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CHAPTER 2

 

Mathematics of Cryptography

 

Part I: Modular Arithmetic, Congruence, 
and Matrices

 

Objectives

 

This chapter is intended to prepare the reader for the next few chapters in
cryptography. The chapter has several objectives: 

 

❏

 

To review integer arithmetic, concentrating on divisibility and find-
ing the greatest common divisor using the Euclidean algorithm

 

❏

 

To understand how the extended Euclidean algorithm can be used to
solve linear Diophantine equations, to solve linear congruent equa-
tions, and to find the multiplicative inverses

 

❏

 

To emphasize the importance of modular arithmetic and the modulo
operator, because they are extensively used in cryptography

 

❏

 

To emphasize and review matrices and operations on residue matri-
ces that are extensively used in cryptography 

 

❏

 

To solve a set of congruent equations using residue matrices 
Cryptography is based on some specific areas of mathematics, including
number theory, linear algebra, and algebraic structures. In this chapter, we
discuss only the topics in the above areas that are needed to understand the
contents of the next few chapters. Readers who are familiar with these top-
ics can skip this chapter entirely or partially. Similar chapters are provided
throughout the book when needed. Proofs of theorems and algorithms
have been omitted, and only their applications are shown. The interested
reader can find proofs of the theorems and algorithms in Appendix P. 

 

Proofs of theorems and algorithms discussed in this chapter can be found 
in Appendix P.

 

for70220_ch02.fm  Page 17  Monday, December 18, 2006  9:28 PM



Confirming Proofs

 

18

 

CHAPTER 2 MATHEMATICS OF CRYPTOGRAPHY

 

2.1 INTEGER ARITHMETIC

 

In 

 

integer arithmetic,

 

 we use a set and a few operations. You are familiar with this set
and the corresponding operations, but they are reviewed here to create a background for
modular arithmetic.

 

Set of Integers

 

The 

 

set of integers,

 

 denoted by 

 

Z,

 

 contains all integral numbers (with no fraction) from
negative infinity to positive infinity (Figure 2.1).

 

Binary Operations

 

In cryptography, we are interested in three binary operations applied to the set of integers.
A 

 

binary operation

 

 takes two inputs and creates one output. Three common binary oper-
ations defined for integers are 

 

addition,

 

 

 

subtraction,

 

 and 

 

multiplication

 

. Each of these
operations takes two inputs (

 

a

 

 and 

 

b

 

) and creates one output (

 

c

 

) as shown in Figure 2.2.
The two inputs come from the set of integers; the output goes into the set of integers.

 Note that 

 

division 

 

does not fit in this category because, as we will see shortly, it
produces two outputs instead of one.

 

Example 2.1

 

The following shows the results of the three binary operations on two integers. Because each
input can be either positive or negative, we can have four cases for each operation. 

 

Figure 2.1

 

The set of integers

 

Figure 2.2

 

Three binary operations for the set of integers

 

Add: 5 

 

+

 

 9 = 14 (

 

−

 

5) 

 

+

 

 9 = 4   5 

 

+

 

 (

 

−

 

9) = 

 

−

 

4    (

 

−

 

5) 

 

+

 

 (

 

−

 

9) = 

 

−

 

14

Subtract: 5 

 

−

 

 9 = 

 

−

 

4 (

 

−

 

5) 

 

−

 

 9 = 

 

−

 

14   5 

 

−

 

 (

 

−

 

9) = 

 

14

 

   (

 

−

 

5) 

 

 −

 

 (

 

−

 

9) = 

 

+

 

4

Multiply: 5 

 

×

 

 9 = 

 

45

 

(

 

−

 

5) 

 

×

 

 9 = 

 

−

 

45   5 

 

×

 

 (

 

−

 

9) = 

 

−45

 

   (

 

−

 

5) 

 

×

 

 (

 

−

 

9) = 

 

45

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

a b

c

Operation+ ×−
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Integer Division

 

In integer arithmetic, if we divide 

 

a

 

 by 

 

n

 

, we can get 

 

q

 

 and 

 

r

 

. The relationship between
these four integers can be shown as 

In this relation, 

 

a

 

 is called the 

 

dividend;

 

 

 

q

 

, the 

 

quotient;

 

 

 

n

 

, the 

 

divisor;

 

 and 

 

r

 

, the

 

remainder

 

. Note that this is not an operation, because the result of dividing 

 

a

 

 by 

 

n

 

 is
two integers, 

 

q

 

 and 

 

r

 

. We can call it 

 

division relation

 

. 

 

Example 2.2

 

Assume that 

 

a

 

 

 

=

 

 255 and 

 

n

 

 

 

=

 

 11. We can find 

 

q

 

 

 

=

 

 23 and 

 

r

 

 

 

=

 

 2 using the division algorithm we
have learned in arithmetic as shown in Figure 2.3.

 

Most computer languages can find the quotient and the remainder using language-
specific operators. For example, in the C language, the operator / can find the quotient
and the operator % can find the remainder. 

 

Two Restrictions

 

When we use the above division relationship in cryptography, we impose two restric-
tions. First, we require that the divisor be a positive integer (

 

n

 

 

 

>

 

 0). Second, we require
that the remainder be a nonnegative integer (

 

r

 

 

 

≥

 

 0). Figure 2.4 shows this relationship
with the two above-mentioned restrictions. 

 

a

 

 ====

 

 

 

q

 

 ××××

 

 

 

n

 

 ++++

 

 r

 

Figure 2.3

 

Example 2.2, finding the quotient and the remainder

 

Figure 2.4

 

Division algorithm for integers

2 5 5   1 1

2 2

3 5

3 3

2

2 3   q

a

r

n

n
(positive)

r
(nonnegative)

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

q

a = q × n + r

a
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CHAPTER 2 MATHEMATICS OF CRYPTOGRAPHY

 

Example 2.3

 

When we use a computer or a calculator, 

 

r

 

 and 

 

q

 

 are negative when 

 

a

 

 is negative. How can we
apply the restriction that 

 

r 

 

needs to be positive? The solution is simple, we decrement the value of

 

q 

 

by 1 and we add the value of 

 

n

 

 to 

 

r

 

 to make it positive.

We have decremented

 

 −

 

23 to become 

 

−

 

24 and added 11 to 

 

−

 

2 to make it 9. The above relation
is still valid. 

 

The Graph of the Relation

 

We can show the above relation with the two restrictions on 

 

n

 

 and 

 

r

 

 using two graphs in
Figure 2.5. The first one shows the case when 

 

a

 

 is positive; the second when 

 

a

 

 is negative. 

Starting from zero, the graph shows how we can reach the point representing the
integer 

 

a

 

 on the line. In case of a positive 

 

a

 

, we need to move 

 

q

 

 

 

×

 

 

 

n

 

 units to the right and
then move extra

 

 r units in the same direction. In case of a negative a, we need to move
(q − 1) × n units to the left (q is negative in this case) and then move r units in the oppo-
site direction. In both cases the value of r is positive.

Divisibility
Let us briefly discuss divisibility, a topic we often encounter in cryptography. If a is not
zero and we let r = 0 in the division relation, we get

We then say that n divides a (or n is a divisor of a). We can also say that a is divis-
ible by n. When we are not interested in the value of q, we can write the above relation-
ship as a |n. If the remainder is not zero, then n does not divide a and we can write the
relationship as a�n. 

Example 2.4

a. The integer 4 divides the integer 32 because 32 = 8 × 4. We show this as 4 |32.

b. The number 8 does not divide the number 42 because 42 = 5 × 8 + 2. There is a remainder, the 
number 2, in the equation. We show this as 8�42.

−255 = (−23 × 11) +  (–2)          ↔           −255 = (−24 × 11)  +  9 

Figure 2.5 Graph of division algorithm

a ==== q ×××× n 

0 n 2n qn a

Case of 
positive a

Case of 
negative a

0−n−2nqn(q − 1)n a

r

r

for70220_ch02.fm  Page 20  Monday, December 18, 2006  9:28 PM



Confirming Proofs

SECTION 2.1 INTEGER ARITHMETIC 21

Example 2.5

a. We have 13 |78, 7 |98, −6 |24, 4 |44, and 11 |(−33).

b. We have 13�27, 7�50, −6�23, 4�41, and 11�(−32). 

Properties

Following are several properties of divisibility. The interested reader can check Appen-
dix P for proofs. 

Example 2.6

a. Since 3 |15 and 15 |45, according to the third property, 3|45. 

b. Since 3 |15 and 3 |9, according to the fourth property, 3|(15 × 2 + 9 × 4), which means 3 |66.

All Divisors

A positive integer can have more than one divisor. For example, the integer 32 has six
divisors: 1, 2, 4, 8, 16, and 32. We can mention two interesting facts about divisors of
positive integers:

Greatest Common Divisor

One integer often needed in cryptography is the greatest common divisor of two posi-
tive integers. Two positive integers may have many common divisors, but only one
greatest common divisor. For example, the common divisors of 12 and 140 are 1, 2, and 4.
However, the greatest common divisor is 4. See Figure 2.6. 

Property 1: if a |1, then a = ±1. 
Property 2: if a |b and b |a, then a = ±b. 
Property 3: if a |b and b |c, then a |c. 
Property 4: if a |b and a |c, then a |(m × b + n × c), where m and n are arbitrary integers. 

Fact 1: The integer 1 has only one divisor, itself.

Fact 2: Any positive integer has at least two divisors, 1 and itself (but it can have more).       

Figure 2.6 Common divisors of two integers

Divisors of 140

Common Divisors
of 140 and 12

Divisor of 12

1
3

2
6

4
12

7
5

35

14

1070
28

20
140
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Euclidean Algorithm

Finding the greatest common divisor (gcd) of two positive integers by listing all com-
mon divisors is not practical when the two integers are large. Fortunately, more than
2000 years ago a mathematician named Euclid developed an algorithm that can find the
greatest common divisor of two positive integers. The Euclidean algorithm is based
on the following two facts (see Appendix P for the proof): 

The first fact tells us that if the second integer is 0, the greatest common divisor is
the first one. The second fact allows us to change the value of a, b until b becomes 0.
For example, to calculate the gcd (36, 10), we can use the second fact several times and
the first fact once, as shown below.

In other words, gcd (36, 10) = 2, gcd (10, 6) = 2, and so on. This means that instead
of calculating gcd (36, 10), we can find gcd (2, 0). Figure 2.7 shows how we use the
above two facts to calculate gcd (a, b).

We use two variables, r1 and r2, to hold the changing values during the process of
reduction. They are initialized to a and b. In each step, we calculate the remainder of
r1 divided by r2 and store the result in the variable r. We then replace r1 by r2 and r2 by r.
The steps are continued until r2 becomes 0. At this moment, we stop. The gcd (a, b) is r1.  

The greatest common divisor of two positive integers is the largest integer that can 
divide both integers. 

Fact 1: gcd (a, 0) = a

Fact 2: gcd (a, b) = gcd (b, r), where r is the remainder of dividing a by b 

gcd (36, 10) = gcd (10, 6) = gcd (6, 4) = gcd (4, 2) = gcd (2, 0) = 2

Figure 2.7 Euclidean algorithm

b. Algorithm a. Process 

r1 = a r2 = b r

r

gcd (a , b) = r1 

r2r1

r2r1

0

r1 0 }

{

while (r2 > 0)
(Initialization)

gcd (a, b) = r1

q = r1 / r2;

r1 = a; r2 = b; 

 

r1 = r2; r2 = r;
r = r1 − q * r2;
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Find the greatest common divisor of 2740 and 1760. 

Solution
We apply the above procedure using a table. We initialize r1 to 2740 and r2 to 1760. We have also
shown the value of q in each step. We have gcd (2740, 1760) = 20. 

Example 2.7

Find the greatest common divisor of 25 and 60. 

Solution
We chose this particular example to show that it does not matter if the first number is smaller than
the second number. We immediately get our correct ordering. We have gcd (25, 65) = 5. 

The Extended Euclidean Algorithm

Given two integers a and b, we often need to find other two integers, s and t, such that 

The extended Euclidean algorithm can calculate the gcd (a, b) and at the same time
calculate the value of s and t. The algorithm and the process is shown in Figure 2.8.

As shown in Figure 2.8, the extended Euclidean algorithm uses the same number of
steps as the Euclidean algorithm. However, in each step, we use three sets of calculations
and exchanges instead of one. The algorithm uses three sets of variables, r’s, s’s, and t’s.

When gcd (a, b) = 1, we say that a and b are relatively prime.

q r1                          r2        r

1 2740                     1760      980

1 1760                        980      780

1   980                        780      200

3   780                        200      180

1   200                        180        20

9   180                          20          0

     20                             0  

q r1                          r2 r

0  25                         60      25

2  60                         25      10

2  25                         10        5

2  10                           5        0

    5                           0  

s × a + t × b = gcd (a, b)

for70220_ch02.fm  Page 23  Monday, December 18, 2006  9:28 PM



Confirming Proofs

24 CHAPTER 2 MATHEMATICS OF CRYPTOGRAPHY

In each step, r1, r2, and r have the same values in the Euclidean algorithm. The variables r1
and r2 are initialized to the values of a and b, respectively. The variables s1 and s2 are initial-
ized to 1 and 0, respectively. The variables t1 and t2 are initialized to 0 and 1, respectively.
The calculations of r, s, and t are similar, with one warning. Although r is the remainder of
dividing r1 by r2, there is no such relationship between the other two sets. There is only one
quotient, q, which is calculated as r1 |r2 and used for the other two calculations.

Example 2.8

Given a = 161 and b = 28, find gcd (a, b) and the values of s and t. 

Solution 

Figure 2.8 Extended Euclidean algorithm

r = r1 − q × r2 s = s1 − q × s2 t = t1 − q × t2

b. Algorithm 

a. Process 

r1 = a r2 = b r

r

gcd (a , b) = r1 

r2r1

r2r1

0

r1 0

s1 
= 1 s2 

= 0 s

s

s = s1 

s2s1

s2s1

s

s1 s2

t1 
= 0 t2 

= 1 t

t

t = t1 

t2t1

t2t1

t

t1 t2

}

(Initialization)

(Updating r’s)

r1 = a; r2 = b; 
s1 = 1; s2 = 0;
t1 = 0; t2 = 1;

{

while (r2 > 0)

q = r1 / r2; 

r1 = r2;  r2 = r;
r = r1 − q * r2;

(Updating s’s)
s1 = s2;  s2 = s;
s = s1 − q * s2;

(Updating t’s)
t1 = t2;  t2 = t;
t = t1 − q * t2;

gcd (a , b) = r1   s = s1   t = t1
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We use a table to follow the algorithm. 

We get gcd (161, 28) = 7, s = −1 and t = 6. The answers can be tested because we have 

Example 2.9

Given a = 17 and b = 0, find gcd (a, b) and the values of s and t. 

Solution
We use a table to follow the algorithm. 

Note that we need no calculation for q, r, and s. The first value of r2 meets our termination condi-
tion. We get gcd (17, 0) = 17, s = 1, and t = 0. This indicates why we should initialize s1 to 1 and
t1 to 0. The answers can be tested as shown below:

Example 2.10

Given a = 0 and b = 45, find gcd (a, b) and the values of s and t. 

Solution
We use a table to follow the algorithm. 

We get gcd (0, 45) = 45, s = 0, and t = 1. This indicates why we should initialize s2 to 0 and t2 to 1.
The answer can be tested as shown below:

q   r1     r2     r s1      s2 s t1      t2 t

5  161   28    21   1       0     1  0       1   −5

1    28    21     7   0       1   −1  1     −5      6

3     21     7     0   1     −1     4 −5       6  −23

          7     0      −1      4        6   −23      

(−1) × 161 + 6 × 28 = 7

q r1      r2 r s1      s2 s t1      t2 t

     17        0        1         0         0        1        

(1 × 17) + (0 × 0) = 17

q r1      r2 r s1      s2 s t1       t2 t

0  0       45 0   1       0 1   0       1 0

     45       0        0       1        1       0      

(0 × 0) + (1 × 45) = 45
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Linear Diophantine Equations
Although we will see a very important application of the extended Euclidean algorithm
in the next section, one immediate application is to find the solutions to the linear
Diophantine equations of two variables, an equation of type ax + by = c. We need to
find integer values for x and y that satisfy the equation. This type of equation has either
no solution or an infinite number of solutions. Let d = gcd (a, b). If d�c, then the equa-
tion has no solution. If d | c, then we have an infinite number of solutions. One of them
is called the particular; the rest, general. 

Particular Solution

If d | c, a particular solution to the above equation can be found using the following steps:

1. Reduce the equation to a1x + b1y = c1 by dividing both sides of the equation by d.
This is possible because d divides a, b, and c by the assumption. 

2. Solve for s and t in the relation a1s + b1t = 1 using the extended Euclidean algorithm. 

3. The particular solution can be found: 

General Solutions

After finding the particular solution, the general solutions can be found:

Example 2.11

Find the particular and general solutions to the equation 21x + 14y = 35.

Solution
We have d = gcd (21, 7) = 7. Since 7|35, the equation has an infinite number of solutions. We can
divide both sides by 7 to find the equation 3x + 2y = 5. Using the extended Euclidean algorithm,
we find s and t such as 3s + 2t = 1. We have s = 1 and t = −1. The solutions are 

Therefore, the solutions are (5, −5), (7, −8), (9, −11), . . . We can easily test that each of these
solutions satisfies the original equation. 

Example 2.12

A very interesting application in real life is when we want to find different combinations of
objects having different values. For example, imagine we want to cash a $100 check and get
some $20 and some $5 bills. We have many choices, which we can find by solving the corre-
sponding Diophantine equation 20x + 5y = 100. Since d = gcd (20, 5) = 5 and 5|100, the equation

A linear Diophantine equation of two variables is ax ++++ by ==== c. 

Particular solution: x0 = (c/d)s    and     y0 ==== (c/d)t                      

General solutions: x = x0 + k (b/d)   and    y = y0 −−−− k (a/d)     where k = 0, 1, 2, ....    ....    ....                 

Particular: x0 = 5 × 1 = 5    and   y0 = 5 × (−1) = −5             since 35/7 = 5
General: x = 5 + k × 2    and   y = −5 − k × 3                        where k = 0, 1, 2, . . . 
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has an infinite number of solutions, but only a few of them are acceptable in this case (only
answers in which both x and y are nonnegative integers). We divide both sides by 5 to get 4x + y = 20.
We then solve the equation 4s + t = 1. We can find s = 0 and t = 1 using the extended Euclidean
algorithm. The particular solutions are x0 = 0 × 20 = 0 and y0 = 1 × 20 = 20. The general solutions
with x and y nonnegative are (0, 20), (1, 16), (2, 12), (3, 8), (4, 4), (5, 0). The rest of the solutions
are not acceptable because y becomes negative. The teller at the bank needs to ask which of the
above combinations we want. The first has no $20 bills; the last has no $5 bills. 

2.2 MODULAR ARITHMETIC
The division relationship (a = q × n + r) discussed in the previous section has two inputs
(a and n) and two outputs (q and r). In modular arithmetic, we are interested in only one
of the outputs, the remainder r. We don’t care about the quotient q. In other words, we
want to know what is the value of r when we divide a by n. This implies that we can
change the above relation into a binary operator with two inputs a and n and one output r. 

Modulo Operator
The above-mentioned binary operator is called the modulo operator and is shown as
mod. The second input (n) is called the modulus. The output r is called the residue.
Figure 2.9 shows the division relation compared with the modulo operator. 

As Figure 2.9 shows, the modulo operator (mod) takes an integer (a) from the set Z
and a positive modulus (n). The operator creates a nonnegative residue (r). We can say

Example 2.13

Find the result of the following operations:

a. 27 mod 5

b. 36 mod 12

c. −18 mod 14

d. −7 mod 10

Figure 2.9 Division relation and modulo operator

a mod n ==== r

r  (nonnegative)

n
(positive)

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Operatormod

a

r  (nonnegative)

n
(positive)

Z = { .  .  . , −2, −1, 0, 1, 2,  .  .  . }

Relationa = q × n + r

q

a
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Solution
We are looking for the residue r. We can divide the a by n and find q and r. We can then disregard
q and keep r. 

a. Dividing 27 by 5 results in r = 2. This means that 27 mod 5 = 2. 

b. Dividing 36 by 12 results in r = 0. This means that 36 mod 12 = 0.

c. Dividing −18 by 14 results in r = −4. However, we need to add the modulus (14) to make it 
nonnegative. We have r = −4 + 14 = 10. This means that −18 mod 14 = 10.

d. Dividing −7 by 10 results in r = −7. After adding the modulus to −7, we have r = 3. This 
means that −7 mod 10 = 3.

Set of Residues: Zn
The result of the modulo operation with modulus n is always an integer between 0 and
n − 1. In other words, the result of a mod n is always a nonnegative integer less than n.
We can say that the modulo operation creates a set, which in modular arithmetic is
referred to as the set of least residues modulo n, or Zn. However, we need to remem-
ber that although we have only one set of integers (Z), we have infinite instances of the
set of residues (Zn), one for each value of n. Figure 2.10 shows the set Zn and three
instances, Z2, Z6, and Z11. 

Congruence
In cryptography, we often used the concept of congruence instead of equality. Map-
ping from Z to Zn is not one-to-one. Infinite members of Z can map to one member of
Zn. For example, the result of 2 mod 10 = 2, 12 mod 10 = 2, 22 mod 2 = 2, and so on. In
modular arithmetic, integers like 2, 12, and 22 are called congruent mod 10. To show
that two integers are congruent, we use the congruence operator (≡). We add the
phrase (mod n) to the right side of the congruence to define the value of modulus that
makes the relationship valid. For example, we write:   

Figure 2.11 shows the idea of congruence. We need to explain several points. 

a. The congruence operator looks like the equality operator, but there are differences.
First, an equality operator maps a member of Z to itself; the congruence operator
maps a member from Z to a member of Zn. Second, the equality operator is one-
to-one; the congruence operator is many-to-one. 

Figure 2.10 Some Zn sets

2 ≡ 12 (mod 10)          13 ≡ 23 (mod 10)        34 ≡ 24 (mod 10)          −8 ≡ 12 (mod 10)
3 ≡ 8 (mod 5)                8 ≡ 13 (mod 5)          23 ≡ 33 (mod 5)            −8 ≡ 2 (mod 5)

Zn = { 0, 1, 2, 3,  .  .  .  ,  (n − 1) }

Z2 = { 0, 1 } Z6 = { 0, 1, 2, 3, 4, 5 } Z11 = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
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b. The phrase (mod n) that we insert at the right-hand side of the congruence opera-
tor is just an indication of the destination set (Zn). We need to add this phrase to
show what modulus is used in the mapping. The symbol mod used here does not
have the same meaning as the binary operator. In other words, the symbol mod in
12 mod 10 is an operator; the phrase (mod 10) in 2 ≡ 12 (mod 10) means that the
destination set is Z10. 

Residue Classes

A residue class [a] or [a]n is the set of integers congruent modulo n. In other words, it
is the set of all integers such that x = a (mod n). For example, if n = 5, we have five sets
[0], [1], [2], [3], and [4] as shown below:

The integers in the set [0] are all reduced to 0 when we apply the modulo 5 opera-
tion on them. The integers in the set [1] are all reduced to 1 when we apply the modulo
5 operation, and so on. In each set, there is one element called the least (nonnegative)
residue. In the set [0], this element is 0; in the set [1], this element is 1; and so on. The
set of all of these least residues is what we have shown as Z5 = {0, 1, 2, 3, 4}. In other
words, the set Zn is the set of all least residue modulo n. 

Circular Notation

The concept of congruence can be better understood with the use of a circle. Just as we
use a line to show the distribution of integers in Z, we can use a circle to show the

Figure 2.11 Concept of congruence

[0] = {…, −15,  −10,  −5, 0,   5, 10, 15, …}
[1] = {…, −14,    −9,  −4, 1,   6, 11, 16, …}
[2] = {…, −13,    −8,  −3, 2,   7, 12, 17, …}
[3] = {…, −12,    −7,  −5, 3,   8, 13, 18, …}
[4] = {…, −11,    −6,  −1, 4,   9, 14, 19, …}

Z = { .  .  .         −8          .  .  .         2         .  .  .         12         .  .  .        22          .  .  . }

Z10 = { 0  .  .  .  2  .  .  .  9 }

10

Congruence Relationship

−8  ≡  2  ≡  12  ≡  22  (mod 10)

mod10 mod10 mod10 mod
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distribution of integers in Zn. Figure 2.12 shows the comparison between the two. Integers
0 to n − 1 are spaced evenly around a circle. All congruent integers modulo n occupy
the same point on the circle. Positive and negative integers from Z are mapped to the
circle in such a way that there is a symmetry between them.

Example 2.14

We use modular arithmetic in our daily life; for example, we use a clock to measure time. Our
clock system uses modulo 12 arithmetic. However, instead of a 0 we use the number 12. So our
clock system starts with 0 (or 12) and goes until 11. Because our days last 24 hours, we navigate
around the circle two times and denote the first revolution as A.M. and the second as P.M. 

Operations in Zn
The three binary operations (addition, subtraction, and multiplication) that we dis-
cussed for the set Z can also be defined for the set Zn. The result may need to be
mapped to Zn using the mod operator as shown in Figure 2.13.

Figure 2.12 Comparison of Z and Zn using graphs

Figure 2.13 Binary operations in Zn

0 11 22 (n − 1)−(n − 1)

(n − 1)

(n − 2)

0
1

2

Zn

Z

a ≡ 2 (mod n)

n

Zn = { 0, 1,  2,  .  .  .  , (n − 1) }

Z  or  Zn

c

a b

mod

+, ×−,
Operations

(a + b) mod  n = c 

(a − b) mod  n = c 
(a × b) mod  n = c 
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Actually, two sets of operators are used here. The first set is one of the binary oper-
ators (+, −, ×); the second is the mod operator. We need to use parentheses to emphasize
the order of operations. As Figure 2.13 shows, the inputs (a and b) can be members of
Zn or Z. 

Example 2.15

Perform the following operations (the inputs come from Zn):

a. Add 7 to 14 in Z15.

b. Subtract 11 from 7 in Z13. 

c. Multiply 11 by 7 in Z20. 

Solution
The following shows the two steps involved in each case: 

Example 2.16

Perform the following operations (the inputs come from either Z or Zn):

a. Add 17 to 27 in Z14.

b. Subtract 34 from 12 in Z13. 

c. Multiply 123 by −10 in Z19. 

Solution
The following shows the two steps involved in each case: 

Properties

We mentioned that the two inputs to the three binary operations in the modular arithmetic
can come from Z or Zn. The following properties allow us to first map the two inputs to
Zn (if they are coming from Z) before applying the three binary operations (+, −, ×).
Interested readers can find proofs for these properties in Appendix P. 

Figure 2.14 shows the process before and after applying the above properties.
Although the figure shows that the process is longer if we apply the above properties,
we should remember that in cryptography we are dealing with very large integers.
For example, if we multiply a very large integer by another very large integer, we

(14 + 7) mod 15 → (21) mod 15 = 6
(7 − 11) mod 13 → (−4) mod 13 = 9
(7 × 11) mod 20 → (77) mod 20 = 17

(17 + 27) mod 14        → (44) mod 14 = 2
(12 − 43) mod 13       → (−31) mod 13 = 8
(123 × (−10)) mod 19 → (−1230) mod 19 = 5

First Property:   (a + b) mod n = [(a mod n) + (b mod n)] mod n

Second Property: (a − b) mod n = [(a mod n) − (b mod n)] mod n 

Third Property:  (a × b) mod n = [(a mod n) × (b mod n)] mod n 
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may have an integer that is too large to be stored in the computer. Applying the
above properties make the first two operands smaller before the multiplication oper-
ation is applied. In other words, the properties us with smaller numbers. This fact
will manifest itself more clearly in discussion of the exponential operation in later
chapters.

Example 2.17

The following shows the application of the above properties: 

1. (1,723,345 + 2,124,945) mod 11 = (8 + 9) mod 11 = 6

2. (1,723,345 − 2,124,945) mod 16 = (8 − 9) mod 11 = 10

3. (1,723,345 × 2,124,945) mod 16 = (8 × 9) mod 11 = 6

Example 2.18

In arithmetic, we often need to find the remainder of powers of 10 when divided by an integer.
For example, we need to find 10 mod 3, 102 mod 3, 103 mod 3, and so on. We also need to find 10
mod 7, 102 mod 7, 103 mod 7, and so. The third property of the mod operator mentioned above
makes life much easier. 

We have 

Figure 2.14 Properties of mod operator

10n mod x = (10 mod x)n Applying the third property n times.    

10 mod 3 = 1 → 10n mod 3 = (10 mod 3)n = 1 
10 mod 9 = 1 → 10n mod 9 = (10 mod 9)n = 1 
10 mod 7 = 3 → 10n mod 7 = (10 mod 7)n = 3n mod 7

n

a. Original process

n

Zn = { 0, 1, 2,  .  .  .  , (n − 1)}

Z  or  Zn

c

a b

mod

+, ×−,

b. Applying properties

n

n

Zn = {0, 1, 2,  .  .  . , (n − 1)}

Z  or  Zn

a b

mod

+, ×−,

mod

mod

a mod n b mod n

c
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Example 2.19

We have been told in arithmetic that the remainder of an integer divided by 3 is the same as the
remainder of the sum of its decimal digits. In other words, the remainder of dividing 6371 by 3
is the same as dividing 17 by 3 because 6 + 3 + 7 + 1 = 17. We can prove this claim using the
properties of the mod operator. We write an integer as the sum of its digits multiplied by the
powers of 10. 

Now we can apply the mod operator to both sides of the equality and use the result of the
previous example that 10n mod 3 is 1.

Inverses
When we are working in modular arithmetic, we often need to find the inverse of a
number relative to an operation. We are normally looking for an additive inverse (rela-
tive to an addition operation) or a multiplicative inverse (relative to a multiplication
operation).

Additive Inverse

In Zn, two numbers a and b are additive inverses of each other if  

In Zn, the additive inverse of a can be calculated as b = n − a. For example, the
additive inverse of 4 in Z10 is 10 − 4 = 6. 

Note that in modular arithmetic, each number has an additive inverse and the inverse is
unique; each number has one and only one additive inverse. However, the inverse of the
number may be the number itself. 

Example 2.20

Find all additive inverse pairs in Z10.

a = an × 10n + . . . + a1 × 101 + a0 × 100

For example: 6371 = 6 × 103 + 3 × 102 + 7 × 101 + 1 × 100

a mod 3 = (an × 10n + . . . + a1 × 101 + a0 × 100) mod 3
              = (an × 10n) mod 3  + . . . + (a1 × 101) mod 3  + (a0 × 100) mod 3
              = (an mod 3) × (10n mod 3) + . . . + (a1 mod 3) × (101 mod 3) + 
                 (a0 mod 3) × (100 mod 3)
              = an mod 3 + . . . + a1 mod 3  + a0 mod 3
              = (an  + . . . + a1 + a0) mod 3 

a + b ≡ 0 (mod n)

In modular arithmetic, each integer has an additive inverse. 

The sum of an integer and its additive inverse is congruent to 0 modulo n. 
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Solution
The six pairs of additive inverses are (0, 0), (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5). In this list, 0 is
the additive inverse of itself; so is 5. Note that the additive inverses are reciprocal; if 4 is the addi-
tive inverse of 6, then 6 is also the additive inverse of 4. 

Multiplicative Inverse

In Zn, two numbers a and b are the multiplicative inverse of each other if  

For example, if the modulus is 10, then the multiplicative inverse of 3 is 7. In other
words, we have (3 × 7) mod 10 = 1.

 It can be proved that a has a multiplicative inverse in Zn if and only if gcd (n, a) = 1.
In this case, a and n are said to be relatively prime. 

Example 2.21

Find the multiplicative inverse of 8 in Z10.

Solution
There is no multiplicative inverse because gcd (10, 8) = 2 ≠ 1. In other words, we cannot find any
number between 0 and 9 such that when multiplied by 8, the result is congruent to 1. 

Example 2.22

Find all multiplicative inverses in Z10.

Solution
There are only three pairs: (1, 1), (3, 7) and (9, 9). The numbers 0, 2, 4, 5, 6, and 8 do not have a
multiplicative inverse. We can see that

Example 2.23

Find all multiplicative inverse pairs in Z11.

Solution
We have seven pairs: (1, 1), (2, 6), (3, 4), (5, 9), (7, 8), (9, 9), and (10, 10). In moving from Z10 to
Z11, the number of pairs doubles. The reason is that in Z11, gcd (11, a) is 1 (relatively prime) for
all values of a except 0. It means all integers 1 to 10 have multiplicative inverses. 

The extended Euclidean algorithm we discussed earlier in the chapter can find the
multiplicative inverse of b in Zn when n and b are given and the inverse exists. To show

a × b ≡ 1 (mod n)

In modular arithmetic, an integer may or may not have a multiplicative inverse. 

When it does, the product of the integer and its multiplicative inverse is congruent 
to 1 modulo n. 

 (1 × 1) mod 10 = 1 (3 × 7) mod 10 = 1 (9 × 9) mod 10 = 1

The integer a in Zn has a multiplicative inverse if and only if gcd (n, a) ≡≡≡≡ 1 (mod n)
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this, let us replace the first integer a with n (the modulus). We can say that the algorithm
can find s and t such s × n + b × t = gcd (n, b). However, if the multiplicative inverse of
b exists, gcd (n, b) must be 1. So the relationship is 

Now we apply the modulo operator to both sides. In other words, we map each side
to Zn. We will have 

Note that [(s × n) mod n] in the third line is 0 because if we divide (s × n) by n, the
quotient is s but the remainder is 0. 

Figure 2.15 shows how we find the multiplicative inverse of a number using the
extended Euclidean algorithm. 

Example 2.24

Find the multiplicative inverse of 11 in Z26. 

(s ×××× n) ++++ (b ×××× t) ==== 1

(s × n + b × t) mod n = 1 mod n
[(s × n) mod n] + [(b × t) mod n] = 1 mod n
0 + [(b × t) mod n] = 1                                    
(b ×  t) mod n = 1              → This means t is the multiplicative inverse of b in Zn 

The extended Euclidean algorithm finds the multiplicative inverses of b in Zn when n 
and b are given and gcd (n, b) ==== 1. 

The multiplicative inverse of b is the value of t after being mapped to Zn. 

Figure 2.15 Using the extended Euclidean algorithm to find the multiplicative inverse

If r1 = 1,  b−1 = t1 

b. Algorithm 

}

{
while (r2 > 0)

if (r1 = 1) then b−1 = t1

q = r1  / r2; 

r1 = n; r2 = b;
t1 = 0; t2 = 1;

r = r1 − q * r2; 

r1 = r2;  r2 = r;

t = t1 − q * t2;

t1 = t2;  t2 = t;

a. Process 

r

r

gcd (a , b) = r1 

r2r1

r2r1

0

r1 0

t1 
= 0 t2 

= 1 t

t

t2t1

t2t1

t

t1 t2

r1 
= a r2 

= b
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Solution
We use a table similar to the one we used before with r1 = 26 and r2 = 11. We are interested only
in the value of t. 

The gcd (26, 11) is 1, which means that the multiplicative inverse of 11 exists. The extended
Euclidean algorithm gives t1 = −7. The multiplicative inverse is (−7) mod 26 = 19. In other words,
11 and 19 are multiplicative inverse in Z26. We can see that (11 × 19) mod 26 = 209 mod 26 = 1.

Example 2.25

Find the multiplicative inverse of 23 in Z100. 

Solution
We use a table similar to the one we used before with r1 = 100 and r2 = 23. We are interested only
in the value of t.  

The gcd (100, 23) is 1, which means the inverse of 23 exists. The extended Euclidean algorithm
gives t1 = −13. The inverse is (−13) mod 100 = 87. In other words, 13 and 87 are multiplicative
inverses in Z100. We can see that (23 × 87) mod 100 = 2001 mod 100 = 1.

Example 2.26

Find the inverse of 12 in Z26. 

Solution
We use a table similar to the one we used before, with r1 = 26 and r2 = 12. 

The gcd (26, 12) = 2 ≠ 1, which means there is no multiplicative inverse for 12 in Z26. 

q r1      r2 r t1      t2 t

2  26      11 4    0       1   −2

2  11       4 3     1   −2     5

1    4       3 1  −2      5   −7

3    3       1 0    5    −7   26

        1       0       −7    26      

q r1               r2       r t1           t2 t

4 100            23 8      0            1   −4

2   23              8 7       1         −4   19

1     8              7 1    −4            9 −13

7     7              1 0      9        −13 100

         1             0       −13        100      

q r1              r2 r t1             t2        t

2   26             12 2     0            1   −2

6   12               2 0     1          −2    13

         2               0        −2          13      
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Addition and Multiplication Tables
Figure 2.16 shows two tables for addition and multiplication. In the addition table, each
integer has an additive inverse. The inverse pairs can be found when the result of addi-
tion is zero. We have (0, 0), (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5). In the multiplication
table we have only three multiplicative pairs (1, 1), (3, 7) and (9, 9). The pairs can be
found whenever the result of multiplication is 1. Both tables are symmetric with respect
to the diagonal of elements that moves from the top left to the bottom right, revealing
the commutative property for addition and multiplication (a + b = b + a and a × b = b × a).
The addition table also shows that each row or column is a permutation of another row
or column. This is not true for the multiplication table. 

Different Sets for Addition and Multiplication
In cryptography we often work with inverses. If the sender uses an integer (as the
encryption key), the receiver uses the inverse of that integer (as the decryption key). If
the operation (encryption/decryption algorithm) is addition, Zn can be used as the set of
possible keys because each integer in this set has an additive inverse. On the other hand,
if the operation (encryption/decryption algorithm) is multiplication, Zn cannot be the
set of possible keys because only some members of this set have a multiplicative
inverse. We need another set. The new set, which is a subset of Zn includes only inte-
gers in Zn that have a unique multiplicative inverse. This set is called Zn* . Figure 2.17
shows some instances of two sets. Note that Zn*  can be made from multiplication tables,
such as the one shown in Figure 2.16. 

Each member of Zn has an additive inverse, but only some members have a multi-
plicative inverse. Each member of Zn*  has a multiplicative inverse, but only some
members have an additive inverse. 

Figure 2.16 Addition and multiplication tables for Z10

We need to use Zn when additive inverses are needed; we need to use Zn* when 
multiplicative inverses are needed.  

1
0

2
3
4
5
6

10 2 3 4 5 6

Addition Table in Z10

2 40 3 5  61
2 4 73 5 61

2 43 5 6 7 8
94 73 5 6 8

94 7 05 6 8
9 17 05 6 8

9 17 0 2

7
 7
8
9
0
1
2
3

8
8
9
0
1
2
3
4

9
9
0
1
2
3
4
56 8

7 0 28 1 3 4 5 67 9
8 1 39 2 4 5 6 78 0
9 2 40 3 5 6 7 89 1

Multiplication Table in Z10

1
0

2
3
4
5
6

10 2 3 4 5 6
0 00 0 0 00

1 3 62 4 50
0 42 6 8 0 2

83 20 6 9 5
00 2 44 8 6

0 00 50 5 5
8 06 4 6

7
0
7
4
1
8
5
2

8
0
8
6
4
2
0
8

9
0
9
8
7
6
5
40 2

7 1 07 8 2 9 6 30 4
8 4 08 2 8 6 4 20 6
9 7 59 6 4 3 2 10 8
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Two More Sets
Cryptography often uses two more sets: Zp and Zp*. The modulus in these two sets is a
prime number. Prime numbers will be discussed in later chapters; suffice it to say that a
prime number has only two divisors: integer 1 and itself. 

The set Zp is the same as Zn except that n is a prime. Zp contains all integers from
0 to p − 1. Each member in Zp has an additive inverse; each member except 0 has a
multiplicative inverse. 

The set Zp* is the same as Zn* except that n is a prime. Zp* contains all integers
from 1 to p − 1. Each member in Zp* has an additive and a multiplicative inverse. Zp* is
a very good candidate when we need a set that supports both additive and multiplicative
inverse.

The following shows these two sets when p = 13.   

2.3 MATRICES
In cryptography we need to handle matrices. Although this topic belongs to a special
branch of algebra called linear algebra, the following brief review of matrices is neces-
sary preparation for the study of cryptography. Readers who are familiar with this topic
can skip part or all of this section. The section begins with some definitions and then
shows how to use matrices in modular arithmetic. 

Definitions
A matrix is a rectangular array of l × m elements, in which l is the number of rows and
m is the number of columns. A matrix is normally denoted with a boldface uppercase
letter such as A. The element aij is located in the ith row and jth column. Although
the elements can be a set of numbers, we discuss only matrices with elements in Z.
Figure 2.18 shows a matrix. 

If a matrix has only one row (l = 1), it is called a row matrix; if it has only one col-
umn (m = 1), it is called a column matrix. In a square matrix, in which there is the

Figure 2.17 Some Zn and Zn* sets

Z13 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
Z13∗ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Z6 = {0, 1, 2, 3, 4, 5}

Z7 = {0, 1, 2, 3, 4, 5, 6}

Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Z6
* = {1, 5}

Z7
* = {1, 2, 3, 4, 5, 6}

Z10
* = {1, 3, 7, 9}
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same number of rows and columns (l = m), the elements a11, a22, . . . , amm make the
main diagonal. An additive identity matrix, denoted as 0, is a matrix with all rows and
columns set to 0’s. An identity matrix, denoted as I, is a square matrix with 1s on the
main diagonal and 0s elsewhere. Figure 2.19 shows some examples of matrices with
elements from Z. 

Operations and Relations
In linear algebra, one relation (equality) and four operations (addition, subtraction,
multiplication, and scalar multiplication) are defined for matrices. 

Equality

Two matrices are equal if they have the same number of rows and columns and the corre-
sponding elements are equal. In other words, A = B if we have aij = bij for all i’s and j’s. 

Addition and Subtraction

Two matrices can be added if they have the same number of columns and rows. This
addition is shown as C = A + B. In this case, the resulting matrix C has also the same
number of rows and columns as A or B. Each element of C is the sum of the two corre-
sponding elements of A and B: cij = aij + bij. Subtraction is the same except that each
element of B is subtracted from the corresponding element of A: dij = aij − bij. 

Example 2.27

Figure 2.20 shows an example of addition and subtraction. 

Figure 2.18 A matrix of size l × m 

Figure 2.19 Example of matrices

Matrix A:

m columns

l r
ow

s

a11

al1

a21

a12

al2

a22

a1m

alm

a2m

. . .

. . .

. . .

. . .

. . .

. . .

Row matrix

Column
matrix Square

matrix

I

2 1 5 11 2

4
12

23

12

10

21

8

18

31

14 56 1

0 1

0

0

0
0
0

0
0

0
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Multiplication

We can multiply two matrices of different sizes if the number of columns of the first
matrix is the same as the number of rows of the second matrix. If A is an l × m matrix
and B is an m × p matrix, the product of the two is a matrix C of size l × p. If each ele-
ment of matrix A is called aij, each element of matrix B is called bjk, then each element
of matrix C, cik, can be calculated as 

Example 2.28

Figure 2.21 shows the product of a row matrix (1 × 3) by a column matrix (3 × 1). The result is a
matrix of size 1 × 1. 

Example 2.29

Figure 2.22 shows the product of a 2 × 3 matrix by a 3 × 4 matrix. The result is a 2 × 4 matrix. 

Scalar Multiplication

We can also multiply a matrix by a number (called a scalar). If A is an l × m matrix and x
is a scalar, C = xA is a matrix of size l × m, in which cij = x × aij. 

Figure 2.20 Addition and subtraction of matrices

cik = ∑ aij × bjk = ai1 × b1j + ai2 × b2j + . . . + aim × bmj

Figure 2.21 Multiplication of a row matrix by a column matrix

Figure 2.22 Multiplication of a 2 × 3 matrix by a 3 × 4 matrix
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Example 2.30

Figure 2.23 shows an example of scalar multiplication. 

Determinant
The determinant of a square matrix A of size m × m denoted as det (A) is a scalar cal-
culated recursively as shown below: 

Example 2.31

Figure 2.24 shows how we can calculate the determinant of a 2 × 2 matrix based on the determi-
nant of a 1 × 1 matrix using the above recursive definition. The example shows that when m is 1
or 2, it is very easy to find the determinant of a matrix.

Example 2.32

Figure 2.25 shows the calculation of the determinant of a 3 × 3 matrix. 

Figure 2.23 Scalar multiplication

1. If m = 1, det (A) = a11

2. If m > 1, det (A) =  (−1)i+ j × aij × det (Aij)

Where Aij is a matrix obtained from A by deleting the ith row and jth column. 

The determinant is defined only for a square matrix.

Figure 2.24 Calculating the determinant of a 2 × 2 matrix

Figure 2.25 Calculating the determinant of a 3 × 3 matrix
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We give some algorithms for finding the determinant of a square matrix in
Appendix ****.

Inverses
Matrices have both additive and multiplicative inverses.

Additive Inverse

The additive inverse of matrix A is another matrix B such that A + B = 0. In other
words, we have bij = − aij for all values of i and j. Normally the additive inverse of A is
defined by −A.

Multiplicative Inverse

The multiplicative inverse is defined only for square matrices. The multiplicative
inverse of a square matrix A is a square matrix B such that A × B = B × A = I. Normally
the multiplicative inverse of A is defined by A−1. The multiplicative inverse exists only
if the (A) has a multiplicative inverse in the corresponding set. Since no integer has a
multiplicative inverse in Z, there is no multiplicative inverse of a matrix in Z. However,
matrices with real elements have matrices only if det (A) ≠ 0.

Residue Matrices
Cryptography uses residue matrices: matrices in all elements are in Zn. All operations
on residue matrices are performed the same as for the integer matrices except that
the operations are done in modular arithmetic. One interesting result is that a residue
matrix has a multiplicative inverse if the determinant of the matrix has a multiplicative
inverse in Zn. In other words, a residue matrix has a multiplicative inverse if gcd
(det(A), n) = 1.

Example 2.33

Figure 2.26 shows a residue matrix A in Z26 and its multiplicative inverse A−1. We have det(A) = 21
which has the multiplicative inverse 5 in Z26. Note that when we multiply the two matrices, the
result is the multiplicative identity matrix in Z26.

Multiplicative inverses are only defined for square matrices.

Figure 2.26 A residue matrix and its multiplicative inverse
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Congruence

Two matrices are congruent modulo n, written as A ≡ B (mod n), if they have the same
number of rows and columns and all corresponding elements are congruent modulo n.
In other words, A ≡ B (mod n) if aij ≡ bij (mod n) for all i’s and j’s. 

2.4 LINEAR CONGRUENCE
Cryptography often involves solving an equation or a set of equations of one or more
variables with coefficient in Zn. This section shows how to solve equations when the
power of each variable is 1 (linear equation). 

Single-Variable Linear Equations
Let us see how we can solve equations involving a single variablethat is, equations of
the form ax ≡ b (mod n). An equation of this type might have no solution or a limited
number of solutions. Assume that the gcd (a, n) = d. If d�b, there is no solution. If d |b,
there are d solutions. 

If d |b, we use the following strategy to find the solutions:

1. Reduce the equation by dividing both sides of the equation (including the modu-
lus) by d.

2. Multiply both sides by the multiplicative inverse of a |gcd (a, n) to find the particular
solution x0. 

3. The general solutions are x = x0 + k (n |d) for k = 0, 1, . . . , (d − 1).

Example 2.34

Solve the equation 10x ≡ 2 (mod 15). 

Solution
First we find the gcd (10 and 15) = 5. Since 5 does not divide 2, we have no solution. 

Example 2.35

Solve the equation 14x ≡ 12 (mod 18).

Solution
Note that gcd (14 and 18) = 2. Since 2 divides 12, we have exactly two solutions, but first we
reduce the equation.

Both solutions, 6 and 15 satisfy the congruence relation, because (14 × 6) mod 18 = 12 and also
(14 × 15) mod 18 = 12.

14x ≡ 12 (mod 18) →      7x ≡ 6 (mod 9)    →  x ≡ 6 (7−1) (mod 9)
 x0 = (6 × 7 −1) mod 9 = (6 × 4) (mod 9) = 6
 x1 = x0 + 1 × (18/2) = 15   
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Example 2.36

Solve the equation 3x + 4 ≡ 6 (mod 13).

Solution
First we change the equation to the form ax ≡ b (mod n). We add −4 (the additive inverse of 4) to
both sides, which give 3x ≡ 2 (mod 13). Because gcd (3, 13) = 1, the equation has only one solu-
tion, which is x0 = (2 × 3−1) mod 13 = 18 mod 13 = 5. We can see that the answer satisfies the
original equation: 3 × 5 + 4 ≡ 6 (mod 13).

Set of Linear Equations
We can also solve a set of linear equations with the same modulus if the matrix
formed from the coefficients of the variables is invertible. We make three matrices.
The first is the square matrix made from the coefficients of variables. The second is a
column matrix made from the variables. The third is a column matrix made from the
values at the right-hand side of the congruence operator. We can interpret the set of
equations as matrix multiplication. If both sides of congruence are multiplied by the
multiplicative inverse of the first matrix, the result is the variable matrix at the right-
hand side, which means the problem can be solved by a matrix multiplication as
shown in Figure 2.27.

Example 2.37

Solve the set of following three equations:  

Figure 2.27 Set of linear equations

3x + 5y + 7z ≡ 3 (mod 16)
x + 4y + 13z ≡ 5 (mod 16)
2x + 7y + 3z ≡ 4 (mod 16) 
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Solution
Here x, y, and z play the roles of x1, x2, and x3. The matrix formed by the set of equations is
invertible. We find the multiplicative inverse of the matrix and multiply it by the column matrix
formed from 3, 5, and 4. The result is x ≡ 15 (mod 16), y ≡ 4 (mod 16), and z ≡14 (mod 16). We
can check the answer by inserting these values into the equations. 

2.5 RECOMMENDED READING
For more details about subjects discussed in this chapter, we recommend the following
books and sites. The items enclosed in brackets refer to the reference list at the end of
the book.

Books
Several books give an easy but thorough coverage of number theory including [Ken93],
[Yan02], [Sch99], [Cou99], and [DS00]. Matrices are discussed in any book about lin-
ear algebra; [LEF04] and [LL01] are good texts to start with. 

Websites
The following sites are related to topics discussed in this chapter.

❏ *******************    This is the book site in which you can find all programs 
for algorithms used in this chapter in two languages (C and Java).

❏ ********

2.6 KEY TERMS
additive inverse main diagonal

binary operation matrix

column matrix modular arithmetic

congruence modulo operator (mod)

congruence operator modulus

determinant multiplicative inverse

divisibility relatively prime

Euclidean algorithm residue

extended Euclidean algorithm residue class

greatest common divisor row matrix

identity matrix scalar

integer arithmetic set of integers, Z

least residue set of residues, Zn

linear congruence square matrix

linear Diophantine equation
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2.7 SUMMARY
❏ The set of integers, denoted by Z, contains all integral numbers from negative

infinity to positive infinity. Three common binary operations defined for integers
are addition, subtraction, and multiplication. Division does not fit in this category
because it produces two outputs instead of one.

❏ In integer arithmetic, if we divide a by n, we can get q and r. The relationship
between these four integers can be shown as a = q × n + r. We say a |b if a = q × n.
We mentioned four properties of divisibility in this chapter. 

❏ Two positive integers can have more than one common divisor. But we are nor-
mally interested in the greatest common divisor. The Euclidean algorithm gives an
efficient and systematic way to calculation of the greatest common divisor of two
integer.

❏ The extended Euclidean algorithm can calculate gcd (a, b) and at the same time
calculate the value of s and t to satisfy the equation as + bt = gcd (a, b).

❏ A linear Diophantine equation of two variables is ax + by = c. It has a particular
and general solution.

❏ In modular arithmetic, we are interested only in remainders; we want to know the
value of r when we divide a by n. We use a new operator called modulo operator
(mod) so that a mod n = r. Now n is called the modulus; r is called the residue.

❏ The result of the modulo operation with modulus n is always an integer between 0
and. We can say that the modulo operation creates a set, which in modular arith-
metic is referred to as the set of least residues modulo n, or Zn.

❏ Mapping from Z to Zn is not one-to-one. Infinite members of Z can map to one
member of Zn. In modular arithmetic, all integers in Z that map to one integer in
Zn are called congruent modulo n. To show that two integers are congruent, we use
the congruence operator (≡).

❏ A residue class [a] is the set of integers congruent modulo n. It is the set of all inte-
gers such that x = a (mod n). 

❏ The three binary operations (addition, subtraction, and multiplication) defined for
the set Z can also be defined for the set Zn. The result may need to be mapped to
Zn using the mod operator.

❏ Several properties were defined for the modulo operation in this chapter. 

❏ In Zn, two numbers a and b are additive inverses of each other if a + b ≡ 0 (mod n).
They are the multiplicative inverse of each other if a × b ≡ 1 (mod n). The integer a
has a multiplicative inverse in Zn if and only if gcd (n, a) = 1 (a and n are relatively
prime).

❏ The extended Euclidean algorithm finds the multiplicative inverses of b in Zn when
n and b are given and gcd (n, b) = 1. The multiplicative inverse of b is the value of
t after being mapped to Zn.

❏ A matrix is a rectangular array of l × m elements, in which l is the number of rows
and m is the number of columns. We show a matrix with a boldface uppercase let-
ter such as A. The element aij is located in the ith row and jth column. 
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❏ Two matrices are equal if they have the same number of rows and columns and the
corresponding elements are equal. 

❏ Addition and subtraction are done only on matrices of equal sizes. We can multiply
two matrices of different sizes if the number of columns of the first matrix is the
same as the number of rows of the second matrix. 

❏ In residue matrices, all elements are in Zn. All operations on residue matrices are
done in modular arithmetic. A residue matrix has an inverse if the determinant of
the matrix has an inverse. 

❏ An equation of the form ax ≡ b (mod n) may have no solution or a limited number
of solutions. If gcd (a, n) |b, there is a limited number of solutions. 

❏ A set of linear equations with the same modulus can be solved if the matrix formed
from the coefficients of variables has an inverse. 

2.8 PRACTICE SET
Review Questions
1. Distinguish between Z and Zn. Which set can have negative integers? How can we

map an integer in Z to an integer in Zn? 

2. List four properties of divisibility discussed in this chapter. Give an integer with
only one divisor. Give an integer with only two divisors. Give an integer with more
than two divisors. 

3. Define the greatest common divisor of two integers. Which algorithm can effec-
tively find the greatest common divisor? 

4. What is a linear Diophantine equation of two variables? How many solutions can
such an equation have? How can the solution(s) be found?

5. What is the modulo operator, and what is its application? List all properties we
mentioned in this chapter for the modulo operation.

6. Define congruence and compare with equality. 

7. Define a residue class and a least residue. 

8. What is the difference between the set Zn and the set Zn*? In which set does each ele-
ment have an additive inverse? In which set does each element have a multiplicative
inverse? Which algorithm is used to find the multiplicative inverse of an integer in Zn? 

9. Define a matrix. What is a row matrix? What is a column matrix? What is a square
matrix? What type of matrix has a determinant? What type of matrix can have an
inverse? 

10. Define linear congruence. What algorithm can be used to solve an equation of type
ax ≡ b (mod n)? How can we solve a set of linear equations? 

Exercises
11. Which of the following relations are true and which are false? 

 5 |26      3 |123       27�127      15�21     23 |96       8 |5
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12. Using the Euclidean algorithm, find the greatest common divisor of the following
pairs of integers.

a. 88 and 220

b. 300 and 42

c. 24 and 320 

d. 401 and 700

13. Solve the following.

a. Given gcd (a, b) = 24, find gcd (a, b, 16). 

b. Given gcd (a, b, c) = 12, find gcd (a, b, c, 16)

c. Find gcd (200, 180, and 450).

d. Find gcd (200, 180, 450, 610).

14. Assume that n is a nonnegative integer. 

a. Find gcd (2n + 1, n).

b. Using the result of part a, find gcd (201, 100), gcd (81, 40), and gcd (501,
250). 

15. Assume that n is a nonnegative integer. 

a. Find gcd (3n + 1, 2n + 1).

b. Using the result of part a, find gcd (301, 201) and gcd (121, 81).

16. Using the extended Euclidean algorithm, find the greatest common divisor of the
following pairs and the value of s and t.

a. 4 and 7

b. 291 and 42

c. 84 and 320 

d. 400 and 60

17. Find the results of the following operations.

a. 22 mod 7

b. 140 mod 10

c. −78 mod 13

d. 0 mod 15

18. Perform the following operations using reduction first.

a. (273 + 147) mod 10

b. (4223 + 17323) mod 10

c. (148 + 14432) mod 12

d. (2467 + 461) mod 12

19. Perform the following operations using reduction first.

a. (125 × 45) mod 10

b. (424 × 32) mod 10

c. (144 × 34) mod 12

d. (221 × 23) mod 22
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20. Use the properties of the mod operator to prove the following:

a. The remainder of any integer when divided by 10 is the rightmost digit. 

b. The remainder of any integer when divided by 100 is the integer made of the
two rightmost digits.

c. The remainder of any integer when divided by 1000 is the integer made of the
three rightmost digits.

21. We have been told in arithmetic that the remainder of an integer divided by 5 is the
same as the remainder of division of the rightmost digit by 5. Use the properties of
the mod operator to prove this claim.

22. We have been told in arithmetic that the remainder of an integer divided by 2 is the
same as the remainder of division of the rightmost digit by 2. Use the properties of
the mod operator to prove this claim. 

23. We have been told in arithmetic that the remainder of an integer divided by 4 is the
same as the remainder of division of the two rightmost digits by 4. Use the proper-
ties of the mod operator to prove this claim.

24. We have been told in arithmetic that the remainder of an integer divided by 8 is the
same as the remainder of division of the rightmost three digits by 8. Use the proper-
ties of the mod operator to prove this claim.

25. We have been told in arithmetic that the remainder of an integer divided by 9 is the
same as the remainder of division of the sum of its decimal digits by 9. In other
words, the remainder of dividing 6371 by 9 is the same as dividing 17 by 9 because
6 + 3 + 7 + 1 = 17. Use the properties of the mod operator to prove this claim. 

26. The following shows the remainders of powers of 10 when divided by 7. We can
prove that the pattern will be repeated for higher powers.  

Using the above information, find the remainder of an integer when divided by 7.
Test your method with 631453672. 

27. The following shows the remainders of powers of 10 when divided by 11. We can
prove that the pattern will be repeated for higher powers.  

Using the above information, find the remainder of an integer when divided by 11.
Test your method with 631453672. 

28. The following shows the remainders of powers of 10 when divided by 13. We can
prove that the pattern will be repeated for higher powers.  

Using the above information, find the remainder of an integer when divided by 13.
Test your method with 631453672. 

100 mod 7 =   1 101 mod 7 =   3 102 mod 7 =   2
103 mod 7 = −1 104 mod 7 = −3 105 mod 7 = −2

100 mod 11 = 1 101 mod 11 = −1 102 mod 11 = 1 103 mod 11 = −1

100 mod 13 =   1 101 mod 13 = −3 102 mod 13 = −4
100 mod 13 = −1 101 mod 13 =   3 102 mod 13 =   4
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29. Let us assign numeric values to the uppercase alphabet (A = 0, B = 1, . . . Z = 25).
We can now do modular arithmetic on the system using modulo 26. 

a. What is (A + N) mod 26 in this system?

b. What is (A + 6) mod 26 in this system?

c. What is (Y − 5) mod 26 in this system?

d. What is (C −10) mod 26 in this system?

30. List all additive inverse pairs in modulus 20.

31. List all multiplicative inverse pairs in modulus 20.

32. Find the multiplicative inverse of each of the following integers in Z180 using the
extended Euclidean algorithm. 

a. 38

b. 7

c. 132

d. 24

33. Find the particular and the general solutions to the following linear Diophantine
equations.

a. 25x + 10y = 15

b. 19x + 13y = 20

c. 14x + 21y = 77

d. 40x + 16y = 88

34. Show that there are no solutions to the following linear Diophantine equations:

a. 15x + 12y = 13

b. 18x + 30y = 20

c. 15x + 25y = 69

d. 40x + 30y = 98

35. A post office sells only 39-cent and 15-cent stamps. Find the number of stamps a
customer needs to buy to put $2.70 postage on a package. Find a few solutions. 

36. Find all solutions to each of the following linear equations:

a. 3x ≡ 4 (mod 5)

b. 4x ≡ 4 (mod 6)

c. 9x ≡ 12 (mod 7)

d. 256x ≡ 442 (mod 60)

37. Find all solutions to each of the following linear equations:

a. 3x + 5 ≡ 4 (mod 5)

b. 4x + 6 ≡ 4 (mod 6)

c. 9x + 4 ≡ 12 (mod 7)

d. 232x + 42 ≡ 248 (mod 50)

38. Find (A × B) mod 16 using the matrices in Figure 2.28.   
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39. In Figure 2.29, find the determinant and the multiplicative inverse of each residue
matrix over Z10. 

40. Find all solutions to the following sets of linear equations:

a. 3x + 5y ≡ 4 (mod 5) 
2x +  y ≡ 3 (mod 5)

b. 3x + 2y ≡ 5 (mod 7)
4x + 6y ≡ 4 (mod 7)

c. 7x + 3y ≡ 3 (mod 7)
4x + 2y ≡ 5 (mod 7)

d. 2x + 3y ≡ 5 (mod 8)
 x + 6y ≡ 3 (mod 8)

Figure 2.28 Matrices for Exercise 38

Figure 2.29 Matrices for Exercise 39
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