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1 Bernoulli’s Law

Consider flow in a pipe of variable diameter. Assume the fluid is not com-
pressible, there is zero viscosity and friction, and the internal energy and
temperature of the fluid is constant.

Consider the volume of fluid between two cross sections of the pipe. At
one end let the cross sectional area be A1, the pressure p1, the height h1,
and the velocity v1. At the other end let the cross sectional area be A2, the
pressure p2, the height h2, and the velocity v2. Suppose the surface boundary
of the volume moves positive distance dx1 in time dt at the first end. Then in
effect a volume dV = dx1A1, is moved to the other end with a new velocity
v2 with dV = dx2A2. The work done on the volume V is

dW = dx1A1p1 − dx2A2p2 = dV (p1 − p2).

This is equal to the change dE of the kinetic and potential energy of the
transferred volume dV .

dE =
dV ρ

2
(v2

2 − v2
1) + dV gρ(h2 − h1).

Hence
dW − dE = 0,

and so

dW − dE

dV
= (p1 − p2) −

[
ρ

2
(v2

2 − v2
1) + gρ(h2 − h1)

]
= 0.

So
p1 +

ρ

2
v2
1 + gρh1 = p2 +

ρ

2
v2
2 + gρh2.

That is
p

gρ
+

v2

2g
+ h,

is constant anywhere in the pipe.
This is Bernoulli’s Law.
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2 Torricelli’s Law

Suppose we have a tank of relatively large diameter and height h. Suppose
there is an exit hole of area A at the bottom of the tank. We may apply
Bernoulli’s law where we take both the pressure and velocity at the top of
the tank to be zero. And we assume that the pressure at the bottom of the
tank, in the exit hole, is also zero. Thus we have

h =
v2

2g

So the exit velocity is

v =
√

2gh.

This is Torricelli’s law.

3 Time to Empty a Tank

From Torricelli’s law the change of volume due to flow out of a bottom hole
of area A is

dV

dt
= −A

√
2gh,

where
dV

dt

might be measured in cubic meters per second.
If the cylindrical tank has radius r then

V (h) = hπr2

So
dV = πr2dh

Thus

dt = − πr2

A
√

2gh
dh.

Thus the time to drain the tank is

t = − πr2

A
√

2g

∫ 0

h0

dh√
h
,
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where h0 is the full height of the tank. Thus

t = − πr2

A
√

2g
[2
√

h]0h0

=
2πr2

A
√

2g

√
h0

=
πr2

A

√
2h0/g

=
At

Ah

√
2h0/g,

where At is the cross sectional area of the tank, and Ah is the cross sectional
area of the hole at the bottom of the tank. This is assuming zero viscosity
of the fluid.

Notice that if Ah = At the time is√
2h0/g,

which is the time it takes a mass to fall a distance h0. However, we are using
Torricelli’s law, whose derivation assummed that the cross sectional area of
the tank to be very much larger than the exit hole.

4 Viscosity

Newton first introduced the concept of viscosity using a idea analogous to a
shear strain, replacing static displacement by velocity. Thus in the simplest
case, if a fluid is flowing between two parallel plates, one moving with velocity
V and the other fixed, then in a time δt the fluid contacting the upper plate
moves a distance V δt while the fluid attached to the lower plate is at rest.
So the fluid is being sheared. If it were a solid this displacement would be
accompanied by a shear stress equal to a force per unit area on the upper
plate. Assuming that the velocity between the plates varies linearly with
height, the shear strain would be

du

dy
δt

If the fluid were a solid this shear strain and shear stress would be propor-
tional. In the case of a fluid the force between layers of fluid is determined by
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the change in velocity rather than the displacement. Hence the shear stress
τ is proportional to the gradient of the velocity rather than to the gradient
of the displacement as is the case in elasticity. Thus the shear stress is

τ = µ
dv

dy

where v is the horizontal velocity and y is the distance perpendicular to the
flow and to the plates. µ is called the viscosity. Newton first introduced this
equation and hence a fluid that obeys this law is called a Newtonian fluid.
From this equation the units of viscosity are FT/L2 where F is force, T is
time, and L is distance. So in the SI system the unit of viscosity is Newton
second per meter squared,

Ns

m2
.

In the cgs system it is in dyne seconds per square centimeter

ds

cm2
,

a unit called the Poise.

5 The Acceleration

Acceleration in fluid mechanics can be confusing. This is because there are
two different velocities, a particle velocity attached to a moving particle, or
to an infinitesimal volume in the fluid, and a flow velocity at a fixed point
in the fluid. As a particle p moves in the fluid with a particle velocity,
which we write as vp(t), it may experience an acceleration, as any particle
can in mechanics. This is the acceleration of Newton’s second law, which is
proportional to the force on the particle. However, at the same time we may
consider the flow velocity at a fixed point x in space , which we call the field
velocity, which we write as v(t,x). As time passes this velocity will be the
velocity of different particles as they pass this fixed point. We consider this
to be the fluid velocity at that point. This fluid velocity, the field velocity,
is written as

v(t,x).

The rate of change of this field velocity at the fixed point x is not the accel-
eration of a particle that happens to be at x at time t. However, acceleration
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of the particle velocity, sometimes called the material velocity, can be com-
puted by differentiating the field velocity with respect to time. The result is
obtained by partial differentiation as

a =
∂v

∂t
+ v · ∇v.

Indeed, suppose a particle p has coordinates

(xp(t), yp(t), zp(t)),

at time t. Then the particle velocity at time t is(
dxp(t)

dt
,
dy(

pt)

dt
,
dzp(t)

dt

)
= vp(t),

which has the same value as the field velocity at the point (xp(t), yp(t), zp(t))
at time t. That is,

vp(t) = v(t, xp(t), yp(t), zp(t)).

The two velocities are distinguised as function, being functions of different
variables. The x component of particle acceleration is

d2xp(t)

dt2
=

dvpx(t)

dt
=

∂vx

∂t
+

∂vx

∂x

dxp

dt
+

∂vx

∂y

dyp

dt
+

∂vx

∂z

dzp

dt

=
∂vx

∂t
+ ∇vx · vp(t).

We have written vx for the x component of v. Similarly,

dvpy(t)

dt
=

∂vy

∂t
+ ∇vy · vp(t),

and
dvpz(t)

dt
=

∂vz

∂t
+ ∇vz · vp(t).

The particle velocity has the same value as the field velocity at time t,

vp(t) = v(t, xp(t), yp(t), zp(t)),

so we can replace vp by v, and then obtain

a =
dvp

dt
=

∂v

∂t
+ v · ∇v,

as written above.
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6 The Equation of Motion Due to Cauchy

ρ
dv

dt
= ρf + ∇ · T

where the left side is the acceleration, f is an external force, and T is the
stress tensor. (Serrin, p 136)

7 The Deformation Tensor

In the case of elasticity, the strain tensor is defined in terms of the derivatives
of the displacement u. Let u1, u2, u3 be the coordinates of a displacement.
The strain tensor is defined by

eij = (
∂ui

∂xj
+

∂uj

∂xi
)/2.

See Solkolnikoff, The Mathematical Theory of Elasticity, p25, for com-
ments about alternate notation for the strain coefficients. The strain is a
Cartesian tensor, as one sees by looking at the properties of the gradient and
the Jacobian. In the usual case the stress tensor is a linear function of the
strain tensor.

In the case of fluid mechanics we have not just displacement but continu-
ous motions, so the analog of the strain tensor is called the deformation tensor
D. It is defined similarly to the strain tensor, replacing the displacement u
by the velocity v,

dij = (
∂vi

∂xj

+
∂vj

∂xi

)/2.

8 The Navier-Stokes Equation for Incompress-

ible Flow

In the case where the stress tensor is a linear function of the deformation
tensor D, the case of linear viscosity, the Cauchy equation of motion become
the Navier-Stokes equation,

ρ
dv

dt
= ρf −∇p + ∇ · (2µD).

(Serrin, p 217)

7



9 Flow in Pipes, Poiseuille Flow

The Navier-Stokes equation is solvable in closed form for only a few special
cases. One of these is the steady laminar flow in cylindrical pipes (Munson
et. al., page 379). This flow is called Hagan-Poiseuille flow. Poiseuille’s law
(pwah-zweez)

Q =
πR4∆p

8µ�
,

where Q is the volume rate of flow, R is the pipe radius, ∆p, is the pressure
drop, µ is the viscosity, and � is the pipe length. At any cross section the
velocity distribution is parabolic.

Notice that if the viscosity were zero, then the flow rate would be infinite.
This seems a bit disturbing. However, if the viscosity were zero, then there
would be no resistance to flow, and the pressure difference would accelerate
the velocity to infinity.

10 Flow in River Channels

11 Ground Water Flow

12 Diffusion

Various kinds of diffusion processes are governed by a diffusion equation,
which is similar to the heat equation.

13 Dimensional Analysis and the Reynolds

Number

The Reynolds Number is a dimensionless number which determines the bound-
ary between laminar flow and turbulent flow.

ρvd

µ
,

where ρ is the density, v is the velocity, d is the pipe diameter (or some other
characteristic length in a non-pipe problem), and µ is the viscosity. The
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dimension is
(m�−3)(�t−1)(�)(�2f−1t−1)

= (f�−1t2)(�−3)(�t−1)(�)(�2f−1t−1)

= f 0�0t0,

where m is mass, f is force, � is length, and t is time.

14 Hydrology

Hydrology is an earth science that studies the movement of water and water
vapor on the earth.
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