Quiz 2: January 27 Time Limit: 40 minutes

(1) (a) (2 points) What is $|U_{12}|$?

4.

 U_{12} is the set of units in \mathbb{Z}_{12} , so $U_{12} = \{1, 5, 7, 11\}$.

(b) (3 points) Write out a multiplication table for U_{12} .

(2) (3 points) Describe each element of D_3 .

Name: Prince - KEY

(3) (4 points each) Determine if the following algebraic structures are groups. If not, which group axioms fail? If so, prove it.

(a)
$$(\mathbb{Z}_7, \cdot)$$

No.

There is no inverse of 0.

(b) (b)
$$(\mathbb{Z}, \square)$$
, where $a\square b = a + b - 4$

Yes.

Associativity:

$$(a\Box b)\Box c = (a+b-4)\Box c = (a+b-4)+c-4 = a+b+c-8$$
$$= a+(b+c-4)-4 = a\Box(b+c-4) = a\Box(b\Box c).$$

Closure: For any integers a and b, $a + b - 4 \in \mathbb{Z}$.

Identity: The element 4 is the identity since $4\Box a = a\Box 4 = a$ for all $a \in \mathbb{Z}$.

<u>Inverses:</u> For any element a, 8-a is its inverse since

$$a\square(8-a) = (8-a)\square a = 4$$

and 4 is the identity.

(4) (2 points) Show that the group S_4 is non-abelian.

Let
$$x, y \in S_4$$
 be the elements $x = (1234)$ and $y = (123)(4)$. Then

$$xy = (1324) \neq (1342) = yx.$$

Since $xy \neq yx$, S_4 is non-abelian.