Bont
Cp+ 1

On the other hand, we can apply Theorem 12.12 before integrating to find

1 1P
/ rBy(z)dr = / x Z (p) B2’ "dx
0 0 r=0 "
P 1
_ Z <p> Br/ 2P gy
r=0 r 0
_ i P\ B
B r)p+2—r

r=0

Exercise 12.18.
(a) Verify the identity

uv e”*”—l_ uv L+ 1 N 1
(v —1)(e* —1) u+v  u+v et —1 ev—1

2 uv [urt 4t
e () B

n=2

(b) Let J = fol B,(x)B,(x)dz. Show that J is the coeflicient of plgluPv? in the expansion of (a).
Use this to deduce that

(_1)p+1 (;_:_q;)]Bp-f—q lfp Z 1761 2 17

1
/ B,(x)By(z)dx =< 1 if p=q=0,
’ 0 iftp>1,¢q=0; orp=0,q > 1.
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Proof.
(a) The first equality is verified with standard algebraic techniques, so we will focus on the
other equality. Now by the definition of Bernoulli numbers,

uv 1 1 uv
1 1 B,— B,
u+v(+e“—1+ev—1) u—l—v<+z +Z )

(b) We have by (a) that

Pnd 1 U v
>3 [ minmirg = [ G
—~ = plq et —1lev —
B uv vty —1
(v —1)(er —=1) u+tw
Zuv [u 4ot
=1 —(—— | B,. 24
+Zn!< u+v ) (24)

Since Boiy1 = 0 for £ > 0 we can include or ignore the odd indices in subsequent transfor-
mations of (24). This gives

> wv [ut +Un—1 i uv u2n—1 _’_UQn—l
1+ —(——— | B, =1+ By,
;n!< u+v > Z(Qn!( u+wv ) ?

o] n—1
uv m+1m1nm1
1+Z(2nl —~ —1) v Ban
oo n—1 B
m+1mnm
=1+ > (-1 o
n=2 m=1

Making the substitution (m,n) = (p,p + ¢) shows the sum is equal to

uPv?
1 + p+1B —7
D)WL

p=1 ¢=1

because solving the system
2<p+4+q and 1<p<p+q-—1

gives p > 1 and ¢ > 1. Equating coefficients gives the result. O]



Exercise 12.19.
(a) Use a method similar to that in Exercise 12.18 to derive the identity

(u+wv Z Z By (z)B,(z m'n' Z Z Bin(z 'nT é}i?)“' (U v + w?).

m=0 n=0 m=0 n=0 r=0

(b) Compare coefficients in (a) and integrate the result to obtain the formula

B (2) By (z) = Z { (;)n + (Q"T )m} Bj;Bf; ”:2;ix> + (_1)m+1%3m+n

for m > 1, n > 1. Indicate the range of the index r.

Proof.
(a) Looking at the right hand side, since By = —1/2 and By,1 = 0 for r > 0,
i (u? v+ uv®) = iB(qu—uv)—iruv
=0 i
w_ o _w uv (e"TV — 1)
= uw = :
et —1 ev—1 (ev —1)(ev —1)
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For the remainder of the right hand side, we can collect the sum in terms of By(x) to get

k—j

o0 o0 ]
DD Bunle) ZBk ZL,

m=0 n=0 _ - J)’

) z(’;w-j

B Z By (s (u + 'U) _ (uAtv)er) ‘

eutv —1
Multiplying shows
V" = B (u + v)e*@ )y (et — 1)
Bm n T 2r 2ry
mZOnZO " 'n' — (2r)! (u v+ ue”) evtv —1  (ev—1)(ev —1)
uexu Ue:):v
= (u—l—v) —16”—1
mvn
) 33 Bl B
m=0 n=0
(b) The right hand side of (a) is equal to
o 0 m+1,,n+2r

B, ymt2ryntl X o = B, u™ oy
(27’)!Bm+n(x) m!n! +ZZZ(2T)!Bm+n(I) min!
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To collect both sums in terms of uPv? we will substitute (p,q) = (m + 2r,n + 1) in the first
sum and (p,q) = (m + 1,n + 2r) in the second sum. Hence in the first sum r will range
from 0 to |p/2] and in the second sum r will range from 0 to |¢/2|. This means the sums
equal

< o2 A BQr ptq—2r—1( Upvq N U B 2r p+q ar—1(m)uPr?
SIS e Bl gy sl
p=0 ¢g=1 r=0 p p=1 ¢=0 r=0 q
oo oo |p/2] oo oo lg/2]
—zi(VM“”m* §X>%“WWW
- ! !
7m0 4=0 =0 \2T plq! o \2r plq!
0o oo Mpyg
q uPv?
=> > Z P { BarBpagze1 (), (25)
2r Iq!
p=0 ¢g=0 r= pq:
where M, , = max{|p/2]|, |q/2]}.
Now the left hand side of (a) is equal to
uett  petv uert  petv / © U™y
= = B,.(z)B, .
(u+v)e“—1e“—1 (e“—le“—l) mzonzo( (#)Bal2)) mlin!
Thus equating coefficients of this with the coefficients of (25) shows
Mm,n
Bu(@)Bu(@)) = 3" 4 (2 )m+ (1 )m { BoyBusnsri ().
—~ 2r 2r

Since Exercise 12.13 shows an antiderivative of By(z) is Byy1(x)/(k + 1), integrating both
sides gives

By() Bu(z) = % { (;f) n+ (; ) m} B Z%Bf;”j;gx) +C

where C' is some constant with respect to x. Finally, Fxercise 12.18 shows

1 B B d 1 m+1—m!n! B d 1 B 0
[ BatoBas = (-1 L and [ B
so it must be that C' = (— )m“—(rrgﬁﬂBmM. O

Exercise 12.20. Show that if m > 1, n > 1 and p > 1, we have
1
/ Bon(2) Bu(2) B, () dz
0

+n—2r—1)!
— (—1)tpl " " (m By, B pntpar-
(=1) p;{(%)n—i_(% m (m+n+p—2r) 2 Fntpe

In particular, compute fol B3(x)dx from this formula.
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Proof. Note in Exercise 12.18 it was shown that fo ,(2)de = 0. Combining this with the
rest of the results of Fxercise 12.18 and Exercise 12.19 shows

m} B27‘ m4n— 2r<x) Bp(x)dx

m-+n—2r

(o) (2)

-3 {(2r>n <”)m}m+n_2r 1Bm+n,2T(a:)Bp(x)dx
> o)
) n

(=11 (m+n—2r)p!
(m+n+p—2r)!

m-+n—+p—2r
m —|— n— 27“ b

(m+mn—2r—1)!
BT'an T
" 27“) }(m+n+p 2r)! 2 tntp-2

In particular

Exercise 12.21. Let f(n) be an arithmetical function which is periodic mod k, and let

Z f(m)€727rimn/k

m mod k

denote the finite Fourier coefficients of f. If

prove that
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Proof. From Theorem 12.8,

k

F(l—s) =k f(r)C (1 —s, %)

r=1

=3 o (T2 ¢ (1)

(s t 1 67rzs/2—27rztr/k + e—wzs/2+2mtr/k
o ¢ p) 1570 2 |
t=1 r=1
(s k t e?TiS/Q k o e—Tris/Q k o
_ (2;))8 ZC (S, E) { Zf(,r)e 2mitr [k + - Zf(r)e 2mi(—t)r/k
t=1 r=1 r=1

[]

Exercise 12.22. Let x be any nonprincipal character mod k and let S(z) =3 . x(n).
(a) If N > 1 and o > 0 prove that

L(s,x) = ) ﬂ+S/

ns N

*5(x) = S(N)

strl

dx.

n=1

(b) If s = 0 4+ it with 0 > 6 > 0 and |t| > 0, use (a) to show that there is a constant A(J)
such that, if 6 <1,

|L(s,x)| < A@)B(k)(Jt] +1)'°
where B(k) is an upper bound for |S(z)|. In Theorem 13.15 it is shown that B(k) =
O(\/Elog k)
(c) Prove that for some constant A > 0 we have

1
|L(s,x)| < Alogk ifo>1-— ook and 0 < || < 2.

[Hint: Take N =k in (a).]

Proof.
(a) For 0 > 0and 1 < N < M, by Abel’s summation formula

S g s X
-3 SO0 SO0 [ S,

3
—
3
Il
—

N
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Noting ¢ > 0 and S(z) = O(1), let M — oo. As a consequence S(M)M~ — 0 and the
integral converges. This means

Lo = 300 S /N°° S,

! ns Ns xa—i—l
N o .
D SE N
ns N xs-i—l

(b) For0 > >0 and 6 <1, byTheorem32(
~ 9B (k
L5, 0l < B S = +s] /

< A’(a)B(k)NH +2 (1 + %) B(k)N~°

+ %(5 + [t)B(k)N~°

< A@BIN + 2

< A'(8)B(k)N'™°
1+ [t)B(k)N~°,
Letting N = [|t| + 1] < [t] 4 1 gives

65,01 < (46)+ 5 ) BRI+ 1

(c) Following the hint,

L(s,x) = Z Xé?) + S/koo is(fl) dx.

n=1

This leads to

)| < Z%HUH)/:) fjfl)d:p
=3y (1 + ;) B(k)k~
= 1’“1__; +¢(0) +O(k7) + (1 + ;) B(k)k™,

where Theorem 3.2 (b) was applied in the last step. Now ¢ > 1 — 1/logk so we have

kl/logk 1 N kl/logk 2) Bk kl/logk
1— 14— i
IE(s 01 < 7735, +§( 10g2)+ ( k )*( +1—1/10gk‘) W=

1 logk — 3
= el — 1) + eB(k) 2" "2
eogk~|—§( 10g2)+0()+e (k)k;(logk—l)
B(k)
<elogk+C + Oy,
= g 1\/E 2

for some constants C;. Since B(k) = (\/_ log k;) as mentioned in (b), we're done. O



Chapter 13
Analytic Proof of the Prime Number
Theorem

Exercise 13.1. Chebyshev proved that if ¢ (z)/z tends to a limit as 2 — oo then this limit
equals 1. A proof was outlined in Exercise 4.26. This exercise outlines another proof based
on the identity
¢'(s) < ()
26 —— = —d >1
(26) S s [ SR (@)
given in FExercise 11.1 (d).
(a) Prove that (1 — s)¢'(s)/((s) = 1 as s — 1.
(b) Let 6 = limsup(¢(x)/z). Given € > 0, choose N = N(¢) so that z > N implies

T—>00
P(x) < (0+¢e)x. Keep sreal, 1 < s < 2 split the integral (20) into two parts, le +f]\o,o and
estimate each part to obtain the inequality

¢'(s)
RO < Cle) +

where C'(¢) is a constant independent of s. Use (a) to deduce that ¢ > 1.
(c) Let v = liminf(¢(z)/x) and use a similar argument to deduce that v < 1. Therefore if
T—00

¥(x)/z tends to a limit as x — oo then v =§ = 1.

Proof. By Theorem 4.9, there are positive constants ¢;, ¢o such that cor < ¢(z) < ¢z
eventually holds for all . Thus both the liminf and limsup of ¢(z)/x exist.

(a) By Theorem 12.4 ((s) has a simple pole at s = 1 with residue 1. Therefore there is an
entire function R(s) such that

1

o + R(s) and ('(s)=-—

C(s) = + R'(s).

1
(s —1)
This means
(L=s)¢(s) _1—(s—1)2R(s)
C(s) L+ (s = 1R(s)
hence (1 —s)('(s)/C(s) = 1 as s — 1.

160
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(b) Let 6 = limsup¢(z)/x and € > 0. By definition of limsup, there exists N = N, such

that for all x > N, ¢(x) < (6 + €)x. Then

() e
M y(N)

*o+e
<s jers dx+3/ . dx

<

= (1= N'*)(N) + le—sfjf>
< P(N) + Sfjf)-

Multiplying through by s — 1 gives

(1 —s)¢'(s)
¢(s)

and applying (a) while taking s — 17 shows

< (s—=DY(N)+s(0+¢)

1<d+e.

Letting ¢ — 07 proves 1 < 4.

(c) Let v = liminf ¢ (x)/x and € > 0. By definition of limsup, there exists N = N such that

for all x > N, ¢(z) > (v — €)x. Then

¢s) _ N v

o L) e
N 1 o .,

15
ZS/ ldrlr—l—s/ B dx
1 .TS+ N xs

= (1—N"%)+ N2 =)

s—1
s 4509
s—1
Multiplying through by s — 1 gives
(1—5)¢'(s)

C(S) 2(8_1)—’_3(7_5)

and applying (a) while taking s — 17 shows
1>y—ec.

Letting € — 0T proves 1 > .



162 Chapter 13 Solutions

Exercise 13.2. Let A(x) =>_ __a(n), where

n<x

k

{0 if n # a prime power,
a(n) = .
if n = p".

1
k

Prove that A(z) = n(z) + O(y/x loglog z).

Proof. Observe by the prime number theorem

B [logy(z)] ﬂ_(xl/n>

[log ()]

> (@ o(e)

n=2

1
log x
— 7(@) + ——0(v/z log,(x))

log

=7(z) + O(Vx).

=m(z) +

Exercise 13.3.
(a) If ¢ > 1 and z # integer, prove that if z > 1,

1 c+oot S 1

z _ L ap 1/3
5 log ¢(s) ; ds = m(x) + 27T(:E )+ 37r(x )+

c—001
(b) Show that the prime number theorem is equivalent to the asymptotic relation
1 c+o01 s

— log((s)x—ds ~

270 J o oo s log x

as r — OQ.

A proof of the prime number theorem based on this relation was given by Landau in 1903.

Proof.
(a) Let 0 = ¢. It was shown in Theorem 11.14 that

= A
log ((s) = Z %nﬂ,
n=2

so by Theorem 11.18 (Perron’s formula)
1 c+o001

x® A(n)
— 1 —ds =) ——.
ol = 3 2

2mi c—001

Observe

1
k

Aln) {0 if n # a prime power,

logn if n = p*,



163

SO

1 o log{(s)x—sds = Z 1 7(z) + 17r(x1/2) + 17T(x1/3) +-
270 J o oo s o k 2 3 '
prsT
(b) By Exercise 13.2 and (a) we have
1 c+o01 ./L'S
- log ((s)—ds = A(z) = m(z) + O(v/zloglog z) ,
T J e—ooi S

and the proof follows since

O(Vzloglogz) = 0( * ) .

log x
O

Exercise 13.4. Let M(x) = >, ., p(n). The exact order of magnitude of M (x) for large
x is not known. In Chapter 4 it was shown that the prime number theorem is equivalent to
the relation M (x) = o(z) as © — oo. This exercise relates the order of magnitude of M (x)
with the Riemann hypothesis.

Suppose there is a positive constant € such that

M(z)=0(2") forx > 1.

Prove that the formula

O M,

¢(s) = o astt "
which holds for ¢ > 1 (see Exercise 11.1 (¢)) would also be valid for o > 6. Deduce that
((s) # 0 for o > 6. In particular, this shows that the relation M(z) = O(z'/*™) for every
€ > 0 implies the Riemann hypothesis. It can also be shown that the Riemann hypothesis

implies M (z) = O(z'/*) for every £ > 0.

Proof. Suppose there is some positive constant 6 such that M (z) = O(xe). Then it’s clear

* M(x)

strl

dz

converges for ¢ > . As mentioned in Exercise 11.16, the integral is thus analytic in this
half-plane. Hence by the uniqueness of analytic continuation,

1 < M(x)
@ =S ! Wdl’ for o > 6.
Therefore 1/((s) is analytic in this half-plane, so ((s) # 0 for o > 6. O

Exercise 13.5. Prove the following lemma, which is similar to Lemma 2. Let

Ay (z) = /1 AW g,

u
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where A(u) is a nonnegative increasing function for u > 1. If we have the asymptotic formula
Aq(z) ~ Lzt as z — oo,

for some ¢ > 0 and L > 0, then we also have
A(z) ~ cLz® as x — 0.

Proof. Since x¢ — oo as  — 00, we can apply L’Hopital’s rule to find

Ale) oy, AW AR

L= lim

z—oo € z—o0 CTCT Texel T ahoo cx¢

Exercise 13.6. Prove that

1 2400t s
— Yds=0 if0<y<1.
270 Jo_oi 82

What is the value of this integral if y > 17

Proof. When 0 < y < 1 consider the contour C; illustrated in Figure 5 (a). Since y*/s?

analytic for s # 0,

1
— —d = 0.

211 Jo, S

Now observe |y°| =y < y? for any s on C}. Hence if Cy is the circular sector of C,

= ds
J?

5(MR) =0 as R — oo,

<Y
=R

which means )
1 4001 ys
2T Jo_ooi S

When y > 1 consider the contour Cy illustrated in Figure 5 (b). Note
yS
x5 (—) = logy,

—ds =logy.
27T/L 02

hence

Now observe |y*| = y° < y? for any s on Cy. Hence if Cr is the circular sector of Cs,
ds
/.5
1 2400t 5

% gdS = 10g Y.

%(QWR) — 0 as R — oo,

which means

2—o001
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Figure 5: Contours used in Exercise 13.6.

Exercise 13.7. Express

L 2+o001 I_s <_C/(5)> s

2mi s2 ((s)

2—o001

as a finite sum involving A(n).

Lemma 13.7. Suppose f(s) = > 7, a,n~* converges absolutely for o > o,. If ¢ > max{0, 0, },

n=1
1 feteo x® x
% o f(8>3_2d8 = Z(ln log <E> .

n<x

Proof of Lemma. Applying Fxercise 13.6, for ¢ > max{0,0,},

1 c+o01

s eroot ( a:/n
ani ) T ads= Z =
= Zan log <E) .

n<x

Proof of Exercise. Let

) =AW
S R P

n=1

By Lemma 13.7,

% 2+00i"§—§ (— CC((j))) ds =S A(n)log (%) .
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Exercise 13.8. Let x be any Dirichlet character mod k£ with x; the principal character.
Define

/ / /

L L L
F(o,t) = 33(0, X1) + 4f(a +it, x) + f(a + 2it, x?).

If o > 1 prove that F(o,t) has real part equal to

and deduce that Re F(o,t) < 0.

Re {3X1 + 4X( ) —1t _'_ X 72’Lt}

Proof. Let o > 1. By Theorem 11.14, L(s, x) = ¢“©) where

= An

_ Z 1 )x(n) =
“~ logn
Differentiating gives

L'(s,x) = G'(s)e“®) = G'(s)L(s, ),

therefore

at>:—3iW—4i%—i%
=L

Taking the real part shows

+4X( ) —it +X 2zt}

— A(n
ReF(a,t):—Z 7’<L Re{3X1 ) + 4x(n)n zt+X —211:}.
n=1

Letting x(n) = €? gives
Re {4x(n)n™"} = 4cos(0) cos(tlogn) + 4sin(0) sin(tlogn) = 4 cos(d — tlogn)

and similarly .
Re {x*(n)n"*"} = cos(2(0 — tlogn)).
Thus if (n, k) = 1, then

Re {3x1(n) + 4x(n)n™" + x*(n)n~>"} = 3+ 4cos(f — tlogn) + cos(2(f — tlogn))
= 2(1 + cos( — tlogn))* > 0.

If (n,k) # 1 then ‘ A
3xa(n) + dx(n)n™" +x*(n)n =" =0,
so it follows that Re F(o,t) < 0. O
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Exercise 13.9. Assume that L(s, x) has a zero of order m > 1 at s = 1 + it. Prove that
for this ¢t we have:

/
(a) f(a +it, x) = % +0(1) aso— 1%, and
(b) there exists an integer r > 0 such that

!/

L
f(a + 2it, x?) = i +0(1) aso— 17,

except when x? = x; and t = 0.

Proof.
(a) We have L(o +it,x) = (6 — 1)"R(o +it), where R(o + it) # 0 in a small neighborhood
about 1+ it. Logarithmically differentiating shows

L'(o +it, x) m R'(0 +1it)

Lo+it,y) o—1' Rlo+it)
Since R(o + it) # 0 for o near 1, R'(0 + it)/R(co + it) must be bounded as o — 17.
(b) Suppose x? # x1 or t # 0, i.e. L(s,x?) is analytic at s = 1 + 2it. Define r > 0 to
be the order of the zero of L(s,x?) at s = 1 +it. (Note if there is no zero, then r = 0.)
Mimicking (a) shows

L'(o + 2it, x?) r
ol = O(1 — 17,
L(o + 2it, x?) 0—1+ (1) aso

Exercise 13.10. Use Exercises 8 and 9 to prove that
L(1+it,x) #0 for all real t if x* # x1

and that
L(1+it,x) #0 for all real t # 0 if x* = x1.

[Hint: Consider F(o,t) as o0 — 1]
Proof. Recall for o > 1,
Lo, x1) = ¢(0) [ [(1 = p7) = cx(0)¢(0).
plk
Thus L(o, x1) has a simple pole at 0 = 1 with residue ¢x(1), and long division shows
L/(U Xl) 3
3 ’ = Oo(1 — 17",
L(oc+ x1) a—ljL (1) asa
Suppose L(1 +it,x) = 0. If x? # x1 or t # 0, then by Exercise 13.9,
3+4dm+r

o—1

F(o,t) = as o — 17.

Hence since 3+ 4m +1r > 0, F(o,t) — oo as 0 — 11. This contradicts Exercise 13.8, which
says Re F(o,t) < 0. This means L(1 + it, x) # 0. O
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Exercise 13.11. For any arithmetical function f(n), prove that the following statements
are equivalent:

(a) f(n) =0(n®) for every ¢ > 0 and all n > n;.

(b) f(n) =o(n°) for every § >0 as n — oco.

Proof. 1f f(n) = O(n®) for every € > 0 and all n > ny, then for all § > ¢
f(n) = O(n") = o(n""").

This shows (a) implies (b), since € + § can be as close to 0 as we like.
If f(n) = o(n®) for every 6 > 0, then in particular f(n) = o(n). Hence there is exists n,
such that for all n > nq, |f(n)| < n. This means for any ¢ > 1,

f(n) =0(n®) forn>n,.

Now for 0 < € < 1 there exists n. such that for all n > n., |f(n)| < n°. Let

me, = max M‘ and M. = max{m,, 1}.
m<n<ne | N
Then for all n > ny we have |f(n)] < Mn®, ie. f(n) =O0(n®) and all n > n;. O

Exercise 13.12. Let f(n) be a multiplicative function such that if p is prime then
f@™) — 0 asp™ — .

That is, for every € > 0 there is an N(e) such that |f(p™)| < € whenever p™ > N(e). Prove
that f(n) — 0 as n — oo.

[Hint: There is a constant A > 0 such that |f(p™)| < A for all primes p and all m > 0, and
a constant B > 0 such that |f(p™)| < 1 whenever p™ > B.]

Proof. Following the hint let M be the number of prime powers < B, which means A" is a
fixed constant. Letting n = p{*---p%s - qfl = 'qtﬁt where pi" < B and qjj > B, then

7l < A TT1F)

Now n can approach co in two ways.
e If 3, — oo as n — oo for some 7, then f(qf) — 0 which means f(n) — 0 too.

o If n — oo but 8; 4 oo for all 7, it must be that ¢ — co. Assuming ¢;" < qg2 << qtﬁt,
then ¢4 — oo as t — oco. Thus for any € > 0 there is a ¢ large enough such that
|f(¢")] < e. Hence

[f(n)] < AMTTIf(a)) < AMe,
=1

or in other words f(n) — 0 as n — oo. O



Exercise 13.13. If o > 0 let 04(n) = >_,, d*. Prove that for every > 0 we have

oa(n) = o(n**?)

as n — oo.
[Hint: Use Exercise 13.12.]

Proof. Fix § > 0 and define f(n) = o,(n)/n®*°. Observe f(n) is multiplicative and

f( m) 1 p(erl)a -1 1 {pa _ pfma }
p)= = )
pma+m5 P — 1 (pm)5 P — 1

169

hence f(p™) — 0 as p™ — oo. So applying Exercise 13.12 it’s clear f(n) = o(1), i.e.

oa(n) = o(n*).

]



Chapter 14
Partitions

Exercise 14.1. Let A denote a nonempty set of positive integers.
(a) Prove that the product
H (1—z™) "

meA
is the generationg function of the number of partitions of n into parts belonging to the set A.
(b) Describe the partition function generated by the product

I]a+azm).

meA
In particular, describe the partition function generated by the finite product Hf;zl(l +z™).

Proof.
(a) We will mirror the rigorous argument made in the proof of Theorem 14.2. Write

A - {]{71,]{?2,]63, .. .},

where A is possibly finite and k1 < ko < k3 < ---. Restricting x to lie in the interval
0 <x <1, define
Fo(x) = ﬁ ! , and F(z) = H L _ lim F,,(z).
Pl 1 — ok oA 1—a2F  moco

Note if |A| < oo, we take F(x) = Fja(x). As justified in the proof of Theorem 14.2, we can
write F,,(x) as

F(z) =1+ ipm(k)xk,

where p,, (k) is the number of solutions to
k= kml + k2n2 -+ . kmnm

Notice p,, (k) is the number of partitions of & into parts that are in A and do not exceed m.
If | A| is finite, take m = |A| and we are done. Otherwise let p4(k) be the number of partitions
of k into parts that are in A. Therefore we always have

Pm(k) < pa(k)

170
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with equality when m > k and
lim pm (k) = pa(k).

m—ro0

By the comparison test with > p,,(k)z* and the similar series in the proof of Theorem
14.2, we see > ppn(k)x® converges uniformly in m. Thus

m—r0o0

F(z) = lim F,(x)= lim E pm (k)2 = g lim py, (k)" = g pa(k)z”,
m—0o0 m—0o0
k=0 k=0 k=0

which proves the identity for 0 < x < 1. By analytic continuation this can be extended to
hold for all |z| < 1.
(b) Analogous to the fifth entry of Table 14.1, the partition function generated by

H (1+2™)

counts the number of partitions of n into parts which are unequal and belong to the set A.
Therefore the partition function generated by

[Ta+am

m=1

counts the number of partitions of n into parts which are unequal and < k. O

Exercise 14.2. If |z| < 1 prove that

o0

(1+a™) =] (1—a*Y)"",

m=1 m=1

and deduce that the number of partitions of n into unequal parts is equal to the number of
partitions of n into odd parts.

Proof. Let |x| <1 and N > 0. Then

92N 92N—1 92N
T +om (=22t = TT (1 +a2) ] (4221 (1 - 22m)
m=1 m=1 m=1
2N—1 2N
ST () T (1 - o)
m=1 m=1
92N -2 92N -1
— T (v a™) T (- a1
m=1 m=1
oN oN+1
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Now for —1 < x < 1,

2N
1< H <1+m2Nm> < <1+x2N> —1 as N —
m=1
Thus
2N
lim (1 v xQNm> —1
N—oo
m=1
and similarly
2N+1
lim (1 _ x2N“m—2N) —1
N—oo 1 '

This shows for —1 < x < 1,
lo_o[ lo_O[ 2m 1 -1
m=1 m=1

and by analytic continuation this for all complex |z| < 1.
From Table 14.1, the number of partitions of n into odd parts has generating function

o
][ 2m11

m=1

and the number of partitions of n into unequal parts has generating function
o
H 1+2™
m=1

Since both generating functions are the same, we conclude that the number of partitions of
n into unequal parts is equal to the number of partitions of n into odd parts. O

Exercise 14.3. For complex z and z with |z| < 1, let

f(z,2) = H (I —2a™mz).

m=1

(a) Prove that for each fixed z the product is an analytic function of z in the disk |z| < 1,
and that for each fixed x with |z| < 1 the product is an entire function of z.
(b) Define the numbers a,(z) by the equation

z) = Z an(x)z

Show that f(z,2) = (1 — 2z)f(x, zx) and use this to prove that the coefficients satisfy the

recursion formula

an(x) = ap(x)x" — ay_1(x)x".
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(¢) From (b) deduce that a,(z) = (—=1)"z""*Y/2/P, (), where

0=Tla-w)

This proves the following identity for |z| < 1 and arbitrary z:

ﬁl—xz i_l)

m=1 n=0 (CL’)

Lemma 14.3. If Y | | f,(x)| converges uniformly to a bounded function on a set S, then

so does [[77 (1 + fu(2)).

Proof of Lemma. Let Py(z) = [T0_,(1 4 fn(z)). Choosing M such that

3

—~

xn(nJrl)/ZZn'

=

Zlf” )| <M forallzels,

then

[Pu(@)] < T+ 1£u@)]) < exp {Z Ifn(ﬂf)l} <eM

Hence for N > M,

|Pyn(z) — Pu(z)| =

A
=
=
|
T
&

<eM N | fule)

n=M+1

Since > 7 |fa(x)| converges uniformly on S, by the Cauchy criterion, Py(z) converges
uniformly on S. [

Proof of Fxercise.
(a) For any |z| < 1 and z € C,

oo
Z 2y — rz
— 11—z
converges uniformly as a function of either x or z. The result then follows from Lemma 14.3,
since a uniformly convergent sequence of analytic functions converges to an analytic function.
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(b) Since f(z, z) is entire in z it has a power series about z = 0, namely

[e.e]

flz,2) = Z an(z)2".

Now

= 1__[ (1 xm+lz)
= ] (1 —a™2) = f(a 2),

and therefore

n=0 n=0
o0 oo
= Z an ()" 2" — Z an(z)x"
n=0 n=0
o0 oo
= Z an(z)x" 2" — Z Ap—1(z)z"2"
n=0 n=1
oo
= ao(r) + Z (an(x)x™ — ap_q(x)a™) 2"
n=1

Equating coefficients for n > 0 shows a,(z) = a,(x)z™ — a,_1(z)x™.
(c) From (b) we have

and unraveling the recursive relationship shows
g2+ tn (-1
=009 (=@ = v

an(x) = (_1)n

Hence

3

—~

~1)
(z)

$n(n+1)/22n‘

H(l—xmz)zz

m=1 n=0

=

[l
Exercise 14.4. Use a method analogous to that of Exercise 14.3 to prove that if |z] < 1

and |z| < 1 we have
H (1-— xmz)_l =

m=1

NE
B
&

S
Il
o

where P,(z) = []_, (1 —2").

r=1
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Remark. This problem has a typo. To fix it, we can either start the product at m = 0 or
replace the series coefficient with 2 /P, (z). The latter is proven below.

Proof. Applying Exercise 14.3 (a) shows [[°_; (1 — 2™z) analytic for |z| < 1 and z € C.
Furthermore, for |z| < 1 and |z| < 1 observe this product in nonzero. Hence

g(z,z) = H (1—amz)""

1

is analytic for all |z| < 1 and |z] < 1.
Since g(z, z) is analytic for |z| < 1 it has a power series about z = 0, namely

Now

and therefore

Equating coefficients for n > 0 shows

bn_1(z)x

1—2am

bn(x) =

Y

and unraveling the recursive relationship shows
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Exercise 14.5.¢:4) If x # 1 let Qo(z) = 1 and for n > 1 define

n 1 — p2r
Qu@) =] 7=
r=1
(a) Derive the following finite identities of Shanks:
2n
Z m Z Qn(x) 8 2n+1) (27)
m=1 (Z’)
2n+1
Z m(m Z Qn(z) 5@nt1). (28)
m=1 (37)

(b) Use Shanks’ identities to deduce Gauss’ triangular-number theorem:

- m(m—1)/2 ol —a™
ZSE :Hm fOI"iC’<1.
m=1 n=1
Proof.
(a) Notice
1— J}2n+2
Qn+1(2) = 7577 n(@).

Using this observation and long division shows for n > 0,

Qn(l’) xs(?n—&-l) _ Qn_1<l') 1 - x2n+2 x5(2n+1)

Qs(v) N Qs(z) 1 — a2nt!
_ Qn-1(z) 25@n=1) 4 1 — g LD @n=1) 1—a® £5@n=1)
Qs<x> 1 — x2n71 1— xanl
Qn-1(T) yon_
= Lt fs,m) — gl (29)
where

Now

Quaa(®) 1 =22 en

Qst1(x) 1 — a2l

o Qpa(r) 11— a?+? (s+1)(2n—1)
Q ( ) —a2st2 1 _ 2n—1

1— x23+1

= f(s,n).

g(s+1,n) =
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Thus when summing over (29), f and g telescope. Since g(0,n) = 0 and f(n—1,n) = z""~Y

we have

Qn—l(x) s(2n71)+$n(2nfl)’

T =) g
s=0 Qs(x) s=0 Qs $)
n—2
_ Qn—l(x)xs(Q(n—l)-i-l) 4 (D@D el
s=0 QS ZL‘)

so (27) follows through a simple induction argument. Adding "™V to both sides of (27)
proves (28).

(b) Let |z| < 1 and define Q(x) = lim, o @n(x), which exists and equals the quotient of
two generating functions found in Table 14.1. From above we have

Z l,m(m—l)/Q = lim Z Qn(fﬂ)) :L,S(Zn—f—l)
—00
s=0

m=1 S(x

n

1 : Q”(x) s(2n+1)
=t e 2 00w

=Q(z) + 1i_>rn T, (x).
Noting Q,(z)/Qs(x) < Qn(z) < Q(z) for all n and s < n, we have
| To(2)| < n|Q(z)||[*" .

Hence for a fixed x, T,,(z) tends to 0 as n — oo, which shows

S m(m—1)/2 - 1—a™
PIE =Qw =]l
m=1 n=1

Exercise 14.6. The following identity is valid for |z| < 1:

Z xm(m—l)/? _ H (1 + :L,n—l) (1 _ x2n) )
m=—00 n=1

(a) Derive this from the identities in Exercises 14.2 and 14.5 (b).
(b) Derive this from Jacobi’s triple product identity.

Proof.
(a) The substitution n = 1 — m shows

f: xm(m—l)/QZ 20: l’m(m_l)/g—f-ixm(m_l)ﬂ
m=1

m=—00 m=—0Q

-9 Z xm(m—l)/2‘
m=1
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Applying Exercises 14.2 and 14.5 (b) gives

S m(m—1)/2 _ -
QZx _2H1_x2n71
m=1 n=1
=2 @+am) (12"
n=1
_ ¥ 1_|_:L.n ¥ n—1 _ 2n
:H(1+$n 1)(1_1,271)
n=1

1/2

(b) If we replace x by 2'/2 and 2% by #7'/2 in Jacobi’s identity we find

ﬁ 1+ 2" 1—95 meml
n=1

]

Exercise 14.7. Prove that the following identities, valid for |z| < 1, are consequences of
Jacobi’s triple product identity:

o0

(a) H (1—2%) (1 —2%1) (1 — 25 = Z (—1)mgm(em+3)/2,
) JT(—2") (1 —2™2) (1—a™ %) = 3 (—1)mamCmnz,

Proof. If we replace x by 2°/2 and 2% by —z%/? in Jacobi’s identity we find

o0

H (1 . Ifm) (1 . Isn—l) (1 . x5n—4) _ Z (_1)mxm(5m+3)/2'
n=1 m=—o0

Similarly, if 22 = —2/? we find
H (1 . $5n) (1 . x5n—2) (1 o x5n—3) _ Z (_1)mxm(5m+1)/2'
n=1 m=—o0

Exercise 14.8. Prove that the recursion formula

n

np(n) = 3" o(k)p(n — k),

k=1
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obtained in Section 14.10, can be put in the form

np(n) = Z Z mp(n — km).

m=1k<n/m

Proof. This identity follows through changing the order of summation described in the proof
of Theorem 3.3:

n

Y olk)pn—k)=> > dp(n—Fk)

k=1 k=1 d|k

=Y dp(n—qd)

>
qd<n

= Z Z dp(n — qd).

m<n qg<n/d

]

Exercise 14.9. Suppose that each positive integer k is written in g(k) different colors,
where g(k) is a positive integer. Let p,(n) denote the number of partitions of n in which
each part k appears in at most g(k) different colors. When ¢(k) = 1 for all k£ this is the
unrestricted partition function p(n). Find the infinite product which generates p,(n) and
prove that there is an arithmetical function f (depending on g) such that

npg(n) = f(K)py(n — k).
k=1
Proof. This follows directly from Theorem 14.8. We have for |z| < 1,

H (1 . In)—g(n)/n =14+ Zpg(n)xn
n=1 n=1

and p,(n) satisfies the recurrence relation
npy(n) = Z f(k)py(n — k), where f(k) = Zg(d).
k=1 dlk

]

Exercise 14.10. Refer to Section 14.10 for notation. By solving the first-order differential
equation in (22) prove that if |z| < 1 we have

[T —am)7™" = exp {/0 @dt} :

neA



180 Chapter 14 Solutions

where

H(x) =Y fa(k)et and fa(k) =3 f(d).
k=1 dlk

Deduce that

H (1— 2™ == for o] < 1,
n=1

where p(n) is the Mobius function.

Proof. The first-order separable differential equation in (22) is
Fyt) _ H()

Fu(t) t

and integrating both sides from 0 to z for some |z| < 1 gives
TH(t
log Fa(z) — log F4(0) = / #dt.
0

Moreover, by definition F4(0) = 1 which means

Fa(z) =] (1 —am) ™" =exp {/O @dt} .

neA

Now let A = N and f(n) = —u(n). Then fs(k) = —I(k), and so H(z) = —x. This

means for |z| < 1,
(1= 2"V _ e {_/ dt} i
1 0

n=

The following exercises outline a proof of Ramanujan’s partition identity

Zp(5m +4)2™ = 58900(@))6 ., where p(z) = H (1—2a"),

by a method of Kruyswijk not requiring the theory of modular functions.
Exercise 14.11.
(a) Let ¢ = e*™/* where k > 1 and show that for all z we have

k

H(l—:c&th) =1— 2"

h=1

(b) More generally, if (n, k) = d prove that

T (1 —aem) = (1—2b%)",

h=1



and deduce that
h=1

Proof.
(a) Factoring yields

and so

1 — 2% = (=1)*! H (" —z) = (=1)**! H (" —=z

h=1

_ (_1)k+1 H (E_h _ :1:) _

(b) Let d = (n, k), m =n/d, and § = ¢*"¥/F_ Then

k N :
H — " 27rmh/k _ -2 if (n’ k) =1,
(1—zm)* ifk|n.

h=1

k+1H€—hH 1_x€
h=1

k k
= (-1 k:+1 ck(k+1)/ H 1 — xeh) _ H (1 _ a:gh)
h=1 h=1

k k
H l—xz—: :H(l—xémh)
h=1 h=1
k/d
= (1 — xémh)d.
h=1

k/d k/d

H xémh :H 1—x5h

h=1 h=1

Now this means if (n, k) = 1, then

k
H — 27rznh/k (1 o (:L,n)k/l)l —

>

=1

Also if k | n, then (n, k) =k, so

k
H — " 27rznh/k: _ (1 o (l,n>k/k>k

h=1

= (1—a")".
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Exercise 14.12.
(a) Use Exercise 14.11 (b) to prove that for prime ¢ and |z| < 1 we have

> 4 , q\q+1
H H (1 _ xne27mnh/q) _ SO(‘T )2 .

n=1h=1 gp(l’q )

(b) Deduce the identity

0 4 o0
Zp(m)xm ZE5 2 H H — 27Tmh/5)
m=0 .I ) h=1n=1

Proof.
(a) Using Exercise 14.11 (b)),
oo q 00 q—1 oo
HH(l_ n27mnh/q Hl_an‘IHH 1_xq(mq7"
n=1h=1 n=1 r=1m=1
g—1 oo 00 1
29 H H (mqﬂ‘)) H (1 9 m>
r=0 m=1 m=1
(p(xq)qﬂ
p(z7)
(b) Taking ¢ = 5 gives
H H — 27rmh/5) _ Sp(x5)6
p(x%)

n=1h=1

and isolating the portion of the left hand side corresponding to h = 5, then taking reciprocals

shows
o

1
H 1— x5 6 HH —a" 2mnh/5)

n=1 h=1n=1

Now the by Theorem 14.2; the left hand side is the generating function for p(n), which
finishes the proof. 0

Exercise 14.13. If ¢ is prime and if 0 < r < ¢, a power series of the form

%)
Z CL(TL) mqn—i—r
n=0

is said to be of type r mod gq.
(a) Use Euler’s pentagonal number theorem to show that ¢(z) is a sum of three power series,

8

o(x) = (1—a") =1+ 1, + I,

n=1
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where [}, denotes a power series of type k£ mod 5.
(b) Let o = ¢*™/> and show that

4 o0 4
H H (1 — x”oz”h) = H (]0 + Lo + _72042") )
h=1n=1 h=1
(c) Use Exercise 14.12 (b) to show that

25)

- 5m+4 __ QO(.%
Zp(5m+4):v + _V4<p(x5)6’

m=0

where V} is the power series of type 4 mod 5 obtained from the product in (b).

Proof.
(a) By Eulers pentagonal number theorem (Theorem 14.3),
= 3n? —n
= —1)"g™) h = :
o) = 30 (1, e wn) = 7oy

It’s easy to verify w(n) is only congruent to 0, 1, or 2 mod 5, so taking
L= Y e

proves the claim.
(b) Observe

4 oo 4
H (1 — x"a”h) = H gp(a:o/‘)
h=1n=1 h=1
and
c,p(xah) =1+ 1+ I,

h 5m+k)h kh

where [} is equal to [ with x replaced with za". Now al = ™", so we can factor

terms with v out of I}, to get
gp(xah) = Iy + Lia" + La*".

(c) Note if Sj, denotes a series of type k, then Sy - S,, is of type k +m, hence p(z%)/p(2°)°
is of type 0 mod 5. Thus equating terms of type 4 in Exercise 14.12 (b),

o(2*°)
p(x°)8

> p(sm + )2 =V,

m=0

where Vj is the type 4 part in the expansion of [[,_,(Io + o™ + L,a®"). O
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Exercise 14.14.
(a) Use Theorem 14.7 to show that the cube of Euler’s product is the sum of three power
series,

QO([E)S = Wo + W1 + Wg,

where W), denotes a power series of type £ mod 5.
(b) Use the identity Wy + Wy + W5 = (Iy + I, + I5)? to the that the power series in Exercise
14.13 (a) satisfy the relation

[0[2 - —112
(c) Prove that I} = —xp(2?®).
Proof.
(a) By Theorem 14.7,
= (=1 (@2m + D)z,
m=0

It’s easy to verify (m? + m)/2 is only congruent to 0, 1, or 3 mod 5, so taking

Wy, = Z (—1)™(2m + 1)zmH+m/2

(m2+m)/2=k mod 5

proves the claim.
(b) Recall if Sj denotes a series of type k, then Sy - S, is of type k + m. Now expanding
(Io + I, + I5)? shows the only terms of type 2 are Iyl, and I7. Since Wy + W, + W3 contains
no terms of type 2, we conclude

Ioly + 17 = 0.

(c) Note w(n) = 1 mod 5 if and only if n = 1 mod 5. Thus by Eulers pentagonal number
theorem (Theorem 14.3),

I, = Z 2 (3(5n+1)2—(5n+1))/2 _ —x Z 72 5(3n2+n)/

n=-—00 n=-—00

Substituting m = —n shows

I, = —x f: 226Bm2—m)/2 _ —zp <$25> ‘

m=—0Q

]

Exercise 14.15. Observe that the product [[,_, (Io+ 1" + I,a*") is a homogeneous poly-
nomial in Iy, [, I of degree 4, so the terms contributing to series of type 4 mod 5 come
from the terms I}, IyI1y and IZ13.

(a) Use Exercise 14.14 (¢) to show that there exists a constant ¢ such that

Vi = clf,



where Vj is the power series in FExercise 14.13 (¢), and deduce that

> ¢($25)5
p(5m + 4)2°" = eat :
mz::o p(7)°
(b) Prove that ¢ = 5 and deduce Ramanujan’s identity
S m_ £ 2(@%)°
p(om +4)xz™ =5
n;) ( ) p(z)°

Proof.
(a) Using Excrcise 14.14 (b), expanding [[r_,(Io + Ia" 4+ I,a*") shows

Vi=I +3(a*+a®+a’+a) ([ L+ (o +a® +a” +a+2) B
=} -3+’ ++a) [} + (o' +a’+®+a+2) I}
= cl},

where ¢ = 3 — 2a — 2a? — 203 — 2a*. Applying Fxercise 14.13 (¢) and Exercise 14.14 (c)
yields

N m 1p(®) _p(a®)
p(5m + 42" = ¢ (—ap(2*)) Tt = cx
mZ:(] (Foe (=) (@) ()0
(b) Since a # 1 is a fifth root of unity,
a®—1
c=5-2a*'+a*+a*+a+1)=5-2 = 5.

a—1

Dividing both sides by z* then replacing 2° with  proves Ramanujan’s identity

Z p(bm +4)z™ =5
m=0

Back to top.
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