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Preface

Science consists in using information about the world for the purpose of pre-
dicting, explaining, understanding, and/or controlling phenomena of interest.
The basic difficulty is that the available information is usually insufficient to
attain any of those goals with certainty. A central concern in these lectures will
be the problem of inductive inference, that is, the problem of reasoning under
conditions of incomplete information.

Our goal is twofold. First, to develop the main tools for inference — proba-
bility and entropy — and to demonstrate their use. And second, to demonstrate
their importance for physics. More specifically our goal is to clarify the con-
ceptual foundations of physics by deriving the fundamental laws of statistical
mechanics and of quantum mechanics as examples of inductive inference. Per-
haps all physics can be derived in this way.

The level of these lectures is somewhat uneven. Some topics are fairly ad-
vanced — the subject of recent research — while some other topics are very
elementary. I can give two related reasons for including both in the same book.
The first is pedagogical: these are lectures — the easy stuff has to be taught
too. More importantly, the standard education of physicists includes a very
inadequate study of probability and even of entropy. The result is a widespread
misconception that these “elementary” subjects are trivial and unproblematic
— that the real problems of theoretical and experimental physics lie elsewhere.

As for the second reason, it is inconceivable that the interpretations of prob-
ability and of entropy would turn out to bear no relation to our understanding
of physics. Indeed, if the only notion of probability at our disposal is that of
a frequency in a large number of trials one might be led to think that the en-
sembles of statistical mechanics must be real, and to regard their absence as an
urgent problem demanding an immediate solution — perhaps an ergodic solu-
tion. One might also be led to think that analogous ensembles are needed in
quantum theory perhaps in the form of parallel worlds. Similarly, if the only
available notion of entropy is derived from thermodynamics, one might end up
thinking that entropy is some physical quantity that can be measured in the
lab, and that it has little or no relevance beyond statistical mechanics.

It is very worthwhile to revisit the “elementary” basics because usually the
basics are not elementary at all, and even more importantly, because they are
so fundamental.

Acknowledgements: Most specially I am indebted to C. R. Rodriguez and to
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N. Caticha, whose views on these matters have profoundly influenced my own,
but I have also learned much from discussions with many colleagues and friends:
D. Bartolomeo, C. Cafaro, V. Dose, K. Earle, R. Fischer, A. Garrett, A. Giffin,
P. Goggans, A. Golan, M. I. Gomez, P. Goyal, M. Grendar, D. T. Johnson,
K. Knuth, S. Nawaz, R. Preuss, T. Seidenfeld, J. Skilling, R. Spekkens, and
C.-Y. Tseng. I would also like to thank all the students who over the years
have taken my course on Information Physics; their questions and doubts have
very often helped clear my own questions and doubts. I would also like to
express my special gratitude to Julio Stern for his continued encouragement to
get my lectures published and to J. Stern, C. A. de Braganga Pereira, A. Polpo,
M. Lauretto and M. A. Diniz, organizers of EBEB 2012 for undertaking their
publication.

Albany, February 2012.



Chapter 1

Inductive Inference and
Physics

The process of drawing conclusions from available information is called infer-
ence. When the available information is sufficient to make unequivocal, unique
assessments of truth we speak of making deductions: on the basis of a certain
piece of information we deduce that a certain proposition is true. The method
of reasoning leading to deductive inferences is called logic. Situations where the
available information is insufficient to reach such certainty lie outside the realm
of logic. In these cases we speak of doing inductive inference, and the methods
deployed are those of probability theory and entropic inference.

1.1 Probability

The question of the meaning and interpretation of the concept of probability has
long been controversial. Needless to say the interpretations offered by various
schools are at least partially successful or else they would already have been
discarded. But the different interpretations are not equivalent. They lead people
to ask different questions and to pursue their research in different directions.
Some questions may become essential and urgent under one interpretation while
totally irrelevant under another. And perhaps even more important: under
different interpretations equations can be used differently and this can lead to
different predictions.

The frequency interpretation

Historically the frequentist interpretation has been the most popular: the prob-
ability of a random event is given by the relative number of occurrences of the
event in a sufficiently large number of identical and independent trials. The
appeal of this interpretation is that it seems to provide an empirical method to
estimate probabilities by counting over the ensemble of trials. The magnitude
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of a probability is obtained solely from the observation of many repeated trials
and does not depend on any feature or characteristic of the observers. Proba-
bilities interpreted in this way have been called objective. This view dominated
the fields of statistics and physics for most of the 19th and 20th centuries (see,
e.g., [von Mises 1957]).

One disadvantage of the frequentist approach has to do with matters of rigor:
what precisely does one mean by ‘random’? If the trials are sufficiently identical,
shouldn’t one always obtain the same outcome? Also, if the interpretation is to
be validated on the basis of its operational, empirical value, how large should
the number of trials be? Unfortunately, the answers to these questions are
neither easy nor free from controversy. By the time the tentative answers have
reached a moderately acceptable level of sophistication the intuitive appeal of
this interpretation has long been lost. In the end, it seems the frequentist
interpretation is most useful when left a bit vague.

A more serious objection is the following. In the frequentist approach the
notion of an ensemble of trials is central. In cases where there is a natural
ensemble (tossing a coin, or a die, spins in a lattice, etc.) the frequency inter-
pretation seems natural enough. But for many other problems the construction
of an ensemble is at best highly artificial. For example, consider the probability
of there being life in Mars. Are we to imagine an ensemble of Mars planets and
solar systems? In these cases the ensemble would be purely hypothetical. It
offers no possibility of an empirical determination of a relative frequency and
this defeats the original goal of providing an objective operational interpretation
of probabilities as frequencies. In yet other problems there is no ensemble at
all: consider the probability that the nth digit of the number 7 be 7. Are we to
imagine alternative universes with different values for the number #? It is clear
that there a number of interesting problems where one suspects the notion of
probability could be quite useful but which nevertheless lie outside the domain
of the frequentist approach.

The Bayesian interpretations

According to the Bayesian interpretations, which can be traced back to Bernoulli
and Laplace, but have only achieved popularity in the last few decades, a proba-
bility reflects the confidence, the degree of belief of an individual in the truth of
a proposition. These probabilities are said to be Bayesian because of the central
role played by Bayes’ theorem — a theorem which is actually due to Laplace.
This approach enjoys several advantages. One is that the difficulties associated
with attempting to pinpoint the precise meaning of the word ‘random’ can be
avoided. Bayesian probabilities are not restricted to repeatable events; they
allow us to reason in a consistent and rational manner about unique, singular
events. Thus, in going from the frequentist to the Bayesian interpretations the
domain of applicability and therefore the usefulness of the concept of probability
is considerably enlarged.

The crucial aspect of Bayesian probabilities is that different individuals may
have different degrees of belief in the truth of the very same proposition, a
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fact that is described by referring to Bayesian probabilities as being subjective.
This term is somewhat misleading because there are (at least) two views on
this matter, one is the so-called subjective Bayesian or personalistic view (see,
e.g., [Savage 1972; Howson Urbach 1993; Jeffrey 2004]), and the other is the
objective Bayesian view (see e.g. [Jeffreys 1939; Cox, 1946; Jaynes 1985, 2003;
Lucas 1970]). For an excellent elementary introduction with a philosophical
perspective see [Hacking 2001]. According to the subjective view, two reason-
able individuals faced with the same evidence, the same information, can legiti-
mately differ in their confidence in the truth of a proposition and may therefore
assign different probabilities. Subjective Bayesians accept that an individual
can change his or her beliefs, merely on the basis of introspection, reasoning, or
even revelation.

At the other end of the Bayesian spectrum, the objective Bayesian view
considers the theory of probability as an extension of logic. It is said then
that a probability measures a degree of rational belief. It is assumed that the
objective Bayesian has thought so long and hard about how probabilities are
assigned that no further reasoning will induce a revision of beliefs except when
confronted with new information. In an ideal situation two different individuals
will, on the basis of the same information, assign the same probabilities.

Subjective or objective?

Whether Bayesian probabilities are subjective or objective is still a matter of
dispute. Our position is that they lie somewhere in between. Probabilities will
always retain a “subjective” element because translating information into prob-
abilities involves judgments and different people will inevitably judge differently.

On the other hand, it is a presupposition of thought itself that some beliefs
are better than others — otherwise why go through the trouble of thinking? And
they are “objectively” better in that they provide better guidance about how
to cope with the world. The adoption of better beliefs has real consequences.
Similarly, not all probability assignments are equally useful and it is plausible
that what makes some assignments better than others is that they represent
or reflect some objective feature of the world. One might even say that what
makes them better is that they provide a better guide to the “truth”. It is
the conviction that posterior probabilities are somehow objectively better than
prior probabilities that provides the justification for going through the troubles
of gathering information and using it to update our beliefs.

We shall find that while the subjective element in probabilities can never be
completely eliminated, the rules for processing information, that is, the rules
for updating probabilities, are themselves quite objective. This means that
the new information can be objectively processed and incorporated into our
posterior probabilities. Thus, it is quite possible to continuously suppress the
subjective elements while enhancing the objective elements as we process more
and more information.

Thus, probabilities can be characterized by both subjective and objective
elements and, ultimately, it is their objectivity that makes probabilities use-
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ful. There is much to be gained by rejecting the sharp subjective/objective
dichotomy and replacing it with a continuous spectrum of intermediate possi-
bilities.!

1.2 Designing a framework for inductive infer-
ence

A common hope in both science and philosophy has been to find a secure foun-
dation for knowledge on which to build science, mathematics, and philosophy.
So far the search has not been successful and everything indicates that such in-
dubitable foundation is nowhere to be found. Accordingly, we adopt a pragmatic
attitude: there are ideas about which we can have greater or lesser confidence,
and from these we can infer the plausibility of others; but there is nothing about
which we can have full certainty and complete knowledge.

Inductive inference in its Bayesian/entropic form is a framework designed
for the purpose of coping with the world in a rational way in situations where
the information available is incomplete. The framework must solve two related
problems. First, it must allow for convenient representations of states of partial
knowledge — this is handled through the introduction of probabilities. Second,
it must allow us to update from one state of knowledge to another when new
information becomes available — this is handled through the introduction of
relative entropy as the tool for updating. The theory of probability cannot be
separate from a theory for updating probabilities.

The framework for inference will be constructed by a process of eliminative
induction. The objective is to design the appropriate tools, which in our case,
means designing the theory of probability and entropy. The different ways in
which probabilities and entropies are defined and handled will lead to different
inference schemes and one can imagine a vast variety of possibilities. To select
one we must first have a clear idea of the function that those tools are supposed
to perform, that is, we must specify design criteria or design specifications that
the desired inference framework must obey. Finally, in the eliminative part of
the process one proceeds to systematically rule out all those inference schemes
that fail to comply with the design criteria — that is, that fail to perform as
desired.

There is no implication that an inference framework designed in this way is
in any way “true”, or that it succeeds because it achieves some special intimate
agreement with reality. Instead, the claim is pragmatic: the method succeeds to
the extent that the inference framework works as designed and its performance
will be deemed satisfactory as long as it leads to scientific models that are
empirically adequate. Whatever design criteria are chosen, they are meant to
be only provisional — just like everything else in science, there is no reason to
consider them immune from further change and improvement.

I This position bears a resemblance to the rejection of the fact/value dichotomy advocated
in [Putnam 1991, 2003].
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The pros and cons of eliminative induction have been the subject of con-
siderable philosophical research (e.g. [Earman 1992; Hawthorne 1993; Godfrey-
Smith 2003]). On the negative side, eliminative induction, like any other form
of induction, is not guaranteed to work. On the positive side, eliminative in-
duction adds an interesting twist to Popper’s scientific methodology. According
to Popper scientific theories can never be proved right, they can only be proved
false; a theory is corroborated only to the extent that all attempts at falsifying
it have failed. Eliminative induction is fully compatible with Popper’s notions
but the point of view is just the opposite. Instead of focusing on failure to
falsify one focuses on success: it is the successful falsification of all rival theories
that corroborates the surviving one. The advantage is that one acquires a more
explicit understanding of why competing theories are eliminated.

In chapter 2 we address the problem of the design and construction of prob-
ability theory as a tool for inference. In other words, we show that degrees of
rational belief, those measures of plausibility that we require to do inference,
should be manipulated and calculated according to the ordinary rules of the
calculus of probabilities.

The problem of designing a theory for updating probabilities is addressed
mostly in chapter 6 and then completed in chapter 8. We discuss the central
question “What is information?” and show that there is a unique method to
update from an old set of beliefs codified in a prior probability distribution into
a new set of beliefs described by a new, posterior distribution when the informa-
tion available is in the form of a constraint on the family of acceptable posteriors.
In this approach the tool for inference is entropy. A central achievement is the
complete unification of Bayesian and entropic methods.

1.3 Entropic Physics

Once the framework of entropic inference has been constructed we deploy it to
clarify the conceptual foundations of physics.

Prior to the work of Jaynes it was suspected that there was a connection
between thermodynamics and information theory. But the connection took the
form of an analogy between the two fields: Shannon’s information theory was
designed to be useful in engineering? while thermodynamics was meant to be
“true” by virtue of reflecting “laws of nature”. The gap was enormous; to this
day many still think that the analogy is purely accidental. With the work of
Jaynes, however, it became clear that the connection is not an accident: the cru-
cial link is that both situations involve reasoning with incomplete information.
This development was significant for many subjects — engineering, statistics,
computation — but for physics the impact of such a change in perspective is
absolutely enormous: thermodynamics and statistical mechanics provided the
first example of a fundamental theory that, instead of being a direct image of
nature, should be interpreted as a scheme for inference about nature. Beyond

2Even as late as 1961 Shannon expressed doubts that information theory would ever find
application in fields other than communication theory. [Tribus 1978]
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the impact on statistical mechanics itself, the obvious question is: Are there
other examples? The answer is yes.

Our goal in chapter 5 is to provide an explicit discussion of statistical me-
chanics as an example of entropic inference; the chapter is devoted to discussing
and clarifying the foundations of thermodynamics and statistical mechanics.
The development is carried largely within the context of Jaynes’ MaxEnt for-
malism and we show how several central topics such as the equal probability
postulate, the second law of thermodynamics, irreversibility, reproducibility,
and the Gibbs paradox can be considerably clarified when viewed from the in-
formation/inference perspective.

In chapters 9 and 10 we explore new territory. These chapters are devoted
to deriving quantum theory as an example of entropic inference. The challenge
is that the theory involves dynamics and time in a fundamental way. It is
significant that the full framework of entropic inference derived in chapters 6 an
8 is needed here — the old entropic methods developed by Shannon and Jaynes
are no longer sufficient.

The payoff is considerable. A vast fraction of the quantum formalism is
derived and the entropic approach offers new insights into many topics that
are central to quantum theory: the interpretation of the wave function, the
wave-particle duality, the quantum measurement problem, the introduction and
interpretation of observables other than position, including momentum, the cor-
responding uncertainty relations, and most important, it leads to a theory of
entropic time. The overall conclusion is that the laws of quantum mechanics are
not laws of nature; they are rules for processing information about nature.



Chapter 2

Probability

Our goal is to establish the theory of probability as the general theory for
reasoning on the basis of incomplete information. This requires us to tackle
two different problems. The first problem is to figure out how to achieve a
quantitative description of a state of partial knowledge. Once this is settled we
address the second problem of how to update from one state of knowledge to
another when new information becomes available.

Throughout we will assume that the subject matter — the set of propositions
the truth of which we want to assess — has been clearly specified. This question
of what it is that we are actually talking about is much less trivial than it might
appear at first sight.! Nevertheless, it will not be discussed further.

The first problem, that of describing or characterizing a state of partial
knowledge, requires that we quantify the degree to which we believe each propo-
sition in the set is true. The most basic feature of these beliefs is that they form
an interconnected web that must be internally consistent. The idea is that in
general the strengths of one’s beliefs in some propositions are constrained by
one’s beliefs in other propositions; beliefs are not independent of each other. For
example, the belief in the truth of a certain statement a is strongly constrained
by the belief in the truth of its negation, not-a: the more I believe in one, the
less I believe in the other.

The second problem, that of updating from one consistent web of beliefs
to another when new information becomes available, will be addressed for the
special case that the information is in the form of data. The basic updating
strategy reflects the conviction that what we learned in the past is valuable,
that the web of beliefs should only be revised to the extent required by the data.
We will see that this principle of minimal updating leads to the uniquely natural
rule that is widely known as Bayes’ rule. (More general kinds of information
can also be processed using the minimal updating principle but they require a
more sophisticated tool, namely, relative entropy. This topic will be extensively

LConsider the example of quantum mechanics: Are we talking about particles, or about
experimental setups, or both? Are we talking about position variables, or about momenta, or
both? Or neither? Is it the position of the particles or the position of the detectors?
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explored later.) As an illustration of the enormous power of Bayes’ rule we will
briefly explore its application to data analysis.

2.1 The design of probability theory

Science requires a framework for inference on the basis of incomplete informa-
tion. We will show that the quantitative measures of plausibility or degrees of
belief that are the tools for reasoning should be manipulated and calculated
using the ordinary rules of the calculus of probabilities — and therefore proba-
bilities can be interpreted as degrees of belief.

The procedure we follow differs in one remarkable way from the traditional
way of setting up physical theories. Normally one starts with the mathematical
formalism, and then one proceeds to try to figure out what the formalism might
possibly mean; one tries to append an interpretation to it. This is a very difficult
problem; historically it has affected not only statistical physics — what is the
meaning of probabilities and of entropy — but also quantum theory — what is
the meaning of wave functions and amplitudes. Here we proceed in the opposite
order, we first decide what we are talking about, degrees of belief or degrees of
plausibility (we use the two expressions interchangeably) and then we design
rules to manipulate them; we design the formalism, we construct it to suit
our purposes. The advantage of this approach is that the issue of meaning, of
interpretation, is settled from the start.

2.1.1 Rational beliefs?

Before we proceed further it may be important to emphasize that the degrees
of belief discussed here are those held by an idealized rational agent that would
not be subject to the practical limitations under which we humans operate.
Different individuals may hold different beliefs and it is certainly important to
figure out what those beliefs might be — perhaps by observing their gambling
behavior — but this is not our present concern. Our objective is neither to assess
nor to describe the subjective beliefs of any particular individual. Instead we
deal with the altogether different but very common problem that arises when
we are confused and we want some guidance about what we are supposed to
believe. Our concern here is not so much with beliefs as they actually are, but
rather, with beliefs as they ought to be — at least as they ought to be to deserve
to be called rational. We are concerned with the ideal standard of rationality
that we humans ought to attain at least when discussing scientific matters.

The concept of rationality is notoriously difficult to pin down. One thing we
can say is that rational beliefs are constrained beliefs. The essence of rationality
lies precisely in the existence of some constraints — not everything goes. We
need to identify some normative criteria of rationality and the difficulty is to
find criteria that are sufficiently general to include all instances of rationally
justified belief. Here is our first criterion of rationality:
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The inference framework must be based on assumptions that have wide
appeal and universal applicability.

Whatever guidelines we pick they must be of general applicability — otherwise
they fail when most needed, namely, when not much is known about a problem.
Different rational agents can reason about different topics, or about the same
subject but on the basis of different information, and therefore they could hold
different beliefs, but they must agree to follow the same rules. What we seek
here are not the specific rules of inference that will apply to this or that specific
instance; what we seek is to identify some few features that all instances of
rational inference might have in common.
The second criterion is that

The inference framework must not be self-refuting.

It may not be easy to identify criteria of rationality that are sufficiently general
and precise. Perhaps we can settle for the more manageable goal of avoiding
irrationality in those glaring cases where it is easily recognizable. And this is
the approach we take: rather than providing a precise criterion of rationality
to be carefully followed, we design a framework with the more modest goal
of avoiding some forms of irrationality that are perhaps sufficiently obvious to
command general agreement. The basic desire is that the web of rational beliefs
must avoid inconsistencies. If a quantity can be inferred in two different ways
the two ways must agree. As we shall see this requirement turns out to be
extremely restrictive.
Finally,

The inference framework must be useful in practice — it must allow quan-
titative analysis.

Otherwise, why bother?

Whatever specific design criteria are chosen, one thing must be clear: they
are justified on purely pragmatic grounds and therefore they are meant to be
only provisional. Rationality itself is not immune to change and improvement.
Given some criteria of rationality we proceed to construct models of the world,
or better, models that will help us deal with the world — predict, control, and
explain the facts. The process of improving these models — better models are
those that lead to more accurate predictions, more accurate control, and more
lucid and encompassing explanations of more facts, not just the old facts but
also of new and hopefully even unexpected facts — may eventually suggest
improvements to the rationality criteria themselves. Better rationality leads
to better models which leads to better rationality and so on. The method of
science is not independent from the contents of science.

2.1.2 Quantifying rational belief

In order to be useful we require an inference framework that allows quantitative
reasoning. The first obvious question concerns the type of quantity that will
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represent the intensity of beliefs. Discrete categorical variables are not adequate
for a theory of general applicability; we need a much more refined scheme.

Do we believe proposition a more or less than proposition b? Are we even
justified in comparing propositions a and 6?7 The problem with propositions
is not that they cannot be compared but rather that the comparison can be
carried out in too many different ways. We can classify propositions according
to the degree we believe they are true, their plausibility; or according to the
degree that we desire them to be true, their utility; or according to the degree
that they happen to bear on a particular issue at hand, their relevance. We
can even compare propositions with respect to the minimal number of bits that
are required to state them, their description length. The detailed nature of
our relations to propositions is too complex to be captured by a single real
number. What we claim is that a single real number is sufficient to measure
one specific feature, the sheer intensity of rational belief. This should not be
too controversial because it amounts to a tautology: an “intensity” is precisely
the type of quantity that admits no more qualifications than that of being more
intense or less intense; it is captured by a single real number.

However, some preconception about our subject is unavoidable; we need
some rough notion that a belief is not the same thing as a desire. But how
can we know that we have captured pure belief and not belief contaminated
with some hidden desire or something else? Strictly we can’t. We hope that
our mathematical description captures a sufficiently purified notion of rational
belief, and we can claim success only to the extent that the formalism proves to
be useful.

The inference framework will capture two intuitions about rational beliefs.
First, we take it to be a defining feature of the intensity of rational beliefs that
if @ is more believable than b, and b more than ¢, then a is more believable than
c. Such transitive rankings can be implemented using real numbers we are again
led to claim that

Degrees of rational belief (or, as we shall later call them, probabilities)
are represented by real numbers.

Before we proceed further we need to establish some notation. The following
choice is standard.

Notation

For every proposition a there exists its negation not-a, which will be denoted a.
If a is true, then a is false and vice versa.

Given any two propositions a and b the conjunction “a AND b” is denoted
ab or a A'b. The conjunction is true if and only if both a and b are true.

Given @ and b the disjunction “a OR b” is denoted by a V b or (less often)
by a 4+ b. The disjunction is true when either a or b or both are true; it is false
when both a and b are false.

Typically we want to quantify the degree of belief in a V b and in ab in the
context of some background information expressed in terms of some proposition
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¢ in the same universe of discourse as a and b. Such propositions we will write
as a V b|c and abc.

The real number that represents the degree of belief in alb will initially
be denoted [a|b] and eventually in its more standard form p(a|b) and all its
variations.

Degrees of rational belief will range from the extreme of total certainty,
[ala] = vr, to total disbelief, [a|a] = vp. The transitivity of the ranking scheme
implies that there is a single value vp and a single vr.

The representation of OR and AND

The inference framework is designed to include a second intuition concerning
rational beliefs:

In order to be rational our beliefs in aVb and ab must be somehow related
to our separate beliefs in a and b.

Since the goal is to design a quantitative theory, we require that these relations
be represented by some functions F' and G,

[a Vv ble] = F([alc], [b]c], [albe], [blac]) (2.1)

and
[ablc] = G([alc], [blc], [albc], [blac]) . (2.2)

Note the qualitative nature of this assumption: what is being asserted is the
existence of some unspecified functions F' and G and not their specific functional
forms. The same F' and G are meant to apply to all propositions; what is being
designed is a single inductive scheme of universal applicability. Note further
that the arguments of F' and G include all four possible degrees of belief in a
and b in the context of ¢ and not any potentially questionable subset.

The functions F' and G provide a representation of the Boolean operations
AND and OR. The requirement that F' and G reflect the appropriate associative
and distributive properties of the Boolean AND and OR turns out to be extremely
constraining. Indeed, we will show that there is essentially a single representa-
tion that is equivalent to probability theory. (All allowed representations are
equivalent to each other.)

In section 3 the associativity of OR is shown to lead to a constraint that
requires the function F' to be equivalent to the sum rule for probabilities. In
section 4 we focus on the distributive property of AND over OR and the corre-
sponding constraint leads to the product rule for probabilities.?

20ur subject is degrees of rational belief but the algebraic approach followed here [Caticha
2009] can be pursued in its own right irrespective of any interpretation. It was used in
[Caticha 1998] to derive the manipulation rules for complex numbers interpreted as quantum
mechanical amplitudes; in [Knuth 2003] in the mathematical problem of assigning real numbers
(valuations) on general distributive lattices; and in [Goyal et al 2010] to justify the use of
complex numbers for quantum amplitudes.
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Our method will be design by eliminative induction: now that we have iden-
tified a sufficiently broad class of theories — quantitative theories of universal
applicability, with degrees of belief represented by real numbers and the oper-
ations of conjunction and disjunction represented by functions — we can start
weeding the unacceptable ones out.

An aside on the Cox axioms

The development of probability theory in the following sections follows a path
clearly inspired by [Cox 1946]. A brief comment may be appropriate.

Cox derived the sum and product rules by focusing on the properties of
conjunction and negation. He assumed as one of his axioms that the degree of
belief in a proposition a conditioned on b being true, which we write as [a|b], is
related to the degree of belief corresponding to its negation, [a|b], through some
definite but initially unspecified function f,

[alb] = f ([a]t]) - (2.3)

This statement expresses the intuition that the more one believes in alb, the less
one believes in alb.

A second Cox axiom is that the degree of belief of “a AND b given ¢,” written
as [ablc], must depend on [a|c] and [b|ac],

[ablc] = g ([alc], [blac]) . (2.4)

This is also very reasonable. When asked to check whether “a AND 0”7 is true,
we first look at a; if a turns out to be false the conjunction is false and we need
not bother with b; therefore [ab|c] must depend on [a|c]. If a turns out to be
true we need to take a further look at b; therefore [ab|c] must also depend on
[blac]. Strictly [ab|c] could in principle depend on all four quantities [alc], [blc],
[a|bc] and [blac], an objection that has a long history. It was partially addressed
in [Tribus 1969; Smith Erickson 1990; Garrett 1996].

Cox’s important contribution was to realize that consistency constraints de-
rived from the associativity property of AND and from the compatibility of AND
with negation were sufficient to demonstrate that degrees of belief should be
manipulated according to the laws of probability theory. We shall not pursue
this line of development here. See [Cox 1946; Jaynes 1957a, 2003].

2.2 The sum rule

Our first goal is to determine the function F' that represents OR. The space of
functions of four arguments is very large. To narrow down the field we initially
restrict ourselves to propositions a¢ and b that are mutually exclusive in the
context of d. Thus,

[a v bld] = F([a|d], [bld], vr, vF) , (2.5)
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which effectively restricts F' to a function of only two arguments,

[a v bld] = F([ald], [bld]) . (2.6)

2.2.1 The associativity constraint

As a minimum requirement of rationality we demand that the assignment of
degrees of belief be consistent: if a degree of belief can be computed in two
different ways the two ways must agree. How else could we claim to be rational?
All functions F' that fail to satisfy this constraint must be discarded.

Consider any three mutually exclusive statements a, b, and ¢ in the context
of a fourth d. The consistency constraint that follows from the associativity of
the Boolean OR,

(avb)Ve=aV (bVe), (2.7)

is remarkably constraining. It essentially determines the function F. Start from
[aVvbVec|ld = F ([aVbld],cld]) = F ([ald], [bV c|d]) . (2.8)
Use F again for [a V b|d] and also for [bV c|d], we get
F{F ([ald], [bld]) , [cld]} = F{[ald], F" ([bld], [c|d])} - (2.9)
If we call [a|d] = z, [b|d] =y, and [c|d] = z, then

F{F(z,y),2} = F{z,F(y,2)} . (2.10)

Since this must hold for arbitrary choices of the propositions a, b, ¢, and d,
we conclude that in order to be of universal applicability the function F must
satisfy (2.10) for arbitrary values of the real numbers (z,y,z). Therefore the
function F' must be associative.

Remark: The requirement of universality is crucial. Indeed, in a universe of
discourse with a discrete and finite set of propositions it is conceivable that
the triples (z,y, z) in (2.10) do not form a dense set and therefore one cannot
conclude that the function F' must be associative for arbitrary values of x, y,
and z. For each specific finite universe of discourse one could design a tailor-
made, single-purpose model of inference that could be consistent, i.e. it would
satisfy (2.10), without being equivalent to probability theory. However, we are
concerned with designing a theory of inference of universal applicability, a single
scheme applicable to all universes of discourse whether discrete and finite or
otherwise. And the scheme is meant to be used by all rational agents irrespective
of their state of belief — which need not be discrete. Thus, a framework designed
for broad applicability requires that the values of = form a dense set.?

3The possibility of alternative probability models was raised in [Halpern 1999]. That these
models are ruled out by universality was argued in [Van Horn 2003] and [Caticha 2009].
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2.2.2 The general solution and its regraduation

Equation (2.10) is a functional equation for F. It is easy to see that there exist
an infinite number of solutions. Indeed, by direct substitution one can check
that eq.(2.10) is satisfied by any function of the form

F(z,y)=¢"" (¢(x) + (1) (2.11)

where ¢ is an arbitrary invertible function. What is not so easy to to show is this
is also the general solution, that is, given ¢ one can calculate F' and, conversely,
given any associative F' one can calculate the corresponding ¢. Cox’s proof of
this result is given in section 2.2.4 [Cox 1946; Jaynes 1957a; Aczel 1966].

The significance of eq.(2.11) becomes apparent once it is rewritten as

¢ (F(z,y) =¢(@)+¢(y) or é(aVvold)=e([ald])+¢(bld]) . (2.12)

This last form is central to Cox’s approach to probability theory. Note that there
was nothing particularly special about the original representation of degrees of
plausibility by the real numbers [a|d], [b|d], ... Their only purpose was to provide
us with a ranking, an ordering of propositions according to how plausible they
are. Since the function ¢(z) is monotonic, the same ordering can be achieved
using a new set of positive numbers,

def def

§(ald) = ¢([ald]), £(bld) = o([b]d]), ... (2.13)

instead of the old. The original and the regraduated scales are equivalent be-
cause by virtue of being invertible the function ¢ is monotonic and therefore
preserves the ranking of propositions. However, the regraduated scale is much
more convenient because, instead of the complicated rule (2.11), the OR opera-
tion is now represented by a much simpler rule,

¢ (aVvbld) =& (ald) + £ (b]d) (2.14)

just a sum rule. Thus, the new numbers are neither more nor less correct than
the old, they are just considerably more convenient.

Perhaps one can make the logic of regraduation a little bit clearer by consid-
ering the somewhat analogous situation of introducing the quantity temperature
as a measure of degree of “hotness”. Clearly any acceptable measure of “hot-
ness” must reflect its transitivity — if @ is hotter than b and b is hotter than
¢ then a is hotter than ¢ — which explains why temperatures are represented
by real numbers. But the temperature scales can be quite arbitrary. While
many temperature scales may serve equally well the purpose of ordering sys-
tems according to their hotness, there is one choice — the absolute or Kelvin
scale — that turns out to be considerably more convenient because it simplifies
the mathematical formalism. Switching from an arbitrary temperature scale to
the Kelvin scale is one instance of a convenient regraduation. (The details of
temperature regraduation are given in chapter 3.)
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In the old scale, before regraduation, we had set the range of degrees of belief
from one extreme of total disbelief, [ala] = vp, to the other extreme of total
certainty, [a|a] = vy. At this point there is not much that we can say about the
regraduated &r = ¢(vr) but £g = ¢(vr) is easy to evaluate. Setting d = a in
eq.(2.14) gives

€ (a v bla) = £ (al@) + € (bja) - (2.15)

Since a V b|a is true if and only if b|a is true, the corresponding degrees of belief

must coincide,
¢ (Vv bla) = € (bla) (2.16)

and therefore
E(ala) =&r=0. (2.17)

2.2.3 The general sum rule

The restriction to mutually exclusive propositions in the sum rule eq.(2.14) can
be easily lifted. Any proposition a can be written as the disjunction of two
mutually exclusive ones, a = (ab) V (ab) and similarly b = (ab) V (ab). Therefore
for any two arbitrary propositions a and b we have

a Vb= (ab)V (ab) Vv (ab) (2.18)

Since each of the terms on the right are mutually exclusive the sum rule (2.14)
applies,

E(a v bld) = &(abld) + E(abld) + E(abld) + [¢(abld) — &(abld)]
= ¢(abV abld) + £(ab V abld) — &(abld) , (2.19)

which leads to the general sum rule,

§(a v bld) = &(ald) + £(bld) — £(adld) - (2.20)

2.2.4 Cox’s proof

Understanding the proof that eq.(2.11) is the general solution of the associativity
constraint, eq.(2.10), is not necessary for understanding other topics in this
book. This section may be skipped on a first reading. The proof given below,
due to Cox, [Cox 1946] takes advantage of the fact that our interest is not just to
find the most general mathematical solution but rather that we want the most
general solution where the function F' is to be used for the purpose of inference.
This allows us to impose additional constraints on F.

The general strategy in solving equations such as (2.10) is to take partial
derivatives to transform the functional equation into a differential equation and
then to proceed to solve the latter. Fortunately we can assume that the allowed
functions F are continuous and twice differentiable. Indeed, since inference
is just quantified common sense, had the function F' turned out to be non-
differentiable serious doubt would be cast on the legitimacy of the whole scheme.
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Furthermore, common sense also requires that F'(z,y) be monotonic increasing
in both its arguments. Consider a change in the first argument x = [a|d] while
holding the second y = [b|d] fixed. A strengthening of one’s belief in a|d must be
reflected in a corresponding strengthening in ones’s belief in a V b|d. Therefore
F(x,y) must be monotonic increasing in its first argument. An analogous line
of reasoning shows that F'(z.y) must be monotonic increasing in the second
argument as well. Therefore,

OF (z,y) OF (z,y)
_— > —F——=>0. .
o >0 and oy >0 (2.21)
Let
r F(z,y) and s Ly (y,2) , (2.22)

and let partial derivatives be denoted by subscripts,

det OF (z,y)
N ox

aet OF (2,y)

Fl(xay) ZO and FQ(x7y) ay =

0. (2.23)

Then eq.(2.10) and its derivatives with respect to « and y are

F(r,z)=F (z,s) , (2.24)
Fi(r,z)Fi(z,y) = Fi(z,s) , (2.25)

and
Fi(r, z)Fa(z,y) = Fa(z,s)Fi(y, 2) - (2.26)

Eliminating Fj(r, z) from these last two equations we get

K(z,y) = K(z,s)Fi(y, 2) - (2.27)
where
o FQ(x’y)
K(z,y) = File.y) | (2.28)

Multiplying eq.(2.27) by K (y, z) and using (2.28) we get
K(z,y)K(y,2) = K(z,5)F2(y, 2) - (2.29)

Differentiating the right hand side of eq.(2.29) with respect to y and comparing
with the derivative of eq.(2.27) with respect to z, we have

a% (K (5) Fy (0,2)) = o (K (2,8) Fy (9,2)) = o (K (2,9)) = 0. (230
Therefore,

a% (K (2,9) K (5,2) = 0, (2.31)
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or,
1 0K (z,y) 1 0K (y,2)
- — 2.32
K(z,y) 0Oy K(y,z) Oy (2:32)

since the left hand side is independent of z while the right hand side is indepen-
dent of of x it must be that they depend only on v,

1 0K (z,y) def

K(x,y) 0Oy ) (2.33)
Integrate using the fact that K > 0 because both F; and F; are positive, to get
Yy
K(z,y) = K(x,0) eXp/ h(y")dy'. (2.34)
0
Similarly,
Yy
K (5.2) = K (0.2) exsp— [ b))y’ (2:35)
0
so that H ()
x
K(z,y) =a—=, 2.36
@9 =03y (2:36)

where o = K(0,0) is a constant and H(x) is the positive function

H(z) % exp [_ /O mh(x’)dx’] >0. (2.37)

On substituting back into egs.(2.27) and (2.29) we get
H{(s)

Fi(y,2) = d  F(y,z) = . 2.38
1(y Z) H(y) an 2(y Z) « H(Z) ( )
Next, use s = F(y, z), so that
ds = Fi(y, z)dy + F»(y, 2)dz . (2.39)
Substituting (2.38) we get
d d d
I BN (2.40)

This is easily integrated. Let

T d /!
s =00 e ([ i) (2.4)
be the integrating factor, so that dz/H (z) = dé(z)/¢(x). Then
9% (2

¢ (F(y,2) = ¢(y)

), (2.42)
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where a multiplicative constant of integration has been absorbed into the con-
stant ¢ (0). Applying this function ¢ twice in eq.(2.10) we obtain

3(2)9% ()6 (2) = D)0 (y)6™" (2) , (2.43)

so that a =1,
¢(F(y,2) =0 o(2) , (2.44)

(The second possibility o = 0 is discarded because it leads to F'(x,y) = z which
is not useful for inference.)

This completes the proof that eq.(2.11) is the general solution of eq.(2.10):
Given any F'(z,y) that satisfies eq.(2.10) one can construct the corresponding
¢(x) using eqs.(2.28), (2.32), (2.37), and (2.41). Furthermore, since ¢(z) is an
exponential its sign is dictated by the constant ¢ (0) which is positive because
the right hand side of eq.(2.44) is positive. Finally, since H(x) > 0, eq. (2.37),
the regraduating function ¢(z) is a monotonic function of its variable x.

2.3 The product rule

Next we consider the function G in eq.(2.2) that represents AND. Once the orig-
inal plausibilities are regraduated by ¢ according to eq.(2.13), the new function
G for the plausibility of a conjunction reads

§(ablc) = G[¢(ale), §(blc), &(albe), E(blac)] - (2.45)

The space of functions of four arguments is very large so we first narrow it down
to just two. Then, we require that the representation of AND be compatible with
the representation of OR that we have just obtained. This amounts to imposing
a consistency constraint that follows from the distributive properties of the
Boolean AND and OR. A final trivial regraduat