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Preface to the Second Edition

 

The first edition of this book was published in 1997, and I am grateful for
the response and comments I have received about the book and the accom-
panying PROMAL software. The changes in the book are mainly a result
of comments received from students who used this book in a course or as
a self-study. 

In this edition, I have added a separate chapter on symmetric and unsym-
metric laminated beams. All the other chapters have been updated while
maintaining the flow of the content. Key terms and a summary have been
added at the end of each chapter. Multiple-choice questions to reinforce the
learning from each chapter have been added and are available at the textbook
Website: http://www.eng.usf.edu/~kaw/promal/book.html.

Specifically, in Chapter 1, new applications of composite materials have
been accommodated. With the ubiquitous presence of the Web, I have anno-
tated articles, videos, and Websites at the textbook Website. In Chapter 2,
we have added more examples and derivations have been added. The appen-
dix on matrix algebra has been extended because several engineering depart-
ments no longer teach a separate course in matrix algebra. If the reader needs
more background knowledge of this subject, he or she can download a free
e-book on matrix algebra at http://numericalmethods.eng.usf.edu/ (click
on “matrix algebra”). In Chapter 3, derivations are given for the elasticity
model of finding the four elastic constants. Two more examples can be found
in Chapter 5: design of a pressure vessel and a drive shaft.

The PROMAL program has been updated to include elasticity models
in Chapter 3. PROMAL and the accompanying software are available to
the eligible buyers of the textbook only at the textbook Website (see the
“About the Software” section). The software and the manual will be con-
tinually updated.
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Preface to the First Edition

 

 

 

Composites are becoming an essential part of today’s materials because they
offer advantages such as low weight, corrosion resistance, high fatigue
strength, faster assembly, etc. Composites are used as materials ranging from
making aircraft structures to golf clubs, electronic packaging to medical
equipment, and space vehicles to home building. Composites are generating
curiosity and interest in students all over the world. They are seeing every-
day applications of composite materials in the commercial market, and job
opportunities are also increasing in this field. The technology transfer initia-
tive of the U.S. government is opening new and large-scale opportunities
for use of advanced composite materials.

Many engineering colleges are offering courses in composite materials as
undergraduate technical electives and as graduate-level courses. In addition,
as part of their continuing education and retraining, many practicing engi-
neers are participating in workshops and taking short courses in composite
materials. The objective of this book is to introduce a senior undergraduate-
or graduate-level student to the mechanical behavior of composites. Cover-
ing all aspects of the mechanical behavior of composites is impossible to do
in one book; also, many aspects require knowledge of advanced graduate
study topics such as elasticity, fracture mechanics, and plates and shells
theory. Thus, this book emphasizes an overview of composites followed by
basic mechanical behavior of composites. Only then will a student form a
necessary foundation for further study of topics such as impact, fatigue,
fracture mechanics, creep, buckling and vibrations, etc. I think that these
topics are important and the interested student has many well-written texts
available to follow for that. 

This book breaks some traditional rules followed in other textbooks on
composites. For example, in the first chapter, composites are introduced in
a question–answer format. These questions were raised through my own
thought process when I first took a course in composites and then by my
students at the University of South Florida, Tampa. Also, this is the first
textbook in its field that includes a professional software package. In addi-
tion, the book has a format of successful undergraduate books, such as short
sections, adequate illustrations, exercise sets with objective questions and
numerical problems, reviews wherever necessary, simple language, and
many examples.

Chapter 1 introduces basic ideas about composites including why com-
posites are becoming important in today’s market. Other topics in Chapter
1 include types of fibers and matrices, manufacturing, applications, recy-
cling, and basic definitions used in the mechanics of composites. In Chapter
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2, I start with a review of basic topics of stress, strain, elastic moduli, and
strain energy. Then I discuss the mechanical behavior of a single lamina,
including concepts about stress–strain relationship for a lamina, stiffness and
strength of a lamina, and the stress–strain response due to temperature and
moisture change. In Chapter 3, I develop equations for mechanical properties
of a lamina such as stiffness, strength, and coefficients of thermal and mois-
ture expansion from individual properties of the constituents (long contin-
uous fibers and matrix) of composites. I introduce experimental
characterization of the mechanical properties of a lamina at appropriate
places in Chapter 3. Chapter 4 is an extension of Chapter 2, in which the
macromechanics of a single lamina are extended to the macromechanics of
a laminate. I develop stress–strain equations for a laminate based on indi-
vidual properties of the laminae that make it. I also discuss stiffness and
strength of a laminate and effects of temperature and moisture on residual
stresses in a laminate. In Chapter 5, special cases of laminates used in the
market are introduced. I develop procedures for analyzing the failure and
design of laminated composites. Other mechanical design issues, such as
fatigue, environmental effects, and impact, are introduced.

A separate chapter for using the user-friendly software PROMAL is
included for supplementing the understanding of Chapter 2 through Chap-
ter 5. Students using PROMAL can instantly conduct pragmatic parametric
studies, compare failure theories, and have the information available in
tables and graphs instantaneously.

The availability of computer laboratories across the nation allows the
instructor to use PROMAL as a teaching tool. Many questions asked by the
student can be answered instantly. PROMAL is more than a black box
because it shows intermediate results as well. At the end of the course, it
will allow students to design laminated composite structures in the class-
room. The computer program still maintains the student’s need to think
about the various inputs to the program to get an optimum design.

You will find this book and software very interesting. I welcome your
comments, suggestions, and thoughts about the book and the software at
e-mail: promal@eng.usf.edu; and URL: http://www.eng.usf.edu/~kaw/
promal/book.html.
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About the Software

 

Where can I download PROMAL?

 

You can download PROMAL at http://www.eng.usf.edu/~kaw/promal/
book.html. In addition to the restrictions for use given later in this section,
only textbook buyers are authorized to download the software.

 

What is PROMAL?

 

PROMAL is professionally developed software accompanying this book.
Taylor & Francis Group has been given the rights free of charge by the
author to supplement this book with this software. PROMAL has five main
programs:

1.

 

Matrix algebra

 

: Throughout the course of 

 

Mechanics of Composite Mate-
rials

 

, the most used mathematical procedures are based on linear
algebra. This feature allows the student to multiply matrices, invert
square matrices, and find the solution to a set of simultaneous linear
equations. Many students have programmable calculators and
access to tools such as MATHCAD to do such manipulations, and
we have included this program only for convenience. This program
allows the student to concentrate on the fundamentals of the course
as opposed to spending time on lengthy matrix manipulations. 

2.

 

Lamina properties database

 

: In this program, the properties of uni-
directional laminae can be added, deleted, updated, and saved. This
is useful because these properties can then be loaded into other parts
of the program without repeated inputs.

3.

 

Macromechanical analysis of a lamina

 

: Using the properties of unidi-
rectional laminae saved in the previously described database, one
can find the stiffness and compliance matrices, transformed stiffness
and compliance matrices, engineering constants, strength ratios
based on four major failure theories, and coefficients of thermal and
moisture expansion of angle laminae. These results are then pre-
sented in textual, tabular, and graphical forms.

4.

 

Micromechanics analysis of a lamina

 

: Using individual elastic moduli,
coefficients of thermal and moisture expansion, and specific gravity
of fiber and matrix, one can find the elastic moduli and coefficients
of thermal and moisture expansion of a unidirectional lamina. Again,
the results are available in textual, tabular, and graphical forms.
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5.

 

Macromechanics of a laminate

 

: Using the properties of the lamina from
the database, one can analyze laminated structures. These laminates
may be hybrid and unsymmetric. The output includes finding stiff-
ness and compliance matrices, global and local strains, and strength
ratios in response to mechanical, thermal, and moisture loads. This
program is used for design of laminated structures such as plates
and thin pressure vessels at the end of the course.

 

Who is permitted to use PROMAL?

 

PROMAL is designed and permitted to be used only as a theoretical–edu-
cational tool; it can be used by:

A university instructor using PROMAL for teaching a formal university-
level course in mechanics of composite materials

• A university student using PROMAL to learn about mechanics of
composites while enrolled in a formal university-level course in
mechanics of composite materials

• A continuing education student using PROMAL to learn about
mechanics of composites while enrolled in a formal university-level
course in mechanics of composite materials

• A self-study student who has successfully passed a formal univer-
sity-level course in strength of materials and is using PROMAL
while studying the mechanics of composites using a textbook on
mechanics of composites

If you or your use of PROMAL does not fall into one of these four cate-
gories, you are not permitted to use the PROMAL software.

 

What is the license agreement to use the software?

 

Software License

 

Grant of License: PROMAL is designed and permitted to be used
only as a theoretical–educational tool. Also, for using the PROMAL
software, the definition of “You” in this agreement should fall into
one of four categories.

1. University instructor using PROMAL for teaching a formal univer-
sity-level course in mechanics of composite materials

2. University student using PROMAL to learn about mechanics of
composites while enrolled in a formal university-level course in
mechanics of composite materials
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3. Continuing education student using PROMAL to learn about
mechanics of composites while enrolled in a formal university-level
course in mechanics of composite materials

4. Self-study student who has successfully passed a formal university-
level course in strength of materials and is using PROMAL while
studying the mechanics of composites using a textbook on mechan-
ics of composites

If you or your use of PROMAL does not fall into one of the above
four categories, you are not permitted to buy or use the PROMAL
software.

Autar K. Kaw and Taylor & Francis Group hereby grant you, and
you accept, a nonexclusive and nontransferable license, to use the
PROMAL software on the following terms and conditions only: you
have been granted an Individual Software License and you may use
the Licensed Program on a single personal computer for your own
personal use.

 

Copyright

 

: The software is owned by Autar K. Kaw and is pro-
tected by United States copyright laws. A backup copy may be made
but all such backup copies are subject to the terms and conditions
of this agreement.

 

Other Restrictions

 

: You may not make or distribute unautho-
rized copies of the Licensed Program, create by decompilation, or
otherwise, the source code of the PROMAL software, or use, copy,
modify, or transfer the PROMAL software in whole or in part,
except as expressly permitted by this Agreement. If you transfer
possession of any copy or modification of the PROMAL software
to any third party, your license is automatically terminated. Such
termination shall be in addition to and not in lieu of any equitable,
civil, or other remedies available to Autar K. Kaw and Taylor &
Francis Group.

You acknowledge that all rights (including without limitation,
copyrights, patents, and trade secrets) in the PROMAL software
(including without limitation, the structure, sequence, organization,
flow, logic, source code, object code, and all means and forms of
operation of the Licensed Program) are the sole and exclusive prop-
erty of Autar K. Kaw. By accepting this Agreement, you do not
become the owner of the PROMAL software, but you do have the
right to use it in accordance with the provision of this Agreement.
You agree to protect the PROMAL software from unauthorized use,
reproduction, or distribution. You further acknowledge that the
PROMAL software contains valuable trade secrets and confidential
information belonging to Autar K. Kaw. You may not disclose any
component of the PROMAL software, whether or not in machine-
readable form, except as expressly provided in this Agreement.
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Term

 

: This License Agreement is effective until terminated. This
Agreement will also terminate upon the conditions discussed else-
where in this Agreement, or if you fail to comply with any term or
condition of this Agreement. Upon such termination, you agree to
destroy the PROMAL software and any copies made of the PRO-
MAL software.

 

Limited Warranty

 

This limited warranty is in lieu of all other warranties, expressed
or implied, including without limitation, any warranties or mer-
chantability or fitness for a particular purpose. The licensed program
is furnished on an “as is” basis and without warranty as to the
performance or results you may obtain using the licensed program.
The entire risk as to the results or performance, and the cost of all
necessary servicing, repair, or correction of the PROMAL software
is assumed by you.

In no event will Autar K. Kaw or Taylor & Francis Group be liable
to you for any damages whatsoever, including without limitation,
lost profits, lost savings, or other incidental or consequential dam-
ages arising out of the use or inability to use the PROMAL software
even if Autar K. Kaw or Taylor & Francis Group has been advised
of the possibility of such damages. 

 

You should not build, design,
or analyze any actual structure or component using the results
from the PROMAL software

 

.
This limited warranty gives you specific legal rights. You may

have others by operation of law that vary from state to state. If any
of the provisions of this agreement are invalid under any applicable
statute or rule of law, they are to that extent deemed omitted.

This agreement represents the entire agreement between us and
supersedes any proposals or prior agreements, oral or written, and
any other communication between us relating to the subject matter
of this agreement.

This agreement will be governed and construed as if wholly
entered into and performed within the state of Florida.

You acknowledge that you have read this agreement, and agree
to be bound by its terms and conditions.

 

Is there any technical support for the software?

 

The program is user-friendly and you should not need technical support.
However, technical support is available only through e-mail and is free for
registered users for 30 days from the day of purchase of this book. Before
using technical support, check with your instructor, and study the manual
and the home page for PROMAL at http://www.eng.usf.edu/~kaw/

 

1343_book.fm  Page xviii  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC

www.eng.usf.edu


 

promal/book.html. 

 

At this home page, you can also download upgraded pro-
mal.exe files

 

. Send your questions, comments, and suggestions for future
versions by e-mail to promal@eng.usf.edu. I will attempt to include your
feedback in the next version of PROMAL.

 

How do I register the software?

 

Register by sending an e-mail to promal@eng.usf.edu with “registration”
in the subject line and the body with name, university/continuing education
affiliation, postal address, e-mail address, telephone number, and how you
obtained a copy of the software, i.e., purchase of book, personal copy, site
license, continuing education course.
OR

Register by mailing a post card with name, university/continuing educa-
tion affiliation, address, and e-mail address, telephone number, and how you
obtained a copy of the software — i.e., purchase of book, personal copy, site
license, continuing education course — to Professor Autar K. Kaw, ENB 118,
Mechanical Engineering Department, University of South Florida, Tampa,
FL 33620-5350.

 

What are the requirements of running the program?

 

The program will generally run on any IBM-PC compatible computer with
Microsoft Windows 98 or later, 128 MB of available memory, and a hard disk
with 50 MB available, and Microsoft mouse.

 

Can I purchase a copy of PROMAL separately?

 

Check the book Website for the latest purchase information for single-copy
sales, course licenses, and continuing education course prices.
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Introduction to Composite Materials

 

Chapter Objectives

 

• Define a composite, enumerate advantages and drawbacks of com-
posites over monolithic materials, and discuss factors that influence
mechanical properties of a composite.

• Classify composites, introduce common types of fibers and matri-
ces, and manufacturing, mechanical properties, and applications of
composites.

• Discuss recycling of composites.
• Introduce terminology used for studying mechanics of composites.

 

1.1 Introduction

 

You are no longer to supply the people with straw for making bricks; let
them go and gather their own straw.

 

Exodus 5:7

 

Israelites using bricks made of clay and reinforced with straw are an early
example of application of composites. The individual constituents, clay and
straw, could not serve the function by themselves but did when put together.
Some believe that the straw was used to keep the clay from cracking, but
others suggest that it blunted the sharp cracks in the dry clay.

Historical examples of composites are abundant in the literature. Signifi-
cant examples include the use of reinforcing mud walls in houses with
bamboo shoots, glued laminated wood by Egyptians (1500 

 

B

 

.

 

C

 

.), and lami-
nated metals in forging swords (

 

A

 

.

 

D

 

. 1800). In the 20th century, modern
composites were used in the 1930s when glass fibers reinforced resins. Boats
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and aircraft were built out of these glass composites, commonly called 

 

fiber-
glass

 

. Since the 1970s, application of composites has widely increased due
to development of new fibers such as carbon, boron, and aramids,* and new
composite systems with matrices made of metals and ceramics.

This chapter gives an overview of composite materials. The ques-
tion–answer style of the chapter is a suitable way to learn the fundamental
aspects of this vast subject. In each section, the questions progressively
become more specialized and technical in nature.

 

What is a composite?

 

A composite is a structural material that consists of two or more combined
constituents that are combined at a macroscopic level and are not soluble in
each other. One constituent is called the 

 

reinforcing phase

 

 and the one in which
it is embedded is called the 

 

matrix

 

. The reinforcing phase material may be
in the form of fibers, particles, or flakes. The matrix phase materials are
generally continuous. Examples of composite systems include concrete rein-
forced with steel and epoxy reinforced with graphite fibers, etc.

 

Give some examples of naturally found composites.

 

Examples include wood, where the lignin matrix is reinforced with cellu-
lose fibers and bones in which the bone-salt plates made of calcium and
phosphate ions reinforce soft collagen.

 

What are advanced composites?

 

Advanced composites are composite materials that are traditionally used
in the aerospace industries. These composites have high performance rein-
forcements of a thin diameter in a matrix material such as epoxy and alu-
minum. Examples are graphite/epoxy, Kevlar

 

®

 

†/epoxy, and boron/
aluminum composites. These materials have now found applications in com-
mercial industries as well.

 

Combining two or more materials together to make a composite is more
work than just using traditional monolithic metals such as steel and alu-
minum. What are the advantages of using composites over metals?

 

Monolithic metals and their alloys cannot always meet the demands of
today’s advanced technologies. Only by combining several materials can one
meet the performance requirements. For example, trusses and benches used
in satellites need to be dimensionally stable in space during temperature
changes between –256

 

°

 

F (–160

 

°

 

C) and 200

 

°

 

F (93.3

 

°

 

C). Limitations on coeffi-
cient of thermal expansion‡ thus are low and may be of the order of 

 

 ±

 

1 

 

×

 

* Aramids are aromatic compounds of carbon, hydrogen, oxygen, and nitrogen.
† Kevlar

 

® 

 

is a registered trademark of E.I. duPont deNemours and Company, Inc., Wilimington, DE.
‡ Coefficient of thermal expansion is the change in length per unit length of a material when
heated through a unit temperature. The units are in./in./

 

°

 

F and m/m/

 

°

 

C. A typical value for
steel is 6.5 

 

×

 

 10

 

–6

 

 in./in.

 

°

 

F (11.7 

 

×

 

 10

 

–6

 

 m/m

 

°

 

C).
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10

 

–7 

 

in./in./

 

°

 

F (

 

±

 

1.8 

 

×

 

 10

 

–7

 

 m/m/

 

°

 

C). Monolithic materials cannot meet these
requirements; this leaves composites, such as graphite/epoxy, as the only
materials to satisfy them.

In many cases, using composites is more efficient. For example, in the
highly competitive airline market, one is continuously looking for ways to
lower the overall mass of the aircraft without decreasing the stiffness* and
strength† of its components. This is possible by replacing conventional metal
alloys with composite materials. Even if the composite material costs may
be higher, the reduction in the number of parts in an assembly and the savings
in fuel costs make them more profitable. Reducing one lbm (0.453 kg) of mass
in a commercial aircraft can save up to 360 gal (1360 l) of fuel per year;

 

1

 

 fuel
expenses are 25% of the total operating costs of a commercial airline.

 

2

 

Composites offer several other advantages over conventional materials.
These may include improved strength, stiffness, fatigue‡ and impact resis-
tance,** thermal conductivity,†† corrosion resistance,‡‡ etc.

 

How is the mechanical advantage of composite measured?

 

For example, the axial deflection, 

 

u

 

, of a prismatic rod under an axial load,

 

P

 

, is given by

, (1.1)

where

 

L

 

 = length of the rod

 

E

 

 = Young’s modulus of elasticity of the material of the rod

Because the mass, 

 

M, 

 

of the rod is given by

, (1.2)

where 

 

ρ

 

 = density of the material of the rod, we have

 

* Stiffness is defined as the resistance of a material to deflection.
† Strength is defined as the stress at which a material fails.
‡ Fatigue resistance is the resistance to the lowering of mechanical properties such as strength
and stiffness due to cyclic loading, such as due to take-off and landing of a plane, vibrating a
plate, etc.
** Impact resistance is the resistance to damage and to reduction in residual strength to impact
loads, such as a bird hitting an airplane or a hammer falling on a car body.
†† Thermal conductivity is the rate of heat flow across a unit area of a material in a unit time,
when the temperature gradient is unity in the direction perpendicular to the area.
‡‡ Corrosion resistance is the resistance to corrosion, such as pitting, erosion, galvanic, etc.

u
PL
AE

=

M AL= ρ
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. (1.3)

This implies that the lightest beam for specified deflection under a specified
load is one with the highest (

 

E

 

/

 

ρ

 

) value.
Thus, to measure the mechanical advantage, the (

 

E

 

/

 

ρ

 

) ratio is calculated
and is called the 

 

specific modulus (

 

ratio between the Young’s modulus* (

 

E

 

)
and the density† (

 

ρ

 

) of the material). The other parameter is called the 

 

specific
strength

 

 and is defined as the ratio between the strength (

 

σ

 

ult

 

) and the density
of the material (

 

ρ

 

), that is,

 

The two ratios are high in composite materials. For example, the strength
of a graphite/epoxy unidirectional composite‡ could be the same as steel,
but the specific strength is three times that of steel. What does this mean to
a designer? Take the simple case of a rod designed to take a fixed axial load.
The rod cross section of graphite/epoxy would be same as that of the steel,
but the mass of graphite/epoxy rod would be one third of the steel rod. This
reduction in mass translates to reduced material and energy costs. Figure
1.1 shows how composites and fibers rate with other traditional materials
in terms of specific strength.

 

3

 

 Note that the unit of specific strength is inches
in Figure 1.1 because specific strength and specific modulus are also defined
in some texts as

where 

 

g

 

 is the acceleration due to gravity (32.2 ft/s

 

2

 

 or 9.81 m/s

 

2

 

).

 

* Young’s modulus of an elastic material is the initial slope of the stress–strain curve.
† Density is the mass of a substance per unit volume.
‡ A unidirectional composite is a composite lamina or rod in which the fibers reinforcing the
matrix are oriented in the same direction. 

M
PL

E
=

2

4
1
/ ρ

Specific modulus

Specific strength

=
E

,

=

ρ

uult .σ
ρ

Specific modulus

Specific strength

=
E
g

,

=

ρ

g
ultσ

ρ
.
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Values of specific modulus and strength are given in Table 1.1 for typical
composite fibers, unidirectional composites,* cross-ply† and quasi-isotropic‡
laminated composites, and monolithic metals.

On a first look, fibers such as graphite, aramid, and glass have a specific
modulus several times that of metals, such as steel and aluminum. This gives
a false impression about the mechanical advantages of composites because
they are made not only of fibers, but also of fibers and matrix combined;
matrices generally have lower modulus and strength than fibers. Is the
comparison of the specific modulus and specific strength parameters of
unidirectional composites to metals now fair? The answer is no for two
reasons. First, unidirectional composite structures are acceptable only for
carrying simple loads such as uniaxial tension or pure bending. In structures
with complex requirements of loading and stiffness, composite structures
including angle plies will be necessary. Second, the strengths and elastic
moduli of unidirectional composites given in Table 1.1 are those in the
direction of the fiber. The strength and elastic moduli perpendicular to the
fibers are far less. 

 

FIGURE 1.1

 

Specific strength as a function of time of use of materials. (Source: Eager, T.W., Whither advanced
materials? 

 

Adv. Mater. Processes

 

, ASM International, June 1991, 25–29.) 

 

* A unidirectional laminate is a laminate in which all fibers are oriented in the same direction.
† A cross-ply laminate is a laminate in which the layers of unidirectional lamina are oriented at
right angles to each other.
‡ Quasi-isotropic laminate behaves similarly to an isotropic material; that is, the elastic proper-
ties are the same in all directions.
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A comparison is now made between popular types of laminates such as
cross-ply and quasi-isotropic laminates. Figure 1.2 shows the specific
strength plotted as a function of specific modulus for various fibers, metals,
and composites. 

 

Are specific modulus and specific strength the only mechanical parameters
used for measuring the relative advantage of composites over metals?

 

No, it depends on the application.

 

4

 

 Consider compression of a column,
where it may fail due to buckling. The Euler buckling formula gives the
critical load at which a long column buckles as

 

5

 

TABLE 1.1

 

Specific Modulus and Specific Strength of Typical Fibers, Composites, and Bulk Metals

 

Material
Units

Specific
gravity

 

a

 

Young

 

’

 

s
modulus

(Msi)

Ultimate
strength

(ksi)

Specific
modulus

(Msi-in.

 

3

 

/lb)

Specific
strength

(ksi-in.

 

3

 

/lb)

 

System of Units: USCS

 

Graphite fiber
Aramid fiber
Glass fiber
Unidirectional graphite/epoxy
Unidirectional glass/epoxy
Cross-ply graphite/epoxy
Cross-ply glass/epoxy
Quasi-isotropic graphite/epoxy
Quasi-isotropic glass/epoxy
Steel
Aluminum

1.8
1.4
2.5
1.6
1.8
1.6
1.8
1.6
1.8
7.8
2.6

33.35
17.98
12.33
26.25

5.598
13.92

3.420
10.10

2.750
30.00
10.00

299.8
200.0
224.8
217.6
154.0
54.10
12.80
40.10
10.60
94.00
40.00

512.9
355.5
136.5
454.1
86.09

240.8
52.59

174.7
42.29

106.5
106.5

4610
3959
2489
3764
2368
935.9
196.8
693.7
163.0
333.6
425.8

 

Material
Units

Specific
gravity

Young’s
modulus

(GPa)

Ultimate
strength
(MPa)

Specific
modulus

(GPa-m

 

3

 

/kg)

Specific
strength

(MPa-m

 

3

 

/kg)

 

System of Units: SI

 

Graphite fiber
Aramid fiber
Glass fiber
Unidirectional graphite/epoxy
Unidirectional glass/epoxy
Cross-ply graphite/epoxy
Cross-ply glass/epoxy
Quasi-isotropic graphite/epoxy
Quasi-isotropic glass/epoxy
Steel
Aluminum

1.8
1.4
2.5
1.6
1.8
1.6
1.8
1.6
1.8
7.8
2.6

230.00
124.00

85.00
181.00

38.60
95.98
23.58
69.64
18.96

206.84
68.95

2067
1379
1550
1500
1062
373.0

88.25
276.48

73.08
648.1
275.8

0.1278
0.08857
0.0340
0.1131
0.02144
0.06000
0.01310
0.04353
0.01053
0.02652
0.02652

1.148
0.9850
0.6200
0.9377
0.5900
0.2331
0.0490
0.1728
0.0406
0.08309
0.1061

 

a

 

Specific gravity of a material is the ratio between its density and the density of water.

 

1343_book.fm  Page 6  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



 

Introduction to Composite Materials

 

7

, (1.4)

where

 

P

 

cr

 

 = critical buckling load (lb or N)

 

E

 

 = Young’s modulus of column (lb/in.

 

2

 

 or N/m

 

2

 

)

 

I

 

 = second moment of area (in.

 

4

 

 or m

 

4

 

)

 

L

 

 = length of beam (in. or m)

If the column has a circular cross section, the second moment of area is 

(1.5)

and the mass of the rod is

, (1.6)

 

FIGURE 1.2

 

Specific strength as a function of specific modulus for metals, fibers, and composites.
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where

 

M

 

 = mass of the beam (lb or kg)

 

ρ

 

 = density of beam (lb/in.

 

3

 

 or kg/m

 

3

 

)

 

d

 

 = diameter of beam (in. or m)

Because the length, 

 

L

 

, and the load, 

 

P

 

, are constant, we find the mass of
the beam by substituting Equation (1.5) and Equation (1.6) in Equation
(1.4) as 

. (1.7)

This means that the lightest beam for specified stiffness is one with the
highest value of 

 

E

 

1/2

 

/

 

ρ

 

. 
Similarly, we can prove that, for achieving the minimum deflection in a

beam under a load along its length, the lightest beam is one with the highest
value of 

 

E

 

1/3

 

/

 

ρ

 

. Typical values of these two parameters, 

 

E

 

1/2

 

/

 

ρ

 

 and 

 

E

 

1/3

 

/

 

ρ

 

for typical fibers, unidirectional composites, cross-ply and quasi-isotropic
laminates, steel, and aluminum are given in Table 1.2. Comparing these
numbers with metals shows composites drawing a better advantage for these
two parameters. Other mechanical parameters for comparing the perfor-
mance of composites to metals include resistance to fracture, fatigue, impact,
and creep. 

 

Yes, composites have distinct advantages over metals. Are there any draw-
backs or limitations in using them?

 

Yes, drawbacks and limitations in use of composites include:

• High cost of fabrication of composites is a critical issue. For example,
a part made of graphite/epoxy composite may cost up to 10 to 15
times the material costs. A finished graphite/epoxy composite part
may cost as much as $300 to $400 per pound ($650 to $900 per
kilogram). Improvements in processing and manufacturing tech-
niques will lower these costs in the future. Already, manufacturing
techniques such as SMC (sheet molding compound) and SRIM
(structural reinforcement injection molding) are lowering the cost
and production time in manufacturing automobile parts.

• Mechanical characterization of a composite structure is more com-
plex than that of a metal structure. Unlike metals, composite mate-
rials are not isotropic, that is, their properties are not the same in all
directions. Therefore, they require more material parameters. For
example, a single layer of a graphite/epoxy composite requires 

 

nine

M
L P

E
cr=

2 12

1 2π ρ/ /
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stiffness and strength constants for conducting mechanical analysis.
In the case of a monolithic material such as steel, one requires only

 

four

 

 stiffness and strength constants. Such complexity makes struc-
tural analysis computationally and experimentally more compli-
cated and intensive. In addition, evaluation and measurement
techniques of some composite properties, such as compressive
strengths, are still being debated.

• Repair of composites is not a simple process compared to that for
metals. Sometimes critical flaws and cracks in composite structures
may go undetected.

 

TABLE 1.2

 

Specific Modulus Parameters 

 

E/ρ, E1/2/ρ, and E1/3/ρ for Typical Materials

Material
Units

Specific
gravity

Young’s
modulus

(Msi)
E/ρ

(Msi-in.3/lb)
E1/2/ρ

(psi1/2-in.3/lb)
E1/3/ρ

(psi1/3-in.3/lb)

System of Units: USCS

Graphite fiber
Kevlar fiber
Glass fiber
Unidirectional graphite/epoxy
Unidirectional glass/epoxy
Cross-ply graphite/epoxy
Cross-ply glass/epoxy
Quasi-isotropic graphite/epoxy
Quasi-isotropic glass/epoxy
Steel
Aluminum 

1.8
1.4
2.5
1.6
1.8
1.6
1.8
1.6
1.8
7.8
2.6

33.35
17.98
12.33
26.25

5.60
13.92

3.42
10.10

2.75
30.00
10.00

512.8
355.5
136.5
454.1

86.09
240.8

52.59
174.7

42.29
106.5
106.5

88,806
83,836
38,878
88,636
36,384
64,545
28,438
54,980
25,501
19,437
33,666

4,950
5,180
2,558
5,141
2,730
4,162
2,317
3,740
2,154
1,103
2,294

Material
Units

Specific
gravity

Young’s
modulus

(GPa)
E/ρ

(GPa-m3/kg)
E1/2/ρ

(Pa-m3/kg) 
E1/3/ρ

(Pa1/3-m3/kg )

System of Units: SI

Graphite fiber
Kevlar fiber
Glass fiber
Unidirectional graphite/epoxy
Unidirectional glass/epoxy
Cross-ply graphite/epoxy
Cross-ply glass/epoxy
Quasi-isotropic graphite/epoxy
Quasi-isotropic glass/epoxy
Steel
Aluminum 

1.8
1.4
2.5
1.6
1.8
1.6
1.8
1.6
1.8
7.8
2.6

230.00
124.00
85.00

181.00
38.60
95.98
23.58
69.64
18.96

206.84
68.95

0.1278
0.08857
0.034
0.1131
0.02144
0.060
0.0131
0.04353
0.01053
0.02652
0.02662

266.4
251.5
116.6
265.9
109.1
193.6
85.31

164.9
76.50
58.3

101.0

3.404
3.562
1.759
3.535
1.878
2.862
1.593
2.571
1.481
0.7582
1.577
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• Composites do not have a high combination of strength and fracture
toughness* compared to metals. In Figure 1.4, a plot is shown for
fracture toughness vs. yield strength for a 1-in. (25-mm) thick mate-
rial.3 Metals show an excellent combination of strength and fracture
toughness compared to composites. (Note: The transition areas in
Figure 1.4 will change with change in the thickness of the specimen.)

• Composites do not necessarily give higher performance in all the
properties used for material selection. In Figure 1.5, six primary
material selection parameters — strength, toughness, formability,

FIGURE 1.3
A uniformly loaded plate with a crack.

* In a material with a crack, the value of the stress intensity factor gives the measure of stresses
in the crack tip region. For example, for an infinite plate with a crack of length 2a under a uniaxial
load σ (Figure 1.3), the stress intensity factor is

.

If the stress intensity factor at the crack tip is greater than the critical stress intensity factor of the
material, the crack will grow. The greater the value of the critical stress intensity factor is, the
tougher the material is. The critical stress intensity factor is called the fracture toughness of the

material. Typical values of fracture toughness are  for aluminum and

 for steel.

σ

σ

2a

K a= σ π

23.66 ksi in. (26 MPa m )

25.48 ksi in. (28 MPa m )
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Introduction to Composite Materials 11

FIGURE 1.4
Fracture toughness as a function of yield strength for monolithic metals, ceramics, and
metal–ceramic composites. (Source: Eager, T.W., Whither advanced materials? Adv. Mater. Pro-
cesses, ASM International, June 1991, 25–29.)

FIGURE 1.5
Primary material selection parameters for a hypothetical situation for metals, ceramics, and
metal–ceramic composites. (Source: Eager, T.W., Whither advanced materials? Adv. Mater. Pro-
cesses, ASM International, June 1991, 25–29.)
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12 Mechanics of Composite Materials, Second Edition

joinability, corrosion resistance, and affordability — are plotted.3 If
the values at the circumference are considered as the normalized
required property level for a particular application, the shaded areas
show values provided by ceramics, metals, and metal–ceramic com-
posites. Clearly, composites show better strength than metals, but
lower values for other material selection parameters.

Why are fiber reinforcements of a thin diameter?

The main reasons for using fibers of thin diameter are the following:

• Actual strength of materials is several magnitudes lower than the
theoretical strength. This difference is due to the inherent flaws in
the material. Removing these flaws can increase the strength of the
material. As the fibers become smaller in diameter, the chances of
an inherent flaw in the material are reduced. A steel plate may have
strength of 100 ksi (689 MPa), while a wire made from this steel
plate can have strength of 600 ksi (4100 MPa). Figure 1.6 shows how
the strength of a carbon fiber increases with the decrease in its
diameter.6

FIGURE 1.6
Fiber strength as a function of fiber diameter for carbon fibers. (Reprinted from Lamotte, E. De,
and Perry, A.J., Fibre Sci. Technol., 3, 159, 1970. With permission from Elsevier.)
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Introduction to Composite Materials 13

• For higher ductility* and toughness, and better transfer of loads from
the matrix to fiber, composites require larger surface area of the
fiber–matrix interface. For the same volume fraction of fibers in a
composite, the area of the fiber–matrix interface is inversely propor-
tional to the diameter of the fiber and is proved as follows.
Assume a lamina consisting of N fibers of diameter D. The fiber–

matrix interface area in this lamina is

AI = N π D L. (1.8)

If one replaces the fibers of diameter, D, by fibers of diameter, d,
then the number of fibers, n, to keep the fiber volume the same
would be

. (1.9)

Then, the fiber–matrix interface area in the resulting lamina would be 

AII = n π d L.

= 

= . (1.10)

This implies that, for a fixed fiber volume in a given volume of
composite, the area of the fiber–matrix interface is inversely pro-
portional to the diameter of the fiber. 

• Fibers able to bend without breaking are required in manufacturing
of composite materials, especially for woven fabric composites. Abil-
ity to bend increases with a decrease in the fiber diameter and is
measured as flexibility. Flexibility is defined as the inverse of bend-
ing stiffness and is proportional to the inverse of the product of the
elastic modulus of the fiber and the fourth power of its diameter; it
can be proved as follows.
Bending stiffness is the resistance to bending moments. According

to the Strength of Materials course, if a beam is subjected to a
pure bending moment, M, 

* Ductility is the ability of a material to deform without fracturing. It is measured by extending
a rod until fracture and measuring the initial (Ai) and final (Af) cross-sectional area. Then ductil-
ity is defined as R = 1 – (Af/Ai).

n = N
D
d

⎛
⎝⎜

⎞
⎠⎟

2

N D L
d

π 2

4 (Volume of fibers)
d
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14 Mechanics of Composite Materials, Second Edition

, (1.11)

where
v = deflection of the centroidal line (in. or m)
E = Young’s modulus of the beam (psi or Pa)
I = second moment of area (in.4 or m4)
x = coordinate along the length of beam (in. or m)

The bending stiffness, then, is EI and the flexibility is simply the
inverse of EI. Because the second moment of area of a cylindrical
beam of diameter d is 

, (1.12)

then

. (1.13)

For a particular material, unlike strength, the Young’s modulus does
not change appreciably as a function of its diameter. Therefore,
the flexibility for a particular material is inversely proportional
to the fourth power of the diameter. 

What fiber factors contribute to the mechanical performance of a composite?

Four fiber factors contribute to the mechanical performance of a composite7:

• Length: The fibers can be long or short. Long, continuous fibers are
easy to orient and process, but short fibers cannot be controlled fully
for proper orientation. Long fibers provide many benefits over short
fibers. These include impact resistance, low shrinkage, improved
surface finish, and dimensional stability. However, short fibers pro-
vide low cost, are easy to work with, and have fast cycle time fab-
rication procedures. Short fibers have fewer flaws and therefore have
higher strength.

• Orientation: Fibers oriented in one direction give very high stiffness
and strength in that direction. If the fibers are oriented in more than
one direction, such as in a mat, there will be high stiffness and
strength in the directions of the fiber orientations. However, for the
same volume of fibers per unit volume of the composite, it cannot
match the stiffness and strength of unidirectional composites.

d v
dx

M
EI

2

2 =

I
d= π 4

64

Flexibility
Ed

∝ 1
4
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Introduction to Composite Materials 15

• Shape: The most common shape of fibers is circular because han-
dling and manufacturing them is easy. Hexagon and square-
shaped fibers are possible, but their advantages of strength and
high packing factors do not outweigh the difficulty in handling
and processing.

• Material: The material of the fiber directly influences the mechanical
performance of a composite. Fibers are generally expected to have
high elastic moduli and strengths. This expectation and cost have
been key factors in the graphite, aramids, and glass dominating the
fiber market for composites.

What are the matrix factors that contribute to the mechanical performance
of composites?

Use of fibers by themselves is limited, with the exceptions of ropes and
cables. Therefore, fibers are used as reinforcement to matrices. The matrix
functions include binding the fibers together, protecting fibers from the
environment, shielding from damage due to handling, and distributing the
load to fibers. Although matrices by themselves generally have low mechan-
ical properties compared to those of fibers, the matrix influences many
mechanical properties of the composite. These properties include transverse
modulus and strength, shear modulus and strength, compressive strength,
interlaminar shear strength, thermal expansion coefficient, thermal resis-
tance, and fatigue strength.

Other than the fiber and the matrix, what other factors influence the
mechanical performance of a composite? 

Other factors include the fiber–matrix interface. It determines how well
the matrix transfers the load to the fibers. Chemical, mechanical, and reaction
bonding may form the interface. In most cases, more than one type of
bonding occurs.

• Chemical bonding is formed between the fiber surface and the
matrix. Some fibers bond naturally to the matrix and others do not.
Coupling agents* are often added to form a chemical bond.

• The natural roughness or etching of the fiber surface causing inter-
locking may form a mechanical bond between the fiber and matrix.

• If the thermal expansion coefficient of the matrix is higher than that
of the fiber, and the manufacturing temperatures are higher than the
operating temperatures, the matrix will radially shrink more than
the fiber. This causes the matrix to compress around the fiber.

* Coupling agents are compounds applied to fiber surfaces to improve the bond between the
fiber and matrix. For example, silane finish is applied to glass fibers to increase adhesion with
epoxy matrix.
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16 Mechanics of Composite Materials, Second Edition

• Reaction bonding occurs when atoms or molecules of the fiber and
the matrix diffuse into each other at the interface. This interdiffusion
often creates a distinct interfacial layer, called the interphase, with
different properties from that of the fiber or the matrix. Although
this thin interfacial layer helps to form a bond, it also forms micro-
cracks in the fiber. These microcracks reduce the strength of the fiber
and thus that of the composite. 

Weak or cracked interfaces can cause failure in composites and reduce the
properties influenced by the matrix. They also allow environmental hazards
such as hot gases and moisture to attack the fibers.

Although a strong bond is a requirement in transferring loads from the
matrix to the fiber, weak debonding of the fiber–matrix interface is used
advantageously in ceramic matrix composites. Weak interfaces blunt matrix
cracks and deflect them along the interface. This is the main source of
improving toughness of such composites up to five times that of the mono-
lithic ceramics.

What is the world market of composites?

The world market for composites is only 10 × 109 US dollars as compared
to more than 450 × 109 US dollars for steel. The annual growth of composites
is at a steady rate of 10%. Presently, composite shipments are about 3 × 109

lb annually. Figure 1.7 gives the relative market share of US composite
shipments and shows transportation clearly leading in their use. Table 1.3
shows the market share of composites since 1990.

1.2 Classification

How are composites classified?

Composites are classified by the geometry of the reinforcement — partic-
ulate, flake, and fibers (Figure 1.8) — or by the type of matrix — polymer,
metal, ceramic, and carbon.

• Particulate composites consist of particles immersed in matrices such
as alloys and ceramics. They are usually isotropic because the par-
ticles are added randomly. Particulate composites have advantages
such as improved strength, increased operating temperature, oxida-
tion resistance, etc. Typical examples include use of aluminum par-
ticles in rubber; silicon carbide particles in aluminum; and gravel,
sand, and cement to make concrete.

• Flake composites consist of flat reinforcements of matrices. Typical
flake materials are glass, mica, aluminum, and silver. Flake compos-
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Introduction to Composite Materials 17

FIGURE 1.7
Approximate shipments of polymer-based composites in 1995. (Source: Data used in figure
published with permission of the SPI, Inc.; http://www.socplas.org.)

TABLE 1.3

U.S. Composites Shipment in 106 lb, Including Reinforced Thermoset and 
Thermoplastic Resin Composites, Reinforcements, and Fillers

Markets 1990 1991 1992 1993 1994 1995

Aircraft/aerospace/military 39 38.7 32.3 25.4 24.2 24.0
Appliance/business equipment 153 135.2 143.2 147.5 160.7 166.5
Construction 468 420.0 483.0 530.0 596.9 626.9
Consumer products 165 148.7 162.2 165.7 174.8 183.6
Corrosion-resistant equipment 350 355.0 332.3 352.0 376.3 394.6
Electrical/electronic 241 231.1 260.0 274.9 299.3 315.1
Marine 375 275.0 304.4 319.3 363.5 375.1
Transportation 705 682.2 750.0 822.1 945.6 984.0
Other 79 73.8 83.4 89.3 101.8 106.6
TOTAL 2575 2360 2551 2726 3043.1 3176.4

Source: Published with permission of the SPI, Inc.

Appliance
& business
equipment

Consumer
products

Electrical
& electronics

Corrosion-resistant
equipment

Marine Construction

Transportation

Other

Total shipments in 1995: 3.176 (109)lb [1.441 (109) kgs]
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18 Mechanics of Composite Materials, Second Edition

ites provide advantages such as high out-of-plane flexural modulus,*
higher strength, and low cost. However, flakes cannot be oriented
easily and only a limited number of materials are available for use.

• Fiber composites consist of matrices reinforced by short (discontin-
uous) or long (continuous) fibers. Fibers are generally anisotropic†
and examples include carbon and aramids. Examples of matrices are
resins such as epoxy, metals such as aluminum, and ceramics such
as calcium–alumino silicate. Continuous fiber composites are
emphasized in this book and are further discussed in this chapter
by the types of matrices: polymer, metal, ceramic, and carbon. The
fundamental units of continuous fiber matrix composite are unidi-
rectional or woven fiber laminas. Laminas are stacked on top of each
other at various angles to form a multidirectional laminate.

• Nanocomposites consist of materials that are of the scale of nanome-
ters (10–9 m). The accepted range to be classified as a nanocomposite
is that one of the constituents is less than 100 nm. At this scale, the

FIGURE 1.8
Types of composites based on reinforcement shape.

* Out of plane flexural stiffness is the resistance to deflection under bending that is out of the
plane, such as bending caused by a heavy stone placed on a simply supported plate.
† Anisotropic materials are the opposite of isotropic materials like steel and aluminum; they
have different properties in different directions. For example, the Young’s modulus of a piece of
wood is higher (different) in the direction of the grain than in the direction perpendicular to the
grain. In comparison, a piece of steel has the same Young’s modulus in all directions.

Particulate composites

Flake composites

Fiber composites
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Introduction to Composite Materials 19

properties of materials are different from those of the bulk material.
Generally, advanced composite materials have constituents on the
microscale (10–6 m). By having materials at the nanometer scale, most
of the properties of the resulting composite material are better than
the ones at the microscale. Not all properties of nanocomposites are
better; in some cases, toughness and impact strength can decrease.

Applications of nanocomposites include packaging applications
for the military in which nanocomposite films show improvement
in properties such as elastic modulus, and transmission rates for
water vapor, heat distortion, and oxygen.8

Body side molding of the 2004 Chevrolet Impala is made of olefin-
based nanocomposites.9 This reduced the weight of the molding by
7% and improved its surface quality. General Motors™ currently
uses 540,000 lb of nanocomposite materials per year.

Rubber containing just a few parts per million of metal conducts
electricity in harsh conditions just like solid metal. Called Metal
Rubber®, it is fabricated molecule by molecule by a process called
electrostatic self-assembly. Awaited applications of the Metal Rubber
include artificial muscles, smart clothes, flexible wires, and circuits
for portable electronics.10

1.2.1 Polymer Matrix Composites

What are the most common advanced composites?

The most common advanced composites are polymer matrix composites
(PMCs) consisting of a polymer (e.g., epoxy, polyester, urethane) reinforced
by thin diameter fibers (e.g., graphite, aramids, boron). For example, graphite/
epoxy composites are approximately five times stronger than steel on a weight-
for-weight basis. The reasons why they are the most common composites
include their low cost, high strength, and simple manufacturing principles.

What are the drawbacks of polymer matrix composites?

The main drawbacks of PMCs include low operating temperatures, high
coefficients of thermal and moisture expansion,* and low elastic properties
in certain directions.

What are the typical mechanical properties of some polymer matrix com-
posites? Compare these properties with metals.

Table 1.4 gives typical mechanical properties of common polymer matrix
composites.

* Some materials, such as polymers, absorb or deabsorb moisture that results in dimensional
changes. The coefficient of moisture expansion is the change in length per unit length per unit
mass of moisture absorbed per unit mass of the substance.
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20 Mechanics of Composite Materials, Second Edition

Give names of various fibers used in advanced polymer composites.

The most common fibers used are glass, graphite, and Kevlar. Typical
properties of these fibers compared with bulk steel and aluminum are given
in Table 1.5.

Give a description of the glass fiber.

Glass is the most common fiber used in polymer matrix composites. Its
advantages include its high strength, low cost, high chemical resistance, and
good insulating properties. The drawbacks include low elastic modulus,

TABLE 1.4

Typical Mechanical Properties of Polymer Matrix Composites and 
Monolithic Materials 

Property Units
Graphite/

epoxy
Glass/
epoxy Steel Aluminum

System of units: USCS

Specific gravity
Young’s modulus
Ultimate tensile strength
Coefficient of thermal expansion

—
Msi
ksi

μin./in./°F

1.6
26.25

217.6
0.01111

1.8
5.598

154.0
4.778

7.8
30.0
94.0
6.5

2.6
10.0
40.0
12.8

System of units: SI

Specific gravity
Young’s modulus
Ultimate tensile strength
Coefficient of thermal expansion

—
GPa
MPa

μm/m/°C

1.6
181.0
150.0

0.02

1.8
38.6

1062
8.6

7.8
206.8
648.1
11.7

2.6
68.95

275.8
23

TABLE 1.5

Typical Mechanical Properties of Fibers Used in Polymer Matrix Composites

Property Units Graphite Aramid Glass Steel Aluminum

System of units: USCS

Specific gravity
Young’s modulus
Ultimate tensile strength
Axial coefficient of 
thermal expansion

—
Msi
ksi

μin./in./°F

1.8
33.35

299.8
–0.722

1.4
17.98

200.0
–2.778

2.5
12.33

224.8
2.778

7.8
30
94
6.5

2.6
10.0
40.0
12.8

System of units: SI

Specific gravity
Young’s modulus
Ultimate tensile strength
Axial coefficient of
thermal expansion

—
GPa
MPa

μm/m/°C

1.8
230

2067
–1.3

1.4
124

1379
–5

2.5
85

1550
5

7.8
206.8
648.1
11.7

2.6
68.95

275.8
23
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Introduction to Composite Materials 21

poor adhesion to polymers, high specific gravity, sensitivity to abrasion
(reduces tensile strength), and low fatigue strength.

Types: The main types are E-glass (also called “fiberglass”) and S-glass.
The “E” in E-glass stands for electrical because it was designed for electrical
applications. However, it is used for many other purposes now, such as
decorations and structural applications. The “S” in S-glass stands for higher
content of silica. It retains its strength at high temperatures compared to E-
glass and has higher fatigue strength. It is used mainly for aerospace appli-
cations. Some property differences are given in Table 1.6.

The difference in the properties is due to the compositions of E-glass and
S-glass fibers. The main elements in the two types of fibers are given in
Table 1.7.

Other types available commercially are C-glass (“C” stands for corrosion)
used in chemical environments, such as storage tanks; R-glass used in struc-
tural applications such as construction; D-glass (dielectric) used for applica-
tions requiring low dielectric constants, such as radomes; and A-glass
(appearance) used to improve surface appearance. Combination types such

TABLE 1.6

Comparison of Properties of E-Glass and S-Glass

Property Units E-Glass S-Glass

System of units: USCS

Specific gravity
Young’s modulus
Ultimate tensile strength 
Coefficient of thermal expansion

—
Msi
ksi

μin./in./°F

2.54
10.5

500
2.8

2.49
12.4

665
3.1

System of units: SI

Specific gravity
Young’s modulus
Ultimate tensile strength 
Coefficient of thermal expansion

—
GPa
MPa

μm/m/°C

2.54
72.40

3447
5.04

2.49
85.50

4585
5.58

TABLE 1.7

Chemical Composition of E-Glass 
and S-Glass Fibers

Material
% Weight

E-Glass S-Glass

Silicon oxide
Aluminum oxide
Calcium oxide
Magnesium oxide
Boron oxide
Others

54
15
17

4.5
8
1.5

64
25

0.01
10

0.01
0.8
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22 Mechanics of Composite Materials, Second Edition

as E-CR glass (“E-CR” stands for electrical and corrosion resistance) and AR
glass (alkali resistant) also exist.

Manufacturing: Glass fibers are made generally by drawing from a melt11

as shown in Figure 1.9. The melt is formed in a refractory furnace at about
2550°F (1400°C) from a mixture that includes sand, limestone, and alumina.
The melt is stirred and maintained at a constant temperature. It passes
through as many as 250 heated platinum alloy nozzles of about 394 μin. (10
μm) diameter, where it is drawn into filaments of needed size at high speeds
of about 361 mi/h (25 m/s). These fibers are sprayed with an organic sizing

FIGURE 1.9
Schematic of manufacturing glass fibers and available glass forms. (From Bishop, W., in Ad-
vanced Composites, Partridge, I.K., Ed., Kluwer Academic Publishers, London, 1990, Figure 4, p.
177. Reproduced with kind permission of Springer.)
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Introduction to Composite Materials 23

solution before they are drawn. The sizing solution is a mixture of binders,
lubricants, and coupling and antistatic agents; binders allow filaments to
be packed in strands, lubricants prevent abrasion of filaments, and coupling
agents give better adhesion between the inorganic glass fiber and the
organic matrix.

Fibers are then drawn into strands and wound on a forming tube. Strands
are groups of more than 204 filaments. The wound array of strands is then
removed and dried in an oven to remove any water or sizing solutions. The
glass strand can then be converted into several forms as shown in Figure
1.9. Different forms of various fibers are shown in Figure 1.10.

Give a description of graphite fibers.

Graphite fibers are very common in high-modulus and high-strength
applications such as aircraft components, etc. The advantages of graphite
fibers include high specific strength and modulus, low coefficient of thermal
expansion, and high fatigue strength. The drawbacks include high cost, low
impact resistance, and high electrical conductivity.

Manufacturing: Graphite fibers have been available since the late 1800s.
However, only since the early 1960s has the manufacturing of graphite fibers
taken off. Graphite fibers are generally manufactured from three precursor
materials: rayon, polyacrylonitrile (PAN), and pitch. PAN is the most popular
precursor and the process to manufacture graphite fibers from it is given
next (Figure 1.11).

PAN fibers are first stretched five to ten times their length to improve their
mechanical properties and then passed through three heating processes. In
the first process, called stabilization, the fiber is passed through a furnace
between 392 and 572°F (200 and 300°C) to stabilize its dimensions during
the subsequent high-temperature processes. In the second process, called
carbonization, it is pyrolized* in an inert atmosphere of nitrogen or argon
between 1832 and 2732°F (1000 and 1500°C). In the last process, called
graphitization, it is heat treated above 4532°F (2500°C). The graphitization
yields a microstructure that is more graphitic than that produced by carbon-
ization. The fibers may also be subjected to tension in the last two heating
processes to develop fibers with a higher degree of orientation.

At the end of this three-step heat treatment process, the fibers are surface
treated to develop fiber adhesion and increase laminar shear strength when
they are used in composite structures. They are then collected on a spool. 

Properties: Table 1.8 gives properties of graphite fibers obtained from two
different precursors.

Are carbon and graphite the same?

No,7 they are different. Carbon fibers have 93 to 95% carbon content, but
graphite has more than 99% carbon content. Also, carbon fibers are produced

* Pyrolysis is defined as the decomposition of a complex organic substance to one of a simpler
structure by means of heat.
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at 2400°F (1316°C), and graphite fibers are typically produced in excess of
3400°F (1900°C).

Give a description of the aramid fiber.

An aramid fiber is an aromatic organic compound made of carbon, hydro-
gen, oxygen, and nitrogen. Its advantages are low density, high tensile

FIGURE 1.10
Forms of available fibers. (Graphic courtesy of M.C. Gill Corporation, http://www.
mcgillcorp.com.)

1343_book.fm  Page 24  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC

www.mcgillcorp.com
www.mcgillcorp.com


Introduction to Composite Materials 25

strength, low cost, and high impact resistance. Its drawbacks include low
compressive properties and degradation in sunlight.

Types: The two main types of aramid fibers are Kevlar 29®* and Kevlar
49®†. Both types of Kevlar fibers have similar specific strengths, but Kevlar
49 has a higher specific stiffness. Kevlar 29 is mainly used in bulletproof

FIGURE 1.11
Stages of manufacturing a carbon fiber from PAN-based precursors.

TABLE 1.8

Mechanical Properties of Two Typical Graphite Fibers

Property Units PITCH PAN

System of units: USCS

Specific gravity
Young’s modulus
Ultimate tensile strength
Axial coefficient of thermal expansion

—
Msi
ksi

μin/in/°F

1.99
55

250
–0.3

1.78
35

500
–0.7

System of units: SI

Specific gravity
Young’s modulus
Ultimate tensile strength
Axial coefficient of thermal expansion

—
GPa
MPa

μm/m/°C

1.99
379.2

1723
–0.54

1.78
241.3

3447
–1.26

* Kevlar 29 is a registered trademark of E.I. duPont deNemours and Company, Inc., Wilmington,
DE.
† Kevlar 49 is a registered trademark of E.I. duPont deNemours and Company, Inc., Wilmington,
DE.

Stretching

Off-wind creel

Surface treatmentWind-up creel

Stabilization (200–300°C)

Carbonization (1000–1500°C)

Graphitization (2500°C)
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vests, ropes, and cables. High performance applications in the aircraft indus-
try use Kevlar 49. Table 1.9 gives the relative properties of Kevlar 29 and
Kevlar 49.

Manufacturing: The fiber is produced by making a solution of proprietary
polymers and strong acids such as sulfuric acid. The solution is then
extruded into hot cylinders at 392°F (200°C), washed, and dried on spools.
The fiber is then stretched and drawn to increase its strength and stiffness.

Give names of various polymers used in advanced polymer composites.

These polymers include epoxy, phenolics, acrylic, urethane, and polyamide. 

Why are there so many resin systems in advanced polymer composites?

Each polymer has its advantages and drawbacks in its use12:

• Polyesters: The advantages are low cost and the ability to be made
translucent; drawbacks include service temperatures below 170°F
(77°C), brittleness, and high shrinkage* of as much as 8% during
curing.

• Phenolics: The advantages are low cost and high mechanical
strength; drawbacks include high void content.

• Epoxies: The advantages are high mechanical strength and good
adherence to metals and glasses; drawbacks are high cost and diffi-
culty in processing.

TABLE 1.9

Properties of Kevlar Fibers

Property Units Kevlar 29 Kevlar 49

System of units: USCS

Specific gravity
Young’s modulus 
Ultimate tensile strength
Axial coefficient of thermal expansion

—
Msi
ksi

μin./in./°F

1.44
9

525
–1.111

1.48
19

525
–1.111

System of units: SI

Specific gravity
Young’s modulus
Ultimate tensile strength
Axial coefficient of thermal expansion

—
GPa
MPa

μm/m/°C

1.44
62.05

3620
–2

1.48
131.0

3620
–2

* Shrinkage in resins is found by measuring the density of the resin before and after cross-link-
ing. If ρ is the density before cross-linking and ρ′ is the density after cross-linking. The percent
shrinkage is defined as shrinkage =  (ρ′ – ρ)/ρ′ × 100.
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As can be seen, each of the resin systems has its advantages and drawbacks.
The use of a particular system depends on the application. These consider-
ations include mechanical strength, cost, smoke emission, temperature
excursions, etc. Figure 1.12 shows the comparison of five common resins
based on smoke emission, strength, service temperature, and cost.12

Give a description of epoxy.

Epoxy resins are the most commonly used resins. They are low molecular
weight organic liquids containing epoxide groups. Epoxide has three mem-
bers in its ring: one oxygen and two carbon atoms. The reaction of epichlo-
rohydrin with phenols or aromatic amines makes most epoxies. Hardeners,*

FIGURE 1.12
Comparison of performance of several common matrices used in polymer matrix composites.
(Graphic courtesy of M.C. Gill Corporation, http://www.mcgillcorp.com.)

* Hardeners are substances that are added to polymers for aiding in curing of composites. 
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plasticizers,* and fillers† are also added to produce epoxies with a wide
range of properties of viscosity, impact, degradation, etc. The room temper-
ature properties of a typical epoxy are given in Table 1.10.

Epoxy is the most common type of matrix material. Why?

Although epoxy is costlier than other polymer matrices, it is the most
popular PMC matrix. More than two-thirds of the polymer matrices used in
aerospace applications are epoxy based. The main reasons why epoxy is the
most used polymer matrix material are

• High strength
• Low viscosity and low flow rates, which allow good wetting of fibers

and prevent misalignment of fibers during processing
• Low volatility during cure
• Low shrink rates, which reduce the tendency of gaining large shear

stresses of the bond between epoxy and its reinforcement
• Available in more than 20 grades to meet specific property and

processing requirements

Polymers are classified as thermosets and thermoplastics. What is the
difference between the two? Give some examples of both.

Thermoset polymers are insoluble and infusible after cure because the
chains are rigidly joined with strong covalent bonds; thermoplastics are
formable at high temperatures and pressure because the bonds are weak and

TABLE 1.10

Room Temperature Properties of a 
Typical Epoxy

Property Units Value

System of units: USCS

Specific gravity
Young’s modulus
Ultimate tensile strength

—
Msi
ksi

1.28
0.55

12.0

System of units: SI

Specific gravity
Young’s modulus
Ultimate tensile strength

—
GPa
MPa

1.28
3.792

82.74

* Plasticizers are lubricants that improve the toughness, flexibility, processibility, and ductility of
polymers. This improvement is generally at the expense of lower strength.
† Fillers are ingredients added to enhance properties such as strength, surface texture, and ultra-
violet absorption of a polymer, and to lower the cost of polymers. Typical examples include
chopped fabric and wood flour.
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of the van der Waals type. Typical examples of thermoset include epoxies,
polyesters, phenolics, and polyamide; typical examples of thermoplastics
include polyethylene, polystyrene, polyether–ether–ketone (PEEK), and
polyphenylene sulfide (PPS). The differences between thermosets and ther-
moplastics are given in the following table.

 

13

 

What are prepregs?

 

Prepregs are a ready-made tape composed of fibers in a polymer matrix
(Figure 1.13). They are available in standard widths from 3 to 50 in. (76 to
1270 mm). Depending on whether the polymer matrix is thermoset or ther-
moplastic, the tape is stored in a refrigerator or at room temperature, respec-
tively. One can lay these tapes manually or mechanically at various
orientations to make a composite structure. Vacuum bagging and curing
under high pressures and temperatures may follow.

Figure 1.14 shows the schematic of how a prepreg is made.

 

14

 

 A row of
fibers is passed through a resin bath. The resin-impregnated fibers are then

 

 

 

Thermoplastics Thermoset

 

Soften on heating and pressure, and thus easy to repair Decompose on heating
High strains to failure Low strains to failure
Indefinite shelf life Definite shelf life
Can be reprocessed Cannot be reprocessed
Not tacky and easy to handle Tacky
Short cure cycles Long cure cycles
Higher fabrication temperature and viscosities have 
made it difficult to process

Lower fabrication temperature

Excellent solvent resistance Fair solvent resistance

 

FIGURE 1.13

 

Boron/epoxy prepreg tape. (Photo courtesy of Specialty Materials, Inc.,
http://www.specmaterials.com.)
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heated to advance the curing reaction from A-stage* to the B-stage. A release
film is now wound over a take-up roll and backed with a release film. The
release film keeps the prepregs from sticking to each other during storage.
Give examples of how a polymer matrix composite is manufactured.

Techniques of manufacturing a polymer matrix composite include 

 

filament
winding

 

 (used generally for making pipes and tanks to handle chemicals),

 

autoclave forming

 

 (used to make complex shapes and flat panels for structures
in which low void content and high quality are important), and 

 

resin transfer
molding

 

 (used extensively in the automotive industry because short produc-
tion runs are necessary).

 

Filament winding

 

: Fibers are impregnated with a resin by drawing them
through an in-line resin bath (wet winding) (Figure 1.16) or prepregs (dry
winding) are wound over a mandrel. Wet winding is inexpensive and lets
one control the properties of the composite. Dry winding is cleaner, but more
expensive and thus quite uncommon.

 

FIGURE 1.14

 

Schematic of prepreg manufacturing. (Reprinted from Mallick, P.K., 

 

Fiber-Reinforced Composites:
Materials, Manufacturing, and Design

 

, Marcel Dekker, Inc., New York, Chap. 2, 1988, p. 62.
Courtesy of CRC Press, Boca Raton, FL.)

 

* Thermosetting resins have three curing stages: A, B, and C (Figure 1.15).
Resins are manufactured in the A-stage, in which the resin may be solid or liquid but is able

to flow if heat is applied. The A-stage is also called the completely uncured stage.
The B-stage is the middle stage of the reaction of a thermosetting resin used when prepregs

are manufactured. This stage allows easy processing and handling of composite layers, such as
graphite/epoxy.

The C-stage is the final stage in the reaction of a thermosetting resin. This stage is accom-
plished when a composite structure is made out of composite layers. Heat and pressure may be
applied at the B-stage to cure the resin completely. This stage results in irreversible hardening
and insolubility.

Controlled heating elements

Metering device

Fiber collimator

Resin solution

Fiber package

Back-up material
(release film)

Take-up
roll
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FIGURE 1.15
Curing stages of phenolic resins. (Graphic courtesy of M.C. Gill Corporation,
http://www.mcgillcorp.com.)

Curing stages of phenolic resins 
OHOH

COH COH

OC CHO C OHC

OH OH

OH
COH

COH

OC C OC CHO C

COH

OH

OH

COH

OHC

COH

H2O

OH OH OH OH

OHOH

OH OH OH

H2O

“A” STAGE Low molecular weight linear polymer

“B” STAGE Higher molecular weight, partly cross-linked

“C” STAGE Fully cross-linked, cured
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Depending on the desired properties of the product, winding patterns such
as hoop, helical, and polar can be developed. The product is then cured with
or without heat and pressure. Depending on the application, mandrels are
made of wood, aluminum, steel, plaster, or salts. For example, steel mandrels
are chosen for manufacturing large quantities of open-ended cylinders, and
low-melting alloys or water-soluble salts are used for closed-ended cylinders
so that one can easily remove the mandrel.

Autoclave forming: This method of manufacturing is used with composites
available as prepregs. First, a peel ply made out of nylon or cellophane coated
with Teflon* is placed on the mold.† Teflon is used for easy removal of the
part and the peel ply achieves a desired finish that is smooth and wrinkle
free. Replacing Teflon by mold releasing powders and liquids can also
accomplish removal of the part. Prepregs of the required number are laid
up one ply at a time by automated means or by hand. Each ply is pressed
to remove any entrapped air and wrinkles. The lay-up is sealed at the edges
to form a vacuum seal.

FIGURE 1.16
(a) Filament winding process; (b) filament wound pressure vessel with liner. (From Chawla,
K.K., Composite Materials — Science and Engineering, Springer–Verlag, 1998. Reprinted by per-
mission of Springer–Verlag.)

* Teflon is a registered trademark of E.I. duPont deNemours and Company, Inc., Wilmington,
DE.
† Mold: a structure around or in which the composite forms a desired shape. Molds are female
and male. If the composite part is in the mold, it is called a female mold; if it is made around the
mold, it is called a male mold. (See in Figure 1.17 the male mold that was used in making a
human-powered submarine.)
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Now one establishes the bleeder system to get rid of the volatiles and
excess resin during the heating and vacuum process that follows later. The
bleeder system consists of several bleeder sheets made of glass cloth. These
are placed on the edges and the top of the lay-up.

Then, vacuum connections are placed over the bleeders and the lay-up is
bagged. A partial vacuum is developed to smooth the bag surface. The whole
assembly is put in an autoclave (Figure 1.18), where heat and pressure are
applied with an inert gas such as nitrogen. The vacuum system is kept
functioning to remove volatiles during the cure cycle and to keep the part
conformed to the mold. The cure cycle may last more than 5 h.

Resin transfer molding (RTM) (also called liquid molding): A low viscosity resin
such as polyester or epoxy resin is injected under low pressure into a closed
mold that contains the fiber preform. The resin flow is stopped and the part
is allowed to cure. The cure is done at room temperature or at elevated
temperatures. The latter is done if the part is to be used for high-temperature

FIGURE 1.17
Human-powered submarine and its mold. (Courtesy of Professor G.H. Besterfield and student
section of ASME, University of South Florida, Tampa.)
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application. The advantages of RTM are that it is less expensive than hand
lay-up, can be automated, and does not need refrigerated storage for
prepregs. Major drawbacks include the capital expense required for having
two molds instead of one.15

Give typical applications of polymer matrix composites.

Applications of polymer matrix composites range from tennis racquets to
the space shuttle. Rather than enumerating only the areas in which polymer-
based composites are used, a few examples have been taken from each
industry. Emphasis has been placed on why a composite material is the
material of choice.

Aircraft: The military aircraft industry has mainly led the use of polymer
composites. The percentage of structural weight of composites that was less
than 2% in F-15s in the 1970s has increased to about 30% on the AV-8B in
the 1990s. In both cases, the weight reduction over metal parts was more
than 20%.

In commercial airlines, the use of composites has been conservative
because of safety concerns. Use of composites is limited to secondary struc-
tures such as rudders and elevators made of graphite/epoxy for the Boeing
767 and landing gear doors made of Kevlar–graphite/epoxy. Composites are
also used in panels and floorings of airplanes. Some examples of using
composites in the primary structure are the all-composite Lear Fan 2100
plane and the tail fin of the Airbus A310-300. In the latter case, the tail fin
consists of graphite/epoxy and aramid honeycomb. It not only reduced the
weight of the tail fin by 662 lb (300 kg) but also reduced the number of parts
from 2000 to 100. Skins of aircraft engine cowls shown in Figure 1.19 are also
made of polymer matrix composites for reducing weight.16

With increasing competition in model airplane flying, the weight of com-
posite materials has been reduced. Figure 1.20 shows a World War II model
airplane with fuselage made of glass/epoxy, wings made of balsa-wood

FIGURE 1.18
Autoclave used for processing polymer matrix composites. (Photo courtesy of ACP Composites,
MN, http://www.acp_composites.com.)
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FIGURE 1.19
Aircraft engine cowling. (Photo provided courtesy of Alliant Techsystems, Inc.)

FIGURE 1.20
Model BF109 WWII German fighter plane using glass/epoxy-molded fuselage and wing spars
of graphite/epoxy. (Photo courtesy of Russell A. Lepré, Tampa, FL.)
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facings/Styrofoam core sandwich construction, and wingspars made of
graphite/epoxy.17

Helicopters and tiltrotors (Figure 1.21) use graphite/epoxy and glass/
epoxy rotor blades that not only increase the life of blades by more than
100% over metals but also increase the top speeds. 

Space: Two factors make composites the material of choice in space appli-
cations: high specific modulus and strength, and dimensional stability dur-
ing large changes in temperature in space. Examples include the Graphite/
epoxy-honeycomb payload bay doors in the space shuttle (Figure 1.22).
Weight savings7 over conventional metal alloys translate to higher payloads
that cost as much as $1000/lb ($2208/kg). Also, for the space shuttles, graph-
ite/epoxy was chosen primarily for weight savings and for small mechanical
and thermal deflections concerning the remote manipulator arm, which
deploys and retrieves payloads.

Figure 1.23 shows a high-gain antenna for the space station that uses
sandwiches made of graphite/epoxy facings with an aluminum honeycomb
core. Antenna ribs and struts in satellite systems use graphite/epoxy for
their high specific stiffness and its ability to meet the dimensional stability16

requirements due to large temperature excursions in space.
In June 2004, Paul G. Allen and Scaled Composites18 launched the first

privately manned vehicle, called SpaceshipOne, beyond the Earth’s atmo-
sphere (Figure 1.24). The spaceship reached a record-breaking altitude of
approximately 62 miles (100 km). SpaceshipOne is constructed from graph-
ite-epoxy composite materials; a trowel-on ablative thermal protection layer19

protects its hotter sections.
Sporting goods: Graphite/epoxy is replacing metals in golf club shafts

mainly to decrease the weight and use the saved weight in the head. This
increase in the head weight has improved driving distances by more than
25 yards (23 m).

FIGURE 1.21
The BELL™ V-22 Osprey in combat configuration. (Courtesy of Bell Helicopter Textron Inc.)
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FIGURE 1.22
Use of composites in the space shuttle. (Graphic courtesy of M.C. Gill Corporation, 
http://www.mcgillcorp.com.)

FIGURE 1.23
High-gain antenna for space station. (Photo provided courtesy of Alliant Techsystems, Inc.)
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Bicycles use hybrid construction of graphite/epoxy composites wound on
an aluminum tubing or chopped S-glass reinforced urethane foam. The
graphite/epoxy composite increases the specific modulus of the tube and
decreases the mass of the frame by 25%. Composites also allow frames to
consist of one piece, which improves fatigue life and avoids stress concen-
tration* found in metallic frames at their joints. Bicycle wheels made of
carbon–polymide composites offer low weight and better impact resistance
than aluminum.

Tennis and racquetball rackets with graphite/epoxy frames are now com-
monplace. The primary reasons for using composites are that they improve
the torsional rigidity of the racquet and reduce risk of elbow injury due to
vibration damping.† Ice hockey sticks are now manufactured out of hybrids
such as Kevlar–glass/epoxy. Kevlar is added for durability and stiffness. Ski
poles made of glass/polyester composites have higher strength, flexibility,
and lower weight than conventional ski poles. This reduces stress and impact
on upper body joints as the skier plants his poles.

Medical devices: Applications here include the use of glass–Kevlar/epoxy
lightweight face masks for epileptic patients. Artificial portable lungs are
made of graphite–glass/epoxy so that a patient can be mobile. X-ray tables
made of graphite/epoxy facing sandwiches are used for their high stiffness,
light weight, and transparency to radiation. The latter feature allows the

FIGURE 1.24
First privately manned vehicle (SpaceShipOne) to go beyond the Earth’s atmosphere. (Photo
provided courtesy of Scaled Composites, http://www.scaled.com.)

* If a loaded machine element has a discontinuity, the stresses are different at the discontinuity.
The ratio between the stresses at the discontinuity and the nominal stress is defined as the stress
concentration factor. For example, in a plate with a small hole, the stress concentration factor is
three at the edge of the hole.
† Vibration damping is the ability of a material to dissipate energy during vibration. Damping
of composites is higher than that of conventional metals such as steel and aluminum. Damping
of composites depends on fiber volume fraction, orientation, constituent properties, and stack-
ing sequence. Damping in composites is measured by calculating the ratio of energy dissipated
to the energy stored.20
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patient to stay on one bed for an operation as well as x-rays and be subjected
to a lower dosage of radiation.

Marine: The application of fiberglass in boats is well known. Hybrids of
Kevlar–glass/epoxy are now replacing fiberglass for improved weight sav-
ings, vibration damping, and impact resistance. Kevlar–epoxy by itself
would have poor compression properties.

Housings made of metals such as titanium to protect expensive oceano-
graphic research instruments during explorations of sea wrecks are cost
prohibitive. These housings are now made out of glass/epoxy and sustain
pressures as high as 10 ksi (69 MPa) and extremely corrosive conditions.

Bridges made of polymer composite materials are gaining wide acceptance
due to their low weight, corrosion resistance, longer life cycle, and limited
earthquake damage. Although bridge components made of composites may
cost $5/lb as opposed to components made of steel, reinforced concrete may
only cost $0.30 to $1.00 per pound; the former weighs 80% less than the
latter. Also, by lifetime costs, fewer composite bridges need to be built than
traditional bridges.21

Automotive: The fiberglass body of the Corvette® comes to mind when
considering automotive applications of polymer matrix composites. In addi-
tion, the Corvette has glass/epoxy composite leaf springs (Figure 1.25) with
a fatigue life of more than five times that of steel. Composite leaf springs
also give a smoother ride than steel leaf springs and give more rapid response
to stresses caused by road shock. Moreover, composite leaf springs offer less
chance of catastrophic failure, and excellent corrosion resistance.22 By weight,
about 8% of today’s automobile parts are made of composites, including
bumpers, body panels, and doors. However, since 1981, the average engine
horsepower has increased by 84%, while average vehicle weight has
increased by more than 20%. To overcome the increasing weight but also
maintain the safety of modern vehicles, some estimate that carbon composite
bodies will reduce the weight by 50%.23

Commercial: Fiber-reinforced polymers have many other commercial appli-
cations too. Examples include mops with pultruded fiberglass handles (Fig-

FIGURE 1.25
Rear fiberglass monosprings for Corvettes. (Photo courtesy of Vette Brakes and Products, St.
Petersburg, FL, http://www.vbandp.com.)
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ure 1.26). Some brooms used in pharmaceutical factories have handles that
have no joints or seams; the surfaces are smooth and sealed. This keeps the
bacteria from staying and growing. To have a handle that also is strong,
rigid, and chemically and heat resistant, the material of choice is glass-fiber-
reinforced polypropylene.24 Other applications include pressure vessels for
applications such as chemical plants. Garden tools (Figure 1.27)25 can be
made lighter than traditional metal tools and thus are suitable for children
and people with physically challenged hands. Figure 1.27 shows the Pow-
ergear® Fiskars® anvil lopper. The handles of the lopper are made of
Nyglass® composite, making it extremely lightweight and durable. 

1.2.2 Metal Matrix Composites

What are metal matrix composites?

Metal matrix composites (MMCs), as the name implies, have a metal
matrix. Examples of matrices in such composites include aluminum, mag-
nesium, and titanium. Typical fibers include carbon and silicon carbide.
Metals are mainly reinforced to increase or decrease their properties to suit
the needs of design. For example, the elastic stiffness and strength of metals
can be increased, and large coefficients of thermal expansion and thermal

FIGURE 1.26
Fiberglass mop handle. (Photo courtesy of RTP Company, MN.)
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and electric conductivities of metals can be reduced, by the addition of fibers
such as silicon carbide. 

What are the advantages of metal matrix composites?

Metal matrix composites are mainly used to provide advantages over
monolithic metals such as steel and aluminum. These advantages include
higher specific strength and modulus by reinforcing low-density metals,
such as aluminum and titanium; lower coefficients of thermal expansion by
reinforcing with fibers with low coefficients of thermal expansion, such as
graphite; and maintaining properties such as strength at high temperatures.

MMCs have several advantages over polymer matrix composites. These
include higher elastic properties; higher service temperature; insensitivity to
moisture; higher electric and thermal conductivities; and better wear, fatigue,
and flaw resistances. The drawbacks of MMCs over PMCs include higher
processing temperatures and higher densities. 

Do any properties degrade when metals are reinforced with fibers?

Yes, reinforcing metals with fibers may reduce ductility and fracture tough-
ness.26 Ductility of aluminum is 48% and it can decrease to below 10% with

FIGURE 1.27
Strong, efficient, and lightweight Fiskars Powergear anvil lopper. (Photo courtesy of Fiskars
Brands, Inc.)
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simple reinforcements of silicon carbide whiskers. The fracture toughness of
aluminum alloys is 18.2 to 36.4  (20 to 40 ) and it reduces
by 50% or more when reinforced with silicon fibers.

What are the typical mechanical properties of some metal matrix compos-
ites? Compare the properties with metals. 

Typical mechanical properties of MMCs are given in Table 1.11.

Show one process of how metal matrix composites are manufactured.

Fabrication methods for MMCs are varied. One method of manufacturing
them is diffusion bonding26 (Figure 1.28), which is used in manufacturing
boron/aluminum composite parts (Figure 1.29). A fiber mat of boron is placed
between two thin aluminum foils about 0.002 in. (0.05 mm) thick. A polymer
binder or an acrylic adhesive holds the fibers together in the mat. Layers of
these metal foils are stacked at angles as required by the design. The laminate
is first heated in a vacuum bag to remove the binder. The laminate is then
hot pressed with a temperature of about 932°F (500°C) and pressure of about
5 ksi (35 MPa) in a die to form the required machine element.

What are some of the applications of metal matrix composites?

Metal matrix composites applications are

• Space: The space shuttle uses boron/aluminum tubes to support its
fuselage frame. In addition to decreasing the mass of the space
shuttle by more than 320 lb (145 kg), boron/aluminum also reduced
the thermal insulation requirements because of its low thermal con-

TABLE 1.11

Typical Mechanical Properties of Metal Matrix Composites

Property Units
SiC/

aluminum
Graphite/
aluminum Steel Aluminum

System of units: USCS

Specific gravity
Young’s modulus
Ultimate tensile strength
Coefficient of thermal 
expansion

—
Msi
ksi

μin./in./°F

2.6
17

175
6.9

2.2
18
65
10

7.8
30
94
6.5

2.6
10
34
12.8

System of units: SI 

Specific gravity
Young’s modulus
Ultimate tensile strength
Coefficient of thermal 
expansion

—
GPa
MPa

μm/m/°C

2.6
117.2

1206
12.4

2.2
124.1
448.2
18

7.8
206.8
648.1
11.7

2.6
68.95

234.40
23

ksi in. MPa m
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ductivity. The mast of the Hubble Telescope uses carbon-reinforced
aluminum.

• Military: Precision components of missile guidance systems demand
dimensional stability — that is, the geometries of the components
cannot change during use.27 Metal matrix composites such as SiC/
aluminum composites satisfy this requirement because they have

FIGURE 1.28
Schematic of diffusion bonding for metal matrix composites. (Reproduced with permission
from Matthews, F.L. and Rawlings, R.D., Composite Materials: Engineering and Science, Chapman
& Hall, London, 1994, Figure 3.1, p. 81. Copyright CRC Press, Boca Raton, FL.)
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high microyield strength.* In addition, the volume fraction of SiC
can be varied to have a coefficient of thermal expansion compatible
with other parts of the system assembly.

• Transportation: Metal matrix composites are finding use now in auto-
motive engines that are lighter than their metal counterparts. Also,
because of their high strength and low weight, metal matrix com-
posites are the material of choice for gas turbine engines (Figure 1.30).

FIGURE 1.29
Boron/aluminum component made from diffusion bonding. (Photo courtesy of Specialty
Materials, Inc., http://www.specmaterials.com.)

FIGURE 1.30
Gas turbine engine components made of metal matrix composites. (Photo courtesy of Specialty
Materials, Inc., http://www.specmaterials.com.)

* Microyield strength is a major design parameter for elements that are required to be dimen-
sionally stable. It is defined as the stress required to create a plastic (residual) strain of 1 × 10–6 or
1 μm.

High strength, low weight and the ability to
perform at high temperatures make metal

matrix composites the material of choice for
gas turbine engine components.
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1.2.3 Ceramic Matrix Composites

What are ceramic matrix composites?

Ceramic matrix composites (CMCs) have a ceramic matrix such as alumina
calcium alumino silicate reinforced by fibers such as carbon or silicon carbide. 

What are the advantages of ceramic matrix composites?

Advantages of CMCs include high strength, hardness, high service tem-
perature limits* for ceramics, chemical inertness, and low density. However,
ceramics by themselves have low fracture toughness. Under tensile or impact
loading, they fail catastrophically. Reinforcing ceramics with fibers, such as
silicon carbide or carbon, increases their fracture toughness (Table 1.12)
because it causes gradual failure of the composite. This combination of a fiber
and ceramic matrix makes CMCs more attractive for applications in which
high mechanical properties and extreme service temperatures are desired.

What are the typical mechanical properties of some ceramic matrix com-
posites? Compare them with metals.

Typical mechanical properties of ceramic matrix composites are given in
Table 1.13.

Show one process of how ceramic matrix composites are manufactured.

One of the most common methods to manufacture ceramic matrix com-
posites is called the hot pressing method.28 Glass fibers in continuous tow
are passed through slurry consisting of powdered matrix material, solvent
such as alcohol, and an organic binder (Figure 1.31). The tow is then wound
on a drum and dried to form prepreg tapes. The prepreg tapes can now be
stacked to make a required laminate. Heating at about 932°F (500°C) burns
out the binder. Hot pressing at high temperatures in excess of 1832°F (1000°C)
and pressures of 1 to 2 ksi (7 to 14 MPa) follows this. 

TABLE 1.12

Typical Fracture Toughness of Monolithic Materials and 
Ceramic Matrix Composites

Material

Fracture toughness

(MPa )

Fracture toughness

(ksi )

Epoxy
Aluminum alloys
Silicon carbide
SiC/Al2O3

SiC/SiC

3
35
3

27
30

2.73
31.85
2.73

24.6
27.3

* Current service temperatures limits are 750°F (400°C) for polymers, 1800°F (10000C) for metals
and their alloys, and 2700°F (1500°C) for ceramics.

m in.
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What are the applications of ceramic matrix composites?

Ceramic matrix composites are finding increased application in high-tem-
perature areas in which metal and polymer matrix composites cannot be
used. This is not to say that CMCs are not attractive otherwise, especially
considering their high strength and modulus, and low density. Typical appli-
cations include cutting tool inserts in oxidizing and high-temperature envi-
ronments. Textron Systems Corporation® has developed fiber-reinforced
ceramics with SCS™ monofilaments for future aircraft engines (Figure 1.32).

1.2.4 Carbon–Carbon Composites

What are carbon–carbon composites?

Carbon–carbon composites use carbon fibers in a carbon matrix. These
composites are used in very high-temperature environments of up to 6000°F
(3315°C), and are 20 times stronger and 30% lighter than graphite fibers.29

What are the advantages of carbon–carbon composites?

Carbon is brittle and flaw sensitive like ceramics. Reinforcement of a
carbon matrix allows the composite to fail gradually and also gives advan-
tages such as ability to withstand high temperatures, low creep at high
temperatures, low density, good tensile and compressive strengths, high
fatigue resistance, high thermal conductivity, and high coefficient of friction.
Drawbacks include high cost, low shear strength, and susceptibility to oxi-
dations at high temperatures. Typical properties of carbon–carbon compos-
ites are given in Table 1.14.

TABLE 1.13

Typical Mechanical Properties of Some Ceramic Matrix Composites

Property Units SiC/LAS SiC/CAS Steel Aluminum

System of units: USCS

Specific gravity
Young’s modulus
Ultimate tensile strength
Coefficient of thermal
expansion

—
Msi
ksi

μin./in./°F

2.1
13
72
2

2.5
17.55
58.0
2.5

7.8
30.0
94.0
6.5

2.6
10.0
34.0
12.8

System of units: SI

Specific gravity
Young’s modulus
Ultimate tensile strength
Coefficient of thermal 
expansion

—
GPa
MPa

μm/m/°C

2.1
89.63

496.4
3.6

2.5
121
400

4.5

7.8
206.8
648.1

11.7

2.6
68.95

234.4
23
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Give a typical method of processing a carbon–carbon composite.

A typical method for manufacturing carbon–carbon composites is called
low-pressure carbonization29 and is shown in Figure 1.33. A graphite cloth
is taken, impregnated by resin (such as phenolic, pitch, and furfuryl ester),
and laid up in layers. It is laid in a mold, cured, and trimmed. The part is
then pyrolized, converting the phenolic resin to graphite. The composite is
then impregnated by furfuryl alcohol. The process drives off the resin and
any volatiles. The process is repeated three or four times until the level of
porosity is reduced to an acceptable level. Each time, this process increases

FIGURE 1.31
Schematic of slurry infiltration process for ceramic matrix composites. (From Chawla, K.K.,
Science and Business Media from Ceramics Matrix Composites, Kluwer Academic Publishers, Lon-
don, 1993, Figure 4.1, p. 128. Reproduced with permission of Springer–Verlag.)

Glass impregnated 
fiber tape

Stack of glass impregnated
fiber tapes

Fiber/glass composite

Binder burnout
500°C

Pressure

Hot pressing
800–925°C

Glass slurry tank
Fibers
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its modulus and strength. Because carbon–carbon composites oxidize at
temperatures as low as 842°F (450°C), an outer layer of silicon carbide may
be deposited.30

What are the applications of carbon–carbon composites?

The main uses of carbon–carbon composites are the following:

FIGURE 1.32
Ceramic matrix composites for high temperature and oxidation resistant application. (Photo
courtesy of Specialty Materials, Inc., http://www.specmaterials.com.)

TABLE 1.14

Typical Mechanical Properties of Carbon–Carbon Matrix Composites

Property Units C–C Steel Aluminum

System of units: USCS

Specific gravity
Young’s modulus
Ultimate tensile strength
Coefficient of thermal expansion

—
Msi
ksi

μin./in./°F

1.68
1.95
5.180
1.11

7.8
30
94
6.5

2.6
10
40
12.8

System of units: SI

Specific gravity
Young’s modulus
Ultimate strength
Coefficient of thermal expansion

—
GPa
MPa

μm/m/°C

1.68
13.5
35.7
2.0

7.8
206.8
648.1
11.7

2.6
68.95

234.4
23
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• Space shuttle nose cones: As the shuttle enters Earth’s atmosphere,
temperatures as high as 3092°F (1700°C) are experienced. Car-
bon–carbon composite is a material of choice for the nose cone
because it has the lowest overall weight of all ablative* materials;
high thermal conductivity to prevent surface cracking; high specific
heat† to absorb large heat flux; and high thermal shock resistance
to low temperatures in space of –238°F (–150°C) to 3092°F (1700°C)
due to re-entry. Also, the carbon–carbon nose remains undamaged
and can be reused many times.

• Aircraft brakes: The carbon–carbon brakes shown in Figure 1.34 cost
$440/lb ($970/kg), which is several times more than their metallic
counterpart; however, the high durability (two to four times that of
steel), high specific heat (2.5 times that of steel), low braking dis-
tances and braking times (three-quarters that of berylium), and large
weight savings of up to 990 lb (450 kg) on a commercial aircraft such
as Airbus A300-B2K and A300-B4 are attractive.29 As mentioned
earlier, 1 lb (0.453 kg) weight savings on a full-service commercial
aircraft can translate to fuel savings of about 360 gal/year (1360 L/
year). Other advantages include reduced inventory due to longer
endurance of carbon brakes.

• Mechanical fasteners: Fasteners needed for high temperature applica-
tions are made of carbon–carbon composites because they lose little
strength at high temperatures.

FIGURE 1.33
Schematic of processing carbon–carbon composites. (Reprinted with permission from Klein,
A.J., Adv. Mater. Processes, 64–68, November 1986, ASM International.)

* Ablative materials absorb heat through pyrolysis at or near the exposed surfaces.
† Specific heat is the amount of heat required to heat a unit mass of a substance through a unit
temperature.

Processing carbon/carbon composites

Standard
Gr/phenolic
prepreg

Lay-up
and
cure

Step 1 Step 2

Step 3

Resin
impregnation

Step 4

After 3 impregnations

Step 5

Pyrolysis Coating Sealing
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1.3 Recycling Fiber-Reinforced Composites

What types of processes are used for recycling of composites?

The two main processes are called chemical and mechanical processes.
Why is recycling of composites complex?

This is because of the many variables in material types — thermoset vs.
thermoplastics, long vs. short fibers, glass vs. carbon, etc.

What are the various steps in mechanical recycling of short fiber-reinforced
composites?

These are shredding, separation, washing, grinding, drying, and extrusion.

Where are mechanically recycled short-fiber composites used?

The recycled material is available in powder or fiber form. Powder form
is reused as paste for sheet-molding compounds, and the fiber form is used
for reinforcement in bulk-molding compounds. One cannot use too much of
these as replacements because the impact resistance and electrical properties
degrade after about 20% content. Products from recycled plastics are limited
to fences and benches.

FIGURE 1.34
Sectioned carbon–carbon brake from Airbus A320. (From Savage, G., Science and Business Media
from Carbon–Carbon Composites, Kluwer Academic Publishers, London, 1993, Figure 9.2, p. 325.
Reproduced with kind permission of Springer–Verlag.)
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Why is chemical recycling not as popular as mechanical recycling?

Chemical processing is very costly. Processes such as pyrolysis (decom-
posing materials in an oxygen-free atmosphere) produce many gases, and
hydrogenation gives high filler content. However, General Motors has
adapted pyrolysis to recycle composite automobile parts. Gases and oils are
recovered, and the residues are used as fillers in concrete and roof shingles. 

One other problem is the chlorine content. The scrap needs to be dehalo-
genated after separation, especially if carbon fibers were used as reinforce-
ment. Glass fibers in recycled composites also pose the problem of low
compressive strength of the new material.

What can one do if the different types of composites cannot be separated?

Incineration or use as fuel may be the only solution because metals, ther-
mosets, and thermoplastics may be mixed, and they may be soiled with toxic
materials. The fuel value* of polymer matrix composites is around 5000
BTU/lb (11,622 kJ/kg). This is about half the value for coal. 

Which chemical process shows the most promise?

Incineration offers the most promise. Its advantages include minimal cost,
high-volume reduction, and no residual material. It is also feasible for low
scrap volume.

1.4 Mechanics Terminology

How is a composite structure analyzed mechanically?

A composite material consists of two or more constituents; thus, the anal-
ysis and design of such materials is different from that for conventional
materials such as metals. The approach to analyze the mechanical behavior
of composite structures is as follows (Figure 1.35).

1. Find the average properties of a composite ply from the individual
properties of the constituents. Properties include stiffness, strength,
thermal, and moisture expansion coefficients. Note that average
properties are derived by considering the ply to be homogeneous.
At this level, one can optimize for the stiffness and strength require-
ments of a lamina. This is called the micromechanics of a lamina.

* Fuel value is the heat transferred when the products of complete combustion of a fuel are
cooled to the initial temperature of air and fuel. Units of fuel value are Btu/lbm and J/kg. Typical
fuel value for lignite coal is 7000 Btu/lbm.
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2. Develop the stress–strain relationships for a unidirectional/bidirec-
tional lamina. Loads may be applied along the principal directions
of symmetry of the lamina or off-axis. Also, one develops relation-
ships for stiffness, thermal and moisture expansion coefficients, and
strengths of angle plies. Failure theories of a lamina are based on
stresses in the lamina and strength properties of a lamina. This is
called the macromechanics of a lamina.

A structure made of composite materials is generally a laminate structure
made of various laminas stacked on each other. Knowing the macromechan-
ics of a single lamina, one develops the macromechanics of a laminate.
Stiffness, strengths, and thermal and moisture expansion coefficients can be

FIGURE 1.35
Schematic of analysis of laminated composites.

Fiber Matrix
Micromechanics of
a lamina (chapter 3)

Macromechanics of a lamina
(chapter 2)

Homogeneous orthotropic
layer

Macromechanics of a laminate
(chapter 4)

Analysis and design of laminated
structures (chapter 5)

Structural element

Laminate
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found for the whole laminate. Laminate failure is based on stresses and
application of failure theories to each ply. This knowledge of analysis of
composites can then eventually form the basis for the mechanical design of
structures made of composites. 

Several terms are defined to develop the fundamentals of the mechanical
behavior of composites. These include the following.

What is an isotropic body?

An isotropic material has properties that are the same in all directions. For
example, the Young’s modulus of steel is the same in all directions.

What is a homogeneous body?

A homogeneous body has properties that are the same at all points in the
body. A steel rod is an example of a homogeneous body. However, if one
heats this rod at one end, the temperature at various points on the rod would
be different. Because Young’s modulus of steel varies with temperature, one
no longer has a homogeneous body. The body is still isotropic because the
properties at a particular point are still identical in all directions.

Are composite materials isotropic and/or homogeneous?

Most composite materials are neither isotropic nor homogeneous. For
example, consider epoxy reinforced with long glass fibers. If one chooses a
location on the glass fiber, the properties are different from a location on the
epoxy matrix. This makes the composite material nonhomogeneous (not
homogeneous). Also, the stiffness in the direction parallel to the fibers is
higher than in the direction perpendicular to the fibers and thus the prop-
erties are not independent of the direction. This makes the composite mate-
rial anisotropic (not isotropic).

What is an anisotropic material?

At a point in an anisotropic material, material properties are different in
all directions.

What is a nonhomogeneous body?

A nonhomogeneous or inhomogeneous body has material properties that
are a function of the position on the body.

What is a lamina?

A lamina (also called a ply or layer) is a single flat layer of unidirectional
fibers or woven fibers arranged in a matrix.

What is a laminate?

A laminate is a stack of plies of composites. Each layer can be laid at
various orientations and can be made up of different material systems. 
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What is a hybrid laminate?

Hybrid composites contain more than one fiber or one matrix system in a
laminate. The main four types of hybrid laminates follow.

• Interply hybrid laminates contain plies made of two or more different
composite systems. Examples include car bumpers made of glass/
epoxy layers to provide torsional rigidity and graphite/epoxy to
give stiffness. The combinations also lower the cost of the bumper.

• Intraply hybrid composites consist of two or more different fibers used
in the same ply. Examples include golf clubs that use graphite and
aramid fibers. Graphite fibers provide the torsional rigidity and the
aramid fibers provide tensile strength and toughness.

• An interply–intraply hybrid consists of plies that have two or more
different fibers in the same ply and distinct composite systems in
more than one ply.

• Resin hybrid laminates combine two or more resins instead of com-
bining two or more fibers in a laminate. Generally, one resin is
flexible and the other one is rigid. Tests have proven that these resin
hybrid laminates can increase shear and work of fracture properties
by more than 50% over those of all-flexible or all-rigid resins.31 

1.5 Summary

This chapter introduced advanced composite materials and enumerated the
advantages and drawbacks of composite materials over monolithic materi-
als. Fiber and matrix factors were discussed to understand their influence
on mechanical properties of the composites. The classification of the com-
posites based on the matrix materials — polymer, metal, and ceramics —
was discussed. In addition, carbon–carbon composites were also examined.
The manufacturing and mechanical properties and application of compos-
ites were described. Discussion also covered the recycling of composite
materials as well as the terminology used in studying the mechanics of
composite materials.

Key Terms

Composite
Advanced composite materials
Specific modulus
Specific strength
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Material selection
Fiber factors
Matrix factors
Classification of composites
Polymer matrix composites
Resins
Prepregs
Thermosets
Thermoplastics
Autoclave
Resin transfer molding
Metal matrix composites
Diffusion bonding
Ceramic matrix composites
Carbon–carbon composites
Recycling
Isotropic body
Anisotropic body
Homogeneous body
Nonhomogeneous body
Lamina
Laminate
Hybrid laminate

Exercise Set

1.1 What is a composite?
1.2 Why did Israelites reinforce clay with straw?
1.3 Give a brief historical review of composites.
1.4 Give four examples of naturally found composites. What are the

constituents of these natural composites?
1.5 Airbus A-300 saved 300 kg of mass by making the tailfin out of

advanced composites. Estimate in gallons the amount of fuel saved
per year.

1.6 Give the definitions and units of the following in the SI and USCS
system of units:
Coefficient of thermal expansion
Coefficient of moisture expansion
Thermal conductivity
Young’s modulus
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Ultimate strength
Poisson’s ratio
Specific modulus
Specific strength
Density
Specific gravity
Ductility
Fracture toughness
Specific heat

1.7 Draw the graphs for the ratios E1/2/ ρ vs. σ1/2
ult/ρ for materials in

Table 1.1.
1.8 A lamina consists of 100 fibers of 10-μm diameter. The fibers are 10

mm long. Find the interfacial area. What is the increase in the inter-
facial area if the diameter of the fiber is reduced to 5 μm and the
total volume of fibers is kept constant?

1.9 Compare the flexibility of a 0.01-in. diameter steel wire to a 0.02-in.
diameter aluminum wire. The Young’s modulus of steel is 30 Msi
and that of aluminum is 10 Msi.

1.10 What are the limitations of modern composites?
1.11 Enumerate six primary material selection parameters that are used

in evaluating the use of a particular material. 
1.12 How are composites classified?
1.13 Compare the specific modulus, specific strength, and coefficient of

thermal expansion coefficient of a pitch based graphite fiber, Kevlar
49, and S-glass.

1.14 Describe one manufacturing method of polymer matrix composites
other than those given in Chapter 1.

1.15 Why is epoxy the most popular resin?
1.16 Find ten applications of polymer matrix components other than

those given in Chapter 1.
1.17 Give the advantages and drawbacks of metal matrix composites over

polymer matrix composites.
1.18 Find three applications of metal matrix composites other than those

given in Chapter 1.
1.19 Describe one manufacturing method of metal matrix composites

other than given in Chapter 1.
1.20 Find three applications of ceramic matrix composites other than

those given in Chapter 1.
1.21 Describe one manufacturing method of ceramic matrix composites

other than those given in Chapter 1.
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1.22 Find three applications of carbon matrix composites other than those
given in Chapter 1.

1.23 Describe one manufacturing method of carbon matrix composites
other than those given in Chapter 1.

1.24 Give the upper limit of operating temperatures of polymer, metal,
ceramic, and carbon matrix composites.

1.25 Define the following:
Isotropic body
Homogeneous body
Anisotropic body
Nonhomogeneous body
Micromechanics
Macromechanics
Lamina
Laminate

1.26 Give an example of a:
Homogeneous body that is not isotropic 
Nonhomogeneous body that is isotropic

1.27 Do all properties of composites always improve over their individual
constituents? Give examples.

1.28 How are hybrid composites classified?
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2

 

Macromechanical Analysis of a Lamina

 

Chapter Objectives

 

• Review definitions of stress, strain, elastic moduli, and strain energy.
• Develop stress–strain relationships for different types of materials.
• Develop stress–strain relationships for a unidirectional/bidirec-

tional lamina.
• Find the engineering constants of a unidirectional/bidirectional lam-

ina in terms of the stiffness and compliance parameters of the lamina.
• Develop stress–strain relationships, elastic moduli, strengths, and

thermal and moisture expansion coefficients of an angle ply based
on those of a unidirectional/bidirectional lamina and the angle of
the ply.

 

2.1 Introduction

 

A lamina is a thin layer of a composite material that is generally of a thickness
on the order of 0.005 in. (0.125 mm). A laminate is constructed by stacking
a number of such laminae in the direction of the lamina thickness (Figure
2.1). Mechanical structures made of these laminates, such as a leaf spring
suspension system in an automobile, are subjected to various loads, such as
bending and twisting. The design and analysis of such laminated structures
demands knowledge of the stresses and strains in the laminate. Also, design
tools, such as failure theories, stiffness models, and optimization algorithms,
need the values of these laminate stresses and strains.

However, the building blocks of a laminate are single lamina, so under-
standing the mechanical analysis of a lamina precedes understanding that
of a laminate. A lamina is unlike an isotropic homogeneous material. For
example, if the lamina is made of isotropic homogeneous fibers and an
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isotropic homogeneous matrix, the stiffness of the lamina varies from point
to point depending on whether the point is in the fiber, the matrix, or the
fiber–matrix interface. Accounting for these variations will make any kind
of mechanical modeling of the lamina very complicated. For this reason, the
macromechanical analysis of a lamina is based on average properties and
considering the lamina to be homogeneous. Methods to find these average
properties based on the individual mechanical properties of the fiber and
the matrix, as well as the content, packing geometry, and shape of fibers are
discussed in Chapter 3.

Even with the homogenization of a lamina, the mechanical behavior is still
different from that of a homogeneous isotropic material. For example, take
a square plate of length and width 

 

w

 

 and thickness 

 

t

 

 out of a large isotropic
plate of thickness 

 

t

 

 (Figure 2.2) and conduct the following experiments. 

 

Case A

 

: Subject the square plate to a pure normal load 

 

P

 

 in direction 1.
Measure the normal deformations in directions 1 and 2, 

 

δ

 

1

 

A

 

 and 

 

δ

 

2

 

A

 

,
respectively.

 

Case B

 

: Apply the same pure normal load 

 

P

 

 as in case A, but now in
direction 2. Measure the normal deformations in directions 1 and 2,

 

δ

 

1

 

B

 

 and 

 

δ

 

2

 

B

 

, respectively.

Note that

(2.1a,b)

However, taking a unidirectional square plate (Figure 2.3) of the same
dimensions 

 

w

 

 

 

×

 

 

 

w

 

 

 

×

 

 

 

t

 

 out of a large composite lamina of thickness 

 

t

 

 and
conducting the same case A and B experiments, note that the deformations

 

FIGURE 2.1

 

Typical laminate made of three laminae.
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(2.2a,b)

because the stiffness of the unidirectional lamina in the direction of fibers is
much larger than the stiffness in the direction perpendicular to the fibers.
Thus, the mechanical characterization of a unidirectional lamina will require
more parameters than it will for an isotropic lamina. 

Also, note that if the square plate (Figure 2.4) taken out of the lamina has
fibers at an angle to the sides of the square plate, the deformations will be
different for different angles. In fact, the square plate would not only have

 

FIGURE 2.2

 

Deformation of square plate taken from an isotropic plate under normal loads.
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deformations in the normal directions but would also distort. This suggests
that the mechanical characterization of an angle lamina is further complicated.

Mechanical characterization of materials generally requires costly and
time-consuming experimentation and/or theoretical modeling. Therefore,
the goal is to find the minimum number of parameters required for the
mechanical characterization of a lamina.

Also, a composite laminate may be subjected to a temperature change and
may absorb moisture during processing and operation. These changes in
temperature and moisture result in residual stresses and strains in the lam-
inate. The calculation of these stresses and strains in a laminate depends on
the response of each lamina to these two environmental parameters. In this
chapter, the stress–strain relationships based on temperature change and
moisture content will also be developed for a single lamina. The effects of
temperature and moisture on a laminate are discussed later in Chapter 4.

 

FIGURE 2.3

 

Deformation of a square plate taken from a unidirectional lamina with fibers at zero angle
under normal loads.
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2.2 Review of Definitions

 

2.2.1 Stress

 

A mechanical structure takes external forces, which act upon a body as
surface forces (for example, bending a stick) and body forces (for example,
the weight of a standing vertical telephone pole on itself). These forces result
in internal forces inside the body. Knowledge of the internal forces at all
points in the body is essential because these forces need to be less than the
strength of the material used in the structure. Stress, which is defined as the
intensity of the load per unit area, determines this knowledge because the
strengths of a material are intrinsically known in terms of stress.

Imagine a body (Figure 2.5) in equilibrium under various loads. If the body
is cut at a cross-section, forces will need to be applied on the cross-sectional
area so that it maintains equilibrium as in the original body. At any cross-

 

FIGURE 2.4

 

Deformation of a square plate taken from a unidirectional lamina with fibers at an angle under
normal loads.
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section, a force 

 

Δ

 

P

 

 is acting on an area of 

 

Δ

 

A

 

. This force vector has a com-
ponent normal to the surface, 

 

Δ

 

P

 

n

 

, and one parallel to the surface, 

 

Δ

 

P

 

s

 

. The
definition of stress then gives

,

. (2.3a,b)

The component of the stress normal to the surface, 

 

σ

 

n

 

, is called the normal
stress and the stress parallel to the surface, 

 

τ

 

s

 

, is called the shear stress. If
one takes a different cross-section through the same point, the stress remains
unchanged but the two components of stress, normal stress, 

 

σ

 

n

 

, and shear
stress, 

 

τ

 

s

 

, will change. However, it has been proved that a complete definition
of stress at a point only needs use of any three mutually orthogonal coordi-
nate systems, such as a Cartesian coordinate system.

Take the right-hand coordinate system

 

 x–y–z

 

. Take a cross-section parallel
to the 

 

yz

 

-plane in the body as shown in Figure 2.6. The force vector 

 

Δ

 

P

 

 acts

 

FIGURE 2.5

 

Stresses on an infinitesimal area on an arbitrary plane.
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on an area 

 

Δ

 

A

 

. The component 

 

Δ

 

P

 

x

 

 is normal to the surface. The force vector

 

Δ

 

P

 

s

 

 is parallel to the surface and can be further resolved into components
along the

 

 y 

 

and

 

 z 

 

axes: 

 

Δ

 

P

 

y

 

 and 

 

Δ

 

P

 

z

 

. The definition of the various stresses
then is

,

. (2.4a–c)

Similarly, stresses can be defined for cross-sections parallel to the 

 

xy

 

 and

 

xz

 

 planes. For defining all these stresses, the stress at a point is defined
generally by taking an infinitesimal cuboid in a right-hand coordinate system

 

FIGURE 2.6

 

Forces on an infinitesimal area on the 

 

y–z

 

 plane.
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and finding the stresses on each of its faces. Nine different stresses act at a
point in the body as shown in Figure 2.7. The six shear stresses are related as

,

,

. (2.5a–c)

The preceding three relations are found by equilibrium of moments of the
infinitesimal cube. There are thus six independent stresses. The stresses 

 

σ

 

x

 

,

 

σ

 

y

 

, and 

 

σ

 

z

 

 are normal to the surfaces of the cuboid and the stresses 

 

τ

 

yz

 

, 

 

τ

 

zx

 

,
and 

 

τ

 

xy

 

 are along the surfaces of the cuboid.
A tensile normal stress is positive, and a compressive normal stress is

negative. A shear stress is positive, if its direction and the direction of the
normal to the face on which it is acting are both in positive or negative
direction; otherwise, the shear stress is negative.

 

2.2.2 Strain

 

Similar to the need for knowledge of forces inside a body, knowing the
deformations because of the external forces is also important. For example,
a piston in an internal combustion engine may not develop larger stresses
than the failure strengths, but its excessive deformation may seize the engine.
Also, finding stresses in a body generally requires finding deformations. This
is because a stress state at a point has six components, but there are only
three force-equilibrium equations (one in each direction).

 

FIGURE 2.7

 

Stresses on an infinitesimal cuboid.
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The knowledge of deformations is specified in terms of strains — that is,
the relative change in the size and shape of the body. The strain at a point
is also defined generally on an infinitesimal cuboid in a right-hand coordi-
nate system. Under loads, the lengths of the sides of the infinitesimal cuboid
change. The faces of the cube also get distorted. The change in length cor-
responds to a normal strain and the distortion corresponds to the shearing
strain. Figure 2.8 shows the strains on one of the faces, 

 

ABCD

 

, of the cuboid.
The strains and displacements are related to each other. Take the two

perpendicular lines 

 

AB

 

 and 

 

AD

 

. When the body is loaded, the two lines
become 

 

A

 

′

 

B

 

′

 

 and 

 

A

 

′

 

D

 

′

 

. Define the displacements of a point (

 

x,y,z

 

) as 

 

u = u(x,y,z)

 

 = displacement in 

 

x

 

-direction at point (

 

x,y,z

 

)

 

v = v(x,y,z)

 

 = displacement in 

 

y

 

-direction at point (

 

x,y,z

 

)

 

w = w(x,y,z)

 

 = displacement in 

 

z

 

-direction at point (

 

x,y,z

 

)

The normal strain in the 

 

x

 

-direction, 

 

ε

 

x

 

, is defined as the change of length
of line 

 

AB

 

 per unit length of 

 

AB

 

 as

, (2.6)

where

 

FIGURE 2.8

 

Normal and shearing strains on an infinitesimal area in the 

 

x–y

 

 plane.
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(2.7a,b)

Substituting the preceding expressions of Equation (2.7) in Equation (2.6),

.

Using definitions of partial derivatives

(2.8)

because

,

,

for small displacements.
The normal strain in the y-direction, εy is defined as the change in the

length of line AD per unit length of AD as

, (2.9)

where

′ ′ = ′ ′ + ′ ′A B A P B P( ) ( ) ,2 2

= + + − + + −x u x x y u x y v x x y[ ( , ) ( , )] [ ( , )Δ Δ Δ2 vv x y( , )] ,2

AB = xΔ .
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AD = Δy . (2.10a,b)

Substituting the preceding expressions of Equation (2.10) in Equation (2.9),

.

Using definitions of partial derivatives,

(2.11)

because

for small displacements.
A normal strain is positive if the corresponding length increases; a normal

strain is negative if the corresponding length decreases.
The shearing strain in the x–y plane, γxy is defined as the change in the

angle between sides AB and AD from 90°. This angular change takes place
by the inclining of sides AB and AD. The shearing strain is thus defined as 

(2.12)

′ ′ = ′ ′ + ′ ′A D A Q Q D( ) ( ) ,2 2

′ ′ = + + − +A D y v x y y v x y u x y[ ( , ) ( , )] [ ( ,Δ Δ 2 ++ −Δy u x y) ( , )] ,2

y
y

v x y y v x y
yε = + + −

→
lim

( , ) ( , )}
/

Δ

Δ
Δ0

1 2
2

1
⎡⎡

⎣
⎢

⎤

⎦
⎥ + + −⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫u x y y u x y
y

2
( , ) ( , )Δ

Δ ⎬⎬
⎪

⎭⎪
− 1

y
v
y

u
yε = + ∂

∂
⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤
1 2

2 2

1

/

⎦⎦
⎥
⎥

− 1

y
v
yε = ∂

∂
,

∂
∂

<<u
y

1,

∂
∂

<<v
y

1,

xyγ θ θ= +1 2,

1343_book.fm  Page 71  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



72 Mechanics of Composite Materials, Second Edition

where

(2.13a–c)

(2.14a–c)

Substituting Equation (2.13) and Equation (2.14) in Equation (2.12),

(2.15)

because

for small displacements.

1 0
q
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The shearing strain is positive when the angle between the sides AD and
AB decreases; otherwise, the shearing strain is negative.

The definitions of the remaining normal and shearing strains can be found
by noting the change in size and shape of the other sides of the infinitesimal
cuboid in Figure 2.7 as

(2.16a–c)

Example 2.1

A displacement field in a body is given by 

u = 10–5(x2 + 6y + 7xy) 
v = 10–5(yz) 
w = 10–5(xy + yz2) 

Find the state of strain at (x,y,z) = (1,2,3).

Solution

From Equation (2.8),

.

yz

v
z

w
y

γ = ∂
∂

+ ∂
∂

,

zx =
w
x

+
u
z

,γ
∂
∂

∂
∂

z
w
zε = ∂

∂
.

∈ = ∂
∂x
u
x

= ∂
∂

+ +( )( )−

x
x y xz10 6 75 2

= +( )−10 2 75 x z

= × + ×( )−10 2 1 7 35

= × −2 300 10 4.
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From Equation (2.11),

.

From Equation (2.16c),

.

From Equation (2.15),

∈ = ∂
∂y
v
y

= ∂
∂ ( )( )−

y
yz10 5

= ( )−10 5 z

= ( )−10 35
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.

From Equation (2.16a),

.

From Equation (2.16b),

.

2.2.3 Elastic Moduli

As mentioned in Section 2.2.2, three equilibrium equations are insufficient
for defining all six stress components at a point. For a body that is linearly
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elastic and has small deformations, stresses and strains at a point are
related through six simultaneous linear equations called Hooke’s law.
Note that 15 unknown parameters are at a point: six stresses, six strains,
and three displacements. Combined with six simultaneous linear equa-
tions of Hooke’s law, six strain-displacement relations — given by Equa-
tion (2.8), Equation (2.11), Equation (2.15), and Equation (2.16) — and
three equilibrium equations give 15 equations for the solution of 15
unknowns.1 Because strain-displacement and equilibrium equations are
differential equations, they are subject to knowing boundary conditions
for complete solutions.

For a linear isotropic material in a three-dimensional stress state, the
Hooke’s law stress–strain relationships at a point in an x–y–z orthogonal
system (Figure 2.9) in matrix form are 

(2.17)

FIGURE 2.9
Cartesian coordinates in a three-dimensional body.
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(2.18)

where ν is the Poisson’s ratio. The shear modulus G is a function of two
elastic constants, E and ν, as

(2.19)

The 6 × 6 matrix in Equation (2.17) is called the compliance matrix [S] of
an isotropic material. The 6 × 6 matrix in Equation (2.18), obtained by invert-
ing the compliance matrix in Equation (2.17), is called the stiffness matrix
[C] of an isotropic material.

2.2.4 Strain Energy

Energy is defined as the capacity to do work. In solid, deformable, elastic
bodies under loads, the work done by external loads is stored as recoverable
strain energy. The strain energy stored in the body per unit volume is then
defined as 

 (2.20)

Example 2.2

Consider a bar of cross-section A and length L (Figure 2.10). A uniform tensile
load P is applied to the two ends of the rod; find the state of stress and strain,
and strain energy per unit volume of the body. Assume that the rod is made
of a homogeneous isotropic material of Young’s modulus, E.
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Solution

The stress state at any point is given by

(2.21)

If the circular rod is made of an isotropic, homogeneous, and linearly
elastic material, then the stress–strain at any point is related as 

(2.22)

(2.23)

The strain energy stored per unit volume in the rod, per Equation (2.20), is

FIGURE 2.10
Cylindrical rod under uniform uniaxial load, P.
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. (2.24)

2.3 Hooke’s Law for Different Types of Materials

The stress–strain relationship for a general material that is not linearly elastic
and isotropic is more complicated than Equation (2.17) and Equation (2.18).
Assuming linear and elastic behavior for a composite is acceptable; however,
assuming it to be isotropic is generally unacceptable. Thus, the stress–strain
relationships follow Hooke’s law, but the constants relating stress and strain
are more in number than seen in Equation (2.17) and Equation (2.18). The
most general stress–strain relationship is given as follows for a three-dimen-
sional body in a 1–2–3 orthogonal Cartesian coordinate system:

(2.25)

where the 6 × 6 [C] matrix is called the stiffness matrix. The stiffness matrix
has 36 constants.

What happens if one changes the system of coordinates from an orthogonal
system 1–2–3 to some other orthogonal system, 1′–2′–3′? Then, new stiffness
and compliance constants will be required to relate stresses and strains in
the new coordinate system 1′–2′–3′. However, the new stiffness and compli-
ance matrices in the 1′–2′–3′ system will be a function of the stiffness and
compliance matrices in the 1–2–3 system and the angle between the axes of
the 1′–2′–3′system and the 1–2–3 system.
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Inverting Equation (2.25), the general strain–stress relationship for a three-
dimensional body in a 1–2–3 orthogonal Cartesian coordinate system is

. (2.26)

In the case of an isotropic material, relating the preceding strain–stress
equation to Equation (2.17), one finds that the compliance matrix is related
directly to engineering constants as 

(2.27)

and Sij, other than in the preceding, are zero.
It can be shown that the 36 constants in Equation (2.25) actually reduce to

21 constants due to the symmetry of the stiffness matrix [C] as follows. The
stress–strain relationship (2.25) can also be written as

, (2.28)

where, in a contracted notation,

(2.29a–f)
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The strain energy in the body per unit volume, per Equation (2.20), is
expressed as 

(2.30)

Substituting Hooke’s law, Equation (2.28), in Equation (2.30),

(2.31)

Now, by partial differentiation of Equation (2.31),

(2.32)

and

(2.33)

Because the differentiation does not necessarily need to be in either order,

(2.34)

Equation (2.34) can also be proved by realizing that

Thus, only 21 independent elastic constants are in the general stiffness matrix
[C] of Equation (2.25). This also implies that only 21 independent constants
are in the general compliance matrix [S] of Equation (2.26).

2.3.1 Anisotropic Material

The material that has 21 independent elastic constants at a point is called an
anisotropic material. Once these constants are found for a particular point,
the stress and strain relationship can be developed at that point. Note that
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these constants can vary from point to point if the material is nonhomoge-
neous. Even if the material is homogeneous (or assumed to be), one needs
to find these 21 elastic constants analytically or experimentally. However,
many natural and synthetic materials do possess material symmetry — that
is, elastic properties are identical in directions of symmetry because symme-
try is present in the internal structure. Fortunately, this symmetry reduces
the number of the independent elastic constants by zeroing out or relating
some of the constants within the 6 × 6 stiffness [C] and 6 × 6 compliance [S]
matrices. This simplifies the Hooke’s law relationships for various types of
elastic symmetry. 

2.3.2 Monoclinic Material

If, in one plane of material symmetry* (Figure 2.11), for example, direction
3 is normal to the plane of material symmetry, then the stiffness matrix
reduces to

(2.35)

as

FIGURE 2.11
Transformation of coordinate axes for 1–2 plane of symmetry for a monoclinic material.

* Material symmetry implies that the material and its mirror image about the plane of symmetry
are identical. 
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The direction perpendicular to the plane of symmetry is called the principal
direction. Note that there are 13 independent elastic constants. Feldspar is an
example of a monoclinic material.

The compliance matrix correspondingly reduces to

. (2.36)

Modifying an excellent example2 of demonstrating the meaning of elastic
symmetry for a monoclinic material given, consider a cubic element of Figure
2.12 taken out of a monoclinic material, in which 3 is the direction perpen-
dicular to the 1–2 plane of symmetry. Apply a normal stress, σ3, to the
element. Then using the Hooke’s law Equation (2.26) and the compliance
matrix (Equation 2.36) for the monoclinic material, one gets

. (2.37a–f)

The cube will deform in all directions as determined by the normal strain
equations. The shear strains in the 2–3 and 3–1 plane are zero, showing that
the element will not change shape in those planes. However, it will change
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shape in the 1–2 plane. Thus, the faces ABEH and CDFG perpendicular to
the 3 direction will change from rectangles to parallelograms, while the other
four faces ABCD, BEFC, GFEH, and AHGD will stay as rectangles. This is
unlike anisotropic behavior, in which all faces will be deformed in shape,
and also unlike isotropic behavior, in which all faces will remain undeformed
in shape.

2.3.3 Orthotropic Material (Orthogonally Anisotropic)/Specially 
Orthotropic

If a material has three mutually perpendicular planes of material symmetry,
then the stiffness matrix is given by

FIGURE 2.12
Deformation of a cubic element made of monoclinic material.
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. (2.38)

The preceding stiffness matrix can be derived by starting from the stiffness
matrix [C] for the monoclinic material (Equation 2.35). With two more planes
of symmetry, it gives

.

Three mutually perpendicular planes of material symmetry also imply
three mutually perpendicular planes of elastic symmetry. Note that nine
independent elastic constants are present. This is a commonly found material
symmetry unlike anisotropic and monoclinic materials. Examples of an
orthotropic material include a single lamina of continuous fiber composite,
arranged in a rectangular array (Figure 2.13), a wooden bar, and rolled steel.

The compliance matrix reduces to

. (2.39)

FIGURE 2.13
A unidirectional lamina as a monoclinic material with fibers, arranged in a rectangular array.
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Demonstrating the meaning of elastic symmetry for an orthotropic mate-
rial is similar to the approach taken for a monoclinic material (Section 2.3.2).
Consider a cubic element (Figure 2.14) taken out of the orthotropic material,
where 1, 2, and 3 are the principal directions or 1–2, 2–3, and 3–1 are the
three mutually orthogonal planes of symmetry. Apply a normal stress, σ3,
to the element. Then, using the Hooke’s law Equation (2.26) and the com-
pliance matrix (Equation 2.39) for the orthotropic material, one gets

FIGURE 2.14
Deformation of a cubic element made of orthotropic material.
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(2.40a–f)

The cube will deform in all directions as determined by the normal strain
equations. However, the shear strains in all three planes (1–2, 2–3, and 3–1)
are zero, showing that the element will not change shape in those planes.
Thus, the cube will not deform in shape under any normal load applied in
the principal directions. This is unlike the monoclinic material, in which two
out of the six faces of the cube changed shape.

A cube made of isotropic material would not change its shape either;
however, the normal strains, ε1 and ε2, will be different in an orthotropic
material and identical in an isotropic material.

2.3.4 Transversely Isotropic Material

Consider a plane of material isotropy in one of the planes of an orthotropic
body. If direction 1 is normal to that plane (2–3) of isotropy, then the stiffness
matrix is given by

. (2.41)

Transverse isotropy results in the following relations:
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a hexagonal array. One may consider the elastic properties in the two direc-
tions perpendicular to the fibers to be the same. In Figure 2.15, the fibers are
in direction 1, so plane 2–3 will be considered as the plane of isotropy.

The compliance matrix reduces to

. (2.42)

2.3.5 Isotropic Material

If all planes in an orthotropic body are identical, it is an isotropic material;
then, the stiffness matrix is given by

. (2.43)

Isotropy results in the following additional relationships:

FIGURE 2.15
A unidirectional lamina as a transversely isotropic material with fibers arranged in a square
array.
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.

This also implies infinite principal planes of symmetry. Note the two
independent constants. This is the most common material symmetry avail-
able. Examples of isotropic bodies include steel, iron, and aluminum. Relat-
ing Equation (2.43) to Equation (2.18) shows that

(2.44a–b)

Note that

The compliance matrix reduces to 

. (2.45)
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types of materials:
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• Anisotropic: 21
• Monoclinic: 13
• Orthotropic: 9
• Transversely isotropic: 5
• Isotropic: 2

Example 2.3

Show the reduction of anisotropic material stress–strain Equation (2.25) to
those of a monoclinic material stress–strain Equation (2.35).

Solution

Assume direction 3 is perpendicular to the plane of symmetry. Now in the
coordinate system 1–2–3, Equation (2.25) with Cij = Cji from Equation (2.34) is

(2.46)

Also, in the coordinate system 1′–2′–3′ (Figure 2.11),

(2.47)

Because there is a plane of symmetry normal to direction 3, the stresses
and strains in the 1–2–3 and 1′–2′–3′ coordinate systems are related by
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σ
σ
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τ
τ
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C C C C C C

C C C C C C
11 12 13 14 15 16

12 22 23 24 25 26

13CC C C C C C

C C C C C C

C C

23 33 34 35 36

14 24 34 44 45 46

15 25 35CC C C C

C C C C C C
45 55 56

16 26 36 46 56 66
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⎢
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ε
ε
ε

γ

γ

γ ⎦⎦

⎥
⎥
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⎥
⎥

,

1 1 2 2 3 3σ σ σ σ σ σ= = =′ ′ ′, ,

τ τ τ τ τ τ23 2 3 31 3 1 12 1 2− = − =′ ′ ′ ′ ′ ′, , ,
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Macromechanical Analysis of a Lamina 91

(2.49a–f)

The terms in the first equation of Equation (2.46) and Equation (2.47) can
be written as

(2.50a–b)

Substituting Equation (2.48) and Equation (2.49) in Equation (2.50b),

. (2.51)

Subtracting Equation (2.51) from Equation (2.50a) gives

. (2.52)

Because γ23 and γ31 are arbitrary,

(2.53a)

Similarly, one can show that

(2.54b-d)

Thus, only 13 independent elastic constants are present in a monoclinic
material.

Example 2.4

The stress–strain relation is given in terms of compliance matrix for an
orthotropic material in Equation (2.26) and Equation (2.39). Rewrite the
compliance matrix equations in terms of the nine engineering constants for

ε ε ε ε ε ε1 1 2 2 3 3= = =′ ′ ′, , ,

γ γ γ γ γ γ23 2 3 31 3 1 12 1 2= − = − =′ ′ ′ ′ ′ ′, , .

σ ε ε ε γ γ γ1 11 1 12 2 13 3 14 23 15 31 16 12= + + + + +C C C C C C ,

σ ε ε ε γ γ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + +1 11 1 12 2 13 3 1 4 2 3 15 3 1C C C C C ,, + ′ ′C16 1 2γ

σ ε ε ε γ γ γ1 11 1 12 2 13 3 14 23 15 31 16 12= + + − − +C C C C C C

0 2 214 23 15 31= +C Cγ γ

C C14 15 0= = .

C C24 25 0= = ,

C C34 35 0= = ,

C C46 56 0= = .
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92 Mechanics of Composite Materials, Second Edition

an orthotropic material. What is the stiffness matrix in terms of the engineer-
ing constants?

Solution

Let us see how the compliance matrix and engineering constants of an
orthotropic material are related. As shown in Figure 2.16a, apply σ1 ≠ 0, σ2

= 0, σ3 = 0, τ23 = 0, τ31 = 0, τ12 = 0. Then, from Equation (2.26) and Equation
(2.39):

ε1 = S11σ1

ε2 = S12σ1

ε3 = S13σ1

FIGURE 2.16
Application of stresses to find engineering constants of a three-dimensional orthotropic body.

σ1
τ23

τ31

τ12

σ1

(a)

(b)

(c)

(e)

(f )

3
2

1

(d)

σ2

σ2

σ3

σ3
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Macromechanical Analysis of a Lamina 93

γ23 = 0

γ31 = 0

γ12 = 0.

The Young’s modulus in direction 1, E1, is defined as

. (2.55)

The Poisson’s ratio, ν12, is defined as

. (2.56)

In general terms, νij is defined as the ratio of the negative of the normal
strain in direction j to the normal strain in direction i, when the load is
applied in the normal direction i.

The Poisson’s ratio ν13 is defined as

. (2.57)

Similarly, as shown in Figure 2.16b, apply σ1 = 0, σ2 = 0, σ3 ≠ 0, τ23 = 0, τ31

= 0, τ12 = 0. Then, from Equation (2.26) and Equation (2.39),

(2.58)

(2.59)

. (2.60)

Similarly, as shown in Figure 2.16c, apply σ1 = 0, σ2 = 0, σ3 ≠ 0, τ23 = 0, τ31

= 0, τ12 = 0. From Equation (2.26) and Equation (2.39),

(2.61)

E
S1

1

1 11

1≡ =σ
ε

ν ε
ε12

2

1

12

11

≡ − = − S
S

ν ε
ε13

3

1

13

11

≡ − = − S
S

2
22

1
E

S
=

ν21
12

22

= − S
S

ν23
23

22

= − S
S

E
S3

33

1=
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94 Mechanics of Composite Materials, Second Edition

(2.62)

. (2.63)

Apply, as shown in Figure 2.16d, σ1 = 0, σ2 = 0, σ3 = 0, τ23 ≠ 0, τ31 = 0, τ12

= 0. Then, from Equation (2.26) and Equation (2.39),

ε1 = 0

ε2 = 0

ε3 = 0

γ23 = S44τ23

γ31 = 0

γ12 = 0

The shear modulus in plane 2–3 is defined as

. (2.64)

Similarly, as shown in Figure 2.16e, apply σ1 = 0, σ2 = 0, σ3 = 0, τ23 = 0, τ31

≠ 0, τ12 = 0. Then, from Equation (2.26) and Equation (2.39),

. (2.65)

Similarly, as shown in Figure 2.16f, apply σ1 = 0, σ2 = 0, σ3 = 0, τ23 = 0, τ31

= 0, τ12 ≠ 0. Then, from Equation (2.26) and Equation (2.39),

. (2.66)

In Equation (2.55) through Equation (2.66), 12 engineering constants have
been defined as follows:

Three Young’s moduli, E1, E2, and E3, one in each material axis

ν31
13

33

= − S
S

ν32
23

33

= − S
S

G
S23

23

23 44

1≡ =τ
γ

G
S31

55

1=

12
66

1
G

S
=
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Macromechanical Analysis of a Lamina 95

Six Poisson’s ratios, ν12, ν13, ν21, ν23, ν31, and ν32, two for each plane
Three shear moduli, G23, G31, and G12, one for each plane

However, the six Poisson’s ratios are not independent of each other. For
example, from Equation (2.55), Equation (2.56), Equation (2.58), and Equa-
tion (2.59), 

. (2.67)

Similarly, from Equation (2.55), Equation (2.57), Equation (2.61), and Equa-
tion (2.62),

, (2.68)

and from Equation (2.58), Equation (2.60), Equation (2.61), and Equation
(2.63), 

. (2.69)

Equation (2.67), Equation (2.68), and Equation (2.69) are called reciprocal
Poisson’s ratio equations. These relations reduce the total independent engi-
neering constants to nine. This is the same number as the number of inde-
pendent constants in the stiffness or the compliance matrix.

Rewriting the compliance matrix in terms of the engineering constants
gives

. (2.70)

ν ν12

1

21

2E E
=

ν ν13

1

31

3E E
=

ν ν23

2

32

3E E
=

[ ]S

E E E

E E E

=

− −

− −

1 0 0 0

1 0 0 0
1

12

1

13

1

21

2 2

23
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ν ν

ν ν

−− −31

3
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3 3

23
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1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
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⎥
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96 Mechanics of Composite Materials, Second Edition

Inversion of Equation (2.70) would be the compliance matrix [C] and is
given by

, (2.71)

where

. (2.72)

Although nine independent elastic constants are in the compliance matrix
[S] and, correspondingly, in the stiffness matrix [C] for orthotropic materials,
constraints on the values of these constants exist. Based on the first law of
thermodynamics, the stiffness and compliance matrices must be positive
definite. Thus, the diagonal terms of [C] and [S] in Equation (2.71) and
Equation (2.70), respectively, need to be positive. From the diagonal elements
of the compliance matrix [S], this gives

, , , , , (2.73)

and, from the diagonal elements of the stiffness matrix [C], gives

, , , (2.74)

 

Using the reciprocal relations given by Equation (2.67) through Equation
(2.69),

 for  and i,j = 1,2,3,

we can rewrite the inequalities as follows.

C

E E E E
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− + +1 23 32

2 3

21 23 31
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31 21 3ν ν ν ν ν ν ν ν
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For example, because

,

then

. (2.75a)

Similarly, five other such relationships can be developed to give

(2.75b)

(2.75c)

(2.75d)

(2.75e)

. (2.75f)

These restrictions on the elastic moduli are important in optimizing prop-
erties of a composite because they show that the nine independent properties
cannot be varied without influencing the limits of the others.

1 012 21− >ν ν

ν
ν ν12

21

1

2 12

1 1< = E
E
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2 12
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E
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1
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E
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E

ν32
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98 Mechanics of Composite Materials, Second Edition

Example 2.5

Find the compliance and stiffness matrix for a graphite/epoxy lamina. The
material properties are given as

, ,

, ,

, , .

Solution

E GPa1 181= E GPa2 10 3= . E GPa3 10 3= .

ν12 0 28= . ν23 0 60= . ν13 0 27= .

G GPa12 7 17= . G GPa23 3 0= . G GPa31 7 00= .

S
E

Pa11
1

9
12 11 1

181 10
5 525 10= =

×
= × − −.

S
E

Pa22
2

9
11 11 1

10 3 10
9 709 10= =

×
= × − −

.
.

S
E

Pa33
3

9
11 11 1

10 3 10
9 709 10= =

×
= × − −

.
.

S
E

Pa12
12

1
9

12 10 28
181 10

1 547 10= − = −
×

= − × − −ν .
.

S
E

Pa13
13

1
9

12 10 27
181 10

1 492 10= − = −
×

= − × − −ν .
.

S
E

Pa23
23

2
9

11 10 6
10 3 10

5 825 10= − = −
×

= − × − −ν .
.

.

S
G

Pa44
23

9
10 11 1

3 10
3 333 10= =

×
= × − −.

S
G

Pa55
31

9
10 11 1

7 10
1 429 10= =

×
= × − −.
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Macromechanical Analysis of a Lamina 99

.

Thus, the compliance matrix for the orthotropic lamina is given by

The stiffness matrix can be found by inverting the compliance matrix and
is given by

The preceding stiffness matrix [C] can also be found directly by using Equa-
tion (2.71).

2.4 Hooke’s Law for a Two-Dimensional Unidirectional 
Lamina

2.4.1 Plane Stress Assumption

A thin plate is a prismatic member having a small thickness, and it is the
case for a typical lamina. If a plate is thin and there are no out-of-plane loads,
it can be considered to be under plane stress (Figure 2.17). If the upper and
lower surfaces of the plate are free from external loads, then σ3 = 0, τ31 = 0,
and τ23 = 0. Because the plate is thin, these three stresses within the plate are

S
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10 11 1

7 17 10
1 395 10= =
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= × − −

.
.
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0 0 0 3 33

12 11 11× − × ×− − −. .
. 33 10 0 0
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0 7269 10 0 1638 10 0 9938 1

10

10 11

×
× × ×. . . 00 0 0 0

0 7204 10 0 9938 10 0 1637 10 0 0 0

10

10 10 11. . .× × ×
00 0 0 0 3000 10 0 0
0 0 0 0 0 6998 10 0
0 0 0 0 0 0 716

10

10

.
.

.

×
×

88 1010×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Pa

1343_book.fm  Page 99  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



100 Mechanics of Composite Materials, Second Edition

assumed to vary little from the magnitude of stresses at the top and the
bottom surfaces. Thus, they can be assumed to be zero within the plate also.
A lamina is thin and, if no out-of-plane loads are applied, one can assume
that it is under plane stress. This assumption then reduces the three-dimen-
sional stress–strain equations to two-dimensional stress–strain equations.

2.4.2 Reduction of Hooke’s Law in Three Dimensions to Two Dimensions

A unidirectional lamina falls under the orthotropic material category. If the
lamina is thin and does not carry any out-of-plane loads, one can assume
plane stress conditions for the lamina. Therefore, taking Equation (2.26) and
Equation (2.39) and assuming σ3 = 0, τ23 = 0, and τ31 = 0, then

(2.76a,b)

The normal strain, ε3, is not an independent strain because it is a function
of the other two normal strains, ε1 and ε2. Therefore, the normal strain, ε3,
can be omitted from the stress–strain relationship (2.39). Also, the shearing
strains, γ23 and γ31, can be omitted because they are zero. Equation (2.39) for
an orthotropic plane stress problem can then be written as

(2.77)

FIGURE 2.17
Plane stress conditions for a thin plate.
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Macromechanical Analysis of a Lamina 101

where Sij are the elements of the compliance matrix. Note the four indepen-
dent compliance elements in the matrix.

Inverting Equation (2.77) gives the stress–strain relationship as

, (2.78)

where Qij are the reduced stiffness coefficients, which are related to the
compliance coefficients as

(2.79a–d)

Note that the elements of the reduced stiffness matrix, Qij, are not the same
as the elements of the stiffness matrix, Cij (see Exercise 2.13).

2.4.3 Relationship of Compliance and Stiffness Matrix to Engineering 
Elastic Constants of a Lamina

Equation (2.77) and Equation (2.78) show the relationship of stress and strain
through the compliance [S] and reduced stiffness [Q] matrices. However,
stress and strains are generally related through engineering elastic constants.
For a unidirectional lamina, these engineering elastics constants are

E1 = longitudinal Young’s modulus (in direction 1)
E2 = transverse Young’s modulus (in direction 2)
ν12 = major Poisson’s ratio, where the general Poisson’s ratio, νij is

defined as the ratio of the negative of the normal strain in direction
j to the normal strain in direction i, when the only normal load is
applied in direction i

G12 = in-plane shear modulus (in plane 1–2)
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Experimentally, the four independent engineering elastic constants are
measured as follows and can be related to the four independent elements of
the compliance matrix [S] of Equation (2.77).

• Apply a pure tensile load in direction 1 (Figure 2.18a), that is,

(2.80)

Then, from Equation (2.77),

FIGURE 2.18
Application of stresses to find engineering constants of a unidirectional lamina.

(a)

2

1σ1 σ1
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(2.81a–c)

By definition, if the only nonzero stress is σ1, as is the case here, then 

(2.82)

(2.83)

• Apply a pure tensile load in direction 2 (Figure 2.18b), that is

(2.84)

Then, from Equation (2.77),

(2.85a–c)

By definition, if the only nonzero stress is σ2, as is the case here, then

(2.86)

(2.87)

The ν21 term is called the minor Poisson’s ratio. From Equation (2.82),
Equation (2.83), Equation (2.86), and Equation (2.87), we have
the reciprocal relationship

(2.88)
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• Apply a pure shear stress in the plane 1–2 (Figure 2.18c) — that is,

(2.89)

Then, from Equation (2.77),

(2.90a–c)

By definition, if τ12 is the only nonzero stress, as is the case here, then

(2.91)

Thus, we have proved that

(2.92a–d)

Also, the stiffness coefficients Qij are related to the engineering constants
through Equation (2.98) and Equation (2.92) as

σ σ τ1 2 120 0 0= = ≠, .and

ε1 0= ,
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γ τ12 66 12= S .
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Macromechanical Analysis of a Lamina 105

(2.93a–d)

Equation (2.77), Equation (2.78), Equation (2.92), and Equation (2.93) relate
stresses and strains through any of the following combinations of four con-
stants.

Q11, Q12, Q22, Q66, or
S11, S12, S22, S66, or
E1, E2, ν12, G12

The unidirectional lamina is a specially orthotropic lamina because normal
stresses applied in the 1–2 direction do not result in any shearing strains in
the 1–2 plane because Q16 = Q26 = 0 = S16 = S26. Also, the shearing stresses
applied in the 1–2 plane do not result in any normal strains in the 1 and 2
directions because Q16 = Q26 = 0 = S16 = S26.

A woven composite with its weaves perpendicular to each other and short
fiber composites with fibers arranged perpendicularly to each other or
aligned in one direction also are specially orthotropic. Thus, any discussion in
this chapter or in Chapter 4 (“Macromechanics of a Laminate”) is valid for
such a lamina as well. Mechanical properties of some typical unidirectional
lamina are given in Table 2.1 and Table 2.2.

Example 2.6

For a graphite/epoxy unidirectional lamina, find the following

1. Compliance matrix
2. Minor Poisson’s ratio
3. Reduced stiffness matrix
4. Strains in the 1–2 coordinate system if the applied stresses (Figure

2.19) are 

Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.

Q
E

12
12 2

21 121
=

−
ν

ν ν
,

Q
E

22
2

21 121
=

− ν ν
, and

66 12Q G= .

σ σ τ1 2 122 3 4= = − =MPa MPa MPa, , .
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Solution

From Table 2.1, the engineering elastic constants of the unidirectional graph-
ite/epoxy lamina are 

1. Using Equation (2.92), the compliance matrix elements are

TABLE 2.1

Typical Mechanical Properties of a Unidirectional Lamina (SI System of Units)

Property Symbol Units
Glass/
epoxy

Boron/
epoxy

Graphite/
epoxy

Fiber volume fraction Vf 0.45 0.50 0.70
Longitudinal elastic modulus E1 GPa 38.6 204 181
Transverse elastic modulus E2 GPa 8.27 18.50 10.30
Major Poisson’s ratio ν12 0.26 0.23 0.28
Shear modulus G12 GPa 4.14 5.59 7.17
Ultimate longitudinal tensile 
strength

MPa 1062 1260 1500

Ultimate longitudinal 
compressive strength 

MPa 610 2500 1500

Ultimate transverse tensile 
strength

MPa 31 61 40

Ultimate transverse 
compressive strength

MPa 118 202 246

Ultimate in-plane shear 
strength

MPa 72 67 68

Longitudinal coefficient of 
thermal expansion

α1 μm/m/°C 8.6 6.1 0.02

Transverse coefficient of 
thermal expansion

α2 μm/m/°C 22.1 30.3 22.5

Longitudinal coefficient of 
moisture expansion

β1 m/m/kg/kg 0.00 0.00 0.00

Transverse coefficient of 
moisture expansion

β2 m/m/kg/kg 0.60 0.60 0.60

Source: Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton,
FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. Reprinted with permission.

( )1
T

ultσ

( )1
C

ultσ

( )2
T

ultσ

( )2
C

ultσ

( )12τ ult

E GPa E GPa G1 2 12 12181 10 3 0 28 7 17= = = =, . , . , .ν .GPa

S Pa11 9
11 11

181 10
0 5525 10=

×
= × − −. ,

S Pa12 9
11 10 28

181 10
0 1547 10= −

×
= − × − −.

. ,
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2. Using the reciprocal relationship (2.88), the minor Poisson’s ratio is

3. Using Equation (2.93), the reduced stiffness matrix [Q] elements are

TABLE 2.2

Typical Mechanical Properties of a Unidirectional Lamina (USCS System of Units)

Property Symbol Units
Glass/
epoxy

Boron/
epoxy

Graphite/
epoxy

Fiber volume fraction Vf — 0.45 0.50 0.70
Longitudinal elastic 
modulus

E1 Msi 5.60 29.59 26.25

Transverse elastic modulus E2 Msi 1.20 2.683 1.49
Major Poisson’s ratio v12 0.26 0.23 0.28
Shear modulus G12 Msi 0.60 0.811 1.040
Ultimate longitudinal 
tensile strength

ksi 154.03 182.75 217.56

Ultimate longitudinal 
compressive strength 

ksi 88.47 362.6 217.56

Ultimate transverse tensile 
strength

ksi 4.496 8.847 5.802

Ultimate transverse 
compressive strength

ksi 17.12 29.30 35.68

Ultimate in-plane shear 
strength

ksi 10.44 9.718 9.863

Longitudinal coefficient of 
thermal expansion

α1 μin./in./°F 4.778 3.389 0.0111

Transverse coefficient of 
thermal expansion

α2 μin./in./°F 12.278 16.83 12.5

Longitudinal coefficient of 
moisture expansion

β1 in./in./lb/lb 0.00 0.00 0.00

Transverse coefficient of 
moisture expansion

β2 in./in./lb/lb 0.60 0.60 0.60

Source: Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CRC Press, Boca Raton,
FL, Table 1.7, p. 19; Table 7.1, p. 292; Table 8.3, p. 344. USCS system used for tables reprinted
with permission.
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ultσ
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ultσ
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ultσ

( )12τ ult
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.
. ,
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×
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.
. .
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90 28
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10 3 10 0 01593=

×
× × =.

( . ) . .
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.

The reduced stiffness matrix [Q] could also be obtained by inverting
the compliance matrix [S] of part 1:

FIGURE 2.19
Applied stresses in a unidirectional lamina in Example 2.6.
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.

4. Using Equation (2.77), the strains in the 1–2 coordinate system are

Thus, the strains in the local axes are

2.5 Hooke’s Law for a Two-Dimensional Angle Lamina

Generally, a laminate does not consist only of unidirectional laminae because
of their low stiffness and strength properties in the transverse direction.
Therefore, in most laminates, some laminae are placed at an angle. It is thus
necessary to develop the stress–strain relationship for an angle lamina.

The coordinate system used for showing an angle lamina is as given in
Figure 2.20. The axes in the 1–2 coordinate system are called the local axes
or the material axes. The direction 1 is parallel to the fibers and the direction
2 is perpendicular to the fibers. In some literature, direction 1 is also called
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110 Mechanics of Composite Materials, Second Edition

the longitudinal direction L and the direction 2 is called the transverse
direction T. The axes in the x–y coordinate system are called the global axes
or the off-axes. The angle between the two axes is denoted by an angle θ.
The stress–strain relationship in the 1–2 coordinate system has already been
established in Section 2.4 and we are now going to develop the stress–strain
equations for the x–y coordinate system.

The global and local stresses in an angle lamina are related to each other
through the angle of the lamina, θ (Appendix B):

(2.94)

where [T] is called the transformation matrix and is defined as

(2.95)

and

FIGURE 2.20
Local and global axes of an angle lamina.
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(2.96)

(2.97a,b)

Using the stress–strain Equation (2.78) in the local axes, Equation (2.94)
can be written as

(2.98)

The global and local strains are also related through the transformation
matrix (Appendix B):

(2.99)

which can be rewritten as

(2.100)

where [R] is the Reuter matrix3 and is defined as

(2.101)

Then, substituting Equation (2.100) in Equation (2.98) gives

[ ] ,T

c s sc

s c sc

sc sc c s

= −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 2

2 2

2 2

2
2

c = Cos ( ),θ

s = Sin ( ).θ

σ
σ

τ

ε
ε
γ

x

y

xy

T Q

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥−[ ] [ ]1
1

2

12

⎥⎥
⎥
.

ε
ε

γ

ε
ε

γ

1

2

12 2 2/
[ ]

/

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

T
x

y

xy ⎥⎥

,

ε
ε
γ

ε
ε

γ

1

2

12

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤
−[ ][ ][ ]R T R

x

y

xy ⎦⎦

⎥
⎥
⎥
⎥

,

[ ] .R =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0
0 1 0
0 0 2

1343_book.fm  Page 111  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



112 Mechanics of Composite Materials, Second Edition

(2.102)

On carrying the multiplication of the first five matrices on the right-hand
side of Equation (2.102),

(2.103)

where  are called the elements of the transformed reduced stiffness matrix
[ ] and are given by

(2.104a–f)

Note that six elements are in the [ ] matrix. However, by looking at Equa-
tion (2.104), it can be seen that they are just functions of the four stiffness
elements, Q11, Q12, Q22, and Q66, and the angle of the lamina, θ.

Inverting Equation (2.103) gives

(2.105)
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where Sij are the elements of the transformed reduced compliance matrix
and are given by

(2.106a–f)

From Equation (2.77) and Equation (2.78), for a unidirectional lamina
loaded in the material axes directions, no coupling occurs between the nor-
mal and shearing terms of strains and stresses. However, for an angle lamina,
from Equation (2.103) and Equation (2.105), coupling takes place between
the normal and shearing terms of strains and stresses. If only normal stresses
are applied to an angle lamina, the shear strains are nonzero; if only shearing
stresses are applied to an angle lamina, the normal strains are nonzero.
Therefore, Equation (2.103) and Equation (2.105) are stress–strain equations
for what is called a generally orthotropic lamina.

Example 2.7

Find the following for a 60° angle lamina (Figure 2.21) of graphite/epoxy.
Use the properties of unidirectional graphite/epoxy lamina from Table 2.1.

1. Transformed compliance matrix
2. Transformed reduced stiffness matrix

If the applied stress is σx = 2 MPa, σy = –3 MPa, and τxy = 4 MPa, also find

3. Global strains
4. Local strains
5. Local stresses
6. Principal stresses
7. Maximum shear stress
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8. Principal strains
9. Maximum shear strain

Solution

c = Cos(60°) = 0.500
s = Sin(60°) = 0.866

1. From Example 2.6,

Now, using Equation (2.106a),

FIGURE 2.21
Applied stresses to an angle lamina in Example 2.7.
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Similarly, using Equation (2.106b–f), one can evaluate

2. Invert the transformed compliance matrix [ ] to obtain the trans-
formed reduced stiffness matrix [ ]:
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3. The global strains in the x–y plane are given by Equation (2.105) as

4. Using transformation Equation (2.99), the local strains in the lamina
are

5. Using transformation Equation (2.94), the local stresses in the lamina
are

6. The principal normal stresses are given by4

(2.107)
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The value of the angle at which the maximum normal stresses occur is4

(2.108)

.

Note that the principal normal stresses do not occur along the material
axes. This should be also evident from the nonzero shear stresses in
the local axes.

7. The maximum shear stress is given by4

(2.109)

The angle at which the maximum shear stress occurs is4

(2.110)

= × − × ± × + ×⎛

⎝⎜
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⎠⎟
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2
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2
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6 2( )

= − MPa4 217 5 217. , . .

θ
τ

σ σp
xy

x y

=
−

⎛

⎝
⎜

⎞

⎠
⎟

−1
2

21tan

= ×
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⎛
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⎞
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2
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1
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6 6tan
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x y
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118 Mechanics of Composite Materials, Second Edition

= 16.000

8. The principal strains are given by4

(2.111)

.

The value of the angle at which the maximum normal strains occur is4

(2.112)

= 27.860.

Note that the principal normal strains do not occur along the material
axes. This should also be clear from the nonzero shear strain in the
local axes. In addition, the axes of principal normal stresses and
principal normal strains do not match, unlike in isotropic materials.

9. The maximum shearing strain is given by4

= − × + ×
×

⎛
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2
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⎠⎟
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Macromechanical Analysis of a Lamina 119

(2.113)

The value of the angle at which the maximum shearing strain occurs is4

(2.114)

= –17.140.

Example 2.8

As shown in Figure 2.22, a 60° angle graphite/epoxy lamina is subjected
only to a shear stress τxy = 2 MPa in the global axes. What would be the
value of the strains measured by the strain gage rosette — that is, what

FIGURE 2.22
Strain gage rosette on an angle lamina.

γ ε ε γmax ( )= − +x y xy
2 2

= × + × + ×− − −( . . ) ( . )0 5534 10 0 3078 10 0 532 104 3 2 3 2

= × −6 448 10 4. .
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2
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−
− −
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1
2
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1
4 3

3tan
. .

.
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120 Mechanics of Composite Materials, Second Edition

would be the normal strains measured by strain gages A, B, and C? Use the
properties of unidirectional graphite/epoxy lamina from Table 2.1.

Solution

Per Example 2.7, the reduced compliance matrix [ ] is

.

The global strains in the x–y plane are given by Equation (2.105) as

For a strain gage placed at an angle, φ, to the x-axis, the normal strain
recorded by the strain gage is given by Equation (B.15) in Appendix B.

.

For strain gage A, φ = 0°:

.

For strain gage B, φ = 240°:

S

0 8053 10 0 7878 10 0 3234 10
0 78

10 11 10. . .
.

× − × − ×
−

− − −
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⎢
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Macromechanical Analysis of a Lamina 121

.

For strain gage C, φ = 120°:

.

2.6 Engineering Constants of an Angle Lamina

The engineering constants for a unidirectional lamina were related to the
compliance and stiffness matrices in Section 2.4.3. In this section, similar
techniques are applied to relate the engineering constants of an angle ply to
its transformed stiffness and compliance matrices.

1. For finding the engineering elastic moduli in direction x (Figure
2.23a), apply

(2.115)

Then, from Equation (2.105),

. (2.116a–c)

The elastic moduli in direction x is defined as

(2.117)

= × −1 724 10 4.

εC = − × ° + − ×− −6 468 10 120 9 392 10 1205 2 5 2. ( . )Cos Sin °°

+ × ° °−2 283 10 120 1204. Sin Cos

= × −1 083 10 5.

σ σ τx y xy≠ = =0 0 0, , .

ε σx xS= 11 ,

ε σy xS= 12 ,

γ σxy xS= 16

E
Sx

x

x

≡ =σ
ε

1

11

.
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FIGURE 2.23
Application of stresses to find engineering constants of an angle lamina.
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Macromechanical Analysis of a Lamina 123

Also, the Poisson’s ratio, νxy, is defined as

(2.118)

In an angle lamina, unlike in a unidirectional lamina, interaction also
occurs between the shear strain and the normal stresses. This is
called shear coupling. The shear coupling term that relates the nor-
mal stress in the x-direction to the shear strain is denoted by mx and
is defined as

(2.119)

Note that mx is a nondimensional parameter like the Poisson’s ratio.
Later, note that the same parameter, mx, relates the shearing stress
in the x–y plane to the normal strain in direction-x.

The shear coupling term is particularly important in tensile testing of
angle plies. For example, if an angle lamina is clamped at the two
ends, it will not allow shearing strain to occur. This will result in
bending moments and shear forces at the clamped ends.5

2. Similarly, by applying stresses

, (2.120)

as shown in Figure 2.23b, it can be found

(2.121)

(2.122)

(2.123)

The shear coupling term my relates the normal stress σy to the shear
strain γxy. In the following section (3), note that the same parameter
my relates the shear stress τxy in the x–y plane to the normal strain εy.

ν
ε
εxy

y

x

S
S

≡ − = − 12

11

.

1 1

1 16 1m E S Ex

x

xy

≡ − = −σ
γ

.

σ σ τx y xy= ≠ =0 0 0, ,

E
Sy = 1

22

,

νyx
S
S

= − 12

22

, and

1 1

26 1m S Ey

= − .
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124 Mechanics of Composite Materials, Second Edition

From Equation (2.117), Equation (2.118), Equation (2.121), and Equation
(2.122), the reciprocal relationship is given by

. (2.124)

3. Also, by applying the stresses

, (2.125)

as shown in Figure 2.23c, it is found that

(2.126)

(2.127)

(2.128)

Thus, the strain–stress Equation (2.105) of an angle lamina can also be
written in terms of the engineering constants of an angle lamina in
matrix form as

(2.129)

The preceding six engineering constants of an angle ply can also be
written in terms of the engineering constants of a unidirectional ply
using Equation (2.92) and Equation (2.106) in Equation (2.117)
through Equation (2.119), Equation (2.121), Equation (2.123), and
Equation (2.128):
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(2.130)

, (2.131)

, (2.132)

(2.133)

(2.134)
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(2.135)

Example 2.9

Find the engineering constants of a 60° graphite/epoxy lamina. Use the
properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Example 2.7, we have

From Equation (2.117),

m S Ey = − 26 1

= − − − − − −E S S S s c S S S sc1 11 12 66
3

22 12 66
32 2 2 2[( ) ( ) ]

= − − +
⎛
⎝⎜

⎞
⎠⎟

+ + −E
E E G

s c
E E G1

1

12

1 12

3

2

12

1 1

2 2 1 2 2 1ν ν
22

3⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥sc .

S
Pa11

100 8053 10
1= × −. ,

S
Pa12

110 7878 10
1= − × −. ,

S
Pa16

100 3234 10
1= − × −. ,

S
Pa22

100 3475 10
1= × −. ,

S
Pa26

100 4696 10
1= − × −. , and

S
Pa66

90 1141 10
1= × −. .

E

GPa

x =
×

=

−
1

0 8053 10

12 42

10.

. .
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From Equation (2.118),

From Equation (2.119),

.

From Equation (2.121),

From Equation (2.123),

From Equation (2.128),

The variations of the six engineering elastic constants are shown as a
function of the angle for the preceding graphite/epoxy lamina in Figure 2.24
through Figure 2.29.

The variations of the Young’s modulus, Ex and Ey are inverses of each other.
As the fiber orientation (angle of ply) varies from 0° to 90°, the value of Ex

νxy = − − ×
×

=

−

−
0 7878 10

0 8053 10

0 09783

11

10

.
.

. .

1 1
0 3234 10 181 1010 9mx
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− × ×−( . )( )

mx = 5 854.

E

GPa

y =
×

=

−
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28 78

10.

. .

1 1
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my = 8 499. .
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. .
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FIGURE 2.24
Elastic modulus in direction-x as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.25
Elastic modulus in direction-y as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.26
Poisson’s ratio νxy as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.27
In-plane shear modulus in xy-plane as a function of angle of lamina for a graphite/epoxy lamina.
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FIGURE 2.28
Shear coupling coefficient mx as a function of angle of lamina for a graphite/epoxy lamina.

FIGURE 2.29
Shear coupling coefficient my  as a function of angle of lamina for a graphite/epoxy lamina.
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varies from the value of the longitudinal (E1) to the transverse Young’s
modulus E2. However, the maximum and minimum values of Ex do not
necessarily exist for θ = 0° and θ = 90°, respectively, for every lamina.

Consider the case of a metal matrix composite such as a typical SCS – 6/
Ti6 –Al – 4V composite. The elastic moduli of such a lamina with a 55% fiber
volume fraction is

E1 = 272 GPa

E2 = 200 GPa

ν12 = 0.2770

G12 = 77.33 GPa

In Figure 2.30, the lowest modulus value of Ex is found for θ = 63°. In fact,
the angle of 63° at which Ex is minimum is independent of the fiber volume
fraction, if one uses the “mechanics of materials approach” (Section 3.3.1) to
evaluate the preceding four elastic moduli of a unidirectional lamina. See
Exercise 3.13. 

In Figure 2.27, the shear modulus Gxy  is maximum for θ = 45° and is
minimum for 0 and 90° plies. The shear modulus Gxy  becomes maximum
for 45° because the principal stresses for pure shear load on a 45° ply are
along the material axis.

From Equation (2.133), the expression for Gxy for a 45° ply is 

FIGURE 2.30
Variation of elastic modulus in direction-x as a function of angle of lamina for a typical SCS –
6/Ti6 – Al – 4V lamina. 
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. (2.136)

In Figure 2.28 and Figure 2.29, the shear coupling coefficients mx and my

are maximum at θ = 36.2° and θ = 53.78°, respectively. The values of these
coefficients are quite extreme, showing that the normal-shear coupling terms
have a stronger effect than the Poisson’s effect. This phenomenon of shear
coupling terms is missing in isotropic materials and unidirectional plies, but
cannot be ignored in angle plies.

2.7 Invariant Form of Stiffness and Compliance Matrices for 
an Angle Lamina

Equation (2.104) and Equation (2.106) for the [ ] and [ ] matrices are not
analytically convenient because they do not allow a direct study of the effect
of the angle of the lamina on the [ ] and [ ] matrices. The stiffness
elements can be written in invariant form as6

, (2.137a–f)

where

G
E

E
E

xy/45
1

12
1

2

1 2
° =

+ +
⎛
⎝⎜

⎞
⎠⎟

ν

Q S

Q S

Q U U U11 1 2 32 4= + +Cos Cosθ θ,

Q U U12 4 3 4= − Cos θ,

Q U U U22 1 2 32 4= − +Cos Cosθ θ,

Q
U

U16
2

32
2 4= +Sin Sinθ θ,

Q
U

U26
2

32
2 4= −Sin Sinθ θ,

Q U U U66 1 4 3
1
2

4= − −( ) Cos θ
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(2.138a–d)

The terms U1, U2, U3, and U4 are the four invariants and are combinations
of the Qij, which are invariants as well.

The transformed reduced compliance [ ] matrix can similarly be writ-
ten as

(2.139a–f)

where

U Q Q Q Q1 11 22 12 66
1
8

3 3 2 4= + + +( )

U Q Q2 11 22
1
2

= −( ),

U Q Q Q Q3 11 22 12 66
1
8

2 4= + − −( ),

U Q Q Q Q4 11 22 12 66
1
8

6 4= + + −( ).

S

S V V V11 1 2 32 4= + +Cos Cosθ θ,

S V V12 4 3 4= − Cos θ,

S V V V22 1 2 32 4= − +Cos Cosθ θ,

S V V16 2 32 2 4= +Sin Sinθ θ,

S V V26 2 32 2 4= −Sin Sin andθ θ,

S V V V66 1 4 32 4 4= − −( ) ,Cos θ

V S S S S1 11 22 12 66
1
8

3 3 2= + + +( ),

V S S2 11 22
1
2

= −( ),
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(2.140a–d)

The terms V1, V2, V3, and V4 are invariants and are combinations of Sij, which
are also invariants.

The main advantage of writing the equations in this form is that one can
easily examine the effect of the lamina angle on the reduced stiffness matrix
elements. Also, formulas given by Equation (2.137) and Equation (2.139) are
easier to manipulate for integration, differentiation, etc. The concept is
mainly important in deriving the laminate stiffness properties in Chapter 4.

The elastic moduli of quasi-isotropic laminates that behave like isotropic
material are directly given in terms of these invariants. Because quasi-iso-
tropic laminates have the minimum stiffness of any laminate, these can be
used as a comparative measure of the stiffness of other types of laminates.7

Example 2.10

Starting with the expression for  from Equation (2.104a), ,
, reduce it to the expression for of

Equation (2.137a) — that is,

Solution

Given

,

and substituting

V S S S S3 11 22 12 66
1
8

2= + − −( ),

V S S S S4 11 22 12 66
1
8

6= + + −( ).

11Q Q Q11 11
4= Cos θ

Q Q Q22
4

12 66
2 22 2+ + +Sin Sin Cosθ θ θ( ) 11Q

Q U U U11 1 2 32 4= + +Cos Cosθ θ

Q Q Q Q Q11 11
4

22
4

12 66
2 22 2= + + +Cos Sin Sin Cosθ θ θ θ( )

Cos
Cos2 1 2
2

θ θ= +
,

Sin
Cos2 1 2

2
θ θ= −

,
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we get

,

where

.

Example 2.11

Evaluate the four compliance and four stiffness invariants for a graphite/
epoxy angle lamina. Use the properties for a unidirectional graphite/epoxy
lamina from Table 2.1.

Solution

From Example 2.6, the compliance matrix [S] elements are

Cos
Cos

and2 2
1 4

2
θ θ= +

,

2 2Sin Cos Sinθ θ θ= ,

Sin
Cos2 2

1 4
2

θ θ= −
,

Q U U U11 1 2 32 4= + +Cos Cosθ θ

U Q Q Q Q1 11 22 12 66
1
8

3 3 2 4= + + +( ),

U Q Q2 11 22
1
2

= −( )

U Q Q Q Q3 11 22 12 66
1
8

2 4= + − −( )

S
Pa11

110 5525 10
1= × −. ,

S
Pa12

110 1547 10
1= − × −. ,
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The stiffness matrix [

 

Q

 

] elements are

Using Equation (2.138),

S
Pa22

100 9709 10
1= × −. ,

S
Pa66

90 1395 10
1= × −. .

[ ] [ ] ,Q S= −1

Q Pa11
120 1818 10= ×. ,

Q Pa12
100 2897 10= ×. ,

Q Pa22
110 1035 10= ×. ,

Q Pa66
100 7170 10= ×. .

U1
12 111

8
3 0 1818 10 3 0 1035 10 2 0 289= × + × +[ ( . ) ( . ) ( . 77 10 4 0 7171 10

0 7637 10

10 10

11

× + ×

= ×

) ( . )]

. ,Pa

U

P

2
12 11

11

1
2

0 1818 10 0 1035 10

0 8573 10

= × − ×

= ×

( . . )

. aa,

U3
12 11 101

8
0 1818 10 0 1035 10 2 0 2897 10= × + × − ×[ . . ( . )) ( . )]

. ,

− ×

= ×

4 0 7171 10

0 1971 10

10

11 Pa

U4
12 11 101

8
0 1818 10 0 1035 10 6 0 2897 10= × + × + ×[ . . ( . )) ( . )]

. .

− ×

= ×

4 0 7171 10

0 2261 10

10

11 Pa
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Using Equation (2.140),

2.8 Strength Failure Theories of an Angle Lamina

A successful design of a structure requires efficient and safe use of materials.
Theories need to be developed to compare the state of stress in a material
to failure criteria. It should be noted that failure theories are only stated and
their application is validated by experiments.

For a laminate, the strength is related to the strength of each individual
lamina. This allows for a simple and economical method for finding the
strength of a laminate. Various theories have been developed for studying
the failure of an angle lamina. The theories are generally based on the normal
and shear strengths of a unidirectional lamina.

An isotropic material, such as steel, generally has two strength parameters:
normal strength and shear strength. In some cases, such as concrete or gray
cast iron, the normal strengths are different in the tension and compression.
A simple failure theory for an isotropic material is based on finding the
principal normal stresses and the maximum shear stresses. These maximum

V1
11 111

8
3 0 5525 10 3 0 1547 10 2 0= × + − × +− −[ ( . ) ( . ) ( .99709 10 0 1395 10

0 5553 10
1

10 9

10

× + ×

= ×

− −

−

) . ]

. ,
Pa

V2
11 111

2
0 5525 10 0 1547 10

0 457

= × − − ×

= −

− −[( . ( . )]

. 88 10
110× −

Pa
,

V3
11 101

8
0 5525 10 0 9709 10 2 0 1547 10= × + × − ×− −[ . . ( . −− −

−

− ×

= − ×

11 9

11

0 1395 10

0 4220 10
1

) . ]

. ,
Pa

V4
11 101

8
0 5525 10 0 9709 10 6 0 1547 10= × + × + ×− −[ . . ( . −− −

−

− ×

= − ×

11 9

11

0 1395 10

0 5767 10
1

) . ]

. .
Pa
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stresses, if greater than any of the corresponding ultimate strengths, indicate
failure in the material.

Example 2.12

A cylindrical rod made of gray cast iron is subjected to a uniaxial tensile
load, P. Given:

Cross-sectional area of rod = 2 in.2

Ultimate tensile strength = 25 ksi
Ultimate compressive strength = 95 ksi
Ultimate shear strength = 35 ksi
Modulus of elasticity = 10 Msi

Find the maximum load, P, that can be applied using maximum stress failure
theory.

Solution

At any location, the stress state in the rod is σ = P/2. From a typical Mohr’s
circle analysis, the maximum principal normal stress is P/2. The maximum
shear stress is P/4 and acts at a cross-section 45° to the plane of maximum
normal stress. Comparing these maximum stresses to the corresponding
ultimate strengths, we have

and 

Thus, the maximum load is 50,000 lb.
However, in a lamina, the failure theories are not based on principal normal

stresses and maximum shear stresses. Rather, they are based on the stresses
in the material or local axes because a lamina is orthotropic and its properties
are different at different angles, unlike an isotropic material.

In the case of a unidirectional lamina, there are two material axes: one
parallel to the fibers and one perpendicular to the fibers. Thus, there are four
normal strength parameters for a unidirectional lamina, one for tension and
one for compression, in each of the two material axes directions. The fifth
strength parameter is the shear strength of a unidirectional lamina. The shear
stress, whether positive or negative, does not have an effect on the reported

P
or P

2
25 10 50 0003< × < , ,lb

P
or P

4
35 10 140 0003< × < , .lb
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shear strengths of a unidirectional lamina. However, we will find later that
the sign of the shear stress does affect the strength of an angle lamina. The
five strength parameters of a unidirectional lamina are therefore

Unlike the stiffness parameters, these strength parameters cannot be trans-
formed directly for an angle lamina. Thus, the failure theories are based on
first finding the stresses in the local axes and then using these five strength
parameters of a unidirectional lamina to find whether a lamina has failed.
Four common failure theories are discussed here. Related concepts of
strength ratio and the development of failure envelopes are also discussed.

2.8.1 Maximum Stress Failure Theory

Related to the maximum normal stress theory by Rankine and the maxi-
mum shearing stress theory by Tresca, this theory is similar to those
applied to isotropic materials. The stresses acting on a lamina are resolved
into the normal and shear stresses in the local axes. Failure is predicted
in a lamina, if any of the normal or shear stresses in the local axes of a
lamina is equal to or exceeds the corresponding ultimate strengths of the
unidirectional lamina.

Given the stresses or strains in the global axes of a lamina, one can find
the stresses in the material axes by using Equation (2.94). The lamina is
considered to be failed if

(2.141a–c)

is violated. Note that all five strength parameters are treated as positive
numbers, and the normal stresses are positive if tensile and negative if
compressive.

Each component of stress is compared with the corresponding strength;
thus, each component of stress does not interact with the others.

( ) =1
T

ultσ Ultimate longitudinal tensile strrength (in direction 1),
( ) =1

C
ultσ Ultimate longitudinal compressivee strength (in direction 1),

( ) =2
T

ultσ Ultimate transverse tensile strenngth (in direction 2),
( ) =2

C
ultσ Ultimate transverse compressive sstrength (in direction 2), and

( ) =12 ultτ Ultimate shear strengthin-plane (in plane 12).

− < <( ) ( ) ,σ σ σ1 1 1
C

ult
T

ult or

− < <( ) ( ) ,σ σ σ2 2 2
C

ult
T

ult or

− < <( ) ( )τ τ τ12 12 12ult ult
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Example 2.13

Find the maximum value of S > 0 if a stress of σx = 2S, σy = –3S, and τxy =
4S is applied to the 60° lamina of graphite/epoxy. Use maximum stress
failure theory and the properties of a unidirectional graphite/epoxy lamina
given in Table 2.1.

Solution

Using Equation (2.94), the stresses in the local axes are

From Table 2.1, the ultimate strengths of a unidirectional graphite/epoxy
lamina are

 = 1500 MPa

 = 1500 MPa

 = 40 MPa

 = 246 MPa

 = 68 MPa

Then, using the inequalities (2.141) of the maximum stress failure theory,

–1500 × 106 < 0.1714 × 101S < 1500 × 106

–246 × 106 < –0.2714 × 101S < 40 × 106

–68 × 106 < –0.4165 × 101S < 68 × 106

or

σ
σ
τ

1

2

12

0 2500 0 7500 0 8660
0 75

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
. . .
. 000 0 2500 0 8660

0 4330 0 4330 0 5000
. .

. . .
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
×

− ×

S

S

S

2
3
4

0 1714 10
0 2714

1.
. 110

0 4165 10

1

1− ×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥.

.S

( )σ1
T

ult

( )σ1
C

ult

( )σ2
T

ult

( )σ2
C

ult

( )τ12 ult
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–875.1 × 106 < S < 875.1 × 106

–14.73 × 106 < S < 90.64 × 106

–16.33 × 106 < S < 16.33 × 106.

All the inequality conditions (and S > 0) are satisfied if 0 < S < 16.33 MPa.
The preceding inequalities also show that the angle lamina will fail in shear.
The maximum stress that can be applied before failure is 

Example 2.14

Find the off-axis shear strength of a 60° graphite/epoxy lamina. Use the
properties of unidirectional graphite/epoxy from Table 2.1 and apply the
maximum stress failure theory.

Solution

The off-axis shear strength of a lamina is defined as the minimum of the
magnitude of positive and negative shear stress (Figure 2.31) that can be
applied to an angle lamina before failure.

Assume the following stress state

σx = 0, σy = 0, τxy = τ .

Then, using the transformation Equation (2.94),

.

Using the inequalities (2.141) of the maximum stress failure theory, we
have

σ σ τx y xyMPa MPa MPa= = − =32 66 48 99 65 32. , . , . .

σ
σ
τ

1

2

12

0 2500 0 7500 0 8660
0 750

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
. . .
. 00 0 2500 0 8660

0 4330 0 4330 0 5000
. .

. . .
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0
τ

σ τ1 0 866= .

σ τ2 0 866− .

τ τ12 0 500= − .
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–1500 < 0.866τ < 1500 or –1732 < τ < 1732

–246 < –0.866τ < 40 or –46.19 < τ < 284.1

–68 < –0.500τ < 68 or –136.0 < τ < 136.0,

which shows that τxy = 46.19 MPa is the largest magnitude of shear stress
that can be applied to the 60° graphite/epoxy lamina. However, the largest
positive shear stress that could be applied is τxy = 136.0 MPa, and the largest
negative shear stress is τxy = –46.19 MPa. 

This shows that the maximum magnitude of allowable shear stress in other
than the material axes’ direction depends on the sign of the shear stress. This
is mainly because the local axes’ stresses in the direction perpendicular to
the fibers are opposite in sign to each other for opposite signs of shear stress
(σ2 = –0.866τ for positive τxy and σ2 = 0.866τ for negative τxy). Because the
tensile strength perpendicular to the fiber direction is much lower than the
compressive strength perpendicular to the fiber direction, the two limiting
values of τxy are different.

FIGURE 2.31
Positive and negative shear stresses applied to an angle lamina.

(a) Positive shear stress  

τxy

τxy

2
y

1

x

(b) Negative shear stress 

τxy

τxy

2
y

1

x
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Table 2.3 shows the maximum negative and positive values of shear stress
that can be applied to different angle plies of graphite/epoxy of Table 2.1.
The minimum magnitude of the two stresses is the shear strength of the
angle lamina.

2.8.2 Strength Ratio

In a failure theory such as the maximum stress failure theory of Section 2.8.1,
it can be determined whether a lamina has failed if any of the inequalities
of Equation (2.141) are violated. However, this does not give the information
about how much the load can be increased if the lamina is safe or how much
the load should be decreased if the lamina has failed. The definition of
strength ratio (SR) is helpful here. The strength ratio is defined as

(2.142)

The concept of strength ratio is applicable to any failure theory. If SR > 1,
then the lamina is safe and the applied stress can be increased by a factor
of SR. If SR < 1, the lamina is unsafe and the applied stress needs to be
reduced by a factor of SR. A value of SR = 1 implies the failure load.

Example 2.15

Assume that one is applying a load of

TABLE 2.3

Effect of Sign of Shear Stress as a Function of Angle 
of Lamina

Angle, 
Degrees

Positive ττττxy

MPa
Negative ττττxy

MPa
Shear strength

MPa

0 68.00 (S) 68.00 (S) 68.00
15 78.52 (S) 78.52 (S) 78.52
30 136.0 (S) 46.19 (2T) 46.19
45 246.0 (2C) 40.00 (2T) 40.00
60 136.0 (S) 46.19 (2T) 46.19
75 78.52 (S) 78.52 (S) 78.52
90 68.00 (S) 68.00 (S) 68.00

Note: The notation in the parentheses denotes the mode
of failure of the angle lamina as follows: 
(1T) — longitudinal tensile failure; 
(1C) — longitudinal compressive failure; 
(2T) — transverse tensile failure; 
(2C) — transverse compressive failure; 
(S) — shear failure.

SR =
Maximum Load Which Can Be Applied

Load AApplied
.
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to a 60° angle lamina of graphite/epoxy. Find the strength ratio using the
maximum stress failure theory.

Solution

If the strength ratio is R, then the maximum stress that can be applied is

.

Following Example 2.13 for finding the local stresses gives 

.

Using the maximum stress failure theory as given by Equation (2.141)
yields

R = 16.33.

Thus, the load that can be applied just before failure is

Note that all the components of the stress vector must be multiplied by the
strength ratio.

2.8.3 Failure Envelopes

A failure envelope is a three-dimensional plot of the combinations of the
normal and shear stresses that can be applied to an angle lamina just before
failure. Because drawing three dimensional graphs can be time consuming,
one may develop failure envelopes for constant shear stress τxy and then use
the two normal stresses σx and σy as the two axes. Then, if the applied stress
is within the failure envelope, the lamina is safe; otherwise, it has failed.

σ σ τx y xyMPa MPa MPa= = − =2 3 4, ,

σ σ τx y xyR R R= = − =2 3 4, ,

σ1
10 1714 10. × R

σ2
10 2714 10= − ×. R

τ12
10 4165 10= − ×. R

σ σ τx y xyMPa MPa= × = × − =16 33 2 16 33 3 16 3. , . ( ) , . 33 4× ,Mpa

σ σ τx y xyMPa MPa MPa= = − =32 66 48 99 65 32. , . , . .
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Example 2.16

Develop a failure envelope for the 60° lamina of graphite/epoxy for a con-
stant shear stress of τxy = 24 MPa. Use the properties for the unidirectional
graphite/epoxy lamina from Table 2.1.

Solution

From Equation (2.94), the stresses in the local axes for a 60° lamina are
given by

where σx and σy are also in units of MPa.
Using the preceding inequalities,

.

Various combinations of (σx, σy) can be found to satisfy the preceding
inequalities. However, the objective is to find the points on the failure enve-
lope. These are combinations of σx and σy , where one of the three inequalities
is just violated and the other two are satisfied. Some of the values of (σx, σy)
obtained on the failure envelope are given in Table 2.4.

Several methods can be used to obtain the points on the failure envelope
for a constant shear stress. One way is to fix the value of σx and find the
maximum value of σy that can be applied without violating any of the
conditions. For example, for σx = 100 MPa, from the inequalities we have

σ σ σ1 0 2500 0 7500 20 78= + +. . . ,x y MPa

σ σ σ2 0 7500 0 2500 20 78= + −. . . ,x y MPa

τ σ σ12 0 4330 0 4330 12 00= − + −. . . ,x y MPa

− < + + <1500 0 2500 0 7500 20 78 1500. . .σ σx y

− < + − <246 0 7500 0 2500 20 78 40. . .σ σx y

− < − + − <68 0 4330 0 4330 12 00 68. . .σ σx y

− < <2061 1939σy ,

− < < −1201 56 88σy . ,

− < <29 33 284 80. . .σy
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The preceding three inequalities show no allowable value of σy for this value
of σx = 100 MPa.

As another example, for σx = 50 MPa, we have from inequalities,

The preceding three inequalities show two maximum allowable values of
the normal stress, σy. These are σy = 93.12 MPa and σy = –79.33 MPa. The
failure envelope for τxy = 24 MPa is shown in Figure 2.32.

2.8.4 Maximum Strain Failure Theory

This theory is based on the maximum normal strain theory by St. Venant
and the maximum shear stress theory by Tresca as applied to isotropic
materials. The strains applied to a lamina are resolved to strains in the local
axes. Failure is predicted in a lamina, if any of the normal or shearing strains
in the local axes of a lamina equal or exceed the corresponding ultimate
strains of the unidirectional lamina. Given the strains/stresses in an angle
lamina, one can find the strains in the local axes. A lamina is considered to
be failed if

TABLE 2.4

Typical Values of (σx, σy) on the
Failure Envelope for Example 2.16

σx (MPa) σy (MPa)

50.0
50.0

–50.0
–50.0
25.0
25.0

–25.0
–25.0

93.1
–79.3
179

–135
168

–104
160

–154

− < <2044 1956σy ,

− < <1051 93 12σy . ,

− < <79 33 234 80. . .σy

− < <( ) ( ) ,ε ε ε1 1 1
C

ult
T

ult or

− < <( ) ( ) ,ε ε ε2 2 2
C

ult
T

ult or
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(2.143a–c)

is violated, where 

= ultimate longitudinal tensile strain (in direction 1)
= ultimate longitudinal compressive strain (in direction 1)
= ultimate transverse tensile strain (in direction 2)
= ultimate transverse compressive strain (in direction 2)
= ultimate in-plane shear strain (in plane 1–2)

The ultimate strains can be found directly from the ultimate strength
parameters and the elastic moduli, assuming the stress–strain response is
linear until failure. The maximum strain failure theory is similar to the
maximum stress failure theory in that no interaction occurs between various
components of strain. However, the two failure theories give different results
because the local strains in a lamina include the Poisson’s ratio effect. In fact,
if the Poisson’s ratio is zero in the unidirectional lamina, the two failure
theories will give identical results.

Example 2.17

Find the maximum value of S > 0 if a stress, σx = 2S, σy = –3S, and τxy = 4S,
is applied to a 60° graphite/epoxy lamina. Use maximum strain failure

FIGURE 2.32
Failure envelopes for constant shear stress using maximum stress failure theory.

0
τ = 24 MPa

−300 −200−250 −150 −100
σx (MPa)

σ y (M
Pa

)

−50 0 50 100

200

100

−100

−200

−300

−400

− < <( ) ( )γ γ γ12 12 12ult ult

( )ε1
T

ult

( )ε1
C

ult

( )ε2
T

ult

( )ε2
C

ult

( )γ 12 ult
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theory. Use the properties of the graphite/epoxy unidirectional lamina given
in Table 2.1.

Solution

In Example 2.6, the compliance matrix [S] was obtained and, in Example 2.13,
the local stresses for this problem were obtained. Then, from Equation (2.77),

Assume a linear relationship between all the stresses and strains until
failure; then the ultimate failure strains are

ε
ε
γ

σ
σ
τ

1

2

12

1

2

12

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]S

=
× − ×

− ×

− −

−

0 5525 10 0 1547 10 0
0 1547 10 0 9

11 11

11

. .
. . 7709 10 0

0 0 0 1395 10

0 1714 10
10

9

×
×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

×
−

−.

. 11

1

1

0 2714 10
0 4165 10

− ×
− ×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

.
S

=
×

− ×
− ×

⎡

⎣

⎢
⎢
⎢

⎤−

−

−

0 1367 10
0 2662 10
0 5809 10

10

9

9

.
.
. ⎦⎦

⎥
⎥
⎥
S.

( )
( )

.ε σ
1

1

1

6

9

1500 10
181 10

8 287 1T
ult

T
ult

E
= = ×

×
= × 00 3− ,

( )
( )

.ε σ
1

1

1

6

9

1500 10
181 10

8 287 1C
ult

C
ult

E
= = ×

×
= × 00 3− ,

( )
( )

.
.ε σ

2
2

2

6

9

40 10
10 3 10

3 883 10T
ult

T
ult

E
= = ×

×
= × −−3 ,

( )
( )

.
.ε σ

2
2

2

6

9

246 10
10 3 10

2 388 1C
ult

C
ult

E
= = ×

×
= × 00 2− ,
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The preceding values for the ultimate strains also assume that the com-
pressive and tensile stiffnesses are identical. Using the inequalities (2.143)
and recognizing that S > 0,

or

which give

The maximum value of S before failure is 16.33 MPa. The same maximum
value of S = 16.33 MPa is also found using maximum stress failure theory.
There is no difference between the two values because the mode of failure
is shear. However, if the mode of failure were other than shear, a difference
in the prediction of failure loads would have been present due to the
Poisson’s ratio effect, which couples the normal strains and stresses in the
local axes.

Neither the maximum stress failure theory nor the maximum strain failure
theory has any coupling among the five possible modes of failure. The
following theories are based on the interaction failure theory.

2.8.5 Tsai–Hill Failure Theory

This theory is based on the distortion energy failure theory of Von-Mises’
distortional energy yield criterion for isotropic materials as applied to aniso-

( )
( )

.
.γ τ

12
12

12

6

6
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tropic materials. Distortion energy is actually a part of the total strain energy
in a body. The strain energy in a body consists of two parts; one due to a
change in volume and is called the dilation energy and the second is due to
a change in shape and is called the distortion energy. It is assumed that
failure in the material takes place only when the distortion energy is greater
than the failure distortion energy of the material. Hill8 adopted the Von-
Mises’ distortional energy yield criterion to anisotropic materials. Then, Tsai7

adapted it to a unidirectional lamina. Based on the distortion energy theory,
he proposed that a lamina has failed if

(2.144)

is violated. The components G1, G2, G3, G4, G5, and G6 of the strength criterion
depend on the failure strengths and are found as follows.

1. Apply to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(2.145)

2. Apply to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(2.146)

3. Apply to a unidirectional lamina and, assuming that the
normal tensile failure strength is same in directions (2) and (3), the
lamina will fail. Thus, Equation (2.144) reduces to 

(2.147)

4. Apply τ12 = (τ12)ult to a unidirectional lamina; then, the lamina will
fail. Thus, Equation (2.144) reduces to

(2.148)

From Equation (2.145) to Equation (2.148),
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(2.149a–d)

Because the unidirectional lamina is assumed to be under plane stress —
that is, σ3 = τ31 = τ23 = 0, then Equation (2.144) reduces through Equation
(2.149) to

(2.150)

Given the global stresses in a lamina, one can find the local stresses in a
lamina and apply the preceding failure theory to determine whether the
lamina has failed.

Example 2.18

Find the maximum value of S > 0 if a stress of σx = 2S, σy = –3S, and τxy =
4S is applied to a 60° graphite/epoxy lamina. Use Tsai–Hill failure theory.
Use the unidirectional graphite/epoxy lamina properties given in Table 2.1.

Solution

From Example 2.13,
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Using the Tsai–Hill failure theory from Equation (2.150),

1. Unlike the maximum strain and maximum stress failure theories,
the Tsai–Hill failure theory considers the interaction among the three
unidirectional lamina strength parameters.

2. The Tsai–Hill failure theory does not distinguish between the com-
pressive and tensile strengths in its equations. This can result in
underestimation of the maximum loads that can be applied when
compared to other failure theories. For the load of σx = 2 MPa, σy =
–3 MPa, and τxy = 4 MPa, as found in Example 2.15, Example 2.17,
and Example 2.18, the strength ratios are given by
SR = 10.94 (Tsai–Hill failure theory)
SR = 16.33 (maximum stress failure theory)
SR = 16.33 (maximum strain failure theory)

Tsai–Hill failure theory underestimates the failure stress because the trans-
verse tensile strength of a unidirectional lamina is generally much less than
its transverse compressive strength. The compressive strengths are not used
in the Tsai–Hill failure theory, but it can be modified to use corresponding
tensile or compressive strengths in the failure theory as follows

, (2.151)

where
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=  if σ2 < 0;

Y =  if σ2 > 0

=  if σ2 < 0

S = (τ12)ult.

For Example 2.18, the modified Tsai–Hill failure theory given by
Equation (2.151) now gives

σ < 16.06 MPa,

which implies that the strength ratio is SR = 16.06 (modified Tsai–Hill failure
theory). This value is closer to the values obtained using maximum stress
and maximum strain failure theories.

3. The Tsai–Hill failure theory is a unified theory and thus does not
give the mode of failure like the maximum stress and maximum
strain failure theories do. However, one can make a reasonable
guess of the failure mode by calculating
and |τ12/(τ12)ult|. The maximum of these three values gives the asso-
ciated mode of failure. In the modified Tsai–Hill failure theory,
calculate the maximum of |σ1/X1|, |σ2/Y|, and |τ12/S| for the associ-
ated mode of failure.

2.8.6 Tsai–Wu Failure Theory 

This failure theory is based on the total strain energy failure theory of
Beltrami. Tsai-Wu9 applied the failure theory to a lamina in plane stress. A
lamina is considered to be failed if

H1σ1 + H2σ2 + H6τ12 + H11 + H22 +H66 + 2H12σ1σ2 < 1 (2.152)

is violated. This failure theory is more general than the Tsai–Hill failure
theory because it distinguishes between the compressive and tensile
strengths of a lamina.
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The components H1, H2, H6, H11, H22, and H66 of the failure theory are found
using the five strength parameters of a unidirectional lamina as follows:

1. Apply to a unidirectional lamina; the lam-
ina will fail. Equation (2.152) reduces to

(2.153)

2. Apply to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

(2.154)

From Equation (2.153) and Equation (2.154),

(2.155)

(2.156)

3. Apply to a unidirectional lamina; the lam-
ina will fail. Equation (2.152) reduces to

(2.157)

4. Apply to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

(2.158)

From Equation (2.157) and Equation (2.158),
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5. Apply 

 

σ

 

1

 

 = 0, 
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 = 0, and 
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12
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τ

 

12

 

)

 

ult

 

 to a unidirectional lamina; it
will fail. Equation (2.152) reduces to

(2.161)

6. Apply 
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 = 0, 
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 = 0, and 
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12

 

 = –(

 

τ
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ult

 

 to a unidirectional lamina; the
lamina will fail. Equation (2.152) reduces to

(2.162)

From Equation (2.161) and Equation (2.162),

(2.163)

(2.164)

The only component of the failure theory that cannot be found directly
from the five strength parameters of the unidirectional lamina is 

 

H

 

12

 

. This
can be found experimentally by knowing a biaxial stress at which the lamina
fails and then substituting the values of 
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, and 

 

τ

 

12

 

 in the Equation (2.152).
Note that 
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. Experimental methods
to find 
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 include the following.

1. Apply equal tensile loads along the two material axes in a unidirec-
tional composite. If 
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xy

 

 = 0 is the load at which the lamina
fails, then

(2.165)

The solution of Equation (2.165) gives

(2.166)

It is not necessary to pick tensile loads in the preceding biaxial test, but one
may apply any combination of
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(2.167)

This will give four different values of 

 

H

 

12

 

, each corresponding to the four
tests.

2. Take a 45

 

°

 

 lamina under uniaxial tension 
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. The stress 

 

σ

 

x

 

 at failure
is noted. If this stress is 

 

σ

 

x

 

 = 

 

σ

 

, then, using Equation (2.94), the local
stresses at failure are

(2.168a–c)

Substituting the preceding local stresses in Equation (2.152),
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Example 2.19

Find the maximum value of S > 0 if a stress σx = 2S, σy = –3S, and τxy = 4S
are applied to a 60° lamina of graphite/epoxy. Use Tsai–Wu failure theory.
Use the properties of a unidirectional graphite/epoxy lamina from Table 2.1.

Solution

From Example 2.13,

From Equations (2.155), (2.156), (2.159), (2.160), (2.163), and (2.164),

H1 =  

H2 =

H6 = 0 Pa–1,

H11 =

H22 =

H66 = .

Using the Mises–Hencky criterion for evaluation of H12, (Equation 2.165c),
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Substituting these values in Equation (2.152), we obtain

or

.

If one uses the other two empirical criteria for H12, per Equation (2.171),
this yields

Summarizing the four failure theories for the same stress state, the value
of S obtained is

S = 16.33 (maximum stress failure theory)
S = 16.33 (maximum strain failure theory)
S = 10.94 (Tsai–Hill failure theory)
S = 16.06 (modified Tsai–Hill failure theory)
S = 22.39 (Tsai–Wu failure theory)

2.8.7 Comparison of Experimental Results with Failure Theories

Tsai7 compared the results from various failure theories to some experimen-
tal results. He considered an angle lamina subjected to a uniaxial load in
the x-direction, σx, as shown in Figure 2.33. The failure stresses were
obtained experimentally for tensile and compressive stresses for various
angles of the lamina.
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The experimental results can be compared with the four failure theories
by finding the stresses in the material axes for an arbitrary stress, σx, for an
angle lamina with an angle, θ, between the fiber and loading direction as

(2.172)

per Equation (2.94). 
The corresponding strains in the material axes are

(2.173)

per Equation (2.99).
Using the preceding local strains and stresses in the four failure theories

given by Equation (2.141), Equation (2.143), Equation (2.150), and Equation
(2.152), one can find the ultimate off-axis load, σx, that can be applied as a
function of the angle of the lamina.

The following values were used in the failure theories for the unidirectional
lamina stiffnesses and strengths:

FIGURE 2.33
Off-axis loading in the x-direction in Figure 2.34 to Figure 2.37.
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The comparison for the four failure theories is shown in Figure 2.34
through Figure 2.37. Observations from the figures are:

• The difference between the maximum stress and maximum strain
failure theories and the experimental results is quite pronounced.

• Tsai–Hill and Tsai–Wu failure theories’ results are in good agreement
with experimentally obtained results.

• The variation of the strength of the angle lamina as a function of
angle is smooth in the Tsai–Hill and Tsai–Wu failure theories, but
has cusps in the maximum stress and maximum strain failure the-
ories. The cusps correspond to the change in failure modes in the
maximum stress and maximum strain failure theories.

2.9 Hygrothermal Stresses and Strains in a Lamina

Composite materials are generally processed at high temperatures and then
cooled down to room temperatures. For polymeric matrix composites, this
temperature difference is in the range of 200 to 300°C; for ceramic matrix
composites, it may be as high as 1000°C. Due to mismatch of the coefficients
of thermal expansion of the fiber and matrix, residual stresses result in a
lamina when it is cooled down. Also, the cooling down induces expansional
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FIGURE 2.34
Maximum normal tensile stress in the x-direction as a function of angle of lamina using
maximum stress failure theory. (Experimental data reprinted with permission from Introduction
to Composite Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)

FIGURE 2.35
Maximum normal tensile stress in the x-direction as a function of angle of lamina using
maximum strain failure theory. (Experimental data reprinted with permission from Introduction
to Composite Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)
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FIGURE 2.36
Maximum normal tensile stress in the x-direction as a function of angle of lamina using Tsai–Hill
failure theory. (Experimental data reprinted with permission from Introduction to Composite
Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)

FIGURE 2.37
Maximum normal tensile stress in the x-direction as a function of angle of lamina using Tsai–Wu
failure theory. (Experimental data reprinted with permission from Introduction to Composite
Materials, Tsai, S.W. and Hahn, H.T., 1980, CRC Press, Boca Raton, FL, 301.)
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strains in the lamina. In addition, most polymeric matrix composites can
absorb or deabsorb moisture. This moisture change leads to swelling strains
and stresses similar to those due to thermal expansion. Laminates in which
laminae are placed at different angles have residual stresses in each lamina
due to differing hygrothermal expansion of each lamina. The hygrothermal
strains are not equal in a lamina in the longitudinal and transverse directions
because the elastic constants and the thermal and moisture expansion coef-
ficients of the fiber and matrix are different. In the following sections,
stress–strain relationships are developed for unidirectional and angle lami-
nae subjected to hygrothermal loads.

2.9.1 Hygrothermal Stress–Strain Relationships for a 
Unidirectional Lamina

For a unidirectional lamina, the stress–strain relationship with temperature
and moisture difference gives

(2.174)

where the subscripts T and C are used to denote temperature and moisture,
respectively. Note that the temperature and moisture change do not have
any shearing strain terms because no shearing strains are induced in the
material axes. The thermally induced strains are given by 

(2.175)

where α1 and α2 are the longitudinal and transverse coefficients of thermal
expansion, respectively, and ΔT is the temperature change. The moisture-
induced strains are given by

(2.176)

where β1 and β2 are the longitudinal and transverse coefficients of moisture,
respectively, and ΔC is the weight of moisture absorption per unit weight of
the lamina.
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Equation (2.174) can be inverted to give

. (2.177)

2.9.2 Hygrothermal Stress–Strain Relationships for an Angle Lamina

The stress–strain relationship for an angle lamina takes the following form:

, (2.178)

where

(2.179)

and 

. (2.180)

The terms αx, αy, and αxy are the coefficients of thermal expansion for an
angle lamina and are given in terms of the coefficients of thermal expansion
for a unidirectional lamina as

. (2.181)
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Similarly, βx, βy, and βxy are the coefficients of moisture expansion for an
angle lamina and are given in terms of the coefficients of moisture expansion
for a unidirectional lamina as

. (2.182)

From Equation (2.174), if no constraints are placed on a lamina, no mechan-
ical strains will be induced in it. This also implies then that no mechanical
stresses are induced. However, in a laminate, even if the laminate has no
constraints, the difference in the thermal/moisture expansion coefficients of
the various layers induces different thermal/moisture expansions in each
layer. This difference results in residual stresses and will be explained fully
in Chapter 4.

Example 2.20

Find the following for a 60° angle lamina of glass/epoxy:

1. Coefficients of thermal expansion
2. Coefficients of moisture expansion
3. Strains under a temperature change of –100°C and a moisture

absorption of 0.02 kg/kg.

Use properties of unidirectional glass/epoxy lamina from Table 2.1.
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1. From Table 2.1,
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2. From Table 2.1,

Using Equation (2.182) gives

.

3. Now, use Equation (2.179) and Equation (2.180) to calculate the
strains as

.
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2.10 Summary

After reviewing the definitions of stress, strain, elastic moduli, and strain
energy, we developed the three-dimensional stress–strain relationships for
different materials. These materials range from anisotropic to isotropic. The
number of independent constants ranges from 21 for anisotropic to 2 for
isotropic materials, respectively. Using plane stress assumptions, we reduced
the three-dimensional problem to a two-dimensional problem and devel-
oped a stress–strain relationship for a unidirectional/bidirectional lamina.
These relationships were then found for an angle lamina, using transforma-
tion of strains and stresses. We introduced failure theories of an angle lamina
in terms of strengths of unidirectional lamina. Finally, we developed
stress–strain equations for an angle lamina under thermal and moisture
loads. In the appendix of this chapter, we review matrix algebra and the
transformation of stresses and strains.

Key Terms

Mechanical characterization
Stress
Strain
Elastic moduli
Strain energy
Anisotropic material
Monoclinic material
Orthotropic material
Transversely isotropic material
Isotropic material
Plane stress
Compliance matrix
Stiffness matrix
Angle ply
Engineering constants
Invariant stiffness and compliance
Failure theories
Maximum stress failure theory
Maximum strain failure theory
Tsai–Hill theory
Tsai–Wu theory
Failure envelopes
Hygrothermal stresses
Hygrothermal loads
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Exercise Set

2.1 Write the number of independent elastic constants for three-dimen-
sional anisotropic, monoclinic, orthotropic, transversely isotropic,
and isotropic materials.

2.2 The engineering constants for an orthotropic material are found to be

Find the stiffness matrix [C] and the compliance matrix [S] for the
preceding orthotropic material.

 2.3 Consider an orthotropic material with the stiffness matrix given by

Find:
1. The stresses in the principal directions of symmetry if the strains

in the principal directions of symmetry at a point in the material
are ε1 = 1 μm/m, ε2 = 3 μm/m, ε3 = 2 μm/m; γ23 = 0, γ31 = 5 μm/
m, γ12 = 6 μm/m

2. The compliance matrix [S]
3. The engineering constants E1, E2, E3, ν12, ν23, ν31, G12, G23, G31

4. The strain energy per unit volume at the point where strains are
given in part (1.)

2.4 Reduce the monoclinic stress–strain relationships to those of an
orthotropic material.

2.5 Show the difference between monoclinic and orthotropic materials
by applying normal stress in principal directions and shear stress in
principal planes, one at a time and studying the resulting nonzero
and zero strains.
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2.6 Write down the compliance matrix of a transversely isotropic mate-
rial (where 2–3 is the plane of isotropy) in terms of the following
engineering constants:

E is the Young’s modulus in the plane of isotropy 2–3

E′ is the Young’s modulus in direction 1 that is perpendicular to
plane of isotropy 2–3

ν is the Poisson’s ratio in the plane of isotropy 2–3

ν′ is the Poisson’s ratio in the 1–2 plane

G′ is the shear modulus in the 1–2 plane

2.7 Find the relationship between the engineering constants of a three-
dimensional orthotropic material and its compliance matrix.

2.8 What are the values of stiffness matrix elements C11 and C12 in terms
of the Young’s modulus and Poisson’s ratio for an isotropic material?

2.9 Are ν12 and ν21 independent of each other for a unidirectional ortho-
tropic lamina?

2.10 Find the reduced stiffness [Q] and the compliance [S] matrices for a
unidirectional lamina of boron/epoxy. Use the properties of a uni-
directional boron/epoxy lamina from Table 2.1.

2.11 Find the strains in the 1–2 coordinate system (local axes) in a uni-
directional boron/epoxy lamina, if the stresses in the 1–2 coordinate
system applied to are σ1 = 4 MPa, σ2 = 2 MPa, and τ12 = –3 MPa.
Use the properties of a unidirectional boron/epoxy lamina from
Table 2.1.

2.12. Write the reduced stiffness and the compliance matrix for an isotro-
pic lamina.

2.13 Show that for an orthotropic material Q11  ≠ C11. Explain why. Also,
show Q66 = C66. Explain why.

2.14 Consider a unidirectional continuous fiber composite. Start from [σ]
= [Q] [ε] and follow the procedure in Section 2.4.3 to get

E1 = ν12 =

E2 = ν21 = G12 = Q66.

2.15 The reduced stiffness matrix [Q] is given for a unidirectional lamina
is given as follows:

Q
Q
Q11

12
2

22

− Q
Q

12

22

Q
Q
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11

Q
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.

What are the four engineering constants, E1, E2, ν12, and G12, of the
lamina?

2.16 The stresses in the global axes of a 30° ply are given as σx = 4 MPa,
σy = 2 MPa, and τxy = –3 MPa. Find the stresses in the local axes. Are
the stresses in the local axes independent of elastic moduli? Why or
why not?

2.17 The strains in the global axes of a 30° ply are given as εx = 4 μin./
in., εy = 2 μin./in., and γxy = –3 μin./in. Find the strains in the local
axes. Are the strains independent of material properties? Why or
why not?

2.18 Find the transformed reduced stiffness matrix and transformed
compliance matrix for a 60° angle lamina of a boron/epoxy lam-
ina. Use the properties of a unidirectional boron/epoxy lamina from
Table 2.1.

2.19 What is the relationship between the elements of the transformed
compliance matrix for a 0 and 90° lamina?

2.20 For a 60° angle lamina of boron/epoxy under stresses in global
axes as σx = 4 MPa, σy = 2 MPa, and τxy = –3 MPa, and using the
properties of a unidirectional boron/epoxy lamina from Table 2.1,
find the following
1. Global strains
2. Local stresses and strains
3. Principal normal stresses and principal normal strains
4. Maximum shear stress and maximum shear strain

2.21 An angle glass/epoxy lamina is subjected to a shear stress τxy = 0.4
ksi in the global axes resulting in a shear strain γxy = 468.3 μin./in.
in the global axes. What is the angle of the ply? Use the properties
of unidirectional glass/epoxy lamina from Table 2.2.

2.22 Find the six engineering constants for a 60° boron/epoxy lamina.
Use the properties of unidirectional boron/epoxy lamina from
Table 2.2.

2.23 A bidirectional woven composite ply may yield equal longitudinal
and transverse Young’s modulus but is still orthotropic. Determine
the angles of the ply for which the shear modulus (Gxy) are maximum
and minimum. Also find these maximum and minimum values.
Given: E1 = 69 GPa, E2 = 69 GPa, ν12 = 0.3, G12 = 20 GPa.
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2.24 A strain gage measures normal strain in a component. Experiments12

suggest that errors due to strain gage misalignment are more appre-
ciable for angle plies of composite materials than isotropic materials.
1. Take a graphite/epoxy angle ply of 8° under a uniaxial stress, σx

= 4 Msi. Estimate the strain, εx, as measured by a strain gage
aligned in the x-direction. Now, if the strain gage is misaligned
by +3° to the x-axis, estimate the measured strain. Find the per-
centage of error due to misalignment. Use properties of unidi-
rectional graphite/epoxy lamina from Table 2.2.

2. Take an aluminum layer under a uniaxial stress, σx = 4 Msi.
Estimate the strain, εx, as measured by a strain gage in the
x-direction. Now, if the strain gage is misaligned by +3° to the
x-axis, estimate the measured strain. Find the percentage of error
due to misalignment. Assume E = 10 Msi, v = 0.3 for aluminum.

2.25 A uniaxial load is applied to a 10° ply. The linear stress–strain curve
along the line of load is related as σx = 123εx, where the stress is
measured in GPa and strain in m/m. Given E1 = 180 GPa, E2 = 10
GPa and ν12 = 0.25, find the value of (1) shear modulus, G12;and (2)
modulus Ex for a 60° ply.

2.26 The tensile modulus of a 0°, 90°, and 45° graphite/epoxy ply is
measured as follows to give E1 = 26.25 Msi, E2 = 1.494 Msi, Ex = 2.427
Msi for the 45° ply, respectively.
1. What is the value Ex for a 30° ply?
2. Can you calculate the values of ν12 and G12 from the previous

three measured values of elastic moduli?
2.27 Can the value of the modulus, Ex, of an angle lamina be less than

both the longitudinal and transverse Young’s modulus of a unidi-
rectional lamina?

2.28 Can the value of the modulus, Ex, of an angle lamina be greater than
both the longitudinal and transverse Young’s modulus of a unidi-
rectional lamina?

2.29 Is the νxy for a lamina maximum for a 45° boron/epoxy ply? Use
properties of unidirectional boron/epoxy lamina from Table 2.2.

2.30 In finding the value of the Young’s modulus, Ex, for an angle ply,
length-to-width (L/W) ratio of the specimen affects the measured
value of Ex. The Young’s modulus  for a finite length-to-width
ratio specimen is related to the Young’s modulus, Ex, for an infinite
length-to-width ratio specimen by5

,

xE
1

E
E

x
x1

1
=

− ζ
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where

.

Tabulate the values of  ζ for L/W = 2, 8, 16, and 64 for a 30° glass/
epoxy. Use properties of unidirectional glass/epoxy lamina from
Table 2.2.

2.31 Starting from the expression for the reduced stiffness element

,

derive the expression

.

2.32 Initial stress–strain data are given for a uniaxial tensile test of a 45°
angle ply. Find the in-plane shear modulus of the unidirectional
lamina, G12. Use linear regression analysis for finding slopes of
curves.

If similar data were given for a 35° angle ply, would it be sufficient
to find the in-plane shear modulus of the unidirectional lamina, G12?

2.33 Calculate the four stiffness invariants, U1, U2, U3, and U4, and the
four compliance invariants V1, V2, V3, and V4, for a boron/epoxy
lamina. Use the properties of a unidirectional boron/epoxy lamina
from Table 2.2.

2.34 Show that is not a function of the angle of ply.
2.35 Find the off-axis shear strength and mode of failure of a 60° boron/

epoxy lamina. Use the properties of a unidirectional boron/epoxy
lamina from Table 2.1. Apply the maximum stress failure, maximum
strain, Tsai–Hill, and Tsai–Wu failure theories.

2.36 Give one advantage of the maximum stress failure theory over the
Tsai–Wu failure theory.
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2.37 Give one advantage of the Tsai–Wu failure theory over the maximum
stress failure theory.

2.38 Find the maximum biaxial stress, σx = –σ, σy = –σ, σ > 0, that one
can apply to a 60° lamina of graphite/epoxy. Use the properties of
a unidirectional graphite/epoxy lamina from Table 2.1. Use maxi-
mum strain and Tsai–Wu failure theories.

2.39 Using Mohr’s circle, show why the maximum shear stress that can
be applied to angle laminae differs with the shear stress sign. Take
a 45° graphite/epoxy lamina as an example. Use the properties of a
unidirectional graphite/epoxy lamina from Table 2.1. 

2.40 Reduce the Tsai–Wu failure theory for an isotropic material with
equal ultimate tensile and compressive strengths and a shear
strength that is 40% of the ultimate tensile strength.

2.41 An off-axis test is used to find the value of H12 for use in the Tsai–Wu
failure theory for a boron/epoxy system. The five lamina strengths
of a unidirectional boron/epoxy system are given as follows:

 = 188 ksi,  = 361 ksi,  = 9 ksi,  = 45 ksi,
and (τ12)ult = 10 ksi.

A 15° specimen fails at a uniaxial load of 33.546 ksi. Find the value
of H12. Does it satisfy the inequality , which is a stability
criterion for Tsai–Wu failure theory that says failure surfaces inter-
cept all stress axes and form a closed geometric surface13?

2.42 Give the units for the coefficient of thermal expansion in the USCS
and SI systems.

2.43 Find the free-expansional strains of a glass/epoxy unidirectional
lamina under a temperature change of –100°C and a moisture
absorption of 0.002 kg/kg. Also find the temperature change for
which the transverse expansional strains vanish for a moisture
absorption of 0.002 kg/kg. Use the properties of a unidirectional
glass/epoxy lamina from Table 2.1. 

2.44 Find the coefficients of thermal expansion of a 60° glass/epoxy lam-
ina. Use the properties of unidirectional glass/epoxy lamina from
Table 2.2.

2.45 Give the units for coefficient of moisture expansion in the USCS and
SI systems.

2.46 Find the coefficients of moisture expansion of a 60° glass/epoxy
lamina. Use the properties of unidirectional glass/epoxy lamina
from Table 2.1.
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Appendix A: Matrix Algebra*

What is a matrix?

A matrix is a rectangular array of elements. The elements can be symbolic
expressions and/or numbers. Matrix [A] is denoted by

.

Look at the following matrix about the sale of tires — given by quarter
and make of tires — in a Blowoutr’us store:

To determine how many Copper tires were sold in quarter 4, we go along
the row Copper and column quarter 4 and find that it is 27.

Row i of [A] has n elements and is  and 

Column j of [A] has m elements and is .

Each matrix has rows and columns that define the size of the matrix. If a
matrix [A] has m rows and n columns, the size of the matrix is denoted by
m × n. The matrix [A] may also be denoted by [A]mxn to show that [A] is a
matrix with m rows and n columns.

Each entry in the matrix is called the entry or element of the matrix and is
denoted by aij, where i is the row number (i = 1, 2,…m) and j is the column
number (j = 1, 2, …n) of the element. 

The matrix for the tire sales example given earlier could be denoted by
the matrix [A] as

* This section on matrix algebra is adapted, with permission, from A.K. Kaw, Introduction to
Matrix Algebra, E-book, http://numericalmethods.eng.usf.edu/, 2004. At the time of printing,
the complete E-book can be downloaded free of charge from the given website.

 Quarter 1 Quarter 2 Quarter 3 Quarter 4

Tirestone 25 20 3 2
Michigan 5 10 15 25
Copper 6 16 7 27

A

a a a

a a a

a

n

n

m

⎡⎣ ⎤⎦ =

11 12 1

21 22 2

1

.......

.......

aa am mn2 .......

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a a ai i in1 2 ....⎡⎣ ⎤⎦
a

a

a

j

j

mj

1

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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.

The size of the matrix is 3 × 4 because there are three rows and four columns.
In the preceding [A] matrix, a34 = 27.

What are the special types of matrices?

Vector: A vector is a matrix that has only one row or one column. The
two types of vectors are row vectors and column vectors.

Row vector: If a matrix has one row, it is called a row vector — [B] = [b1,
b2,…bm] and m is the dimension of the row vector.

Column vector: If a matrix has one column, it is called a column vector

and n is the dimension of the column vector.

Example A.1

Give an example of a row vector.

Solution

[B] = [25 20 3 2 0] is an example of a row vector of dimension 5.

Example A.2

Give an example of a column vector.

Solution

An example of a column vector of dimension 3 is

.

[ ]A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 20 3 2
5 10 15 25
6 16 7 27

[ ]C

c

cn

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

[ ]C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25
5
6
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Submatrix: If some row(s) or/and column(s) of a matrix [A] are deleted,
the remaining matrix is called a submatrix of [A].

Example A.3

Find some of the submatrices of the matrix

.

Solution

Some submatrices of [A] are 

Can you find other submatrices of [A]?

Square matrix: If the number of rows, m, of a matrix is equal to the
number of columns, n, of the matrix, (m = n), it is called a square
matrix. The entries a11, a22,…ann are called the diagonal elements of a
square matrix. Sometimes the diagonal of the matrix is also called
the principal or main of the matrix.

Example A.4

Give an example of a square matrix.

Solution

Because it has the same number of rows and columns (that is, three),

is a square matrix.
The diagonal elements of [A] are a11 = 25, a22 = 10, and a33 = 7.

Diagonal matrix: A square matrix with all nondiagonal elements equal
to zero is called a diagonal matrix — that is, only the diagonal entries
of the square matrix can be nonzero (aij = 0, i ≠ j).

[ ]A =
−

⎡

⎣
⎢

⎤

⎦
⎥

4 6 2
3 1 2

4 6 2
3 1 2

4 6
3 1

4 6 2 4
−

⎡

⎣
⎢

⎤

⎦
⎥ −

⎡

⎣
⎢

⎤

⎦
⎥ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦, , , ,

2
2

⎡

⎣
⎢

⎤

⎦
⎥

[ ]A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 20 3
5 10 15
6 15 7
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Example A.5 

Give examples of a diagonal matrix.

Solution

An example of a diagonal matrix is

.

Any or all the diagonal entries of a diagonal matrix can be zero. For
example, the following is also a diagonal matrix:

.

Identity matrix: A diagonal matrix with all diagonal elements equal to
one is called an identity matrix (aij = 0, i ≠ j; and aii = 1 for all i).

Example A.6

Give an example of an identity matrix.

Solution

An identity matrix is

[A] = .

Zero matrix: A matrix whose entries are all zero is called a zero matrix
(aij = 0 for all i and j).

Example A.7

Give examples of a zero matrix.

3 0 0
0 2 1 0
0 0 5

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ] .A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 0 0
0 2 1 0
0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Solution

Examples of a zero matrix include:

,

,

,

.

When are two matrices considered equal?

Two matrices [A] and [B] are equal if 

The size of [A] and [B] is the same (number of rows of [A] is same as
the number of rows of [B] and the number of columns of [A] is same
as number of columns of [B]) and 

aij = bij for all i and j.

Example A.8

What would make

equal to 

?

[ ]A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0
0

0 0
0 0
0 0

[ ]B =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0 0 0

0 0 0

[ ]C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0
0

0 0
0 0
0 0

0
0
0

[ ] [ ]D = 0 0 0

[ ]A =
⎡

⎣
⎢

⎤

⎦
⎥

2 3
6 7

[ ]B
b

b
=

⎡

⎣
⎢

⎤

⎦
⎥

11

22

3
6
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Solution

The two matrices [A] and [B] would be equal if b11 = 2, b22 = 7.

How are two matrices added?

Two matrices [A] and [B] can be added only if they are the same size
(number of rows of [A] is same as the number of rows of [B] and the number
of columns of [A] is same as number of columns of [B]). Then, the addition
is shown as [C] = [A] + [B], where cij = aij + bij for all i and j.

Example A.9

Add the two matrices

.

Solution

How are two matrices subtracted?

Two matrices [A] and [B] can be subtracted only if they are the same size
(number of rows of [A] is same as the number of rows of [B] and the number
of columns of [A] is same as number of columns of [B]). The subtraction is
given by [D] = [A] – [B], where dij = aij – bij for all i and j.

[ ]A =
⎡

⎣
⎢

⎤

⎦
⎥

5 2 3
1 2 7

[ ]B =
−⎡

⎣
⎢

⎤

⎦
⎥

6 7 2
3 5 19

[ ] [ ] [ ]C A B= +

=
⎡

⎣
⎢

⎤

⎦
⎥ +

−⎡

⎣
⎢

⎤

⎦
⎥

=
+

5 2 3
1 2 7

6 7 2
3 5 19

5 6 22 7 3 2
1 3 2 5 7 19

11 9 1
4 7 26

+ −
+ + +

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ .
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Example A.10

Subtract matrix [B] from matrix [A] — that is, find [A] – [B].

.

Solution

How are two matrices multiplied?

A matrix [A] can be multiplied by another matrix [B] only if the number
of columns of [A] is equal to the number of rows of [B] to give [C]mxn =
[A]mxp[B]pxn. If [A] is an m × p matrix and [B] is a p × n matrix, then the size
of the resulting matrix [C] is an m × n matrix.

How does one calculate the elements of [C] matrix?

for each i = 1, 2,…m and j = 1, 2,…n.

[ ]A =
⎡

⎣
⎢

⎤

⎦
⎥

5 2 3
1 2 7

[ ]B =
−⎡

⎣
⎢

⎤

⎦
⎥

6 7 2
3 5 19

[ ] [ ] [ ]C A B= −

=
⎡

⎣
⎢

⎤

⎦
⎥ −

−⎡

⎣
⎢

⎤

⎦
⎥

=
−

5 2 3
1 2 7

6 7 2
3 5 19

5 6 22 7 3 2
1 3 2 5 7 19

1 5 5
2 3 12

− − −
− − −

⎡

⎣
⎢

⎤

⎦
⎥

=
− −
− − −

⎡

⎣
⎢

⎤

( )

⎦⎦
⎥ .

c a b

a b a b a

ij ik kj

k

p

i j i j i

=

= + + +

=
∑

1

1 1 2 2 .......... pp pjb
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To put it in simpler terms, the ith row and jth column of the [C] matrix in
[C] = [A][B] is calculated by multiplying the ith row of [A] by the jth column
of [B] — that is,

.

Example A.11

Given

,

find

.

Solution

For example, the element c12 of the [C] matrix can be found by multiplying
the first row of [A] by the second column of [B]:

c a a a

b

b

b

ij i i ip

j

j

pj

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥[ ]1 2

1

2

⎥⎥
⎥
⎥

= + + +a b a b ........ ai j i j i1 1 2 2 pp pjb .

=
=

∑ a bik kj

k

p

1

[ ]A =
⎡

⎣
⎢

⎤

⎦
⎥

5 2 3
1 2 7

[ ]B =
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3 2
5 8
9 10

[ ] [ ][ ]C A B=

c12 5 2 3
2
8
10

=
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]
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= (5)(–2) + (2)(–8) + (3)(–10)

= –56.

Similarly, one can find the other elements of [C] to give

.

What is a scalar product of a constant and a matrix?

If [A] is an n × n matrix and k is a real number, then the scalar product of
k and [A] is another matrix [B], where bij = kaij.

Example A.12

Let

.

Find 2 [A].

Solution

;

then,

[ ]C =
−
−

⎡

⎣
⎢

⎤

⎦
⎥

52 56
76 88

[ ]
.

A =
⎡

⎣
⎢

⎤

⎦
⎥

2 1 3 2
5 1 6

[ ]
.

A =
⎡

⎣
⎢

⎤

⎦
⎥

2 1 3 2
5 1 6

2 2
2 1 3 2
5 1 6

2 2 1 2 3 2 2
2

[ ]
.

( )( . ) ( )( ) ( )( )
(

A =
⎡

⎣
⎢

⎤

⎦
⎥

=
))( ) ( )( ) ( )( )

.
.

5 2 1 2 6

4 2 6 4
10 2 12

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥
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What is a linear combination of matrices?

If [A1], [A2],…,[Ap] are matrices of the same size and k1, k2,…,kp are scalars,
then

is called a linear combination of [A1], [A2],…,[Ap].

Example A.13

If

,

then find

.

Solution

What are some of the rules of binary matrix operations?

Commutative law of addition: If [A] and [B] are m × n matrices, then

.

Associate law of addition: If [A], [B], and [C] all are m × n matrices, then

k A k A k Ap p1 1 2 2[ ] [ ] ........ [ ]+ + +

[ ] , [ ]
.

, [A A A1 2 3
5 6 2
3 2 1

2 1 3 2
5 1 6

=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ ]]

.

.
=

⎡

⎣
⎢

⎤

⎦
⎥

0 2 2 2
3 3 5 6

[ ] [ ] . [ ]A A A1 2 32 0 5+ −

[ ] [ ] . [ ]
.

A A A1 2 32 0 5
5 6 2
3 2 1

2
2 1 3 2
5 1 6

+ − =
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢⎢

⎤

⎦
⎥ −

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ +

0 5
0 2 2 2
3 3 5 6

5 6 2
3 2 1

4 2 6

.
.
.

. 44
10 2 12

0 1 1 1
1 5 1 75 3

9 2 10 9 5
1

⎡

⎣
⎢

⎤

⎦
⎥ −

⎡

⎣
⎢

⎤

⎦
⎥

=

.
. .

. .
11 5 2 25 10. .

.
⎡

⎣
⎢

⎤

⎦
⎥

[ ] [ ] [ ] [ ]A B B A+ = +

1343_book.fm  Page 184  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



Macromechanical Analysis of a Lamina 185

.

Associate law of multiplication: If [A], [B], and [C] are m × n, n × p, and p
× r size matrices, respectively, then

and the resulting matrix size on both sides is m × r.
Distributive law: If [A] and [B] are m × n size matrices and [C] and [D]

are n × p size matrices, then

and the resulting matrix size on both sides is m × p.

Example A.14

Illustrate the associative law of multiplication of matrices using 

.

Solution

[ ] ([ ] [ ]) ([ ] [ ]) [ ]A B C A B C+ + = + +

[ ]([ ][ ]) ([ ][ ])[ ]A B C A B C=

[ ]([ ] [ ]) [ ][ ] [ ][ ]A C D A C A D+ = +

([ ] [ ])[ ] [ ][ ] [ ][ ]A B C A C B C+ = +

[ ] , [ ] , [ ]A B C=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ =

1 2
3 5
0 2

2 5
9 6

2 1
3 55

⎡

⎣
⎢

⎤

⎦
⎥

[ ][ ]B C =
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

2 5
9 6

2 1
3 5

19 27
36 39

[ ][ ][ ]A B C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

1 2
3 5
0 2

19 27
36 39

91 1105
237 276
72 78

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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These illustrate the associate law of multiplication of matrices.

Is [A][B] = [B][A]?

First, both operations, [A][B] and [B][A], are only possible if [A] and [B]
are square matrices of same size. Why? If [A][B] exists, the number of
columns of [A] must be the same as the number of rows of [B]; if [B][A]
exists, the number of columns of [B] must be the same as the number of
rows of [A]. 

Even then, in general, [A][B] ≠ [B][A].

Example A.15

Illustrate whether [A][B] = [B][A] for the following matrices:

.

Solution

[ ][ ]A B =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

1 2
3 5
0 2

2 5
9 6

20 17
51 45
188 12

20 17
51 45
18 12

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

[ ][ ][ ]A B C ⎥⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 1
3 5

91 105
237 276
72 78

.

[ ] , [ ]A B=
⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

6 3
2 5

3 2
1 5

[ ][ ]A B =
⎡

⎣
⎢

⎤

⎦
⎥

−⎡

⎣
⎢

⎤

⎦
⎥

=
−
−

⎡

⎣
⎢

⎤

⎦

6 3
2 5

3 2
1 5

15 27
1 29⎥⎥
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What is the transpose of a matrix? 

Let [A] be an m × n matrix. Then [B] is the transpose of the [A] if bji = aij

for all i and j. That is, the ith row and the jth column element of [A] is the jth

row and ith column element of [B]. Note that [B] would be an nxm matrix.
The transpose of [A] is denoted by [A]T. 

Example A.16

Find the transpose of 

[A]=  

Solution

The transpose of [A] is

.

Note that the transpose of a row vector is a column vector and the trans-
pose of a column vector is a row vector. Also, note that the transpose of a
transpose of a matrix is the matrix — that is, ([A]T)T = [A]. Also, (A + B)T =
AT + BT; (cA)T = cAT.

What is a symmetric matrix?

A square matrix [A] with real elements, where aij = aji for i = 1,…,n and j
= 1,…,n, is called a symmetric matrix. This is same as that if [A] = [A]T, then
[A] is a symmetric matrix.

[ ][ ]B A =
−⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=
−⎡

⎣
⎢

⎤

⎦
⎥

3 2
1 5

6 3
2 5

14 1
16 28

[[ ][ ] [ ][ ].A B B A≠

25 20 3 2

5 10 15 25

6 16 7 27

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]A T =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

25 5 6
20 10 16
3 15 7
2 25 27
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Example A.17

Give an example of a symmetric matrix.

Solution

A symmetric matrix is 

because a12 = a21 = 3.2; a13 = a31 = 6; and a23 = a32 = 8.

What is a skew-symmetric matrix?

A square matrix [A] with real elements, where aij = –aji for i = 1,…,n and
j = 1,…,n, is called a skew symmetric matrix. This is same as that if [A] =–[A]T,
then [A] is a skew symmetric matrix.

Example A.18

Give an example of a skew-symmetric matrix.

Solution

A skew-symmetric matrix is

because a12 = –a21 = 1; a13 = –a31 = 2; a23 = –a32 = –5. Because aii = –aii only if
aii = 0, all the diagonal elements of a skew-symmetric matrix must be zero. 

Matrix algebra is used for solving systems of equations. Can you illustrate
this concept?

Matrix algebra is used to solve a system of simultaneous linear equations.
Let us illustrate with an example of three simultaneous linear equations:

.

[ ]
. .
. .

.
A =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

21 2 3 2 6
3 2 21 5 8
6 8 9 3

0 1 2
1 0 5
2 5 0

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 5 106 8a b c+ + = .

64 8 177 2a b c+ + = .

144 12 279 2a b c+ + = .
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This set of equations can be rewritten in the matrix form as

.

The preceding equation can be written as a linear combination as follows

and, further using matrix multiplications, gives

.

For a general set of m linear equations and n unknowns,

……………………………………

…………………………………….

can be rewritten in the matrix form as

.

25 5
64 8
144 12

106 8
1

a b c

a b c

a b c

+ +
+ +
+ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
.

777 2
279 2

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a b c

25
64
144

5
8
12

1
1
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

106 8
177 2
279 2

.

.

.

25 5 1
64 8 1
144 12 1

106⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
a

b

c

.88
177 2
279 2

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a x a x a x cn n11 1 22 2 1 1+ + + =

a x a x a x cn n21 1 22 2 2 2+ + + =

a x a x a x cm m mn n m1 1 2 2+ + + =........

a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

. .

. .

. .

⎡

⎣

⎢
⎢
⎢
⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⋅
⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

= ⋅
⋅

x

x

x

c

c

cn

1

2

1

2

mm

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
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Denoting the matrices by [A], [X], and [C], the system of equation is [A]
[X] = [C], where [A] is called the coefficient matrix, [C] is called the right-hand
side vector, and [X] is called the solution vector.

Sometimes [A] [X] = [C] systems of equations are written in the augmented
form — that is,

.

Can you divide two matrices because that will help me find the solution
vector for a general set of equations given by [A] [X] = [C]?

If [A][B]=[C] is defined, it might seem intuitive that [A] = , but matrix

division is not defined. However, an inverse of a matrix can be defined for
certain types of square matrices. The inverse of a square matrix [A], if exist-
ing, is denoted by [A]–1 such that [A][A]–1= [I] = [A]–1[A].

In other words, let [A] be a square matrix. If [B] is another square matrix
of the same size so that [B][A] = [I], then [B] is the inverse of [A]. [A] is then
called invertible or nonsingular. If [A]–1 does not exist, [A] is called noninvertible
or singular.

Example A.19

Show whether

is the inverse of

.

[ ]A C

a a ...... a c

a a ...... a c
n

n

=

11 12 1 1

21 22 2 2

a a ...... a cm m mn n1 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

[ ]
[ ]
C
B

[ ]B =
⎡

⎣
⎢

⎤

⎦
⎥

3 2
5 3

[ ]A =
−

−
⎡

⎣
⎢

⎤

⎦
⎥

3 2
5 3
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Solution

[B][A] = [I], so [B] is the inverse of [A] and [A] is the inverse of [B]. However,
we can also show that 

to show that [A] is the inverse of [B].

Can I use the concept of the inverse of a matrix to find the solution of a
set of equations [A][X] = [C]?

Yes, if the number of equations is the same as the number of unknowns,
the coefficient matrix [A] is a square matrix. 

Given [A][X] = [C]. Then, if [A]–1 exists, multiplying both sides by [A]–1:

[A]–1 [A][X] = [A]–1 [C]

[I][X] = [A]–1[C]

[X] = [A]–1 [C].

This implies that if we are able to find [A]–1, the solution vector of [A][X] =
[C] is simply a multiplication of [A]–1 and the right-hand side vector, [C]. 

How do I find the inverse of a matrix?

If [A] is an n × n matrix, then [A]–1 is an n × n matrix and, according to the
definition of inverse of a matrix, [A][A]–1 = [I].

Denoting,

[ ][ ]

[

B A

I

=
⎡

⎣
⎢

⎤

⎦
⎥

−
−

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

=

3 2
5 3

3 2
5 3

1 0
0 1

]].

[ ][ ]

[

A B

I

=
−

−
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

=

3 2
5 3

3 2
5 3

1 0
0 1

]]
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.

Using the definition of matrix multiplication, the first column of the [A]–1

matrix can then be found by solving:

.

Similarly, one can find the other columns of the [A]–1 matrix by changing
the right-hand side accordingly.

Example A.20

Solve the set of equations:

[ ]A

a a a

a a a

a a

n

n

n n

=

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅

11 12 1

21 22 2

1 2 ⋅⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥ann

[ ]A

a a a

a a a
n

n
− =

′ ′ ⋅ ⋅ ′
′ ′ ⋅ ⋅ ′
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1

11 12 1

21 22 2

⋅⋅
′ ′ ⋅ ⋅ ′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥a a an n nm1 2

[ ]I =

⋅ ⋅ ⋅

⋅ ⋅
⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0
0 1 0
0

1

0 1

⎥⎥
⎥
⎥
⎥
⎥

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⎡⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

′
′
⋅
⋅
′

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

a

a

an

11

21

1

⎥⎥
⎥
⎥
⎥

= ⋅
⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1
0

0

25 5 106 8a b c+ + = .
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.

Solution

In matrix form, the preceding three simultaneous linear equations are writ-
ten as

.

First, we will find the inverse of

and then use the definition of inverse to find the coefficients a, b, c.
If 

is the inverse of [A], then

gives three sets of equations:

64 8 177 2a b c+ + = .

144 12 279 2a b c+ + = .

25 5 1
64 8 1
144 12 1

106⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
a

b

c

.88
177 2
279 2

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]A =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 5 1
64 8 1
144 12 1

[ ]A

a a a

a a a

a a a

− =
′ ′ ′
′ ′ ′
′ ′ ′

⎡
1

11 12 13

21 22 23

31 32 33⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

25 5 1
64 8 1
144 12 1

11 12 13

21 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′ ′ ′
′ ′

a a a

a a 22 23

31 32 33

1 0 0
0 1 0
0 0 1

′
′ ′ ′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

a

a a a

⎤⎤

⎦

⎥
⎥
⎥

25 5 1
64 8 1
144 12 1

11

21

31

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

a

a

a

⎥⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
0
0
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.

Solving the preceding three sets of equations separately gives

.

Therefore,

.

Now, [A][X] = [C], where

25 5 1
64 8 1
144 12 1

12

22

32

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤a

a

a ⎦⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
1
0

25 5 1
64 8 1
144 12 1

13

23

33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

a

a

a

⎥⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0
0
1

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
⎡a

a

a

11

21

31

0 04762
0 9524
4 571

.
.
.⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

−

⎡a

a

a

12

22

32

0 08333
1 417
5 000

.
.
.⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
⎡a

a

a

13

23

33

0 03571
0 4643
1 429

.
.
.⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]
. . .

. . .A − =
−

− −1

0 04762 0 08333 0 03571
0 9524 1 417 0 44643
4 571 5 000 1 429. . .−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[ ]X

a

b

c

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1343_book.fm  Page 194  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



Macromechanical Analysis of a Lamina 195

.

Using the definition of [A]–1,

.

Computationally and algorithmically more efficient, a set of simultaneous
linear equations, such as those given previously, can also be solved by using
various numerical techniques. These techniques are explained completely in
the source (http://numericalmethods.eng.usf.edu) of this appendix. Some of
the common techniques of solving a set of simultaneous linear equations are

Matrix inverse method
Gaussian elimination method
Gauss–Siedel method
LU decomposition method

Key Terms

Matrix
Vector
Row vector
Column vector
Submatrix

[ ]
.
.
.

C =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

106 8
177 2
279 2

[ ] [ ][ ] [ ] [ ]

[ ] [ ] [ ]

A A X A C

X A C

− −

−

=

=

1 1

1

=
− −
− −
0 04762 0 08333 0 03571
0 9524 1 417 0 4643
. . .
. . .

44 571 5 000 1 429

106 8
177 2
279 2. . .

.

.

.−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a

b

c

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 2900
19 70
1 050

.
.

.
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Square matrix
Diagonal matrix 
Identity matrix
Zero matrix
Equal matrices
Addition of matrices
Subtraction of matrices
Multiplication of matrices
Scalar product of matrices
Linear combination of matrices
Rules of binary matrix operation
Transpose of a matrix
Symmetric matrix
Skew symmetric matrix
Inverse of a matrix
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Appendix B: Transformation of Stresses and Strains

Equation (2.100) and Equation (2.94) give the relationship between stresses/
strains in the global (x,y) coordinate system and the local (1,2) coordinate
system, respectively. Note that the transformation is independent of material
properties and depends only on the angle between the x-axis and 1-axis, or
the angle through which the coordinate system (1,2) is rotated anticlockwise.

B.1 Transformation of Stress

Consider that σx , σy , and τxy are the stresses on the rectangular element at a
point O in a two-dimensional body (Figure 2.38). One now wants to find the
values of the stresses σ1, σ2, and τ12 on another rectangular element but at
the same point O on the body. To do so, make a cut at an angle θ normal to
direction 1. Now the stresses in the local 1–2 coordinate system can be related
to those in the global x–y coordinate system.

Summing the forces in the direction 1 gives,

.

Now,

and

;

we have

. (B.1)

σ τ θ σ θ τ θ σ θ1BC AB AB AC ACxy y xy x− − − − =Cos Sin Sin Cos 00

σ τ θ σ θ τ θ σ1 = + + +xy y xy x
AB

BC

AB

BC

AC

BC

AC

B
Cos Sin Sin

CC
Cosθ

Sin θ =
AB

BC
,

Cos θ =
AC

BC

σ τ θ θ σ θ τ θ θ σ θ1
2 2

xy y xy xSin Cos Sin Cos Sin Cos+ + +

σ σ θ σ θ τ θ θ1
2 2 2= + +x y xyCos Sin Sin Cos
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Similarly, summing the forces in direction 2 gives

. (B.2)

By making a cut at an angle, θ, normal to direction 2,

. (B.3)

FIGURE 2.38
Free body diagrams for transformation of stresses between local and global axes.

A
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1
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D
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o
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σy

τ12

τ12

τxy

τxy

σx

σ1

σ2

σx

σy

σ1σx θ

τxy

τxy

τxy

τxy

τ σ θ θ σ θ θ τ θ θ12
2 2= − + + −x y xySin Cos Sin Cos Cos Sin( )

σ σ θ σ θ τ θ θ2
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In matrix form, Equation (B.1), Equation (B.2), and Equation (B.3) relate
the local stresses to global stresses as

(B.4)

where c = Cos θ and s = Sin θ.
The 3 × 3 matrix in Equation (B.4) is called the transformation matrix [T]:

. (B.5)

By inverting (B.5),

. (B.6)

This relates the global stresses to local stresses as

. (B.7)

B.2 Transformation of Strains

Consider an arbitrary line, AB, in direction 1 at an angle, θ, to the x-direction.
Under loads, the line AB deforms to A′B′. By definition of normal strain
along AB,

(B.8)
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From Figure 2.39,

(B.9)

(B.10)

. (B.11)

However, from definition of strain,

(B.12)

. (B.13)

Then, from Equation (B.11) through Equation (B.13),

FIGURE 2.39
Line element for transformation of strains between local and global axes.
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Neglecting products and squares of derivatives of strain,

(B.14)

From Equation (B.9),

.

Neglecting again the squares of the strains,

. (B.15)
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Similarly, one can take an arbitrary line in direction 2 and prove

(B.16)

and, by taking two straight lines in direction 1 and 2 (perpendicular to each
other), one can prove 

. (B.17)

In matrix form, Equation (B.15), Equation (B.16), and Equation (B.17) relate
the local strains to global strains

, (B.18)

where the 3 × 3 matrix in Equation (B.18) is the transformation matrix [T]
given in Equation (B.5).

Inverting Equation (B.18) gives

, (B.19)

where the 3 × 3 matrix in Equation (B.19) is the inverse of the transformation
matrix given in Equation (B.6).
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3

 

Micromechanical Analysis of a Lamina

 

Chapter Objectives

 

• Develop concepts of volume and weight fraction (mass fraction) of
fiber and matrix, density, and void fraction in composites.

• Find the nine mechanical and four hygrothermal constants: four
elastic moduli, five strength parameters, two coefficients of thermal
expansion, and two coefficients of moisture expansion of a unidirec-
tional lamina from the individual properties of the fiber and the
matrix, fiber volume fraction, and fiber packing.

• Discuss the experimental characterization of the nine mechanical
and four hygrothermal constants.

 

3.1 Introduction

 

In Chapter 2, the stress–strain relationships, engineering constants, and fail-
ure theories for an angle lamina were developed using four elastic moduli,
five strength parameters, two coefficients of thermal expansion (CTE), and
two coefficients of moisture expansion (CME) for a unidirectional lamina.
These 13 parameters can be found experimentally by conducting several
tension, compression, shear, and hygrothermal tests on unidirectional lamina
(laminates). However, unlike in isotropic materials, experimental evaluation
of these parameters is quite costly and time consuming because they are
functions of several variables: the individual constituents of the composite
material, fiber volume fraction, packing geometry, processing, etc. Thus, the
need and motivation for developing analytical models to find these param-
eters are very important. In this chapter, we will develop simple relationships
for the these parameters in terms of the stiffnesses, strengths, coefficients of
thermal and moisture expansion of the individual constituents of a compos-
ite, fiber volume fraction, packing geometry, etc. An understanding of this
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relationship, called micromechanics of lamina, helps the designer to select
the constituents of a composite material for use in a laminated structure.

Because this text is for a first course in composite materials, details will be
explained only for the simple models based on the mechanics of materials
approach and the semi-empirical approach. Results from other methods based
on advanced topics such as elasticity are also explained for completeness.

As mentioned in Chapter 2, a unidirectional lamina is not homogeneous.
However, one can assume the lamina to be homogeneous by focusing on the
average response of the lamina to mechanical and hygrothermal loads (Figure
3.1). The lamina is simply looked at as a material whose properties are
different in various directions, but not different from one location to another.

Also, the chapter focuses on a unidirectional continuous fiber-reinforced
lamina. This is because it forms the basic building block of a composite
structure, which is generally made of several unidirectional laminae placed
at various angles. The modeling in the evaluation of the parameters is dis-
cussed first. This is followed by examples and experimental methods for
finding these parameters.

 

3.2 Volume and Mass Fractions, Density, and Void Content

 

Before modeling the 13 parameters of a unidirectional composite, we intro-
duce the concept of relative fraction of fibers by volume. This concept is
critical because theoretical formulas for finding the stiffness, strength, and
hygrothermal properties of a unidirectional lamina are a function of fiber
volume fraction. Measurements of the constituents are generally based on
their mass, so fiber mass fractions must also be defined. Moreover, defining
the density of a composite also becomes necessary because its value is used
in the experimental determination of fiber volume and void fractions of a
composite. Also, the value of density is used in the definition of specific
modulus and specific strength in Chapter 1.

 

3.2.1 Volume Fractions

 

Consider a composite consisting of fiber and matrix. Take the following
symbol notations:

 

FIGURE 3.1

 

A nonhomogeneous lamina with fibers and matrix approximated as a homogeneous lamina.

Nonhomogeneous lamina Homogeneous lamina
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v

 

c,f,m

 

 = volume of composite, fiber, and matrix, respectively

 

ρ

 

c

 

,f,m

 

 

 

= density of composite, fiber, and matrix, respectively.

Now define the fiber volume fraction 

 

V

 

f

 

 and the matrix volume fraction 

 

V

 

m

 

 as

and

(3.1a, b)

Note that the sum of volume fractions is 

,

from Equation (3.1) as

 

3.2.2 Mass Fractions

 

Consider a composite consisting of fiber and matrix and take the following
symbol notation: 

 

w

 

c,f,m

 

 

 

= mass of composite, fiber, and matrix, respectively.
The mass fraction (weight fraction) of the fibers (

 

W

 

f

 

) and the matrix (

 

W

 

m

 

)
are defined as

(3.2a, b)

Note that the sum of mass fractions is

,
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from Equation (3.2) as 

.

From the definition of the density of a single material,

(3.3a–c)

Substituting Equation (3.3) in Equation (3.2), the mass fractions and vol-
ume fractions are related as

(3.4a, b)

in terms of the fiber and matrix volume fractions. In terms of individual
constituent properties, the mass fractions and volume fractions are related by

. (3.5a, b)

One should always state the basis of calculating the fiber content of a
composite. It is given in terms of mass or volume. Based on Equation (3.4),
it is evident that volume and mass fractions are not equal and that the
mismatch between the mass and volume fractions increases as the ratio
between the density of fiber and matrix differs from one.

f m cw + w = w

w r v

w r v

w r v
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3.2.3 Density

 

The derivation of the density of the composite in terms of volume fractions
is found as follows. The mass of composite 

 

w

 

c

 

 is the sum of the mass of the
fibers 

 

w

 

f

 

 and the mass of the matrix 

 

w

 

m

 

 as

(3.6)

Substituting Equation (3.3) in Equation (3.6) yields

and

. (3.7)

Using the definitions of fiber and matrix volume fractions from Equation
(3.1),

(3.8)

Now, consider that the volume of a composite 

 

v

 

c

 

 is the sum of the volumes
of the fiber 

 

v

 

f

 

 and matrix (

 

v

 

m

 

):

. (3.9)

The density of the composite in terms of mass fractions can be found as

(3.10)

 

Example 3.1

 

A glass/epoxy lamina consists of a 70% fiber volume fraction. Use proper-
ties of glass and epoxy from Table 3.1* and Table 3.2, respectively, to deter-
mine the 

 

* Table 3.1 and Table 3.2 give the typical properties of common fibers and matrices in the SI sys-
tem of units, respectively. Note that fibers such as graphite and aramids are transversely isotro-
pic, but matrices are generally isotropic. The typical properties of common fibers and matrices
are again given in Table 3.3 and Table 3.4, respectively, in the USCS system of units.

w w wc f m= + .

ρ ρ ρc c f f m mv v v= + ,

ρ ρ ρc f
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1. Density of lamina
2. Mass fractions of the glass and epoxy
3. Volume of composite lamina if the mass of the lamina is 4 kg
4. Volume and mass of glass and epoxy in part (3)

 

Solution

 

1. From Table 3.1, the density of the fiber is

 

TABLE 3.1

 

Typical Properties of Fibers (SI System of Units)

 

Property Units Graphite Glass Aramid

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Axial coefficient of thermal expansion
Transverse coefficient of thermal expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

GPa
GPa
—
—

GPa

 

μ

 

m/m/

 

°

 

C

 

μ

 

m/m/

 

°

 

C
MPa
MPa
MPa
MPa
MPa

—

230
22

0.30
0.35

22
–1.3

7.0
2067
1999

77
42
36

1.8

85
85

0.20
0.20

35.42
5
5

1550
1550
1550
1550

35
2.5

124
8
0.36
0.37
3

–5.0
4.1

1379
276

7
7

21
1.4

 

TABLE 3.2

 

Typical Properties of Matrices (SI System of Units)

 

Property Units Epoxy Aluminum Polyamide

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Coefficient of thermal expansion
Coefficient of moisture expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

GPa
GPa
—
—

GPa

 

μ

 

m/m/

 

°

 

C
m/m/kg/kg

MPa
MPa
MPa
MPa
MPa

—

3.4
3.4
0.30
0.30
1.308

63
0.33

72
102
72

102
34

1.2

71
71
0.30
0.30

27
23
0.00

276
276
276
276
138

2.7

3.5
3.5
0.35
0.35
1.3

90
0.33

54
108

54
108

54
1.2

f
3= 2500 kg / m .ρ
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From Table 3.2, the density of the matrix is

Using Equation (3.8), the density of the composite is

2. Using Equation (3.4), the fiber and matrix mass fractions are

 

TABLE 3.3

 

Typical Properties of Fibers (USCS System of Units)

 

Property Units Graphite Glass Aramid

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Axial coefficient of thermal expansion
Transverse coefficient of thermal expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

Msi
Msi
—
—

Msi

 

μ

 

in./in./

 

°

 

F

 

μ

 

in./in./

 

°

 

F
ksi
ksi
ksi
ksi
ksi
—

33.35
3.19
0.30
0.35
3.19

–0.7222
3.889

299.7
289.8

11.16
6.09
5.22
1.8

12.33
12.33
0.20
0.20
5.136
2.778
2.778

224.8
224.8
224.8
224.8

5.08
2.5

17.98
1.16
0.36
0.37
0.435

–2.778
2.278

200.0
40.02
1.015
1.015
3.045
1.4

 

TABLE 3.4

 

Typical Properties of Matrices (USCS System of Units)

 

Property Units Epoxy Aluminum Polyamide

 

Axial modulus
Transverse modulus
Axial Poisson’s ratio
Transverse Poisson’s ratio
Axial shear modulus
Coefficient of thermal expansion
Coefficient of moisture expansion
Axial tensile strength
Axial compressive strength
Transverse tensile strength
Transverse compressive strength
Shear strength
Specific gravity

Msi
Msi
—
—

Msi

 

μ

 

in./in./

 

°

 

F
in./in./lb/lb

ksi
ksi
ksi
ksi
ksi
—

0.493
0.493
0.30
0.30
0.1897

35
0.33

10.44
14.79
10.44
14.79
4.93
1.2

10.30
10.30
0.30
0.30
3.915

12.78
0.00

40.02
40.02
40.02
40.02
20.01
2.7

0.5075
0.5075
0.35
0.35
0.1885

50
0.33
7.83

15.66
7.83

15.66
7.83
1.2

ρm kg m= 1200 3/ .

ρc

kg m

= +

=

( )( . ) ( )( . )

/ .

2500 0 7 1200 0 3

2110 3
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.

Note that the sum of the mass fractions,

3. The volume of composite is 

.

4. The volume of the fiber is

.

The volume of the matrix is

Wf = ×

=

2500
2110

0 3

0 8294

.

.

Wm = ×

=

1200
2110

0 3

0 1706

.

.

W Wf m+ = +

=

0 8294 0 1706

1 000

. .

. .

v
w

c
c

c

=
ρ

= 4
2110

= × −1 896 10 3 3. m

v V vf f c=

= × −( . )( . )0 7 1 896 10 3

= × −1 327 10 3 3. m

v V vm m c=

=(0.3)(0.1896 × −10 3)
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.

The mass of the fiber is

.

The mass of the matrix is

= 0.6826 

 

kg .

 

3.2.4 Void Content

 

During the manufacture of a composite, voids are introduced in the com-
posite as shown in Figure 3.2. This causes the theoretical density of the
composite to be higher than the actual density. Also, the void content of a

 

FIGURE 3.2

 

Photomicrographs of cross-section of a lamina with voids.

= × −0 5688 10 3 3. m

w vf f f= ρ

= × −( )( . )2500 1 327 10 3

= 3 318. kg

w vm m m= ρ

= × −( )( . )1200 0 5688 10 3
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composite is detrimental to its mechanical properties. These detriments
include lower 

• Shear stiffness and strength
• Compressive strengths
• Transverse tensile strengths
• Fatigue resistance
• Moisture resistance

A decrease of 2 to 10% in the preceding matrix-dominated properties gen-
erally takes place with every 1% increase in the void content.

 

1

 

For composites with a certain volume of voids 

 

V

 

v

 

 the volume fraction of
voids 

 

V

 

v

 

 is defined as

(3.11)

Then, the total volume of a composite (

 

v

 

c

 

) with voids is given by

(3.12)

By definition of the experimental density 

 

ρ

 

ce

 

 of a composite, the actual
volume of the composite is

(3.13)

and, by the definition of the theoretical density 

 

ρ

 

ct

 

 of the composite, the
theoretical volume of the composite is

(3.14)

Then, substituting the preceding expressions (3.13) and (3.14) in Equation
(3.12),

.

The volume of void is given by

V
v
vv

v

c

= .

v v v vc f m v= + + .

v
w

c
c

ce

=
ρ

,

v v
w

f m
c

ct

+ =
ρ

.

w w
vc

ce

c

ct
vρ ρ

= +
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(3.15)

Substituting Equation (3.13) and Equation (3.15) in Equation (3.11), the
volume fraction of the voids is

(3.16)

Example 3.2

A graphite/epoxy cuboid specimen with voids has dimensions of a × b × c
and its mass is Mc. After it is put it into a mixture of sulfuric acid and hydrogen
peroxide, the remaining graphite fibers have a mass Mf. From independent
tests, the densities of graphite and epoxy are ρf and ρm, respectively. Find the
volume fraction of the voids in terms of a, b, c, Mf, Mc, ρf, and ρm.

Solution

The total volume of the composite vc is the sum total of the volume of fiber
vf , matrix vm, and voids vv:

(3.17)

From the definition of density,

(3.18a)

(3.18b)

The specimen is a cuboid, so the volume of the composite is 

(3.19)

Substituting Equation (3.18) and Equation (3.19) in Equation (3.17) gives
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,

and the volume fraction of voids then is

(3.20)

Alternative Solution

The preceding problem can also be solved by using Equation (3.16). The
theoretical density of the composite is

, (3.21)

where Vf′ is the theoretical fiber volume fraction given as

(3.22)

The experimental density of the composite is

(3.23)

Substituting Equation (3.21) through Equation (3.23) in the definition of
void volume fractions given by Equation (3.16),

(3.24)

Experimental determination: the fiber volume fractions of the constituents of
a composite are found generally by the burn or the acid digestion tests. These
tests involve taking a sample of composite and weighing it. Then the density
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of the specimen is found by the liquid displacement method in which the
sample is weighed in air and then in water. The density of the composite is
given by

, (3.25)

where
wc = weight of composite
wi = weight of composite when immersed in water
ρw = density of water (1000 kg/m3 or 62.4 lb/ft3)

For specimens that float in water, a sinker is attached. The density of the
composite is then found by

, (3.26)

where
wc = weight of composite
ws = weight of sinker when immersed in water
ww = weight of sinker and specimen when immersed in water

The sample is then dissolved in an acid solution or burned.2 Glass-based
composites are burned, and carbon and aramid-based composites are
digested in solutions. Carbon and aramid-based composites cannot be
burned because carbon oxidizes in air above 300°C (572°F) and the aramid
fiber can decompose at high temperatures. Epoxy-based composites can be
digested by nitric acid or a hot mixture of ethylene glycol and potassium
hydroxide; polyamide- and phenolic resin-based composites use mixtures of
sulfuric acid and hydrogen peroxide. When digestion or burning is complete,
the remaining fibers are washed and dried several times and then weighed.
The fiber and matrix weight fractions can be found using Equation (3.2). The
densities of the fiber and the matrix are known; thus, one can use Equation
(3.4) to determine the volume fraction of the constituents of the composite
and Equation (3.8) to calculate the theoretical density of the composite.

3.3 Evaluation of the Four Elastic Moduli

As shown in Section 2.4.3, there are four elastic moduli of a unidirectional
lamina:

ρ ρc
c

c i
w

w
w w

=
−
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c s w
w

w
w w w

=
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216 Mechanics of Composite Materials, Second Edition

• Longitudinal Young’s modulus, E1

• Transverse Young’s modulus, E2

• Major Poisson’s ratio, ν12

• In-plane shear modulus, G12

Three approaches for determining the four elastic moduli are discussed next.

3.3.1 Strength of Materials Approach

From a unidirectional lamina, take a representative volume element* that
consists of the fiber surrounded by the matrix (Figure 3.3). This representa-
tive volume element (RVE) can be further represented as rectangular blocks.
The fiber, matrix, and the composite are assumed to be of the same width,
h, but of thicknesses tf , tm , and tc, respectively. The area of the fiber is given by

. (3.27a)

The area of the matrix is given by

(3.27b)

and the area of the composite is given by

(3.27c)

The two areas are chosen in the proportion of their volume fractions so
that the fiber volume fraction is defined as

(3.28a)

and the matrix fiber volume fraction Vm is

* A representative volume element (RVE) of a material is the smallest part of the material that
represents the material as a whole. It could be otherwise intractable to account for the distribu-
tion of the constituents of the material.
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(3.28b)

The following assumptions are made in the strength of materials approach
model:

• The bond between fibers and matrix is perfect.
• The elastic moduli, diameters, and space between fibers are uniform.
• The fibers are continuous and parallel.

FIGURE 3.3
Representative volume element of a unidirectional lamina.
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218 Mechanics of Composite Materials, Second Edition

• The fibers and matrix follow Hooke’s law (linearly elastic).
• The fibers possess uniform strength.
• The composite is free of voids.

3.3.1.1 Longitudinal Young’s Modulus

From Figure 3.4, under a uniaxial load Fc on the composite RVE, the load is
shared by the fiber Ff and the matrix Fm so that

(3.29)

The loads taken by the fiber, the matrix, and the composite can be written
in terms of the stresses in these components and cross-sectional areas of these
components as

(3.30a)

(3.30b)

(3.30c)

where
σc,f,m = stress in composite, fiber, and matrix, respectively
Ac,f,m = area of composite, fiber, and matrix, respectively

Assuming that the fibers, matrix, and composite follow Hooke’s law and
that the fibers and the matrix are isotropic, the stress–strain relationship for
each component and the composite is

FIGURE 3.4
A longitudinal stress applied to the representative volume element to calculate the longitudinal
Young’s modulus for a unidirectional lamina.
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(3.31a)

(3.31b)

and

(3.31c)

where
εc,f,m = strains in composite, fiber, and matrix, respectively
E1,f,m = elastic moduli of composite, fiber, and matrix, respectively

Substituting Equation (3.30) and Equation (3.31) in Equation (3.29) yields

(3.32)

The strains in the composite, fiber, and matrix are equal (εc = εf = εm); then,
from Equation (3.32),

(3.33)

Using Equation (3.28), for definitions of volume fractions,

(3.34)

Equation 3.34 gives the longitudinal Young’s modulus as a weighted mean
of the fiber and matrix modulus. It is also called the rule of mixtures. 

The ratio of the load taken by the fibers Ff to the load taken by the
composite Fc is a measure of the load shared by the fibers. From Equation
(3.30) and Equation (3.31),

(3.35)

In Figure 3.5, the ratio of the load carried by the fibers to the load taken
by the composite is plotted as a function of fiber-to-matrix Young’s moduli
ratio Ef/Em for the constant fiber volume fraction Vf . It shows that as the fiber
to matrix moduli ratio increases, the load taken by the fiber increases tre-
mendously.
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Example 3.3

Find the longitudinal elastic modulus of a unidirectional glass/epoxy lamina
with a 70% fiber volume fraction. Use the properties of glass and epoxy from
Table 3.1 and Table 3.2, respectively. Also, find the ratio of the load taken by
the fibers to that of the composite.

Solution

From Table 3.1, the Young’s modulus of the fiber is

Ef = 85 GPa.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa.

Using Equation (3.34), the longitudinal elastic modulus of the unidirectional
lamina is

Using Equation (3.35), the ratio of the load taken by the fibers to that of the
composite is

FIGURE 3.5
Fraction of load of composite carried by fibers as a function of fiber volume fraction for constant
fiber to matrix moduli ratio.
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Figure 3.6 shows the linear relationship between the longitudinal Young’s
modulus of a unidirectional lamina and fiber volume fraction for a typical
graphite/epoxy composite per Equation (3.34). It also shows that Equation
(3.34) predicts results that are close to the experimental data points.3

3.3.1.2 Transverse Young’s Modulus

Assume now that, as shown in Figure 3.7, the composite is stressed in the
transverse direction. The fibers and matrix are again represented by rectan-
gular blocks as shown. The fiber, the matrix, and composite stresses are
equal. Thus,

(3.36)

where σc,f,m = stress in composite, fiber, and matrix, respectively.
Now, the transverse extension in the composite Δc is the sum of the trans-

verse extension in the fiber Δf , and that is the matrix, Δm.

FIGURE 3.6
Longitudinal Young’s modulus as function of fiber volume fraction and comparison with
experimental data points for a typical glass/polyester lamina. (Experimental data points repro-
duced with permission of ASM International.)
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(3.37)

Now, by the definition of normal strain,

(3.38a)

(3.38b)

and

(3.38c)

where
tc,f,m = thickness of the composite, fiber and matrix, respectively
εc,f,m = normal transverse strain in the composite, fiber, and matrix, 

respectively

Also, by using Hooke’s law for the fiber, matrix, and composite, the normal
strains in the composite, fiber, and matrix are

(3.39a)

(3.39b)

and

(3.39c)

FIGURE 3.7
A transverse stress applied to a representative volume element used to calculate transverse
Young’s modulus of a unidirectional lamina.
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Micromechanical Analysis of a Lamina 223

Substituting Equation (3.38) and Equation (3.39) in Equation (3.37) and
using Equation (3.36) gives

(3.40)

Because the thickness fractions are the same as the volume fractions as
the other two dimensions are equal for the fiber and the matrix (see Equa-
tion 3.28):

(3.41)

Equation (3.41) is based on the weighted mean of the compliance of the fiber
and the matrix. 

Example 3.4

Find the transverse Young’s modulus of a glass/epoxy lamina with a fiber
volume fraction of 70%. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Young’s modulus of the fiber is

Ef = 85 GPa.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa.

Using Equation (3.41), the transverse Young’s modulus, E2, is

Figure 3.8 plots the transverse Young’s modulus as a function of fiber
volume fraction for constant fiber-to-matrix elastic moduli ratio, Ef/Em. For
metal and ceramic matrix composites, the fiber and matrix elastic moduli
are of the same order. (For example, for a SiC/aluminum metal matrix
composite, Ef/Em = 4 and for a SiC/CAS ceramic matrix composite, Ef/Em =
2). The transverse Young’s modulus of the composite in such cases changes
more smoothly as a function of the fiber volume fraction.
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For polymeric composites, the fiber-to-matrix moduli ratio is very high.
(For example, for a glass/epoxy polymer matrix composite, Ef/Em = 25). The
transverse Young’s modulus of the composite in such cases changes appre-
ciably only for large fiber volume fractions. Figure 3.8 shows that, for high
Ef/Em ratios, the contribution of the fiber modulus only increases substantially
for a fiber volume fraction greater than 80%. These fiber volume fractions are
not practical and in many cases are physically impossible due to the geometry
of fiber packing. Figure 3.9 shows various possibilities of fiber packing. Note
that the ratio of the diameter, d, to fiber spacing, s, d/s varies with geometrical
packing. For circular fibers with square array packing (Figure 3.9a),

(3.42a)

This gives a maximum fiber volume fraction of 78.54% as s ≥ d. For circular
fibers with hexagonal array packing (Figure 3.9b),

(3.42b)

FIGURE 3.8
Transverse Young’s modulus as a function of fiber volume fraction for constant fiber to matrix
moduli ratio.
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Micromechanical Analysis of a Lamina 225

This gives a maximum fiber volume fraction of 90.69% because s ≥ d. These
maximum fiber volume fractions are not practical to use because the fibers
touch each other and thus have surfaces where the matrix cannot wet out
the fibers.

In Figure 3.10, the transverse Young’s modulus is plotted as a function of
fiber volume fraction using Equation (3.41) for a typical boron/epoxy lamina.
Also given are the experimental data points.4 In Figure 3.10, the experimental
and analytical results are not as close to each other as they are for the
longitudinal Young’s modulus in Figure 3.6.

FIGURE 3.9
Fiber to fiber spacing in (a) square packing geometry and (b) hexagonal packing geometry.
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226 Mechanics of Composite Materials, Second Edition

FIGURE 3.10
Theoretical values of transverse Young’s modulus as a function of fiber volume fraction for a
Boron/Epoxy unidirectional lamina (Ef = 414 GPa, νf = 0.2, Em = 4.14 GPa, νm = 0.35) and
comparison with experimental values. Figure (b) zooms figure (a) for fiber volume fraction
between 0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract no. NAS1-
8818, November 1970.)
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3.3.1.3 Major Poisson’s Ratio

The major Poisson’s ratio is defined as the negative of the ratio of the normal
strain in the transverse direction to the normal strain in the longitudinal
direction, when a normal load is applied in the longitudinal direction.
Assume a composite is loaded in the direction parallel to the fibers, as shown
in Figure 3.11. The fibers and matrix are again represented by rectangular
blocks. The deformations in the transverse direction of the composite  is
the sum of the transverse deformations of the fiber and the matrix  as

(3.43)

Using the definition of normal strains,

(3.44a)

(3.44b)

FIGURE 3.11
A longitudinal stress applied to a representative volume element to calculate Poisson’s ratio of
unidirectional lamina.
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and

(3.44c)

where εc,f,m = transverse strains in composite, fiber, and matrix, respectively.
Substituting Equation (3.44) in Equation (3.43),

(3.45)

The Poisson’s ratios for the fiber, matrix, and composite, respectively, are

(3.46a)

(3.46b)

and

. (3.46c)

Substituting in Equation (3.45),

(3.47)

where
v12,f,m = Poisson’s ratio of composite, fiber, and matrix, respectively

 = longitudinal strains of composite, fiber and matrix, respec-
tively

However, the strains in the composite, fiber, and matrix are assumed to
be the equal in the longitudinal direction , which, from Equation
(3.47), gives

(3.48)
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Because the thickness fractions are the same as the volume fractions, per
Equation (3.28),

(3.49)

Example 3.5

Find the major and minor Poisson’s ratio of a glass/epoxy lamina with a
70% fiber volume fraction. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Poisson’s ratio of the fiber is

νf = 0.2.

From Table 3.2, the Poisson’s ratio of the matrix is

νm = 0.3.

Using Equation (3.49), the major Poisson’s ratio is

From Example 3.3, the longitudinal Young’s modulus is

E1 = 60.52 GPa

and, from Example 3.4, the transverse Young’s modulus is

E2 = 10.37 GPa.

Then, the minor Poisson’s ratio from Equation (2.83) is

3.3.1.4 In-Plane Shear Modulus

Apply a pure shear stress τc to a lamina as shown in Figure 3.12. The fibers
and matrix are represented by rectangular blocks as shown. The resulting
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shear deformations of the composite δc the fiber δf , and the matrix δm are
related by

. (3.50)

From the definition of shear strains,

, (3.51a)

, (3.51b)

and

, (3.51c)

where
γc,f,m = shearing strains in the composite, fiber, and matrix, respec-

tively
tc,f,m = thickness of the composite, fiber, and matrix, respectively.

From Hooke’s law for the fiber, the matrix, and the composite,

(3.52a)

(3.52b)

and

FIGURE 3.12
An in-plane shear stress applied to a representative volume element for finding in-plane shear
modulus of a unidirectional lamina.
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(3.52c)

where G12,f,m = shear moduli of composite, fiber, and matrix, respectively.
From Equation (3.50) through Equation (3.52),

(3.53)

The shear stresses in the fiber, matrix, and composite are assumed to be
equal (τc = τf = τm), giving

(3.54)

Because the thickness fractions are equal to the volume fractions, per
Equation (3.28),

(3.55)

Example 3.6

Find the in-plane shear modulus of a glass/epoxy lamina with a 70% fiber
volume fraction. Use properties of glass and epoxy from Table 3.1 and Table
3.2, respectively.

Solution

The glass fibers and the epoxy matrix have isotropic properties. From Table
3.1, the Young’s modulus of the fiber is

Ef = 85 GPa

and the Poisson’s ratio of the fiber is

νf = 0.2.

The shear modulus of the fiber
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From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa

and the Poisson’s ratio of the fiber is

νm = 0.3.

The shear modulus of the matrix is

From Equation (3.55), the in-plane shear modulus of the unidirectional
lamina is

Figure 3.13a and Figure 3.13b show the analytical values from Equation
(3.55) of the in-plane shear modulus as a function of fiber volume fraction
for a typical glass/epoxy lamina. Experimental values4 are also plotted in
the same figure.

3.3.2 Semi-Empirical Models

The values obtained for transverse Young’s modulus and in-plane shear
modulus through Equation (3.41) and Equation (3.55), respectively, do not
agree well with the experimental results shown in Figure 3.10 and Figure
3.13. This establishes a need for better modeling techniques. These tech-
niques include numerical methods, such as finite element and finite differ-
ence, and boundary element methods, elasticity solution, and variational
principal models.5 Unfortunately, these models are available only as compli-
cated equations or in graphical form. Due to these difficulties, semi-empirical
models have been developed for design purposes. The most useful of these
models include those of Halphin and Tsai6 because they can be used over a
wide range of elastic properties and fiber volume fractions.

Halphin and Tsai6 developed their models as simple equations by curve fitting
to results that are based on elasticity. The equations are semi-empirical in nature
because involved parameters in the curve fitting carry physical meaning.
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Micromechanical Analysis of a Lamina 233

FIGURE 3.13
Theoretical values of in-plane shear modulus as a function of fiber volume fraction and com-
parison with experimental values for a unidirectional glass/epoxy lamina (Gf = 30.19 GPa, Gm

= 1.83 GPa). Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75.
(Experimental data from Hashin, Z., NASA tech. rep. contract No. NAS1-8818, November 1970.)
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3.3.2.1 Longitudinal Young’s Modulus

The Halphin–Tsai equation for the longitudinal Young’s modulus, E1, is the
same as that obtained through the strength of materials approach — that is,

(3.56)

3.3.2.2 Transverse Young’s Modulus

The transverse Young’s modulus, E2, is given by6

(3.57)

where

(3.58)

The term ξ is called the reinforcing factor and depends on the following:

• Fiber geometry
• Packing geometry
• Loading conditions

Halphin and Tsai6 obtained the value of the reinforcing factor ξ by com-
paring Equation (3.57) and Equation (3.58) to the solutions obtained from
the elasticity solutions. For example, for a fiber geometry of circular fibers
in a packing geometry of a square array, ξ = 2. For a rectangular fiber cross-
section of length a and width b in a hexagonal array, ξ = 2(a/b), where b is
in the direction of loading.6 The concept of direction of loading is illustrated
in Figure 3.14.

Example 3.7

Find the transverse Young’s modulus for a glass/epoxy lamina with a 70%
fiber volume fraction. Use the properties for glass and epoxy from Table 3.1
and Table 3.2, respectively. Use Halphin–Tsai equations for a circular fiber
in a square array packing geometry. 

Solution

Because the fibers are circular and packed in a square array, the reinforcing
factor ξ = 2. From Table 3.1, the Young’s modulus of the fiber is Ef = 85 GPa.

E E V E Vf f m m1 = + .

E
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From Table 3.2, the Young’s modulus of the matrix is Em = 3.4 GPa.
From Equation (3.58),

From Equation (3.57), the transverse Young’s modulus of the unidirectional
lamina is

For the same problem, from Example 3.4, this value of E2 was found to be
10.37 GPa by the mechanics of materials approach.

Figure 3.15a and Figure 3.15b show the transverse Young’s modulus as a
function of fiber volume fraction for a typical boron/epoxy composite. The
Halphin–Tsai equations (3.57) and the mechanics of materials approach
Equation (3.41) curves are shown and compared to experimental data points.

As mentioned previously, the parameters ξ and η have a physical meaning.
For example,

FIGURE 3.14
Concept of direction of loading for calculation of transverse Young’s modulus by Halphin–Tsai
equations.
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Ef/Em = 1 implies η = 0, (homogeneous medium)
Ef/Em → ∞ implies η = 1 (rigid inclusions)

Ef/Em → 0 implies (voids)

3.3.2.3 Major Poisson’s Ratio

The Halphin–Tsai equation for the major Poisson’s ratio, ν12, is the same as
that obtained using the strength of materials approach — that is,

FIGURE 3.15
Theoretical values of transverse Young’s modulus as a function of fiber volume fraction and
comparison with experimental values for boron/epoxy unidirectional lamina (Ef = 414 GPa, νf

= 0.2, Em = 4.14 GPa, νm = 0.35). Figure (b) zooms figure (a) for fiber volume fraction between
0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract no. NAS1-8818,
November 1970.)
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(3.59)

3.3.2.4 In-Plane Shear Modulus

The Halphin–Tsai6 equation for the in-plane shear modulus, G12, is

(3.60)

where

(3.61)

The value of the reinforcing factor, ξ, depends on fiber geometry, packing
geometry, and loading conditions. For example, for circular fibers in a square
array, ξ = 1. For a rectangular fiber cross-sectional area of length a and width
b in a hexagonal array, , where a is the direction of loading.
The concept of the direction of loading7 is given in Figure 3.16.

The value of ξ = 1 for circular fibers in a square array gives reasonable
results only for fiber volume fractions of up to 0.5. For example, for a typical
glass/epoxy lamina with a fiber volume fraction of 0.75, the value of in-
plane shear modulus using the Halphin–Tsai equation with ξ = 1 is 30%
lower than that given by elasticity solutions. Hewitt and Malherbe8 sug-
gested choosing a function,

. (3.62)

FIGURE 3.16
Concept of direction of loading to calculate in-plane shear modulus by Halphin–Tsai equations.
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Example 3.8

Using Halphin–Tsai equations, find the shear modulus of a glass/epoxy
composite with a 70% fiber volume fraction. Use the properties of glass
and epoxy from Table 3.1 and Table 3.2, respectively. Assume that the fibers
are circular and are packed in a square array. Also, get the value of the
shear modulus by using Hewitt and Malherbe’s8 formula for the reinforc-
ing factor.

Solution

For Halphin–Tsai’s equations with circular fibers in a square array, the rein-
forcing factor ξ = 1. From Example 3.6, the shear modulus of the fiber is

Gf = 35.42 GPa

and the shear modulus of the matrix is

Gm = 1.308 GPa.

From Equation (3.61),

From Equation (3.60), the in-plane shear modulus is

For the same problem, the value of G12 = 4.013 GPa was found by the
mechanics of materials approach in Example 3.5.

Because the volume fraction is greater than 50%, Hewitt and Mahelbre8

suggested a reinforcing factor (Equation 3.62):

.

Then, from Equation (3.61),
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.

From Equation (3.60), the in-plane shear modulus is

.

Figure 3.17a and Figure 3.17b show the in-plane shear modulus as a func-
tion of fiber volume fraction for a typical glass/epoxy composite. The Hal-
phin–Tsai equation (3.60) and the mechanics of materials approach, Equation
(3.55) are shown and compared to the experimental4 data points.

3.3.3 Elasticity Approach

In addition to the strength of materials and semi-empirical equation
approaches, expressions for the elastic moduli based on elasticity are also
available. Elasticity accounts for equilibrium of forces, compatibility, and
Hooke’s law relationships in three dimensions; the strength of materials
approach may not satisfy compatibility and/or account for Hooke’s law in
three dimensions, and semi-empirical approaches are just as the name
implies — partly empirical.

The elasticity models described here are called composite cylinder assem-
blage (CCA) models.4,9–12 In a CCA model, one assumes the fibers are circular
in cross-section, spread in a periodic arrangement, and continuous, as shown
in Figure 3.18. Then the composite can be considered to be made of repeating
elements called the representative volume elements (RVEs). The RVE is
considered to represent the composite and respond the same as the whole
composite does.

The RVE consists of a composite cylinder made of a single inner solid
cylinder (fiber) bonded to an outer hollow cylinder (matrix) as shown in
Figure 3.19. The radius of the fiber, a, and the outer radius of the matrix, b,
are related to the fiber volume fraction, Vf , as

. (3.63)

Appropriate boundary conditions are applied to this composite cylinder
based on the elastic moduli being evaluated.
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240 Mechanics of Composite Materials, Second Edition

FIGURE 3.17
Theoretical values of in-plane shear modulus as a function of fiber volume fraction compared
with experimental values for unidirectional glass/epoxy lamina (Gf = 30.19 GPa, Gm = 1.83 GPa).
Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75. (Experimental data
from Hashin, Z., NASA tech. rep. contract No. NAS1-8818, November 1970.)

FIGURE 3.18
Periodic arrangement of fibers in a cross-section of a lamina.
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3.3.3.1 Longitudinal Young’s Modulus

To find the elastic moduli along the fibers, we will apply an axial load, P, in
direction 1 (Figure 3.19). The axial stress, σ1, in direction 1 then is

. (3.64)

Now, in terms of Hooke’s law,

(3.65)

where
E1 = longitudinal Young’s modulus
∈1 = axial strain in direction 1

Thus, from Equation (3.64) and Equation (3.65), we have 

. (3.66)

FIGURE 3.19
Composite cylinder assemblage (CCA) model used for predicting elastic moduli of unidirec-
tional composites.
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To find E1 in terms of elastic moduli of the fiber and the matrix, and the
geometrical parameters such as fiber volume fraction, we need to relate the
axial load, P, and the axial strain, ∈1, in these terms.

Assuming the response of a cylinder is axisymmetric, the equilibrium
equation in the radial direction is given by13

, (3.67)

where
σr = radial stress,
σθ = hoop stress.

The normal stress–normal strain relationships in polar coordinates, r–θ–z,
for an isotropic material with Young’s modulus, E, and Poisson’s ratio, ν,
are given by

. (3.68)

The shear stresses and shear strains are zero in the r–θ–z coordinate system
for axisymmetric response.

The strain displacement equations for axisymmetric response are

(3.69a)

(3.69b)

, (3.69c)
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Micromechanical Analysis of a Lamina 243

u = displacement in radial direction,
w = displacement in axial direction.

Substituting the strain-displacement equations (3.69a-c) in the stress–strain
equations (3.68) and noting that ∈z = ∈1 everywhere gives

, (3.70)

which is rewritten for simplicity as

, (3.71)

where the constants of the stiffness matrix are

(3.72a)

. (3.72b)

Substituting Equation (3.71) in the equilibrium equation (3.67) gives

. (3.73)

The solution to the linear ordinary differential equation is found by assum-
ing that

σ
σ
σ

ν

ν ν
ν
ν

θ

r

z

E E

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−( )
−( ) +( ) −( )

1

1 2 1 1 2 1 ++( ) −( ) +( )

−( ) +( )
−( )

−( )

ν
ν
ν ν

ν
ν ν

ν

ν

E

E E

1 2 1

1 2 1

1

1 2 11 1 2 1

1 2 1 1 2 1

+( ) −( ) +( )

−( ) +( ) −( ) +

ν
ν
ν ν

ν
ν ν

ν
ν ν

E

E E

(( )
−( )

−( ) +( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

E

d

1

1 2 1

ν

ν ν

uu
dr
u
r

∈

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1

σ
σ
σ

θ

r

z

C C C

C C C

C C C

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
11 12 12

12 11 12

12 12 111
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∈

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

du
dr
u
r

C
E

11

1

1 2 1
=

−( )
−( ) +( )

ν

ν ν

C
E

12
1 2 1

=
−( ) +( )

ν
ν ν

d u
dr r

du
dr

u
r

2

2 2

1
0+ − =

1343_book.fm  Page 243  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



244 Mechanics of Composite Materials, Second Edition

. (3.74)

Substituting Equation (3.74) in Equation (3.73) gives

. (3.75)

The preceding expression (3.75) requires that

An = 0, n = –∞,…,∞, except for n = 1 and n = –1. (3.76)

Therefore, the form of the radial displacement is

. (3.77)

To keep the terminology simple, assume that the form of the radial dis-
placement with different names for the constants,

. (3.78)

The preceding equations are valid for a cylinder with an axisymmetric
response. Thus, the radial displacement, uf and um, in the fiber and matrix
cylinders, respectively, can be assumed of the form
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(3.79)

(3.80)

However, because the fiber is a solid cylinder and the radial displacement
uf is finite, Bf = 0; otherwise, the radial displacement of the fiber uf would be
infinite. Thus,

(3.81)

. (3.82)

Differentiating Equation (3.81) and Equation (3.82) gives

(3.83a)

. (3.83b)

Using Equation (3.83a) and Equation (3.83b) in Equation (3.70), the
stress–strain relationships for the fiber are

, (3.84)

where the stiffness constants of the fiber are

(3.85)
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and the stress–strain relationships for the matrix are

, (3.86)

where the stiffness constants of the matrix are

(3.87a)

. (3.87b)

How do we now solve for the unknown constants Af, Am, Bm, and ε1? The
following four boundary and interface conditions will allow us to do that:

1. The radial displacement is continuous at the interface, r = a,

. (3.88)

Then, from Equation (3.81) and Equation (3.82),

. (3.89)

2. The radial stress is continuous at r = a:

. (3.90)

Then, from Equation (3.84) and Equation (3.86),

. (3.91)
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3. Because the surface at r = b is traction free, the radial stress on the
outside of matrix, r = b, is zero:

. (3.92)

Then, Equation (3.84) gives

. (3.93)

4. The overall axial load over the fiber-matrix cross-sectional area in
direction 1 is the applied load, P, then

(3.94)

.

Because the axial normal stress, σz, is independent of θ,

. (3.95)

Now,

. (3.96)

Then, from Equation (3.84) and Equation (3.86),

. (3.97)
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Solving Equation (3.89), Equation (3.91), Equation (3.93), and Equa-
tion (3.97), we get the solution to Af, Am, Bm, and ε1.

Using the resulting solution for ∈1, and using Equation (3.66),

 

(3.98)

Although the preceding expression can be written in a compact form by
using definitions of shear and bulk modulus* of the material, we avoid doing
so because results given in Equation (3.98) can now be found symbolically
by computational systems such as Maple.14 Note that the first two terms of
Equation (3.98) represent the mechanics of materials approach result given
by Equation (3.34).

Example 3.9

Find the longitudinal Young’s modulus for a glass/epoxy lamina with a 70%
fiber volume fraction. Use the properties for glass and epoxy from Table 3.1
and Table 3.2, respectively. Use equations obtained using the elasticity model.

Solution

From Table 3.1, the Young’s modulus of fiber is

Ef = 85 GPa;

the Poisson’s ratio of the fiber is

νf = 0.2.

From Table 3.2, the Young’s modulus of matrix is

Em = 3.4 GPa

* Bulk modulus of an elastic body is defined as the slope of the applied hydrostatic pressure vs.
volume dilation curve. Hydrostatic stress is defined as σxx = σyy = σzz = –p, τxy = 0, τyz = 0, τzx = 0 and
volume dilation, Dv, is defined as the sum of resulting normal strains. Dv = εx + εy + εz. The bulk
modulus, K, is used for finding volume changes in a given body subjected to hydrostatic pressure.
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and the Poisson’s ratio of the matrix is

νm = 0.3.

Using Equation (3.98), the longitudinal Young’s modulus

For the same problem, the longitudinal Young’s modulus was found to be
60.52 GPa from the mechanics of materials approach as well as the Hal-
phin–Tsai equations.

3.3.3.2 Major Poisson’s Ratio

In Section 3.3.3.1, we solved the problems of an axially loaded cylinder. This
same problem can be used to determine the axial Poisson’s ratio, ν12, because
of the definition of major Poisson’s ratio as

, (3.99)

when a body is only under an axial load in direction 1.
From the definition of radial strain from Equation (3.69a) that, at r = b, 

, (3.100)

the major Poisson’s ratio is 

. (3.101)

Using Equation (3.101),
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. (3.102)

Using the solution obtained in Section 3.3.3.1 for Am, Bm, and ∈1 by solving
Equation (3.89), Equation (3.91), Equation (3.93), and Equation (3.97), we get

(3.103)

Although the preceding expression can be written in a compact form by
using definitions of shear and bulk modulus of the material, we avoid doing
so because results given in Equation (3.103) can be found symbolically by
computational systems such as Maple.14 Note that the first two terms of
Equation (3.103) are the same as the mechanics of materials approach result
given by Equation (3.34).

Example 3.10

Find the major Poisson’s ratio for a glass/epoxy lamina with a 70% fiber
volume fraction. Use the properties for glass and epoxy from Table 3.1 and
Table 3.2, respectively. Use equations obtained using the elasticity model.

Solution

Using Equation (3.103), the major Poisson’s ratio is

For the same problem, the major Poisson’s ratio was found to be 0.2300 from
the mechanics of materials approach as well as the Halphin–Tsai equations.
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3.3.3.3 Transverse Young’s Modulus

The CCA model only gives lower and upper bounds of the transverse
Young’s modulus of the composite. However, for the sake of completeness,
we will summarize the result from a three-phase model. This model (Figure
3.20), however, yields an exact solution12 for the transverse shear modulus,
G23. However, the transverse Young’s modulus can be found as follows.

Assuming that the resulting composite properties are transversely isotropic
(a valid assumption for hexagonally arranged fibers; 2–3 plane is isotropic),

, (3.104)

where ν23 = transverse Poisson’s ratio.
The transverse Poisson’s ratio, ν23, is given by15

, (3.105)

where

. (3.106)

The bulk modulus, K*, of the composite under longitudinal plane strain is 

FIGURE 3.20
Three-phase model of a composite.

Fiber

Matrix

Equivalent 
homogenous

medium

E G2 23 232 1= +( )ν

ν23
23

23

= −
+

∗

∗

K mG
K mG

m K
E

= + ∗1 4 12
2

1

ν

1343_book.fm  Page 251  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



252 Mechanics of Composite Materials, Second Edition

. (3.107)

The bulk modulus Kf of the fiber under longitudinal plane strain is

. (3.108)

The bulk modulus Km of the matrix under longitudinal plane strain is

. (3.109)

To derive the solution for G23 for use in Equation (3.104) is out of scope of
this book; however, for the sake of completeness, the final solution is given
next. Based on the three-phase model (Figure 3.20) where the fiber is sur-
rounded by matrix, which is then surrounded by a homogeneous material
equivalent to the composite, the transverse shear modulus, G23, is given by
the acceptable solution of the quadratic equation:12

, (3.110)

where
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(3.111)

,

. (3.112)

Then, using Equation (3.104) through Equation (3.109), we get the transverse
Young’s modulus, E2.

Example 3.11

Find the transverse Young’s modulus for a glass/epoxy lamina with a 70%
fiber volume fraction. Use the properties for glass and epoxy from Table 3.1
and Table 3.2, respectively. Use equations obtained using the elasticity model.

Solution

From Equation (3.112),

.

From Equation (3.108) and Equation (3.109),
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.

From Equation (3.107),

.

The three constants of the quadratic Equation (3.110) are given by Equation
(3.111) as

.
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Substituting values of A, B, and C in Equation (3.110),

gives G23 = 5.926 × 109 Pa, –1.953 × 109 Pa. Thus, the acceptable solution is 

.
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.

From Equation (3.104),

= 15.51 GPa.

For the same problem, the transverse Young’s modulus was found to be
10.37 GPa from the mechanics of materials approach and 20.20 GPa from
the Halphin–Tsai equations.

Figure 3.21a and Figure 3.21b show the transverse Young’s modulus as a
function of fiber volume fraction for a typical boron/epoxy unidirectional
lamina. The elasticity equation (3.104), Halphin–Tsai equation (3.60), and the
mechanics of materials approach (Equation 3.55) are shown and compared
to the experimental data points.

3.3.3.4 Axial Shear Modulus

To find the axial shear modulus, G12, of a unidirectional composite, we
consider the same concentric cylinder model (Figure 3.19). Consider a long
fiber of radius, a, and shear modulus, Gf, surrounded by a long concentric
cylinder of matrix of outer radius, b, and shear modulus, Gm. The composite
cylinder (Figure 3.19) is subjected to a shear strain, , in the 1–2 plane.

Following the derivation,4,12,16 the normal displacements in the 1, 2, 3
direction for the fiber or matrix are assumed of the following form:

, (3.113a, b, c)

where is the applied shear strain to the boundary.
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The preceding assumption of the form of the displacements is based on a
semi-inverse method17 that is beyond the scope of this book. Individual
expressions for displacement of the fiber and matrix will be shown later in
the derivation.

From the strain-displacement13 equations and the expressions for the dis-
placement field in Equation (3.113a, b, c),

FIGURE 3.21
Theoretical values of transverse Young’s modulus as a function of fiber volume fraction and
comparison with experimental values for boron/epoxy unidirectional lamina (Ef = 414 GPa, νf

= 0.2, Em = 4.14 GPa, νm = 0.35). Figure (b) zooms figure (a) for fiber volume fraction between
0.45 and 0.75. (Experimental data from Hashin, Z., NASA tech. rep. contract No. NAS1-8818,
November 1970.)
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. (3.114 a–f)

Because all normal strains in the 1, 2, and 3 directions are zero, all the
normal stresses in 1, 2, 3 directions are also zero. Also, τ23 = 0 because γ23 = 0. 

Using Equation (3.114e) and Equation (3.114f), the only possible nonzero
stresses are
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(3.115a)

, (3.115b)

where G is the shear modulus of the material.
The equilibrium condition derived from the fact that the sum of the forces

in direction 1 is zero gives13 

. (3.116)

With Equation (3.115a) and Equation (3.115b) and σ1 = 0, the equilibrium
equation (3.116) reduces it to

. (3.117)

Converting Equation (3.117) to polar coordinates needs the following:

, (3.118)

(3.119)

give

(3.120a)

. (3.120b)

From Equation (3.118), Equation (3.119), and Equation (3.120a, b),
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(3.121a)

(3.121b)

(3.121c)
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. (3.121d)

Now, using the chain rule for derivatives,

, (3.122)

and using Equation (3.121a) and Equation (3.121c),

. (3.123)

Repeating a similar chain of rule of derivatives on Equation (3.122),

. (3.124a)

Similarly,

. (3.124b)

Substituting Equation (3.124a) and Equation (3.124b) in Equation (3.117)
yields

. (3.125)

The solution of Equation (3.125) is given by

(3.126)
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, (3.127)

but that the surface, r = b, of the composite cylinder is only subjected to
displacements:

(3.128)

(3.129)

. (3.130)

Thus, the function F(r,θ) of Equation (3.126) for the fiber Ff and matrix Fm

is given by

(3.131)

. (3.132)

How do we find A1, B1, A2, and B2? The following boundary and interface
conditions are applied to find these four unknowns:

1. The axial displacements of the fiber u1f and the matrix u1m at the
interface, r = a, are continuous:

. (3.133)
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Now, from Equation (3.113a),

. (3.134)

At r = a,

. (3.135)

Similarly, from Equations (3.313a), (3.318), and (3.131),

. (3.136)

Equating Equation (3.135) and Equation (3.136) per Equation (3.133) gives

. (3.137)

2. The displacement of the fiber u1f is given by Equations (3.313a),
(3.318), and (3.131) as

. (3.138)

Because r = 0 is a point on the fiber and displacement in the fiber is finite,

. (3.139)

3. The shear stress in the fiber τ1rf and that in the matrix τ1rm are con-
tinuous at the interface r = a:
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First, we need to derive an expression for τ1r from transforming
stresses between 1–r and 1–3 coordinates:

. (3.141)

Using Equation (3.115a, b) in Equation (3.141),

(3.142)

. (3.143)

Substituting Equation (3.121a) and Equation (3.121b) in Equation
(3.143),

,

gives

. (3.144)

Thus, in the fiber from Equation (3.131)
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. (3.146)

Equating Equation (3.145) and Equation (3.146) at r = a, per Equation
(3.140), gives

. (3.147)

4. The displacement due to the applied shear strain of  at the bound-
ary r = b of the composite cylinder is given by 
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Based on Equation (3.113a) and Equation (3.132),
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(3.151)

(3.152)

, (3.153)

where, from Equation (3.63), the fiber volume fraction Vf is substi-

tuted for .

The shear modulus G12 can be now be found as

, (3.154)

where

because, based on Equation (3.115a),
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Using Equation (3.121a) and Equation (3.121b), 
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. (3.157)

At r = b, θ = 0

. (3.158)

Substituting values of A2 and B2 from Equation (3.152) and Equation
(3.153), respectively, in Equation (3.158) yields

(3.159)

and the shear modulus, G12, can be found as

.

This gives

. (3.160)

Example 3.12

Find the shear modulus, G12, for a glass/epoxy composite with 70% fiber
volume fraction. Use the properties for glass and epoxy from Table 3.1 and
Table 3.2, respectively. Use the equations obtained using the elasticity model.

Solution

From Example 3.6, Gf = 35.42 GPa and Gm = 1.308 GPa. Using Equation
(3.160), the in-plane shear modulus is
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For the same problem, the shear modulus, G12, is found to be 4.014 GPa from
the mechanics of materials approach and 6.169 GPa from the Halphin-Tsai
equations.

Figure 3.22a and Figure 3.22b show the in-plane shear modulus as a func-
tion of fiber volume fraction for a typical glass/epoxy unidirectional lamina.
The elasticity equation (3.160), Halphin-Tsai equation (3.60), and the mechan-
ics of materials approach (Equation 3.55) are shown and compared to the
experimental data points.

A comparison of the elastic moduli from the mechanics of materials
approach, the Halphin-Tsai equations, and elasticity models (Example 3.3
through Example 3.11) is given in Table 3.5.

3.3.4 Elastic Moduli of Lamina with Transversely Isotropic Fibers

Glass, aramids, and graphite are the three most common types of fibers used
in composites; among these, aramids and graphite are transversely isotropic.
From the definition of transversely isotropic materials in Chapter 2, such
fibers have five elastic moduli.

If L represents the longitudinal direction along the length of the fiber and
T represents the plane of isotropy (Figure 3.23) perpendicular to the longi-
tudinal direction, the five elastic moduli of the transversely isotropic fiber are

EfL = longitudinal Young’s modulus
EfT = Young’s modulus in plane of isotropy
νfL = Poisson’s ratio characterizing the contraction in the plane of isot-

ropy when longitudinal tension is applied
νfT = Poisson’s ratio characterizing the contraction in the longitudinal

direction when tension is applied in the plane of isotropy
GfT = in-plane shear modulus in the plane perpendicular to the plane

of isotropy

The elastic moduli using strength of materials approach for lamina with
transversely isotropic fibers18 are 
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Micromechanical Analysis of a Lamina 269

FIGURE 3.22
Theoretical values of in-plane shear modulus as a function of fiber volume fraction compared
with experimental values for unidirectional glass/epoxy lamina (Gf = 30.19 GPa, Gm = 1.83 GPa).
Figure (b) zooms figure (a) for fiber volume fraction between 0.45 and 0.75. (Experimental data
from Hashin, Z., NASA tech. rep. contract No. NAS1-8818, November 1970.)

TABLE 3.5

Comparison of Predicted Elastic Moduli

Method E1 (GPa) E2 (GPa) ν12 G12 (GPa)

Mechanics of materials
Halphin–Tsai
Elasticity

60.52
60.52
60.53

10.37
20.20
15.51

0.2300
0.2300
0.2238

4.014
6.169
6.169a

a The Halphin–Tsai equations and the elasticity model equations give
the same value for the shear modulus. Can you show that this is not
a coincidence?
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and

(3.161a–d)

The preceding expressions are similar to those of a lamina with isotropic
fibers. The only difference is that appropriate transverse or longitudinal
properties of the fiber are used. In composites such as carbon–carbon, the
matrix is also transversely isotropic. In that case, the preceding equations
cannot be used and are given elsewhere.15,19

FIGURE 3.23
Longitudinal and transverse direction in a transversely isotropic fiber.
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3.4 Ultimate Strengths of a Unidirectional Lamina

As shown in Chapter 2, one needs to know five ultimate strength parameters
for a unidirectional lamina:

• Longitudinal tensile strength
• Longitudinal compressive strength
• Transverse tensile strength
• Transverse compressive strength
• In-plane shear strength (τ12)ult

In this section, we will see whether and how these parameters can be found
from the individual properties of the fiber and matrix by using the mechanics
of materials approach. The strength parameters for a unidirectional lamina
are much harder to predict than the stiffnesses because the strengths are
more sensitive to the material and geometric nonhomogeneities, fiber–matrix
interface, fabrication process, and environment. For example, a weak inter-
face between the fiber and matrix may result in premature failure of the
composite under a transverse tensile load, but may increase its longitudinal
tensile strength. For these reasons of sensitivity, some theoretical and empir-
ical models are available for some of the strength parameters. Eventually,
the experimental evaluation of these strengths becomes important because
it is direct and reliable. These experimental techniques are also discussed in
this section.

3.4.1 Longitudinal Tensile Strength

A simple mechanics of materials approach model is presented (Figure 3.24).
Assume that 

• Fiber and matrix are isotropic, homogeneous, and linearly elastic
until failure.

• The failure strain for the matrix is higher than for the fiber, which
is the case for polymeric matrix composites. For example, glass fibers
fail at strains of 3 to 5%, but an epoxy fails at strains of 9 to 10%.

Now, if

(σf)ult = ultimate tensile strength of fiber
Ef = Young’s modulus of fiber
(σm)ult = ultimate tensile strength of matrix
Em = Young’s modulus of matrix

( )σ1
T

ult

( )σ1
C

ult

( )σ2
T

ult

( )σ2
C

ult
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then the ultimate failure strain of the fiber is

(3.162)

and the ultimate failure strain of the matrix is

(3.163)

Because the fibers carry most of the load in polymeric matrix composites,
it is assumed that, when the fibers fail at the strain of (εf)ult, the whole
composite fails. Thus, the composite tensile strength is given by

(3.164)

Once the fibers have broken, can the composite take more load? The stress
that the matrix can take alone is given by (σmult) (1 – Vf). Only if this stress
is greater than (Equation 3.164), is it possible for the composite to take
more load. The volume fraction of fibers for which this is possible is called
the minimum fiber volume fraction, (Vf)minimum, and is

FIGURE 3.24
Stress–strain curve for a unidirectional composite under uniaxial tensile load along fibers.
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(3.165)

It is also possible that, by adding fibers to the matrix, the composite will
have lower ultimate tensile strength than the matrix. In that case, the fiber
volume fraction for which this is possible is called the critical fiber volume
fraction, (Vf)critical, and is

(3.166)

Example 3.13

Find the ultimate tensile strength for a glass/epoxy lamina with a 70%
fiber volume fraction. Use the properties for glass and epoxy from Table
3.1 and Table 3.2, respectively. Also, find the minimum and critical fiber
volume fractions.

Solution

From Table 3.1,

Ef = 85 GPa

(σf)ult = 1550 MPa.

Thus,

From Table 3.2,

Em = 3.4 GPa

(σm)ult = 72 MPa.
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Thus,

Applying Equation (3.164), the ultimate longitudinal tensile strength is

Applying Equation (3.165), the minimum fiber volume fraction is 

This implies that, if the fiber volume fraction is less than 0.6422%, the matrix
can take more loading after all the fibers break. Applying Equation (3.166),
the critical fiber volume fraction is

This implies that, if the fiber volume fraction were less than 0.6732%, the
composite longitudinal tensile strength would be less than that of the matrix.

Experimental evaluation: The general test method recommended for tensile
strength is the ASTM test method for tensile properties of fiber–resin com-
posites (D3039) (Figure 3.25). A tensile test geometry (Figure 3.26) to find
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the longitudinal tensile strength consists of six to eight 0° plies that are 12.5
mm (1/2 in.) wide and 229 mm (10 in.) long. The specimen is mounted with
strain gages in the longitudinal and transverse directions. Tensile stresses
are applied on the specimen at a rate of about 0.5 to 1 mm/min (0.02 to 0.04
in./min). A total of 40 to 50 data points for stress and strain is taken until a
specimen fails. The stress in the longitudinal direction is plotted as a function

FIGURE 3.25
Tensile coupon mounted in the test frame for finding the tensile strengths of a unidirectional
lamina. (Photo courtesy of Dr. R.Y. Kim, University of Dayton Research Institute, Dayton, OH.)

FIGURE 3.26
Geometry of a longitudinal tensile strength specimen.
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of longitudinal strain, as shown in Figure 3.27. The data are reduced using
linear regression. The longitudinal Young’s modulus is the initial slope of
the σ1 vs. ε1 curve.

From Figure 3.27, the following values are obtained:

Discussion: Failure of a unidirectional ply under a longitudinal tensile load
takes place with

1. Brittle fracture of fibers
2. Brittle fracture of fibers with pullout
3. Fiber pullout with fiber–matrix debonding

The three failure modes are shown in Figure 3.28. The mode of failure
depends on the fiber–matrix bond strength and fiber volume fraction.20 For
low fiber volume fractions, 0 < Vf <0.40, a typical glass/epoxy composite

FIGURE 3.27
Stress–strain curve for a [0]8 laminate under a longitudinal tensile load. (Data courtesy of Dr.
R.Y. Kim, University of Dayton Research Institute, Dayton, OH).
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exhibits a mode (1) type failure. For intermediate fiber volume fractions, 0.4
< Vf < 0.65, mode (2) type failure occurs. For high fiber volume fractions, Vf

> 0.65, it exhibits mode (3) type of failure.

3.4.2 Longitudinal Compressive Strength

The model used for calculating the longitudinal tensile strength for a unidi-
rectional lamina cannot also be used for its longitudinal compressive strength
because the failure modes are different. Three typical failure modes are
shown in Figure 3.29:

• Fracture of matrix and/or fiber–matrix bond due to tensile strains
in the matrix and/or bond

• Microbuckling of fibers in shear or extensional mode
• Shear failure of fibers

Ultimate tensile strains in matrix failure mode: A mechanics of materials
approach model based on the failure of the composite in the transverse
direction due to transverse tensile strains is given next.20 Assuming that one
is applying a longitudinal compressive stress of magnitude σ1, then the
magnitude of longitudinal compressive strain is given by 

(3.167)

Because the major Poisson’s ratio is ν12, the transverse strain is tensile and
is given by

(3.168)

FIGURE 3.28
Modes of failure of unidirectional lamina under a longitudinal tensile load.
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Using maximum strain failure theory, if the transverse strain exceeds the
ultimate transverse tensile strain, the lamina is considered to have
failed in the transverse direction. Thus,

(3.169)

The value of the longitudinal modulus, E1, and the major Poisson’s ratio,
v12, can be found from Equation (3.34) and Equation (3.49), respectively.
However, for the value of one can use the empirical formula,

FIGURE 3.29
Modes of failure of a unidirectional lamina under a longitudinal compressive load.
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(3.170)

or the mechanics of materials formula,

(3.171)

where
 = ultimate tensile strain of the matrix

d = diameter of the fibers
s = center-to-center spacing between the fibers

Equation (3.170) and Equation (3.171) will be discussed later in Section 3.4.3.
Shear/extensional fiber microbuckling failure mode: local buckling models for

calculating longitudinal compressive strengths have been developed.21,22

Because these results are based on advanced topics, only the final expressions
are given:

(3.172)

where

(3.173a)

and

(3.173b)

Note that the extensional mode buckling stress is higher than the shear
mode buckling stress for most cases. Extensional mode buckling is prev-
alent only in low fiber volume fraction composites.

Shear stress failure of fibers mode: A unidirectional composite may fail due
to direct shear failure of fibers. In this case, the rule of mixtures gives the
shear strength of the unidirectional composite as

(3.174)

( ) ( ) ( ),/ε ε2
1 31T

ult m
T

ult fV= −

( ) ( ) ,ε ε2 1 1T
ult m

T
ult

m

f

d
s

E
E

= −
⎛

⎝
⎜

⎞

⎠
⎟ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )εm
T

ult

( ) min[ , ],σ1 1 2
c

ult
c cS S=

S V V
E
E

V E E

V
c

f f
m

f

f m f

f
1 2 1

3 1
= + −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

( )
( )

,

S
G

V
c m

f
2 1

=
−

.

( )Sc
1

( )Sc
2

( ) ( ) ( ) ,τ τ τ12 ult f ult f m ult mV V= +

1343_book.fm  Page 279  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC
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where
(τf)ult = ultimate shear strength of the fiber

(τm)ult = ultimate shear strength of the matrix

The maximum shear stress in a lamina under a longitudinal compressive
load is at 45° to the loading axis. Thus,

(3.175)

Three models based on each of the preceding failure modes were dis-
cussed to find the magnitude of the ultimate longitudinal compressive
strength. One may caution that these models are not found to match the
experimental results as is partially evident in the comparison of experimen-
tal and predicted values23 of longitudinal compressive strength given in
Table 3.6. Comparison with other equations (3.169) and (3.175) is not avail-
able because the properties of constituents are not given in the reference,23

although fiber buckling is the most probable mode of failure in advanced
polymer matrix composites. 

Several factors may contribute to this discrepancy, including

• Irregular spacing of fibers causing premature failure in matrix-rich
areas

• Less than perfect bonding between the fibers and the matrix
• Poor alignment of fibers
• Not accounting for Poisson’s ratio mismatch between the fiber and

the matrix
• Not accounting for the transversely isotropic nature of fibers such

as aramids and graphite

In addition, there is controversy concerning the techniques used in measur-
ing compressive strengths.

TABLE 3.6

Comparison of Experimental and Predicted Values of Longitudinal 
Compressive Strength of Unidirectional Laminaea

Material
Experimental

strength
Equation (3.78a)

(MPa)
Equation (3.78b)

(MPa)

Glass/polyester
Type I carbon/epoxy
Kevlar 49/epoxy

600–1000
700–900
240–290

8700
22,800
13,200

2200
2900
2900

a Vf = 0.50.

Source: Hull, D., Introduction to Composite Materials, Cambridge University Press,
1981, Table 7.2. Reprinted with the permission of Cambridge University Press.

σ1
c ( )/σ1 2c
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Micromechanical Analysis of a Lamina 281

Example 3.14

Find the longitudinal compressive strength of a glass/epoxy lamina with a
70% fiber volume fraction. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively. Assume that fibers are circular and are in a
square array.

Solution

From Table 3.1, the Young’s modulus for the fiber is

Ef = 85 GPa

and the Poisson’s ratio of the fiber is

νf = 0.20.

The ultimate tensile strength of the fiber is

(σf)ult = 1550 MPa

and the ultimate shear strength of the fiber is

(τf)ult = 35 MPa.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa

and the Poisson’s ratio of the matrix is

νm = 0.30.

The ultimate normal strength of the matrix is

(σm)ult = 72 MPa

and the ultimate shear strength of the matrix is

(τm)ult = 34 MPa.

From Example 3.3, the longitudinal Young’s modulus of the unidirectional
lamina is

E1 = 60.52 GPa.

From Example 3.5, the major Poisson’s ratio of the unidirectional lamina is
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ν12 = 0.23.

Using Equation (3.42a), the fiber diameter to fiber spacing ratio is

The ultimate tensile strain of the matrix is

Using the transverse ultimate tensile strain failure mode formula (3.76),

From the empirical Equation (3.170),

Using the lesser of these two values of ultimate transverse tensile
strain, and Equation (3.169),

Using shear/extensional fiber microbuckling failure mode formulas
(3.173a),
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From Example 3.6, the shear modulus of the matrix is

Using Equation (3.173b),

Thus, from Equation (3.172), the ultimate longitudinal compressive
strength is

Using shear stress failure of fibers mode, the ultimate longitudinal com-
pressive strength from Equation (3.175) is

Taking the minimum value of the preceding, the ultimate longitudinal
compressive strength is predicted as

Experimental evaluation: The compressive strength of a lamina has been
found by several different methods. A highly recommended method is the
IITRI (Illinois Institute of Technology Research Institute), compression test.24

Figure 3.30 shows the (ASTM D3410 Celanese) IITRI fixture mounted in a
test frame. A specimen (Figure 3.31) consists generally of 16 to 20 plies of 0°
lamina that are 6.4 mm (1/4 in.) wide and 127 mm (5 in.) long. Strain gages
are mounted in the longitudinal direction on both faces of the specimen to
check for parallelism of the edges and ends. The specimen is compressed at
a rate of 0.5 to 1 mm/min (0.02 to 0.04 in./min). A total of 40 to 50 data
points for stress and strain are taken until the specimen fails. The stress in
the longitudinal direction is plotted as a function of longitudinal strain and
is shown for a typical graphite/epoxy lamina in Figure 3.32. The data are
reduced using linear regression and the modulus is the initial slope of the
stress–strain curve. From Figure 3.32, the following values are obtained:
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3.4.3 Transverse Tensile Strength

A mechanics of materials approach model for finding the transverse tensile
strength of a unidirectional lamina is given next.25 Assumptions used in the
model include

• A perfect fiber–matrix bond
• Uniform spacing of fibers

FIGURE 3.30
IITRI fixture mounted in a test frame for finding the compressive strengths of a lamina. (Data
reprinted with permission from Experimental Characterization of Advanced Composites, Carlsson,
L.A. and Pipes, R.B., Technomic Publishing Co., Inc., 1987, p. 76. Copyright CRC Press, Boca
Raton, FL.)
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• The fiber and matrix follow Hooke’s law
• There are no residual stresses

Assume a plane model of a composite as shown by the shaded portion in
Figure 3.33. In this case,

s = distance between center of fibers
d = diameter of fibers

The transverse deformations of the fiber, δf , the matrix, δm , and the com-
posite, δc , are related by

(3.176)

FIGURE 3.31
Geometry of a longitudinal compressive strength specimen. (Data reprinted with permission
from Experimental Characterization of Advanced Composites, Carlsson, L.A. and Pipes, R.B., Tech-
nomic Publishing Co., Inc., 1987, p. 76. Copyright CRC Press, Boca Raton, FL.)
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FIGURE 3.32
Stress–strain curve for a [0]24 graphite/epoxy laminate under a longitudinal compressive load.
(Data courtesy of Dr. R.Y. Kim, University of Dayton Research Institute, Dayton, OH.)

FIGURE 3.33
Representative volume element to calculate transverse tensile strength of a unidirectional lamina.
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Now, by the definition of strain, the deformations are related to the trans-
verse strains,

, (3.177a)

, (3.177b)

, (3.177c)

where εc,f,m = the transverse strain in the composite, fiber, and matrix,
respectively.

Substituting the expressions in Equation (3.82) in Equation (3.81), we get

(3.178)

Now, under transverse loading, one assumes that the stresses in the fiber
and matrix are equal (see derivation of transverse Young’s modulus in Sec-
tion 3.2.1.2). Then, the strains in the fiber and matrix are related through
Hooke’s law as

(3.179)

Substituting the expression for the transverse strain in the fiber, εf, in
Equation (3.178), the transverse strain in the composite

(3.180)

If one assumes that the transverse failure of the lamina is due to the failure
of the matrix, then the ultimate transverse failure strain is

(3.181)

where = ultimate tensile failure strain of the matrix.
The ultimate transverse tensile strength is then given by

(3.182)

where is given by Equation (3.181). The preceding expression
assumes that the fiber is perfectly bonded to the matrix. If the adhesion
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between the fiber and matrix is poor, the composite transverse strength will
be further reduced.

Example 3.15

Find the ultimate transverse tensile strength for a unidirectional glass/epoxy
lamina with a 70% fiber volume fraction. Use properties of glass and epoxy
from Table 3.1 and Table 3.2, respectively. Assume that the fibers are circular
and arranged in a square array.

Solution

From Example 3.14, the ultimate transverse tensile strain of the lamina

is the lower estimate from using Equation (3.170) and Equation (3.171).
From Example 3.4, the transverse Young’s modulus of the lamina is E2 =

10.37 GPa. 
Using Equation (3.182), the ultimate transverse tensile strength of the

lamina is

Experimental evaluation: The procedure for finding the transverse tensile
strength is the same as for finding the longitudinal tensile strength. Only the
specimen dimensions differ. The standard width of the specimen is 25.4 mm
(1 in.) and 8 to 16 plies are used. This is mainly done to increase the amount
of load required to break the specimen. Figure 3.34 shows the typical
stress–strain curve for a 90° graphite/peek laminate. From Figure 3.34, the
following data are obtained:

E2 = 9.963 GPa

Discussion: Predicting transverse tensile strength is quite complicated.
Under a transverse tensile load, factors other than the individual properties
of the fiber and matrix are important. These include the bond strength
between the fiber and the matrix, the presence of voids, and the presence
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of residual stresses due to thermal expansion mismatch between the fiber
and matrix. Possible modes of failure under transverse tensile stress
include matrix tensile failure accompanied by fiber matrix debonding and/
or fiber splitting.

3.4.4 Transverse Compressive Strength

Equation (3.182), which was developed for evaluating transverse tensile
strength, can be used to find the transverse compressive strengths of a
lamina. The actual compressive strength is again lower due to imperfect
fiber/matrix interfacial bond and longitudinal fiber splitting. Using com-
pressive parameters in Equation (3.182),

(3.183)

where

(3.184)

= ultimate compressive failure strain of matrix.

FIGURE 3.34
Stress–strain curve for a [90]16 graphite/epoxy laminate under a transverse tensile load. (Data
courtesy of Dr. R.Y. Kim, University of Dayton Research Institute, Dayton, OH.)
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Example 3.16

Find the ultimate transverse compressive strength of a glass/epoxy lamina
with 70% fiber volume fraction. Use the properties of glass and epoxy from
Table 3.1 and Table 3.2, respectively. Assume that the fibers are circular and
packed in a square array.

Solution

From Table 3.1, the Young’s modulus of the fiber is Ef = 85 GPa.
From Table 3.2, the Young’s modulus of the matrix is Em = 3.4 GPa and

the ultimate compressive strength of the matrix is

From Example 3.4, the transverse Young’s modulus is E2 = 10.37 GPa.
From Example 3.14, the fiber diameter to fiber spacing ratio is

The ultimate compressive strain of the matrix is

From Equation (3.184), the ultimate transverse compressive strain of the
lamina is

and from Equation (3.183), the ultimate transverse compressive strength is

Experimental evaluation: The procedure for finding the transverse compres-
sive strength is the same as that for finding the longitudinal compressive
strength. The only difference is in the specimen dimensions. The width of
the specimen is 12.7 mm (1/2 in.) and 30 to 40 plies are used in the test.
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Figure 3.35 shows the typical stress–strain curve for a 90° graphite/epoxy
laminate. From Figure 3.35, the following data are obtained26:

Discussion: Methods for predicting transverse compressive strength are
also not yet satisfactory. Several modes of failure possible under a transverse
compressive stress include matrix compressive failure, matrix shear failure,
and matrix shear failure with fiber–matrix debonding and/or fiber crushing.

3.4.5 In-Plane Shear Strength

The procedure for finding the ultimate shear strength for a unidirectional
lamina using a mechanics of materials approach follows that described in
Section 3.4.3. Assume that one is applying a shear stress of magnitude τ12

FIGURE 3.35
Stress–strain curve for a [90]40 graphite/epoxy laminate under a transverse compressive load
perpendicular to the fibers. (Data reprinted with permission from Experimental Characterization
of Advanced Composites, Carlsson, L.A. and Pipes, R.B., Technomic Publishing Co., Inc., 1987,
p. 79.)
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292 Mechanics of Composite Materials, Second Edition

and then that the shearing deformation in the representative element is given
by the sum of the deformations in the fiber and matrix,

 (3.185)

By definition of shearing strain,

(3.186a)

(3.186b)

and

(3.186c)

where (γ12)c,f,m = the in-plane shearing strains in the composite, fiber, and
matrix, respectively.

Substituting the Equation (3.186a-c) in Equation (3.185),

(3.187)

Now, under shearing stress loading, one assumes that the shear stress in
the fiber and matrix are equal (see derivation of shear modulus in Section
3.3.1.4). Then, the shearing strains in the fiber and matrix are related as

(3.188)

Substituting the expression for (γ12)f from Equation (3.188) in Equation
(3.187),

(3.189)

If one assumes that the shear failure is due to failure of the matrix, then

, (3.190)

where (γ12)m ult = ultimate shearing strain of the matrix.
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The ultimate shear strength is then given by

(3.191)

Example 3.17

Find the ultimate shear strength for a glass/epoxy lamina with 70% fiber
volume fraction. Use properties for glass and epoxy from Table 3.1 and
Table 3.2, respectively. Assume that the fibers are circular and arranged in
a square array.

Solution

From Example 3.6, the shear modulus of the fiber is

Gf = 35.42 GPa,

the shear modulus of the matrix is

Gm = 1.308 GPa,

and the in-plane shear modulus of the lamina is

G12 = 4.014 GPa.

From Example 3.14, the fiber diameter to fiber spacing ratio is

From Table 3.2, the ultimate shear strength of the matrix is

(τ12)mult = 34 MPa.

Then, the ultimate shearing strain of the matrix is
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294 Mechanics of Composite Materials, Second Edition

Using Equation (3.191), the ultimate in-plane shear strength of the unidi-
rectional lamina is

Experimental determination: One of the most recommended methods27 for
calculating the in-plane shear strength is the [±45]2S laminated tensile cou-
pon* (Figure 3.36). A [±45]2S laminate is an eight-ply laminate with [+45/
–45/+45/–45/–45/+45/–45/+45] distribution of plies on top of each other.

FIGURE 3.36
Schematic of a [±45]2S laminate shear test.

* See Section 4.2 of Chapter 4 for an explanation on laminate codes.
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Micromechanical Analysis of a Lamina 295

An axial stress σx is applied to the eight-ply laminate; the axial strain εx and
transverse strain εy are measured. If the laminate fails at a load of (σx)ult, the
ultimate shear strength of a unidirectional lamina is given by

(3.192)

and the ultimate shear strain of a unidirectional lamina is

(3.193)

An eight-ply [±45]2S laminate is used for several reasons. First, according
to maximum stress and strain failure theories of Chapter 2, each lamina fails
in the shear mode and at the same load. The stress at which it fails is simply
twice the shear strength of a unidirectional lamina and is independent of
the other mechanical properties of the lamina, as reflected in Equation
(3.192). Second, the shear strain is measured simply by strain gages in two
perpendicular directions and does not require the values of elastic constants
of the lamina.

Equation (3.192) and Equation (3.193) can be derived using concepts from
Chapter 4 and Chapter 5. The in-plane shear strength is simply half of the
maximum uniaxial stress that can be applied to the laminate. The initial slope
of the τ12 vs. γ12 curve gives the shear modulus, G12. A total of 40 to 50 points
are taken for the stress and strains until the specimen fails. From Figure 3.37,
the following values are obtained for a typical graphite/epoxy lamina:

Discussion: The prediction of the ultimate shear strength is complex. Similar
parameters, such as weak interfaces, the presence of voids, and Poisson’s
ratio mismatch, make modeling quite complex. 

Theoretical methods for obtaining the strength parameters also include
statistical and advanced methods. Statistical methods include accounting for
variations in fiber strength, fiber–matrix adhesion, voids, fiber spacing, fiber
diameter, alignment of fibers, etc. Advanced methods use elasticity, finite
element methods, boundary element methods, finite difference methods, etc.
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296 Mechanics of Composite Materials, Second Edition

3.5 Coefficients of Thermal Expansion

When a body undergoes a temperature change, its dimensions relative to its
original dimensions change in proportion to the temperature change. The
coefficient of thermal expansion is defined as the change in the linear dimen-
sion of a body per unit length per unit change of temperature.

For a unidirectional lamina, the dimensions changes differ in the two
directions 1 and 2. Thus, the two coefficients of thermal expansion are
defined as

α1 = linear coefficient of thermal expansion in direction 1, m/m/°C (in./
in./°F)

α2 = linear coefficient of thermal expansion in direction 2, m/m/°C (in./
in./°F)

The following are the expressions developed for the two thermal expan-
sion coefficients using the thermoelastic extremum principle28:

(3.194)

FIGURE 3.37
Shear stress–shear strain curve obtained from a [±45]2S graphite/epoxy laminate under a tensile
load. (Data courtesy of Dr. R.Y. Kim, University of Dayton Research Institute, Dayton, OH.)
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(3.195)

where αf and αm are the coefficients of thermal expansion for the fiber and
the matrix, respectively.

3.5.1 Longitudinal Thermal Expansion Coefficient

As an example, Equation (3.194) can be derived using the mechanics of
materials approach.29 Consider the expansion of a unidirectional lamina in
the longitudinal direction under a temperature change of ΔT. If only the
temperature ΔT is applied, the unidirectional lamina has zero overall load,
F1, in the longitudinal direction. Then

(3.196)

, (3.197)

where
Ac,f,m = the cross-sectional area of composite, fiber, and matrix, 

respectively
σ1,f,m = the stress in composite, fiber, and matrix, respectively

Although the overall load in the longitudinal direction 1 is zero, stresses
are caused in the fiber and the matrix by the thermal expansion mismatch
between the fiber and the matrix. These stresses are

(3.198a)

and

. (3.198b)

Substituting Equation (3.198a) and Equation (3.198b) in Equation (3.197)
and realizing that the strains in the fiber and matrix are equal (εf = εm = ε1),

(3.199)

For free expansion in the composite in the longitudinal direction 1, the
longitudinal strain is

(3.200)
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298 Mechanics of Composite Materials, Second Edition

Because the strains in the fiber and composite are also equal (ε1 = εf), from
Equation (3.199) and Equation (3.200),

Using Equation (3.34) for the definition of longitudinal Young’s modulus,

. (3.201)

The longitudinal coefficient of thermal expansion can be rewritten as

, (3.202)

which shows that it also follows the rule of mixtures based on the weighted
mean of αE/E1 of the constituents.

3.5.2 Transverse Thermal Expansion Coefficient

Due to temperature change, ΔT, assume that the compatibility condition that
the strain in the fiber and matrix is equal in direction 1 — that is,

. (3.203)

Now, the stress in the fiber in the longitudinal direction 1 is

(3.204)

and the stress in the matrix in longitudinal direction 1 is

(3.205)
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The strains in the fiber and matrix in the transverse direction 2 are given
by using Hooke’s law:

(3.206)

. (3.207)

The transverse strain of the composite is given by the rule of mixtures as

. (3.208)

Substituting Equation (3.206) and Equation (3.207) in Equation (3.208),

(3.209)

and, because

, (3.210)

we get

. (3.211)

Substituting

(3.212)

in the preceding equation, it can be rewritten as

. (3.213)
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300 Mechanics of Composite Materials, Second Edition

Example 3.18

Find the coefficients of thermal expansion for a glass/epoxy lamina with
70% fiber volume fraction. Use the properties of glass and epoxy from Table
3.1 and Table 3.2, respectively.

Solution

From Table 3.1, the Young’s modulus of the fiber is

Ef = 85 GPa

and the Poisson’s ratio of the fiber is

νf = 0.2.

The coefficient of thermal expansion of the fiber is

αf = 5 × 10–6 m/m/°C.

From Table 3.2, the Young’s modulus of the matrix is

Em = 3.4 GPa,

the Poisson’s ratio of the matrix is

νm = 0.3,

and the coefficient of thermal expansion of the matrix is

αm = 63 × 10–6 m/m/°C.

From Example 3.3, the longitudinal Young’s modulus of the unidirectional
lamina is

E1 = 60.52 GPa.

From Example 3.5, the major Poisson’s ratio of the unidirectional lamina is

ν12 = 0.2300.

Now, substituting the preceding values in Equation (3.194) and Equation
(3.195), the coefficients of thermal expansion are
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Micromechanical Analysis of a Lamina 301

In Figure 3.38, the two coefficients of thermal expansion of glass/epoxy
are plotted as a function of fiber volume fraction.

It should be noted that the longitudinal thermal expansion coefficient is
lower than the transverse thermal expansion coefficient in polymeric matrix
composites. Also, in some cases, the thermal expansion coefficient of the
fibers is negative, and it is thus possible for a lamina to have zero thermal
expansions in the fiber directions. This property is widely used in the man-
ufacturing of antennas, doors, etc., when dimensional stability in the pres-
ence of wide temperature fluctuations is desired.

Experimental determinations: The linear coefficients of thermal expansion
are determined experimentally by measuring the dimensional changes in a

FIGURE 3.38
Longitudinal and transverse coefficients of thermal expansion as a function of fiber volume
fraction for a glass/epoxy unidirectional lamina. (Properties of glass and epoxy from Table 3.1
and Table 3.2.)
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302 Mechanics of Composite Materials, Second Edition

lamina that is free of external stresses. A test specimen is made of a 50 × 50
mm (2 in. × 2 in.), eight-ply laminated unidirectional composite (Figure 3.39).
Two strain gages are placed perpendicular to each other on the specimen. A
temperature sensor is also placed. The specimen is put in an oven and the
temperature is slowly increased. Strain and temperature measurements are
taken and plotted as a function of each other as given in Figure 3.40. The
data are reduced using linear regression. The slope of the two strain-tem-
perature curves directly gives the coefficient of thermal expansion.

From Figure 3.40, the following values are obtained for a typical graphite/
epoxy laminate26:

α1 = –1.3 × 10–6 m/m/°C

α2 = 33.9 × 10–6 m/m/°C.

FIGURE 3.39
Unidirectional graphite/epoxy specimen with strain gages and temperature sensors for finding
coefficients of thermal expansion. (Reprinted with permission from Experimental Characterization
of Advanced Composites, Carlsson, L.A. and Pipes, R.B., Technomic Publishing Co., Inc., 1987, p.
98. Copyright CRC Press, Boca Raton, FL.)
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3.6 Coefficients of Moisture Expansion 

When a body absorbs water, as is the case for resins in polymeric matrix
composites, it expands. The change in dimensions of the body are measured
by the coefficient of moisture expansion defined as the change in the linear
dimension of a body per unit length per unit change in weight of moisture
content per unit weight of the body. Similar to the coefficients of thermal
expansion, there are two coefficients of moisture expansion: one in the lon-
gitudinal direction 1 and the other in the transverse direction 2:

β1 = linear coefficient of moisture expansion in direction 1, m/m/kg/
kg (in./in./lb/lb)

β2 = linear coefficient of moisture expansion in direction 2, m/m/kg/
kg (in./in./lb/lb)

The following are the expressions for the two coefficients of moisture
expansion30:

FIGURE 3.40
Induced strain as a function of temperature to find the coefficients of thermal expansion of a
unidirectional graphite/epoxy laminate. (Reprinted with permission from Experimental Charac-
terization of Advanced Composites, Carlsson, L.A. and Pipes, R.B., Technomic Publishing Co., Inc.,
1987, p. 102. Copyright CRC Press, Boca Raton, FL.)
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(3.214)

(3.215)

where
ΔCf = the moisture concentration in the fiber, kg/kg (lb/lb)

ΔCm = the moisture concentration in the matrix, kg/kg (lb/lb)
βf = the coefficient of moisture expansion of the fiber, m/m/kg/

kg (in./in./lb/lb)
βm = the coefficient of moisture expansion of the matrix, m/m/

kg/kg (in./in./lb/lb)

Note that, unlike the coefficients of thermal expansion, the content of
moisture enters into the formula because the moisture absorption capacity
in each constituent can be different. However, in most polymeric matrix
composites, fibers do not absorb or deabsorb moisture, so the expressions
for coefficients of moisture expansion do become independent of moisture
contents. Substituting ΔCf = 0 in Equation (3.214) and Equation (3.215),

, (3.216)

. (3.217)

Further simplification for composites such as graphite/epoxy with high
fiber-to-matrix moduli ratio (Ef/Em) and no moisture absorption by fibers
leads to

(3.218)

(3.219)

Similar to the derivation for the longitudinal coefficient of thermal expan-
sion in Section 3.5, Equation (3.214) can be derived using the mechanics of
materials approach. Consider the expansion of a unidirectional lamina in the
longitudinal direction because of change in moisture content in the compos-
ite. The overall load in the composite, F1, is zero — that is,
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, (3.220)

where
Ac,f,m = the cross-sectional areas of the fiber, matrix, and composite, 

respectively
σ1,f,m = the stresses in the fiber, matrix, and composite, respectively

The stresses in the fiber and matrix caused by moisture are

(3.221)

. (3.222)

Substituting Equation (3.221) and (3.222) in Equation (3.220) and knowing
that the strains in the fiber and matrix are equal (εf = εm),

. (3.223)

For free expansion of the composite in the longitudinal direction, the
longitudinal strain is

, (3.224)

where ΔCc = the moisture concentration in composite.
Because the strains in the fiber and the matrix are equal,

(3.225)

Equation (3.225) can be simplified by relating the moisture concentration
in the composite (ΔCc) to the moisture concentration in the fiber (ΔCf) and
the matrix (ΔCm).

The moisture content in the composite is the sum of the moisture contents
in the fiber and the matrix,

, (3.226)

where wc,f,m = the mass of composite, fiber, and matrix, respectively. Thus,
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, (3.227)

where Wf,m = the mass fractions of the fiber and matrix, respectively.
Substituting Equation (3.227) in Equation (3.225),

(3.228)

Using Equation (3.4) and Equation (3.34), one can rewrite Equation (3.228)
in terms of fiber volume fractions and the longitudinal Young’s modulus as

(3.229)

Example 3.19

Find the two coefficients of moisture expansion for a glass/epoxy lamina
with 70% fiber volume fraction. Use properties for glass and epoxy from
Table 3.1 and Table 3.2, respectively. Assume that glass does not absorb
moisture.

Solution

From Table 3.1, the density of the fiber is

ρf = 2500 kg/m3.

From Table 3.2, the density of the matrix is

ρm = 1200 kg/m3,

the swelling coefficient of the matrix is

βm = 0.33 m/m/kg/kg,

and the Young’s modulus of the matrix is

Em = 3.4 GPa.

The Poisson’s ratio of the matrix is

νm = 0.3.
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From Example 3.1, the density of the composite is 

ρc = 2110 kg/m3.

From Example 3.3, the longitudinal Young’s modulus of the lamina is

E1 = 60.52 GPa.

From Example 3.5, the major Poisson’s ratio is

ν12= 0.230.

Thus, the longitudinal coefficient of moisture expansion from Equation
(3.216) is

and the transverse coefficient of moisture expansion from Equation (3.217) is

Experimental determination: A specimen is placed in water and the moisture
expansion strain is measured in the longitudinal and transverse directions.
Because moisture attacks strain gage adhesives, micrometers are used to find
the swelling strains.

3.7 Summary

After developing the concepts of fiber volume and weight fractions, we
developed equations for density and void content. We found the four elastic
moduli constants of a unidirectional lamina using three analytical
approaches: strength of materials, Halphin–Tsai, and elasticity. Analytical
models and experimental techniques for the five strength parameters, the
two coefficients of thermal expansion, and the two coefficients of moisture
expansion for a unidirectional lamina were discussed.
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Key Terms

Volume fraction
Weight (mass) fraction
Density
Void volume fraction
Void content
Elastic moduli
Array packing
Halphin–Tsai equations
Elasticity models
Transversely isotropic fibers
Strength
ASTM standards
Failure modes
IITRI compression test
Shear test
Coefficient of thermal expansion
Coefficient of moisture expansion

Exercise Set

3.1 The weight fraction of glass in a glass/epoxy composite is 0.8. If the
specific gravity of glass and epoxy is 2.5 and 1.2, respectively, find the
1. Fiber and matrix volume fractions
2. Density of the composite

3.2 A hybrid lamina uses glass and graphite fibers in a matrix of epoxy
for its construction. The fiber volume fractions of glass and graphite
are 40 and 20%, respectively. The specific gravity of glass, graphite,
and epoxy is 2.6, 1.8, and 1.2, respectively. Find
1. Mass fractions
2. Density of the composite

3.3 The acid digestion test left 2.595 g of fiber from a composite specimen
weighing 3.697 g. The composite specimen weighs 1.636 g in water.
If the specific gravity of the fiber and matrix is 2.5 and 1.2, respec-
tively, find the
1. Theoretical volume fraction of fiber and matrix
2. Theoretical density of composite
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3. Experimental density
4. Weight fraction of fiber and matrix
5. Void fraction

3.4 A resin hybrid lamina is made by reinforcing graphite fibers in two
matrices: resin A and resin B. The fiber weight fraction is 40%; for
resin A and resin B, the weight fraction is 30% each. If the specific
gravity of graphite, resin A, and resin B is 1.2, 2.6, and 1.7, respec-
tively, find
1. Fiber volume fraction
2. Density of composite

3.5 Find the elastic moduli of a glass/epoxy unidirectional lamina with
40% fiber volume fraction. Use the properties of glass and epoxy
from Table 3.3 and Table 3.4, respectively.

3.6 Show that

if the fibers are much stiffer than the matrix — that is, Gf >> Gm.
3.7 Assume that fibers in a unidirectional lamina are circularly shaped

and in a square array. Calculate the ratio of fiber diameter to fiber
center-to-center spacing ratio in terms of the fiber volume fraction.

3.8 Circular graphite fibers of 10  μm diameter are packed in a hexagonal
array in an epoxy matrix. The fiber weight fraction is 50%. Find the
fiber-to-fiber spacing between the centers of the fibers. The density
of graphite fibers is 1800 kg/m3 and epoxy is 1200 kg/m3.

3.9 Find the elastic moduli for problem 3.5 using Halphin–Tsai equa-
tions. Assume that the fibers are circularly shaped and are in a square
array. Compare your results with those of problem 3.5.

3.10 A unidirectional glass/epoxy lamina with a fiber volume fraction of
70% is replaced by a graphite/epoxy lamina with the same longitu-
dinal Young’s modulus. Find the fiber volume fraction required in
the graphite/epoxy lamina. Use properties of glass, graphite, and
epoxy from Table 3.1 and Table 3.2.

3.11 Sometimes, the properties of a fiber are determined from the measured
properties of a unidirectional lamina. As an example, find the exper-
imentally determined value of the Poisson’s ratio of an isotropic fiber
from the following measured properties of a unidirectional lamina:
1. Major Poisson’s ratio of composite = 0.27
2. Poisson’s ratio of the matrix = 0.35
3. Fiber volume fraction = 0.65

G
G

V
m

f
12 1

=
−
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3.12 Using elasticity model equations, find the elastic moduli of a glass/
epoxy unidirectional lamina with 40% fiber volume fraction. Use the
properties of glass and epoxy from Table 3.3 and Table 3.4, respec-
tively. Compare your results with those obtained by using the
strength of materials approach and the Halphin–Tsai approach.
Assume that the fibers are circularly shaped and are in a square
array for the Halphin–Tsai approach.

3.13 A measure of degree of orthotropy of a material is given by the ratio
of the longitudinal to transverse Young’s modulus. Given the prop-
erties of glass, graphite, and epoxy from Table 3.1 and Table 3.2 and
using the mechanics of materials approach to find the longitudinal
and transverse Young’s modulus, find the fiber volume fraction at
which the degree of orthotropy is maximum for graphite/epoxy and
glass/epoxy unidirectional laminae.

3.14 What are three common modes of failure of a unidirectional com-
posite subjected to longitudinal tensile load?

3.15 Do high fiber volume fractions increase the transverse strength of a
unidirectional lamina? 

3.16 Find the five strength parameters of a unidirectional glass/epoxy
lamina with 40% fiber volume fraction. Use the properties of glass
and epoxy from Table 3.3 and Table 3.4.

3.17 A rod is designed to carry a uniaxial tensile load of 1400 N with a
factor of safety of two. The designer has two options for the mate-
rials: steel or 66% fiber volume fraction graphite/epoxy. Use the
properties of graphite and epoxy from Table 3.1 and Table 3.2.
Assume the following properties for steel:
• Young’s modulus of steel = 210 GPa
• Poisson’s ratio of steel = 0.3
• Tensile strength of steel = 450 MPa
• Specific gravity of steel = 7.8
The cost of graphite/epoxy is five times that of steel by weight. List

your material of choice if the criterion depends on just
1. Mass
2. Cost

3.18 Find the coefficients of thermal expansion for a 60% unidirectional
glass/epoxy lamina with a 60% fiber volume fraction. Use properties
of glass and epoxy from Table 3.3 and Table 3.4, respectively.

3.19 If one plots the transverse coefficient of thermal expansion, α2, as a
function of fiber volume fraction, Vf, for a unidirectional glass/epoxy
lamina, α2 > αm for a certain fiber volume fraction. Find this range
of fiber volume fraction. Use properties of glass and epoxy from
Table 3.1 and Table 3.2, respectively.
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3.20 Find the fiber volume fraction for which the unidirectional glass/
epoxy lamina transverse thermal expansion coefficient is a maxi-
mum. Use properties of glass and epoxy from Table 3.1 and Table
3.2, respectively.

3.21 Prove31 that it is possible to have the transverse coefficient of thermal
expansion of a unidirectional lamina greater than the coefficient of
thermal expansion of the matrix (α2 > αm) only if

3.22 The coefficient of thermal expansion perpendicular to the fibers of
a unidirectional glass/epoxy lamina is given as 28 μm/m/°C. Use
the properties of glass and epoxy from Table 3.3 and Table 3.4 to
find the coefficient of thermal expansion of the unidirectional glass/
epoxy lamina in the direction parallel to the fibers.

3.23 There are large excursions of temperature in space and thus com-
posites with zero or near zero thermal expansion coefficients are
attractive. Find the volume fraction of the graphite fibers for which
the thermal expansion coefficient is zero in the longitudinal direction
of a graphite/epoxy unidirectional lamina. Use all the properties of
graphite and epoxy from Table 3.1 and Table 3.2, respectively, but
assume that the longitudinal coefficient of thermal expansion of
graphite fiber is –1.3 × 10–6 m/m/°C.

3.24 Find the coefficients of moisture expansion of a glass/epoxy lamina
with 40% fiber volume fraction. Use the properties of glass and
epoxy from Table 3.1 and Table 3.2, respectively.

3.25 Assume a 60% fiber volume fraction glass/epoxy lamina of cuboid
dimensions 25 cm (along the fibers) × 10 cm × 0.125 mm. Epoxy
absorbs water as much as 8% of its weight. Use the properties of
glass and epoxy from Table 3.1 and Table 3.2, respectively, and find
1. Maximum mass of water that the specimen can absorb
2. Change in volume of the lamina if the maximum possible water

is absorbed
Assume that the coefficient of moisture expansion through the thick-
ness is the same as the coefficient of moisture expansion in the
transverse direction and that the glass fibers absorb no moisture.

References

1. Judd, N.C.W. and Wright, W.W., Voids and their effects on the mechanical
properties of composites — an appraisal, SAMPE J., 10, 14, 1978.

E

E

E

E
f

m

f

m

f

m

f

m

>
+

<
+
+

1 1
1

ν
ν

ν
ν

or

1343_book.fm  Page 311  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



312 Mechanics of Composite Materials, Second Edition

2. Geier, M.H., Quality Handbook for Composite Materials, Chapman & Hall, Lon-
don, 1994.

3. Adams, R.D., Damping properties analysis of composites, in Engineered Mate-
rials Handbook, vol. 1, ASM International, Metals Park, OH, 1987. 

4. Hashin, Z., Theory of fiber reinforced materials, NASA tech. rep. contract no:
NAS1-8818, November 1970.

5. Chamis, L.C. and Sendeckyj, G.P., Critique on theories predicting thermoelastic
properties of fibrous composites, J. Composite Mater., 2, 332, 1968.

6. Halphin, J.C. and Tsai, S.W., Effect of environment factors on composite mate-
rials, Air Force tech. rep. AFML-TR-67-423, June 1969.

7. Foye, R.L., An evaluation of various engineering estimates of the transverse
properties of unidirectional composite, SAMPE, 10, 31, 1966.

8. Hewitt, R.L. and Malherbe, M.D.De, An approximation for the longitudinal
shear modulus of continuous fiber composites, J. Composite Mater., 4, 280, 1970.

9. Hashin, Z. and Rosen, B.W., 1964, The elastic moduli of fiber reinforced mate-
rials, ASME J. Appl. Mech., 31, 223, 1964.

10. Hashin, Z., Analysis of composite materials — a survey, ASME J. Appl. Mech.,
50, 481, 1983.

11. Knott, T.W. and Herakovich, C.T., Effect of fiber orthotropy on effective com-
posite properties, J. Composite Mater., 25, 732, 1991.

12. Christensen, R.M., Solutions for effective shear properties in three phase sphere
and cylinder models, J. Mech. Phys. Solids, 27, 315, 1979.

13. Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, McGraw–Hill, New
York, 1970.

14. Maple 9.0, Advancing mathematics. See http://www.maplesoft.com.
15. Hashin, Z., Analysis of properties of fiber composites with anisotropic constit-

uents, ASME J. Appl. Mech., 46, 543, 1979.
16. Hyer, M.W., Stress Analysis of Fiber-Reinforced Materials, WCB McGraw–Hill,

New York, 1998.
17. Hashin, Z., Theory of Fiber Reinforced Materials, NASA CR-1974, 1972. 
18. Whitney, J.M. and Riley, M.B., Elastic properties of fiber reinforced composite

materials, AIAA J., 4, 1537, 1966.
19. Hill, R., Theory of mechanical properties of fiber-strengthened materials — I.

Elastic behavior, J. Mech. Phys. Solids, 12, 199, 1964.
20. Agrawal, B.D. and Broutman, L.J., Analysis and Performance of Fiber Composites,

John Wiley & Sons, New York, 1990.
21. Dow, N.F. and Rosen, B.W., Evaluations of filament reinforced composites for

aerospace structural applications, NASA CR-207, April 1965.
22. Schuerch, H., Prediction of compressive strength in uniaxial boron fiber metal

matrix composites, AIAA J., 4, 102, 1966.
23. Hull, D., An Introduction to Composite Materials, Cambridge University Press,

1981.
24. Hofer, K.E., Rao, N., and Larsen, D., Development of engineering data on

mechanical properties of advanced composite materials, Air Force tech. rep.
AFML-TR-72-205, part 1, September 1972.

25. Kies, J.A., Maximum strains in the resin of fiber-glass composites, NRL rep.
No. 5752, AD-274560, 1962.

26. Carlsson, L.A. and Pipes, R.B., Experimental Characterization of Advanced Com-
posite Materials, Technomic Publishing Company, Inc., Lancaster, PA, 1996.

1343_book.fm  Page 312  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC

www.maplesoft.com


Micromechanical Analysis of a Lamina 313

27. Rosen, B.W., A simple procedure for experimental determination of the longi-
tudinal shear modulus of unidirectional composites, J. Composite Mater., 21, 552,
1972.

28. Schepery, R.A., Thermal expansion coefficients of composite materials based
on energy principles, J. Composite Mater., 2, 380, 1968.

29. Greszak, L.B., Thermoelastic properties of filamentary composites, presented
at AIAA 6th Structures and Materials Conference, April 1965.

30. Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, Technomic Pub-
lishing Company, Inc., Lancaster, PA, 1980.

31. Kaw, A.K., On using a symbolic manipulator in mechanics of composites, ASEE
Computers Educ. J., 3, 61, 1993.

1343_book.fm  Page 313  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



 

315

 

4

 

Macromechanical Analysis of Laminates

 

Chapter Objectives

 

• Understand the code for laminate stacking sequence.
• Develop relationships of mechanical and hygrothermal loads

applied to a laminate to strains and stresses in each lamina.
• Find the elastic moduli of laminate based on the elastic moduli of

individual laminae and the stacking sequence.
• Find the coefficients of thermal and moisture expansion of a laminate

based on elastic moduli, coefficients of thermal and moisture expan-
sion of individual laminae, and stacking sequence.

 

4.1 Introduction

 

In Chapter 2, stress–strain equations were developed for a single lamina. A
real structure, however, will not consist of a single lamina but a laminate
consisting of more than one lamina bonded together through their thickness.
Why? First, lamina thicknesses are on the order of 0.005 in. (0.125 mm),
implying that several laminae will be required to take realistic loads (a typical
glass/epoxy lamina will fail at about only 750 lb per inch [131,350 N/m]
width of a normal load along the fibers). Second, the mechanical properties
of a typical unidirectional lamina are severely limited in the transverse
direction. If one stacks several unidirectional layers, this may be an optimum
laminate for unidirectional loads. However, for complex loading and stiff-
ness requirements, this would not be desirable. This problem can be over-
come by making a laminate with layers stacked at different angles for given
loading and stiffness requirements. This approach increases the cost and
weight of the laminate and thus it is necessary to optimize the ply angles.
Moreover, layers of different composite material systems may be used to
develop a more optimum laminate.
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Similar to what was done in Chapter 2, the macromechanical analysis will
be developed for a laminate. Based on applied in-plane loads of extension,
shear, bending, and torsion, stresses and strains will be found in the local
and global axes of each ply. Stiffnesses of whole laminates will also be
calculated. Because laminates can also be subjected to hygrothermal loads
of temperature change and moisture absorption during processing and ser-
vicing, stresses and strains in each ply will also be calculated due to these
loads. Intuitively, one can see that the strengths, stiffnesses, and hygrother-
mal properties of a laminate will depend on

• Elastic moduli
• Stacking position
• Thickness
• Angle of orientation
• Coefficients of thermal expansion
• Coefficients of moisture expansion

of each lamina.

 

4.2 Laminate Code

 

A laminate is made of a group of single layers bonded to each other. Each
layer can be identified by its location in the laminate, its material, and its
angle of orientation with a reference axis (Figure 4.1). Each lamina is repre-
sented by the angle of ply and separated from other plies by a slash sign.
The first ply is the top ply of the laminate. Special notations are used for

 

FIGURE 4.1

 

Schematic of a laminate.

Fiber direction
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symmetric laminates, laminates with adjacent lamina of the same orientation
or of opposite angles, and hybrid laminates. The following examples illus-
trate the laminate code.

[0/–45/90/60/30] denotes the code for the above laminate. It consists of
five plies, each of which has a different angle to the reference 

 

x

 

-axis. A slash
separates each lamina. The code also implies that each ply is made of the same
material and is of the same thickness. Sometimes, [0/–45/90/60/30]

 

T

 

 may also
denote this laminate, where the subscript 

 

T

 

 stands for a total laminate.

[0/–45/90

 

2

 

/60/0] denotes the laminate above, which consists of six plies.
Because two 90

 

°

 

 plies are adjacent to each other, 90

 

2

 

 denotes them, where
the subscript 2 is the number of adjacent plies of the same angle.

[0/–45/60]

 

s

 

 denotes the laminate above consisting of six plies. The plies
above the midplane are of the same orientation, material, and thickness as
the plies below the midplane, so this is a symmetric laminate. The top three
plies are written in the code, and the subscript 

 

s

 

 outside the brackets repre-
sents that the three plies are repeated in the reverse order.

[0/–45/ ]

 

s

 

 denotes this laminate, which consists of five plies. The num-
ber of plies is odd and symmetry exists at the midsurface; therefore, the 60

 

°

 

ply is denoted with a bar on the top.

 

0
–45
90
60
30

0
–45
90
90
60
0

0
–45
60
60

–45
0

0
–45
60

–45
0

60
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[0

 

Gr

 

/

 

±

 

45

 

B

 

]

 

s

 

 denotes the above laminate. It consists of six plies; the 0

 

°

 

 plies
are made of graphite/epoxy and the 

 

±

 

45

 

°

 

 angle plies are made of boron/
epoxy. Note the symmetry of the laminate. Also, the 

 

±

 

45

 

°

 

 notation indicates
that the 0

 

°

 

 ply should be followed by a +45

 

°

 

 angle ply and then by a –45

 

°

 

angle ply. A notation of 

 

±

 

45

 

°

 

 would indicate the –45

 

°

 

 angle ply is followed
by a +45

 

°

 

 angle ply.

 

4.3 Stress–Strain Relations for a Laminate

 

4.3.1 One–Dimensional Isotropic Beam Stress–Strain Relation

 

Consider a prismatic beam of cross-section 

 

A

 

 (Figure 4.2a) under a simple
load 

 

P

 

; the normal stress at any cross-section is given by

(4.1)

The corresponding normal strain for a linearly elastic isotropic beam is

, (4.2)

where 

 

E

 

 is the Young’s modulus of the beam. Note the assumption that the
normal stress and strain are uniform and constant in the beam and are
dependent on the load 

 

P

 

 being applied at the centroid of the cross section.
Now consider the same prismatic beam in a pure bending moment 

 

M

 

(Figure 4.2b). The beam is assumed to be initially straight and the applied
loads pass through a plane of symmetry to avoid twisting. Based on the
elementary strength of material assumptions, 

• The transverse shear is neglected
• Cross-sections retain their original shape
• The 

 

yz

 

-plane before and after bending stays the same and normal
to the 

 

x

 

-axis.

 

Graphite/epoxy 0
Boron/epoxy 45
Boron/epoxy –45
Boron/epoxy –45
Boron/epoxy 45
Graphite/epoxy 0

x =
P
A

.σ

x =
P

AEε
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Then, at a distance, 

 

z

 

, from the centroidal line,

, (4.3)

where 

 

ρ

 

 is the radius of curvature of the beam.
If the material is linearly elastic and isotropic,

(4.4)

and

 

FIGURE 4.2

 

A beam under (a) axial load, (b) bending moment, and (c) combined axial and bending moment.
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, (4.5)

where and is defined as the second moment of area, and 

 

M

 

 is the

overall bending moment.
Now, if the same beam is under the influence of axial load 

 

P

 

 and bending
moment 

 

M

 

 (Figure 4.2c), then

(4.6)

, (4.7)

where 

 

ε

 

0

 

 is the strain at 

 

z

 

 = 0 that is the centroid line of the beam, and 

 

κ

 

 =
curvature of the beam. This shows that, under a combined uniaxial and
bending load, the strain varies linearly through the thickness of the beam.
Introducing the stress–strain relations of a laminate in this manner has been
important because it forms a clear basis for developing similar relationships
for a laminate in the next section. There, the strain-displacement equations,
similar to Equation (4.7), will be developed in two dimensions.

 

4.3.2 Strain-Displacement Equations

 

In the previous section, the axial strain in a beam was related to the midplane
strain and curvature of the beam under a uniaxial load and bending. In this
section, similar relationships will be developed for a plate under in-plane
loads such as shear and axial forces, and bending and twisting moments
(Figure 4.3). The classical lamination theory is used to develop these rela-
tionships. The following assumptions are made in the classical lamination
theory to develop the relationships

 

1

 

:

• Each lamina is orthotropic.
• Each lamina is homogeneous.
• A line straight and perpendicular to the middle surface remains

straight and perpendicular to the middle surface during deformation
(

 

γ

 

xz

 

 = 

 

γ

 

yz

 

 = 0).

xx =
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• The laminate is thin and is loaded only in its plane (plane stress) (

 

σ

 

z

 

= 

 

τ

 

xz

 

 = 

 

τ

 

yz

 

 = 0).
• Displacements are continuous and small throughout the laminate

(

 

⏐

 

u

 

⏐

 

, 

 

⏐

 

v

 

⏐

 

, 

 

⏐

 

w

 

⏐

 

 << 

 

⏐

 

h

 

⏐

 

), where 

 

h

 

 is the laminate thickness.
• Each lamina is elastic.
• No slip occurs between the lamina interfaces.

Consider a side view of a plate in the Cartesian 

 

x–y–z

 

 coordinate system
as shown in Figure 4.4. The origin of the plate is at the midplane of the plate,
that is, 

 

z

 

 = 0. Assume 

 

u

 

0

 

, 

 

v

 

0

 

, and 

 

w

 

0

 

 to be displacements in the 

 

x

 

, 

 

y

 

, and 

 

z

 

directions, respectively, at the midplane and 

 

u

 

, 

 

v

 

, and 

 

w

 

 are the displacements
at any point in the 

 

x

 

, 

 

y

 

, and 

 

z

 

 directions, respectively. At any point other than
the midplane, the two displacements in the 

 

x–y

 

 plane will depend on the
axial location of the point and the slope of the laminate midplane with the

 

x

 

 and 

 

y

 

 directions. For example, as shown in Figure 4.4,

 

FIGURE 4.3

 

Resultant forces and moments on a laminate.

 

FIGURE 4.4

 

Figure showing the relationship between displacements through the thickness of a plate to
midplane displacements and curvatures.
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(4.8)

where

(4.9)

Thus, the displacement 

 

u

 

 in the 

 

x

 

-direction is

(4.10)

Similarly, taking a cross-section in the 

 

y–z

 

 plane would give the displace-
ment in the 

 

y

 

-direction as

(4.11)

Now, from the definitions of the three strains (Equation 2.16) in the 

 

x–y

 

plane and Equation (4.10) and Equation (4.11),

(4.12a)

(4.12b)

and

(4.12c)
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The strain-displacement equations (4.12a to 4.12c) can be written in matrix
form as

(4.13)

The two arrays on the right-hand sides of Equation (4.13) are the definitions
of the midplane strains:

(4.14)

and the midplane curvatures

(4.15)

respectively.
Therefore, the laminate strains can be written as

(4.16)
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324 Mechanics of Composite Materials, Second Edition

Equation (4.16) shows the linear relationship of the strains in a laminate
to the curvatures of the laminate. It also indicates that the strains are
independent of the x and y coordinates. Also, note the similarity between
Equation (4.16) and Equation (4.7), which was developed for the one-
dimensional beam.

Example 4.1

A 0.010 in. thick laminate is subjected to in-plane loads. The midplane strains
and curvatures are given as follows:

and

.

Find the global strains at the top surface of the laminate.

Solution

Because the value of z in Equation (4.16) is measured from the midplane, z
= –0.005 in. at the top surface of the laminate. The global strains at the top
surface from Equation (4.16) are

.
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Macromechanical Analysis of Laminates 325

4.3.3 Strain and Stress in a Laminate

If the strains are known at any point along the thickness of the laminate, the
stress–strain Equation (2.103) calculates the global stresses in each lamina:

(4.17)

The reduced transformed stiffness matrix, corresponds to that of the ply
located at the point along the thickness of the laminate.

Substituting Equation (4.16) into Equation (4.17),

(4.18)

From Equation (4.18), the stresses vary linearly only through the thickness
of each lamina (Figure 4.5). The stresses, however, may jump from lamina
to lamina because the transformed reduced-stiffness matrix changes
from ply to ply because depends on the material and orientation of the
ply. These global stresses can then be transformed to local stresses through
the transformation Equation (2.94). Local strains can be transformed to
global strains through Equation (2.99). The local stresses and strains can
then be used in the failure criteria, discussed in Chapter 2, to find when a
laminate fails. The only question remaining in the macromechanical analysis
of a laminate now is how to find the midplane strains and curvatures if the

FIGURE 4.5
Strain and stress variation through the thickness of the laminate.
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loads applied to the laminate are known. This question is answered in the
next section.

4.3.4 Force and Moment Resultants Related to Midplane Strains 
and Curvatures

The midplane strains and plate curvatures in Equation (4.16) are the
unknowns for finding the lamina strains and stresses. However, Equation
(4.18) gives the stresses in each lamina in terms of these unknowns. The
stresses in each lamina can be integrated through the laminate thickness to
give resultant forces and moments (or applied forces and moments). The
forces and moments applied to a laminate will be known, so the midplane
strains and plate curvatures can then be found. This relationship between
the applied loads and the midplane strains and curvatures is developed in
this section.

Consider a laminate made of n plies shown in Figure 4.6. Each ply has a
thickness of tk. Then the thickness of the laminate h is

(4.19)

Then, the location of the midplane is h/2 from the top or the bottom surface
of the laminate. The z-coordinate of each ply k surface (top and bottom) is
given by 

Ply 1:

FIGURE 4.6
Coordinate locations of plies in a laminate.
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.

Ply k: (k = 2, 3,…n – 2, n – 1):

.

Ply n:

. (4.20)

Integrating the global stresses in each lamina gives the resultant forces per
unit length in the x–y plane through the laminate thickness as

(4.21a)

(4.21b)

, (4.21c)

where h/2 is the half thickness of the laminate.
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Similarly, integrating the global stresses in each lamina gives the result-
ing moments per unit length in the x–y plane through the laminate thick-
ness as

(4.22a)

(4.22b)

(4.22c)

where
Nx, Ny = normal force per unit length

Nxy = shear force per unit length
Mx, My = bending moments per unit length

Mxy = twisting moments per unit length

The resulting force and moment in the laminate are written in matrix form
per Equation (4.21) and Equation (4.22) as 

(4.23a)

, (4.23b)

which gives
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(4.24a)

(4.24b)

Substituting Equation (4.18) in Equation (4.24), the resultant forces and
moments can be written in terms of the midplane strains and curvatures:

(4.25a)

. (4.25b)

In Equation (4.25a) and Equation (4.25b), the midplane strains and plate
curvatures are independent of the z-coordinate. Also, the transformed
reduced stiffness matrix, ,is constant for each ply. Therefore, Equation
(4.25) can be rewritten as
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(4.26a)

(4.26b)

Knowing that

and substituting in Equation (4.26) gives
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, (4.27a)

, (4.27b)

where

(4.28a)

(4.28b)

(4.28c)

The [A], [B], and [D] matrices are called the extensional, coupling, and
bending stiffness matrices, respectively. Combining Equation (4.27a) and
Equation (4.27b) gives six simultaneous linear equations and six
unknowns as:

. (4.29)

The extensional stiffness matrix [A] relates the resultant in-plane forces
to the in-plane strains, and the bending stiffness matrix [D] relates the
resultant bending moments to the plate curvatures. The coupling stiffness
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matrix [B] couples the force and moment terms to the midplane strains and
midplane curvatures.

The following are the steps for analyzing a laminated composite subjected
to the applied forces and moments:

1. Find the value of the reduced stiffness matrix [Q] for each ply using
its four elastic moduli, E1, E2, ν12, and G12 in Equation (2.93).

2. Find the value of the transformed reduced stiffness matrix for
each ply using the [Q] matrix calculated in step 1 and the angle of
the ply in Equation (2.104) or in Equation (2.137) and Equation
(2.138).

3. Knowing the thickness, tk, of each ply, find the coordinate of the top
and bottom surface, hi, i = 1…, n, of each ply, using Equation (4.20).

4. Use the matrices from step 2 and the location of each ply from
step 3 to find the three stiffness matrices [A], [B], and [D] from
Equation (4.28).

5. Substitute the stiffness matrix values found in step 4 and the applied
forces and moments in Equation (4.29).

6. Solve the six simultaneous equations (4.29) to find the midplane
strains and curvatures.

7. Now that the location of each ply is known, find the global strains
in each ply using Equation (4.16).

8. For finding the global stresses, use the stress–strain Equation (2.103).
9. For finding the local strains, use the transformation Equation (2.99).

10. For finding the local stresses, use the transformation Equation (2.94).

Example 4.2

Find the three stiffness matrices [A], [B], and [D] for a three-ply [0/30/–45]
graphite/epoxy laminate as shown in Figure 4.7. Use the unidirectional

FIGURE 4.7
Thickness and coordinate locations of the three-ply laminate in Example 4.2 and Example 4.3.
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properties from Table 2.1 of graphite/epoxy. Assume that each lamina has
a thickness of 5 mm.

Solution

From Example 2.6, the reduced stiffness matrix for the 0° graphite/epoxy
ply is

.

From Equation (2.104), the transformed reduced stiffness matrix for
each of the three plies is

.

The total thickness of the laminate is h = (0.005)(3) = 0.015 m.
The midplane is 0.0075 m from the top and the bottom of the laminate.

Thus, using Equation (4.20), the locations of the ply surfaces are

h0 = –0.0075 m
h1 = –0.0025 m
h2 = 0.0025 m
h3 = 0.0075 m

From Equation (4.28a), the extensional stiffness matrix [A] is
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.

From Equation (4.28b), the coupling stiffness matrix [B] is
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.

From Equation (4.28c), the bending stiffness matrix [D] is

.

Example 4.3

A [0/30/–45] graphite/epoxy laminate is subjected to a load of Nx = Ny =
1000 N/m. Using the properties of unidirectional graphite/epoxy from Table
2.1 and assuming that each lamina is 5 mm thick, find
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1. Midplane strains and curvatures
2. Global and local stresses on top surface of 30° ply
3. Percentage of load, Nx, taken by each ply

Solution

1. From Example 4.2, the three stiffness matrices [A], [B], and [D] are

,

,

.

Because the applied load is Nx = Ny = 1000 N/m, the midplane strains
and curvatures can be found by solving the following set of six
simultaneous linear equations (Equation 4.29):
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This gives

.

2. The strains and stresses at the top surface of the 30° ply are found
as follows. First, the top surface of the 30° ply is located at z = h1 =
–0.0025 m. From Equation (4.16),

.

Using the stress–strain Equation (2.103) for an angle ply,

.

The local strains and local stress as in the 30° ply at the top surface
are found using transformation Equation (2.99) as
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and transformation Equation (2.94) as

.

The values of global and local strains and stresses at the top, middle,
and bottom surfaces of each ply are shown in Table 4.1 to Table 4.4.

3. The portion of the load, Nx, taken by each ply can be calculated by
integrating the stress, σxx, through the thickness of each ply. How-
ever, because the stress varies linearly through each ply, the portion
of the load, Nx, taken is simply the product of the stress, σxx, at the
middle of each ply (see Table 4.2) and the thickness of the ply.

TABLE 4.1

Global Strains (m/m) in Example 4.3

Ply no. Position εx εy γxy

1 (0°) Top
Middle
Bottom

8.944 × 10–8

1.637 × 10–7
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–3.836 × 10–6

–2.811 × 10–6

–1.785 × 10–6
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Bottom
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Portion of load Nx taken by 0° ply = (4.464 × 104)(5 × 10–3) = 223.2 N/m

Portion of load Nx taken by 30° ply = (1.063 × 105)(5 × 10–3) = 531.5 N/m

Portion of load Nx taken by –45° ply = (4.903 × 104)(5 × 10–3) = 245.2 N/m.

TABLE 4.2

Global Stresses (Pa) in Example 4.3

Ply no. Position σx σy τxy

1 (0°) Top
Middle
Bottom

3.351 × 104

4.464 × 104

5.577 × 104

6.188 × 104

5.359 × 104

4.531 × 104

–2.750 × 104

–2.015 × 104

–1.280 × 104

2 (30°) Top
Middle
Bottom

6.930 × 104

1.063 × 105

1.434 × 105

7.391 × 104

7.747 × 104

8.102 × 104

3.381 × 104

5.903 × 104

8.426 × 104

3 (–45°) Top
Middle
Bottom

1.235 × 105

4.903 × 104

–2.547 × 104

1.563 × 105

6.894 × 104

–1.840 × 104

–1.187 × 105

–3.888 × 104

4.091 × 104

TABLE 4.3

Local Strains (m/m) in Example 4.3

Ply no. Position ε1 ε2 γ12

1 (0°) Top
Middle
Bottom

8.944 × 10–8

1.637 × 10–7

2.380 × 10–7

5.955 × 10–6

5.134 × 10–6

4.313 × 10–6

–3.836 × 10–6

–2.811 × 10–6

–1.785 × 10–6

2 (30°) Top
Middle
Bottom

4.837 × 10–7

7.781 × 10–7

1.073 × 10–6

4.067 × 10–6

3.026 × 10–6

1.985 × 10–6

2.636 × 10–6

2.374 × 10–6

2.111 × 10–6

3 (–45°) Top
Middle
Bottom

1.396 × 10–6

5.096 × 10–7

–3.766 × 10–7

1.661 × 10–6

1.800 × 10–6

1.940 × 10–6

–2.284 × 10–6

–1.388 × 10–6

–4.928 × 10–7

TABLE 4.4

Local Stresses (Pa) in Example 4.3

Ply no. Position σ1 σ2 σ12

1 (0°) Top
Middle
Bottom

3.351 × 104

4.464 × 104

5.577 × 104

6.188 × 104

5.359 × 104

4.531 × 104

–2.750 × 104

–2.015 × 104

–1.280 × 104

2 (30°) Top
Middle
Bottom

9.973 × 104

1.502 × 105

2.007 × 105

4.348 × 104

3.356 × 104

2.364 × 104

1.890 × 104

1.702 × 104

1.513 × 04

3 (–45°) Top
Middle
Bottom

2.586 × 105

9.786 × 104

–6.285 × 104

2.123 × 104

2.010 × 104

1.898 × 104

–1.638 × 104

–9.954 × 103

–3.533 × 103
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340 Mechanics of Composite Materials, Second Edition

The sum total of the loads shared by each ply is 1000 N/m, (223.2
+ 531.5 + 245.2), which is the applied load in the x-direction, Nx.

Percentage of load Nx taken by 0° ply

Percentage of load Nx taken by 30° ply

Percentage of load Nx taken by –45° ply .

4.4 In-Plane and Flexural Modulus of a Laminate

Laminate engineering constants are another way of defining laminate stiff-
nesses. Showing Equation (4.29), in short notation,

, (4.30)

where
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.

Inverting Equation (4.30) gives

, (4.31)

where

(4.32a)

and

. (4.32b)

The [A*], [B*], and [D*] matrices are called the extensional compliance
matrix, coupling compliance matrix, and bending compliance matrix,
respectively.

4.4.1 In-Plane Engineering Constants of a Laminate

For a symmetric laminate, [B] = 0 and it can be shown that [A*] = [A]–1 and
[D*] = [D]–1. Then, from Equation (4.31)

. (4.33)
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The preceding equations allow us to define effective in-plane moduli in terms
of the extensional compliance matrix [A*] as follows2:

Effective in-plane longitudinal modulus, Ex:
Apply the load Nx ≠ 0, Ny = 0, Nxy = 0 and then substitute in Equation

(4.33) as

, (4.34)

which gives

Now the effective in-plane longitudinal modulus Ex is

(4.35)

Effective in-plane transverse modulus, Ey:
Apply the load Nx = 0, Ny ≠ 0, Nxy = 0 and then substitute in Equation

(4.33) as

, (4.36)

which gives

The effective in-plane transverse modulus Ey is

(4.37)

Effective in-plane shear modulus Gxy:
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Macromechanical Analysis of Laminates 343

Apply Nx = 0, Ny = 0, Nxy ≠ 0 and then substitute in Equation (4.33) as

, (4.38)

which gives

.

The effective in-plane shear modulus Gxy is

(4.39)

Effective in-plane Poisson’s ratio, νxy:
From the derivation for the effective longitudinal Young’s modulus, Ex,

where the load applied is Nx ≠ 0, Ny = 0, Nxy = 0, from Equation (4.34), we have

(4.40)

. (4.41)

The effective Poisson’s ratio, νxy, is then defined as

(4.42)

Effective in-plane Poisson’s ratio νyx:
From the derivation for the effective transverse Young’s modulus, Ey,

where the load applied is Nx = 0, Ny ≠ 0, Nxy = 0, from Equation (4.36), we have

(4.43)

(4.44)

The effective Poisson’s ratio, νyx, is then defined as
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(4.45)

Note here that a reciprocal relationship exists between the two effective
Poisson’s ratios νxy and νyx. From Equation (4.35) and Equation (4.42),

(4.46a)

From Equation (4.37) and Equation (4.45),

(4.46b)

From Equation (4.46a) and Equation (4.46b),

(4.47)

4.4.2 Flexural Engineering Constants of a Laminate

Also, for a symmetric laminate, the coupling matrix [B] = 0; then, from
Equation (4.31),

. (4.48)
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Macromechanical Analysis of Laminates 345

Equation (4.48) allows us to define effective flexural moduli in terms of
the bending compliance matrix [D*] as follows2:

Apply Mx ≠ 0, My = 0, Mxy = 0 and then substitute in Equation (4.48) as

, (4.49)

which gives

. (4.50)

The effective flexural longitudinal modulus, is

(4.51)

Similarly, one can show that the other flexural elastic moduli are given by

(4.52)

(4.53)

(4.54)

. (4.55)

Flexural Poisson’s ratios and also have a reciprocal relationship, as
given by

(4.56)
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In unsymmetric laminates, the stress–strain relationships in Equation (4.29)
are not uncoupled between force and moment terms. Therefore, in those
cases, the effective in-plane stiffness constants and flexural stiffness constants
are not meaningful.

Example 4.4

Find the in-plane and flexural stiffness constants for a three-ply
graphite/epoxy laminate. Use the unidirectional properties of graphite/
epoxy from Table 2.1. Each lamina is 5 mm thick.

Solution

From Example 4.2, the transformed reduced stiffness matrix is

.

Then, from Equation (2.104), the transformed reduced stiffness matrix is

.

The total thickness of the laminate is h = 0.005 × 3 = 0.015 m.
The midplane is 0.0075 m from the top and bottom surfaces of the laminate.

Thus, 

h0 = –0.0075 m

h1 = –0.0025 m

h2 = 0.0025 m

h3 = 0.0075 m.

From Equation (4.28a),

[ / ]0 90 s

[ ]
. .

. .
.

Q 0

181 8 2 897 0
2 897 10 35 0

0 0 7 17
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
(( )109 Pa

[ ]
. .

. .
.

Q 90

10 35 2 897 0
2 897 181 8 0

0 0 7 17
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥⎥
( )109 Pa

A Q h hij ij k k k

k

= − −
=

∑[ ] ( )1

1

3

1343_book.fm  Page 346  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC
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,

which gives

.

Inverting the extensional stiffness matrix [A], we get the extensional com-
pliance matrix as

The in-plane engineering constants are found as follows:
From Equation (4.35),

;

from Equation (4.37),

.
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From Equation (4.39),

,

from Equation (4.42),

,

and from Equation (4.45),

.

Note that the reciprocal relationship of the Poisson’s ratios:

can be verified with the preceding values.
From Equation (4.28c),
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which gives

.

Inverting the bending stiffness matrix [D], we get

The flexural engineering constants are found as follows:
From Equation (4.51),

,

and from Equation (4.52),

.

From Equation (4.53),

,

from Equation (4.54),

,

and from Equation (4.55),
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The reciprocal relationship of the Poisson’s ratios:

can be verified with the preceding values. Also, note that in the preceding
example of a cross-ply laminate, the in-plane shear moduli and the flexural
shear moduli are the same.

4.5 Hygrothermal Effects in a Laminate

In Section 2.9, the hygrothermal strains were calculated for an angle and
unidirectional lamina subjected to a temperature change, ΔT, and moisture
content change, ΔC. As mentioned, if the lamina is free to expand, no residual
mechanical stresses would develop in the lamina at the macromechanical
level. However, in a laminate with various plies of different angles or mate-
rials, each individual lamina is not free to deform. This results in residual
stresses in the laminate.3

4.5.1 Hygrothermal Stresses and Strains

Sources of hygrothermal loads include cooling down from processing tem-
peratures, operating temperatures different from processing temperatures,
and humid environments such as in aircraft flying at high altitudes. Each
ply in a laminate gets stressed by the deformation differences of adjacent
lamina. Only the strains in excess of or less than the hygrothermal strains
in the unrestricted lamina produce the residual stresses. These strain differ-
ences are called mechanical strains and the stresses caused by them are called
mechanical stresses.

The mechanical strains induced by hygrothermal loads alone are

, (4.57)

where the superscript M represents the mechanical strains, T stands for
the free expansion thermal strain, and C refers to the free expansion mois-
ture strains.
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Using stress–strain Equation (2.103), the hygrothermal stresses in a lamina
are then given by

, (4.58)

where TC stands for combined thermal and moisture effects. Hygrothermal
stresses induce zero resultant forces and moments in the laminate and thus
in the n-ply laminate shown in Figure 4.6,

, (4.59)

. (4.60)

From Equation (4.58) to Equation (4.60),

, (4.61a)

and

. (4.61b)

Substituting Equation (4.57) and Equation (4.16) in Equation (4.61) gives
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, (4.62)

 (4.63)

The four arrays on the right-hand sides of Equation (4.62) and Equation
(4.63) are given by

, (4.64)

, (4.65)

, (4.66)

. (4.67)

The loads in Equation (4.64) to Equation (4.67) are called fictitious hygro-
thermal loads and are known. One can calculate the midplane strains and
curvatures by combining Equation (4.62) and Equation (4.63):
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. (4.68)

Using Equation (4.16),

, (4.69)

one can calculate the global strains in any ply of the laminate. These global
strains are the actual strains in the laminate. However, it is the difference
between the actual strains and the free expansion strains, which results in
mechanical stresses. The mechanical strains in the kth ply are given by Equa-
tion (4.57) as 

(4.70)

The mechanical stresses in the kth ply are then calculated by

. (4.71)

The fictitious hygrothermal loads represent the loads in Equation (4.64)
to Equation (4.67), which one can apply mechanically to induce the same
stresses and strains as by the hygrothermal load. Thus, if both mechanical
and hygrothermal loads are applied, one can add the mechanical loads to
the fictitious hygrothermal loads to find the ply-by-ply stresses and strains
in the laminate or separately apply the mechanical and hygrothermal loads
and then add the resulting stresses and strains from the solution of the
two problems.

Example 4.5

Calculate the residual stresses at the bottom surface of the 90° ply in a two-
ply [0/90] graphite/epoxy laminate subjected to a temperature change of
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–75°C. Use the unidirectional properties of a graphite/epoxy lamina from
Table 2.1. Each lamina is 5 mm thick. 

Solution

From Table 2.1, the coefficients of thermal expansion for a 0° graphite/epoxy
ply are

.

From Equation (2.175), the transformed coefficients of thermal expansion
are

and

.

From Example 4.4, the reduced transformed stiffness matrices are

.

According to Equation (4.64), the fictitious thermal forces are
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According to Equation (4.65), the fictitious thermal moments are

Using Equation (4.28), the stiffness matrices [A], [B], and [D] are calcu-
lated as
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These stiffness matrices, [A], [B], and [D], are to be used in Equation (4.68)
to give the midplane strains and curvatures:

This gives
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Macromechanical Analysis of Laminates 357

Equation (4.16) gives the actual strains at the bottom surface (h2 = 0.005)
of the 90° ply as

.

The mechanical strains result in the residual stresses. Thus, if one subtracts
the strains that would have been caused by free expansion from the actual
strains, one can calculate the mechanical strains. Equation (2.179) gives the
free expansion thermal strains in the 90° ply:

.

From Equation (4.57), the mechanical strains at the bottom of the 90° ply
are thus:

.
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The stress–strain Equation (4.71) gives the mechanical stresses at the bot-
tom surface of the 90° ply as

The global strains and stresses in all the plies of the laminate are given in
Table 4.5 and Table 4.6, respectively.

4.5.2 Coefficients of Thermal and Moisture Expansion of Laminates

The concept of finding coefficients of thermal and moisture expansion of
laminates is again well suited only for symmetric laminates because, in this
case, the coupling stiffness matrix [B] = 0 and no bending occurs under
hygrothermal loads.

TABLE 4.5

Global Strains for Example 4.3

Ply no. Position εx εy γxy

1 (0°) Top
Middle
Bottom

2.475 × 10–4

–7.160 × 10–5
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–3.907 × 10–4

0.0
0.0
0.0

2 (90°) Top
Middle
Bottom

–3.907 × 10–4

–7.098 × 10–4

–1.029 × 10–3

–3.907 × 10–4

–7.160 × 10–5

2.475 × 10–4

0.0
0.0
0.0
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The coefficients of thermal expansion are defined as the change in length
per unit length per unit change of temperature. Three coefficients of thermal
expansion, one in direction x (αx) and the others in direction y (αy) and in
the plane xy (αxy), are defined for a laminate.

Assuming ΔT = 1 and C = 0,

(4.72)

where [NT] is the resultant thermal force given by Equation (4.64) corre-
sponding to ΔT = 1 and ΔC = 0.

Similarly, assuming ΔT = 0 and ΔC = 1, the moisture expansion coefficients
can be defined as

, (4.73)

where [NC] is the resultant moisture force given by Equation (4.66) corre-
sponding to ΔT = 0 and ΔC = 1.

Example 4.6

Find the coefficients of thermal and moisture expansion of a graph-
ite/epoxy laminate. Use the properties of a unidirectional graphite/epoxy
lamina from Table 2.1.

Solution

From Example 4.4, the extensional compliance matrix is

Corresponding to a temperature change of ΔT = 1°C, the fictitious thermal
forces are
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.

Equation (4.72) and the extensional compliance matrix from Example 4.4
then give the coefficients of thermal expansion for the laminate:

Corresponding to a moisture content of ΔC = 1 kg/kg, the fictitious mois-
ture forces are
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Equation (4.73) gives the coefficients of moisture expansion for the lami-
nate as

.
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4.5.3 Warpage of Laminates

In laminates that are not symmetric, a temperature difference results in out-
of-plane deformations. This deformation is also called warpage4 and is cal-
culated by integrating the curvature-displacement Equation (4.15):

, (4.74a)

, (4.74b)

(4.74c)

From the integration of Equation (4.74), the out-of-plane deflection, w, can
be derived. Integrating Equation (4.74a),

(4.75)

where f1(y) and f2(y) are unknown functions. Substituting Equation (4.75) in
Equation (4.74c),

. (4.76)

This gives

(4.77)

where C1 is an unknown constant of integration. From Equation (4.75) and
Equation (4.77),

. (4.78)

Substituting Equation (4.78) in Equation (4.74b),

. (4.79)
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This gives

. (4.80)

Substituting Equation (4.80) in Equation (4.78),

(4.81)

The terms (C1x + C2y + C3) are simply rigid body motion terms and one
can relate the warpage to be

(4.82)

Example 4.7

Find the warpage in [0/90] graphite/epoxy laminate under a temperature
change of –75°C. Use the properties of graphite/epoxy from Table 2.1.

Solution

From Example 4.5, the midplane curvatures of the laminate are given by

.

Thus, the warpage at any point (x,y) on the plane from Equation (4.82) is
w = 0.6383 × 10–1 x2 –0.6383 × 10–1 y2. Note that this warpage is calculated
relative to the point (x,y) = (0,0).

4.6 Summary

In this chapter, we introduced the laminate code for laminate stacking
sequence. Then, we developed the theory for the elastic response of a lam-
inate subjected to mechanical loads such as in-plane loads and bending
moments, and thermal and hygrothermal loads. This theory allowed us to
calculate ply-by-ply global as well as local stresses and strains in each ply,
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and also to calculate the effective in-plane and bending flexural moduli for
a laminate.

Key Terms

Laminate code
Classical lamination theory
Midplane strains and stresses
Ply-by-ply strains and stresses
In-plane and flexural modulus
Hygrothermal stresses in a laminate
Warpage

Exercise Set

4.1 Condense the following expanded laminate codes:
1. [0/45/–45/90]
2. [0/45/–45/–45/45/0]
3. [0/90/60/60/90/0]
4. [0/45/60/45/0]
5. [45/–45/45/–45/–45/45/–45/45]

4.2 Expand the following laminate codes:
1. [45/–45]S

2. [45/–452/90]S

3. [45/0]3S

4. [45/±30]2

5. [45/±30]2

4.3 A laminate of 0.015 in. thickness under a complex load gives the
following midplane strains and curvatures:
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Find the global strains at the top, middle and bottom surface of the
laminate.

4.4 Do global strains vary linearly through the thickness of a laminate?
4.5 Do global stresses vary linearly through the thickness of a laminate?
4.6 The global strains at the top surface of a [0/45/60]s laminate are

given as

and the midplane strains in this laminate are given as

What are the midplane curvatures in this laminate, if each ply is
0.005 in. thick?

4.7 The global stresses in a three-ply laminate are given at the top and
bottom surface of each ply. Each ply is 0.005 in. thick. Find the
resultant forces and moments on the laminate if it has a top cross-
section of 4 in. × 4 in.

 Ply no.
σxx (psi)

Top Bottom

1
2
3

–3.547 × 104

–9.267 × 103

7.201 × 103

–2.983 × 103

1.658 × 104

2.435 × 104

Ply no.
σyy (psi)

Top Bottom

1
2
3

–2.425 × 104

–1.638 × 104

3.155 × 103

–7.087 × 103

9.432 × 103

3.553 × 104

Ply no.
τxy (psi)

Top Bottom

1
2
3

–2.946 × 104

–1.299 × 104

5.703 × 103

–5.564 × 103

1.317 × 104

2.954 × 104
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4.8 Find the three stiffness matrices [A], [B], and [D] for a [0/60/–60]
glass/epoxy laminate. Use the properties of glass/epoxy unidirec-
tional lamina from Table 2.2 and assume the lamina thickness to be
0.005 in. Also, find the mass of the laminate if the top surface area
of the laminate is 5 in. × 7 in. Use densities of glass and epoxy from
Table 3.3 and Table 3.4, respectively.

4.9 Give expressions for the stiffness matrices [A], [B], and [D] for an
isotropic material in terms of its thickness, t, Young’s modulus, E,
and Poisson’s ratio, ν.

4.10 Show that, for a symmetric laminate, the coupling stiffness matrix
is equal to zero.

4.11 A beam is made of two bonded isotropic strips as shown in the
Figure 4.8. The two strips are of equal thickness. Find the stiffness
matrices [A], [B], and [D].

4.12 Rewrite the expressions for the stiffness matrices [A], [B], and [D]
in terms of the transformed reduced stiffness matrix elements, thick-
ness of each ply, and the location of the middle of each ply with
respect to the midplane of the laminate. This is called the parallel
axis theorem for the laminate stiffness matrices.

4.13 Find the local stresses at the top of the 60° ply in a [0/60/–60]
graphite/epoxy laminate subjected to a bending moment of Mx = 50
N-m/m. Use the properties of a unidirectional graphite/epoxy lam-
ina from Table 2.1 and assume the lamina thickness to be 0.125 mm.
What is the percentage of the bending moment load taken by each
of the three plies?

4.14 Find the forces and moments required in a [0/60/–60] graphite/
epoxy laminate to result in bending curvature of κx = 0.1 in.–1 and
κy = 0.1 in.–1. Use the properties of a unidirectional graphite/epoxy
lamina from Table 2.2 and assume the lamina thickness to be 0.005 in.

4.15 Find the extensional and flexural engineering elastic moduli of a
[45/–45]s graphite/epoxy laminate. Verify the reciprocal relation-
ships for the Poisson’s ratios. Use the properties of a unidirectional
graphite/epoxy lamina from Table 2.1.

FIGURE 4.8
Laminate made of two isotropic plies.

Strip 1, E1, V1

Strip 2, E2, V2
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4.16 Find the residual stresses at the top of the 60° ply in a [0/60/–60]
graphite/epoxy laminate subjected to a temperature change of
–150°F. Each lamina is 0.005 in. thick; use the properties of a unidi-
rectional graphite/epoxy lamina from Table 2.2.

4.17 For a [0/45]s glass/epoxy laminate, find the coefficients of the
thermal expansion. Use the properties of a unidirectional glass/
epoxy lamina from Table 2.1. Assume thickness of each lamina as
0.125 mm. Also, find the change in the volume of the laminate if
the cross-sectional area is 100 mm × 50 mm and the temperature
change is 100°C.

4.18 Find the coefficients of moisture expansion of a [0/45]s graphite/
epoxy laminate. The properties of a unidirectional graphite/epoxy
lamina are given in Table 2.1. Assume thickness of each lamina as
0.125 mm.

4.19 Find the local stresses at the middle of the 30° ply in a [30/45] glass/
epoxy laminate that is subjected to the following mechanical and
hygrothermal loads: Nx = 108 lb/in.; ΔT = –100°F; ΔC = 5%. Use the
properties of a unidirectional glass/epoxy lamina given in Table 2.2.
The thickness of each lamina is 0.005 m.

4.20 Find the difference between the vertical deflection (through the
thickness) at the center and the four corners of a [0/60] graphite/
epoxy cuboid laminate. The thickness of each ply is 0.005 in. and
the top surface dimensions of the laminate are 20 in. × 10 in. The
laminate is subjected to a temperature change of –75°F. Use the
properties of a unidirectional graphite/epoxy lamina given in
Table 2.2.
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5

 

Failure, Analysis, and Design of Laminates

 

Chapter Objectives

 

• Understand the significance of stiffness, and hygrothermal and
mechanical response of special cases of laminates.

• Establish the failure criteria for laminates based on failure of indi-
vidual lamina in a laminate.

• Design laminated structures such as plates, thin pressure vessels,
and drive shafts subjected to in-plane and hygrothermal loads.

• Introduce other mechanical design issues in laminated composites.

 

5.1 Introduction

 

The design of a laminated composite structure, such as a flat floor panel or
a pressure vessel, starts with the building block of laminae, in which fiber
and matrix are combined in a manufacturing process such as filament wind-
ing or prepregs. The material of the fiber and matrix, processing factors such
as packing arrangements, and fiber volume fraction determine the stiffness,
strength, and hygrothermal response of a single lamina. These properties
can be found by using the properties of the individual constituents of the
lamina or by experiments, as explained in Chapter 3. Then the laminate can
have variations in material systems and in stacking sequence of plies to tailor
a composite for a particular application.

In Chapter 4, we developed analysis to find the stresses and strains in a
laminate under in-plane and hygrothermal loads. In this chapter, we will
first use that analysis and failure theories studied in Chapter 2 to predict
failure in a laminate. Then the fundamentals learned in Chapter 4 and the
failure analysis discussed in this chapter will be used to design structures
using laminated composites.
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First, special cases of laminates that are important in the design of
laminated structures will be introduced. Then the failure criterion analysis
will be shown for a laminate. Eventually, we will be designing laminates
mainly on the basis of optimizing for cost, weight, strength, and stiffness.
Other mechanical design issues are briefly introduced at the end of the
chapter.

 

5.2 Special Cases of Laminates

 

Based on angle, material, and thickness of plies, the symmetry or antisym-
metry of a laminate may zero out some elements of the three stiffness matri-
ces [

 

A

 

], [

 

B

 

], and [

 

D

 

]. These are important to study because they may result
in reducing or zeroing out the coupling of forces and bending moments,
normal and shear forces, or bending and twisting moments. This not only
simplifies the mechanical analysis of composites, but also gives desired
mechanical performance. For example, as already shown in Chapter 4, the
analysis of a symmetric laminate is simplified due to the zero coupling matrix
[

 

B

 

]. Mechanically, symmetric laminates result in no warpage in a flat panel
due to temperature changes in processing.

 

5.2.1 Symmetric Laminates

 

A laminate is called symmetric if the material, angle, and thickness of plies
are the same above and below the midplane. An example of symmetric
laminates is :

 

 

 

For symmetric laminates from the definition of [

 

B

 

] matrix, it can be proved
that [

 

B

 

] = 0. Thus, Equation (4.29) can be decoupled to give
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. (5.1b)

This shows that the force and moment terms are uncoupled. Thus, if a
laminate is subjected only to forces, it will have zero midplane curvatures.
Similarly, if it is subjected only to moments, it will have zero midplane strains.

The uncoupling between extension and bending in symmetric laminates
makes analyzing such laminates simpler. It also prevents a laminate from
twisting due to thermal loads, such as cooling down from processing temper-
atures and temperature fluctuations during use such as in a space shuttle, etc.

 

5.2.2 Cross-Ply Laminates

 

A laminate is called a cross-ply laminate (also called laminates with specially
orthotropic layers) if only 0 and 90

 

°

 

 plies were used to make a laminate. An
example of a cross ply laminate is a [0/90

 

2

 

/0/90] laminate:

For cross-ply laminates, 

 

A

 

16

 

 = 0, 

 

A

 

26

 

 = 0, 

 

B

 

16

 

 = 0, 

 

B

 

26

 

 = 0, 

 

D

 

16

 

 = 0, and 

 

D

 

26

 

= 0; thus, Equation (4.29) can be written as

. (5.2)

In these cases, uncoupling occurs between the normal and shear forces,
as well as between the bending and twisting moments. If a cross-ply lami-
nate is also symmetric, then in addition to the preceding uncoupling, the
coupling matrix [

 

B

 

] = 0 and no coupling takes place between the force and
moment terms.
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5.2.3 Angle Ply Laminates

 

A laminate is called an angle ply laminate if it has plies of the same material
and thickness and only oriented at +

 

θ

 

 and –

 

θ

 

 directions. An example of an
angle ply laminate is [–40/40/–40/40]:

If a laminate has an even number of plies, then 

 

A

 

16

 

 = 

 

A

 

26

 

 = 0. However, if
the number of plies is odd and it consists of alternating +

 

θ

 

 and –

 

θ

 

 plies, then
it is symmetric, giving [

 

B

 

] = 0, and 

 

A

 

16

 

, 

 

A

 

26

 

, 

 

D

 

16

 

, and 

 

D

 

26

 

 also become small
as the number of layers increases for the same laminate thickness. This
behavior is similar to the symmetric cross-ply laminates. However, these
angle ply laminates have higher shear stiffness and shear strength properties
than cross-ply laminates.

 

5.2.4 Antisymmetric Laminates

 

A laminate is called antisymmetric if the material and thickness of the plies
are the same above and below the midplane, but the ply orientations at the
same distance above and below the midplane are negative of each other. An
example of an antisymmetric laminate is:

From Equation (4.28a) and Equation (4.28c), the coupling terms of the
extensional stiffness matrix, 
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 =0,

 

 

 

and the coupling terms of the
bending stiffness matrix,
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 = 
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 = 0:

. (5.3)
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5.2.5 Balanced Laminate

 

A laminate is balanced if layers at angles other than 0 and 90

 

°

 

 occur only as
plus and minus pairs of +

 

θ

 

 and –

 

θ

 

. The plus and minus pairs do not need
to be adjacent to each other, but the thickness and material of the plus and
minus pairs need to be the same. Here, the terms 

 

A

 

16

 

 = 

 

A

 

26

 

 = 0. An example
of a balanced laminate is [30/40/–30/30/–30/–40]:

From Equation (4.28a),

. (5.4)

 

5.2.6 Quasi-Isotropic Laminates

 

For a plate of isotropic material with Young’s modulus, 
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, and thickness, 
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, the three stiffness matrices are
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. (5.7)

A laminate is called quasi-isotropic if its extensional stiffness matrix

 

 

 

[

 

A

 

]
behaves like that of an isotropic material. This implies not only that 
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11

 

 = 
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22

 

,
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16

 

= 
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26

 

 = 0, and , but also that these stiffnesses are indepen-

dent of the angle of rotation of the laminate. The reason for calling such a
laminate quasi-isotropic and not isotropic is that the other stiffness matrices,
[

 

B

 

] and [

 

D

 

], may not behave like isotropic materials. Examples of quasi-
isotropic laminates include [0/

 

±

 

60], [0/

 

±

 

45/90]

 

s

 

, and [0/36/72/–36/–72].

 

Example 5.1

 

A [0/

 

±

 

60] graphite/epoxy laminate is quasi-isotropic. Find the three stiffness
matrices [

 

A

 

], [

 

B

 

], and [

 

D

 

] and show that

1. .
2. [

 

B

 

] 

 

 ≠

 

 0, unlike isotropic materials.
3. [

 

D

 

] matrix is unlike isotropic materials.

Use properties of unidirectional graphite/epoxy lamina from Table 2.1. Each
lamina has a thickness of 5 mm.

 

Solution

 

From Example 2.6, the reduced stiffness matrix [
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] for the 0
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 graphite/epoxy
lamina is

.

From Equation (2.104), the transformed reduced stiffness matrices for the
three plies are
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,

,

The total thickness of the laminate is 

 

h

 

 = (0.005)(3) = 0.015 m.
The midplane is 0.0075 m from the top and bottom of the laminate. Thus,

using Equation (4.20),

 

h

 

0

 

 = –0.0075 m

 

h

 

1

 

 = –0.0025 m

 

h

 

2

 

 = 0.0025 m

 

h

 

3

 

 = 0.0075 m

Using Equation (4.28a) to Equation (4.28c), one can now calculate the
stiffness matrices [

 

A

 

], [

 

B

 

], and [

 

D

 

], respectively, as shown in Example 4.2:
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.

1. From the extensional stiffness matrix [A],

= 0.4032 × 109 Pa-m

= A66.

This behavior is similar to that of an isotropic material. However,
a quasi-isotropic laminate should give the same [A] matrix, if a
constant angle is added to each of the layers of the laminate. For
example, adding 30° to each ply angle of the [0/±60] laminate gives
a [30/90/–30] laminate, which has the same [A] matrix as the [0/
±60] laminate.

2. Unlike isotropic materials, the coupling stiffness matrix [B] of the
[0/±60] laminate is nonzero.

3. In an isotropic material,

,

,

and

.

In this example, unlike isotropic materials, D11 ≠ D22 because

D11 = 28.07 × 103 Pa-m3

[ ]
. . .

. . .
.

D =
−
−

− −

28 07 5 126 2 507
5 126 17 35 6 774
2 507 66 774 6 328

103 3

. .
( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Pa m-

A A Pa m11 22
91 146 10= = ×. -

A A16 26 0= =

A A11 12 9

2
1 146 0 3391

2
10

− = − ×. .

D D11 22=

D D16 26 0= =

D
D D

66
11 12

2
= −
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D22 = 17.35 × 103 Pa-m3

D16 ≠ 0, D26 ≠ 0 as

D16 = –2.507 × 103 Pa-m3 

D26 = –6.774 × 103 Pa-m3 

because

= 11.47 × 103 Pa-m3

D66 = 6.328 × 103 Pa-m3.

One can make a quasi-isotropic laminate by having a laminate
with N (N ≥ 3) lamina of the same material and thickness, where
each lamina is oriented at an angle of 180°/N between each other.
For example, a three-ply laminate will require the laminae to be
oriented at 180°/3 = 60° to each other. Thus, [0/60/–60], [30/90/
–30], and [45/–75/–15] are all quasi-isotropic laminates. One can
make the preceding combinations symmetric or repeated to give
quasi-isotropic laminates, such as [0/±60]s, [0/±60]s, and [0/±60]2s

laminates. The symmetry of the laminates zeros out the coupling
matrix [B] and makes its behavior closer (not same) to that of an
isotropic material.

Example 5.2

Show that the extensional stiffness matrix for a general N-ply quasi-isotropic
laminate is given by

. (5.8)

D D
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3 3

2
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where U1 and U4 are the stiffness invariants given by Equation (2.132) and
h is the thickness of the laminate. Also, find the in-plane engineering stiffness
constants of the laminate.

Solution

From Equation (2.131a), for a general angle ply with angle θ,

= U1 + U2 Cos2θ + U3 Cos4θ. (5.9)

For the kth ply of the quasi-isotropic laminate with an angle θk,

= U1 + U2 Cos2θk + U3 Cos4θk, (5.10)

where

From Equation (4.28a),

, (5.11)

where tk = thickness of kth lamina.
Because the thickness of the laminate is h and all laminae are of the same

thickness,

(5.12)

and, substituting Equation (5.10) in Equation (5.11),

(5.13)
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Using the following identity,1

. (5.14)

Then,

(5.15a)

(5.15b)

Thus,

. (5.16a)

Similarly, it can be shown that

, (5.16b)

, (5.16c)

. (5.16d)

Therefore,

(5.17)
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Because Equation (5.15b) is valid only for N ≥ 3, this proves that one needs
at least three plies to make a quasi-isotropic laminate.

For a symmetric quasi-isotropic laminate, the extensional compliance
matrix is given by

. (5.18)

From the definitions of engineering constants given in Equations (4.35),
(4.37), (4.39), (4.42), and (4.45), and using Equation (5.18), the elastic moduli
of the laminate are independent of the angle of the lamina and are given by

(5.19a)

(5.19b)

(5.19c)

5.3 Failure Criterion for a Laminate

A laminate will fail under increasing mechanical and thermal loads. The
laminate failure, however, may not be catastrophic. It is possible that some
layer fails first and that the composite continues to take more loads until all
the plies fail. Failed plies may still contribute to the stiffness and strength of
the laminate. The degradation of the stiffness and strength properties of each
failed lamina depends on the philosophy followed by the user.

• When a ply fails, it may have cracks parallel to the fibers. This ply
is still capable of taking load parallel to the fibers. Here, the cracked
ply can be replaced by a hypothetical ply that has no transverse
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stiffness, transverse tensile strength, and shear strength. The longi-
tudinal modulus and strength remain unchanged.

• When a ply fails, fully discount the ply and replace the ply of near
zero stiffness and strength. Near zero values avoid singularities in
stiffness and compliance matrices.

The procedure for finding the successive loads between first ply failure
and last ply failure given next follows the fully discounted method:

1. Given the mechanical loads, apply loads in the same ratio as the
applied loads. However, apply the actual temperature change and
moisture content.

2. Use laminate analysis to find the midplane strains and curvatures.
3. Find the local stresses and strains in each ply under the assumed

load.
4. Use the ply-by-ply stresses and strains in ply failure theories dis-

cussed in Section 2.8 to find the strength ratio. Multiplying the
strength ratio to the applied load gives the load level of the failure
of the first ply. This load is called the first ply failure load.

5. Degrade fully the stiffness of damaged ply or plies. Apply the actual
load level of previous failure.

6. Go to step 2 to find the strength ratio in the undamaged plies:
• If the strength ratio is more than one, multiply the strength ratio

to the applied load to give the load level of the next ply failure
and go to step 2.

• If the strength ratio is less than one, degrade the stiffness and
strength properties of all the damaged plies and go to step 5.

7. Repeat the preceding steps until all the plies in the laminate have
failed. The load at which all the plies in the laminate have failed is
called the last ply failure.

The procedure for partial discounting of fibers is more complicated. The
noninteractive maximum stress and maximum strain failure criteria are used
to find the mode of failure. Based on the mode of failure, the appropriate
elastic moduli and strengths are partially or fully discounted. 

Example 5.3

Find the ply-by-ply failure loads for a graphite/epoxy laminate.
Assume the thickness of each ply is 5 mm and use properties of unidirec-
tional graphite/epoxy lamina from Table 2.1. The only load applied is a
tensile normal load in the x-direction — that is, the direction parallel to the
fibers in the 0° ply.

[ ]0 90/ s
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382 Mechanics of Composite Materials, Second Edition

Solution

Because the laminate is symmetric and the load applied is a normal load,
only the extensional stiffness matrix is required. From Example 4.4, the
extensional compliance matrix is

which, from Equation (5.1a), gives the midplane strains for symmetric lam-
inates subjected to Nx = 1 N/m as

.

The midplane curvatures are zero because the laminate is symmetric and no
bending and no twisting loads are applied.

The global strains in the top 0° ply at the top surface can be found as
follows using Equation (4.16),

Using Equation (2.103), one can find the global stresses at the top surface
of the top 0° ply as
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.

Using the transformation Equation (2.94), the local stresses at the top
surface of the top 0° ply are

.

All the local stresses and strains in the laminate are summarized in Table 5.1
and Table 5.2.

TABLE 5.1

Local Stresses (Pa) in Example 5.3

Ply no. Position σ1 σ2 τ12

1 (0°) Top
Middle
Bottom

9.726 × 101

9.726 × 101

9.726 × 101

1.313 × 100

1.313 × 100

1.313 × 100

0.0
0.0
0.0

2 (90°) Top
Middle
Bottom

–2.626 × 100

–2.626 × 100

–2.626 × 100

5.472 × 100

5.472 × 100

5.472 × 100

0.0
0.0
0.0

3 (0°) Top
Middle
Bottom

9.726 × 101

9.726 × 101

9.726 × 101

1.313 × 100

1.313 × 100

1.313 × 100

0.0
0.0
0.0

TABLE 5.2

Local Strains in Example 5.3

Ply no. Position ε1 ε2 τ12

1 (0°) Top
Middle
Bottom

5.353 × 10–10

5.353 × 10–10

5.353 × 10–10

–2.297 × 10–11

–2.297 × 10–11

–2.297 × 10–11

0.0
0.0
0.0
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–2.297 × 10–11

–2.297 × 10–11

–2.297 × 10–11
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5.353 × 10–10

5.353 × 10–10

0.0
0.0
0.0

3 (0°) Top
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5.353 × 10–10

5.353 × 10–10

5.353 × 10–10
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–2.297 × 10–11
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The Tsai–Wu failure theory applied to the top surface of the top 0° ply is
applied as follows. The local stresses are

σ1 = 9.726 × 101 Pa
σ2 = 1.313 Pa
τ12 = 0

Using the parameters H1, H2, H6, H11, H22, H66, and H12 from Example 2.19,
the Tsai–Wu failure theory Equation (2.152) gives the strength ratio as

(0) (9.726 × 101) SR + (2.093 × 10–8) (1.313) SR+ (0 × 0) +
(4.4444 × 10–19) (9.726 × 101)2(SR)2 + (1.0162 × 10–16) (1.313)2(SR)2 

+ (2.1626 × 10–16) (0)2 + 2(–3.360 × 10–18) (9.726 × 101) (1.313)(SR)2=1
SR = 1.339 × 107.

The maximum strain failure theory can also be applied to the top surface
of the top 0° ply as follows. The local strains are

.

Then, according to maximum strain failure theory (Equation 2.143), the
strength ratio is given by

SR = min {[(1500 × 106)/(181 × 109)]/(5.353 × 10–10), 
[(246 × 106)/(10.3 × 109)]/(2.297 × 10–11)} = 1.548 × 107.

The strength ratios for all the plies in the laminate are summarized in Table
5.3 using the maximum strain and Tsai–Wu failure theories. The symbols in

TABLE 5.3

Strength Ratios in Example 5.3

Ply no. Position Maximum strain Tsai–Wu

1 (0°) Top
Middle
Bottom

1.548 × 107 (1T)
1.548 × 107 (1T)
1.548 × 107 (1T)

1.339 × 107

1.339 × 107

1.339 × 107

2 (90°) Top
Middle
Bottom

7.254 × 106 (2T)
7.254 × 106 (2T)
7.254 × 106 (2T)

7.277 × 106

7.277 × 106

7.277 × 106

3 (0°) Top
Middle
Bottom

1.548 × 107 (1T)
1.548 × 107 (1T)
1.548 × 107 (1T)

1.339 × 107

1.339 × 107

1.339 × 107
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the parentheses in the maximum strain failure theory column denote the
mode of failure and are explained at the bottom of Table 2.3.

From Table 5.3 and using the Tsai–Wu theory, the minimum strength ratio
is found for the 90° ply. This strength ratio gives the maximum value of the
allowable normal load as

and the maximum value of the allowable normal stress as

,

where h = thickness of the laminate.
The normal strain in the x-direction at this load is

.

Now, degrading the 90° ply completely involves assuming zero stiffnesses
and strengths of the 90° lamina. Complete degradation of a ply does not
allow further failure of that ply. For the undamaged plies, the lami-
nate has two reduced stiffness matrices as

and, for the damaged ply,

.

Using Equation (4.28a), the extensional stiffness matrix

N
N
mx = ×7 277 106.
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Inverting the new extensional stiffness matrix [A], the new extensional
compliance matrix is

,

which gives midplane strains subjected to Nx = 1 N/m by Equation (5.1a)
as
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.

These strains are close to those obtained before the ply failure only because
the 90° ply takes a small percentage of the load out of the normal load in
the x-direction.

The local stresses in each layer are found using earlier techniques given in
this example and are shown in Table 5.4. The strength ratios in each layer are
also found using methods given in this example and are shown in Table 5.5.

From Table 5.6 and using Tsai–Wu failure theory, the minimum strength
ratio is found in both the 0° plies. This strength ratio gives the maximum
value of the normal load as

TABLE 5.4

Local Stresses after First Ply Failure in Example 5.3

Ply no. Position σ1 σ2 τ12

1 (0°) Top
Middle
Bottom

1.0000 × 102

1.0000 × 102

1.0000 × 102

0.0
0.0
0.0

0.0
0.0
0.0

2 (90°) Top
Middle
Bottom

—
—
—

—
—
—

—
—
—

3 (0°) Top
Middle
Bottom

1.0000 × 102

1.0000 × 102

1.0000 × 102

0.0
0.0
0.0

0.0
0.0
0.0

TABLE 5.5

Local Strains after First Ply Failure in Example 5.3

Ply no. Position ε1 ε2 γ12

1 (0°) Top
Middle
Bottom

5.25 × 10–10

5.525 × 10–10

5.525 × 10–10

–1.547 × 10–10

–1.547 × 10–10

–1.547 × 10–10

0.0
0.0
0.0

2 (90°) Top
Middle
Bottom

—
—
—

—
—
—

—
—
—

3 (0°) Top
Middle
Bottom

5.525 × 10–10

5.525 × 10–10

5.525 × 10–10

–1.547 × 10–10

–1.547 × 10–10

–1.547 × 10–10

0.0
0.0
0.0

ε
ε

γ

x

y

xy

0

0

0

105 525 10
1 547 10
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and the maximum value of the allowable normal stress as

,

where h is the thickness of the laminate.
The normal strain in the x-direction at this load is

.

The preceding load is also the last ply failure (LPF) because none of the
layers is left undamaged. Plotting the stress vs. strain curve for the laminate
until last ply failure shows that the curve will consist of two linear curves,
each ending at each ply failure. The slope of the two lines will be the Young’s
modulus in x direction for the undamaged laminate and for the FPF laminate
— that is, using Equation (4.35),

,

until first ply failure, and

TABLE 5.6

Strength Ratios after First Ply Failure in Example 5.3

Ply no. Position Max strain Tsai–Wu

1 (0°) Top
Middle
Bottom

1.5000 × 107 (1T)
1.5000 × 107(1T)
1.5000 × 107(1T)

1.5000 × 107

1.5000 × 107

1.5000 × 107

2 (90°) Top
Middle
Bottom

—
—
—

—
—
—

3 (0°) Top
Middle
Bottom

1.5000 × 107(1T)
1.5000 × 107(1T)
1.5000 × 107(1T)

1.5000 × 107

1.5000 × 107

1.5000 × 107

N
h

Pa

x = ×

= ×

1 5 10
0 015

1 0 10

7

9

.
.

.

( ) ( . )( .εx
o

last ply failure = × ×−5 525 10 1 5 1010 7 ))

.= × −8 288 10 3

E

GPa

x =
×

=

−
1

0 015 5 353 10

124 5

10( . )( . )

.
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,

after first ply failure and until last ply failure (Figure 5.1).

Example 5.4

Repeat Example 5.3 for the first ply failure and use Tsai–Wu failure theory
now with an additional thermal load: a temperature change of –75°C.

Solution

The laminate is symmetric and the load applied is a normal load and a
temperature change. Thus, only the extensional stiffness matrix is needed.
From Example 5.3,

.

FIGURE 5.1
Stress–strain curve showing ply-by-ply failure of a laminated composite.

0

300

600

900

1200

1500

0 0.005 0.01
Normal strain, εx

N
or

m
al

 st
re

ss
, N

x/
h 

(M
Pa

)  

First ply
failure 

Last ply
failure

E
N h N h

x
x x=

−( / ) ( / )last ply failure first play ffailure

last play failure first p( ) ( )ε εx
o

x
o− llay failure

= × − ×
× −−

0 1 10 0 4851 10
8 288 10

10 9

3

. .
. 33 895 10

117 2

3.

.

×

=

−

GPa

[ ]
. .
. .*A =

× − ×
− ×

− −

−

5 353 10 2 297 10 0
2 297 10 9

10 11

11 8886 10 0
0 0 9 298 10

110

9

×
×

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−.
Pa m-

1343_book.fm  Page 389  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC



390 Mechanics of Composite Materials, Second Edition

Corresponding to a temperature change of –75°C, the mechanical stresses
can be found as follows. The fictitious thermal forces given by Equation
(4.64) are

.

Because the laminate is symmetric, the fictitious thermal moments are zero.
This also then gives only midplane strains in the laminate without any plate
curvatures. The midplane strain due to the thermal load is given by 

.

The laminate is symmetric and no bending or torsional moments are
applied; therefore, the global strains in the laminate are the same as the
midplane strains. The free expansional thermal strains in the top 0° ply are
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.

From Equation (4.70), the global mechanical strain at the top surface of
the top 0° ply is

.

From Equation (2.103), the global mechanical stresses at the top of the top
0° ply are 

.

Now, if the mechanical loads were given, the resulting mechanical stresses
could then be added to the previous stresses due to the temperature difference.
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Then, the failure criteria could be used to find out whether the ply has failed.
However, we are asked to find out the mechanical load that could be applied
in the presence of the temperature difference. This can be done as follows.

The stress at the top of the 0° ply, per Example 5.3 for a unit load Nx = 1
N/m, is

If the unknown load is Nx, then the overall stress at the top surface of the
top 0° ply is

Now, the failure theories can be applied to find the value of Nx. Using
transformation equation (2.94), the local stresses at the top surface of the top
0° ply are

Using the parameters H1, H2, H6 H11, H22, H66 and H12 from Example 2.19,
the Tsai–Wu failure criterion (Equation 2.146) is

(0) [–8.088 × 106 + 9.726 × 101 Nx] + (2.093 × 10–8)[1.524 × 107 + 1.313

× 100 Nx]+(0)(0) + 4.4444 × 10–19 [–8.088 × 106 + 9.726 × 101 Nx]2

+ 1.0162 × 10–16 [1.524 × 107 + 1.313 × 100 Nx]2 + 2.1626 × 10–16 [0]2

+ 2[–3.360 × 10–18] [–8.088 × 106 + 9.726 × 101 Nx] [1.524 × 107 + 1.313

× 100 Nx] < 1.
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As can be seen, this results in a quadratic polynomial in the left-hand side
of the strength criteria — that is,

.

This gives two roots for which the inequality is satisfied for Nx < 1.100 × 107

and Nx > –1.695 × 107.
Because the load Nx is tensile, Nx = 1.100 × 107 is the valid solution.

Similarly, the values of strength ratios for all the plies in the laminate are
found and summarized in Table 5.7.

Using the lowest value of strength ratio of 4.279 × 106 gives Nx = 4.279 ×
106 N/m as the load at which the first ply failure would take place. Compare
this with the value of Nx = 7.277 × 106 in Example 5.3, in which no temperature
change was applied.

5.4 Design of a Laminated Composite

Because we have developed the laminated plate theory for composites sub-
jected to in-plane mechanical loads, temperature, and moisture, the designs
in this chapter are also limited to such loads and simple shapes. Factors not
covered in this section include stability; out-of plane loads; and fracture,
impact, and fatigue resistance; interlaminar strength; damping characteris-
tics; vibration control; and complex shapes. These factors are introduced
briefly in Section 5.5.

Design of laminated composites includes constraints on optimizing and
constraining factors such as

• Cost
• Mass as related to aerospace and automotive industry to reduce

energy cost

TABLE 5.7

Strength Ratios of Example 5.4

Ply no. Position Tsai–Wu

1 (0°) Top
Middle
Bottom

1.100 × 107

1.100 × 107

1.100 × 107

2 (90°) Top
Middle
Bottom

4.279 × 106

4.279 × 106

4.279 × 106

3 (0°) Top
Middle
Bottom

1.100 × 107

1.100 × 107

1.100 × 107

3 521 10 2 096 10 0 6566 015 2 8. . .× + × − =− −N Nx x
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• Stiffness (to limit deformations) as related to aircraft skins to avoid
buckling

• Thermal and moisture expansion coefficients as related to space
antennas to maintain dimensional stability

These factors are similar to those used with designing with monolithic mate-
rials; thus, the main issue with designing with composites as opposed to
monolithic materials involves understanding the orthotropic nature of com-
posite plies.

The possibility of different fiber-matrix systems combined with the vari-
ables such as fiber volume fraction first dictate the properties of a lamina.
Then, laminae can be placed at angles and at particular distances from the
midplane in the laminate. The material systems and the stacking sequence
then determine the stresses and strains in the laminate. The failure of the
composite may be based on the first ply failure (FPF) or the last ply failure
(LPF). Although one may think that all plies failing at the same time is an
ideal laminate, others may argue that differences between the two give time
for detection and repair or replacement of the part.

Laminate selection is a computationally intensive and repetitive task due
to the many possibilities of fiber-matrix combinations, material systems,
and stacking sequence. Computer programs have made these calculations
easy and the reader is directed to use the PROMAL2 program included in
this book or any other equivalent program of choice to fully appreciate
designing with composites. A more scientific approach to optimization of
laminated composites is out of scope of this book, and the reader is referred
to Gurdal et al.3 

Example 5.5

1. An electronic device uses an aluminum plate of cross-section 4 in.
× 4 in. to take a pure bending moment of 13,000 lb-in. The factor of
safety is 2. Using the properties of aluminum given in Table 3.4, find
the thickness of the plate.

2. The designer wants at least to halve the thickness of the plate to
make room for additional hardware on the electronic device. The
choices include unidirectional laminates of graphite/epoxy, glass/
epoxy, or their combination (hybrid laminates). The ply thickness is
0.125 mm (0.0049213 in.). Design a plate with the lowest cost if the
manufacturing cost per ply of graphite/epoxy and glass/epoxy is
ten and four units, respectively. Use the properties of unidirectional
graphite/epoxy and glass/epoxy laminae from Table 2.2.

3. Did your choice of the laminate composite design decrease the mass?
If so, by how much?
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Solution

1. The maximum normal stress in a plate under bending is given by

, (5.20)

where
M = bending moment (lb-in.)

t = thickness of plate (in.)
I = second moment of area (in.4)

For a rectangular cross-section, the second moment of area is

, (5.21)

where b = width of plate (in.).
Using the given factor of safety, Fs = 2, and given b = 4 in., the thickness

of the plate using the maximum stress criterion is

, (5.22)

where σult = 40.02 Ksi from Table 3.4

2. Now the designer wants to replace the 0.9872 in. thick aluminum
plate by a plate of maximum thickness of 0.4936 in. (half that of
aluminum) made of laminated composites. The bending moment
per unit width is

σ = ±
M

t

I
2

I
bt=

3

12

t
MF

b
s

ult

= 6
σ

t

in

=

=

6 13000 2
4 40 02 10

0 9872

3

( )
( . )

. .

M

lb in in

xx =

=

13 000
4

3 250
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, . .- /
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Using the factor of safety of two, the plate is designed to take a
bending moment per unit width of

The simplest choices are to replace the aluminum plate by an all
graphite/epoxy laminate or an all glass/epoxy laminate. Using the
procedure described in Example 5.3 or using the PROMAL2 pro-
gram, the strength ratio for using a single 0° ply for the previous
load for glass/epoxy ply is

SR = 5.494 × 10–5.

The bending moment per unit width is inversely proportional to the
square of the thickness of the plate, so the minimum number of plies
required would be

= 135 plies.

This gives the thickness of the all-glass/epoxy laminate as 

tGl/Ep = 135 × 0.0049213 in.

= 0.6643 in.

The thickness of an all-glass/epoxy laminate is more than 0.4935 in.
and is thus not acceptable. 

Similarly, for an all graphite/epoxy laminate made of only 0° plies,
the minimum number of plies required is

NGr/Ep = 87 plies.

This gives the thickness of the plate as

tGr/Ep = 87 × 0.0049213

= 0.4282 in.

M

lb in in

xx = ×

=

3 250 2

6 500

,

, . .- /

NGl Ep/ .
=

× −
1

5 494 10 5
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The thickness of an all-graphite/epoxy laminate is less than 0.4936
in. and is acceptable.

Even if an all-graphite/epoxy laminate is acceptable, because
graphite/epoxy is 2.5 times more costly than glass/epoxy, one
would suggest the use of a hybrid laminate. The question that arises
now concerns the sequence in which the unidirectional plies should
be stacked. In a plate under a bending moment, the magnitude of
ply stresses is maximum on the top and bottom face. Because the
longitudinal tensile and compressive strengths are larger in the
graphite/epoxy lamina than in a glass/epoxy lamina, one would
put the former as the facing material and the latter in the core.

The maximum number of plies allowed in the hybrid laminate is

=

= 100 plies.

Several combinations of 100-ply symmetric hybrid laminates of the
form are now subjected to the applied bending moment.
Minimum strength ratios in each laminate stacking sequence are
found. Only if the strength ratios are greater than one — that is, the
laminate is safe — is the cost of the stacking sequence determined.
A summary of these results is given in Table 5.8.

From Table 5.8, an acceptable hybrid laminate with the lowest cost
is case VI, .

TABLE 5.8

Cost of Various Glass/Epoxy–Graphite/Epoxy Hybrid Laminates

Case
Number of plies

Minimum SR CostGlass/epoxy (m) Graphite/epoxy (2n)

I
II
III
IV
V
VI
VII

0
20
60
80
70
68
66

87
80
40
20
30
32
34

1.023
1.342
1.127
0.8032
0.9836
1.014
1.043

870
880
640
—
—
592
604

maxN =
Maximum Allowable Thickness

Thickness of each ply

.
.
0 4936

0 0049213

[ ]n
Gr

m
Gl

n
Gr

0 0 0/ /

[ ]16 68 160 0 0
Gr Gl Gr/ /
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3. The volume of the aluminum plate is

VAl = 4 × 4 × 0.9871

= 15.7936 in.3

The mass of the aluminum plate is (specific gravity = 2.7 from
Table 3.2),

MAl = VAl ρAl

= 15.793 × [(2.7) (3.6127 × 10–2)]

= 1.540 lbm.

The volume of the glass/epoxy in the hybrid laminate is

VGl/Ep = 4 × 4 × 0.0049213 × 68 

= 5.354 in.3

The volume of graphite/epoxy in the hybrid laminate is

VGr/Ep = 4 × 4 × 0.0049213 × 32

= 2.520 in.3

Using the specific gravities of glass, graphite, and epoxy given in
Table 3.1 and Table 3.2 and considering that the density of water is
3.6127 × 10–2 lbm/in.3:

ρGl = 2.5 × (3.6127 10–2) = 0.9032 × 10–1 lbm/in.3

ρGr = 1.8 × (3.6127 10–2) = 0.6503 × 10–1 lbm/in.3

ρEp = 1.2 × (3.6127 10–2) = 0.4335 × 10–1 lbm/in.3

The fiber volume fraction is given in Table 2.1 and, substituting in
Equation (3.8), the density of glass/epoxy and graphite/epoxy lam-
inae is

ρGl/Ep = (0.9032 × 10–1) (0.45) + (0.4335 × 10–1) (0.55)

= 0.6449 × 10–1 lbm/in.3

×

×

×
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ρGr/Ep = (0.6503 × 10–1) (0.70) + (0.4335 × 10–1) (0.30)

= 0.5853 × 10–1 lbm/in.3

The mass of the hybrid laminate then is

Mh = (5.354) (0.6449 × 10–1) + (2.520)(0.5853 × 10–1)

= 0.4928 lbm.

The percentage savings using the composite laminate over alumi-
num is

= 68%.

This example dictated the use of unidirectional laminates. How will
the design change if multiple loads are present? Examples of mul-
tiple loads include a leaf spring subjected to bending moment as
well as torsion or a thin pressure vessel subjected to an internal
pressure to yield a biaxial state of stress. In such cases, one may have
a choice not only of material systems and their combination, but also
of orientation of plies. Combinations of angle plies can be infinite,
so attention may be focused on angle plies of 0°, 90°, 45°, and –45°
and their combinations. This reduces the possibilities to a finite
number for a limited number of material systems; however, but the
number of combinations can still be quite large to handle.

Example 5.6

An electronic device uses an aluminum plate of 1-in. thickness and a top
cross–sectional area of 4 in. × 4 in. to take a pure bending moment. The
designer wants to replace the aluminum plate with graphite/epoxy unidi-
rectional laminate. The ply thickness of graphite/epoxy is 0.125 mm
(0.0049213 in.).

1. Use the properties of aluminum and unidirectional graphite/epoxy
as given in Table 3.4 and Table 2.2, respectively, to design a plate of
graphite/epoxy with the same bending stiffness in the needed direc-
tion of load as that of the aluminum beam. 

2. Does the laminate design decrease the mass? If so, by how much?

=
1.540 - 0.4928

1.540
100×
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Solution

1. The bending stiffness, Eb, of the aluminum plate is given by:

Eb = EI (5.23)

= E ,

where
E = Young’s modulus of aluminum
b = width of beam
h = thickness of beam

Eb = 10.3 × 106

= 3.433 × 106 lb–in.2

To find the thickness of a graphite/epoxy laminate with unidirec-
tional plies and the same flexural rigidity, let us look at the bending
stiffness of a laminate of thickness, h:

Eb = ExI

= Ex ,

where Ex = Young’s modulus in direction of fibers.
Because Ex = E1 = 26.25 Msi for a 0° ply from Table 2.2,

3.433 × 106 = 26.25 × 106

giving

h = 0.732 in.

Thus, a 1-in. thick aluminum beam can be replaced with a graphite/
epoxy laminate of 0.732 in. thickness. Note that, although the
Young’s modulus of graphite /epoxy is approximately 2.5 times that
of aluminum, the thickness of aluminum plate is approximately only

1
12

3bh
⎛
⎝⎜

⎞
⎠⎟

1
2

4 1 3( )( )
⎛
⎝⎜

⎞
⎠⎟

1
12

3bh

1
2

4 3 ,h
⎛
⎝⎜

⎞
⎠⎟
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1.4 times that of the graphite /epoxy of laminate because the bending
stiffness of a beam is proportional to the cube of the thickness. Thus,
the lightest beam for such bending would be influenced by the cube
root of the Young’s moduli. From the thickness of 0.732 in. of the
laminate and a thickness of 0.0049312 in. of the lamina, the number
of 0° graphite/epoxy plies needed is

.

The resulting graphite/epoxy laminate then is [0149].
2. The volume of the aluminum plate VAl is

VAl = 4 × 4 × 1.0

= 16 in.3

The mass of the aluminum plate is (specific gravity = 2.7 from Table
3.2; density of water is 3.6127 × 10–2 lbm/in.3):

MAl = VAl ρAl

= 16 × (2.7 × 3.6127 × 10–2)

= 1.561 lbm.

The volume of a [0149] graphite/epoxy laminate is 

VGr/Ep = 4 × 4 × 0.0049213 × 149

= 11.73 in.3

The density of a graphite/epoxy from Example 5.5 is

ρGr/Ep = 0.5853 × 10–1 .

The mass of the graphite/epoxy laminate beam is 

MGr/Ep = (0.5853 × 10–1) (11.73)

= 0.6866 lbm.

n = =0 732
0 0049213

149
.

.

lbm
in3
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Therefore, the percentage saving in using graphite/epoxy composite
laminate over aluminum is

=

= 56%.

Example 5.7

A 6-ft-long cylindrical pressure vessel (Figure 5.2) with an inner diameter of
35 in. is subjected to an internal gauge pressure of 150 psi. The vessel operates
at room temperature and curing residual stresses are neglected. The cost of
a graphite/epoxy lamina is 250 units/lbm and cost of a glass/epoxy lamina
is 50 units/lbm. The following are other specifications of the design:

1. Only 0°, +45°, –45°, +60°, –60°, and 90° plies can be used.
2. Only symmetric laminates can be used.
3. Only graphite/epoxy and glass/epoxy laminae, as given in Table

2.2, are available, but hybrid laminates made of these two laminae
are allowed. The thickness of each lamina is 0.005 in.*

FIGURE 5.2
Fiber composite pressure vessel. 

* Note that the thickness of each lamina is given as 0.005 in., and is not 0.125 mm (0.0004921 in.),
as given in the material database of the PROMAL program. Material properties for two new
materials need to be entered in the database.

M M

M
Al Gr Ep

Al

− /

1 561 0 6866
1 561

100
. .

.
− ×

z 

  Sectional front view Side view 
pd 
2t = σy 
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4t = σx 

x 
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4. Calculate specific gravities of the laminae using Table 3.3 and Table
3.4 and fiber volume fractions given in Table 2.2.

5. Neglect the end effects and the mass and cost of ends of the pressure
vessel in your design.

6. Use Tsai–Wu failure criterion for calculating strength ratios. 
7. Use a factor of safety of 1.95.

Design for ply orientation, stacking sequence, number of plies, and ply
material and give separate designs (laminate code, including materials)
based on each of the following design criteria:

1. Minimum mass
2. Minimum cost
3. Both minimum mass and minimum cost

You may be unable to minimize mass and cost simultaneously — that is,
the design of the pressure vessel for the minimum mass may not be same
as for the minimum cost. In that case, give equal weight to cost and mass,
and use this as your optimization function:

, (5.24)

where
A = mass of composite laminate
B = mass of composite laminate if design was based only on 

minimum mass
C = cost of composite laminate
D = cost of composite laminate if design was based only on min-

imum cost

Solution

LOADING. For thin-walled cylindrical pressure vessels, the circumferential
stress or hoop stress σy and the longitudinal or axial stress σx is given by

(5.25a)

, (5.25b)

where

F
A
B

C
D

= +

σx
pr

t
=

2

σy
pr
t

=
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p 

 

= internal gage pressure, psi

 

r

 

 = radius of cylinder, in.

 

t

 

 = thickness of cylinder, in.

For our case, we have

giving

For the forces per unit length,

(5.26a)

(5.26b)

p psi

r in

=

= =

150

35
2

17 5.

σ

σ

x

y

t

t

t

=

= ×

=

( )( . )

.

( )( . )

150 17 5
2

1 3125 10

150 17 5

3

== ×2 625 103.
.

t

N t

t
t

lb
in

x x=

= ×

= ×

σ

1 3125 10

1 3125 10

3

3

.

.

N t

t
t

lb
in

y y=

= ×

= ×

σ

2 625 10

2 625 10

3

3

.

. .
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MASS OF EACH PLY. The mass of a graphite epoxy ply is

,

where
VGr/Ep = volume of a graphite epoxy ply, in.3
ρGr/Ep = density of a graphite/epoxy ply, lbm/in.3

VGr/Ep = πLdtp

where
L = length of the cylinder, in.
d = diameter of the cylinder, in.
tp = thickness of graphite/epoxy ply, in.

Because L = 6 ft, d = 35 in., and tp = 0.005 in,

VGr/Ep = π(6 × 12)(35)(0.005)

= 39.584 in.3

The density of a graphite/epoxy lamina is

.

From Table 2.2, the fiber volume fraction, Vf, of the graphite epoxy is 0.7.
Thus,

The matrix volume fraction, Vm, then is

The specific gravity of graphite and epoxy is given in Table 3.3 and Table
3.4, respectively, as sGr = 1.8 and sEp = 1.2; given that the density of water is
3.6127 × 10–2 lbm/in3,

m VGr Ep Gr Ep Gr Ep/ / /= ρ

ρ ρ ρGr Ep Gr f Ep mV V/ = +

Vf = 0 7.

V Vm f= −

= −

=

1

1 0 7

0 3

.

.
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.

Therefore, the mass of a graphite/epoxy lamina is

The mass of a glass/epoxy ply is

where
VGl/Ep = volume of glass/epoxy, in.3
ρGl/Ep = density of glass/epoxy, lbm/in.3
VGl/Ep = πLdtp

= 39.584 in.3

The density of a glass/epoxy lamina is

.

From Table 2.2, the fiber volume fraction Vf of the glass/epoxy is 0.45; thus,

.

The matrix volume fraction Vm then is

ρGr Ep/ ( . )( . )( . ) ( . )( .= × +−1 8 3 6127 10 0 7 1 2 3 61272 ××

= ×

−

−

10 0 3

5 8526 10

2

2
3

)( . )

.
lbm
in

m VGr Ep Gr Ep Gr Ep/ / /

( . )( . )

=

= ×

=

−

ρ

39 584 5 8526 10

2

2

.. .3167 lbm

m VGl Ep Gl Ep Gl Ep/ / /= ρ

ρ ρ ρGl Ep Gl f Ep mV V/ = +

Vf = 0 45.

V Vm f= −

= −

=

1

1 0 45

0 55

.

. .
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The specific gravity of glass and epoxy is given in Table 3.3 and Table 3.4,
respectively, as

and, given that the density of water is 3.6127 × 10–2 lbm/in3,

Therefore, the mass of glass/epoxy lamina is

COST OF EACH PLY. The cost of a graphite/epoxy ply is

,

where
mGr/Ep = mass of graphite/epoxy ply
cGr/Ep = unit cost of graphite/epoxy ply

Because

,

the cost of a graphite/epoxy ply is

s sGl Ep= =2 5 1 2. , .

ρG Ep/ ( . )( . )( . ) ( . )( .= × +−2 5 3 6127 10 0 45 1 2 3 6122 77 10 0 55

6 4487 10

2

2
3

×

= ×

−

−

)( . )

. .
lbm
in

m VGl Ep Gl Ep Gl Ep/ / /

( . )( . )

=

= ×

=

−

ρ

39 584 6 4487 10

2

2

.. .5526 lbm

C m cGr Ep Gr Ep Gr Ep/ / /=

m 2.3167 lbmGr / Ep =

c
units
lbmGr Ep/ = 250

CGr / Ep =

=

( . )( )

.

2 3167 250

579 17 units.
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Similarly, the cost of a glass/epoxy ply is

.

Because

mGl/Ep = 2.5526 lbm

and

,

the cost of a glass/epoxy ply is

CGl/Ep = (2.5526)(50) 

= 127.63 units.

1. To find the design for minimum mass, consider a composite laminate
made of graphite/epoxy with [0/902]s. We simply choose this lam-
inate as Ny = 2Nx and thus choose two 90° plies for every 0° ply. For
this laminate, from PROMAL we get the minimum strength ratio as

SR = 0.6649.

Because the required factor of safety is 1.95, we need

≅ 18 plies.

[0/902]3s is a possible choice because it gives a strength ratio of
1.995. However, is this laminate with the minimum mass? Choosing
some other choices such as laminates with ±60° laminae, a graphite/
epoxy [±60]4s laminate gives an SR = 1.192 and that is lower than
the required SR of 1.95.

A [0/902]3s laminate made of glass/epoxy gives a strength ratio
of SR = 0.5192 and that is also lower than the needed strength ratio
of 1.95. Other combinations tried used more than 18 plies. A sum-
mary of possible combinations is shown in Table 5.9.

C m cGl Ep Gl Ep Gl Ep/ / /=

c
units
lbmGl Ep/ = 50

1 95
0 6649

6
.

.
×
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Thus, one can say that the laminate for minimum mass is the first
stacking sequence in Table 5.9:

Number of plies: 18
Material of plies: graphite/epoxy
Stacking sequence: [0/902]3s

Mass of laminate = (18 × 2.3167) = 41.700 lbm
Cost of laminate = (41.700 × 250) = 10425 units

2. To find the design for minimum cost, we found in part (1) that the
[0/902]3s graphite/epoxy laminate is safe, but the same stacking
sequence for glass/epoxy gives a SR = 0.5192. Therefore, we may
need four times more plies of glass/epoxy to keep it safe to obtain
a factor of safety of 1.95. If so, would it be cheaper than the [0/902]3s

graphite/epoxy laminate? Yes, it would because a glass/epoxy costs
127.63 units per ply as opposed to 579.17 units per ply for graphite/
epoxy. Choosing [0/902]12s glass/epoxy laminate gives SR = 2.077.
Are there other combinations that give an SR > 1.95 but use less than
the 72 plies used in [0/902]12s? Stacking sequences of 60 plies such
as [90/±45]10s and [±60]15s were tried and were acceptable designs.
The results from some of the stacking sequences are summarized in
Table 5.10.

Therefore, we can say that the laminate for minimum cost is as
follows

TABLE 5.9

Mass and Cost of Possible Stacking Sequences for Minimum Mass

Stacking sequence No. plies
Minimum

strength ratio
Mass
(lbm)

Cost
(units)

[0/902]3s (Graphite/epoxy) 18 1.995 41.700 10,425
[±60]4s (Graphite/epoxy) 16 1.192 — —
[0/902]3s (Glass/epoxy) 18 0.5192 — —
[±60]5s (Graphite/epoxy) 20 1.490 — —
[±452/±603]s (Graphite/epoxy) 20 2.332 46.334 11,583

TABLE 5.10

Mass and Cost of Possible Stacking Sequences for Minimum Cost

Stacking sequence No. plies
Minimum

strength ratio
Mass
(lbm)

Cost
(units)

[0/902]3s (Graphite/epoxy) 18 1.995 41.700 10,425
[±452/±603]s (Graphite/epoxy) 20 2.291 46.334 11,583
[0/902]12s (Glass/epoxy) 72 2.077 183.79 9,189
[90/±45]10s (Glass/epoxy) 60 1.992 153.16 7,658
[±60]15s (Glass/epoxy) 60 2.033 153.16 7,658
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Number of plies = 60
Material of plies: glass/epoxy
Stacking sequence: [±60]15s

Mass of laminate = 60 × 2.5526 = 153.16 lbm
Cost of laminate = 153.16 × 50 = 7658 units

3. Now, how do we find the laminate that minimizes cost and mass?
We know that the solutions to part (1) and (2) are different. Thus,
we need to look at other combinations. However, before doing so,
let us find the minimizing function for parts (1) and (2). The mini-
mizing function is given as

,

where
A = mass of composite laminate
B = mass of composite laminate if design was based only on 

minimum mass
C = cost of composite laminate
D = cost of composite laminate if design was based only on min-

imum cost

From part (1), B = 41.700 lbm and, from part (2), D = 7658 units;
then, the minimizing function is

for the [0/902]3s graphite/epoxy laminate obtained in part (1).

for the [±60]15s glass/epoxy laminate obtained in part (2).
Therefore, the question is whether a laminate that has an optimiz-

ing function value of less than 2.361 can be found. If not, the answer
is the same as the laminate in part (1). Table 5.11 gives the summary
of some of the laminates that were tried to find minimum value of
F. The third stacking sequence in Table 5.11 is the one in which, in
the [0/902]3s graphite/epoxy laminate of part (1), six of the graphite/

F
A
B

C
D

= +

F = + =41 700
41 700

10425
7658

2 361
.
.

.

F = + =153 16
41 700

7658
7658

4 673
.

.
.
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epoxy plies of 0/902 sublaminate group are substituted with 24
glass/epoxy plies of the 0/902 sublaminate group.

Thus, it seems that [0/902]3s graphite/epoxy laminate is the answer
to part (3). Although more combinations should have been attempted
to come to a definite conclusion, it is left to the reader to try other
hybrid combinations using the PROMAL program.

Example 5.8 

Drive shafts (Figure 5.3) in cars are generally made of steel. An automobile
manufacturer is seriously thinking of changing the material to a composite
material. The reasons for changing the material to composite materials are
that composites

1. Reduce the weight of the drive shaft and thus reduce energy
consumption

2. Are fatigue resistant and thus have a long life
3. Are noncorrosive and thus reduce maintenance costs and increase

life of the drive shaft
4. Allow single piece manufacturing and thus reduce manufacturing cost

The design constraints are as follows:

1. Based on the engine overload torque of 140 N-m, the drive shaft
needs to withstand a torque of 550 N-m.

TABLE 5.11

Optimizing Function Values for Different Stacking Sequences

Stacking sequence
Mass
(lbm) Cost

Minimum
strength ratio F

[0/902]3s graphite/epoxy (part a) 41.700 10,425 1.995 2.361
[±60]18s glass/epoxy (part b) 153.16 7,658 2.0768 4.672
[0Gr/Ep/902 Gr/Ep/0Gr/Ep/902 Gr/Ep/0Gl/Ep/
902 Gl/Ep/0Gl/Ep/902 Gl/Ep/0Gl/Ep/902Gl/Ep/0Gl/Ep/
902 Gl/Ep]s

89.063 10,013 2.012 3.443

FIGURE 5.3
Fiber composite drive shaft.

100 mm

148 cm
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2. The shaft needs to withstand torsional buckling. 
3. The shaft has a minimum bending natural frequency of at least

80 Hz.
4. Outside radius of drive shaft = 50 mm.
5. Length of drive shaft = 148 cm.
6. Factor of safety = 3.
7. Only 0, +45, –45, +60, –60, and 90° plies can be used.

For steel, use the following properties: 

Young’s modulus E = 210 GPa,
Poisson’s ratio ν = 0.3,
Density of steel ρ = 7800 kg/m3 
Ultimate shear strength τult = 80 MPa.

For the composite, use properties of glass/epoxy from Table 2.1 and Table
3.1 and assume that ply thickness is 0.125 mm. Design the drive shaft using

1. Steel
2. Glass/epoxy

Solution

1. STEEL DESIGN.
Torsional strength: The primary load in the drive shaft is torsion. The max-

imum shear stress, τmax, in the drive shaft is at the outer radius, ro, and is
given as

, (5.27)

where 
T = maximum torque applied in drive shaft (N-m)
ro = outer radius of shaft (m)
J = polar moment of area (m4)

Because the ultimate shear strength of steel is 80 MPa and the safety factor
used is 3, using Equation (5.27) gives

maxτ = Tr
J

o

80 10
3

550 0 050

2
0 050

0 0486

6

4 4

× =
−

=

( )( . )
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Therefore, the thickness of the steel shaft is 

 

t = r

 

o

 

 – 

 

r

 

i

 

= 0.050 – 0.04863

= 1.368 mm.

 

Torsional buckling

 

: This requirement asks that the applied torsion be less
than the critical torsional buckling moment. For a thin, hollow cylinder made
of isotropic materials, the critical buckling torsion, 

 

T

 

b

 

, is given by

 

4

 

, (5.28)

where

 

r

 

m

 

 = mean radius of the shaft (m)

 

t

 

 = wall thickness of the drive shaft (m)

 

E

 

 = Young’s modulus (Pa)

Using the thickness 

 

t

 

 = 1.368 mm calculated in criterion (1) and the mean
radius

The value of critical torsional buckling moment is larger than the applied
torque of 550 N-m.

 

Natural frequency

 

: The lowest natural frequency for a rotating shaft is given by

 

5

 

, (5.29)
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where 
g = acceleration due to gravity (m/s2)
E = Young’s modulus of elasticity (Pa)
I = second moment of area (m4)

m = mass per unit length (kg/m)
L = length of drive shaft (m)

Now the second moment of area, I, is 

The mass per unit length of the shaft is

m = π (ro
2 – ri

2) ρ

= π (0.0502 – 0.048632) (7800)

= 3.307 kg/m.

Therefore,

This value is greater than the minimum desired natural frequency of 80 Hz.
Thus, the steel design of a hollow shaft of outer radius 50 mm and thickness

t = 1.368 mm is an acceptable design.

2. COMPOSITE MATERIALS DESIGN. 
Torsional strength: Assuming that the drive shaft is a thin, hollow cylinder,

an element in the cylinder can be assumed to be a flat laminate. The only
nonzero load on this element is the shear force, Nxy. If the average shear
stress is (τxy)average, the applied torque then is

T = (shear stress) (area) (moment arm)

I r ro i= −

= −

− × −

π

π

4

4
0 050 0 04863

5 162 10

4 4

4 4

( )

( . . )

. 77 4 .m

fn = × ×

=

−π
2

210 10 5 162 10
3 307 1 48

12

9 7

4

( )( . )
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99 8. .Hz
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. (5.30)

The shear force per unit width is given by

Nxy = .

Because

t = ro – ri

,

then

(5.31)

To find approximately how many layers of glass/epoxy may be needed to
resist the shear load, choose a four-ply [±45]s laminate. Inputting a value of
Nxy = 35,014 N/m into the PROMAL program, the minimum strength ratio
obtained using Tsai–Wu theory is 1.261. A strength ratio of at least 3 is needed,

so the number of plies is increased proportionately as The next

laminate chosen is [±452/45]s laminate. A minimum strength ratio of 3.58 is
obtained, so it is an acceptable design based on torsional strength criterion.

Torsional buckling: An orthotropic thin hollow cylinder will buckle torsion-
ally if the applied torque is greater than the critical torsional buckling load
given by4

(5.32)

T r r rxy average o i m= −( ) ( )τ π 2 2

( )τxy average t

r r + r
m

o i=
2

N
T
r

N m

xy
m

=

=

=

2

550
2 0 050

35 014

2

2

π

π( . )

, ./

3
1 261

4 10
.

× ≅ .

T r t E E
t
rc m x y
m

=
⎛
⎝⎜

⎞
⎠⎟

( )( . )( ) ./
/

2 0 2722 3 1 4
3 2

π

1343_book.fm  Page 415  Tuesday, September 27, 2005  11:53 AM

© 2006 by Taylor & Francis Group, LLC
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From PROMAL, the longitudinal Young’s moduli Ex and the transverse
Young’s moduli Ey of the [±452/45]s glass/epoxy laminate based on proper-
ties from Table 2.1 are

Ex = 12.51 GPa 

Ey = 12.51 GPa

Because lamina thickness is 0.125 mm, the thickness of the ten-ply [±452/
45]s laminate, t, is

t = 10 × 0.125 = 1.25 mm.

The mean radius, rm, is

Therefore,

This is less than the applied torque of 550 N-m. Thus, the [±452/45]s

laminate would torsionally buckle. Per the formula, the torsional buckling
is proportional to Ey

3/4 and Ex
1/4. Because the modulus in the y-direction is

more effective in increasing the critical torsional buckling load, it will be
necessary to substitute by or add 90° plies..

Natural frequency: Although the [±452/45]s laminate is inadequate, per the
torsional buckling criterion, let us still find the minimum natural frequency
of the drive shaft, which is given by5 
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. (5.33)

Now,

The mass per unit length of the beam is

Thus,

Because the minimum bending natural frequency is required to be 80 Hz,
this requirement is also not met by the [±452/45]s laminate. The minimum
natural frequency can be increased by increasing the value of Ex because the
natural frequency fn is proportional to . To achieve this, 0° plies can be
added or substituted. 
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From the three criteria, we see that ±45° plies increase the torsional
strength, 90° plies increase the critical torsional buckling load, and the 0°
plies increase the natural frequency of the drive shaft. Therefore, having
±45°, 90°, and 0° plies may be the key to an optimum design.

In Table 5.12, several other combinations have been evaluated to find an
acceptable design.

The last stacking sequence [45/903/02]s is a 12-ply laminate and meets the
three requirements of torsional strength, critical torsional buckling load, and
minimum natural frequency.

MASS SAVINGS. The savings in the mass of the drive shaft are calculated
as follows:

Mass of steel drive shaft = π (ro
2 – ri

2) L ρ

= π (0.0502 – 0.048632) (1.48) (7800)

= 4.894 kg.

The thickness, t, of the [45/903/02]s glass/epoxy shaft is 

The inner radius of the [45/903/02]s glass/epoxy shaft then is

TABLE 5.12

Acceptable and Nonacceptable Designs of Drive Shaft Based on Three Criteria 
of Torsional Strength, Critical Torsional Buckling Load, and Minimum Natural 
Frequency 

Laminate stacking 
sequence

No.
plies

Minimum
strength

ratio

Critical
torsional
buckling

load
(N-m)

Ex

(GPa)
Ey

(GPa)

Minimum
natural

frequency
(Hz)

Acceptable
design

[0/±452/45/90]s 14 3.982 797.8 16.44 16.44 75.6 No
[02/±452/90]s 14 3.248 828.8 20.16 16.16 83.7 Yes
[0/±452/90]s 12 3.006 564.1 17.07 17.07 77.2 No
[0/±452]s 10 2.764 291.2 17.86 12.76 79.2 No
[45/903/02]s 12 4.127 763.5 19.44 24.47 82.4 Yes
Design constraints >3 >550 >80

Note: Numbers given in bold italics to show the reason for unacceptable designs.

t

mm

= ×

=

12 0 125

1 5

.

. .
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ri = ro – t

= 0.05 – 0.0015

= 0.0485 m.

Mass of [45/903/02]s glass/epoxy shaft is 

= π (ro
2 – ri

2) L ρ

= π (0.052 – 0.04852) (1.48) (1758)

= 1.226 kg.

Percentage mass saving over steel is

Would an 11-ply, [45/904/ ]s glass/epoxy laminate meet all the require-
ments?

5.5 Other Mechanical Design Issues

5.5.1 Sandwich Composites

One group of laminated composites used extensively is sandwich compos-
ites. Sandwich panels consist of thin facings (also called skin) sandwiching
a core. The facings are made of high-strength material, such as steel, and
composites such as graphite/epoxy; the core is made of thick and lightweight
materials such as foam, cardboard, plywood, etc. (Figure 5.4).

The motivation in doing this is twofold. First, if a plate or beam is bent,
the maximum stresses occur at the top and bottom surfaces. Therefore, it
makes sense to use high-strength materials only at the top and bottom and
low- and lightweight strength materials in the middle. The strong and stiff
facings also support axial forces. Second, the resistance to bending of a
rectangular cross-sectional beam/plate is proportional to the cube of the
thickness. Thus, increasing the thickness by adding a core in the middle
increases this resistance. Note that the shear forces are maximum in the

= − ×

=

4 894 1 226
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middle of the sandwich panel, thus requiring the core to support shear. This
advantage in weight and bending stiffness makes sandwich panels more
attractive than other materials. Sandwich panels are evaluated based on
strength, safety, weight, durability, corrosion resistance, dent and puncture
resistance, weatherability, and cost.6

The most commonly used facing materials are aluminum alloys and fiber-
reinforced plastics. Aluminum has high specific modulus, but it corrodes
without treatment and is prone to denting. Fiber-reinforced plastics such as
graphite/epoxy and glass/epoxy are becoming popular as facing materials
because of their high specific modulus and strength and corrosion resistance.
Fiber-reinforced plastics may be unidirectional or woven laminae.

The most commonly used core materials are balsa wood, foam, and hon-
eycombs. Balsa wood has high compressive strength (1500 psi), good fatigue
life, and high shear strength (200 psi). Foams are low-density polymers such
as polyuretherane, phenolic, and polystyrene. Honeycombs are made of
plastic, paper, cardboard, etc. The strength and stiffness of honeycomb
depend on the material and its cell size and thickness.

Adhesives join the facing and core materials and thus are critical in the
overall integrity of the sandwich panel. Adhesives come in forms of film,
paste, and liquid. Common examples include vinyl phenolic, modified
epoxy, and urethane.

5.5.2 Long-Term Environmental Effects

Section 4.5 has already discussed the effects caused by temperature and
moisture, such as residual stresses and strains. What effect do these and

FIGURE 5.4
Fiberglass facings with a Nomex7 honeycomb core. (Picture Courtesy of M.C. Gill Corporation,
http://www.mcgillcorp.com).
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other environmental factors such as corrosive atmospheres and temperatures
and humidity variations have over the long term on composites? These
elements may lessen the adhesion of the fiber-matrix interface, such as
between glass and epoxy. Epoxy matrices soften at high temperatures, affect-
ing properties dominated by the matrix, such as transverse and in-plane
shear stiffness and strength, and flexural strength. For example, Quinn7

found that a glass/epoxy composite rod absorbed as much as 0.4% of water
over 150 days of immersion. The effect of this moisture absorption on flexural
modulus is shown in Figure 5.5.

5.5.3 Interlaminar Stresses

Due to the mismatch of elastic moduli and angle between the layers of a
laminated composite, interlaminar stresses are developed between the lay-
ers. These stresses, which are normal and shear, can be high enough to cause
edge delamination between the layers.8–10 Delamination eventually limits the
life of the laminated structure. Delamination can be further caused due to
nonoptimum curing and introduction of foreign bodies in the structure.11

In Figure 5.6, theoretical interlaminar shear and normal stresses are plotted
as a function of normalized distance — zero at the center line and one at the
free edge — from the center line of a [±45]s graphite/epoxy laminate. The
interlaminar stresses given are for the bottom surface of the top ply of the
laminate and are found by using equations of elasticity.9 Away from the
edges, these stresses are the same as predicted by the classical lamination
theory discussed in Chapter 4. However, near the edges, the normal shear
stress τxy decreases to zero, and the out-of-plane shear stress τxz becomes
infinite (not shown). The classical lamination theory and elasticity results
give different results because the former violates equilibrium and boundary
conditions at the interface. For example, for a simple state of stress on the
[±45]s laminate, the classical lamination theory predicts nonzero values for
the stresses σxx, σyy, and τxy for each ply. This is not true at the edges, where
σy and τxy are actually zero because they are free boundaries.

Interlaminar stresses pose a challenge to the designer and there are some
ways to counter their effects. Pagano and Pipes9 found theoretically that
keeping the angle, symmetry, and number of plies the same but changing
the stacking sequence influences the interlaminar stresses. The key to chang-
ing the stacking sequence is to decrease the interlaminar shear stresses with-
out increasing the tensile (if any) interlaminar normal stresses. For example,
a laminate stacking sequence of [±30/90]s produces tensile interlaminar nor-
mal stresses under a uniaxial tensile load however, if the sequence is just
changed to [90/±30]s, it produces compressive interlaminar normal stresses.
This makes the latter sequence less prone to delamination. Other techniques
to improve tolerance to delamination include using toughened resin
systems12 and interleaved systems in which a discrete layer of resin with
high toughness and strain to failure is added on top of a layer.13,14
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5.5.4 Impact Resistance

The resistance to impact of laminated composites is important in applica-
tions such as a bullet hitting a military aircraft structure or even the contact
of a composite leaf spring in a car to runaway stones on a gravel road. The
resistance to impact depends on several factors of the laminate, such as the

FIGURE 5.5
Moisture absorption as a function of time and its effect on flexural modulus of a glass/polyester
composite rod. (Reprinted from Quinn, J.A., in Design with Advanced Composite Materials, Phil-
lips, L.N., Ed., 1990, Figure 3.10 (p. 91) and Figure 3.11 (p. 92), Springer–Verlag, Heidelberg.)
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material system; interlaminar strengths; stacking sequence; and nature of
the impact, such as velocity, mass, and size of the impacting object. Impact
reduces strengths of the laminate and also initiates delamination in com-
posites. Delamination becomes more problematic because, many times,
visual inspection cannot find it. Solutions for increasing impact resistance
and residual impact strength have included toughened epoxies and inter-
leaved laminates. In the former, epoxies are toughened by liquid rubber and,
in the latter case, a discrete toughened layer is added to the laminae at
selected places.

5.5.5 Fracture Resistance

When a crack develops in an isotropic material, the stresses at the crack tip
are infinite. The intensity of these infinite stresses is called the stress intensity
factor. If the stress intensity factor is greater than the critical stress intensity
factor for that material, the crack is considered to grow catastrophically.
Another parameter, called the strain energy release rate, is also used in
determining fracture resistance. This is the rate of the energy release as the
crack grows. If this rate is greater than the critical strain energy release rate
of the material, the crack will grow catastrophically. The strain energy release
rate and stress intensity factor are related to each other in isotropic materials.

In composites, the mechanics of fracture is not as simple. First, cracks can
grow in the form of fiber breaks, matrix breaks, debonding between fiber
and matrix, and debonding between layers. Second, no single critical stress

FIGURE 5.6
Normal and shear stresses at the interface of bottom surface of top ply in a four-ply laminate.
(Reprinted from Pagano, N.J. and Soni, S.R., in Interlaminar Response of Composite Materials,
Pagano, N.J., Ed., 1989, p. 9, Elsevier Science, New York, with kind permission from authors.)
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intensity factors and strain energy release rates can determine the fracture
mechanics process. 

Fiber breaks may occur because of the brittle nature of fibers. Some fibers
may break because, statistically, some fibers are weaker than others and thus
fail at low strains. The matrix may then break because of high strains caused
by the fiber breaks. In ceramic matrix composites, the matrix failure strain is
lower than that of the fiber. Therefore, matrix breaks precede fiber breaks. In
fact, fiber breaks are seen to occur only close to the ultimate failure of the
composite. Also, matrix breaks may keep occurring parallel to the crack length.

When a fiber or matrix breaks, the crack does not grow in a self-similar
fashion. It may grow along the interface that blunts the crack and improves
the fracture resistance of the composites, or it may grow into the next con-
stituent, resulting in uncontrolled failure. The competition between whether
a crack grows along the interface or jumps to the adjoining constituent
depends on the material properties of the fiber, matrix, and the interface, as
well as the fiber volume fraction.

Fracture mechanics in composites is still an open field because there are
several mechanisms of failure and developing uniform criteria for the mate-
rials looks quite impossible. 

5.5.6 Fatigue Resistance

Structures over time are subjected to repeated cyclic loading, such as the
fluctuating loads on an aircraft wing. This cyclic loading weakens the mate-
rial and gives it a finite life. For example, a composite helicopter blade may
have a service life of 10,000 hours.

Fatigue data for composite materials are collected using several different
data, such as plotting the peak stress applied during the loading as a function
of the number of cycles. The allowable peak stress decreases as the number
of cycles to failure is increased. The peak stress is compared to the static
strength of the composite structure. If these peak stresses are comparably
larger than the allowable ultimate strength of the composite, fatigue does
not influence the design of the composite structure. This is the case in graph-
ite/epoxy composites in which the allowable ultimate strength is low due
to its low impact resistance.

Other factors that influence the fatigue properties are the laminate stacking
sequence, fiber and matrix properties, fiber volume fraction, interfacial bond-
ing, etc. For example, for quasi-isotropic laminates, S–N curves are quite
different from those of unidirectional laminates. In this case, the 90° plies
develop transverse cracks, which influence the elastic moduli and strength
of the laminate. Although the influence is limited because 90° plies do not
contribute to the static stiffness and strength in the first place, the stress
concentrations caused by these cracks may lead to damage in the 0° plies.
Other damage modes include fiber and matrix breaks, interfacial and inter-
laminar debonding, etc. Laminate stacking sequence influences the onset of
edge delamination. For example, Foye and Baker15 conducted tensile fatigue
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testing of boron/epoxy laminates and found the dependence of fatigue life
on stacking sequence. A [±45/±15]s laminate had a higher fatigue life than
a [±15/±45]s laminate (Figure 5.7). Both laminates have the same number
and angle of plies, and only the stacking sequence has been changed.

Loading factors such as tension and/or compression, temperature, mois-
ture, and frequency of loading also determine the fatigue behavior of com-
posites. For example, for compressive fatigue loading or tension-compressive
fatigue loading, carbon/epoxy composites have very low peak strains
because compression can cause layer buckling, etc. In such cases, the dom-
inance of fiber effects is not present, but matrix, fiber-matrix interfaces, and
the layers play a more important role.

Nonmechanical issues are also important in design of composite struc-
tures. These include fire resistance, smoke emission, lightning strikes, elec-
trical and thermal conductivity, recycling potential, electromagnetic
interference, etc.

5.6 Summary

In this chapter, we introduced the special case of laminates and their effect
on the stiffness matrices, and response to external loads. We established

FIGURE 5.7
Comparison of residual strength as a function of number of cycles for two laminates. (Reprinted
from Pagano, N.J. and Soni, S.R., in Interlaminar Response of Composite Materials, Pagano, N.J.,
Ed., 1989, p. 12, Elsevier Science, New York, with kind permission from authors.)
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failure criteria for laminates using the ply-by-ply failure theory. Examples
of designing laminated structures such as plates, thin pressure vessels, and
drive shafts were given. Other mechanical design issues such as environ-
mental effects, interlaminar stresses, impact resistance, fracture resistance,
and fatigue resistance were discussed.

Key Terms

Special laminates
Cross-ply laminates
Angle ply laminates
Antisymmetric laminates
Balanced laminates
Quasi-isotropic laminates
Failures of laminates
Design of laminates
Sandwich composites
Environmental effects
Interlaminar stresses
Impact resistance
Fracture resistance
Fatigue resistance

Exercise Set

5.1 Classify the following laminates:
[–30/45/–45/–30]
[–30/30/–30/30]
[30/–30/30]
[45/30/–30/–45]
[0/90/0/90/0/90/90]
[0/90/90/90/90/0]
[0/18/36/54/72/90/–18/–36/–54/–72]

5.2 Write an example of laminate code for the following:
Symmetric laminate
Antisymmetric laminate
Symmetric cross-ply laminate
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Symmetric angle-ply laminate
Balanced angle-ply laminate

5.3 Give an example of a laminate with zero coupling stiffness
matrix [B].

5.4 Is a nonzero [B] matrix attributed to the orthotropy of layers?
5.5 Is a nonzero [B] matrix attributed to the unsymmetrical stacking of

laminae in a laminate?
5.6 Show numerically that a [0/90] laminate is not a quasi-isotropic

laminate. Use the properties of unidirectional glass/epoxy lamina
from Table 2.2.

5.7 Does a symmetric quasi-isotropic laminate have [A], [B], and [D]
stiffness matrices like that of an isotropic material?

5.8 Are [0/60/–60] and [60/–60/60] quasi-isotropic laminates?
5.9 Are midplane strains and/or midplane curvatures always zero for

symmetric laminates?
5.10 Find (1) the extensional stiffness matrix and (2) the extensional elastic

moduli of the following graphite/epoxy laminate: [0/18/36/54/72/
90/–18/–36/–54/–72]s. Use properties of unidirectional graphite/
epoxy lamina from Table 2.1.

5.11 Show that A12 = U4h for a quasi-isotropic laminate.
5.12 A [0/90]s laminate made of glass/epoxy is subjected to an axial load

Nx. Use properties of unidirectional glass/epoxy lamina from Table
2.2 and assume that each layer is 0.005 in. thick.
1. Use the maximum stress failure theory to find the first and last

ply failure of the laminate.
2. Draw the stress–strain curve for the laminate till the last ply

failure.
5.13 Using Tsai–Wu theory, find the ply-by-ply failure of a [45/–45]s

graphite/epoxy laminate under a pure bending moment, Mx. Use
properties of unidirectional graphite/epoxy lamina from Table 2.1
and assume each layer is 0.125 mm thick.

5.14 Repeat the preceding exercise in the presence of a temperature
change of ΔT = –150°F and a moisture content of ΔC = 0.4%.

5.15 Develop a comparison table to show the elastic moduli Ex, Ey , νxy,
and Gxy and the tensile strengths in x and y directions, shear strength
in the x–y plane of the two laminates and glass/
epoxy laminate. Use properties of unidirectional glass/epoxy lamina
from Table 2.2 and assume failure based on first ply failure (FPF).

5.16 Find the angle in [±θ]ns graphite/epoxy sublaminate for maximum
value of each of the elastic moduli: 
1. Ex 

[ ]0 90/ s [ ]45 45/− s
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2. Ey 
3. Gxy 
Use properties of unidirectional graphite/epoxy lamina from Table
2.1.

5.17 The bending stiffness of a laminate does not decrease substantially
by replacing some of the plies at the midplane:
1. Find the percentage decrease in the longitudinal bending mod-

ulus of a [0]8 glass/epoxy laminate if four of the plies closest to
the midplane are replaced by a core of negligible stiffness.

2. What is the percentage decrease in the longitudinal bending
modulus of a [0/90/–45/45]s glass/epoxy laminate if four of the
plies closest to the midplane are replaced by a core of negligible
stiffness?

Use properties of unidirectional glass/epoxy lamina from Table 2.1.
5.18 A designer uses a [0]8 glass/epoxy laminate to manufacture a rotat-

ing blade. The in-plane longitudinal modulus is adequate, but the
in-plane shear modulus is not. A suggestion is to replace the [0]8

glass/epoxy laminate by a [±45]2s graphite/epoxy laminate. Use the
properties of unidirectional glass/epoxy lamina and unidirectional
graphite/epoxy lamina from Table 2.2 to find:
1. Whether the longitudinal modulus increases or decreases and by

how much
2. Percentage increase or decrease in the in-plane shear modulus

with the replacement
5.19 Design a symmetric graphite/epoxy cross-ply sublaminate such that

the thermal expansion coefficient in the x-direction is zero. Use the
properties of unidirectional graphite/epoxy laminate from Table 2.1;
however, assume that the longitudinal coefficient of thermal expan-
sion is –0.3 × 10–6 m/m/°C.

5.20 1. Find the coefficient of thermal expansion of a symmetric quasi-
isotropic graphite/epoxy laminate.
2. If you were able to change the longitudinal Young’s modulus of

the unidirectional graphite/epoxy lamina without affecting the
value of other properties, what value would you choose to get zero
thermal expansion coefficient for the quasi-isotropic laminate?

Use the properties of unidirectional graphite/epoxy lamina given
in Table 2.1, except choose the longitudinal coefficient of thermal
expansion as –0.3 × 10–6 m/m/°C.

5.21 Certain laminated structures, such as thin walled hollow drive
shafts, are designed for maximum shear stiffness. Find the angle, θ,
for a symmetric [±θ]ns graphite/epoxy laminate such that the in-
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plane shear stiffness is a maximum. Use the properties of unidirec-
tional graphite/epoxy lamina from Table 2.2.

5.22 A thin-walled pressure vessel is manufactured by a filament winding
method using glass/epoxy prepregs. Find the optimum angles, θ, if
the pressure vessel is made of [±θ]ns sublaminate with
1. Spherical construction for maximum strength
2. Cylindrical construction for maximum strength
3. Cylindrical construction for no change in the internal diameter
Apply Tsai–Wu failure theory. Use properties of unidirectional
glass/epoxy lamina from Table 2.2.

5.23 A cylindrical pressure vessel with flat ends of length 6 ft and inner
diameter of 35 in. is subjected to an internal gauge pressure of 150
psi. Neglect the end effects and the mass of ends of the pressure
vessel in your design. Take the factor of safety as 1.95:
1. Design the radial thickness of the pressure vessel using steel. For

steel, assume that the Young’s modulus is 30 Msi, Poisson’s ratio
is 0.3, specific gravity of steel is 7.8, and the ultimate normal
tensile and compressive strength is 36 ksi.

2. Find the axial elongation of the steel pressure vessel designed in
part (1), assuming plane stress conditions.

3. Find whether graphite/epoxy would be a better material to use
for minimizing mass if, in addition to resisting the applied pres-
sure, the axial elongation of the pressure vessel does not exceed
that of the steel pressure vessel. The vessel operates at room
temperature and curing residual stresses are neglected for sim-
plification. The following are other specifications of the design:

Only 0°, +45°, –45°, +60°, –60°, and 90° plies can be used.
The thickness of each lamina is 0.005 in.
Use specific gravities of the laminae from Example 5.6.
Use Tsai–Wu failure criterion for calculating strength ratios.

5.24 Revisit the design problem of the drive shaft in Example 5.8. Use
graphite/epoxy laminate with ply properties given in Table 2.1 to
design the drive shaft. 
1. If minimizing mass is still an issue, would a graphite/epoxy

laminate be a better choice than glass/epoxy? 
2. If cost is the only issue, is glass/epoxy laminate, steel, or graph-

ite/epoxy the best choice? Assume total manufacturing cost of
graphite/epoxy is five times that of glass/epoxy on a per-unit-
mass basis and that the glass/epoxy and steel cost the same on
a per-unit-mass basis.
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6

 

Bending of Beams

 

Chapter Objectives

 

• Develop formulas to find the deflection and stresses in a beam made
of composite materials.

• Develop formulas for symmetric beams that are narrow or wide.
• Develop formulas for nonsymmetric beams that are narrow or wide.

 

6.1 Introduction

 

To study mechanics of beams made of laminated composite materials, we
need to review the beam analysis of isotropic materials. Several concepts
applied to beams made of isotropic materials will help in understanding
beams made of composite materials. We are limiting our study to beams
with transverse loading or applied moments.

The bending stress in an isotropic beam (Figure 6.1 and Figure 6.2) under
an applied bending moment, 

 

M

 

, is given by

 

1,2

 

 

, (6.1)

where

 

z

 

 = distance from the centroid

 

I

 

 = second moment of area

The bending deflections, 

 

w

 

, are given by solving the differential equation

σ = Mz
I
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, (6.2)

where 

 

E

 

 = Young’s modulus of the beam material.

The term of  is defined as the curvature

, (6.3)

 

FIGURE 6.1

 

Bending of a beam.

 

FIGURE 6.2

 

Curvature of a bended beam.
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giving

. (6.4)

The formula for the bending stress is only valid for an isotropic material
because it assumes that the elastic moduli is uniform in the beam. In the
case of laminated materials, elastic moduli vary from layer to layer.

 

6.2 Symmetric Beams

 

To keep the introduction simple, we will discuss beams that are symmetric
and have a rectangular cross-section

 

3

 

 (Figure 6.3). Because the beam is sym-
metric, the loads and moments are decoupled in Equation (4.29) to give

(6.5)

or

. (6.6)

Now, if bending is only taking place in the 

 

x

 

-direction, then

 

FIGURE 6.3

 

Laminated beam showing the midplane and the neutral axis.
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,

, (6.7)

that is,

(6.8a)

(6.8b)

, (6.8c)

where  are the elements of the [

 

D

 

]

 

–1

 

 matrix as given in Equation (4.28c).
Because defining midplane curvatures (Equation 4.15),

,

, (6.9)

,

the midplane deflection 

 

w

 

0

 

 is not independent of 

 

y

 

. However, if we have a
narrow beam — that is, the length to width ratio (L/b) is sufficiently high,
we can assume that 

 

w

 

0

 

 = 

 

w

 

0

 

(

 

x

 

) only.

. (6.10)

Writing in the form similar to Equation (6.2) for isotropic beams,

My = 0 Mxy = 0
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, (6.11)

where

 

b

 

 = width of beam

 

E

 

x

 

 = effective bending modulus of beam

 

I

 

 = second moment of area with respect to the 

 

x–y

 

-plane

From Equation (6.8a) and (6.11), we get

. (6.12)

Also,

(6.13)

. (6.14)

To find the strains, we have, from Equation (4.16),

(6.15a)

(6.15b)

. (6.15c)

These global strains can be transformed to the local strains in each ply
using Equation (2.95):

. (6.16)

The local stresses in each ply are obtained using Equation (2.73) as
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. (6.17)

The global stresses in each ply are then obtained using Equation (2.89) as

. (6.18)

 

Example 6.1 

 

A simply supported laminated composite beam of length 0.1 m and width
5 mm (Figure 6.4) made of graphite/epoxy has the following layup of [0/
90/–30/30]

 

s

 

. A uniform load of 200 N/m is applied on the beam. What is
the maximum deflection of the beam? Find the local stresses at the top of
the third ply (–30

 

°

 

) from the top. Assume that each ply is 0.125 mm thick
and the properties of unidirectional graphite/epoxy are as given in Table 2.1. 

 

Solution

 

The shear and bending moment diagrams for the beam are given in Figure
6.5. The bending moment is maximum at the center of the beam and is
given by

, (6.19)

where

 

q

 

 = load intensity (N/m)

 

L

 

 = length of the beam (m)

 

FIGURE 6.4

 

Uniformly loaded simply supported beam.
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The maximum bending moment then is 

= 0.25 N-m.

Without showing the calculations because they are shown in detail in
Chapter 4 (see Example 4.2), we get

 

FIGURE 6.5

 

Shear (a) and bending moment (b) diagrams of a simply supported beam.
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.

To find the maximum deflection of the beam, 

 

δ

 

, we use the isotropic beam
formula:

. (6.20)

Now, in Equation (6.12),

.

Thus,
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Therefore, from Equation (6.20),

.

The maximum curvature is at the middle of the beam and is given by

.

The global strains (Equation 6.15) at the top of the third ply (–30

 

°

 

) are
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The global stresses (Equation 6.18) at the top of the third ply (–30

 

°

 

) then are

.

 

Example 6.2 

 

In Example 6.1, the width-to-height ratio in the cross-section of the beam
is 

 

b

 

/

 

h

 

 = 5/1 = 5. This may be considered as a narrow-beam cross-section.
If the 

 

b

 

/

 

h

 

 ratio were large, the cross-section may be considered to be wide
beam. What are the results of Example 6.1 if one considers the beam to be
a wide beam?

 

Solution

 

In the case of wide beams, we consider

.

Then, from Equation (6.5),
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giving

(6.21)

. (6.22)

Thus, from Equation (6.9a), Equation (6.11), and Equation (6.21),

and, from Equation (6.20),

The relative difference in the value of deflection between the assumption
of a wide and narrow beam is 

.
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Because there is only 2.357% difference in the maximum deflection, does
this mean that the assumption of wide beams influences the stresses only
by a similar amount?

From Equation (6.21),

.

Because  κy = 0, κxy = 0,

.

The global strains (Equation 6.15) at the top of the third ply (–30°) are

.

The global stresses (Equation 6.18) at the top of the third ply (–30°) then are
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.

The relative differences in the stresses obtained using wide and narrow
beam assumptions are

.
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.

6.3 Nonsymmetric Beams

In the case of nonsymmetric beams, the loads and moment are not decou-
pled. The relationship given by Equation (4.29) is

or

.

Assuming that the preceding 6 × 6 inverse matrix is denoted by [J] — that is,

, (6.23)

then

. (6.24)
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Bending of Beams 445

If bending is taking place only in the x-direction, then Mx is the only
nonzero component, giving

. (6.25)

The strain distribution in the beam, then, from Equation (4.16) is

(6.26a)

(6.26b)

. (6.26c)

Because the beam is unsymmetric, the neutral axis does not coincide with
the midplane. The location of the neutral axis, zn, is where ∈x = 0. From
Equation (6.26a),

,

giving

. (6.27)

∈ =x xJ M0
14

∈ =y xJ M0
24

γ xy xJ M0
34=

κx xJ M= 44

κy yJ M= 54

κxy xyJ M= 64

∈ =∈ +x x xz0 κ
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γ γ κxy xy xyz= +0

0 0=∈ +x n xz κ
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z
J
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Because, from Equation (4.15),

,

the deflection w0 is not independent of y. However, if we have a narrow
beam — that is, the length-to-width ratio (L/b) is sufficiently high, we can
assume that w0 = w0(x) only.

, (6.28)

writing in the form

, (6.29)

where
b = width of beam

Ex = effective bending modulus of beam
I = second moment of area with respect to the x–y-plane

From Equation (6.28) and Equation (6.29), we get

. (6.30)

Also,

.
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Bending of Beams 447

To find the strains, we have, from Equation (4.16),

(6.31a)

(6.31b)

. (6.31c)

These global strains can be transformed to the local strains in each ply
using Equation (2.95):

. (6.32)

The local stresses in each ply are obtained using Equation (2.73) as

. (6.33)

The global stresses in each ply are then obtained using Equation (2.89) as

. (6.34)

Example 6.3

A simply supported laminated composite beam (Figure 6.4) of length 0.1 m
and width 5 mm made of graphite/epoxy has the following layup: [0/90/
–30/30]2. A uniform load of 200 N/m is applied on the beam. What is the
maximum deflection of the beam? Find the local stresses at the top of the
third ply (–30°) from the top. Assume that each ply is 0.125 mm thick and
the properties of unidirectional graphite/epoxy are as given in Table 2.1.

Solution

The stiffness matrix found by using Equation (4.28) and Equation (4.29) is
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.

The inverse of the matrix is

.

Now, in Equation (6.30),

From Equation (6.13),
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Bending of Beams 449

.

Thus, from Equation (6.20),

The maximum bending moment occurs at the middle of the beam and is
given by

Calculating the midplane strains and curvature from Equation (6.24) gives
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,

giving

.

The global strains (Equation 6.31) at the top of the third ply (–30°) are

.
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Bending of Beams 451

The global stresses (Equation 6.34) at the top of the third ply (–30°) are

.

Example 6.4 

In Example 6.3, the width-to-height ratio in the cross-section of the beam
is b/h = 5/1 = 5. This may be considered as a narrow-beam cross-section.
If the b/h ratio were large, the cross-section may be considered to be wide
beam. What are the results of Example 6.3 if one considers the beam to be
a wide beam?

Solution 

In the case of the wide beams, we consider

.

Then, from Equation (6.24),

, (6.35)

we get
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(6.36a)

(6.36b)

(6.36c)

(6.36d)

(6.36e)

. (6.36f)

To find the neutral axis, ∈x = 0, we use Equation (6.36a) and Equation
(6.36e) to give

(6.37)

. (6.38)

From Equation (6.9a), Equation (6.11), and Equation (6.38),

Thus, from Equation (6.20), we get
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From Example 6.3, the maximum bendings’ moment per unit width is

.

From Equation (6.36e),

.

From Equation (6.35),
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The global strains (Equation 6.15) at the top of the third ply (–30°) are

The global stresses (Equation 6.18) at the top of the third ply (–30°) are

The relative differences in the stresses obtained using wide and narrow
beam assumptions are
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6.4 Summary

In this chapter, we reviewed the bending of isotropic beams and then
extended the knowledge to study stresses and deflection in laminated com-
posite beams. The beams could be symmetric or unsymmetric, and wide or
narrow cross-sectioned. Differences in the deflection and stress are calculated
between the results of a wide and a narrow beam.

Key Terms

Bending stress
Second moment of area
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Symmetric beams
Wide beams
Narrow beams
Unsymmetric beams

Exercise Set

6.1 A simply supported laminated composite beam (Figure 6.6) made
of glass/epoxy is 75 mm long and has the layup of [±30]2s. A uniform
load is applied on the beam that is 5 mm in width. Assume each
ply is 0.125 mm thick and the properties of glass/epoxy are from
Table 2.1.
1. What is the maximum deflection of the beam? 
2. Find the local stresses at the top of the laminate. 

6.2 A simply supported laminated composite beam (Figure 6.6) made
of glass/epoxy is 75 mm long and has the layup of [±30]4. A uniform
load is applied on the beam that is 5 mm in width. Assume each
ply is 0.125 mm thick and the properties of glass/epoxy are from
Table 2.1.
1. What is the maximum deflection of the beam? 
2. Find the local stresses at the top of the laminate. 

6.3 Calculate the bending stiffness of a narrow beam cross-ply laminate
[0/90]2s. Now compare it by using the average modulus of the lam-
inate. Assume that each ply is 0.125 mm thick and the properties of
glass/epoxy are from Table 2.1.

FIGURE 6.6
Uniformly loaded simply supported beam.

5 mm
q = 100 N/m

0.075  m
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