
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

RHEOLOGY – Vol. II - Non-Newtonian Fluid Mechanics - Kenneth Walters 

©Encyclopedia of Life Support Systems (EOLSS) 

NON-NEWTONIAN FLUID MECHANICS 
 
Kenneth Walters 
Institute of Mathematical and Physical Sciences, Aberystwyth University, Aberystwyth, 
UK. 
 
Keywords:  Rheometry, computational rheology, complex flows, Boger fluids, shear-
thinning fluids, constitutive equations.  
 
Contents 
 
1.  Introduction 
2.  The various strands of research activity in non-Newtonian fluid mechanics. 
3.  Rheometry. 
4.  Constitutive modeling. 
5.  Solution of rheological flow problems. 
6.  The flow of elastic fluids in complex geometries – experimental. 
7.  Comparison of theory and experiment in non-Newtonian fluid mechanics. 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary  
 
Non-Newtonian Fluid Mechanics is a field of study which is growing in prominence 
and importance as the years progress, not least because many of the fluids one 
encounters in everyday life are non-Newtonian in their behavior. 
 
To discuss the various aspects of research in the non-Newtonian fluid mechanics field, 
we shall divide the text into five basic sections: 
 
(i) A study of the fluids in simple flow situations, such as those found in Rheometry. 
(ii) The construction of suitable constitutive equations for the non-Newtonian fluids 

under test. 
(iii) The use of these constitutive equations in the prediction of behavior in complex 

flows of practical importance. 
(iv) An experimental study of the behavior of non-Newtonian fluids in the complex-

flow situations discussed in (iii). 
(v) A comparison of the theoretical predictions of (iii) with the experimental results 

of (iv). 
 
1.  Introduction 
 
It is self evident that non-Newtonian Fluid Mechanics must be closely related to the 
well known field of Newtonian Fluid Mechanics, and we must therefore begin the 
present chapter with a brief consideration of this classical field. 
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As the name suggests, it originates from the research of the famous British scientist, Sir 
Isaac Newton, published in 1687.  Considering what we would now identify as steady 
simple shear flow (see Figure 1), Newton essentially proposed the following equation: 
 

,d
dt
γσ η=  (1) 

 
where σ is the shear stress, /d dtγ the rate of strain, and η is the (constant) coefficient 
of viscosity.  It is well known that air and water are two very common fluids that obey 
Newton’s postulate. 
 

 
 

Figure 1.  Steady simple shear flow. Two parallel planes are located at 0y =  and 
,y d= the intervening space being filled with sheared liquid.  The upper plate moves 

with a relative velocity U and the lengths of the arrows between the plates are 
proportional to the local velocity in the liquid. 

 
It wasn’t until over a century later that Navier and Stokes independently developed a 
consistent three-dimensional theory for a “Newtonian” viscous fluid and the so-called 
Navier-Stokes equations form the basis for what is now universally known as 
Newtonian Fluid Mechanics (see, for example Tanner and Walters 1998). 
 
However, from the 19th century onwards, it became abundantly clear that many fluid-
like materials could not be described as “Newtonian” and this clearly provided the 
motivation for the upsurge of interest in the field known as non-Newtonian Fluid 
Mechanics.  This is now seen as an important scientific discipline in its own right, with 
its own ethos and dedicated research journal. (The “Journal of non-Newtonian Fluid 
Mechanics”, published by Elsevier).   
 
Before we leave generalities, it is important to point out that although (most) non-
Newtonian fluids possess a viscosity which varies with shear rate and therefore violates 
Eq. (1), it is not appropriate to define a non-Newtonian fluid simply as one that does not 
obey Newton’s postulate – for the simple reason that some elastic fluids (like the so-
called Boger fluids (Boger 1977/78)) do in fact possess a constant viscosity and would 
therefore satisfy Eq. (1) in a steady simple shear flow.  So, a non-Newtonian fluid is 
accordingly defined as one whose behavior cannot be described by the Navier-Stokes 
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equations. 
 
As we shall see, there are esoteric reasons for a study of non-Newtonian fluid 
mechanics, but there are also more practical reasons, driven by the fact that many of the 
fluid-like materials one meets in everyday life are non-Newtonian in their behavior.  
One could cite many such examples, ranging from liquid detergents, multigrade oils, 
paints and printing inks to more viscous materials like bitumen and molten plastics, but 
this list is by no means complete.  For this reason, if for no other, non-Newtonian fluid 
mechanics must be viewed as a very important scientific discipline. 
 
2. The Various Strands of Research Activity in Non-Newtonian Fluid Mechanics 
 
Any systematic study of non-Newtonian fluid mechanics must involve the following 
components: 
 
 (i) A systematic study of the behavior of the non-Newtonian fluids of interest in 

simple flow situations, such as those found in conventional rheometers.   
  So “Rheometry” must play an important role and the flows of interest 

necessarily include steady simple shear flow, small-amplitude oscillatory shear 
flow and extensional flow.  In the former, the normal stress differences as well 
as the shear stress are of interest. 

 (ii) The construction of suitable constitutive Eqs. (rheological equations of state) for 
the non-Newtonian fluids under test. Such equations must necessarily satisfy the 
well known mathematical constraints arising from a consistent application of the 
Principles of Continuum Mechanics.  Further, their general form can often be 
deduced from a consideration of the fluid’s microstructure.  It goes without 
saying that any proposed equations must be able to simulate, in simple flows, the 
rheometrical data provided in (i). 

  We shall see that there is no difficulty in satisfying these conditions in principle, 
but some pragmatism is usually required to meet the dual constraints of 
tractability and predictive capability. 

 (iii) The prediction of the behavior of non-Newtonian fluids (particularly highly-
elastic non-Newtonian fluids) in complex flows of practical importance.  To all 
intents and purposes, this now involves Computational Fluid Dynamics (CFD) 
applied within a non-Newtonian framework.  Here, the constitutive Eqs. (arising 
from (ii)) have to be solved in conjunction with the familiar equations of motion 
and continuity, subject to appropriate boundary conditions, which can sometimes 
be more taxing than those arising in Newtonian fluid mechanics. 

 (iv) Quite naturally, the fourth component in the research program has to involve an 
experimental study of the behavior of the non-Newtonian elastic fluids in the 
complex flows already studied theoretically in (iii).  Clearly, the experimental 
program can be driven by any provocative conclusions arising from the 
theoretical predictions, but, more often, the experimental work in (iv) provides 
the motivation for the theoretical work, rather than vice versa. 

 (v) The final component of the research program necessarily involves a realistic 
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comparison of the predictions from (iii) with the experimental data of (iv).  This 
can be seen as an essential part of the Scientific Method. 

 
If the experimental data are reliable and there is a lack of agreement between (iii) and 
(iv), two courses of action are usually considered.  In the first place, the reliability of the 
theoretical results has to be addressed. In these days when CFD is a dominant influence, 
there are important numerical complications that are not present in the solution of the 
Navier-Stokes equations for Newtonian fluids; there is sufficient evidence in the recent 
computation rheology literature to make this abundantly clear (see, for example, Owens 
and Phillips 2002, Walters and Webster 2003).  
 
If and when the theoretical (especially numerical) techniques are shown to be reliable 
and there is still disagreement between theory and experiment, the rheologist then has to 
look into the choice of constitutive model from area (ii).  Of course, this is not a 
“luxury” which is possible in classical fluid dynamics, where the Navier-Stokes 
equations are taken as sacrosanct. 
 
For the rheologist, there are many cases where there is encouraging agreement between 
computation and experiment in complex flows.  However, there are also famous cases 
where this agreement is very, very, elusive (see, for example, Walters 2006). 
 
In setting out the above program of research, we are not suggesting that it is unique or 
flawless and we would have sympathy, for example, with an argument in favor of a 
major input from micro rheological considerations.  However, the research program we 
have outlined can be defended as at least providing one possible coherent attempt to 
predict and understand the unusual and often bizarre behavior of elastic non-Newtonian 
fluids as these are made to flow in complex geometries. 
 
Before concluding this section, we need to mention that in non-Newtonian fluid 
mechanics, it is convenient to define (at least) two non-dimensional numbers, R and 
W to characterize the flows.  The usual Reynolds number R  is given by 
 

,ULR ρ
η

=  (2) 

 
where η  is an appropriately chosen viscosity, ρ is the density, U is a characteristic 
velocity and L is a characteristic length.  The elasticity number W , which is often 
called the Weissenberg number or (sometimes) Deborah number, is given by  
 

,UW
L

λ=  (3) 

 
where λ  is a characteristic relaxation time. 
 
For most non-Newtonian elastic fluids, it is far from a trivial matter to arrive at an 
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appropriate η  and λ .  However, for the important sub class of fluids called Boger 
fluids (Boger 1977/78), which we shall major on for illustration purposes, there is no 
ambiguity in defining ,η since the viscosity of this class of fluids is effectively constant.  
Furthermore, λ  is often defined consistently from the viscometric data of the fluids at 
low shear rates. 
 
3. Rheometry 
 
There are two (not necessarily unrelated) objectives in Rheometry.  The first simply 
involves a straightforward attempt to determine the behavior of non-Newtonian fluids in 
a number of simple (rheometrical) flows, using suitably defined material functions.  The 
simple desire here is to seek a correlation between material properties and molecular 
structure or, alternatively, between material properties and observed behavior in 
practical situations.  In this latter connection, “Quality Control” is often an important 
driving force. 
 
The second objective is concerned indirectly with the prediction of the behavior in non-
simple flows of practical importance from the results of simple rheometrical 
experiments.  As we shall see in section 4, the rheometrical data here are an important 
aid in the construction of constitutive equations for the non-Newtonian fluids, which 
may then in turn be used to predict behavior in more complex practical situations.  The 
more accurate the rheological data the more accurate will be the constitutive model, so 
that a very detailed research program is required to meet this objective. 
 
So, in one sense, the two objectives of Rheometry essentially take us from “Quality 
Control” to “Process Modeling”. 
 
Three basic rheometrical flows need to be considered.  The first and most well known is 
steady simple shear flow, something we have already referred to in connection with 
Newton’s postulate. 
 
At this point, it is important to emphasize that for non-Newtonian fluids an indicial 
notation is essential.  Specifically, we need to introduce the so-called stress tensor 

ik

σ  
(Figure 2). 
 
So, if we concentrate on the top surface of the volume in the figure, there will be a 
stress in the normal direction denoted by 

xx

σ  and shear components in the plane of the 
surface denoted by 

xy

σ  and .
xz

σ   In this notation, the first index is linked to the 
orientation of the material surface and the second to the direction of the stress.  The 
usual sign convention is such that a positive 

xx

σ  is a “tension”. 
 
Let us now consider a steady simple shear flow, in which there is flow only in the x 
direction, depending simply and linearly on the y coordinate.  Here, we have written γ  
for the so-called rate of shear (or shear rate). 
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Figure 2.  Steady simple shear flow for Newtonian and non-Newtonian elastic liquids. 
 

As we have seen, for a Newtonian fluid, the stress distribution simple involves one 
material constant – the coefficient of viscosity.  This can of course depend on the 
pressure and temperature, but it is constant so far as dependence on γ  is concerned. 
 
For a non-Newtonian elastic fluid, the stress distribution is more complex.  The shear 
stress is now a non-linear function of the shear rate and there are two normal stress 
differences, the first and most important being 

1

N .  
2

N is the less important “second 
normal stress difference”. 
 
It is customary to show schematically the various types of behavior so far as the shear 
stress is concerned (now written σ  for convenience), as in Fig. 3. 
 

 
 

Figure 3.  A schematic representation of the various kinds of response in a steady 
simple shear flow. 

 
We see that there can be shear thinning, shear thickening, or even a constant viscosity 
(as in Boger fluids).  Note also the possibility of so-called plastic behavior, where the 
material will not flow until a critical stress, called the yield stress, is exceeded. 
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For the majority of non-Newtonian elastic fluids, shear thinning will be in evidence and 
Fig 4 contains a typical response, where the viscosity falls from a so-called zero shear 
value 

0

η  to a lower “second Newtonian” plateau .η
∞

 The region where the viscosity falls 
is usually quite well described by a power law, i.e. by a straight line on a suitable 
log/log plot.  For some non-Newtonian fluids, the difference between 

0

η  and η
∞

 can be 
very severe.   
 

 
 

Figure 4.  A schematic representation of shear-thinning behavior. 
 

Turning now to the normal stress differences, Figure 5 shows typical data for a 1% 
aqueous solution of polyacrylamide.  Note that σ  and 

1

N  are both well represented by a 
power-law response.  Note also that 

1

N  is about ten times larger than σ .  
 

 
 

Figure 5.  Viscometric date for a 1% aqueous solution of polyacrylamide at 20ºC (cf. 
Barnes et al 1989, Figure 4.2). 
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In many ways, the first normal stress difference 
1

N  can be considered to be a convenient 
measure of the level of “viscoelasticity”.  It is certainly important in flows like mixing 
and extrudate swelling. In contrast, the second normal stress difference 

2

N  is usually 
relatively small.  For many polymeric systems, it is found to be negative and about one 
tenth of 

1

N  in magnitude, (see, for example, the data shown in Figure 6).  However, for 
some polymer melts, 

2

N  has been reported to be sometimes as high as 25% of 
1

N  (cf. 
Tanner and Walters 1998). 
 

 
 

Figure 6.  Viscometric data for a 2% w/v polyisobutylene (oppanol B200) in dekalin at 
25ºC.  (See, for example, Barnes et al 1989, Figure 4.6). 

 
It is possible to point to some isolated circumstances where it is important to take N2 
seriously, e.g. in the case of shear fracture in rotational rheometers and other kinds of 
instabilities, in extrusion swelling, and in pressure-driven flow through pipes of non-
circular cross section. 
 
We now pass on to consider another very popular means of determining information 
about the viscoelastic properties of non-Newtonian fluids, namely that associated with 
small-amplitude oscillatory-shear flow, with the flow in the x direction in Fig 1 now 
involving the time as well as the y coordinate. α is a small amplitude in Eq. (4), small 
enough in fact for non-linear terms to be neglected. 
 

cos , 0,
x y z

v t v vγαω ω= = =  (4) 
 

cos sin .
xy

Gt tσ αω η ω ω
ω
′⎡ ⎤′= +⎢ ⎥⎣ ⎦

 (5) 

 
In this case, the only stress component of relevance is ,

xy

σ  which can be expressed in 
terms of two functions η′  and ,G′  both of which are functions of the imposed 
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frequency ω . η′  is called the dynamic viscosity and G′  the dynamic rigidity. 
 
In the literature, there are alternative but equivalent ways of displaying the data.  For 
example, in place of ,η′  many rheologists choose to use instead the so-called loss 
modulus ,G′′ given by 
 

.G η ω′′ ′=  (6) 
 
Figure 7 contains a schematic representation of one of the various choices.  

 

 
 

Figure 7.  Schematic representation of the dynamic viscosity  η′   and dynamic rigidity 
G′  as functions of the frequency. 

 
When the so-called “dynamic data” are used in the second objective of Rheometry (i.e. 
the construction of constitutive equations for the test fluids), it is very important that the 
frequency range is as broad as possible, since the data have to be inverted to yield the 
so-called relaxation spectrum (or relaxation function) as a function of relaxation time.  
This is now seen as a non-trivial problem for the analyst, not least because the 
procedure is “ill posed” and the reliability of the relaxation spectrum on the time axis 
depends critically (but not simply) on the available range of the experimental dynamic 
data on the frequency axis (see, for example, Davies and Anderssen 1997). 
 
We now need to consider the third basic rheometrical flow, namely “extensional flow”.  
In the late 1960s, there was a dramatic surge of interest in extensional-viscosity 
measurement and there does not seem to be any indication of a fall off of interest in the 
subject – on the contrary! 
 
The relevant deformation is described by: 
 

, , ,
2 2x y z

y zv x v vε εε= = − = −  (7) 
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( )
E

.
xx yy xx zz

σ σ σ σ εη ε− = − =  (8) 
 
In this case, the uniaxial extension is in the x  direction, with contraction in the y  and z  
directions.  Here, the normal stress differences are important and these are expressed in 
terms of a so-called extensional viscosity 

E

,η  which is a function of the extensional 
strain rate ε .  For a Newtonian fluid, it is easy to show that, as defined, 

E

,η  is simply 
three times the shear viscosity, a result first obtained by Trouton in 1906.  So, 
rheologists speak of the Trouton ratio 

R

,T  which is  3 for a Newtonian fluid.  For non-
Newtonian elastic fluids, particularly polymeric systems, 

R

T  can be very high indeed, 
with values in excess of 30, 300 or even 3,000!  For this reason, if for no other, the 
extensional viscosity is an important rheometrical variable and must be taken very 
seriously in both Rheometry objectives. 
 
We conclude this section on Rheometry with a consideration of some of the limiting 
relationships between the various rheometrical functions we have introduced.  It must 
be emphasized that these are not empirical, but based on sound continuum mechanics 
(see, for example, Barnes et al 1989, p80). 
 
( ) ( )

0 0

,
γ ω

η γ η ω
→ →

′=  (9) 

 
( )
( )

( )
1

2

0 0
2

,
2
N G

γ ω

γ ω
γ ω→ →

′
=  (10) 

 
( ) ( )

E 0 0

3 ,
ε γ

η ε η γ
→ →

=  (11) 

 

( ) ( )E

0 1 2 0
2

3 2 .
2

d
N N

d ε γ

η
γ γ

ε γ→ →

= +⎡ ⎤⎣ ⎦  (12) 

 
Equation (11) implies that, whatever happens at finite strain rates, the limiting value of 

E

,η  for non-Newtonian fluids must satisfy the Trouton limit. 
 
The final relationship (12) is an interesting one.  From what we know of the steady-
shear behavior for both polymer solutions and polymer melts, the term in brackets is 
invariably positive, so we should expect an initial non-zero positive slope in the 
extensional viscosity/strain rate graph, whatever happens at finite strain rates. 
 
In conclusion, we note that we have introduced three basic kinds of rheometrical 
functions – those arising in steady simple shear flow (3 in all), those emanating from 
small amplitude oscillatory shear flow (2 in all) and the uniaxial extensional viscosity.  
All six functions are of importance to the rheologist as he seeks to construct constitutive 
equations for his test fluids. 
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There are other related rheometrical flows that could be added to the above list, such as 
finite-amplitude oscillatory shear flow and planar extensional flow, to mention just two.  
But the rheologist is usually satisfied with the three basic flows we have concentrated 
on, with any other tests being seen as “critical experiments” to assess the validity or 
otherwise of constitutive equations based on the three foundational rheometrical flows. 
 
 
- 
- 
- 
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