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Abstract

We address the problem of reconstructing 3D face mod-
els from large unstructured photo collections, e.g., obtained
by Google image search or from personal photo collections
in iPhoto. This problem is extremely challenging due to the
high degree of variability in pose, illumination, facial ex-
pression, non-rigid changes in face shape and reflectance
over time and occlusions. In light of this extreme variabil-
ity, no single reconstruction can be consistent with all of
the images. Instead, we define as the goal of reconstruction
to recover a model that is locally consistent with the image
set. I.e., each local region of the model is consistent with
a large set of photos, resulting in a model that captures the
dominant trends in the input data for different parts of the
face. Our approach leverages multi-image shading, but un-
like traditional photometric stereo approaches, allows for
changes in viewpoint and shape. We optimize over pose,
shape, and lighting in an iterative approach that seeks to
minimize the rank of the transformed images. This approach
produces high quality shape models for a wide range of
celebrities from photos available on the Internet.

1. Introduction
An Internet image search for a celebrity yields thousands

of photos. Similarly, our personal photo collections contain
thousands of photos of faces. In this paper we consider the
problem of computing 3D face reconstructions from such
collections. This problem is extraordinarily challenging due
to the following factors (some of which are illustrated in
Figure 1):
• expression often varies significantly (e.g., smile, neu-

tral, surprise, etc.)
• exposure, color balance, resolution, zoom levels, and

other imaging parameters are different from one photo
to the next
• illumination is unknown and varying; some photos are

taken indoors, other outdoors, some with flash, some
not
• pose typically varies between frontal and profile
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Figure 1. (a) A few example photos (out of hundreds) we used for
the reconstruction of George W. Bush and our reconstruction. (b)
Photos of Bill Clinton and our reconstruction. Note the significant
variability in facial expression, lighting and pose.

• aging results in very significant changes in face shape
over time

• facial hair, make-up, glasses may come and go,
changing reflectance and geometry

Given such extreme variations, how can we even define
the “shape” of a person’s face? Indeed, there is no single
shape, but rather a large space of different face shapes for
each individual. Nonetheless, we seek to obtain a canoni-
cal shape that captures that person’s characteristics as well
as possible. The two major contributions of this paper are
to define a notion of a canonical shape, and to introduce
a practical 3D reconstruction algorithm that produces high
quality results for a broad range of Internet and personal
photo collections.

One natural notion of a canonical shape is the mean over
the image set. The disadvantage of a mean, however, is
that it produces an over-smoothed result that wipes away
details of the model. A second possibility is a mode, i.e.,
the most commonly occurring shape in the dataset. While
this approach works better than a mean, we find that it is
too restrictive, as all parts of the face must be in the same
configuration (very few photos may match). Our solution is
to solve for a shape that is locally similar to as many photos
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as possible. Intuitively, the idea is to capture the dominant
mouth shape in the collection, the dominant eyes, and so
forth. In practice we do the decomposition on a point-by-
point basis, defining a different image set for each point on
the model. For each point, the goal is to select an image set
that captures that point in approximately the same rigid con-
figuration, but under different illumination conditions. We
then exploit the observed variations in shading to solve for
the local surface shape and then integrate out a 3D model
for the whole face. This analysis occurs in the context of
a more general approach that allows for pose variations by
solving for camera pose and warping images to frontal. The
recovered shape is then fed back into the pose/warping pro-
cess, and the process is repeated until convergence.

Despite a large literature of prior work on face analysis
and reconstruction, very few approaches work on the un-
structured face collections proposed here (Google, iPhoto,
etc.). The last few years have seen tremendous progress in
rigid 3D scene modeling from the Internet and other un-
structured collections [12, 1] using structure-from-motion
and stereo techniques. These techniques, however, are not
applicable for face reconstruction due to the non-rigid na-
ture of faces and lack of dense correspondence and camera
calibration information. Indeed, most state of the art tech-
niques for high quality face reconstruction require a sub-
ject to come to a lab to be scanned with special equipment
(e.g., laser, stereo, lighting rigs, etc.) [15, 5, 8, 13, 3]. In
contrast, we propose to exploit multi-image shading cues
for face reconstruction–leveraging the lighting variation in
large collections.

One class of techniques that can handle very general face
images are single-view methods. For example, Blanz and
Vetter [6] showed the potential for very high quality 3D face
modeling from a single image more than a decade ago. The
idea is to express novel faces as a linear combination of a
database of 3D laser-scanned faces. This approach works
extremely well when the target is roughly within the linear
span of the database (in their case, 200 young adults), but
is not well suited for capturing facial shape with facial ex-
pressions and subtle details that vary from one individual
to the next. It also requires manual initialization—a fully
automatic solution has proven elusive. Kemelmacher and
Basri [11] also enable single-image reconstruction using
a shape-from-shading approach that requires only a single
template face as a prior. This approach can yield good look-
ing results, but the geometry varies significantly depending
on which image and template is used. This approach also
requires manual work to register the image with the tem-
plate. Because the single-view problem is ill-posed, these
methods depend heavily on prior models. It is therefore in-
teresting to explore how far we can go with the images alone
(without strong prior assumptions on shape).

Our use of multi-image shading cues builds on classic
results in photometric stereo [14]. But while prior work
in photometric stereo required rigid geometry, fixed re-
flectance over time, and fixed camera pose, we relax all of
these assumptions in order to operate on general unstruc-
tured image collections.

In summary, we offer two primary contributions over
prior work.

1. We pose the reconstruction problem of recovering a
locally consistent shape that models each part of the
face using a different subset of images.

2. We introduce the first fully-automatic face reconstruc-
tion technique capable of operating on general face
photo sets, such as those found via Internet search or
in personal photo collections like iPhoto.

2. The Algorithm
In this section we assume that we are given a large col-

lection of photos of a single person under different illumi-
nations. In addition, the facial pose, expression, and ge-
ometry may vary from photo to photo. In this section, we
describe the steps of our 3D reconstruction approach which
involves detecting fiducials, solving for pose, warping to
frontal pose, recovering an initial shape and lighting based
on photometric stereo, and refining the model using local
view selection. We iterate this entire procedure until con-
vergence.

Our image formation model assumes weak perspective
projection, relatively distant illumination, and Lambertian
reflectance.

2.1. Pose normalization

To account for variations in face orientation over the im-
age set, we warp each image to a canonical, frontal pose. To
this end, we first estimate pose by detecting fiducial points
on the face (see Section 3 for details), and use the positions
of these fiducials from a template 3D face to recover 3D
rotation, translation, and scale for each photo.

The relation between points q on the image and points
on the template Q is given by

q = sRQ+ t. (1)

To recover s, R, and t, we first subtract the centroid from
both point sets to get p = q − q and P = Q − Q, then
estimate a 2 × 3 linear transformation A = pPT (PPT )−1

and translation t = q − AQ. To recover an estimate of the
rotation and scale we let the third row of A be the cross
product between the first two rows and by taking its SVD,
A′ = UDV T , we estimate the closest rotation in terms of
Frobenius norm R = UV T . Two of the singular values of
A′ are identical, and this is our estimate of scale. We then



Figure 2. Expression normalization by low-rank approximation.
The first row shows the warped images, the 2nd row shows the the
low rank approximated images. Note how the lighting is mostly
preserved, but the facial expression is normalized.

estimate the yaw, pitch and roll angles from the rotation ma-
trix. Given the estimated pose we transform the template to
the orientation of the face in the image, the image is back-
projected onto the shape, and then a frontal view of the face
is rendered. This results in a collection of faces where every
face is in approximately frontal position as can be seen in
Fig. 2 (1st row).

2.2. Initial lighting and shape estimation

In this section we assume that all images in the collection
are warped to a canonical position. We begin by estimating
per-image illumination, using an uncalibrated photometric
stereo approach (e.g., [4, 2]). From the warped images we
construct an n × p matrix M , where n denotes the number
of images and p is the number of pixels in each image. Each
image is represented by a row in M . We factorize M using
Singular Value Decomposition, M = UDV T and take the
rank-4 approximation to get M = LS where L = U

√
D

is n × 4 and S =
√
DV T is 4 × p. In the absence of am-

biguities, L should contain the low order coefficients of the
lighting and S the albedo, and components of the surface
normals at each point on the surface scaled by the albedo
(or the first four principal components of the shape). In
general, however there is a 4 × 4 ambiguity since M can
be represented also by M = LA−1AS which needs to be
resolved to make the shape integrable. This however is not
needed for our algorithm until we will want to integrate the
surface normals to obtain the surface. We will discuss that
ambiguity at the end of section.

In Figure 2 we show several warped photos and their
low rank approximations. We can see that the facial expres-
sion is normalized (all faces appear in neutral expression),
the lighting in each image is roughly correct, and the ap-
pearance of the person is clearly recognizable. Hence, the
classical photometric stereo procedure already has a built-
in normalization for facial expression, due to the rank-4 ap-
proximation. We shall see, however, that fine details are lost
in the resulting reconstruction, and we propose techniques

to recover them in the next section.

2.3. Local surface normal estimation

Applying classical photometric stereo to the entire im-
age collection produces an over-smoothed shape; this is not
surprising, as we are effectively averaging over all expres-
sions. We achieve better results by using different images to
reconstruct different parts of the face. Intuitively, we might
use a set of images in which the mouth is fixed in a smiling
pose to model the mouth, and a different set in which the
eyes are open to reconstruct the eye region. In practice, the
image selection is automated, and operates on a point-by-
point basis.

The local selection of images works as follows. For each
point on the face we first calculate how well the images
fit the initial shape estimate, i.e., we calculate the distance
|Mj − LSj |2 where Mj is a n × 1 vector representing the
intensities of a pixel in all images (column of M ), Sj is
4 × 1 and L is n × 4. We then normalize the distance and
choose a subset of images for which the distance is less than
a threshold, making sure that the number of images is larger
than 4 and that the condition number of Lk×4 is not high (k
represents the number of chosen images) to prevent degen-
erate lighting conditions. The resulting set of images is then
used to recover Sj by minimizing the following functional

min
Sj

||Mk×1 − Lk×4Sj ||+ ST
j GSj . (2)

The first term represents the lighting consistency relation
and the second term acts as a Tikhonov regularization term
which avoids poor conditioning. The matrix G in the reg-
ularization term is chosen to be G = diag(−1, 1, 1, 1).
This choice is motivated by the fact that each column Sj

should have the first four principle components for this
point which are (ρ, ρnx, ρny, ρnz) where ρ is the albedo
and (nx, ny, nz) is the surface normal. Since the normal
should have unit length the following relation should hold
ST
j GSj = 0; this is exactly our regularization term. The

solution to this minimization problem is

Sj = (LT
k×4Lk×4 +G)−1LTMk×1. (3)

This solution provides the surface normals of the face.
Figure 3 shows examples of photos used to reconstruct

different points on the shape. It is interesting to see that the
photos chosen for each of the points have similar geome-
try at that point across the images, e.g., the images for the
mouth point (bottom right) all have roughly neutral facial
expression. This locally adaptive approach has a number of
advantages. Note that areas that are consistent across many
photos (approximately rigid areas of the face) will select a
very large subset of photos, leading to a very robust shape in
these areas. For areas that are non-rigid, the algorithm tends
to select a subset of photos which mutually agree, leading to



Figure 3. The shape of George Clooney, and example of photos that were used for reconstructions of the different points.

a consistent shape (rather than a ghosted average over many
shapes) in many cases. Of course this works only up to a
point–when there is no clear winner, ghosting effects can
still occur (see the results section for examples). Another
advantage of the local approach is that it helps to prevent
outliers from biasing the results, e.g., sun glasses, occlu-
sions, misalignments, wrong identity, etc.

2.4. Ambiguity recovery

It was shown [2] that the ambiguity between the lighting
L matrix and the S matrix can be resolved up to the gen-
eralized bas-relief transformation by applying integrability
constraints. From our experiments, this procedure is unsta-
ble and does not perform well when the image set contains
expression and shape variations. Instead, we use the tem-
plate face to resolve the ambiguity. In particular we take
the estimated shape matrix S, re-estimate the lighting by
minL ||M−LS||2, and choose the images which are fit well
by this low rank approximation: ||M − LS|| < ε. We then
solve for minA ||St−AS||2 where A is the 4×4 ambiguity
and St includes the albedo and surface normal components
of the template shape. This results in recovery of the light-
ing coefficients LA−1 and the surface normals AS.

2.5. Integration

Given the shape matrix, it is straightforward to recover
the surface of the object by integrating the surface normals
(e.g. as in [4]). The albedo is the first row of S and, by nor-
malizing its other three rows, the surface normals are recov-
ered. To reconstruct the depth map z(x, y), the surface nor-
mal at each point is represented as the gradient of the depth
map (n1, n2, n3)

T = (zx, zy,−1)T /
√
z2x + z2y + 1 which

results in zx = −n1/n3 and zy = −n2/n3. In combination
with the forward difference representation of the gradient,
this can be formulated as a linear system of equations with
z(x, y) as its unknowns and solved with least squares.

This procedure results in a surface reconstructed up to
the generalized bas-relief transformation, i.e., Ztrue = aX+
bY + cZ where Z is the output of integrability. We recover
these 3 unknowns using the template shape to provide the

shear and scale of the depth map.

2.6. Iterations of the algorithm

Once the surface is reconstructed we re-estimate the 3D
pose of the face using the reconstructed shape as in sec-
tion 2.1 and re-warp the images using that shape. Note that
since the reconstruction is aligned with the template, we can
determine where the fiducials are on the reconstruction, by
assuming their 2D positions are fixed in the canonical pose
(their 2D positions are fixed, but their depths may vary be-
tween the template and the reconstruction). The re-warped
images are then used as an input to the local selection of
image subsets for surface normals reconstruction. We have
observed that the initial pose estimation with the template
model is typically quite accurate, with artifacts appearing in
the warped images mainly around the nose. In the second it-
eration, after rewarping with the reconstructed shape, those
artifacts disappear. The stopping criteria for this procedure
is when the rank of the matrix of warped images does not
change significantly. More precisely, we measured rank as
the sum of the fifth and higher singular values.

2.7. Summary of the algorithm

The full algorithm is as follows:
1. find fiducials in each image, initialize shape to tem-

plate
2. solve for pose, warp each image to frontal using cur-

rent shape estimate
3. solve for initial shape and lighting using photometric

stereo
4. apply local view selection to re-estimate normals
5. resolve GBR and integrate a shape
6. until convergence, goto Step 2.

3. Experiments
In this section we describe our experiments. We first de-

scribe the automatic preprocessing framework of the images
in the set, and evaluation with synthetic data. We then show
experiments with real unconstrained data: 1) taken from the
Labeled Faces in Wild (LFW) [10] database, 2) collections
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Figure 4. Synthetic experiment: (a) Example images rendered using ground truth models. (b) mean and variance of 1) all images in neutral
expression but not pose corrected, 2) in neutral expression but pose corrected and 3) all 7 expressions and pose corrected. (c) Plot of the
distance between reconstruction and neutral ground-truth, as a function of percent of non neutral photos in the image set.

of photos of celebrities that we collected from Google im-
age search, and 3) on a personal photo collection. Finally
we compare our results with standard photometric stereo
and a single view approach.

3.1. Preprocessing of the images

To obtain a collection of photos of the same person we
first scanned all the images using Picasa, and extracted the
photos that were recognized by Picasa as the person. Then
for each photo in the dataset we first apply a face detec-
tor [7] followed by a fiducial points detector [9] that finds
the left and right corners of each eye, the two nostrils, the tip
of the nose and the left and right corners of the mouth. We
eliminate photos that have low detection confidence mea-
sure (less than 0.5), and photos for which the fiducial points
detector confidence is less than −3. We also gamma cor-
rect the images to account for possible non-linear camera
response. The initial template shape that we use in our
method is the neutral face model from the space-time faces
dataset [15].

3.2. Evaluation with synthetic data

To evaluate our method we rendered a 3D dataset that
included 7 facial expressions, 5 poses (frontal, azimuth
10◦, 20◦, elevation −10◦, 10◦) and 21 lighting directions
from the shapes in [15]. Example images and expressions
can be seen in Fig. 4 (a). All images were corrected for
pose as described in Sec. 2.1, and the ambiguity was esti-
mated using the neutral shape. Fig 4 (b) shows mean and
variance of set of images where the face appears in 1) neu-
tral expression and without pose correction, 2) neutral ex-
pression and pose corrected and 3) all 7 expressions and
pose corrected. We can see that when the pose is not cor-
rected there are significant artifacts in the nose area, and
when all expressions are averaged together artifacts appear
around the nose, mouth and eyebrows. We also conducted
an experiment to measure the impact of adding non-frontal
photos to reconstruction accuracy, and found that, using a

ground-truth template model, the use of non-frontal images
had only a modest detrimental impact: a reconstruction er-
ror of 0.76±0.48% from frontal images vs. 0.93±0.68% for
frontal plus non-frontal. The slight decrease in performance
is likely due to occlusions (not modeled by the warping pro-
cess) and resampling artifacts.

Fig 4 (c) shows results of an experiment of adding dif-
ferent amounts of random photos with non neutral expres-
sion to a set of photos with neutral expression. We plot the
mean and standard deviation of the distance between the
reconstruction and the neutral ground-truth model vs. the
percent of non-neutral “outlier” photos in the set. The dis-
tance is measured by 100|zrec − zgt|/zgt per point on the
surface. We can see that a model very close to neutral is
reconstructed up to a 25% outlier rate, after which the lo-
cal view selection becomes more influenced by non-neutral
photos. The accuracy of the reconstruction from only neu-
tral and frontal photos and neutral and pose corrected photos
does not vary much–0.76± 0.48% vs. 0.93± 0.68%.

3.3. Real images

We ran our method on the four people from the LFW
dataset with the largest number of photos: George W. Bush
(530 photos), Colin Powell (236), Tony Blair (144), and
Donald Rumsfeld (121). The resolution of the photos in
LFW is quite small—the size of each photo is 250 × 250
with the face dimensions around 150×200. Figure 6 shows
our reconstructions. The reconstructions look convincing,
note especially the noses of George W. Bush and Colin
Powell. Donald Rumsfeld and Colin Powell appear with
eye glasses in all photos, and we can see the round areas
around the eyes in the reconstructed shape. For Tony Blair
the average shape turned out to have a smile.

We also experimented with larger sets by collecting
images from Google image search. We searched for
names of celebrities (Bill Clinton, George Clooney, Kevin
Spacey, Tom Hanks) and downloaded around 850 photos
per celebrity. For Clooney and Spacey we also downloaded



a video interview from YouTube and sampled one frame
per second to add around 300 more photos to the collec-
tion. The number of photos used per person is stated in
Table 1. Figure 7 shows the reconstructed shapes. Figure 8
shows more renderings of the shapes compared to photos
of the person in similar position. Note how well details of
each individual were reconstructed, e.g., the noses and the
areas around the eyes. Figure 10 shows the improvement
in shape reconstruction when iterating the method. Initially
the input images are warped using the template model (0th
iteration) and then re-warped using the estimated shape. We
observe major improvements in shape reconstruction in it-
erations #1 where the rough shape is reconstructed and #2
where the nose area gets sharper, and some minor improve-
ments in the subsequent iterations.

We have also run our algorithm on personal photo collec-
tions, Figure 6 (right) shows the reconstruction result (we
omit more only for lack of space).

3.4. Comparison of the local approach to global
filtering

To evaluate the impact of local view selection, we now
compare to alternative filtering methods that operate “glob-
ally”, on an entire image at a time. Figure 5 (a) shows the
reconstruction of George Clooney’s face shape using all the
photos in the dataset (i.e., no filtering). This result is clearly
oversmoothed. A simple filtering approach is to choose
only “frontal” views; we consider only faces that appear
within the range of ±5 degrees from the frontal position
(for each of the estimated yaw and pitch angles) which re-
sults in reconstruction (b). And we can further filter the set
by taking into account only photos that are fit well by the
low rank approximation (for the entire image) which results
in reconstruction (c). Table 1 presents the number of im-
ages that remain for each of these approaches. While these
simple “global” filtering steps provide some improvements,
the resulting model is not very realistic. In particular, note
how the nose is far too sharp and the upper lip protrudes
unrealistically in (a) - (c), compared to the more natural re-
construction using the local approach (see Fig. 8) to see how
(d) compares to real photos.

3.5. Comparison to single view

Finally we have also compared our reconstruction to a
leading single-view modeling technique by [11]. Figure 9
shows two photos of Clinton with single view reconstruc-
tions. We also show the average of all single view recon-
structions from every photo in the dataset. While the re-
constructions are reasonable, different input photos lead to
different shapes. Note that the average shape does not look
very much like Clinton. The advantage of a multi-view ap-
proach is that we can integrate over many images to yield a
single consistent model.
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Figure 5. Comparison between reconstructions of George
Clooney: (a) reconstructed shape from all the aligned and warped
photos (b) from subset of photos where the face appears in frontal
pose (c) after global image selection (d) after per pixel (local) im-
age selection. See the number of images used in Table 1.

Clooney Clinton Spacey Hanks
Total 643 373 678 698
Frontal 183 125 140 183
Global 79 52 93 163
Local 72±21 52±16 68±18 85±23

Table 1. The total number of images, number of images remained
after filtering by pose (frontal), after global image selection pro-
cess and after local image selection process. Each column repre-
sents a different person. For the local image selection process we
present the mean and standard deviation over the pixels.

Figure 8. Rendering of the shapes in different viewpoints and pho-
tos (not used in reconstruction) of the person in similar viewpoints.

4. Discussion
We presented the first method capable of generating 3D

face models automatically from unstructured photo collec-
tions, overcoming vast variability in facial pose, expression,
lighting, exposure, facial hair, and aging effects. Instead
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Figure 6. Results on people with the largest number of photos from the LFW dataset. In spite of the relatively small number of photos per
person and low resolution of the photos the reconstructions look convincing–note the reconstruction of the nose of George W. Bush and
Colin Powell and the smile of Tony Blair. The glasses on Powell and Rumsfeld are baked into the reconstruction. On the right we show
reconstruction result of a face from a personal photo collection.

Figure 7. Results on photos collected from Google search. For each person (each row) we present the average image created by averaging
images that were used for reconstruction, the image that was used to texture map the shape and the texture mapped shape, and finally three
viewpoints of the reconstructed shape. Observe how well the profile (last column, not used for the reconstruction) fits the model.

of explicitly modeling all of these effects, we take the ap-
proach of normalizing the images to account for rotation,

and selecting a subset of the images, on a pixel-by-pixel ba-
sis, in which the geometry is locally similar. A key point in
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Figure 9. Comparison to single view reconstructions provided
by [11]. (a) Two photos of Bill Clinton, the shape reconstruction
using the single view method (from each of the images separately),
and average of single view reconstructions from all the images in
the set. (b) Photo of Clinton’s profile, and profile renderings of our
reconstruction, two single view reconstructions and average of all
the single view reconstructions.
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Figure 10. The shapes reconstructed in each iteration of the
method. The template shape is shown as the 0th iteration.

this paper is that by leveraging large photo collections we
can achieve a high quality and consistent reconstruction for
all the images in a dataset.

There are a number of potential improvements and chal-
lenges going forward. Our reconstructions are not metri-
cally correct, as we rely on a template to resolve the scale
ambiguities. It would be interesting to exploit other cues
such as knowledge of pose and profile contours to resolve
this ambiguity. Note that our approach does not exploit a
face-specific model or prior in the reconstruction process
(a face template is only used to align faces in preparation
for photometric stereo, and as a post process to resolve the
global scale). While we wanted to see how far we could
go without a face prior, there is a wealth of prior data and
knowledge of face geometry which could be leveraged in
future systems to fill in missing details and remove noise
and artifacts.
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