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1. Introduction 

1.1 Course Outline 

Goals 

The goal is that you will:  

1. Have fundamental knowledge of fluids:  

a. compressible and incompressible;  

b. their properties, basic dimensions and units; 

2. Know the fundamental laws of mechanics as applied to fluids. 

3. Understand the limitations of theoretical analysis and the determination of 

correction factors, friction factors, etc from experiments. 

4. Be capable of applying the relevant theory to solve problems. 
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Syllabus 

Basics:  

• Definition of a fluid: concept of ideal and real fluids, both compressible and 

incompressible.  

• Properties of fluids and their variation with temperature and pressure and the 

dimensions of these properties. 

 

Hydrostatics: 

• The variation of pressure with depth of liquid.  

• The measurement of pressure and forces on immersed surfaces. 

 

Hydrodynamics: 

• Description of various types of fluid flow; laminar and turbulent flow; 

Reynolds’s number, critical Reynolds’s number for pipe flow. 

• Conservation of energy and Bernoulli’s theorem. Simple applications of the 

continuity and momentum equations. 

• Flow measurement e.g. Venturi meter, orifice plate, Pitot tube, notches and 

weirs. 

• Hagen-Poiseuille equation: its use and application. 

• Concept of major and minor losses in pipe flow, shear stress, friction factor, 

and friction head loss in pipe flow. 

• Darcy-Weisbach equation, hydraulic gradient and total energy lines. Series and 

parallel pipe flow. 

• Flow under varying head. 

• Chezy equation (theoretical and empirical) for flow in an open channel. 

• Practical application of fluid mechanics in civil engineering.  
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1.2 Programme 

Lectures 

There are 4 hours of lectures per week.  One of these will be considered as a tutorial 

class – to be confirmed. 

 

The lectures are: 

• Monday, 11:00-12:00, Rm. 209 and 17:00-18:00, Rm 134; 

• Wednesday, to be confirmed. 

 

Assessment 

The marks awarded for this subject are assigned as follows: 

• 80% for end-of-semester examination; 

• 20% for laboratory work and reports. 
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1.3 Reading Material 

Lecture Notes 

The notes that you will take in class will cover the basic outline of the necessary 

ideas. It will be essential to do some extra reading for this subject.  

 

Obviously only topics covered in the notes will be examined. However, it often aids 

understanding to hear/read different ways of explaining the same topic. 

 

Books 

Books on Fluid Mechanics are kept in Section 532 of the library. However, any of 

these books should help you understand fluid mechanics: 

• Douglas, J.F., Swaffield, J.A., Gasiorek, J.M. and Jack, L.B. (2005), Fluid 

Mechanics, 5th Edn., Prentice Hall. 

• Massey, B. and Ward-Smith, J. (2005), Mechanics of Fluids, 8th Edn., 

Routledge. 

• Chadwick, A., Morfett, J. and Borthwick, M. (2004), Hydraulics in Civil and 

Environmental Engineering, 4th Edn., E & FN Spon. 

• Douglas, J.F. and Mathews, R.D. (1996), Solving Problems in Fluid 

Mechanics, Vols. I and II, 3rd Edn., Longman. 

 

The Web 

There are many sites that can help you with this subject. In particular there are 

pictures and movies that will aid your understanding of the physical processes behind 

the theories.  

 

If you find a good site, please let me know and we will develop a list for the class. 
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1.4 Fluid Mechanics in Civil/Structural Engineering 

Every civil/structural engineering graduate needs to have a thorough understanding of 

fluids. This is more obvious for civil engineers but is equally valid for structural 

engineers: 

• Drainage for developments; 

• Attenuation of surface water for city centre sites; 

• Sea and river (flood) defences; 

• Water distribution/sewerage (sanitation) networks; 

• Hydraulic design of water/sewage treatment works; 

• Dams; 

• Irrigation; 

• Pumps and Turbines; 

• Water retaining structures. 

• Flow of air in / around buildings; 

• Bridge piers in rivers; 

• Ground-water flow. 

As these mostly involve water, we will mostly examine fluid mechanics with this in 

mind. 

 

Remember: it is estimated that drainage and sewage systems – as designed by civil 

engineers – have saved more lives than all of medical science. Fluid mechanics is 

integral to our work. 
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2. Introduction to Fluids 

2.1 Background and Definition 

Background 

• There are three states of matter: solids, liquids and gases.  

• Both liquids and gases are classified as fluids.  

• Fluids do not resist a change in shape. Therefore fluids assume the shape of the 

container they occupy.  

• Liquids may be considered to have a fixed volume and therefore can have a 

free surface. Liquids are almost incompressible.  

• Conversely, gases are easily compressed and will expand to fill a container 

they occupy.  

• We will usually be interested in liquids, either at rest or in motion. 

 

 
      Liquid showing free surface  Gas filling volume 

Behaviour of fluids in containers 
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Definition 

The strict definition of a fluid is: 

 

A fluid is a substance which conforms continuously under the action of 

shearing forces. 

 

To understand this, remind ourselves of what a shear force is: 

 

 
Application and effect of shear force on a book 

 

Definition Applied to Static Fluids 

According to this definition, if we apply a shear force to a fluid it will deform and 

take up a state in which no shear force exists. Therefore, we can say: 

 

If a fluid is at rest there can be no shearing forces acting and therefore all 

forces in the fluid must be perpendicular to the planes in which they act. 

 

Note here that we specify that the fluid must be at rest. This is because, it is found 

experimentally that fluids in motion can have slight resistance to shear force. This is 

the source of viscosity. 
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Definition Applied to Fluids in Motion 

For example, consider the fluid shown flowing along a fixed surface. At the surface 

there will be little movement of the fluid (it will ‘stick’ to the surface), whilst further 

away from the surface the fluid flows faster (has greater velocity): 

 
 

If one layer of is moving faster than another layer of fluid, there must be shear forces 

acting between them. For example, if we have fluid in contact with a conveyor belt 

that is moving we will get the behaviour shown: 

 

 
    Ideal fluid       Real (Viscous) Fluid 

 

When fluid is in motion, any difference in velocity between adjacent layers has the 

same effect as the conveyor belt does. 

 

Therefore, to represent real fluids in motion we must consider the action of shear 

forces. 
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Consider the small element of fluid shown, which is subject to shear force and has a 

dimension s into the page. The force F acts over an area A = BC×s. Hence we have a 

shear stress applied: 

 

 

ForceStress
Area
F
A

τ

=

=
 

 

Any stress causes a deformation, or strain, and a shear stress causes a shear strain. 

This shear strain is measured by the angle φ . 

 

Remember that a fluid continuously deforms when under the action of shear. This is 

different to a solid: a solid has a single value of φ  for each value of τ . So the longer 

a shear stress is applied to a fluid, the more shear strain occurs. However, what is 

known from experiments is that the rate of shear strain (shear strain per unit time) is 

related to the shear stress: 

 

 Shear stress Rate of shear strain
Shear stress Constant Rate of shear strain

∝
= ×
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We need to know the rate of shear strain. From the diagram, the shear strain is: 

 

 x
y

φ =  

 

If we suppose that the particle of fluid at E moves a distance x in time t, then, using 

S Rθ=  for small angles, the rate of shear strain is: 

 

 

1xx t
yt t y

u
y

φ ⎛ ⎞∆
= = ⋅⎜ ⎟∆ ⎝ ⎠

=
 

 

Where u is the velocity of the fluid. This term is also the change in velocity with 

height. When we consider infinitesimally small changes in height we can write this in 

differential form, du dy . Therefore we have: 

 

 constant du
dy

τ = ×  

 

This constant is a property of the fluid called its dynamic viscosity (dynamic because 

the fluid is in motion, and viscosity because it is resisting shear stress). It is denoted 

µ  which then gives us: 

 

Newton’s Law of Viscosity: 

 du
dy

τ µ=  
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Generalized Laws of Viscosity 

We have derived a law for the behaviour of fluids – that of Newtonian fluids. 

However, experiments show that there are non-Newtonian fluids that follow a 

generalized law of viscosity: 

 

 
n

duA B
dy

τ
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 

 

Where A, B and n are constants found experimentally. When plotted these fluids 

show much different behaviour to a Newtonian fluid: 

 

 
 

Behaviour of Fluids and Solids 
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In this graph the Newtonian fluid is represent by a straight line, the slope of which is 

µ . Some of the other fluids are: 

• Plastic: Shear stress must reach a certain minimum before flow commences. 

• Pseudo-plastic: No minimum shear stress necessary and the viscosity 

decreases with rate of shear, e.g. substances like clay, milk and cement. 

• Dilatant substances; Viscosity increases with rate of shear, e.g. quicksand. 

• Viscoelastic materials: Similar to Newtonian but if there is a sudden large 

change in shear they behave like plastic. 

• Solids: Real solids do have a slight change of shear strain with time, whereas 

ideal solids (those we idealise for our theories) do not. 

 

Lastly, we also consider the ideal fluid. This is a fluid which is assumed to have no 

viscosity and is very useful for developing theoretical solutions. It helps achieve 

some practically useful solutions. 
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2.2 Units 

Fluid mechanics deals with the measurement of many variables of many different 

types of units. Hence we need to be very careful to be consistent. 

 

Dimensions and Base Units 

The dimension of a measure is independent of any particular system of units. For 

example, velocity may be in metres per second or miles per hour, but dimensionally, 

it is always length per time, or 1L T LT−= . The dimensions of the relevant base units 

of the Système International (SI) system are: 

 

Unit-Free SI Units 
Dimension Symbol Unit Symbol 

Mass M kilogram kg 
Length L metre m 
Time T second s 

Temperature θ  kelvin K 
 

Derived Units 

From these we have some relevant derived units (shown on the next page). 

 

Checking the dimensions or units of an equation is very useful to minimize errors. 

For example, if when calculating a force and you find a pressure then you know 

you’ve made a mistake. 
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SI Unit 
Quantity Dimension 

Derived Base 

Velocity 1LT−  m/s 1m s−  

Acceleration 2LT−  m/s2 2m s−  

Force 2MLT−  Newton, N 2kg m s−  

Pressure 

Stress 
-1 2ML T  

Pascal, Pa 

N/m2 
-1 2kg m s−  

Density -3ML  kg/m3 -3kg m  

Specific weight -2 2ML T−  N/m3 -2 2kg m s−  

Relative density Ratio Ratio Ratio 

Viscosity -1 1ML T−  Ns/m2 -1 1kg m s−  

Energy (work) 2 2ML T−  
Joule, J 

Nm 
2 2kg m s−  

Power 2 3ML T−  

Watt, W 

Nm/s 

 

2 3kg m s−  

 

Note: The acceleration due to gravity will always be taken as 9.81 m/s2. 
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SI Prefixes 

SI units use prefixes to reduce the number of digits required to display a quantity. 

The prefixes and multiples are: 

 

Prefix Name Prefix Unit Multiple 

Tera 

Giga 

Mega 

Kilo 

Hecto 

Deka 

Deci 

Centi 

Milli 

Micro 

Nano 

Pico 

T 

G 

M 

k 

h 

da 

d 

c 

m 
µ  

n 

p 

1012 

109 

106 

103 

102 

101 

10-1 

10-2 

10-3 

10-6 

10-9 

10-12 

 

Be very particular about units and prefixes. For example: 

• kN means kilo-Newton, 1000 Newtons; 

• Kn is the symbol for knots – an imperial measure of speed; 

• KN has no meaning; 

• kn means kilo-nano – essentially meaningless. 

 

Further Reading 

• Sections 1.6 to 1.10 of Fluid Mechanics by Cengel & Cimbala. 
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2.3 Properties 

Further Reading 

Here we consider only the relevant properties of fluids for our purposes. Find out 

about surface tension and capillary action elsewhere. Note that capillary action only 

features in pipes of ≤  10 mm diameter. 

 

Mass Density 

The mass per unit volume of a substance, usually denoted as ρ . Typical values are: 

• Water: 1000 kg/m3; 
• Mercury: 13546 kg/m3; 
• Air:  1.23 kg/m3; 
• Paraffin: 800 kg/m3. 

 

Specific Weight 

The weight of a unit volume a substance, usually denoted as γ . Essentially density 

times the acceleration due to gravity: 
 gγ ρ=  

 

Relative Density (Specific Gravity) 

A dimensionless measure of the density of a substance with reference to the density 

of some standard substance, usually water at 4°C: 

 

density of substancerelative density
density of water

specific weight of substance
specific weight of water

s s

w w

ρ γ
ρ γ

=

=

= =
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Bulk Modulus 

In analogy with solids, the bulk modulus is the modulus of elasticity for a fluid. It is 

the ratio of the change in unit pressure to the corresponding volume change per unit 

volume, expressed as: 

 

 

Change in Volume Chnage in pressure
Original Volume Bulk Modulus

dV dp
V K

=

−
=

 

Hence: 

 dpK V
dV

= −  

In which the negative sign indicates that the volume reduces as the pressure 

increases. The bulk modulus changes with the pressure and density of the fluid, but 

for liquids can be considered constant for normal usage. Typical values are: 

• Water: 2.05 GN/m3; 
• Oil:  1.62 GN/m3. 

 
The units are the same as those of stress or pressure. 
 

Viscosity 

The viscosity of a fluid determines the amount of resistance to shear force. 

Viscosities of liquids decrease as temperature increases and are usually not affected 

by pressure changes. From Newton’s Law of Viscosity: 

 

 shear stress
rate of shear straindu dy

τµ = =  

 

Hence the units of viscosity are Pa s⋅  or 2N s m⋅ . This measure of viscosity is 

known as dynamic viscosity and some typical values are given:  
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Problems - Properties 

a) If 6 m3 of oil weighs 47 kN, find its specific weight, density, and relative density. 

(Ans.  7.833 kN/m3, 798 kg/m3, 0.800) 

 

b) At a certain depth in the ocean, the pressure is 80 MPa. Assume that the specific 

weight at the surface is 10 kN/m3 and the average bulk modulus is 2.340 GPa. 

Find: 

a) the change in specific volume between the surface and the large depth; 

b) the specific volume at the depth, and;  

c) the specific weight at the depth. 

(Ans.  -0.335×10-4 m3/kg, 9.475×10-4 m3/kg, 10.35 kN/m3) 

 

c) A 100 mm deep stream of water is flowing over a boundary. It is considered to 

have zero velocity at the boundary and 1.5 m/s at the free surface. Assuming a 

linear velocity profile, what is the shear stress in the water? 

(Ans.  0.0195 N/m2) 

 

d) The viscosity of a fluid is to be measured using a viscometer constructed of two 

750 mm long concentric cylinders. The outer diameter of the inner cylinder is 150 

mm and the gap between the two cylinders is 1.2 mm. The inner cylinder is 

rotated at 200 rpm and the torque is measured to be 10 Nm.  

a) Derive a generals expression for 

the viscosity of a fluid using this 

type of viscometer, and; 

b) Determine the viscosity of the 

fluid for the experiment above. 

 

(Ans.  6 × 10-4 Ns/m2) 
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3. Hydrostatics 

3.1 Introduction 

Pressure 

In fluids we use the term pressure to mean: 

 

The perpendicular force exerted by a fluid per unit area. 

 

This is equivalent to stress in solids, but we shall keep the term pressure. 

Mathematically, because pressure may vary from place to place, we have: 

 

 
0

lim Fp
A∆→

∆
=

∆
 

 

As we saw, force per unit area is measured in N/m2 which is the same as a pascal 

(Pa). The units used in practice vary: 

• 1 kPa = 1000 Pa = 1000 N/m2 

• 1 MPa = 1000 kPa = 1 × 106 N/m2 

• 1 bar = 105 Pa = 100 kPa = 0.1 MPa 

• 1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bars = 1013.25 millibars 

 

For reference to pressures encountered on the street which are often imperial: 

• 1 atm = 14.696 psi (i.e. pounds per square inch) 

• 1 psi = 6894.7 Pa ≈ 6.89 kPa ≈ 0.007 MPa 
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Pressure Reference Levels 

The pressure that exists anywhere in the universe is called the absolute pressure, absP . 

This then is the amount of pressure greater than a pure vacuum. The atmosphere on 

earth exerts atmospheric pressure, atmP , on everything in it. Often when measuring 

pressures we will calibrate the instrument to read zero in the open air. Any measured 

pressure, measP , is then a positive or negative deviation from atmospheric pressure. 

We call such deviations a gauge pressure, gaugeP . Sometimes when a gauge pressure 

is negative it is termed a vacuum pressure, vacP . 

 

 
 

The above diagram shows: 

(a) the case when the measured pressure is below atmospheric pressure and so is a 

negative gauge pressure or a vacuum pressure; 

(b) the more usual case when the measured pressure is greater than atmospheric 

pressure by the gauge pressure. 
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3.2 Pressure in a Fluid 

Statics of Definition 

We applied the definition of a fluid to the static case previously and determined that 

there must be no shear forces acting and thus only forces normal to a surface act in a 

fluid.  

 

For a flat surface at arbitrary angle we have: 

 
 

A curved surface can be examined in sections: 
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And we are not restricted to actual solid-fluid interfaces. We can consider imaginary 

planes through a fluid: 

 

 
 

Pascal’s Law 

This law states: 

 

The pressure at a point in a fluid at rest is the same in all directions. 

 

To show this, we will consider a very small wedge of fluid surrounding the point. 

This wedge is unit thickness into the page: 
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As with all static objects the forces in the x and y directions should balance. Hence: 

 

0xF =∑ :  sin 0y sp y p s θ⋅ ∆ − ⋅ ∆ ⋅ =  

But ysin
s

θ ∆
=

∆
, therefore: 

0y s

y s

y s

yp y p s
s

p y p y

p p

∆
⋅ ∆ − ⋅ ∆ ⋅ =

∆
⋅ ∆ = ⋅ ∆

=

 

 

0yF =∑ :  cos 0x sp x p s θ⋅ ∆ − ⋅ ∆ ⋅ =  

But xcos
s

θ ∆
=

∆
, therefore: 

0x s

x s

x s

xp x p s
s

p x p x
p p

∆
⋅ ∆ − ⋅ ∆ ⋅ =

∆
⋅ ∆ = ⋅ ∆

=

 

 

Hence for any angle: 

 

 y x sp p p= =  

 

And so the pressure at a point is the same in any direction. Note that we neglected the 

weight of the small wedge of fluid because it is infinitesimally small. This is why 

Pascal’s Law is restricted to the pressure at a point. 
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Pressure Variation with Depth 

Pressure in a static fluid does not change in the horizontal direction as the horizontal 

forces balance each other out. However, pressure in a static fluid does change with 

depth, due to the extra weight of fluid on top of a layer as we move downwards.  

 

Consider a column of fluid of arbitrary cross section of area, A: 

 

 
Column of Fluid          Pressure Diagram 

 

Considering the weight of the column of water, we have: 

 

0yF =∑ :  ( )1 2 1 2 0p A A h h p Aγ+ − − =  

 



Fluid Mechanics 

Dr. C. Caprani 32

Obviously the area of the column cancels out: we can just consider pressures. If we 

say the height of the column is 2 1h h h= −  and substitute in for the specific weight, we 

see the difference in pressure from the bottom to the top of the column is: 

 

 2 1p p ghρ− =  

 

This difference in pressure varies linearly in h, as shown by the Area 3 of the pressure 

diagram. If we let 1 0h =  and consider a gauge pressure, then 1 0p =  and we have: 

 

 2p ghρ=  

 

Where h remains the height of the column. For the fluid on top of the column, this is 

the source of 1p  and is shown as Area 1 of the pressure diagram. Area 2 of the 

pressure diagram is this same pressure carried downwards, to which is added more 

pressure due to the extra fluid. 

 

To summarize: 

 

The gauge pressure at any depth from the surface of a fluid is: 

 p ghρ=  
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Summary 

1. Pressure acts normal to any surface in a static fluid; 

2. Pressure is the same at a point in a fluid and acts in all directions; 

3. Pressure varies linearly with depth in a fluid. 

 

By applying these rules to a simple swimming pool, the pressure distribution around 

the edges is as shown: 

 

 
 

Note: 

1. Along the bottom the pressure is constant due to a constant depth; 

2. Along the vertical wall the pressure varies linearly with depth and acts in the 

horizontal direction; 

3. Along the sloped wall the pressure again varies linearly with depth but also 

acts normal to the surface; 

4. At the junctions of the walls and the bottom the pressure is the same. 
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Problems - Pressure 

1. Sketch the pressure distribution applied to the container by the fluid: 

 

 
 

2. For the dam shown, sketch the pressure distribution on line AB and on the 

surface of the dam, BC. Sketch the resultant force on the dam. 
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3. For the canal gate shown, sketch the pressure distributions applied to it. Sketch 

the resultant force on the gate? If 1 6.0 mh =  and 2 4.0 mh = , sketch the 

pressure distribution to the gate. Also, what is the value of the resultant force 

on the gate and at what height above the bottom of the gate is it applied? 
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3.3 Pressure Measurement 

Pressure Head 

Pressure in fluids may arise from many sources, for example pumps, gravity, 

momentum etc. Since p ghρ= , a height of liquid column can be associated with the 

pressure p arising from such sources. This height, h, is known as the pressure head. 

 

Example: 

The gauge pressure in a water mains is 50 kN/m2, what is the pressure head? 

 

The pressure head equivalent to the pressure in the pipe is just: 

 
350 10

1000 9.81
5.1 m

p gh
ph
g

ρ

ρ

=

=

×
=

×
≈

 

 

So the pressure at the bottom of a 5.1 m deep swimming pool is the same as the 

pressure in this pipe. 

 

Manometers 

A manometer (or liquid gauge) is a pressure measurement device which uses the 

relationship between pressure and head to give readings.  

 

In the following, we wish to measure the pressure of a fluid in a pipe. 
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Piezometer 

This is the simplest gauge. A small vertical tube is connected to the pipe and its top is 

left open to the atmosphere, as shown.  

 

 
 

The pressure at A is equal to the pressure due to the column of liquid of height 1h : 

 

1Ap ghρ=  

 

Similarly,  

 

2Bp ghρ=  
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The problem with this type of gauge is that for usual civil engineering applications 

the pressure is large (e.g. 100 kN/m2) and so the height of the column is impractical 

(e.g.10 m). 

 

Also, obviously, such a gauge is useless for measuring gas pressures. 

 

U-tube Manometer 

To overcome the problems with the piezometer, the U-tube manometer seals the fluid 

by using a measuring (manometric) liquid: 

 

 
 

Choosing  the line BC as the interface between the measuring liquid and the fluid, we 

know: 

 

Pressure at B, Bp  = Pressure at C, Cp  

 

For the left-hand side of the U-tube: 
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 1B Ap p ghρ= +  

 

For the right hand side: 

 

 2C manp ghρ=  

 

Where we have ignored atmospheric pressure and are thus dealing with gauge 

pressures. Thus: 

 

 
1 2

B C

A man

p p
p gh ghρ ρ

=

+ =
 

 

And so: 

 

 2 1A manp gh ghρ ρ= −  

 

Notice that we have used the fact that in any continuous fluid, the pressure is the 

same at any horizontal level. 
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Differential Manometer 

To measure the pressure difference between two points we use a u-tube as shown: 

 

 
 

Using the same approach as before: 

 

Pressure at C, Cp  = Pressure at D, Dp  

 

 ( )A B manp ga p g b h ghρ ρ ρ+ = + − +  

 

Hence the pressure difference is: 

 

 ( ) ( )A B manp p g b a hgρ ρ ρ− = − + −  
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Problems – Pressure Measurement 

1. What is the pressure head, in metres of water, exerted by the atmosphere? 

(Ans.  10.3 m) 

 

2. What is the maximum gauge pressure of water that can be measured using a 

piezometer 2.5 m high? 

(Ans.  24.5 kN/m2) 

 

3. A U-tube manometer is used to measure the pressure of a fluid of density 800 

kg/m3. If the density of the manometric liquid is 13.6 × 103 kg/m3, what is the 

gauge pressure in the pipe if  

(a) 1 0.5 mh =  and D is 0.9 m above BC; 

(b) 1 0.1 mh =  and D is 0.2 m below BC? 

(Ans.  116.15 kN/m2, -27.45 kN/m2) 

 

4. A differential manometer is used to measure the pressure difference between 

two points in a pipe carrying water. The manometric liquid is mercury and the 

points have a 0.3 m height difference. Calculate the pressure difference when 

0.7 mh = . 

(Ans.  89.47 kN/m2) 

 

5. For the configuration shown, calculate the weight of the piston if the gauge 

pressure reading is 70 kPa. 
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(Ans. 61.6 kN) 

 

6. A hydraulic jack having a ram 150 mm in diameter lifts a weight W = 20 kN 

under the action of a 30 mm plunger. What force is required on the plunger to 

lift the weight? 

 
(Ans. 800 N) 
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3.4 Fluid Action on Surfaces 

Plane Surfaces 

We consider a plane surface, PQ, of area A, totally immersed in a liquid of density 

ρ and inclined at an angle φ  to the free surface: 

 

 
Side Elevation 

 

 
Front Elevation 
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If the plane area is symmetrical about the vertical axis OG, then 0d = . We will 

assume that this is normally the case. 

 

Find Resultant Force: 

The force acting on the small element of area, Aδ , is: 

 

 R p A gy Aδ δ ρ δ= ⋅ = ⋅  

 

The total force acting on the surface is the sum of all such small forces. We can 

integrate to get the force on the entire area, but remember that y is not constant: 

 

 
R gy A

g y A

ρ δ

ρ δ

= ⋅

= ⋅

∫
∫

 

 

But y Aδ⋅∫  is just the first moment of area about the surface. Hence: 

 

 R gAyρ=  

 

Where y  is the distance to the centroid of the area (point G) from the surface.  

 

Vertical Point Where Resultant Acts: 

The resultant force acts perpendicular to the plane and so makes an angle 90 φ° −  to 

the horizontal. It also acts through point C, the centre of pressure, a distance D below 

the free surface. To determine the location of this point we know: 

 

 
Sum of moments of forces 

Moment of  about 
on all elements about 

R O
O

=  
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Examining a small element first, and since siny s φ= , the moment is: 

 
( )

( )2

Moment of  about sin

sin

R O g s A s

g s A

δ ρ φ δ

ρ φ δ

= ⋅⎡ ⎤⎣ ⎦

= ⋅
 

 

In which the constants are taken outside the bracket. The total moment is thus: 

 

 2Moment of  about sinR O g s Aρ φ δ= ⋅ ⋅∫  

 

But 2s Aδ⋅∫  is the second moment of area about point O or just OI . Hence we have: 

 

 

2

Moment of  about sin
sin

sin
sin

sin

O

O

O

O

R O g I
gAy OC g I

DAy I

ID
Ay

ρ φ
ρ ρ φ

φ
φ

φ

= ⋅

× = ⋅

× = ⋅

= ⋅

 

 

If we introduce the parallel axis theorem: 

 
( )2

2

sin

O G

G

I I A OG

yI A
φ

= + ×

⎛ ⎞
= + ⋅ ⎜ ⎟

⎝ ⎠

 

Hence we have: 

 

2 2

2

sin
sin

G

G

I AyD
Ay

Iy
Ay

φ
φ

+
= ⋅

= +
 

 

Hence, the centre of pressure, point C, always lies below the centroid of the area, G. 
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Plane Surface Properties 
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Plane Surfaces – Example 

Problem 

Calculate the forces on the hinges supporting the canal gates as shown. The hinges 

are located 0.6 m from the top and bottom of each gate. 

 

 
Plan 

 

 
Elevation 
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Solution 

We will consider gate AB, but all arguments will equally apply to gate BC.  

 

The length of the gate is 3.0 sin30 3.464 mL = = . The resultant pressure on the gate 

from the high water side is: 

 ( )
1 1 1

3 4.510 9.81 3.464 4.5
2

344 kN

P gA yρ=

= × × × ×

=

 

 

Similarly for the low water side: 

 ( )
2 2 2

3 3.010 9.81 3.464 3.0
2

153 kN

P gA yρ=

= × × × ×

=

 

 

The net resultant force on the gate is: 

 1 2 344 153 191 kNP P P= − = − =  

 

To find the height at which this acts, take moments about the bottom of the gate: 

 
1 1 2 2

4.5 3344 153 363 kNm
3 3

Ph Ph P h= +

= × − × =
 

Hence: 

 363 1.900 m
191

h = =  

 

Examining a free-body diagram of the gate, we see that the interaction force between 

the gates, BR , is shown along with the total hinge reactions, AR  and the net applied 

hydrostatic force, P. Relevant angles are also shown. We make one assumption: the 
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interaction force between the gates acts perpendicular on the contact surface between 

the gates. Hence BR  acts vertically downwards on plan.  

 

From statics we have Moments about 0A =∑ : 

 

( )sin30 0
2

1
2 2

B

B

B

LP R L

PR

R P

⋅ + =

⋅ =

=  
 

Hence 191 kNBR =  and the component of BR  perpendicular to the gate is 95.5 kN. 

 

By the sum of forces perpendicular to the gate, the component of AR  perpendicular to 

the gate must also equal 95.5 kN. Further, taking the sum of forces along the gate, the 

components of both AR  and BR  must balance and so 191 kNA BR R= = . 

 

The resultant forces AR  and BR  must act at the same height as P in order to have 

static equilibrium. To find the force on each hinge at A, consider the following figure: 
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Taking moments about the bottom hinge: 

 

 
( ) ( )

( )
,

,

0.6 6 0.6 0.6 0

191 1.900 0.6
51.7 kN

4.8

A A top

A top

R h R

R

− − − − =

−
= =

 

 

And summing the horizontal forces: 

 

 , ,

, 191 51.7 139.3 kN
A A top A btm

A btm

R R R

R

= +

= − =
 

 

It makes intuitive sense that the lower hinge has a larger force. To design the bolts 

connecting the hinge to the lock wall the direct tension and shear forces are required. 

Calculate these for the lower hinge. 

(Ans. T = 120.6 kN, V =  69.7 kN) 
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Curved Surfaces 

For curved surfaces the fluid pressure on the infinitesimal areas are not parallel and 

so must be combined vectorially. It is usual to consider the total horizontal and 

vertical force components of the resultant. 

 

Surface Containing Liquid 

Consider the surface AB which contains liquid as shown below: 

 

 
 

• Horizontal Component 

Using the imaginary plane ACD we can immediately see that the horizontal 

component of force on the surface must balance with the horizontal force ACF . 

Hence: 

 

 
Force on projection of surface
onto a vertical planexF =  
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xF  must also act at the same level as ACF  and so it acts through the centre of 

pressure of the projected surface. 

 

• Vertical Component 

The vertical component of force on the surface must balance the weight of liquid 

above the surface. Hence: 

 

 
Weight of liquid directly 
above the surfaceyF =  

 

Also, this component must act through the centre of gravity of the area ABED, 

shown as G on the diagram. 

 

• Resultant 

The resultant force is thus: 

 

 2 2
x yF F F= +  

 

This force acts through the point O when the surface is uniform into the page, at 

an angle of: 

 1tan y

x

F
F

θ −=  

 

to the horizontal. Depending on whether the surface contains or displaces water 

the angle is measured clockwise (contains) or anticlockwise (displaces) from the 

horizontal. 
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Surface Displacing Liquid 

Consider the surface AB which displaces liquid as shown below: 

 

 
 

• Horizontal Component 

Similarly to the previous case, the horizontal component of force on the surface 

must balance with the horizontal force EBF . Hence again: 

 

 
Force on projection of surface
onto a vertical planexF =  

 

This force also acts at the same level as EBF  as before. 

 

• Vertical Component 

In this case we imagine that the area ABDC is filled with the same liquid. In this 

case yF  would balance the weight of the liquid in area ABDC. Hence: 
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Weight of liquid which 
would lie above the surfaceyF =  

 

This component acts through the centre of gravity of the imaginary liquid in area 

ABDC, shown as G on the diagram. 

 

The resultant force is calculated as before. 

 

Both of these situations can be summed up with the following diagram: 
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Curved Surfaces – Example 

Problem 

Determine the resultant force and its direction on the gate shown: 

 

 
 

Solution 

The horizontal force, per metre run of the gate, is that of the surface projected onto a 

vertical plane of length CB: 

 ( )3 610 9.81 6 1
2

176.6 kN

x CB CBF gA yρ=

⎛ ⎞= × × × × ⎜ ⎟
⎝ ⎠

=

 

 

And this acts at a depth 2 6 4 m
3

h = ⋅ =  from the surface. The vertical force is the 

weight of the imaginary water above AB: 

 

 

2
3 610 9.81 1

4
277.4 kN

yF π⎛ ⎞
= × ×⎜ ⎟

⎝ ⎠
=
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In which 2 4Rπ  is the area of the circle quadrant. The vertical force is located at: 

 

 4 4 6 2.55 m
3 3

Rx
π π

×
= = =  

 

to the left of line BC. The resultant force is thus: 

 

 

2 2

2 2176.6 277.4
328.8 kN

x yF F F= +

= +
=

 

 

And acts at an angle: 

 

1

1

tan

277.4tan
176.6

57.5

y

x

F
F

θ −

−

=

=

=

 

 

measured anticlockwise to the horizontal. The resultant passes through point C. Also, 

as the force on each infinitesimal length of the surface passes through C, there should 

be no net moment about C. Checking this: 

 

Moments about 0
176.6 4 277.4 2.55 0

706.4 707.4 0

C =

× − × =
− ≈

∑
 

 

The error is due to rounding carried out through the calculation. 
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Problems – Fluid Action on Surfaces 

1. You are in a car that falls into a lake to a depth as shown below. What is the 

moment about the hinges of the car door (1.0 × 1.2 m) due to the hydrostatic 

pressure? Can you open the door? What should you do? 

 
(Ans.  50.6 kNm, ?, ?) 

 

2. A sluice gate consist of a quadrant of a circle of radius 1.5 m pivoted at its 

centre, O. When the water is level with the gate, calculate the magnitude and 

direction of the resultant hydrostatic force on the gate and the moment required 

to open the gate. The width of the gate is 3 m and it has a mass of 6 tonnes. 

 
(Ans.  61.6 kN, 57˚, 35.3 kNm) 
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3. The profile of a masonry dam is an arc of a circle, the arc having a radius of 30 

m and subtending an angle of 60˚ at the centre of curvature which lies in the 

water surface. Determine: (a) the load on the dam in kN/m length; (b) the 

position of the line of action to this pressure. 

 
(Ans. 4280 kN/m, 19.0 m) 

 

4. The face of a dam is curved according to the relation 
2 2.4y x=  where y and x 

are in meters, as shown in the diagram. Calculate the resultant force on each 

metre run of the dam. Determine the position at which the line of action of the 

resultant force passes through the bottom of the dam. 

 
(Ans. 1920 kN, 14.15 m) 
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4. Hydrodynamics: Basics 

4.1 General Concepts 

Introduction 

Hydrostatics involves only a few variables: ρ , g, and h, and so the equations 

developed are relatively simple and experiment and theory closely agree. The study 

of fluids in motion is not as simple and accurate. The main difficulty is viscosity. 

 

By neglecting viscosity (an ideal fluid), we do not account for the shear forces which 

oppose flow. Based on this, reasonably accurate and simple theories can be derived.. 

Using experimental results, these theories can then be calibrated by using 

experimental coefficients. They then inherently allow for viscosity. 

 

As we will be dealing with liquids, we will neglect the compressibility of the liquid. 

This is incompressible flow. This is not a valid assumption for gases. 

 

Classification of Flow Pattern 

There are different patterns of fluid flow, usually characterized by time and distance: 

 

• Time: A flow is steady if the parameters describing it (e.g. flow rate, velocity, 

pressure, etc.) do not change with time. Otherwise a flow is unsteady. 

 

• Distance: A flow is uniform if the parameters describing the flow do not 

change with distance. In non-uniform flow, the parameters change from point 

to point along the flow. 

 

From these definitions almost all flows will be one of: 
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Steady uniform flow 

Discharge (i.e. flow rate, or volume per unit time) is constant with time and the cross 

section of the flow is also constant. Constant flow through a long straight prismatic 

pipe is an example. 

 

Steady non-uniform flow 

The discharge is constant with time, but the cross-section of flow changes. An 

example is a river with constant discharge, as the cross section of a river changes 

from point to point. 

 

Unsteady uniform flow 

The cross-section is constant but the discharge changes with time resulting in 

complex flow patterns. A pressure surge in a long straight prismatic pipe is an 

example. 

 

Unsteady non-uniform flow 

Both discharge and cross section vary. A flood wave in a river valley is an example. 

This is the most complex type of flow. 

 

Visualization 

To picture the motion of a fluid, we start by examining the motion of a single fluid 

‘particle’ over time, or a collection of particles at one instant. This is the flow path of 

the particle(s), or a streamline: 

 



Fluid Mechanics 

Dr. C. Caprani 61

At each point, each particle has both velocity and acceleration vectors: 

 

 
 

A streamline is thus tangential to the velocity vectors of the particles. Hence: 

• there can be no flow across a streamline; 

• therefore, streamlines cannot cross each other, and; 

• once fluid is on a streamline it cannot leave it. 

 

We extend this idea to a collection of paths of fluid particles to create a streamtube: 

 

 
 

Streamlines and streamtubes are theoretical notions. In an experiment, a streakline is 

formed by injecting dye into a fluid in motion. A streakline therefore approximates a 

streamline (but is bigger because it is not an individual particle). 
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Dimension of Flow 

Fluid flow is in general three-dimensional in nature. Parameters of the flow can vary 

in the x, y and z directions. They can also vary with time. In practice we can reduce 

problems to one- or two-dimensional flow to simplify. For example: 

 
One dimensional flow 

 

 
A two-dimensional streamtube 

 

 
Flow over an obstruction 
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Fundamental Equations 

To develop equations describing fluid flow, we will work from relevant fundamental 

physical laws. 

 

The Law of Conservation of Matter 

Matter cannot be created nor destroyed (except in a nuclear reaction), but may be 

transformed by chemical reaction. In fluids we neglect chemical reactions and so we 

deal with the conservation of mass. 

 

The Law of Conservation of Energy 

Energy cannot be created nor destroyed, it can only be transformed from one form to 

another. For example, the potential energy of water in a dam is transformed to kinetic 

energy of water in a pipe. Though we will later talk of ‘energy losses’, this is a 

misnomer as none is actually lost but transformed to heat and other forms. 

 

The Law of Conservation of Momentum 

A body in motion remains in motion unless some external force acts upon it. This is 

Newton’s Second Law: 

 
Rate of change

Force =
of momentum

 

 

( )d mv
F

dt
dvm
dt

ma

=

=

=

 

 

 

To apply these laws to fluids poses a problem, since fluid is a continuum, unlike rigid 

bodies. Hence we use the idea of a ‘control volume’. 
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Control Volume 

A control volume is an imaginary region within a body of flowing fluid, usually at 

fixed location and of a fixed size: 

 

 
 

It can be of any size and shape so we choose shapes amenable to simple calculations. 

Inside the region all forces cancel out, and we can concentrate on external forces. It 

can be picture as a transparent pipe or tube, for example. 
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4.2 The Continuity Equation 

Development 

Applying the Law of Conservation of Mass to a control volume, we see: 

 

 
Rate of mass Rate of mass Rate of mass

= +
entering leaving increase

 

 

For steady incompressible flow, the rate of mass increase is zero and the density of 

the fluid does not change. Hence: 

 

 
Rate of mass Rate of mass

=
entering leaving

 

 

The rate of mass change can be expressed as: 

 

 
Rate of mass Fluid Volume 

=
change density per second

×  

 

Using Q for flow rate, or volume per second (units: m3/s, dimensions: L3T-1): 

 

 in outQ Qρ ρ=  

 

And as before, assuming that the flow is incompressible: 

 

 in outQ Q=  
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Consider a small length of streamtube: 

 

 
 

The fluid at 1-1 moves a distance of s vt=  to 2-2. Therefore in 1 second it moves a 

distance of v. The volume moving per second is thus: 

 

 Q Av=  

 

Thus, for an arbitrary streamtube, as shown, we have: 

 

 
 

 1 1 2 2Av A v=  
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A typical application of mass conservation is at pipe junctions: 

 

 
 

From mass conservation we have: 

 

 1 2 3

1 1 2 2 3 3

Q Q Q
Av A v A v

= +

= +
 

 

If we consider inflow to be positive and outflow negative, we have: 

 

 
No. of Nodes

1

0i i
i

Av
=

=∑  
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Mass Conservation – Example 

Problem 

Water flows from point A to points D and E as shown. Some of the flow parameters 

are known, as shown in the table. Determine the unknown parameters. 

 

 
 

Section 
Diameter 

(mm) 

Flow Rate 

(m3/s) 

Velocity 

(m/s) 

AB 300 ? ? 

BC 600 ? 1.2 

CD ? 3 42Q Q=  1.4 

CE 150 4 30.5Q Q=  ? 
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Solution 

From the law of mass conservation we can see: 

 

 1 2Q Q=  

 

And as total inflow must equal total outflow: 

 

 

1

3 4

3 3

3

0.5
1.5

outQ Q
Q Q
Q Q

Q

=

= +
= +

=

 

 

We must also work out the areas of the pipes, 
2

4
i

i
dA π

= . Hence: 

 

A1 = 0.0707 m3  A2 = 0.2827 m3  A4 = 0.0177 m3 

 

Starting with our basic equation, Q Av= , we can only solve for 2Q  from the table: 

 

 ( )( )2

3

0.2827 1.2

0.3393 m /

Q

s

=

=
 

 

We know that 1 2Q Q=  and so we can now calculate 3Q  from previous: 

 

 
1 3

31
3

1.5
0.3393 0.2262 m /s

1.5 1.5

Q Q
QQ

=

= = =
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And so, 

 

 33
4

0.2262 0.1131 m /s
2 2

QQ = = =  

 

Thus we have all the flows. The unknown velocities are: 

 

 1
1

1

0.3393 4.8 m/s
0.0707

Qv
A

= = =  

 4
4

4

0.1131 6.4 m/s
0.0177

Qv
A

= = =  

 

And lastly, the diameter of pipe CD is: 

 

 23
3

3

0.2262 0.1616 m
1.4

QA
v

= = =  

 3
3

4 0.454 mAd
π

= =  

 

And so it is likely to be a 450 mm ∅  pipe. 

 

Note that in a problem such as this the individual calculations do not pose a problem. 

It is the strategy used to solve it that is key. In this problem, we started from some 

knowns and one equation. Even though we couldn’t see all the way to the end from 

Step 1, with each new calculation another possibility opened up. This is the ‘art of 

problem solving’ and it can only be learned by practice! 
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4.3 The Energy Equation 

Development 

We apply the Law of Conservation of Energy to a control volume. To do so, we must 

identify the forms of energy in the control volume. Consider the following system: 

 

 
 

The forms of energy in this system are: 

• Pressure energy: 

The pressure in a fluid also does work by generating force on a cross section 

which then moves through a distance. This is energy since work is energy. 

• Kinetic energy:  

This is due to the motion of the mass of fluid. 

• Potential energy:  

This is due to the height above an arbitrary datum. 
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Pressure Energy 

The combination of flow and pressure gives us work. The pressure results in a force 

on the cross section which moves through a distance L in time tδ . Hence the pressure 

energy is the work done on a mass of fluid entering the system, which is: 

 

 1 1m A Lρ=  

 

And so the pressure energy at the entry is: 

 

 1 1PrE pAL p A L= =  

 

Kinetic Energy 

From classical physics, the kinetic energy of the mass entering is: 

 

 2 2
1 1 1

1 1KE
2 2

mv A Lvρ= =  

 

Potential Energy 

The potential energy of the mass entering, due to the height above the datum is: 

 

 1 1 1PE mgz A Lgzρ= =  

 

Total Energy 

The total energy at the entry to the system is just the sum: 

 

 * 2
1 1 1 1 1 1 1 1 1

1
2

H p A L A Lv A Lgzρ ρ= + +  

 

 

Be careful to 

distinguish the 

density ρ  and the 

pressure p. 
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Final Form 

It is more usual to consider the energy per unit weight, and so we divide through by 

1 1mg gA Lρ= : 

 

 

*
1

1
1 1

2
1 1 1 1 1 1 1 1

1 1 1 1 1 1
2

1 1
1

1

1
2

2

HH
gA L

p A L A Lv A Lgz
gA L gA L gA L

p v z
g g

ρ

ρ ρ
ρ ρ ρ

ρ

=

= + +

= + +

 

 

Similarly, the energy per unit weight leaving the system is: 

 

 
2

2 2
2 2

2 2
p vH z

g gρ
= + +  

 

Also, the energy entering must equal the energy leaving as we assume the energy 

cannot change. Also, assuming incompressibility, the density does not change: 

 

 
1 2

2 2
1 1 2 2

1 22 2

H H

p v p vz z
g g g gρ ρ

=

+ + = + +
 

 

And so we have Bernoulli’s Equation: 

 

 
2 2

1 1 2 2
1 2 constant

2 2
p v p vz z H
g g g gρ ρ

+ + = + + = =  
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Comments 

From Bernoulli’s Equation we note several important aspects: 

 

1. It is assumed that there is no energy taken from or given to the fluid between 

the entry and exit. This implies the fluid is frictionless as friction generates 

heat energy which would be an energy loss. It also implies that there is no 

energy added, say by a pump for example.  

 

2. Each term of the equation has dimensions of length, L, and units of metres. 

Therefore each term is known as a head: 

• Pressure head: p
gρ

; 

• Kinetic or velocity head: 
2

2
v
g

; 

• Potential or elevation head: z . 

 

3. The streamtube must have very small dimensions compared to the heights 

above the datum. Otherwise the height to the top of a cross-section would be 

different to the height to the bottom of a cross-section. Therefore, Bernoulli’s 

Equation strictly only applies to streamlines. 

 

We have derived the equation from energy considerations. It can also be derived by 

force considerations upon an elemental piece of fluid. 
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Energy Equation – Example 

Problem 

For the siphon shown, determine the discharge and pressure heads at A and B given 

that the pipe diameter is 200 mm and the nozzle diameter is 150 mm. You may 

neglect friction in the pipe. 
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Solution 

To find the discharge (or flow) apply Bernoulli’s Equation along the streamline 

connecting points 1 and 2. To do this note: 

• Both 1p  and 2p  are at atmospheric pressure and are taken to be zero; 

• 1v  is essentially zero. 

 

 

2 2
1 1 2 2

1 2
0 00

2
2

1 2

2 2

2

p v p vz z
g g g g

vz z
g

ρ ρ= ==

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

− =

 

 

Hence, from the figure: 

 

 

2
2

2

1.22 0.15
2 9.81
5.18 m/s

v

v

+ =
×

=
 

 

And using continuity: 

 

 ( )
2 2 2

2

3

0.15
5.18

4
0.092 m /

Q A v

s

π

=

= ⋅

=

 

 

For the pressure head at A, apply Bernoulli’s equation from point 1 to A: 

 

 
2 2

1 1
1

0 02 2
A A

A
p v p vz z
g g g gρ ρ= =

⎛ ⎞⎛ ⎞
+ + = + +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
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Hence: 

 

 ( )
2

1 2
A A

A
p vz z
g gρ

= − −  

 

Again using continuity between point 2 and A and the diameter of the pipe at A: 

 

 ( )

2

2

0.092

0.2
0.092

4
2.93 m/s

A

A A

A

A

Q Q
A v

v

v

π

=
=

⋅ =

=

 

 

Hence the kinetic head at A is just 
2

0.44 m
2

Av
g

= , and so: 

 

 
2.44 0.44

2.88 m

Ap
gρ

= − −

= −

 

 

This is negative gauge pressure indicating suction. However, it is still a positive 

absolute pressure.  

 

Similarly to A, at B we have, B Av v=  and 1 1.22 mBz z− =  and so: 

 

 

( )
2

1 2
1.22 0.44
0.78 m

B B
B

p vz z
g gρ

= − −

= −
=
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4.4 The Momentum Equation 

Development 

We consider again a general streamtube: 

 
In a given time interval, tδ , we have: 

 

 1 1

2 2

momentum entering
momentum leaving

Q t v
Q t v

ρ δ
ρ δ

=
=

 

 

From continuity we know 1 2Q Q Q= = . Thus the force required giving the change in 

momentum between the entry and exit is, from Newton’s Second Law: 

 

( )d mv
F

dt
=  

 
( )

( )

2 1

2 1

Q t v v
F

t
Q v v

ρ δ
δ

ρ

−
=

= −
 

 

This is the force acting on a fluid element in the direction of motion. The fluid exerts 

an equal but opposite reaction to its surroundings. 
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Application – Fluid Striking a Flat Surface 

Consider the jet of fluid striking the surface as shown: 

 

 
 

The velocity of the fluid normal to the surface is: 

 

 cosnormalv v θ=  

 

This must be zero since there is no relative motion at the surface. This then is also the 

change in velocity that occurs normal to the surface. Also, the mass flow entering the 

control volume is: 

 

 Q Avρ ρ=  

 

Hence: 
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( )

( )( )
2

cos

cos

d mv
F

dt
Av v

Av

ρ θ

ρ θ

=

=

=

 

 

And if the plate is perpendicular to the flow then: 

 

 2F Avρ=  

 

Notice that the force exerted by the fluid on the surface is proportional to the velocity 

squared. This is important for wind loading on buildings. For example, the old wind 

loading code CP3: Chapter V gives as the pressure exerted by wind as: 

 

 20.613 sq v=  (N/m2) 

In which sv  is the design wind speed read from maps and modified to take account of 

relevant factors such as location and surroundings. 
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Application – Flow around a bend in a pipe 

Consider the flow around the bend shown below. We neglect changes in elevation 

and consider the control volume as the fluid between the two pipe joins. 

 

 
 

The net external force on the control volume fluid in the x-direction is: 

 

 1 1 2 2 cos xp A p A Fθ− +  

 

In which xF  is the force on the fluid by the pipe bend (making it ‘go around the 

corner’). The above net force must be equal to the change in momentum, which is: 

 

 ( )2 1cosQ v vρ θ −  

 

Hence: 

 

 
( )
( )

( ) ( )

1 1 2 2 2 1

2 1 1 1 2 2

2 2 2 1 1 1

cos cos

cos cos

cos

x

x

p A p A F Q v v

F Q v v p A p A

Qv p A Qv p A

θ ρ θ

ρ θ θ

ρ θ ρ

− + = −

= − − +

= + − +
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Similarly, for the y-direction we have: 

 

 

( )
( )

( )

2 2 2

2 2 2

2 2 2

sin sin 0

sin 0 sin

sin

y

y

p A F Q v

F Q v p A

Qv p A

θ ρ θ

ρ θ θ

ρ θ

− + = −

= − +

= +

 

 

The resultant is: 

 

 2 2
x yF F F= +  

 

And which acts at an angle of: 

 

 1tan y

x

F
F

θ −=  

 

This is the force and direction of the bend on the fluid. The bend itself must then be 

supported for this force. In practice a manhole is built at a bend, or else a thrust block 

is used to support the pipe bend. 
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Application – Force exerted by a firehose 

Problem 

A firehose discharges 5 l/s. The nozzle inlet and outlet diameters are 75 and 25 mm 

respectively. Calculate the force required to hold the hose in place. 

 

Solution 

The control volume is taken as shown: 

 

 
 

There are three forces in the x-direction: 

• The reaction force RF  provided by the fireman; 

• Pressure forces PF : 1 1p A  at the left side and 0 0p A  at the right hand side; 

• The momentum force MF  caused by the change in velocity. 

So we have: 

 

 M P RF F F= +  

 

The momentum force is: 
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 ( )2 1MF Q v vρ= −  

 

Therefore, we need to establish the velocities from continuity: 

 

 ( )

3

1 2
1

5 10
0.075 4

1.13 m/s

Qv
A π

−×
= =

=

 

 

And 

 

 ( )

3

2 2
5 10
0.025 4

10.19 m/s

v
π

−×
=

=

 

 

Hence: 

 

 

( )
( )( )

2 1

3 310 5 10 10.19 1.13

45 N

MF Q v vρ
−

= −

= × −

=

 

 

The pressure force is: 

 

 1 1 0 0PF p A p A= −  

 

If we consider gauge pressure only, the 0 0p =  and we must only find 1p . Using 

Bernoulli’s Equation between the left and right side of the control volume: 
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2 2

1 1 0 0

02 2
p v p v
g g g gρ ρ =

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
 

 

Thus: 

 

 

( )

( )

2 2
1 1 0

3
2 2

2

2

10 10.19 1.13
2

51.28 kN/m

p v vρ⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

=

 

 

Hence 

 

 ( ) ( )
1 1 0 0

2
3 0.075

51.28 10 0
4

226 N

PF p A p A

π

= −

⎛ ⎞
= × −⎜ ⎟⎜ ⎟

⎝ ⎠
=

 

 

Hence the reaction force is: 

 

 45 226
181 N

R M PF F F= −
= −
= −

 

 

This is about a fifth of an average body weight – not inconsequential. 
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4.5 Modifications to the Basic Equations 

Flow Measurement – Small Orifices 

Consider the following tank discharge through a small opening below its surface: 

 
 

If the head is practically constant across the diameter of the orifice ( h d> ) then, 

using the energy equation: 

 

 
2 2

1 1 2 2 0
2 2

p v p vh
g g g gρ ρ

+ + = + +  

 

With both pressures atmospheric and taking 1 0v =  we have: 

 

 
2
2

2
vh
g

=  

 

And so the velocity through the orifice is: 
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 2 2v gh=  

 

This is Torricelli’s Theorem and represents the theoretical velocity through the 

orifice. Measured velocities never quite match this theoretical velocity and so we 

introduce a coefficient of velocity, vC , to get: 

 

 2actual vv C gh=  

 

Also, due to viscosity the area of the jet may not be the same as that of the orifice and 

so we introduce a coefficient of contraction, cC : 

 

 Area of jet
Area of orificecC =  

 

Lastly, the discharge through the orifice is then: 

 

 ( )( )2

2

c v

d

Q Av

C a C gh

C a gh

=

=

=

 

 

In which dC  is the coefficient of discharge and is equal to c vC C . For some typical 

orifices and mouthpieces values of the coefficient are: 
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Flow Measurement – Large Orifices 

When studying small orifices we assumed that the head was effectively constant 

across the orifice. With large openings this assumption is not valid. Consider the 

following opening: 

 

 
 

To proceed, we consider the infinitesimal rectangular strip of area b dh⋅  at depth h. 

The velocity through this area is 2gh  and the infinitesimal discharge through it is: 

 

 2ddq C b dh gh=  

 

Thus the total discharge through the opening is the sum of all such infinitesimal 

discharges: 

 

 

( )

1

2

3 3
2 2

1 2

2

2 2
3

H

d
H

d

Q dq

C b g h dh

C b g H H

=

=

= −

∫

∫  
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Large openings are common in civil engineering hydraulics, for example in weirs. 

But in such cases the fluid has a velocity ( aV ) approaching the large orifice: 

 

 
 

Using the energy equation: 

 

 
22

2 2
jeta vV h

g g
+ =  

 

Hence: 

 
( )

2

2

2

2 2

jet a

a

v gh V

g h V g

= +

= +
 

 

In which each term in the brackets is a head. Given the velocity we can find the 

discharge through the strip to be: 

 

 ( )22 2d adq C b dh g h V g= +  

 

And so the total discharge is: 
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( ) ( )

1

2

2

3/ 2 3/ 22 2
1 2

2 2

2 2 2 2
3

H

d a
H

d a a

Q dq

C b g h V g dh

C b g H V g H V g

=

= +

⎡ ⎤= + − +⎢ ⎥⎣ ⎦

∫

∫  
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Discharge Measurement in Pipelines 

We consider two kinds of meters based on constricting the flow: the Venturi meter 

and the Orifice meter, as shown. 

 

 
 

The constriction in these meters causes a difference in pressure between points 1 and 

2, and it is this pressure difference that enables the discharge to be measured. 

Applying the energy equation between the inlet and the constriction: 

 

 
2 2

1 1 2 2

2 2
p v p v
g g g gρ ρ

+ = +  

 

Thus the difference in height in the piezometer is: 

 

 
2 2

1 2 1 2

2
p p v vh

g gρ
− −

= =  

 

And from continuity 1 1 2 2Q Av A v= = , and using 1 2k A A=  we get: 
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( )2 2 2 2 2 2
2 1 2 1 1v A A v k v= =  

 

And also: 

 

 2 2
1 22v gh v= +  

 

Which after substituting for 2
2v  and rearranging gives: 

 

 1 2

2
1

ghv
k

=
−

 

 

Hence the discharge is: 

 

 
1 1

1 2

2
1

Q Av

ghA
k

=

=
−

 

 

This equation neglects all losses. The actual discharge requires the introduction of the 

coefficient of discharge, dC : 

 

 1 2

2
1actual d

ghQ C A
k

=
−

 

 

For properly designed Venturi meters, dC  is about 0.97 to 0.99 but for the Orifice 

meter it is much lower at about 0.65. 
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Velocity and Momentum Factors 

The velocity and momentum terms in the energy and momentum equations (and in 

any resultant developments) have assumed uniform flow and thus require 

modification due to velocity variations: 

 

 
 

We require a factor that accounts for the real velocity profile and so we equate kinetic 

energies. For the true profile the mass passing through a small area is v dAρ . Hence 

the kinetic energy passing through this small area is ( ) 21
2

v dA vρ  and so the total 

energy is: 

 

 31
2

v dAρ∫  

 

With an imaginary uniform flow of the average velocity V , the total energy is 

31
2

V Aα ρ  in which α  is the velocity correction factor. Hence: 

 

 3 31 1
2 2

V A v dAα ρ ρ= ∫  
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And so 

 

 
31 v dA

A V
α ⎛ ⎞= ⎜ ⎟

⎝ ⎠∫  

 

Usual values for α  are 1.03 to 1.3 for turbulent flows and 2 for laminar flows. 

 

The momentum correction factor follows a similar idea and is: 

 

 
21 v dA

A V
β ⎛ ⎞= ⎜ ⎟

⎝ ⎠∫  

Its values are lower than α . 

 

Both correction factors are usually close to unity and are usually ignored, but this is 

not always the case. 
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Accounting for Energy Losses 

Consider the following reservoir and pipe system: 

 

 
 

The energy equation gives us: 

 
2 2

1 1 2 2
1 2 constant

2 2
p v p vz z H
g g g gρ ρ

+ + = + + = =  

 

Taking there to be zero velocity everywhere, we can draw this total head on the 

diagram: 
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Hence at each point we have an exchange between pressure head and static head: 

 

p z H
gρ

+ =  

 

If we introduce the effect of velocity into the diagram we know that the pressure must 

fall by an amount 
2

2
v
g

 since we now have 

 
2

2
p v z H
g gρ

+ + =  

 

 
 

The hydraulic grade line is the line showing the pressure and static heads only. 

 

If the velocity varies over the length of the pipe due to changes in diameter, say, we 

now have: 
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Note that the hydraulic grade line rises at the larger pipe section since the velocity is 

less in the larger pipe (Q Av= ). If we now consider energy to be lost at every point 

along the length of the pipe, the total head will reduce linearly: 

 
Thus denoting fh  as the friction head loss, we modify the energy equation to take 

account of friction losses between two points: 
2 2

1 1 2 2
1 22 2 f

p v p vz z h
g g g gρ ρ

+ + = + + +  
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Problems – Energy Losses and Flow Measurement 

1. Estimate the energy head lost along a short length of pipe suddenly enlarging 

from a diameter of 350mm to 700 mm which discharges 700 litres per second 

of water. If the pressure at the entrance of the flow is 105 N/m2, find the 

pressure at the exit. 

(Ans.  0.28 m, 1.02 × 105 N/m2) 

 

2. A Venturi meter is introduced in a 300 mm diameter horizontal pipeline 

carrying water under a pressure of 150 kN/m2. The throat diameter of the meter 

is 100 mm and the pressure at the throat is 400 mm of mercury below 

atmosphere. If 3% of the differential pressure is lost between the inlet and 

outlet throat, determine the flow rate in the pipe. 

(Ans.  157 l/s) 

 

3. A 50 mm inlet/25 mm throat Venturi meter with a coefficient of discharge of 

0.98 is to be replaced by an orifice meter having a coefficient of discharge of 

0.6. If both meters are to give the same differential mercury manometer 

reading for a discharge of 10 l/s, determine the diameter of the orifice. 

(Ans. 31.2 mm) 
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5.  Hydrodynamics: Flow in Pipes 

5.1 General Concepts 

The real behaviour of fluids flowing is well described by an experiment carried out 

by Reynolds in 1883. He set up the following apparatus: 

 

 
 

The discharge is controlled by the valve and the small ‘filament’ of dye (practically a 

streamline) indicates the behaviour of the flow. By changing the flow Reynolds 

noticed: 

 

• At low flows/velocities the filament remained intact and almost straight. This 

type of flow is known as laminar flow, and the experiment looks like this: 
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• At higher flows the filament began to oscillate. This is called transitional flow 

and the experiment looks like: 

 

 
 

• Lastly, for even higher flows again, the filament is found to break up 

completely and gets diffused over the full cross-section. This is known as 

turbulent flow: 

 

 
 

Reynolds experimented with different fluids, pipes and velocities. Eventually he 

found that the following expression predicted which type of flow was found: 

 

 Re vlρ
µ

=  

 

In which Re is called the Reynolds Number; ρ  is the fluid density; v  is the average 

velocity; l  is the characteristic length of the system (just the diameter for pipes), and; 

µ is the fluid viscosity. The Reynolds Number is a ration of forces and hence has no 

units. 

 

Flows in pipes normally conform to the following: 

• Re 2000< : gives laminar flow; 
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• 2000 Re 4000< < : transitional flow; 

• Re 4000> : turbulent flow. 

 

These values are only a rough guide however. Laminar flows have been found at 

Reynolds Numbers far beyond even 4000. 

 

For example, if we consider a garden hose of 15 mm diameter then the limiting 

average velocity for laminar flow is: 

 

 
( ) ( )3

3

Re

10 0.015
2000

0.55 10
0.073 m/s

vl

v

v

ρ
µ

−

=

=
×

=

 

 

This is a very low flow and hence we can see that in most applications we deal with 

turbulent flow. 

 

The velocity below which there is no turbulence is called the critical velocity. 
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Characteristics of Flow Types 

For laminar flow: 

• Re < 2000; 

• ‘low’ velocity; 

• Dye does not mix with water; 

• Fluid particles move in straight lines; 

• Simple mathematical analysis possible; 

• Rare in practical water systems. 

 

Transitional flow 

• 2000 < Re < 4000 

• ‘medium’ velocity 

• Filament oscillates and mixes slightly. 

 

Turbulent flow 

• Re > 4000; 

• ‘high’ velocity; 

• Dye mixes rapidly and completely; 

• Particle paths completely irregular; 

• Average motion is in the direction of the flow; 

• Mathematical analysis very difficult - experimental measures are used; 

• Most common type of flow. 
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Background to Pipe Flow Theory 

To explain the various pipe flow theories we will follow the historical development 

of the subject: 

 

Date Name Contribution 

~1840 Hagen and Poiseuille Laminar flow equation 

1850 Darcy and Weisbach Turbulent flow equation 

1883 Reynolds Distinction between laminar and turbulent flow 

1913 Blasius Friction factor equation or smooth pipes 

1914 Stanton and Pannell Experimental values of friction factor for smooth 

pipes 

1930 Nikuradse Experimental values of friction factor for 

artificially rough pipes 

1930s Prandtl and von Karman Equations for rough and smooth friction factors 

1937 Colebrook and White  Experimental values of the friction factor for 

commercial pipes and the transition formula 

1944 Moody The Moody diagram for commercial pipes 

1958 Ackers Hydraulics Research Station charts and tables for 

the design of pipes and channels 

1975 Barr Solution of the Colebrook-White equation 
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5.2 Laminar Flow 

Steady Uniform Flow in a Pipe: Momentum Equation 

The development that follows forms the basis of the flow theories applied to laminar 

flows. We remember from before that at the boundary of the pipe, the fluid velocity is 

zero, and the maximum velocity occurs at the centre of the pipe. This is because of 

the effect of viscosity.  Therefore, at a given radius from the centre of the pipe the 

velocity is the same and so we consider an elemental annulus of fluid: 

 

 
 

In the figure we have the following: 

• rδ  – thickness of the annulus; 

• lδ  – length of pipe considered; 

• R – radius of pipe; 

• θ  – Angle of pipe to the horizontal. 
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The forces acting on the annulus are: 

 

• The pressure forces: 

o Pushing the fluid:  2p rπ δ  

o Resisting   2dpp l r
dl

δ π δ⎛ ⎞+⎜ ⎟
⎝ ⎠

 

 

• The shear forces (due to viscosity): 

o Inside the annulus:  2 r lτ π δ  

o Outside the annulus ( )2d r r r l
dr
ττ δ π δ δ⎛ ⎞+ +⎜ ⎟

⎝ ⎠
 

 

• The weight of the fluid (due to the angle θ ): 

 

 2 sing l rρ πδ δ θ  

 

The sum of the forces acting is equal to the change in momentum. However, the 

change in momentum is zero since the flow is steady and uniform. Thus: 

 

( )2 2 2 2 2 sin 0dp dp r p l r r l r r r l g l r
dl dr

τπ δ δ π δ τ π δ τ δ π δ δ ρ πδ δ θ⎛ ⎞ ⎛ ⎞− + + − + + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Using sin dz dlθ = − , and dividing by 2 r l rπ δ δ  gives: 

 

 0dp d dzg
dl dr r dl

τ τ ρ− − − − =  
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In which second order terms have been ignored. We introduce the term *p p gzρ= +  

which is the piezometric pressure measured from the datum 0z =  to give: 

 

 
*

0dp d
dl r dr

τ τ⎛ ⎞− − + =⎜ ⎟
⎝ ⎠

 

 

Examining the term in brackets, we see: 

 

 ( )1 1d d dr r
dr r r dr r dr
τ τ τ τ τ⎛ ⎞+ = + =⎜ ⎟

⎝ ⎠
 

 

Hence: 

 

 ( )
* 1 0dp d r

dl r dr
τ− − =  

 ( )
*d dpr r

dr dl
τ = −  

 

Integrating both sides: 

 

 
2 *

2
r dpr C

dl
τ = − +  

 

But at the centreline, 0r =  and thus the constant of integration 0C = . Thus: 

 

 
*

2
r dp

dl
τ = −  

 

Thus the shear stress at any radius is known in terms of the piezometric pressure. 
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Hagen-Poiseuille Equation for Laminar Flow 

We can use the knowledge of the shear stress at any distance from the centre of the 

pipe in conjunction with our knowledge of viscosity as follows: 

 

 
*

2

rdv dv
dy dr
r dp

dl

τ µ µ= = −

= −

 

 

Hence: 

 

 
*

2
rdv r dp

dr dlµ
=  

 

Integrating: 

 

 
2 *

4r
r dpv C

dlµ
= +  

 

At the pipe boundary, 0rv =  and r R= , Hence we can solve for the constant as: 

 

 
2 *

4
R dpC

dlµ
= −  

 

And so: 

 

 ( )
*

2 21
4r

dpv R r
dlµ

= − −  
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Thus the velocity distribution is parabolic (i.e. a quadratic in r). The total discharge 

can now be evaluated: 

 

 ( )2 rQ r r vδ π δ=  

 

Introducing the equation for the velocity at radius r and integrating gives: 

 

 ( )
0

*
2 2

0

*
4

2

2
4

8

R

r

R

Q rv dr

dp r R r dr
dl

dp R
dl

π

π
µ

π
µ

=

= − −

= −

∫

∫  

 

The mean velocity, v  is obtained from Q as: 

 

 
*

4
2

*
2

1
8 2
1

8

Qv
A

dp R
dl R

dp R
dl

π
µ π

µ

=

= −

= −

 

 

At this point we introduce the allowance for the frictional head loss, which represents 

the change in pressure head occurring over the length of pipe examined, i.e.: 

 

 
*

f
ph
gρ

∆
= −  
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Therefore, introducing this and the relation for the pipe diameter 2 2 4R D= , the 

equation for the mean velocity becomes: 

 

 
21

8 4
fh Dv g

L
ρ

µ
=  

 

And rearranging for the head loss that occurs, gives the Hagen-Poiseuille Equation: 

 

 2

32
f

Lvh
gD
µ

ρ
=  
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Example: Laminar Flow in Pipe 

Problem 

Oil flows through a 25 mm diameter pipe with mean velocity of 0.3 m/s. Given that 

the viscosity 24.8 10  kg/msµ −= ×  and the density 3800 kg/mρ = , calculate: (a) the 

friction head loss and resultant pressure drop in a 45 m length of pipe, and; (b) the 

maximum velocity, and the velocity 5 mm from the pipe wall. 

 

Solution 

Firstly check that the laminar flow equations developed apply, that is, Re < 2000: 

 

 ( )( )( )
2

Re  for pipe flow

800 0.025 0.3
4.8 10

125
2000 thus laminar equations apply

Dvρ
µ

−

=

=
×

=
<

 

 

1. To find the friction head loss, we apply the Hagen-Poiseuille Equation: 

 

 
( )( )( )

( )( )( )

2

2

2

32

32 4.8 10 45 0.3

800 9.81 0.025
4.228 m of oil

f
Lvh

gD
µ

ρ
−

=

×
=

=

 

 

The associated pressure drop is: 
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 ( )( )( )
2

800 9.81 4.228

33.18 kN/m

fp ghρ∆ = −

= −

= −

 

 

The negative sign is used to enforce the idea that it is a pressure drop. 

 

2. To find the velocities, use the equation for velocities at a radius: 

 

 ( )
*

2 21
4r

dpv R r
dlµ

= − −  

 

The maximum velocity occurs furthest from the pipe walls, i.e. at the centre of the 

pipe where 0r = , hence: 

 

 ( )
( )3 2

max 2

33.18 101 0.025 0
45 24 4.8 10

0.6 m/s

v
−

− × ⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟× ⎝ ⎠⎝ ⎠
=

 

 

Note that the maximum velocity is twice the mean velocity. This can be confirmed 

for all pipes algebraically. The velocity at 5 mm from the wall is: 

 

 ( )
( ) ( )

3 2
2

max 2

33.18 101 0.025 0.0075
45 24 4.8 10

0.384 m/s

v
−

− × ⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟× ⎝ ⎠⎝ ⎠
=

 

 

In which it must be remembered that at 5 mm from the wall, 25 5 7.5 mm
2

r = − = . 
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5.3 Turbulent Flow 

Description 

Since the shearing action in laminar flows is well understood, equations describing 

the flow were easily determined.  In turbulent flows there is no simple description of 

the shear forces that act in the fluid. Therefore the solutions of problems involving 

turbulent flows usually involve experimental results. 

 

In his work, Reynolds clarified two previous results found experimentally: 

 

• Hagen and Poiseuille found that friction head loss is proportional to the mean 

velocity: 

 

 fh v∝  

  

Reynolds found that this only applies to laminar flows, as we have seen. 

 

• Darcy and Weisbach found that friction head loss is proportional to the mean 

velocity squared: 

 

 2
fh v∝  

  

Reynolds found that this applies to turbulent flows. 
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Empirical Head Loss in Turbulent Flow 

Starting with the momentum equation previously developed, and considering only the 

shear stress at the pipe wall, 0τ , we have: 

 

 
*

0 2
R dp

dl
τ = −  

 

We also know from the Hagen-Poiseuille equation that: 

 

 
*

fh gdp
dl L

ρ
− =  

 

Hence: 

 

 0 2
fh Rg

L
τ ρ=  

 

Using he experimental evidence that 2
fh v∝ , we introduce 2

1fh K v= : 

 

 

2
1

0

2
2

2
K v Rg

L
K v

τ ρ=

=
 

 

Hence, from previous 

 

 2
2 0 2

fh RK v g
L

τ ρ= =  
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And rearranging for the friction head loss: 

 

 
2

24
f

K Lvh
gDρ

=  

 

If we substitute in for some of the constants 28Kλ ρ=  we get: 

 

 
2

2f
Lvh
gD

λ
=  

 

This is known as the Darcy-Weisbach Equation.  

 

In this equation, λ  is known as the pipe friction factor and is sometimes referred to 

as f in American practice. It is a dimensionless number and is used in many design 

charts. It was once though to be constant but is now known to change depending on 

the Reynolds number and the ‘roughness’ of the pipe surface. 
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5.4 Pipe Friction Factor 

Many experiments have been performed to determine the pipe friction factor for 

many different arrangements of pipes and flows. 

 

Laminar Flow 

We can just equate the Hagen-Poiseuille and the Darcy-Weisbach Equations: 

 

 
2

2

32
2

Lv Lv
gD gD
µ λ

ρ
=  

 

Hence, for laminar flow we have: 

 

 64 64
ReDv

µλ
ρ

= =  

 

Smooth Pipes – Blasius Equation 

Blasius determined the following equation from experiments on ‘smooth’ pipes: 

 

 0.25

0.316
Re

λ =  

 

Stanton and Pannell confirmed that this equation is valid for 5Re 10< . Hence it is for 

‘smooth’ pipes. 
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Nikuradse’s Experiments 

Nikuradse carried out many experiments up to 6Re 3 10= × . In the experiments, he 

artificially roughened pipes by sticking uniform sand grains to smooth pipes. He 

defined the relative roughness ( sk D ) as the ration of the sand grain size to the pipe 

diameter. He plotted his results as logλ  against log Re  for each sk D , shown below. 

 

 
 

There are 5 regions of flow in the diagram: 

1. Laminar Flow – as before; 

2. Transitional flow – as before, but no clear λ ; 

3. Smooth turbulence – a limiting line of turbulence as Re decreases for all sk D ; 

4. Transitional turbulence – λ  varies both with Re and sk D , most pipe flows are in 

this region; 

5. Rough turbulence - λ  is constant for a given sk D  and is independent of Re. 
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The von Karman and Prandlt Laws 

von Karman and Prandlt used Nikuradse’s experimental results to supplement their 

own theoretical results which were not yet accurate. They found semi-empirical laws: 

 

• Smooth pipes: 

 

 1 Re2log
2.51

λ
λ

=  

 

• Rough pipes: 

 

 1 3.72log
sk Dλ

=  

 

The von Karman and Prandlt Law for smooth pipes better fits the experimental data 

than the Blasius Equation. 
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The Colebrook-White Transition Formula 

The friction factors thus far are the result of experiments on artificially roughened 

pipes. Commercial pipes have roughnesses that are uneven in both size and spacing. 

Colebrook and White did two things: 

 

1. They carried out experiments and matched commercial pipes up to Nikuradse’s 

results by finding an ‘effective roughness’ for the commercial pipes: 

 

Pipe/Material sk  (mm) 

Brass, copper, glass, Perspex 0.003 

Wrought iron 0.06 

Galvanized iron 0.15 

Plastic 0.03 

Concrete 6.0 

 

2. They combined the von Karman and Prandlt laws for smooth and rough pipes: 

 

 1 2.512log
3.7 Re

sk
Dλ λ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 

This equation is known as the Colebrook-White transition formula and it gives 

results very close to experimental values for transitional behaviour when using 

effective roughnesses for commercial pipes. 

 

The transition formula must be solved by trial and error and is not expressed in terms 

of the preferred variables of diameter, discharge and hydraulic gradient. Hence it was 

not used much initially. 
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Moody 

Moody recognized the problems with the Colebrok-White transition formula and did 

two things to remove objections to its use: 

 

1. He presented an approximation to the Colebrook-White formula: 

 

 
1 33 620 10 100.0055 1

Re
sk

D
λ

⎡ ⎤⎛ ⎞×
= + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

 

2. He plotted λ  against log Re  for commercial pipes, this is now known as the 

Moody diagram: 
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Barr 

One last approximation to the Colebrook-White formula is that by Barr, who 

substituted the following approximation for the smooth law component: 

 

 0.89

5.1286 2.51
Re Re λ

≅  

 

To get: 

 

 0.89

1 5.12862log
3.7 Re

sk
Dλ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 

This formula provides an accuracy of 1%±  for 5Re 10> . 
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Hydraulics Research Station Charts 

To derive charts suitable for design, the Colebrook-White and Darcy-Weisbach 

formulas were combined to give: 

 

 2.512 2 log
3.7 2

s
f

f

kv gDS
D D gDS

ν⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
 

 

In which ν µ ρ=  and is known as the kinematic viscosity and fS  is the hydraulic 

gradient, i.e f fS h L= . A sample chart is: 
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Example 

Problem 

A plastic pipe, 10 km long and 300 mm diameter, conveys water from a reservoir 

(water level 850 m above datum) to a water treatment plant (inlet level 700 m above 

datum). Assuming the reservoir remains full, estimate the discharge using the 

following methods: 

1. the Colebrook-White formula; 

2. the Moody diagram; 

3. the HRS charts. 

Take the kinematic viscosity to be 6 21.13 10  m /s−× . 

 

Solution 

1. Using the combined Colebrook-White and Darcy-Weisbach formula: 

 

 2.512 2 log
3.7 2

s
f

f

kv gDS
D D gDS

ν⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
 

 

 We have the following input variables: 

1. 0.3 mD = ; 

2. from the table for effective roughness, 0.03 mmsk = ; 

3. the hydraulic gradient is: 

 850 700 0.015
10000fS −

= =  

 

 ( )( ) ( )
( )( )

63 2.51 1.13 100.03 102 2 0.3 0.015 log
3.7 0.3 0.3 2 0.3 0.015

2.514 m/s

v g
g

−−⎡ ⎤××⎢ ⎥= − +
×⎢ ⎥⎣ ⎦

=
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 Hence the discharge is: 

 

 
2

30.32.514 0.178 m
4

Q Av π⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 

2. To use the Moody chart proceed as: 

1. calculate sk D ; 

2. assume a value for v ; 

3. calculate Re; 

4. estimate λ  from the Moody chart; 

5. calculate fh ; 

6. compare fh  with the available head, H; 

7. if fh H≠  then repeat from step 2. 

 

This is obviously tedious and is the reason the HRS charts were produced. The 

steps are: 

1. 30.03 10 0.3 0.0001sk D −= × = ; 

2. We’ll take v  to be close to the known result from part 1 of the question 

to expedite the solution: 2.5 m/sv = ; 

3. The Reynolds number: 

6
6

Re  for a pipe

0.3 2.5 0.664 10
1.13 10

vl Dvρ
µ ν

−

= =

×
= = ×

×

 

4. Referring to the Moody chart, we see that the flow is in the turbulent 

region. Follow the sk D  curve until it intersects the Re value to get: 

 0.014λ  
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5. The Darcy-Wesibach equation then gives: 

( )( )
( )

2

23

2

0.014 10 10 2.5
2 0.3

148.7 m

f
Lvh
gD

g

λ
=

×
=

=

 

6. The available head is 850 700 150 148.7 mH = − = ≈  so the result is 

quite close – but this is because we assumed almost the correct answer at 

the start. 

 

Having confirmed the velocity using the Moody chart approach, the discharge 

is evaluated as before. 

 

3. Using the HRS chart, the solution of the combined Colebrook-White and 

Darcy-Weisbach formula lies at the intersection of the hydraulic gradient line 

(sloping downwards, left to right) with the diameter (vertical) and reading off 

the discharge (line sloping downwards left to right): 

 

The inputs are:  

o 0.015fS =  and so 100 1.5fS = ; 

o 300 mmD = . 

 

Hence, as can be seen from the attached, we get: 

 

3

180 l/s
0.18 m /s

Q =

=
 

 

 Which is very similar to the exact result calculated previously. 
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Problems – Pipe Flows 

1. Determine the head loss per kilometre of a 100 mm diameter horizontal pipeline 

that transports oil of specific density 0.925 and viscosity 0.065 Ns/m2 at a rate of 

10 l/s. Determine also the shear stress at the pipe wall. 

(Ans. 29.2 m/km, 6.62 N/m2) 

 

2. A discharge of 400 l/s is to be conveyed from a reservoir at 1050 m AOD to a 

treatment plant at 1000 m AOD. The length of the pipeline is 5 km. Estimate the 

required diameter of the pipe taking 0.03 mmsk = . 

(Ans.  450 mm) 

 

3. The known outflow from a distribution system is 30 l/s. The pipe diameter is 150 

mm, it is 500 m long and has effective roughness of 0.03 mm. Find the head loss 

in the pipe using: 

a. the Moody formula; 

b. the Barr formula;  

c. check these value against the Colebrook-White formula. 

(Ans.  0.0182, 8.94 m) 

 

4. A plunger of 0.08m diameter and length 0.13m has four small holes of diameter 

5/1600 m drilled through in the direction of its length. The plunger is a close fit 

inside a cylinder, containing oil, such that no oil is assumed to pass between the 

plunger and the cylinder. If the plunger is subjected to a vertical downward force 

of 45N (including its own weight) and it is assumed that the upward flow through 

the four small holes is laminar, determine the speed of the fall of the plunger. The 

coefficient of viscosity of the oil is 0.2 kg/ms. 

(Ans.  0.00064 m/s) 
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5.5 Pipe Design 

Local Head Losses 

In practice pipes have fittings such as bends, junctions, valves etc. Such features 

incur additional losses, termed local losses. Once again the approach to these losses is 

empirical, and it is found that the following is reasonably accurate: 

 

 
2

2L L

vh k
g

=  

 

In which Lh  is the local head loss and Lk  is a constant for a particular fitting.  

 

Typical values are: 

 

Local Head Loss Coefficient, Lk  
Fitting 

Theoretical/Experimental Design Practice 

Bellmouth entrance 

Bellmouth exit 

90˚ bend 

90˚ tees: 

- in-line flow 

- branch to line 

- gate valve (open) 

0.05 

0.2 

0.4 

 

0.35 

1.20 

0.12 

0.10 

0.5 

0.5 

 

0.4 

1.5 

0.25 
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Sudden Enlargement 

Sudden enlargements (such as a pipe exiting to a tank) can be looked at theoretically: 

 

 
 

From points 1 to 2 the velocity decreases and so the pressure increases. At 1’ 

turbulent eddies are formed. We will assume that the pressure at 1 is the same as the 

pressure at 1’. Apply the momentum equation between 1 and 2: 

 

 ( )1 1 2 2 2 1p A p A Q v vρ− = −  

 

Using continuity, 2 2Q A v=  and so: 

 

 ( )2 1 2
1 2

p p v v v
g gρ

−
= −  

 

Now apply the energy equation from 1 to 2: 

 

 
2 2

1 1 2 2

2 2 L

p v p v h
g g g gρ ρ

+ = + +  



Fluid Mechanics 

Dr. C. Caprani 132

And so 

 

 
2 2

1 2 1 2

2L

v v p ph
g gρ

− −
= −  

 

Substituting for 2 1p p
gρ

−  from above: 

 

 ( )
2 2

1 2 2
1 22L

v v vh v v
g g

−
= − −  

 

Multiplying out and rearranging: 

 

 ( )2

1 2

2L

v v
h

g
−

=  

 

Using continuity again, ( )2 1 1 2v v A A=  and so: 

 

 

2

1
1 1

2

2 2
1 1

2

2

1
2

L

Av v
A

h
g

A v
A g

⎛ ⎞
−⎜ ⎟

⎝ ⎠=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

 

 

Therefore in the case of sudden contraction, the local head loss is given by: 

 
2

1

2

1L

Ak
A

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
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Sudden Contraction 

We use the same approach as for sudden enlargement but need to incorporate the 

experimental information that the area of flow at point 1’ is roughly 60% of that at 

point 2. 

 

 
 

Hence: 

 

 1' 20.6A A  

 

 

( )2 2

22

2

2
2

0.60.61
2

0.44
2

L

vAh
A g

v
g

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

=

 

 

And so: 

0.44Lk =  
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Example – Pipe flow incorporating local head losses 

Problem 

For the previous example of the 10 km pipe, allow for the local head losses caused by 

the following items: 

• 20 90˚ bends; 

• 2 gate valves; 

• 1 bellmouth entry; 

• 1 bellmouth exit. 

 

Solution 

The available static head of 150 m is dissipated by the friction and local losses: 

 

 f LH h h= +  

 

Using the table of loss coefficients, we have: 

 

 
( ) ( )

2

2

20 0.5 2 0.25 0.1 0.5
2

11.1
2

L

vh
g

v
g

= × + × + +⎡ ⎤⎣ ⎦

=
 

 

To use the Colebrook-White formula (modified by Darcy’s equation) we need to 

iterate as follows: 

1. Assume fh H  (i.e. ignore the local losses for now); 

2. calculate v  and thus Lh ; 

3. calculate f Lh h+  and compare to H; 

4. If f LH h h≠ +  then set f Lh H h= −  and repeat from 2. 
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From the last example, we will take 2.514 m/sv = . Thus: 

 
22.51411.1 3.58 m

2Lh
g

= =  

 

Adjust fh : 

 150 3.58 146.42 mfh = − =  

 

Hence: 

 146.42 0.01464
10000fS = =  

 

Substitute into the Colebrook-White equation: 

 

 ( )( ) ( )
( )( )

63 2.51 1.13 100.03 102 2 0.3 0.01464 log
3.7 0.3 0.3 2 0.3 0.01464

2.386 m/s

v g
g

−−⎡ ⎤××⎢ ⎥= − +
×⎢ ⎥⎣ ⎦

=

 

 

Recalculate Lh : 
22.38611.1 3.22 m

2Lh
g

= =  

  
Check against H: 

 

 146.42 3.22 149.64 150 mf Lh h+ = + = ≈  

 

This is sufficiently accurate and gives 30.17 m /sQ = . Note that ignoring the local 

losses gives 30.18 m /sQ = , as previous. 
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Partially Full Pipes 

Surface water and sewage pipes are designed to flow full, but not under pressure. 

Water mains are designed to flow full and under pressure. When a pipe is not under 

pressure, the water surface will be parallel to the pipe invert (the bottom of the pipe). 

In this case the hydraulic gradient will equal the pipe gradient, 0S : 

 

 0
fh

S
L

=  

 

In these non-pressurized pipes, they often do not run full and so an estimate of the 

velocity and discharge is required for the partially full case. This enables checking of 

the self-cleansing velocity (that required to keep suspended solids in motion to avoid 

blocking the pipe).  

 

 
 

Depending on the proportional depth of flow, the velocity and discharge will vary as 

shown in the following chart: 
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This chart uses the subscripts: p for proportion; d for partially full, and; D for full. 

 

Note that it is possible to have a higher velocity and flow when the pipe is not full 

due to reduced friction, but this is usually ignored in design. 
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Example 

Problem 

A sewerage pipe is to be laid at a gradient of 1 in 300. The design maximum 

discharge is 75 l/s and the design minimum flow is 10 l/s. Determine the required 

pipe diameter to carry the maximum discharge and maintain a self-cleansing velocity 

of 0.75 m/s at the minimum discharge. 

 

Solution 

(Note: a sewerage pipe will normally be concrete but we’ll assume it’s plastic here so 

we can use the chart for 0.03 mmsk = ) 

 

 
75 l/s

100 100 0.333
300

f

Q
h

L

=

= =
 

 

Using the HRS chart for 0.03 mmsk = , we get: 

 

 
300 mm
1.06 m/s

D
v

=
=

 

 

Check the velocity for the minimum flow of 10 l/s: 

 

 10 0.133
75pQ = =  

 

Hence from the proportional flow and discharge graph: 

 

 0.25 and 0.72p

d v
D

= =  
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Thus: 

 

 0.72 1.06 0.76 m/sdv = × =  

 

This is greater then the minimum cleaning velocity required of 0.75 m/s and hence 

the 300 mm pipe is satisfactory. 

 

The lookups are: 
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Problems – Pipe Design 

1. A uniform pipeline, 5000 m long, 200 mm in diameter and of effective roughness 

0.03 mm, conveys water between two reservoirs whose surfaces are kept at a 

constant 50 m difference in elevation. There is an entry loss of 0.5 times the 

velocity head and a valve produces a loss of 10 times the velocity head. Determine 

the steady-state discharge using the HRS charts and confirm using the Colebrook-

White transitional formula. 

(Ans. 1.54 m/s, 48.4 l/s) 
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6. Hydrodynamics: Flow in Open Channels 

6.1 Description 

The main difference between what we have studied so far and open channels is the 

existence of the free surface. It has great effect as can be seen from the following 

comparison: 

 
 

In general, the analysis of channel flow is more difficult than that of pipe flow as 

there are many more variables. Some approximate analyses are possible. 

 

Natural channels (mainly rivers) are the most variable whilst man-made channels are 

more regular and thus hydrological theories are more accurate. 
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Properties 

Properties used are: 

• Depth (y): the vertical distance from the lowest point of the channel to the free 

surface; 

• Stage (h): the vertical distance from an arbitrary datum to the free surface; 

• Area (A): the cross sectional area of flow normal to the flow direction; 

• Wetted perimeter (P): the length of the wetted surface measured normal to 

the flow; 

• Surface width (B): the width fo the channel at the free surface; 

• Hydraulic radius (R): the ration of area to wetted perimeter ( A P ); 

• Hydraulic mean depth: the ratio of area to surface width ( A B ). 

 

The properties on a general channel are thus: 

 

 
 

 

For various shapes these properties are: 
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6.2 Basics of Channel Flow 

Laminar and Turbulent Flow 

For a pipe we saw that the Reynolds Number indicates the type of flow: 

 

 Re Dvρ
µ

=  

 

For laminar flow, Re 2000<  and for turbulent flow, Re 4000> . These results can be 

applied to channels using the equivalent property of the hydraulic radius: 

 

 ChannelRe Rvρ
µ

=  

 

For a pipe flowing full, 4R D= , hence: 

 

 Channel PipeRe Re 4=  

 

Hence: 

• Laminar channel flow: ChannelRe 500<  

• Turbulent channel flow ChannelRe 1000>  
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Moody Diagrams for Channel Flow 

Using the Darcy-Weisbach equation: 

 

 
2

2f

Lvh
gD

λ
=  

 

And substituting for channel properties: 4R D=  and 0fh L S=  where 0S  is the bed 

slope of the channel, we have: 

 

 
2

0 8
vS
gR

λ
=  

 

Hence, for a channel 

 

 0
2

8gRS
v

λ =  

 

The Reλ −  relationship for pipes is given by the Colebrook-White equation and so 

substituting 4R D=  and combining with Darcy’s equation for channels gives: 

 

 0

0

0.62752 8 log
14.8 8

skv gRS
R R gRS

ν⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

A diagram, similar to that for pipes, can be drawn based on this equation to give 

channel velocities. This is not as straightforward though, since R varies along the 

length of a channel and the frictional resistance is far from uniform. 
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Friction Formula for Channels 

For uniform flow, the gravity forces exactly balance those of the friction forces at the 

boundary, as shown in the diagram: 

 

 
 

The gravity force in the direction of the flow is singALρ θ  and the shear force in the 

direction of the flow is 0PLτ , where 0τ  is the mean boundary shear stress. Hence: 

 

 0 sinPL gALτ ρ θ=  

 

Considering small slopes, 0sin tan Sθ θ≈ ≈ , and so: 

 

 0
0 0

gAS gRS
P

ρτ ρ= =  

 

To estimate 0τ  further, we again take it that for turbulent flow: 

 

 2 2
0 0orv Kvτ τ∝ =  
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Hence we have: 

 

 0

gv RS
K
ρ

=  

 

Or taking out the constants gives the Chézy Eqaution: 

 

 0v C RS=  

 

In which C is known as the Chézy coefficient which is not entirely constant as it 

depends on the Reynolds Number and the boundary roughness. 

 

From the Darcy equation for a channel we see: 

 

 8gC
λ

=  

 

An Irish engineer, Robert Manning, presented a formula to give C, known as 

Manning’s Equation: 

 

 
1 6RC
n

=  

 

In which n is a constant known as Manning’s n. Using Manning;s Equation in the 

Chézy Equation gives: 

 

 
2 3

0R S
v

n
=  
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And the associated discharge is: 

 

 
5 3

02 3

1 AQ S
n P

=  

 

Manning’s Equation is known to be both simple and reasonably accurate and is often 

used. 

 

Evaluating Manning’s n 

This is essentially a roughness coefficient which determines the frictional resistance 

of the channel. Typical values for n are: 
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Example –Trapezoidal Channel 

Problem 

A concrete lined has base width of 5 m and the sides have slopes of 1:2. Manning’s n 

is 0.015 and the bed slope is 1:1000: 

1. Determine the discharge, mean velocity and the Reynolds Number when the 

depth of flow is 2 m; 

2. Determine the depth of flow when the discharge is 30 cumecs. 

 

Solution 

The channel properties are: 

 

 ( ) 25 2 5 2 1 2A y y P y= + = + +  

( )
( )
5 4 2

1.29 m
5 2 2 5

R
+

= =
+ ×

 

 

1. Using the equation for discharge and for 2 my = , we have: 

 

 
( )

( )

5 3

02 3

5 3

2 3

3

1

5 4 21 0.001
0.015 5 2 2 5

45 m /s

AQ S
n P

=

+⎡ ⎤⎣ ⎦=
⎡ ⎤+ ×⎣ ⎦

=

 

 

For the mean velocity, using the continuity equation: 

 

 
( )

45 2.5 m/s
5 4 2

Qv
A

= = =
+
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And for the Reynolds number we have: 

 
3

3

6

Re

10 1.29 2.5
1.14 10

2.83 10

Rvρ
µ

−

=

× ×
=

×
= ×

 

 

2. We have the following relationship between flow and depth: 

 

 

( )

( )

5 3

2 3

5 3

2 3

5 21 0.001
0.015 5 2 5

5 2
2.108

5 2 5

y y
Q

y

y y

y

+⎡ ⎤⎣ ⎦=
⎡ ⎤+⎣ ⎦

+⎡ ⎤⎣ ⎦=
⎡ ⎤+⎣ ⎦

 

 

This is a difficult equation to solve and a trial an error solution is best. Since 2 my =  

gives us 45 cumecs, try 1.7 my = : 

 

 
( )( )

( )

5 3

3
2 3

5 2 1.7 1.7
2.108 32.7 m /s

5 2 5 1.7
Q

⎡ ⎤+⎣ ⎦= =
⎡ ⎤+⎣ ⎦

 

 

Try 1.6 my =  to get 329.1 m /sQ = . Using linear interpolation, the answer should be 

around 1.63 my =  for which 330.1 m /sQ =  which is close enough. Hence for 
330 m /sQ = , 1.63 my = . 
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6.3 Varying Flow in Open Channels 

The Energy Equation 

Assuming that the channel bed is has a very small slope, the energy lines are: 

 

 
 

Hence Bernoulli’s Equation is: 

 

 
2

2
vH y z
g

= + +  

 

To avoid the arbitrary datum, we use a quantity called the specific energy, sE : 

 

 
2

2s

vE y
g

= +  

 

For steady flow we can write this as: 
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 ( )2

2s

Q A
E y

g
= +  

 

And if we consider a rectangular channel: 

 

 Q bq q
A by y

= =  

 

In which q is the mean flow per metre width of channel. Hence we have: 

 

 

( )

( )

2

2
2

2

constant
2

s

s

q y
E y

g
qE y y
g

= +

− = =

 

 

This is a cubic equation in y for a given q: 
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Flow Characteristics 

In this graph we have also identified the Froude Number, Fr: 

 

 Fr v
gL

=  

 

In which L is the characteristic length of the system. The different types of flows 

associated with Fr are: 

 

• Fr 1< : Subcritical or tranquil flow; 

• Fr 1= : critical flow; 

• Fr 1> : Supercritical or rapid flow. 

 

The Froude Number for liquids is analogous to Mach number for the speed of sound 

in air. In subcritical flow, a disturbance (waves) can travel up and down stream (from 

the point of view of a static observer). In supercritical flow, the flow is faster than the 

speed that waves travel at and so no disturbance travels upstream. 

 

Associated with the critical flow, as shown on the graph, we have the critical depth: 

 

 
2

2c

Qy
gA

=  

 

A change in flow from subcritical to supercritical is termed a hydraulic jump and 

happens suddenly. 
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Flow Transition 

Consider the situation shown where a steady uniform flow is interrupted by the 

presence of a hump in the streambed. The upstream depth and discharge are known; it 

remains to find the downstream depth at section 2. 

 

 
 

Applying the energy equation, we have: 

 

 
2 2

1 2
1 22 2

v vy y z
g g

+ = + + ∆  

 

In addition we also have the continuity equation: 

 

 1 1 2 2v y v y q= =  

 

Combining we get: 
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2 2

1 22 2
1 22 2

q qy y z
gy gy

+ = + + ∆  

 

Which gives: 

 

 
2

3 2 2
2 2 1 2

1

2 2 2 0qgy y g z gy q
y

⎛ ⎞
+ ∆ − − + =⎜ ⎟

⎝ ⎠
 

 

Which is a cubic equation in 2y  which mathematically has three solutions, only one 

of which is physically admissible. 

 

At this point refer to the specific energy curve. We see: 

 

 1 2s sE E z= + ∆  

 

Also we see: 

• point A on the graph represents conditions at section 1 of the channel; 

• Section 2 must lie on either point B or B’ on the graph; 

• All points between 1 and 2 lie on the sE  graph between A and B or B’; 

• To get to B’ the river would need to jump higher than z∆  (since 1 2s sE E z− > ∆  

between B and B’). This is physically impossible (rivers jumping?!) and so 

section 2 corresponds to point B. 
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Example – Open Channel Flow Transition 

Problem 

The discharge in a rectangular channel of width 5 m and maximum depth 2 m is 10 

cumecs. The normal depth of flow is 1.25 m. Determine the depth of flow 

downstream of a section in which the river bed rises by 0.2 m over 1.0 m length. 

 

Solution 

Flow properties: 

 

 10 1.6 m/s
5 1.25

v = =
×

 

 

Using 

 

 1 2s sE E z= + ∆  

 

We have: 

 

 
( )

2 2

1 1

2
2

2
s2 2 2 2

2

1.61.25 1.38 m
2 2

10 5 2E
2 2

0.2 m

s

vE y
g g

y
y y

g gy
z

= + = + =

⎡ ⎤⎣ ⎦= + = +

∆ =

 

 

Hence: 
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2

2 2
2

2 2
2

21.38 0.2
2
21.18

y
gy

y
gy

= + +

= +
 

 

Looking at the specific energy curve, point B must have a depth of flow less than 

1.25 0.2 1.05 m− = . Using a trial and error approach: 

 

• 2 0.9 my = : Hence 2 2 2 2
2

2 20.9 1.15 1.18 m
0.9sE y

gy g
= + = + = ≠ ; 

• 2 1.0 my = : Hence 2 2

21.0 1.2 1.18 m
1.0sE

g
= + = ≠ ; 

• 2 0.96 my = : Hence 2 2

20.96 1.18 m
0.96sE

g
= + = ; 

 

Hence the depth of flow below the hump is less than that above it due to the 

acceleration of the water caused by the need to maintain continuity. 
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Problems – Open Channel Flow 

1. Measurements carried out on the uniform flow of water in a long rectangular 

channel 3 m wide and with a bed slope of 0.001, revealed that at a depth of flow 

of 0.8 m the discharge of water was 3.6 cumecs. Estimate the discharge of water 

using (a) the Manning equation and (b) the Darcy equation. 

(Ans. 8.6 m3/s, 8.44 m3/s) 

 

2. A concrete-lined trapezoidal channel has a bed width of 3.5 m, side slopes at 45˚ 

to the horizontal, a bed slope of 1 in 1000 and Manning roughness coefficient of 

0.015. Calculate the depth of uniform flow when the discharge is 20 cumecs. 

(Ans. 1.73 m) 

 


