
Math 259: Introduction to Analytic Number Theory

pseudo-syllabus

0. Introduction: What is analytic number theory?

1. Distribution of primes before complex analysis: classical techniques (Euclid, Euler); primes
in arithmetic progressions via Dirichlet characters and L-series; Čebyšev’s estimates on π(x).

2. Distribution of primes using complex analysis: ζ(s) and L(s,χ) as functions of a complex
variable, and the proof of the Prime Number Theorem and its extension to Dirichlet; blurb for
Čebotarev density; functional equations; the Riemann hypothesis, extensions, generalizations
and consequences.

3. Selberg’s quadratic sieve and applications.

4. Analytic estimates on exponential sums (van der Corput etc.); prototypical applications:
Weyl equidistribution, upper bounds on |ζ(s)| and |L(s,χ)| on vertical lines, lattice point sums.

5. Lower bounds on discriminants, conductors, etc. from functional equations; geometric ana-
logue: how many points can a curve of genus g →∞ have over a given finite field?

6. Analytic bounds on coefficients of modular forms and functions; applications to counting
representations of integers as sums of squares, etc.

Prerequisites While Math 259 will proceed at a pace appropriate for a graduate-level course,
its prerequisites are perhaps surprisingly few: complex analysis at the level of Math 113, and
linear algebra and basic number theory (up to say arithmetic in the field Z/pZ and Quadratic
Reciprocity). Some considerably deeper results (such as estimates on Kloosterman sums) will
be cited but may be regarded as black boxes for our purposes. If you know about algebraic
number fields or modular forms or curves over finite fields, you’ll get more from the course at
specific points, but these points will be in the nature of scenic detours that are not required
for the main journey.

Texts Lecture notes will be handed out periodically, and can also be found on the course
webpage. There is no textbook: this class is an introduction to several different flavors of
analytic methods in number theory, and I know of no one work that covers all this material.
Thus I intend to expand and edit the lecture notes to put together a textbook, which may
become available by the next time I teach the class. . . Supplementary readings such as Serre’s
A Course in Arithmetic and Titchmarsh’s The Theory of the Riemann Zeta-Function will be
suggested as we approach their respective territories.

Office Hours 335 Sci Ctr, Thursdays 3–4:30 PM (occasionally shortened by Colloquium or
faculty meetings), or e-mail me at elkies@math (elkies@math.harvard.edu from outside
Harvard) to ask questions or set up an alternative meeting time.

Grading There will be no required homework, though the lecture notes will contain recom-
mended exercises. If you are taking Math 259 for a grade (i.e., are not a post-Qual math
graduate student exercising your EXC option), tell me so we can work out an evaluation and
grading procedure. This will most likely be either an expository final paper or an in-class
presentation on some aspect of analytic number theory related to but just beyond what we
cover in class. Which grading method is appropriate will be determined once the class size has
stabilized after “Shopping Period”. The supplementary references will be one good source for
paper or presentation topics.



Math 259: Introduction to Analytic Number Theory

What is analytic number theory?

One may reasonably define analytic number theory as the branch of mathematics
that uses analytical techniques to address number-theoretical problems. But
this “definition”, while correct, is scarcely more informative than the phrase it
purports to define. (See [Wilf 1982].) What kind of problems are suited to
“analytical techniques”? What kind of mathematical techniques will be used?
What style of mathematics is this, and what will its study teach you beyond the
statements of theorems and their proofs? The next few sections briefly answer
these questions.

The problems of analytic number theory. The typical problem of ana-
lytic number theory is an enumerative problem involving primes, Diophantine
equations, or similar number-theoretic objects, and usually concerns what hap-
pens for large values of some parameter. Such problems are of long-standing
intrinsic interest, and the answers that analytic number theory provides often
have uses in mathematics (see below) or related disciplines (notably in various
algorithmic aspects of primes and prime factorization, including applications to
cryptography). Examples of problems that we shall address are:

• How many 100-digit primes are there, and how many of these have the last
digit 7? More generally, how do the prime-counting functions π(x) and
π(x; a mod q) behave for large x? [For the 100-digit problems we would
take x = 1099 and x = 10100, q = 10, a = 7.]

• Given a prime p > 0, a nonzero c mod p, and integers a1, b1, a2, b2 with
ai < bi, how many pairs (x1, x2) of integers are there such that ai < xi < bi

(i = 1, 2) and x1x2 ≡ c mod p? For how small an H can we guarantee
that if bi − ai > H then there is at least one such pair?

• Is there an integer n such that the first eleven digits of n! are 31415926535?
Are there infinitely many such n? How many such n are there of at most
1000 digits?

• Given integers n, k, how many ways are there to represent n as a sum
of k squares? For instance, how many integer solutions has the equation
ab + b2 + c2 + d2 + e2 + f2 + g2 + h2 = 10100?

As often happens in mathematics, working on such down-to-earth questions
quickly leads us to problems and objects that appear to belong to completely
different mathematical disciplines:

• Analyze the Riemann zeta function ζ(s) :=
∑∞

n=1 1/ns and Dirichlet
L-functions such as

L(s) := 1− 3−s − 7−s + 9−s + 11−s − 13−s − 17−s + 19−s +−−+ · · ·
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as functions of a complex variable s.

• Prove that the “Kloosterman sum”

K(p; a, b) :=
p−1∑

x=1

exp
(

2πi

p
(ax + bx−1)

)

(with x−1 being the inverse of x mod p) has absolute value at most 2√p.

• Show that if a function f : R→R satisfies reasonable smoothness condi-
tions then for large N the absolute value of the exponential sum

N∑

n=1

exp(if(n))

grows no faster than Nθ for some θ < 1 (with θ depending on the condi-
tions imposed on f).

• Investigate the coefficients of modular forms such as

η8η8
2 = q

∞∏

n=1

(1− qn)8(1− q2n)8 = q−8q2 +12q3 +64q4−210q5−96q6 · · · .

Fortunately it will turn out that the route from (say) π(x) to ζ(s) is not nearly
as long and tortuous as that from xn + yn = zn to deformations of Galois
representations. . . 1

The techniques of analytic number theory. A hallmark of analytic number
theory is the treatment of number-theoretical problems (usually enumerative, as
noted above) by methods often relegated to the domain of “applied mathemat-
ics”: elementary but clever manipulation of sums and integrals; asymptotic and
error analysis; Fourier series and transforms; contour integrals and residues.
While there is still good new work to be done along these lines, much con-
temporary analytic number theory also uses advanced tools from within and
outside number theory (for instance, modular forms beyond the upper half-
plane, Laplacian spectral theory). Nevertheless, in this introductory course we
shall emphasize the classical methods characteristic of analytic number theory,
on the grounds that they are rarely treated in this Department’s courses, while
our program already offers ample exposure to the algebraic/geometric tools. As
already noted in the pseudo-syllabus, we shall on a few occasions invoke results
that depend on deep (non-analytic) techniques, but we shall treat them as deus
ex mathematica, developing only their analytic applications.

The style of analytic number theory. It has often been said that there
are two kinds2 of mathematicians: theory builders and problem solvers. In

1See for instance [Stevens 1994] and [Faltings 1995].
2Actually there are three kinds of mathematicians: those who can count, and those who

cannot.
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twentieth-century mathematics, these two styles are epitomized respectively by
A. Grothendieck and P. Erdös. The Harvard math curriculum leans heavily to-
wards the systematic, theory-building style; analytic number theory as usually
practiced falls in the problem-solving camp. This is probably why, despite its il-
lustrious history (Euclid, Euler, Riemann, Selberg, . . . ) and present-day vitality,
analytic number theory has rarely been taught here — in the past fifteen years
there have been only a handful of undergraduate seminars, research/Colloquium
talks, and Catalog-listed courses. Now we shall see that there is more to analytic
number theory than a bag of unrelated ad-hoc tricks, but it is true that parti-
sans of contravariant functors, adèlic tangent sheaves, and étale cohomology will
not find them in the present course. Still, even ardent structuralists can benefit
from this course. First, specific results of analytic number theory often enter as
necessary ingredients in the only known proofs of important structural results.
Consider for example the arithmetic of elliptic curves: the many applications of
Dirichlet’s theorem on primes in arithmetic progression, and its generalization
to Čebotarev’s density theorem,3 include the ground-breaking work of Kolyva-
gin and of Wiles and Taylor; in [Serre 1981] sieve methods are elegantly applied
to the study of the distribution of traces of an elliptic curve;4 in [Merel 1996]
a result (Lemme 5) on the x1x2 ≡ c mod p problem is required to bound the
torsion of elliptic curves over number fields. Second, the ideas and techniques
apply widely. Sieve inequalities, for instance, are also used in probability the-
ory to analyze nearly independent variables; the “stationary phase” methods
for obtaining the asymptotic growth of the partition function are also used to
estimate oscillatory integrals in enumerative combinatorics, quantum physics,
special functions, and elsewhere; even the van der Corput estimates on exponen-
tial sums have found combinatorial application [CEP 1996]. Third, working on
asymptotic results and error terms can be a healthy complement to the usual
quest for exact answers that we might focus on too exclusively. Finally, An
ambitious theory-builder should regard the absence thus far of a Grand Unified
Theory of analytic number theory not as an insult but as a challenge. Both
machinery- and problem-motivated mathematicians should note that some of
the more exciting recent work in number theory depends critically on symbiosis
between the two styles of mathematics. This course will introduce the main
analytic techniques This text introduces the main analytic techniques needed
to appreciate, and ultimately to extend, this work.
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to get Čebotarev is not analytic but algebraic: the development of algebraic number theory
and the arithmetic of characters of finite groups. Thus a full treatment of Čebotarev does not
alas belong in this course.

4My doctoral work on the case of trace zero (see for instance [Elkies 1987]) also used
Dirichlet’s theorem.
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Math 259: Introduction to Analytic Number Theory

Elementary approaches I: Variations on a theme of Euclid

Like much of mathematics, the history of the distribution of primes begins with
Euclid:

Theorem (Euclid [IX, 20]). There are infinitely many primes.

Euclid’s justly famed argument, while often presented as a proof by contradic-
tion, is readily framed as an effective (albeit rather inefficient) construction:

Proof: Given primes p1, p2, . . . , pn, let Pn =
∏n

k=1 pn, define Nn = Pn + 1, and
let pn+1 be the smallest factor of Nn. Then pn+1 is a prime no larger than Nn

and different from p1, . . . , pn. Thus {pk}k>1 is an infinite sequence of distinct
primes, Q.E.D.

This answers Yes to the first asymptotic question to ask about

π(x) := #{p ≤ x : p is a positive prime} =
∑

0<p<x
p prime

1,

namely whether π(x)→∞ as x→∞. Moreover, the proof also gives an explicit
upper bound on pn, and thus a lower bound on π(x).

Theorem. For each integer n > 0, there are more than n primes p < 22n

.
Equivalently, we have1

π(x) > log2 log2 x

for all x > 1.

Proof : In the proof of Euclid’s theorem, we may take p1 = 2, and observe that

pn+1 ≤ Nn = 1 +
n∏

k=1

pn ≤ 2
n∏

k=1

pn.

if equality were satisfied at each step we would have pn = 22n−1
. Thus by

induction we see that
pn ≤ 22n−1

,

and of course the inequality is strict once n > 1. Therefore if x ≥ 22n−1
then

pk < x for k = 1, 2, . . . , n, and so π(x) ≥ n, Q.E.D.

The Pn + 1 trick has been adapted to prove some special cases of Dirichlet’s
theorem on primes in arithmetic progression, which asserts that for coprime
integers q > 0 and a there are infinitely many primes p ≡ a mod q. (We shall give
the proof later in the course.) Of course the case 1 mod 2 is trivial given Euclid.
For −1 mod q with q = 3, 4, 6, start with p1 = q − 1 and define Nn = qPn − 1.

1Q: What sound does a drowning analytic number theorist make?
A: log log log log . . . [R. Murty, via B. Mazur]
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More generally, for any quadratic character χ there are infinitely many primes p
with χ(p) = −1; as a special case, given an odd prime q0, there are infinitely
many primes p which are quadratic nonresidues of q0. [I’m particularly fond of
this argument because I was able to adapt it as the punchline of my doctoral
thesis; see [Elkies 1987].] The case of χ(p) = +1 is only a bit trickier.2 For
instance, to prove Dirichlet for (q, a) = (4, 1), let p1 = 5 and Nn = 4P 2

n +1, and
invoke Fermat’s theorem on the prime factors of x2 + y2. Again this argument
even yields an explicit lower bound on

π(x, 1 mod 4) := #{p ≤ x : p is a positive prime congruent to 1 mod 4},

namely3

π(x, 1 mod 4) > C log log x

for some positive constant C.

But Euclid’s approach and its variations, however elegant, are not sufficient
for our purposes. For one thing, numerical evidence suggests — and we shall
soon prove — that log2 log2 x is a gross underestimate on π(x). For another,
one cannot prove all cases of Dirichlet’s theorem using only variations on the
Euclid argument.4 Our next elementary approaches will address at least the
first deficiency.

Exercises

1. Let G be a subgroup of (Z/qZ)∗ other than (Z/qZ)∗ itself. Prove that there
are infinitely many primes whose residue modulo q is not in G.

2. Exhibit an explicit value of C such that π(x, 1 mod 4) > C log log x for all
x > 1.

3. Use cyclotomic polynomials to show more generally that for any q0, prime or
not, there exist infinitely many primes congruent to 1 mod q0. [Attributed to
Euler in [Dickson 1919, Ch.XVIII], a chapter which gives much more information
on the history of work on the distribution of primes up to about 1900. Note
that 4P 2

n + 1 is the fourth cyclotomic polynomial evaluated at 2Pn.] Show that
again the number of such primes < x grows at least as fast as some multiple of
log log x.

4. Show that there are infinitely many primes congruent to 4 mod 5, once more
with a log log lower bound.

5. [A much later proof of the infinitude of primes that curiously gives the same
bound π(x) > log2 log2(x).] Recall that the m-th Fermat number Fm is defined
by Fm = 22m

+ 1 (m = 0, 1, 2, . . .). Prove that Fm and Fm′ are relatively prime
2But enough so that a problem from a recent Qualifying Exam for our graduate students

asked to prove that there are infinitely many primes congruent to 1 mod 4.
3Even a drowning analytic number theorist knows that log log and log2 log2 are asymptot-

ically within a constant factor of each other. What is that factor?
4This is not a theorem, of course. How could one even define “variation of the Euclid

argument” rigorously? But a Euclid-style argument for the infinitude of primes congruent
to 2 mod 5 or mod 7 would already be quite impressive.
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unless m = m′. Conclude that there are at least n primes p ≤ Fn−1, and thus
that π(x) > log2 log2 x.

Digression

Even a piece of mathematics as venerable as Euclid’s proof of the infinitude of
primes can continue to suggest very difficult problems. For instance, let pn be
the n-th prime, and let5 Pn =

∏n
i=1 pi. We know that Pn + 1 must contain

a new prime factor, which cannot be pn+1 once n > 1 (if only because Pn − 1
must also contain a new prime factor). Does it happen infinitely often that pn+1

is a factor of Pn + 1? [This is the case for n = 1, 7, 232, 430, and no other
n < 5000.] What of the primality of Pn + 1 itself? It is well-known that Pn + 1
is prime for n = 1, 2, 3, 4, 5, but P6 + 1 = 30031 = 59 · 509. Only fifteen n > 5
have been found for which Pn + 1 is prime, of which the smallest is 11 and the
largest is 13494.6 Again it is not known whether this happens infinitely often.
Likewise for the primality of Pn − 1 and its divisibility by pn+1. For another
variation, define q1 = 2 and, for n > 0, let qn+1 be the smallest prime factor of
(
∏n

i=1 qi) + 1. The sequence {qn}∞n=1 starts

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, . . .

For instance, q5 = 13 because 2 · 3 · 7 · 43 + 1 = 1807 = 13 · 139. Is this “Euclid-
Mullin sequence” [Sloane, A000945] a permutation of the sequence of primes?
Probably yes, but proving this will likely be intractable for the foreseeable future.
The same is true for the infinitude of primes of the form Pn ± 1, and of n such
that pn+1|Pn ± 1.

It should not even be obvious that one should expect that these four sets are
all infinite. The heuristics supporting this expectation rely on results on the
distribution of primes that we shall develop in the next few weeks.
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persingular primes for elliptic curves over real number fields, Compositio Math.
72 (1989), 165–172.
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5By analogy with the “factorial” n! =
∏n

i=1
i, this Pn is sometimes called the n-th
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6Sequence A014545 in [Sloane], where the primality of P13494 + 1 is attributed to Arlin

Anderson, Oct.20, 2000. For the analogous question concerning Pn−1, see Sequence A055704
and A006794.
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Math 259: Introduction to Analytic Number Theory

Elementary approaches II: the Euler product

Euler [Eul] achieved the first major advance beyond Euclid’s proof by combining
his method of generating functions with another highlight of ancient Greek
number theory, unique factorization into primes.

Theorem [Euler product]. The identity

∞∑

n=1

1
ns

=
∏

p prime

1
1− p−s

. (1)

holds for all s such that the left-hand side converges absolutely.

Proof : Here and henceforth we adopt the convention:

The notation
∏

p or
∑

p means a product or sum over prime p.

Every positive integer n may be written uniquely as
∏

p pcp , with each cp a
nonnegative integer that vanishes for all but finitely many p. Thus the formal
expansion of the infinite product

∏

p prime

( ∞∑

cp=0

p−cps
)

(2)

contains each term
n−s =

(∏

p

pcp

)−s
=

∏

p

p−cps

exactly once. If the sum of the n−s converges absolutely, we may rearrange the
sum arbitrarily and conclude that it equals the product (2). On the other hand,
each factor in this product is a geometric series whose sum equals 1/(1− p−s).
This establishes the identity (2). !
The sum on the left-hand side of (2) is nowadays called the zeta function

ζ(s) = 1 +
1
2s

+
1
3s

+ · · · =
∞∑

n=1

n−s ;

the formula (2) is called the Euler product for ζ(s). Euler did not actually impose
the convergence condition: the rigorous treatment of limits and convergence was
not yet available, and Euler either handled such issues intuitively or ignored
them. If s is a real number — the only case that concerned Euler — then it is
well known that

∑∞
n=1 n−s converges if and only if s > 1, by comparison with∫∞

1 x−s dx (that is, by the “Integral Test” of elementary calculus). We shall use

1



complex s as well, but the criterion for absolute convergence is still easy: if s
has real part σ then

|n−s| = | exp(−s log n)| = exp(Re(−s log n)) = exp(−σ log n) = n−σ,

so the Euler product holds in the half-plane σ > 1.

Euler’s next step was to set s = 1 in (2). This equates
∏

p 1/(1− p−1) with the
sum

∑∞
n=1 1/n of the harmonic series. Since the sum diverges to +∞, whereas

each factor
∏

p 1/(1−p−1) is finite, there are infinitely many factors. Therefore,
there are infinitely many primes. This proof does not meet modern standards of
rigor, but it is easy enough to fix: instead of setting s equal 1, let s approach 1
from above. The next result is an easy estimate on the behavior of ζ(s) for s
near 1.

Lemma. The inequalities

1
s− 1

< ζ(s) <
1

s− 1
+ 1 (3)

hold for all s > 1.

Proof : For all n > 0 we have
∫ n+1

n
x−s dx =

1
s− 1

(
n1−s − (n + 1)1−s

)
,

whence
(n + 1)−s <

n1−s − (n + 1)1−s

s− 1
< n−s.

Now sum over n = 1, 2, 3, . . .. The sum of (n1−s− (n+1)1−s)/(s−1) telescopes
to 1/(s − 1). This sum is bounded above by

∑∞
n=1 n−s = ζ(s), and below by∑∞

n=1(n + 1)−s = ζ(s)− 1. This proves the inequalities (3). !
In fact one can obtain more accurate estimates are available using the “Euler-
Maclaurin formula”, but we do not yet need them. The lower bound in (3)
shows that ζ(s)→∞ as s→1 from above. Since each factor (1 − p−s)−1 in the
Euler product remains bounded, we have vindicated Euler’s argument for the
infinitude of primes.

The divergence of
∏

p p/(p− 1), and the behavior of
∏

p 1/(1− p−s) as s→1+,
gives us much more specific information on the distribution of primes than we
could hope to extract from Euclid’s argument. For instance, we cannot have
constants C, θ with θ < 1 such that π(x) < Cxθ for all x, because then the
Euler product would converge for s > θ. To go further along these lines it is
convenient to use the logarithm of the Euler product:

log ζ(s) =
∑

p

− log(1− p−s). (4)

Euler again took s = 1 and concluded that
∑

p 1/p diverges. Again we justify
his conclusion by letting s approach 1 from above:
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Theorem. For any s0 > 1 there exists M such that
∣∣∣
∑

p

p−s − log
1

s− 1

∣∣∣ < M (5)

for all s ∈ (1, s0]. In particular,
∑

p 1/p diverges.

Proof : By our Lemma, log ζ(s) is between log 1/(s− 1) and log s/(s− 1). Since
0 < log s < s − 1, we conclude that ζ(s) differs from log 1/(1 − s) by less than
s − 1 < s0 − 1. In the right-hand side of (4), we approximate each summand
− log(1− p−s) by p−s. The error is at most p−2s, so

∣∣∣
∑

p

p−s −
∑

p

(− log(1− p−s))
∣∣∣ <

∑

p

p−2s < ζ(2).

Hence (5) holds with M = s0− 1 + ζ(2). Letting s→1 we obtain the divergence
of

∑
p 1/p. !

Interlude on the “Big Oh” notation O(·). The point of (5) is that
∑

p p−s

equals log 1
s−1 within a bounded error, not the specific upper bound M on this

error — which is why we were content with a bound s0 − 1 + ζ(2) weaker
than what the method can give. In such approximate formulas we will usually
be interested only in the existence of constants such as M , not in their exact
values. To avoid distractions such as “s0−1+ζ(2)”, we henceforth use “big Oh”
notation. In this notation, (5) appears as

∑

p

p−s = log
1

s− 1
+ O(1). (6)

In general, f = O(g) means that f, g are functions on some space S with g
nonnegative, and there exists a constant M such that |f(z)| ≤ Mg(z) for all
z ∈ S. Thus O(1) is a bounded function, so (6) is indeed equivalent to (5). so
(E’) means that there exists a constant C such that An equivalent notation, more
convenient in some circumstances, is f & g (or g ' f). For instance, a linear
map T between Banach spaces is continuous iff Tv = O(|v|) iff |v|' |Tv|. Each
instance of O(·) or& or' is presumed to carry its own implicit constant M . If
the constant depends on some parameter(s), we may use the parameter(s) as a
subscript to the “O” or “&”. For instance, we may write Os0(1) instead of O(1)
in (6); for any ε > 0, we have log x&ε xε on x ∈ [1,∞). For basic properties of
O(·) and & see the Exercises at the end of this section.

Back to π(x). The estimate (6) for
∑

p p−s does not explicitly involve π(x).
We thus rearrange this sum as follows. Write p−s as an integral s

∫∞
p y−1−s dy,

and sum over p. Then y occurs in the interval of integration [p,∞) iff p < y,
that is, with multiplicity π(y). Therefore

∑

p

p−s = s

∫ ∞

1
π(y)y−1−s dy, (7)
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and (6) becomes an estimate for an integral involving π(·).
This transformation from the sum in (6) to the integral (7) is an example of a
method we shall use often, known either as partial summation or integration by
parts. To explain the latter name, consider that the sum may be regarded as
the Stieltjes integral

∫∞
1 y−s dπ(y), which integrated by parts yields (7); that is

how we shall write this transformation from now on.

Our estimate (6) on the integral (7) does not suffice to prove the Prime Number
Theorem, but does prove support for it: the estimate holds if we replace π(x)
with x/ log x. That is,1

∫ ∞

2

y−s

log y
dy = log

1
s− 1

+ O(1) (1 < s ≤ 2).

To prove this, let I(s) =
∫∞
2

y−s

log y dy, and differentiate under the integral sign
to obtain I ′(s) = −

∫∞
2 y−s dy = 21−s/(1 − s) = 1/(1 − s) + O(1). Thus for

1 < s ≤ 2 we have

I(s) = I(2)−
∫ 2

s
I ′(σ) dσ = +

∫ 2

s

dσ

σ − 1
+ O(1) = log

1
s− 1

+ O(1)

as claimed. While this does not prove the Prime Number Theorem, it does show
that, for instance, if c < 1 < C then there are arbitrarily large x, x′ such that
π(x) > cx/ log x and π(x′) < Cx′/ log x′.

Remarks

Euler’s result
∑

p 1/p = ∞ underlies for our expectation that pn+1 divides
1 +

∏n
i=1 pn infinitely often. The residue of

∏n
i=1 pn mod pn+1 should behave

like a random element of (Z/pn+1Z)∗, and thus should equal −1 with probability
1/(p− 1). The expected value of the number of n < N such that pn+1 divides
1 +

∏n
i=1 pn is thus

∑N
n=2 1/(p − 1) >

∑N
n=2 1/p→∞ as N→∞. We expect

the same behavior for many other problems of the form “how many primes p
are factors of f(p)?”, notably f(p) = ((p − 1)! + 1)/p (the Wilson quotient),
f(p) = (ap − a)/p (the Fermat quotient with fixed base a > 1), and f(p) =
p−2

∑p−1
i=1 1/i (the Wolstenholme quotient). We shall soon see that

∑
p 1/p

diverges very slowly:
∑

p<x 1/p = log log x + O(1). Therefore, while we expect
infinitely many solutions of p|f(p) in each case, we expect that these solutions
will be very scarce.

Euler’s work on the zeta function includes also its evaluation at positive integers:
ζ(2) = π2/6, ζ(4) = π4/90, “etc.” The silliest proof I know of the infinitude

1We shift the lower limit of integration to y = 2 to avoid the spurious singularity of 1/ log y
at y = 1, and suppress the factor s because only the behavior as s→1 matters and multiplying
by s does not affect it to within O(1). We also made the traditional and convenient choice
s0 = 2; the value of s0 does not matter, as long as s0 > 1, because we are concerned with
the behavior near s = 1, and by specifying s0 we can dispense with a distracting subscript in
Os0 .
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of primes is to pick one such integer s, and observe that if there were finitely
many primes then ζ(s) =

∏
p(1− p−s)−1 would be rational, and thus so would

πs, contradicting Lindemann’s theorem (1882) that π is transcendental. It is
only a bit less silly to take s = 2 and use the irrationality of π2, which though
unknown to Euler was proved a few generations later by Legendre [Leg]. This
can actually be used to obtain lower bounds on π(x), but even with modern
“irrationality measures” we can obtain no lower bounds on π(x) better than the
log log x bound already available from Euclid’s proof.

Less frivolously, we note that the integral
∫∞
1 π(y)y−s dy/y appearing in (7) is

the Mellin transform of π(y), evaluated at s. The Mellin transform may not be
as familiar as the integral transforms of Fourier and Laplace, but the change of
variable y = eu yields

∫ ∞

1
π(y)y−s dy

y
=

∫ ∞

0
π(eu)e−su du,

which identifies the Mellin transform of π(y) with the Laplace transform of
π(eu). In general, if f(u) is a nonnegative function whose Laplace transform
Lf(s) :=

∫∞
0 f(u)e−su du converges for s > s0, then the behavior of Lf(s) as

s→s0+ detects the behavior of f(u) as u→∞. In our case, s0 = 1, so we expect
that our estimate on

∫∞
1 π(y)y−s dy/y for s near 1 will give us information on

the behavior of π(x) for large x. Moreover, inverting the Laplace transform
requires a contour integral over complex s; this suggests that we will need to
consider log ζ(s), and thus the solutions of ζ(s) = 0, in the complex plane. We’ll
return to these ideas and the Mellin transform before long.

Exercises

Concerning the Big Oh (a.k.a. &) notation:

1. If f & g and g & h then f & h. If f1 = O(g1) and f2 = O(g2) then
f1f2 = O(g1g2) and f1 + f2 = O(g1 + g2) = O(max(g1, g2)). Given a positive
function g, the functions f such that f = O(g) constitute a vector space.

2. If f & g on [a, b] then
∫ x

a f(y) dy &
∫ x

a g(y) dy for x ∈ [a, b]. (We already
used this to obtain I(s) = log(1/(s− 1)) + O(1) from I ′(s) = 1/(1− s) + O(1).)
In general differentiation does not commute with “&” (why?). Nevertheless,
prove that ζ ′(s)[= −

∑∞
n=1 n−s log n] is −1/(s− 1)2 + O(1) on s ∈ (1,∞).

3. So far all the implicit constants in the O(·) or & we have seen are effective:
we didn’t bother to specify them, but we could if we really had to. Moreover
the transformations in exercises 1,2 preserve effectivity: if the input constants
are effective then so are the output ones. However, it can happen that we know
that f = O(g) without being able to name a constant C such that |f | ≤ Cg.
Here is a prototypical example. Suppose x1, x2, x3, . . . is a sequence of positive
reals which we suspect are all ≤ 1, but all we can show is that if i (= j then
xixj < xi + xj . Prove that xi are bounded, i.e., xi = O(1), but that as long as
we do not find some xi greater than 1, we cannot use this to exhibit a specific C
such that xi < C for all i — and indeed if our suspicion that every xi ≤ 1 is
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correct then we’ll never be able to find C.

We’ll encounter this sort of unpleasant ineffectivity (where it takes at least two outliers

to get a contradiction) in Siegel’s lower bound on L(1, χ); it arises elsewhere too,

notably in Faltings’ proof of the Mordell conjecture, where the number of rational

points on a given curve of genus > 1 can be effectively bounded but their size cannot.

Applications of the Euler product for ζ(s):

4. Complete the proof that for each c < 1 there are arbitrarily large x such
that π(x) > cx/ log x and for each C > 1 there are arbitrarily large x′ such that
π(x′) < Cx′/ log x′.

5. It is known that there exists a constant M such that |π2 − a/b|' 1/bM for
all positive integers a, b. Use this together with the Euler product for ζ(2) to
prove that π(x)' log log x.

6. Prove that there are N/ζ(2) + O(N1/2) squarefree integers in [1, N ]. Obtain
similar estimates for the number of natural numbers < N not divisible by ns

for any n > 1 (s = 3, 4, 5, . . .).

It follows that an integer chosen uniformly at random from [1, N ] is squarefree with

probability approaching 1/ζ(2) = 6/π2 as N→∞. Informally, “a random integer is

squarefree with probability 6/π2”. We shall see that the error estimate O(N1/2) can

be improved, and that the asymptotic growth of the error hinges on the Riemann

Hypothesis.

7. Prove that there are N2/ζ(2) + O(N log N) ordered pairs of relatively prime
integers in [1, N ]. What of relatively prime pairs (x1, x2) with x1 < N1 and
x2 < N2? Generalize.

Again we may informally deduce that two random integers are coprime with proba-

bility 6/π2. Alternatively, we may regard a coprime pair (x1, x2) with xi ≤ N as a

positive rational number x1/x2 of height at most N . Dropping the positivity require-

ment, we find that there are asymptotically 2N2/ζ(2) rational numbers of height at

most N . This has been generalized to number fields other than Q by Schanuel [1979];

a function-field analogue, concerning rational functions of bounded degree on a given

algebraic curve over a finite field, was announced by Serre [1989, p.19] and proved by

DiPippo [1990] and Wan [1992] (independently but in the same way). The function-

field result was the starting point of our estimate on the size of the nonlinear linear

codes obtained from rational functions on modular curves [Elkies 2001]. Schanuel also

obtained asymptotics for rational points of height at most N in projective space of

dimension s − 1 over a number field K; when K = Q this recovers the asymptotic

enumeration of coprime s-tuples of integers.

8. Prove that as N→∞ the number of ordered quadruples (a, b, c, d) of integers
in [1, N ] such that gcd(a, b) = gcd(c, d) is asymptotic to 2N4/5.

Can this be proved without invoking the values of ζ(2) or ζ(4)? This can be regarded

as a form of a question attributed to Wagstaff in [Guy 1981, B48]: “Wagstaff asked
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for an elementary proof (e.g., without using properties of the Riemann zeta-function)

that
∏

p(p
2 + 1)/(p2 − 1) = 5/2.”
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Math 259: Introduction to Analytic Number Theory

Primes in arithmetic progressions: Dirichlet characters and L-functions

Dirichlet extended Euler’s analysis from π(x) to

π(x, a mod q) := #{p ≤ x : p is a positive prime congruent to a mod q}.

We introduce his approach with the example of the distribution of primes mod 4,
that is, of π(x, 1 mod 4) and π(x, 3 mod 4). The sum of these is of course π(x)−1
once x > 2, and we have already obtained

s

∫ ∞

1
π(y)y−1−s dy = log

1
s− 1

+ Os0(1) (1 < s ≤ s0) (1)

from the Euler product for ζ(s). If we omit the factor (1− 2−s)−1, we obtain a
product formula for

(1− 2−s)ζ(s) = 1 + 3−s + 5−s + 7−s + · · · .

If we try to estimate π(·, 1 mod 4) (or π(·, 3 mod 4)) in the same way, we are led
to the sum of n−s over the integers all of whose prime factors are are congruent
to 1 (or 3) mod 4, which is hard to work with. But we can analyze the difference
π(x, 1 mod 4)− π(x, 3 mod 4) using an Euler product for the L-series

L(s,χ4) := 1− 1
3s

+
1
5s
− 1

7s
+− · · · =

∞∑

n=1

χ4(n)n−s.

Here χ4 is the function

χ4(n) =






+1, if n ≡ +1 mod 4;
−1, if n ≡ −1 mod 4;

0, if 2|n.

This function is (strongly1) multiplicative:

χ4(mn) = χ4(m)χ4(n) (m,n ∈ Z). (2)

Therefore L(s,χ4) factors as did ζ(s):

L(s,χ4) =
∏

p prime

( ∞∑

cp=1

χ(pcp)p−cps
)

=
∏

p prime

1
1− χ(p)p−s

. (3)

By comparison with the Euler product for ζ(s) we see that the manipulations
in (3) are valid for s > 1 (and in fact for s of real part > 1). Unlike ζ(s), the
function L(s,χ4) remains bounded as s→1+, because the sum

∑∞
n=1 χ4(n)n−s

may be grouped as
1Often a function f is called multiplicative when f(mn) = f(m)f(n) only for coprime m, n;

see the Exercises.
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(
1− 1

3s

)
+

( 1
5s
− 1

7s

)
+

( 1
9s
− 1

11s

)
+ · · ·

in which the n-th term is O(n−(s+1)) (why?). Indeed this regrouping lets us
extend L(·,χ4) to a continuous function on (0,∞). Moreover, each term (1 −
3−s), (5−s − 7−s), (9−s − 11−s),. . . is positive, so L(s,χ4) > 0 for all s > 0,
in particular for s = 1 (you probably already know that L(1,χ4) = π/4). The
same analysis we used to get an estimate on the Mellin transform of π(·) from
the Euler product for ζ(s) can now be used starting from (3) to obtain:2

s

∫ ∞

1
π(y, χ4)y

−1−s dy = O(1) (1 < s ≤ 2), (4)

where
π(y, χ4) := π(y, 1 mod 4)− π(y, 3 mod 4) =

∑

p≤y

χ4(p).

Averaging (4) with (1), we find that

s

∫ ∞

1
π(y, 1 mod 4)y−1−s dy =

1
2

log
1

s− 1
+ O(1) (1 < s ≤ 2),

s

∫ ∞

1
π(y, 3 mod 4)y−1−s dy =

1
2

log
1

s− 1
+ O(1) (1 < s ≤ 2).

This is consistent with π(x,±1 mod 4) ∼ 1
2x/ log x, and corroborates our ex-

pectation that there should be on the average as many primes congruent to
+1 mod 4 as −1 mod 4. Specifically, it shows that for a = ±1 the sets of primes
congruent to a mod 4 has logarithmic density 1/2 in the primes. This concept
is defined as follows:

Definition. Suppose P is a set of positive integers such that
∑

n∈P 1/n di-
verges. A subset S of P is said to have logarithmic density δ if

(∑

n∈S

n−s
)/(∑

n∈P

n−s
)
→ δ

as s→1+. Taking for P the set of primes, we see that a set S of primes has
logarithmic density δ if and only if

∑

p∈S

p−s ∼ δ log
1

s− 1

as s→1+.

This notion of “logarithmic density” has the properties we would expect from
a density: δ ∈ [0, 1]; a set of positive density is nonempty; if disjoint sets P1, P2

2Again, the choice of s0 > 1 does not matter, because we are concerned with the behavior
near s = 1; thus we have made the traditional and convenient choice s0 = 2, rather than
continue with an unspecified s0 and a distracting subscript in Os0 .
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have logarithmic densities δ1, δ2, then P1 ∪ P2 has logarithmic density δ1 + δ2;
and if P1, P2 are sets of logarithmic densities δ1, δ2 and P1 ⊆ P2, then δ1 ≤ δ2.
See the first Exercise for further information.

We can use the notion of logarithmic density to state Dirichlet’s theorem as
follows:

Theorem [Dirichlet]. For any positive integer q, and any integer a coprime
to q, the primes congruent to a mod q constitute a set of logarithmic density
1/ϕ(q) in the primes.

Here ϕ is the Euler phi (“totient”) function, ϕ(q) = |(Z/q)∗|. We have just
proved the cases (q, a) = (4,±1) of Dirichlet’s theorem. The same method
disposes of (q, a) = (3,±1), using

(1− 3−s)ζ(s) = 1 + 2−s + 4−s + 5−s + 7−s + 8−s + · · ·

and

L(s,χ3) := 1− 1
2s

+
1
4s
− 1

5s
+− · · · =

∞∑

n=1

χ3(n)n−s,

Where χ3 is the multiplicative function defined by

χ3(n) =






+1, if n ≡ +1 mod 3;
−1, if n ≡ −1 mod 3;

0, if 3|n.

With a tad more work we can deal with q = 8. Let χ8(n) be +1 if n ≡ ±1 mod 8,
−1 if n ≡ ±3 mod 8, and 0 if n is even. This is a multiplicative function, as is
χ4χ8; the resulting L-functions

L(s,χ8) =
∞∑

n=1

χ8(n)n−s = 1− 1
3s
− 1

5s
+

1
7s

+−−+ · · · ,

L(s,χ4χ8) =
∞∑

n=1

χ4χ8(n)n−s = 1 +
1
3s
− 1

5s
− 1

7s
+ +−− · · ·

have Euler products for s > 1 and are positive for s > 0 (to prove this for
L(s,χ8), group the terms in fours rather than pairs and use the convexity of the
function n *→ n−s). We deduce that

∑

p

χ8(p)p−s = O(1) and
∑

p

χ4χ8(p)p−s = O(1)

for s ∈ (1, 2], which combined with previous results yields Dirichlet’s theorem
for q = 8. Similarly we can handle q = 12, and with some more effort even
q = 24.

What about q = 5? We have the “quadratic character”, which takes n to +1
or −1 if x ≡ ±1 or ±2 mod 5 (and to 0 if 5|n), but this only lets us sepa-
rate quadratic from non-quadratic residues mod 5. We need a new idea to
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get at the individual nonzero residue classes mod 5. (Recall that {5k + 2}
and {5k − 2} are the first cases of arithmetic progressions that we could not
prove contain infinitely many primes using variations of Euclid’s proof.) Let
χ be the multiplicative function from Z to the complex numbers which takes
n ≡ 0, 1, 2, 3, 4 mod 5 to 0, 1, i,−i,−1. Another such function is the complex
conjugate χ = χ3, while χ2 is the quadratic character and χ4 is the “trivial
character” taking n to 0 or 1 according as 5|n or not. The resulting L-functions∑

n χ(n)n−s,
∑

n χ(n)n−s then take complex values, but still have Euler prod-
ucts and extend to continuous functions on s > 0. Moreover, these functions
never vanish on s > 0; indeed their real and imaginary parts are both nonzero,
as we see by combining the real terms into (5k + 1, 5k + 4) pairs and the imag-
inary terms into (5k + 2, 5k + 3) pairs. Likewise the L-function associated to
the quadratic character χ2 has an Euler product and is positive for s > 0 by
convexity of n−s. We conclude as before that

∑
p χj(p)p−s = O(1) as s→1+

for each j = 1, 2, 3, and recover Dirichlet’s theorem for q = 5 by taking linear
combinations of these sums and

∑
p p−s = log 1

s−1 + O(1).

For general q, we proceed analogously, using linear combinations of Dirichlet
characters, whose definition follows.

Definition. For a positive integer q, a Dirichlet character mod q is a function
χ : Z→C which is

• q-periodic: n ≡ n′ mod q ⇒ χ(n) = χ(n′);

• supported on the integers coprime to q and on no smaller subset of Z:
(n, q) = 1⇔ χ(n) -= 0; and

• multiplicative: χ(m)χ(n) = χ(mn) for all integers m,n.

To such a character is associated the Dirichlet L-series

L(s,χ) :=
∞∑

n=1

χ(n)n−s =
∏

p

1
1− χ(p)p−s

(s > 1). (5)

Examples: The trivial character χ0 mod q is defined by χ(n) = 1 if (n, q) = 1
and χ(n) = 0 otherwise. Its associated L-series is

L(s,χ0) =
∏

p|q

(1− p−s) · ζ(s). (6)

If l is prime then the Legendre symbol (·/l), defined by (n/l) = 0, 1,−1 according
as n is zero, a nonzero square, or not a square mod l, is a character mod l. If
χ is a Dirichlet character mod q then so is its complex conjugate χ (defined of
course by χ(n) = χ(n) ), with L(s,χ) = L(s,χ) for s > 1. If χ,χ′ are characters
mod q, q′ then χχ′ is a character mod lcm(q, q′). In particular, we have:

Lemma: For each q, the characters mod q constitute a group under pointwise
multiplication, with identity χ0 and inverse χ−1 = χ.
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What is this group? A Dirichlet character mod q is just a homomorphism
from (Z/q)∗ to the unit circle, extended by zero to a function on Z/q and
lifted to Z. Therefore the group of such characters is the Pontrjagin dual of
(Z/q)∗. Pontrjagin duality for finite abelian groups like (Z/q)∗ is easy, since it
is equivalent to the theory of the discrete Fourier transform. We next recall the
basic facts.

For any finite abelian group G, let Ĝ be its Pontrjagin dual, defined as the group
of homomorphisms from G to the unit circle in C. Then the dual of G ×H is
Ĝ×Ĥ, and the dual of Z/m is a cyclic group of order m. Since any finite abelian
group is a product of cyclic groups, it follows that Ĝ is isomorphic with G. This
isomorphism is not in general canonical,3 but there is a canonical isomorphism
from G to the dual of Ĝ (the second dual of G), namely the map taking an
g ∈ G to the homomorphism χ *→ χ(g). That this is an isomorphism can be
checked directly for cyclic groups, and then deduced for any finite abelian G
because all such G are direct sums of abelian groups.

The characters of G are orthogonal :

∑

g∈G

χ1(g) χ2(g) =

{
|G|, if χ1 = χ2;

0, if χ1 -= χ2.

In particular, they are linearly independent; since there are |G| of them, they
form a basis for the vector space of complex-valued functions on G. The de-
composition of an arbitrary such function f : G→C is a linear combination of
characters is achieved by the inverse Fourier transform:

f =
∑

χ∈Ĝ

fχχ, where fχ :=
1
|G|

∑

g∈G

χ(g)f(g).

In particular, the characteristic function of any g0 ∈ G is |G|−1
∑

χ χ(g0)χ.

What does all this tell us about Dirichlet L-functions and distribution of primes
mod q? First, that if we define π(·,χ) by

π(x,χ) :=
∑

a mod q

χ(a)π(x, a mod q) =
∑

p<x

χ(p)

then, for all a coprime to q,

π(x, a mod q) =
1

ϕ(q)

∑

χ mod q

χ(a)π(x,χ).

Second, that

s

∫ ∞

1
π(y, χ)y−1−s dy =

∑

p

χ(p)p−s = log L(s,χ) + O(1) (7)

3For instance, if G is cyclic of order 5, there can be no canonical nondegenerate pairing
〈·, ·〉 : G×G→C∗, because such a pairing would have to be invariant under Aut(G) = (Z/5)∗,
but 〈g2, g2〉 = 〈g, g〉4 %= 〈g, g〉.

5



For 1 < s ≤ 2. This is again obtained by taking logarithms in the Euler product
(5). The Euler product shows that L(s,χ) -= 0 for s > 1; if χ is complex,
“log L(s,χ)” means the branch of the logarithm that approaches 0 as s→∞.

For the behavior of L(s,χ) near s = 1, we have:

Lemma. i) If χ = χ0 then log L(s,χ) = log(1/(s− 1)) + O(1) as s→1+.
ii) For nontrivial χ, the sum defining L(s,χ) converges for s > 0 and defines a
continuous function on the positive reals.

Proof : (i) follows from (6), together with our estimate on ζ(s) for s→1+. As for
(ii), as a special case of character orthogonality we have

∑
a mod q χ(a) = 0, so

Sχ(x) :=
∑

0<n<x χ(n) is a bounded function of x. Hence (for large M,N /∈ Z)4

∑

M<n<N

χ(n)
ns

=
∫ N

M
y−s dSχ(y) = Sχ(y)y−s

∣∣∣
N

M
+ s

∫ N

M
y−1−sSχ(y) dy

/χ M−s + N−s,

which for fixed s > 0 tends to zero as M,N→∞. Thus the sum
∑∞

n=1 χ(n)n−s

converges. Moreover, for any s0 > 0, the convergence is uniform in s ≥ s0.
Hence

∑∞
n=1 χ(n)n−s is the uniform limit of continuous functions

∑N
n=1 χ(n)n−s,

and is therefore a continuous function on (0,∞), as claimed. !
From (7) we see that the crucial question is whether L(1,χ) is nonzero: the right-
hand side is O(1) if L(1,χ) -= 0 but ≤ − log(1/(s − 1)) + O(1) if L(1,χ) = 0
(since L(s,χ) is differentiable at s = 1). Our experience with small q, and our
expectation that the primes should not favor one congruence class in (Z/q)∗ to
another, both suggest that L(1,χ) will not vanish. This is true, and can be
checked in any given case by a finite computation; but our methods thus far do
not let us prove it in general (try doing it for χ = (·/67) or (·/163)!). For the
time being, then, we can only obtain a conditional result:

Proposition. Assume that L(1,χ) -= 0 for all nontrivial characters χ mod q.
Then Dirichlet’s theorem holds for all arithmetic progressions mod q.

Proof : For each a ∈ (Z/q)∗, multiply (7) by χ(a), and average over χ to obtain

∑

p≡a mod q

p−s =
1

ϕ(q)

∑

χ

χ(a) log L(s,χ) + O(1) =
1

ϕ(q)
log

1
s− 1

+ O(1)

for 1 < s ≤ 2, since χ0 contributes χ0(a) log ζ(s)+O(1) = log 1
s−1 +O(1) to the

sum, while the other terms remain bounded by hypothesis. Thus the primes
congruent to a mod q have logarithmic density 1/ϕ(q), as claimed.

In fact the nonvanishing of L(1,χ) was proved by Dirichlet, who thus established
his celebrated theorem on primes in arithmetic progressions. At least three

4We require that M, N /∈ Z to avoid the distraction of whether the Riemann-Stieltjes

integral
∫ N

M y−s dSχ(y) includes the terms with n = M or n = N in the sum.
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proofs are now known. These three proofs all start with the product of the
L-functions associated to all ϕ(q) Dirichlet characters mod q:

∏

χ mod q

L(s,χ) =
∏

p




∏

χ mod q

(1− χ(p)p−s)




−1

.

The inner product can be evaluated with the following cyclotomic identity:

Let G be a finite abelian group and g ∈ G an element of order m. Then
∏

χ∈Ĝ

(1− χ(g)z) = (1− zm)|G|/m (8)

hold identically for all z.

The identity is an easy consequence of the factorization of 1− zm together with
the fact that any character of a subgroup H ⊆ G extends in [G : H] ways to a
character of G (in our case H will be the cyclic subgroup generated by g).

Let mp, then, be the multiplicative order of p mod q (for all but the finitely
many primes p dividing q). Then we get

∏

χ mod q

L(s,χ) =
∏

p!q
(1− p−mps)−ϕ(q)/mp . (9)

The left-hand side contains the factor L(s,χ0), which is C/(s − 1) + O(1) as
s→1+ for some C > 0 [in fact C = ϕ(q)/q]. Since the remaining factors are
differentiable at s = 1, if any of them were to vanish there the product would
remain bounded as s→1+. So we must show that this cannot happen.

Dirichlet’s original approach was to observe that (9) is, up to a few factors
1− n−s with n|q, the “zeta function of the cyclotomic number field Q(e2πi/q)”.
He then proved that the zeta function ζK(s) of any number field K is ∼ C/(s−1)
as s→1+ for some positive constant C (and gave an exact formula for C, which
includes the class number of K and is thus called the “Dirichlet class number
formula”). That is undoubtedly the best way to go about it — but it requires
more algebraic number theory than I want to assume here. Fortunately there
are at least two ad-hoc simplifications available.

The first is that we need only worry about real characters. If L(1,χ) = 0
then also L(1,χ) = 0. Hence if χ -= χ but L(1,χ) = 0 then there are at
least two factors in the left-hand side of (9) that vanish at s = 1; since they
are differentiable there, the product would be not only bounded as s→1+, but
approach zero there — which is impossible because the right-hand side is > 1 for
all s > 1. But if χ is a real character then L(s,χ0)L(s,χ) is (again within a few
factors 1− n−s of) the L-function of a quadratic number field. Developing the
algebraic number theory of quadratic number fields takes considerably less work
than is needed for the full Dirichlet class number formula, and if we only want
to get unboundedness as s→1+ it is even easier — for instance, if χ(−1) = −1

7



then the right-hand side of (9) is dominated by the zeta function of a binary
quadratic form, which is easily seen to be1 1/(s−1). However, even this easier
proof is beyond the scope of what I want to assume or fully develop in this class.

Fortunately there is a way to circumvent any ζK beyond K = Q, using the
fact that the right-hand side of (9) also dominates the series ζ(ϕ(q) · s), which
diverges not at s = 1 but at s = 1/ϕ(q). Since this s is still positive, we can
still get a proof of L(1,χ) -= 0 from it, but only by appealing to the magic of
complex analysis. We thus defer the proof until we have considered ζ(s) and
more generally L(s,χ) as functions of a complex variable s, which we shall have
to do anyway to obtain the Prime Number Theorem and results on the density
(not just logarithmic density) of primes in arithmetic progressions.

Remarks

Let K be any number field (finite algebraic extension of Q), and OK its ring
of algebraic integers. The “zeta function” ζK(s) is

∑
I |I|−s, where I ranges

over nonzero ideals of OK and |I| = [OK : I] is the norm of I. For instance,
ζ(s) = ζQ(s), and if K = Q[i] then ζK(s) = 1

4

∑
(m2+n2)−s, the sum extending

over all (m,n) ∈ Z2 other than (0, 0). The relation between the product (9)
and the zeta function of Q(e2πi/q) can be made more precise: if we replace
each χ by its underlying primitive character (see the Exercises), the product
is exactly the zeta function of that cyclotomic number field. Similarly, for any
quadratic field K there is a primitive Dirichlet character χ such that ζK(s) =
ζ(s)L(s,χ). These are the prototypical examples of the factorization of a zeta
function as a product of Artin L-functions; the fact that the “Artin L-functions”
for 1-dimensional representations are Dirichlet series is a prototype for class
field theory. Dirichlet’s theorem in turn generalizes to the Čebotarev density
theorem. These theorems all require more algebraic machinery than the results
we shall obtain using only the Riemann zeta and Dirichlet L-functions, but
much the same analytic methods. Therefore we shall not develop them further
in Math 259.

Exercises

Concerning density:

1. If P is an infinite set of integers, the (natural) density of any subset S ⊆ P is

lim
x→∞

#{n ∈ S : n < x}/#{n ∈ P : n < x},

if the limit exists. Check that this satisfies the same properties we noted for
the logarithmic density (density of subsets, disjoint unions, etc.). Show that
if

∑
n∈P 1/n diverges and S ⊂ P has density δ in S then it also has logarith-

mic density δ in S. (Use partial summation to write
∑

n∈P n−s as an integral
involving #{n ∈ S : n < x}.) If P is the set of natural numbers and Sd

(d = 1, 2, . . . , 9) is the subset consisting of integers whose first decimal digit
is d, show that Sd has logarithmic density log10(1 + 1

d ) in P but no natural
density. Does every set of natural numbers have a logarithmic density?
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While not every set with a logarithmic density has a natural density, we shall see that

the primes congruent to a mod q do have natural density 1/ϕ(q) in the primes. As for

the sets Sd, their logarithmic densities account for “Benford’s Law”, the observation

that in many naturally occurring “random numbers” the initial digit d occurs with

frequency log10(1 + 1
d ), rather than 1/9 as one might expect.

Concerning Euler products:

2. One may associate to any sequence (a1, a2, a3, . . .) of complex numbers an
L-series L(s) =

∑∞
n=1 ann−s, which converges absolutely in some right half-

plane s > s0 if an / ns0−1. Show that L(s) has an Euler product

L(s) =
∏

p

( ∞∑

c=0

apc

pcs

)

if and only if amn = aman for any m,n such that gcd(m,n) = 1. (Such functions
n *→ an are called “multiplicative”. Note that necessarily a1 = 1 if {an} is
multiplicative.)

3. Let f(s) be the sum of n−s over squarefree positive integers n. Express f(s)
in terms of the zeta function, and evaluate f(2). What are the an such that
1/ζ(s) =

∑∞
n=1 ann−s? Given k, what is the coefficient of n−s in ζ(s − k), or

ζ(s)ζ(s− k)?

4. Find a1, a2, . . . such that
∑

p p−s =
∑∞

n=1 an log ζ(ns) for all s > 1. Use this
(and a computer package that knows about ζ(2n) and high-precision arithmetic)
to calculate that

∑

p

1
p2

= 0.45224742004106549850654336483224793417323 . . .

Note that this is much greater accuracy than we could reasonably expect to reach by

summing the series directly. We shall see that this trick can be adapted to efficiently

compute
∑

p f(p) for many natural choices of f .

Concerning Pontrjagin duality:

5. Show that to any homomorphism α : H→G between finite abelian groups
there is a canonically associated homomorphism α̂ : Ĝ→Ĥ in the opposite
direction between their Pontrjagin duals. Check that α is the dual of α̂ (under
the canonical identification of G and H with the duals of Ĝ, Ĥ), and that if β
is a homomorphism from G to a finite abelian group K then the dual of the
composite homomorphism β ◦ α : H→K is α̂ ◦ β̂. Prove that im(α) = ker(β) if
and only if im(β̂) = ker(α̂).

In particular, if H→G is an injection, it follows (by taking β to be the quotient map

G→G/α(H)) that the restriction map α̂ : Ĝ→Ĥ is a surjection; this was used to

prove the cyclotomic identity (8). An adherent of the categorical imperative would

summarize this exercise, together with the easy observations that îd = id (when G =

H) and 0̂ = 0, by saying that Pontrjagin duality is an “exact contravariant functor on

the category of finite abelian groups”.
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Concerning Dirichlet characters:

6. Show that the integers q modulo which all the Dirichlet characters are real
(take on only the values 0,±1) are precisely 24 and its factors. Show that every
real Dirichlet character is of the form χ0ψ

∏
l∈S(·/l), where χ0 is the trivial

character, ψ = χε4
4 χε8

8 for some ε4, ε8 ∈ {0, 1}, and S is a (possibly empty) finite
set S of odd primes.

7. Let χ0 be the trivial character mod q, and let q1 be some factor of q. For
any character χ1 mod q1 there is a character χ mod q defined by χ = χ0χ1.
Express L(s,χ) in terms of L(s,χ1). Conclude that L(1,χ) -= 0 if and only if
L(1,χ1) -= 0.

8. A character mod q that cannot be obtained in this way from any character
mod a proper factor q1 |q (a factor other than q itself) is called primitive. Show
that any Dirichlet character χ comes from a unique primitive character χ1.
[The modulus of this χ1 is called the conductor of χ.] Show that the number
of primitive characters mod n is n

∏
p|n αp, where αp = ((p− 1)/p)2 if p2|n and

(p− 2)/p if p‖n. NB there are no primitive characters mod n when 2‖n.

The notation pf‖n means that pf divides n “exactly”; that is, pf |n but pf+1 does not

divide n. Equivalently, the p-valuation of n is f .

9. Deduce the fact that for any q there is at most one nontrivial character χ
mod q such that L(1,χ) = 0, as a consequence of (7) together with the fact that
π(x, a mod q) ≥ 0 for all x, a, q. [In the final analysis, this is not much different
from our proof using the product of L-series.] Using either this approach or the
one based on (9), prove that there is at most one primitive Dirichlet character
of any modulus whose L-function vanishes at s = 1. [Assume there were two,
and obtain two different imprimitive characters to the same modulus whose
L-functions both vanish at s = 1, which we’ve already shown impossible. We
shall encounter this trick again when we come to Siegel’s ineffective lower bound
on L(1,χ).]

Concerning L-series:

10. Show that if χ is a nontrivial character then L(s,χ) is infinitely differen-
tiable on s ∈ (0,∞), and its m-th derivative is given by the convergent sum∑∞

n=1(− log n)mχ(n)n−s (m = 1, 2, 3, . . .).

11. i) Prove that if s has real part σ > 1 then ζ(2σ)/ζ(σ) < |L(s,χ)| ≤ ζ(σ) for
all Dirichlet characters χ.
ii) Prove that these bounds are sharp by showing that for all σ > 1 and ε > 0
there exist infinitely many χ such that L(σ,χ) > ζ(σ) − ε and infinitely many
χ such that L(σ,χ) < ζ(2σ)/ζ(σ) + ε.

We shall show that the bounds are also sharp for individual Dirichlet characters: for

each χ, σ, ε there exist s of real part σ such that |L(s, χ)| is arbitrarily close to ζ(σ),

and s of real part σ such that |L(s, χ)| is arbitrarily close to ζ(2σ)/ζ(σ).

12. [Zeta function of a quadratic form] For some positive integer r, let Q :
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Rr→R be a positive-definite quadratic form. Show that

ζQ(s) :=
∑

n∈Zr

n"=0

1
Q(n)s

converges absolutely if and only if s has real part > r/2, and determine the
limit of (s − (r/2))ζQ(s) as s→r/2 from above. [Use partial summation with
respect to #{n ∈ Zr : Q(n) ≤ x}. Check that your answer is consistent with the
answer for r = 1, when Q(n) = an2 and ζQ(s) = a−sζ(2s).] If Q is the standard
quadratic form Q(n) = n2

1 + n2
2, prove that ζQ(s) = 4ζ(s)L(s,χ4). (This is

an example of the relation between (9) and the zeta function of a number field.
Check that it is consistent with your formula for the growth of ζQ(s) as s→r/2.)
Obtain a similar formula for Q(n) = n2

1 + n1n2 + n2
2. What other Q can you

find for which ζQ(s) is proportional to a product of Dirichlet L-functions?
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Math 259: Introduction to Analytic Number Theory

Čebyšev (and von Mangoldt and Stirling)

Before investigating ζ(s) and L(s,χ) as functions of a complex variable, we give
another elementary approach to estimating π(x), due to Čebyšev. This method,
unlike Euler’s, produces upper and lower bounds on π(x) that remain within
a small constant factor as x→∞. These bounds x/ log x # π(x) # x/ log x
are sufficient for many theoretical and practical applications, which thus do not
require the more advanced and subtle techniques that enter into the proof of
the Prime Number Theorem. (The bounds are also close enough to let Čebyšev
prove “Bertrand’s Postulate”: every interval (x, 2x) with x > 1 contains a
prime. See [HW 1996, p.343–4] for Erdös’s simplification of Čebyšev’s proof;
this simplified proof is also on the Web: http://forum.swarthmore.edu/dr.math/
problems/kuropatwa.4.3.97.html .) For us Čebyšev’s method also has the advan-
tage of introducing the von Mangoldt function and the Stirling approximation
to x!, both of which will figure prominently in our future analysis.

It is well known1 that for any prime p and positive integer x the exponent of p
in x! (a.k.a. the p-valuation of x!) is

cp(x) :=
⌊

x

p

⌋
+

⌊
x

p2

⌋
+

⌊
x

p3

⌋
+ · · · =

∞∑

k=1

⌊
x

pk

⌋
,

the sum being finite because eventually pk > x. It was Čebyšev’s insight that
one could extract information about π(·) from the resulting formula

x! =
∏

p

pcp(x),

or equivalently

log x! =
∑

p

cp(x) log(p) =
∞∑

n=1

⌊x

n

⌋
Λ(n), (1)

where Λ(n) is the von Mangoldt function

Λ(n) :=
{

log p, if n = pk for some positive integer k and prime p;
0, otherwise.

To make use of (1) we need to estimate

log x! =
x∑

n=1

log n

1If only thanks to the perennial problems along the lines of “how many zeros end 2003! ?”.
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for large x. We do this by in effect applying the first few steps of symmetrized
Euler-Maclaurin summation, to find:

Lemma. There exists a constant C such that

log x! = (x +
1
2
) log x− x + C + O(1/x) (2)

holds for all positive integers x.

Proof : For any C2 function f we have (by integrating by parts twice)
∫ 1/2

−1/2
f(y) dy = f(0) +

1
2

[∫ 0

−1/2
f ′′(y)

(
y +

1
2
)2

dy +
∫ 1/2

0
f ′′(y)

(
y − 1

2
)2

dy

]

= f(0) +
1
2

∫ 1/2

−1/2
f ′′(y)

∥∥y +
1
2
∥∥2

dy,

where ‖z‖ is the distance from z to the nearest integer. Thus

N∑

k=1

f(k) =
∫ N+ 1

2

1/2
f(y) dy +

1
2

∫ N+ 1
2

1
2

f ′′(y)
∥∥y +

1
2
∥∥2

dy.

Taking f(y) = log(y) and N = x we thus have

log x! = (x +
1
2
) log(x +

1
2
) +

1
2

log 2− x− 1
2

∫ x+ 1
2

1
2

∥∥y +
1
2
∥∥2 dy

y2
.

The integral is

−1
2

∫ ∞

1
2

∥∥y +
1
2
∥∥2 dy

y2
+ O(1/x),

and the other terms are

(x +
1
2
) log x− x +

1
2
(log 2 + 1) + O(1/x),

from which (2) follows. !
[Stirling also determined the value of C (which turns out to be 1

2 log(2π), as we
shall soon see), and extended (2) to an asymptotic series for x!/((x/e)x

√
2πx )

in inverse powers of x. But for our purposes log x! = (x + 1
2 ) log x − x + O(1)

is more than enough. In fact, since for the time being we’re really dealing with
log'x(! and not log Γ(x + 1), the best honest error term we can use is O(log x).]

Now let
ψ(x) :=

∑

1≤n≤x

Λ(n).

Then from (1) and (2) we have
∞∑

k=1

ψ(x/k) = (x +
1
2
) log x− x + O(1).
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This certainly suggests that ψ(x) ∼ x, and lets us prove upper and lower bounds
on ψ(x) proportional to x. For instance, since x ≥ 1 +

∑∞
m=1'x/2m( for all

x ≥ 1, we have

ψ(x) ≤ log x!−
∞∑

m=1

log
⌊ x

2m

⌋
!,

which yields

ψ(x) ≤
[ ∞∑

m=1

m

2m
log 2

]
x + O(log2 x) = (2 log 2)x + O(log2 x).

For a lower bound we can use the inequality

ψ(x) ≥
∞∑

k=1

(−1)k−1ψ(x/k) = log
x!

(x/2)!2
= (log 2)x + O(log x)

for an even integer x = 2n; This is essentially the same tactic of factoring
(2n

n

)

that Čebyšev used to prove π(2x) > π(x).

It is true that we’re ultimately interested in π(x), not ψ(x). But it is easy to get
from one to the other. For one thing, the contribution to ψ(x) of prime powers pk

with k > 1 is negligible — certainly less than
∑log2 x

k=2 'x1/k( log x # x1/2 log x.
The remaining sum,

∑
p≤x log p, can be expressed in terms of π(x) and vice

versa using partial summation, and we find:

ψ(x) = log(x)π(x)−
∫ x

2
π(y)

dy

y
+ O(x1/2 log x),

π(x) =
ψ(x)
log x

+
∫ x

2
ψ(y)

dy

y log2 y
+ O(x1/2).

It follows that the Prime Number Theorem π(x) ∼ x/ log x holds if and only
if ψ(x) ∼ x, and good error terms on one side imply good error terms on the
other. It turns out that we can more readily get at ψ(x) than at π(x); for
instance, ψ(x) is quite well approximated by x, while the “right” estimate for
π(x) is not x/ log x but (x/ log x)+

∫ x
dy/ log2 y, i.e., the “logarithmic integral”∫ x

dy/ log y. It is in the form ψ(x) ∼ x that we’ll actually prove the Prime
Number Theorem.

Exercises

On Čebyšev’s method:

1. How many consecutive 0’s are there at the end of the base-12 expansion
of 2006! ? Why did I choose 12 rather than any smaller base (including the
default 10), and what other bases less than 100 would serve the same purpose?

2. Since our upper and lower asymptotic bounds log 2, log 4 on ψ(x)/x are
within a factor of 2 of each other, they do not quite suffice to prove Bertrand’s
Postulate. But any improvement would prove that π(2x) > π(x) for sufficiently
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large x, from which the proof for all x follows by exhibiting a few suitably spaced
primes. It turns out that better bounds are available starting from (1). For
instance, show that ψ(x) < ( 1

2 log 12)x + O(log2 x). Can you obtain Čebyšev’s
bounds of 0.9 and 1.1? In fact it is known that the upper and lower bounds
can be brought arbitrarily close to 1, but alas the only known proof of that fact
depends on the Prime Number Theorem!

To recover Bertrand’s Postulate, one needs for once to convert all the O(·)’s to explicit

error estimates. One then obtains an explicit x0 such that π(2x) > π(x) for all x ≥ x0,

which reduces Bertrand’s Postulate to the finite computation of verifying π(2x) > π(x)

for each x ∈ (1, x0). This can be done by calculating a sequence of O(log x0) primes

2, 3, 5, 7, 13, 23, . . . , p, each less than twice the previous prime, and with p > x0. Once

we prove the Prime Number Theorem it will follow that for each ε > 0 there exists x0

such that π((1 + ε)x) > π(x) for all x ≥ x0.

3. Estimate log
∏

(m2 + n2), where the product extends over all (m,n) ∈ Z2

such that 0 < m2 + n2 ≤ x. What is the exponent of a prime p ≤ x in this
product? Using this information, how close can you come to the asymptotic
formula π(x, 1 mod 4) ∼ 1

2x/ log x?

Bernoulli polynomials, Euler-Maclaurin summation, and efficient computation
of ζ(s) and L(s,χ):

4. The Bernoulli polynomials Bn(x) are defined for n = 0, 1, 2, 3, . . . by the
generating function

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
.

The Bernoulli numbers Bn are the rational numbers Bn(0), with generating
function t/(et − 1) =

∑∞
n=0 Bntn/n!. The first few Bernoulli polynomials are

B0(x) = 1, B1(x) = x− 1
2
, B2(x) = x2 − x +

1
6
,

B3(x) = x3 − 3
2
x2 +

1
2
x, B4(x) = x4 − 2x3 + x2 − 1

30
.

Show that in general Bn(x) =
∑n

k=0

(n
k

)
Bkxn−k ( = “(B+x)[n]” mnemonically),

that B′n(x) = nBn−1(x), and that Bn (n = 1, 2, 3, . . .) is the unique polynomial
such that Bn(x + 1) − Bn(x) = nxn−1 and

∫ 1
0 Bn(x) dx = 0. Show that the

Bernoulli number Bn vanishes for odd n > 1. What is Bn(x) + Bn(x + 1
2 )?

5. Now let f be a Cn function on [t, t + 1]. Prove that

f(t) =
∫ t+1

t
f(x) dx +

n∑

m=1

Bm

m!
(
f (m−1)(t + 1)− f (m−1)(t)

)

+ (−1)n+1

∫ t+1

t
f (n)(x)

Bn(x− t)
n!

dx.
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Therefore, if f is a Cn function on [M,N ] for some integers M,N then

N−1∑

n=M

f(n) =
∫ N

M
f(x) dx +

n∑

m=1

Bm

m!
(
f (m−1)(N)− f (m−1)(M)

)

+ (−1)n+1

∫ N

M
f (n)(x)

Bn(x− 'x()
n!

dx;

and if f is Cn on [M,∞) then

∞∑

n=M

f(n) =
∫ ∞

M
f(x) dx−

n∑

m=1

Bm

m!
f (m−1)(M)

+ (−1)n+1

∫ ∞

M
f (n)(x)

Bn(x− 'x()
n!

dx, (3)

provided the integrals converge and each f (m−1)(N)→0 as N→∞. This is a
rigorous form of the “Euler-Maclaurin formula”

∞∑

n=M

f(n) =
∫ ∞

M
f(x) dx−

∞∑

m=1

Bm

m!
f (m−1)(M),

which rarely converges (can you find any nonzero f for which it does converge?),
but is often useful as an asymptotic series. For instance, show that for any s > 1
one can efficiently compute ζ(s) to within exp(−N) in time NO(1) by taking
f(x) = x−s in (3) and choosing M,n appropriately. Do the same for L(s,χ)
where χ is any nontrivial Dirichlet character and s > 0. For instance, one can
compute Catalan’s constant

G = L(2,χ4) = 1− 1
32

+
1
52
− 1

72
+− · · · = .9159655941772190150546 . . .

in this way.

We could also use (3) to obtain the analytic continuation of ζ(s) and L(s, χ) to the

half-plane σ > 1 − n, and thus to the whole complex plane since n is arbitrary. But

this is a less satisfactory approach than using the functional equation which relates

L(s, χ) to L(1− s, χ) and thus achieves the analytic continuation to C in one step.

More about ψ(x):

6. Show that

∑

p≤x

log p = ψ(x)−ψ(x1/2)−ψ(x1/3)−ψ(x1/5) + ψ(x1/6) · · · =
∞∑

k=1

µ(k)ψ(x1/k),

where µ is the Möbius function taking the product of r ≥ 0 distinct primes to
(−1)r and any non-square-free integer to 0.

Finally, another elementary approach to estimating π(x) that gets within a
constant of the Prime Number Theorem:
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7. Let P (u) be any nonzero polynomial of degree d with integer coefficients;
then

∫ 1

0
f(u)2n du ≥ 1/lcm(1, 2, . . . , 2dn + 1) = exp(−ψ(2dn + 1)).

Thus
ψ(2dn + 1) < 2n log min

0<u<1
1/|P (u)|.

For instance, taking f(u) = u−u2 we find (at least for 4|x) that ψ(x) < x log 4.
This is essentially the same (why?) as Čebyšev’s trick of factoring ( 2n

n ), but
suggests different sources of improvement; try f(u) = (u − u2)(1 − 2u) for
example. [Unfortunately here the upper bound cannot be brought down to 1+ε;
see [Montgomery 1994, Chapter 10] — thanks to Madhav Nori for bringing this
to my attention.]
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Erdos' Proof

Here's Erdos's proof of Bertrand's Postulate, paraphrased from Hardy and Wright, "An 
Introduction to the Theory of Numbers."

The proof of Bertand's Postulate uses some simple properties of the function theta(x), 
defined for x >= 0 by

 theta(x) = sum(log p: p is prime and 0 < p <= x)

We show that

 theta(x) < 2x log(2)

(I use log(x) always to mean the natural log of x.)

It is enough to show this when x is an integer.  We're going to
prove this by induction.

The trick is to look at the binomial coefficient C(2m+1, m), which is

 (2m+1)!/m!(m+1)!

Call this M for short.

Let p be a prime such that m+1 < p <= 2m+1.  Then p divides the
numerator of M but not the denominator, so p divides M.  So the
product of all such primes divides M, and

 sum (log p: m+1 < p <= 2m+1) < log M

or in terms of the function theta(x)

 theta(2m+1) - theta(m+1) < log M.

On the other hand, the binomial expansion of (1 + 1)^(2m+1)
has two terms equal to M, so

 2M < 2^(2m+1)

 M < 2^2m

 log M < 2m log(2)

so

 theta(2m+1) - theta(m+1) < 2m log(2)

We're going to use this formula in the induction step of our proof
that  theta(x) < 2x log(2)



For x = 1, we have
 theta(1) = 0 < 2 log(2)

and for x = 2, we have
 theta(2) = log 2 < 4 log(2)

Suppose the inequality is true for x < n.  Let us prove it for x = n.

If n is even and > 2, then it is certainly not prime, so

 theta(n) = theta(n-1) < 2(n-1) log(2) < 2n log(2).

If n is odd, let n = 2m + 1.  Then by what we proved above, we have

 theta(2m+1) - theta(m+1) < 2m log(2)

 theta(2m+1) < theta(m+1) + 2m log(2)

      < 2(m+1) log(2) + 2m log(2)

      = (3m + 1) log(2)

      < (4m + 2) log(2)

      = 2n log(2).

This completes the proof that

 theta(x) < 2x log(2).

Let's catch our breath.

The next thing we're going to do is to look at the highest power of
p that divides n!, where p is any prime.  We call this number
j(n, p).

We use the notation [x] for the largest integer <= x.

Every p'th number is a multiple of p, so we get [n/p] factors of p
in n!.  But every p^2'th number is a multiple not just of p but of
p squares, and [n/p] doesn't count these, so we need to add [n/p^2}
for these extra factors of p.  Similarly every p^3'th number is a
multiple of p^3 which we have not counted yet.  So the highest
power of p that divides n! is the sum of all the

 [n/p^m]

for m >= 1.  Of course [n/p^m] = 0 as soon as p^m > n:  that is,
for m > log(n)/log(p).



Now we're going to suppose that Bertran's Postulate is false, and that
there is no prime p such that n < p < 2n, for some n.  

We're going to look at another binomial coefficient.  This one is

 C(2n,n) = (2n!)/(n!)^2

which we'll call N for short.

By our assumption, all the primes that divide N are <= n.  Now
using the notation above, we have

 N = (2n)!/(n!)^2 =

     product(p^j(2n, p): p <= 2n)
     ----------------------------
     product(p^2j(n, p): p <= n)

but there aren't any primes between n and 2n by assumption, so the
"p <= 2n" in the numerator can be replaced by "p < = n" and we get

 N = product (p^(j(2n, p) - 2j(n, p)): p <= n).

Let's call j(2n, p) - 2j(n, p) k(p) for short.  Taking logs on both
sides, we get

 log N = sum(k(p) log(p): p <= n).

Notice that k(p) is a sum of terms of the form [2x] - 2[x}.
[2x] - 2[x] is always either 0 or 1.  If [2x] is even, [2x] - 2[x]
is 0; otherwise it is 1.

We show first that k(p) = 0 for p > 2n/3.  For in that case,

 2n/3 < p <= n

or 2 <= 2n/p < 3

and [2n/p] = 2, so [2n/p] - 2[n/p] = 0.

 p^2 > (4/9)n^2 > 2n as long as n > 4,

and we can certainly assume n is > 4, since we are assuming there
is no prime between n and 2n, and 5, for example, is between 4 and 8.

So there are no terms involving higher powers of p.

Next we show that terms with k(p) >= 2 don't contribute very much.

To get such a term we have to have p^2 < 2n or p < sqrt(2n), so
the number of such terms is at most sqrt(2n).  k(p), on the other



hand, is a sum of terms [2n/p^m] - 2[n/p^m], which is certainly
0 if p^m > 2n, or m > log(2n)/log(p), so k(p) is at most log(2n)/
log(p), and k(p) log(p) <= log(2n), so

  sum(k(p) log(p) : k(p) >= 2) <= sqrt(2n) log(2n), taking the maximum
possible number of such primes p and a number bigger than any of the
k(p) log(p).

For the terms with k(p) = 1, we have at most

 sum(log(p): p <= 2n/3) = theta(2n/3) < (4n/3) log(2)

by what we proved way back when.

Putting together what we've got so far gives us

 log N < (4n/3) log(2) + sqrt(2n) log(2n).

Time for another breather before we close in for the kill.

Looking back at the definition of N, we have

 2^(2n) = 2 + C(2n, 1) + C(2n, 2) + ... + C(2n, 2n-1)

(Binomial Theorem with first and last terms combined).

This is a sum of 2n terms, the largest of which is C(2n, n) or N.

So

 2^(2n) < 2nN

or

 2n log(2) < log(2n) + log(N)
    <= log(2n) + (4n/3) log(2) + sqrt(2n) log(2n)

by what we proved just before the breather.

Now for large values of n, the only term that counts on the right
side is the 4n/3 log(2), which is smaller than the 2n log(2).  So
what we're going to do is figure out how big n needs to be to make
this inequality false, and then just prove the postulate directly
for smaller values of n.

Take n >= 2^9 and note that log(2n) = log(2^10) = 10 log(2).  Divide
the inequality by log(2) to get

 2^10 < 10 + 2^10(2/3) + (2^5) 10

or



 2^10 (1 - 2/3) < 10 (2^5 + 1)
 2^10 (1/3) < 10 (2^5 + 1)
 2^10 < 30 (2^5 + 1) < 31 (2^5 + 1) = (2^5 - 1) (2^5 + 1)
        = 2^10 - 1

which is false!!

So the assumptions that Bertrand's Postulate is false for n and that
n >= 2^9 lead to a contradiction.  All that remains is to verify
the postulate for n < 2^9 = 512.

Here we can just look at the sequence of primes

 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631

each of which is less that twice the one before.

-Doctor Wilkinson,  The Math Forum
 Check out our web site!  http://mathforum.org/dr.math/   

    



Math 259: Introduction to Analytic Number Theory

The contour integral formula for ψ(x)

We now have several examples of Dirichlet series, that is, series of the form1

F (s) =
∞∑

n=1

ann−s (1)

from which we want to extract information about the growth of
∑

n<x an as
x→∞. The key to this is a contour integral. We regard F (s) as a function
of a complex variable s = σ + it. For real y > 0 we have seen already that
|y−s| = y−σ. Thus if the sum (1) converges absolutely2 for some real σ0, then
it converges uniformly and absolutely to an analytic function on the half-plane
Re(s) ≥ σ0; and if the sum converges absolutely for all real s > σ0, then it
converges absolutely to an analytic function on the half-plane Re(s) > σ0. Now
for y > 0 and c > 0 we have

1
2πi

∫ c+i∞

c−i∞
ys ds

s
=






1, if y > 1;
1
2 , if y = 1;
0, if y < 1,

(2)

in the following sense: the contour of integration is the vertical line Re(s) = c,
and since the integral is then not absolutely convergent it is regarded as a
principal value: ∫ c+i∞

c−i∞
f(s) ds := lim

T→∞

∫ c+iT

c−iT
f(s) ds.

Thus interpreted, (2) is an easy exercise in contour integration for y $= 1, and an
elementary manipulation of log s for y = 1. So we expect that if (1) converges
absolutely in Re(s) > σ0 then

∑

n<x

an =
1

2πi

∫ c+i∞

c−i∞
xsF (s)

ds

s
(3)

for any c > σ0, using the principal value of the integral and adding ax/2 to the
sum if x happens to be an integer. But getting from (1) and (2) to (3) involves
interchanging an infinite sum with a conditionally convergent integral, which is
not in general legitimate. Thus we replace

∫ c+i∞
c−i∞ by

∫ c+iT
c−iT , which legitimizes

the manipulation but introduces an error term into (2). We estimate this error
term as follows:

Lemma. For y, c, T > 0 we have

1
2πi

∫ c+iT

c−iT
ys ds

s
=

{
1 + O(yc min(1, 1

T | log y| )), if y ≥ 1;
O(yc min(1, 1

T | log y| )), if y ≤ 1,
(4)

1As noted by Serre, everything works just as well with “Dirichlet series”
∑∞

k=0 akn−s
k ,

where nk are positive reals such that nk→∞ as k→∞. In that more general setting we would
seek to estimate

∑
nk<x ak as x→∞.

2We shall see later that the same results hold if absolute convergence is replaced by con-
ditional convergence throughout. For example, for every nonprincipal character χ the series
for L(s, χ) converges uniformly in the half-plane Re(s) > σ0 for each positive σ0.

1



the implied O-constant being effective and uniform in y, c, T .

(In fact the error’s magnitude is less than both yc and yc/πT | log y|. Of course
if y equals 1 then the error term is regarded as O(1) and is valid for both
approximations 0, 1 to the integral.)

Proof : Complete the contour of integration to a rectangle extending to real part
−M if y ≥ 1 or +M if y ≤ 1. The resulting contour integral is 1 or 0 respectively
by the residue theorem. We may let M→∞ and bound the horizontal integrals
by (πT )−1

∫∞
0 yc±rdr; this gives the estimate yc/πT | log y|. Using a circular

arc centered at the origin instead of a rectangle yields the same residue with a
remainder of absolute value < yc. !
This Lemma will let us approximate

∑
n<x an by (2πi)−1

∫ c+iT
c−iT xsF (s) ds/s.

We shall eventually choose some T and exploit the analytic continuation of F
to shift the contour of integration past the region of absolute convergence to
obtain nontrivial estimates.

The next question is, which F should we choose? Consider for instance ζ(s).
We have in effect seen already that if we take F (s) = log ζ(s) then the sum
of the resulting an over n < x closely approximates π(x). Unfortunately, while
ζ(s) continues meromorphically to σ ≤ 1, its logarithm does not: it has essential
logarithmic singularities at the pole s = 1, and at zeros of ζ(s) to be described
later. So we use the logarithmic derivative of ζ(s) instead, which at each pole or
zero of ζ has a simple pole with a known residue and thus a predictable effect
on our contour integral.

What are the coefficients an for this logarithmic derivative? It is convenient to
use not ζ ′/ζ but −ζ ′/ζ, which has positive coefficients. Using the Euler product
we find

−ζ ′(s)
ζ(s)

=
∑

p

d

ds
log(1− p−s) =

∑

p

log p
p−s

1− p−s
=

∑

p

log p
∞∑

k=1

p−ks.

That is,

−ζ ′

ζ
(s) =

∞∑

n=1

Λ(n)n−s.

So the coefficient of n−s is none other than the von Mangoldt function which
arose in the factorization of x!. Hence our contour integral

1
2πi

∫ c+iT

c−iT
−ζ ′

ζ
(s)xs ds

s
(c > 1)

approximates ψ(x). The error can be estimated by our Lemma (4): since
|Λ(n)| ≤ log n, the error is of order at most

∞∑

n=1

(x/n)c log n · min(1,
1

T | log(x/n)| )

which is O(T−1xc log2 x) provided 1 < T < x. (See the Exercises below.)
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Taking c = 1 + A/ log x, so that xc ' x, we find:

ψ(x) =
1

2πi

∫ 1+ A
log x +iT

1+ A
log x−iT

−ζ ′

ζ
(s) xs ds

s
+ OA

(
x log2 x

T

)
. (5)

Similarly for any Dirichlet character χ we obtain a formula for

ψ(x,χ) :=
∑

n<x

χ(n)Λ(n)

by replacing ζ(s) in (5) by L(s,χ).

To make use of this we’ll want to shift the line of integration to the left, where
|xs| is smaller. As we do so we shall encounter poles at s = 1 and at zeros of
ζ(s) (or L(s,χ)), and will have to estimate |ζ ′/ζ| (or |L′(s,χ)/L(s,χ)|) over the
resulting contour. This is why we are interested in the analytic continu-
ation of ζ(s) and likewise L(s,χ) and in their zeros. We investigate these
matters next.

Remarks

We can already surmise that ψ(x) will be approximated by x−
∑

ρ xρ/ρ, the sum
running over zeros ρ of ζ(s) counted with multiplicity, and thus that the Prime
Number Theorem is tantamount to the nonvanishing of ζ(s) on Re(s) = 1. The
fact that ζ(1 + it) $= 0 is also the key step in various “elementary” proofs or
the Prime Number Theorem such as [Newman 1980] (see also [Zagier 1997]).
Likewise for L(1 + it, χ) and the asymptotic formula for π(x, a mod q).

The formula for ψ(x) as a contour integral can be viewed as an instance of
the inverse Mellin transform. Suppose F (s) is a generalized Dirichlet series∑∞

k=0 akn−s
k , converging for Re(s) > σ0. Let A(x) =

∑
nk<x ak, and assume

that A(x)→∞ as x→∞. In particular, σ0 ≥ 0. Now

F (s) =
∫ ∞

0
x−sdA(x) = s

∫ ∞

0
x−sA(x)

dx

x
,

so F (s)/s is the Mellin transform of A(x). Thus we expect that

A(x) =
1

2πi

∫ c+i∞

c−i∞
xsF (s)

ds

s

for c > σ0. Due to the discontinuities of A(x) at x = nk, this integral cannot
converge absolutely, but its principal value does equal A(x) at all x /∈ {nk}.
Exercises

1. Verify that the error

∞∑

n=1

(x/n)c log n · min(1,
1

T | log(x/n)| )

in our approximation of ψ(x) is O(T−1xc log2 x) provided 1 < T < x. Explain
why the bound need not hold if T is large compared to x.

3



2. Use (4) to show that nevertheless ψ(x) is given by the principal value integral

ψ(x) = lim
T→∞

1
2πi

∫ c+iT

c−iT
−ζ ′

ζ
(s) xs ds

s
(6)

for all x, c > 1.

3. Show that
∑∞

n=1 µ(n)n−s = 1/ζ(s), with µ being the Möbius function defined
in the previous set of exercises. Deduce an integral formula for

∑
n<x µ(n)

analogous to (6), and an approximate integral formula analogous to (5) but
with error only O(T−1x log x) instead of O(T−1x log2 x).
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Math 259: Introduction to Analytic Number Theory

The Riemann zeta function and its functional equation
(and a review of the Gamma function and Poisson summation)

Recall Euler’s identity:

[ζ(s) :=]
∞∑

n=1

n−s =
∏

p prime




∞∑

cp=1

p−cps



 =
∏

p prime

1
1− p−s

. (1)

We showed that this holds as an identity between absolutely convergent sums
and products for real s > 1. Riemann’s insight was to consider (1) as an
identity between functions of a complex variable s. We follow the curious but
nearly universal convention of writing the real and imaginary parts of s as σ
and t, so

s = σ + it.

We already observed that for all real n > 0 we have |n−s| = n−σ, because

n−s = exp(−s log n) = n−σeit log n

and eit log n has absolute value 1; and that both sides of (1) converge absolutely
in the half-plane σ > 1, and are equal there either by analytic continuation
from the real ray t = 0 or by the same proof we used for the real case. Riemann
showed that the function ζ(s) extends from that half-plane to a meromorphic
function on all of C (the “Riemann zeta function”), analytic except for a simple
pole at s = 1. The continuation to σ > 0 is readily obtained from our formula

ζ(s)− 1
s− 1

=
∞∑

n=1

[
n−s −

∫ n+1

n
x−s dx

]
=

∞∑

n=1

∫ n+1

n
(n−s − x−s) dx,

since for x ∈ [n, n + 1] (n ≥ 1) and σ > 0 we have

|n−s − x−s| =
∣∣∣∣s

∫ x

n
y−1−s dy

∣∣∣∣ ≤ |s|n−1−σ

so the formula for ζ(s) − (1/(s − 1)) is a sum of analytic functions converging
absolutely in compact subsets of {σ + it : σ > 0} and thus gives an analytic
function there. (See also the first Exercise below.) Using the Euler-Maclaurin
summation formula with remainder, we could proceed in this fashion, extending
ζ to σ > −1, σ > −2, etc. However, once we have defined ζ(s) on σ > 0 we
can obtain the entire analytic continuation at once from Riemann’s functional
equation relating ζ(s) with ζ(1 − s). This equation is most nicely stated by
introducing the meromorphic function ξ(s) defined by1

ξ(s) := π−s/2Γ(s/2)ζ(s)
1Warning: occasionally one still sees ξ(s) defined as what we would call (s2 − s)ξ(s) or

(s2 − s)ξ(s)/2, as in [GR 1980, 9.561]. The factor of (s2 − s) makes the function entire, and
does not affect the functional equation since it is symmetric under s ↔ 1 − s. However, for
most uses it turns out to be better to leave this factor out and tolerate the poles at s = 0, 1.

1



for σ > 0. Then we have:

Theorem (Riemann). The function ξ extends to a meromorphic function on C,
regular except for simple poles at s = 0, 1, which satisfies the functional equation

ξ(s) = ξ(1− s). (2)

It follows that ζ also extends to a meromorphic function on C, which is regular
except for a simple pole at s = 1, and that this analytic continuation of ζ has
simple zeros at the negative even integers −2,−4,−6, . . ., and no other zeros
outside the closed critical strip 0 ≤ σ ≤ 1.

[The zeros −2,−4,−6, . . . of ζ outside the critical strip are called the trivial
zeros of the Riemann zeta function.]

The proof has two ingredients: properties of Γ(s) as a meromorphic function of
s ∈ C, and the Poisson summation formula. We next review these two topics.

The Gamma function was defined for real s > 0 by Euler2 as the integral

Γ(s) :=
∫ ∞

0
xse−x dx

x
. (3)

We have Γ(1) =
∫∞
0 e−x dx = 1 and, integrating by parts,

sΓ(s) =
∫ ∞

0
e−xd(xs) = −

∫ ∞

0
xsd(e−x) = Γ(s + 1) (s > 0),

so by induction Γ(n) = (n − 1)! for positive integers n. Since |xs| = xσ, the
integral (3) defines an analytic function on σ > 0, which still satisfies the re-
cursion sΓ(s) = Γ(s + 1) (proved either by repeating the integration by parts
or by analytic continuation from the positive real axis). That recursion then
extends Γ to a meromorphic function on C, analytic except for simple poles at
0,−1,−2,−3, . . .. (What are the residues at those poles?) For s, s′ in the right
half-plane σ > 0 the Beta function3 B(s, s′), defined by the integral

B(s, s′) :=
∫ 1

0
xs−1(1− x)s′−1 dx,

is related with Γ by
Γ(s + s′)B(s, s′) = Γ(s)Γ(s′). (4)

(This is proved by Euler’s trick of calculating
∫∞
0

∫∞
0 xs−1ys′−1e−(x+y) dx dy

in two different ways.) Since Γ(s) > 0 for real positive s, it readily follows that
Γ has no zeros in σ > 0, and therefore none in the complex plane.

This is enough to derive the poles and trivial zeros of ζ from the functional
equation (2). [Don’t take my word for it — do it!] But where does the func-
tional equation come from? There are several known ways to prove it; we give

2Actually Euler used Π(s− 1) for what we call Γ(s); thus Π(n) = n! for n = 0, 1, 2, . . ..
3a.k.a. “Euler’s first integral”, with (3) being “Euler’s second integral”.
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Riemann’s original method, which generalizes to L(s,χ), and further to L-series
associated to modular forms.

Riemann expresses ξ(s) as a Mellin integral involving the theta function4

θ(u) :=
∞∑

n=−∞
e−πn2u = 1 + 2(e−πu + e−4πu + e−9πu + . . .),

the sum converging absolutely to an analytic function on the upper half-plane
Re(u) > 0. Integrating termwise we find:

2ξ(s) =
∫ ∞

0
(θ(u)− 1)us/2 du

u
(σ > 0).

(That is, ξ(−2s) is the Mellin transform of (θ(u)− 1)/2.) But we shall see:

Lemma. The function θ(u) satisfies the identity

θ(1/u) = u1/2θ(u). (5)

Assume this for the time being. We then rewrite our integral for 2ξ(s) as
∫ 1

0
(θ(u)− 1)us/2 du

u
+

∫ ∞

1
(θ(u)− 1)us/2 du

u

= −2
s

+
∫ 1

0
θ(u)us/2 du

u
+

∫ ∞

1
(θ(u)− 1)us/2 du

u
,

and use the change of variable u↔ 1/u to find
∫ 1

0
θ(u)us/2 du

u
=

∫ ∞

1
θ(u−1)u−s/2 du

u

=
∫ ∞

1
θ(u)u(1−s)/2 du

u
=

2
s− 1

+
∫ ∞

1
(θ(u)− 1)u(1−s)/2 du

u

if also σ < 1. Therefore

ξ(s) +
1
s

+
1

1− s
=

1
2

∫ ∞

1
(θ(u)− 1)(us/2 + u(1−s)/2)

du

u
,

which is manifestly symmetrical under s ↔ 1 − s, and analytic since θ(u) de-
creases exponentially as u→∞. This concludes the proof of the functional equa-
tion and analytic continuation of ξ, assuming our lemma (5).

This lemma, in turn, is the special case f(x) = e−πux2
of the Poisson summation

formula:
4Jacobi introduced four “theta functions” of two variables; in his notation, our θ(u) would

be θ3(0, e−πu). We can call this θ(u) because we shall not use θ1, θ2, θ4, nor θ3(z, q) for z #= 0.
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Theorem. Let f : R→C be a C2 function such that (|x|r + 1)(|f(x)|+ |f ′′(x)|)
is bounded for some r > 1, and let f̂ be its Fourier transform

f̂(y) =
∫ +∞

−∞
e2πixyf(x) dx.

Then
∞∑

m=−∞
f(m) =

∞∑

n=−∞
f̂(n), (6)

the sums converging absolutely.

[The hypotheses on f can be weakened, but this formulation of Poisson sum-
mation is more than enough for our purposes.]

Proof : Define F : R/Z→C by

F (x) :=
∞∑

m=−∞
f(x + m),

the sum converging absolutely to a C2 function by the assumption on f . Thus
the Fourier series of F converges absolutely to F , so in particular

F (0) =
∞∑

n=−∞

∫ 1

0
e2πinxF (x) dx.

But F (0) is just the left-hand side of (6), and the integral is

∑

m∈Z

∫ 1

0
e2πinxf(x + m) dx =

∑

m∈Z

∫ m+1

m
e2πinxf(x) dx =

∫ ∞

−∞
e2πinxf(x) dx

which is just f̂(n), so its sum over n ∈ Z yields the right-hand side of (6). !
Now let f(x) = e−πux2

. The hypotheses are handily satisfied for any r, so
(6) holds. The left-hand side is just θ(u). To evaluate the right-hand side, we
need the Fourier transform of f , which is u−1/2e−πu−1y2

. [Contour integration
reduces this claim to

∫∞
−∞ e−πux2

dx = u−1/2, which is the well-known Gauss
integral — see the Exercises.] Thus the right-hand side is u−1/2θ(1/u). Multi-
plying both sides by u1/2 we then obtain (5), and finally complete the proof of
the analytic continuation and functional equation for ξ(s).

Remarks. We noted already that to each number field K there corresponds a
zeta function

ζK(s) :=
∑

I

|I|−s =
∏

℘

(1− |℘|−s)−1 (σ > 1),

in which |I| is the norm of an ideal I, the sum and product extend respectively
over ideals I and prime ideals ℘ of the ring of integers OK , and their equality
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expresses unique factorization. As in our case of K = Q, this zeta function
extends to a meromorphic function on C, regular except for a simple pole at
s = 1. Moreover it satisfies a functional equation ξK(s) = ξK(1− s), where

ξK(s) := Γ(s/2)r1Γ(s)r2(4−r2π−n|d|)s/2ζK(s),

in which n = r1 + 2r2 = [K : Q], the exponents r1, r2 are the numbers of real
and complex embeddings of K, and d is the discriminant of K/Q. The factors
Γ(s/2)r1 ,Γ(s)r2 may be regarded as factors corresponding to the “archimedean
places” of K, as the factor (1− |℘|−s)−1 corresponds to the finite place ℘. The
functional equation can be obtained from generalized Poisson summation as in
[Tate 1950]. Most of our results for ζ = ζQ carry over to these ζK , and yield
a Prime Number Theorem for primes of K; L-series generalize too, though the
proper generalization requires some thought when the class and unit groups need
no longer be trivial and finite as they are for Q. See for instance H.Heilbronn’s
“Zeta-Functions and L-Functions”, Chapter VIII of [CF 1967].

Exercises

Concerning the analytic continuation of ζ(s):

1. Show that if α : Z→C is a function such that
∑n

m=1 α(m) = O(1) (for
instance, if α is a nontrivial Dirichlet character) then

∑∞
n=1 α(n)n−s converges

uniformly, albeit not absolutely, in compact subsets of {σ + it : σ > 0}, and
thus defines an analytic function on that half-plane. Apply this to

(1− 21−s)ζ(s) = 1− 1
2s

+
1
3s
− 1

4s
+− · · ·

(with α(n) = (−1)n−1) and to (1− 31−s)ζ(s) to obtain a different proof of the
analytic continuation of ζ to σ > 0.

2. Prove that the Bernoulli polynomials Bn (n > 0) have the Fourier expansion

Bn(x) = −n!
∑

k

′ e2kπix

(2kπi)n
(7)

for 0 < x < 1, in which
∑′

k is the sum over nonzero integers k. Deduce that

ζ(n) =
1
2
(2π)n |Bn|

n!
(n = 2, 4, 6, 8, . . .),

and thus that ζ(1− n) = −Bn/n for all integers n > 1. For example, ζ(−1) =
−1/12. What is ζ(0)?

It is known that in general ζK(−m) ∈ Q (m = 0, 1, 2, . . .) for any number field K. In

fact the functional equation for ζK indicates that once [K : Q] > 1 all the ζK(−m)

vanish unless K is totally real and m is odd, in which case the rationality of ζK(−m)

was obtained in [Siegel 1969].

A further application of (7):
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3. Prove that
∑∑∞

k,k′=0 (kk′(k + k′))−n is a rational multiple of π3n for each
n = 2, 4, 6, 8, . . .; for instance,

∞∑

k=0

∞∑

k′=0

1
(kk′(k + k′)2)

=
4π6

3

∫ 1

0
B2(x)3 dx =

π6

2835
.

Concerning the Gamma function:

4. If you’ve never seen it yet, or did it once but forgot, prove (4) by starting
from the integral representation of the right-hand side as

∫ ∞

0

∫ ∞

0
xs−1ys′−1e−(x+y) dx dy

and applying the change of variable (x, y) = (uz, (1− u)z).

We will have little use for the Beta function in Math 259, but an analogous transfor-

mation will arise later in the formula relating Gauss and Jacobi sums.

5. Now take s = s′ = 1/2 to prove that Γ(1/2) =
√

π, and thus to obtain the
Gauss integral ∫ ∞

−∞
e−x2

dx =
√

π.

Then take s′ = s and use the change of variable u = (1 − 2x)2 in the integral
defining B(s, s) to obtain B(s, s) = 21−2sB(s, 1/2), and thus the duplication
formula

Γ(2s) = π−1/222s−1Γ(s)Γ(s +
1
2
).

Concerning functional equations:

6. Use the duplication formula and the identity B(s, 1−s) = π/ sin(πs) to write
(2) in the equivalent form

ζ(1− s) = 2(2π)−sΓ(s) cos
πs

2
ζ(s).

This asymmetrical formulation of the functional equation has the advantage of
showing the trivial zeros of ζ(s) more clearly (given the fact that ζ(s) has a
simple pole at s = 1 and no other poles or zeros on the positive real axis).

7. Let χ8 be the Dirichlet character mod 8 defined by χ8(±1) = 1, χ8(±3) = −1.
Show that if f is a function satisfying the hypotheses of Poisson summation then

∞∑

m=−∞
χ8(m)f(m) = 8−1/2

∞∑

n=−∞
χ8(n)f̂(n/8).

Letting f(x) = e−πux2
, obtain an identity analogous to (5), and deduce a func-

tional equation for L(s,χ8).
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8. Now let χ4 be the character mod 4 defined by χ4(±1) = ±1. Show that,
again under the Poisson hypotheses,

∞∑

m=−∞
χ4(m)f(m) =

1
2

∞∑

n=−∞
χ4(n)f̂(n/4).

This time, taking f(x) = e−πux2
does not accomplish much! Use f(x) =

xe−πux2
instead to find a functional equation for L(s,χ4).

We shall see that the L-function associated to any primitive Dirichlet character χ

satisfies a similar functional equation, with the Gamma factor depending on whether

χ(−1) = +1 or χ(−1) = −1.

9. For light relief after all this hard work, differentiate the identity (5) with
respect to u, set u = 1, and conclude that eπ > 8π−2. What is the approximate
size of the difference?

Further applications of Poisson summation:

10. Use Poisson summation to evaluate
∑∞

n=1 1/(n2+c2) for c > 0. [The Fourier
transform of 1/(x2 + c2) is a standard exercise in contour integration.] Verify
that your answer approaches ζ(2) = π2/6 as c→0.

11. [Higher-dimensional Poisson, and more on zeta functions of quadratic forms]
Let A be a real positive-definite symmetric matrix of order r, and Q : Rr→R
the associated quadratic form Q(x) = (x,Ax). The theta function of Q is

θQ(u) :=
∑

n∈Zr

exp(−πQ(n)u).

For instance, if r = 1 and A = 1 then θQ(u) is just θ(u). More generally, show
that if A is the identity matrix Ir (so Q(x) =

∑r
j=1 x2

j ) then θQ(u) = θ(u)r.
Prove an r-dimensional generalization of the Poisson summation formula, and
use it to obtain a generalization of (5) that relates θQ(u) with θQ∗(1/u), where
Q∗ is the quadratic form associated to A−1. Using this formula, and a Mellin
integral formula for

ζQ(s) =
∑

n∈Zr

n%=0

1
Q(n)s

,

conclude that ζQ extends to a meromorphic function on C that satisfies a func-
tional equation relating ζQ with ζQ∗ . Verify that when r = 2 and A = I2 your
functional equation is consistent with the identity ζQ(s) = 4ζ(s)L(s,χ4) and
the functional equations for ζ(s) and L(s,χ4).
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Math 259: Introduction to Analytic Number Theory

More about the Gamma function

We collect some more facts about Γ(s) as a function of a complex variable
that will figure in our treatment of ζ(s) and L(s,χ). All of these, and most
of the Exercises, are standard textbook fare; one basic reference is Ch. XII
(pp. 235–264) of [WW 1940]. One reason for not just citing Whittaker & Watson
is that some of the results concerning Euler’s integrals B and Γ have close
analogues in the Gauss and Jacobi sums associated to Dirichlet characters, and
we shall need these analogues before long.

The product formula for Γ(s). Recall that Γ(s) has simple poles at s =
0,−1,−2, . . . and no zeros. We readily concoct a product that has the same
behavior: let

g(s) :=
1
s

∞∏

k=1

es/k
/(

1 +
s

k

)
,

the product converging uniformly in compact subsets of C − {0,−1,−2, . . .}
because ex/(1 + x) = 1 + O(x2) for small x. Then Γ/g is an entire function
with neither poles nor zeros, so it can be written as exp α(s) for some entire
function α. We show that α(s) = −γs, where γ = 0.57721566490 . . . is Euler’s
constant:

γ := lim
N→∞

(
− log N +

N∑

k=1

1
k

)
.

That is, we show:

Lemma. The Gamma function has the product formulas

Γ(s) = e−γsg(s) =
e−γs

s

∞∏

k=1

es/k
/(

1 +
s

k

)
=

1
s

lim
N→∞

(
Ns

N∏

k=1

k

s + k

)
. (1)

Proof : For s "= 0,−1,−2, . . ., the quotient g(s + 1)/g(s) is the limit as N→∞
of

s

s + 1

N∏

k=1

e1/k 1 + s
k

1 + s+1
k

=
s

s + 1

(
exp

N∑

k=1

1
k

)
N∏

k=1

k + s

k + s + 1

= s · N

N + s + 1
· exp

(
− log N +

N∑

k=1

1
k

)
.

Now the factor N/(N + s + 1) approaches 1, while − log N +
∑N

k=1
1
k→γ. Thus

g(s+1) = seγg(s), and if we define Γ?(s) := e−γsg(s) then Γ? satisfies the same
functional equation Γ?(s + 1) = sΓ?(s) satisfied by Γ. We are claiming that in
fact Γ? = Γ.

1



Consider q := Γ/Γ?, an entire function of period 1. Thus it is an analytic
function of e2πis ∈ C∗. We wish to show that q = 1 identically. By the
definition of g we have lims→0 sg(s) = 1; hence

lim
s→0

sΓ?(s) = lim
s→0

sg(s) = 1 = lim
s→0

sΓ(s),

and q(0) = 1. We claim that there exists a constant C such that

|q(σ + it)| ≤ Ceπ|t|/2 (2)

for all real σ, t; since the coefficient π/2 in the exponent is less than 2π, it will
follow that q is constant, and thus that Γ? = Γ as claimed.

Since q is periodic, we need only prove (2) for s = σ + it with σ ∈ [1, 2]. For
such s, we have |Γ(σ + it)| ≤ Γ(σ) by the integral formula and

∣∣∣∣
Γ?(σ + it)

Γ?(σ)

∣∣∣∣ =
∞∏

k=0

σ + k

|σ + k + it| = exp−1
2

∞∑

k=0

log
(

1 +
t2

(σ + k)2

)
.

The summand is a decreasing function of k, so the sum is

≤
∫ ∞

0
log

(
1 + (t/x)2

)
dx = |t|

∫ ∞

0
log

(
1 + (1/x)2

)
dx,

which on integration by parts becomes 2|t|
∫∞
0 dx/(x2 + 1) = π|t|. This proves

(2) with C = sup1≤σ≤2 q(σ), and completes the proof of (1). !
Consequences of the product formula. Our most important application
of the product formula for Γ(s) is the Stirling approximation1 to log Γ(s). Fix
ε > 0 and let Rε be the region

{s ∈ C∗ : |Im(log s)| < π − ε}.

Then Rε is a simply-connected region containing none of the poles of Γ, so there
is an analytic function log Γ on Rε, real on Rε ∩ R, and given by the above
product formula:

log Γ(s) = lim
N→∞

(
s log N + log N !−

N∑

k=0

log(s + k)
)
. (3)

We prove:

Lemma. The approximation

log Γ(s) = (s− 1
2
) log s− s +

1
2

log(2π) + Oε(|s|−1) (4)

holds for all s in Rε.
1Originally only for n! = Γ(n + 1), but we need it for complex s as well.
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Proof : The estimate holds for small s, say |s| < 1, because Oε(|s|−1) well exceeds
all the other terms. We thus assume |s| ≥ 1, and estimate the sum in (3) as
we did for log x! in obtaining the original form of Stirling’s approximation. The
sum differs from
∫ N+ 1

2

− 1
2

log(s + x) dx = (N +
1
2

+ s) log(N +
1
2

+ s)− (s− 1
2
) log(s− 1

2
)−N − 1

= (N +
1
2

+s) log N +(N +
1
2

+s) log(1+
1
N

(s+
1
2
))− (s− 1

2
) log(s− 1

2
)−N −1

by
1
2

∫ N+ 1
2

− 1
2

‖x + 1
2‖

2

(s + x)2
dx*ε |s|−1.

We already know that log N ! = (N + 1/2) log N − N + A + O(N−1) for some
constant A. The estimate (4) follows upon taking N→∞, except for the value
1
2 log(2π) of the constant term. This constant can be obtained by letting s→∞
in the duplication formula Γ(2s) = π−1/222s−1Γ(s)Γ(s + 1

2 ). !
One can go on to expand the Oε(|s|−1) error in an asymptotic series in inverse
powers of s (see the Exercises), but (4) is already more than sufficient for our
purposes, in that we do not need the identification of the constant term with
1
2 log 2π.

The logarithmic derivative of our product formula for Γ(s) is

Γ′(s)
Γ(s)

= −γ − 1
s

+
∞∑

k=1

(
1
k
− 1

s + k

)
= lim

N→∞

[
log N −

N∑

k=0

1
s + k

]
.

Either by differentiating2 (4) or by applying the same Euler-Maclaurin step to∑N
0 1/(s + k) we find that

Γ′(s)
Γ(s)

= log s− 1
2s

+ Oε(|s|−2). (5)

Remark

The product formula for Γ(s) can also be obtained for real s by elementary
means, starting from the characterization of Γ as the unique logarithmically
convex function satisfying the recursion Γ(s + 1) = sΓ(s) and normalized by
Γ(1) = 1 (the Bohr-Mollerup theorem, see for instance [Rudin 1976, p.193].
The theorem for complex s can then be obtained by analytic continuation. The
method used here, though less elegant, generalizes to a construction of product
formulas for a much more general class of functions, as we shall see next.

2While real asymptotic series cannot in general be differentiated (why?), complex ones can,
thanks to Cauchy’s integral formula for the derivative. The logarithmic derivative of Γ(s) is
often called ψ(s) in the literature, but alas we cannot use this notation because it conflicts
with ψ(x) =

∑
n<x Λ(n). . .
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Exercises

On the product formula:

1. Verify that the duplication formula for Γ(2s) yields the correct constant term
in (4). Apply Euler-Maclaurin to the sum in (3) to show that the Oε(|s|−1) error
can be expanded in an asymptotic series in inverse powers of s.

2. Use (1) to obtain a product formula for Γ(s)Γ(−s), and deduce that

Γ(s)Γ(1− s) = π/ sinπs. (6)

(This can also be obtained from Γ(s)Γ(1−s) = B(s, 1−s) by using the change of
variable x = y/(y−1) in the Beta integral and evaluating the resulting expression
by contour integration.) Use this together with the duplication formula and
Riemann’s formula for ζ(1− s) to obtain the equivalent asymmetrical form

ζ(1− s) = π−s21−sΓ(s) cos
πs

2
ζ(s)

of the functional equation for ζ(s). Note that the duplication formula, and its
generalization

Γ(ns) = (2π)
1−n

2 nns− 1
2

n−1∏

k=0

Γ
(

s +
k

n

)
,

can also be obtained from (1).

3. Show that log Γ(s) has the Taylor expansion

log Γ(s) = −γ(s− 1) +
∞∑

n=2

(−1)n

n
ζ(n)(s− 1)n

about s = 1. Recover from this the Laurent expansion

Γ(s) =
1
s
− γ +

(
γ2 +

π2

6
)s

2
+ O(s2)

of Γ(s) about s = 0.

Behavior of Γ(s) on vertical lines:

4. Deduce from (4) that for fixed σ ∈ R

Re
(
log Γ(σ + it)

)
= (σ − 1

2
) log |t|− π

2
|t| + Cσ + Oσ(|t|−1)

as |t|→∞. Check that for σ = 0, 1/2 this agrees with the exact formulas

|Γ(it)|2 =
π

t sinhπt
, |Γ(1/2 + it)|2 =

π

cosh πt

obtained from (6).
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5. For a, b, c > 0, determine the Fourier transform of f(x) = exp(ax − becx),
and check your answer by using contour integration to calculate the Fourier
transform of f̂ . Now apply Poisson summation, let a→0 and C = ec > 1, and
describe the behavior of

∑∞
n=0 zCn

as z→1 from below. What does

∞∑

n=0

(−1)nz2n

= z − z2 + z4 − z8 + z16 −+ · · ·

do as z→1? Use this to prove that Z ∩
⋃∞

m=0

[
222m

, 222m+1)
is an explicit

example of a set of integers that does not have a logarithmic density.

An alternative proof of the functional equation for ζ(s):

6. Prove that
ζ(s) =

1
Γ(s)

∫ ∞

0
us−1 du

eu − 1

for σ > 1, and that when s is not a positive integer an equivalent formula is

ζ(s) = −e−πis

2πi
Γ(1− s)

∫

C
us−1 du

eu − 1

where C is a contour coming from +∞, going counterclockwise around u = 0,
and returning to +∞:

! !u
C!!" "

Show that this gives the analytic continuation of ζ to a meromorphic function
on C; shift the line of integration to the left to obtain the functional equation
relating ζ(s) to ζ(1− s) for σ < 0, and thus for all s by analytic continuation.
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Math 259: Introduction to Analytic Number Theory

Functions of finite order: product formula and logarithmic derivative

This chapter is another review of standard material in complex analysis. See
for instance Chapter 11 of [Davenport 1967], keeping in mind that Davenport
uses “integral function” for what we call an “entire function”; Davenport treats
only the case of order (at most) 1, which is all that we need, but it is scarcely
harder to deal with any finite order as we do here.

The order of an entire function f(·) is the smallest α ∈ [0,+∞] such that
f(z) #ε exp |z|α+ε for all ε > 0. Hadamard showed that entire functions of
finite order are given by nice product formulas. We have seen already the cases
of sin z and 1/Γ(z), both of order 1. As we shall see, (s2−s)ξ(s) also has order 1
(as do analogous functions that we’ll obtain from Dirichlet L-series). From the
product formula for ξ(s) we shall obtain a partial-fraction decomposition of
ζ ′(s)/ζ(s), and will use it to manipulate the contour-integral formula for ψ(x).

Hadamard’s product formula for a general entire function of finite order is given
by the following result.

Theorem. Let f be an entire function of order α < ∞. Assume that f does
not vanish identically on C. Then f has a product formula

f(z) = zreg(z)
∞∏

k=1

(1− z

zk
) exp

a∑

m=1

1
m

(
z

zk

)m

, (1)

where a = %α&, the integer r is the order of vanishing of f at z = 0, the zk are
the other zeros of f with multiplicity, g is a polynomial of degree at most a, and
the product converges uniformly in bounded subsets of C. Moreover, for R > 1
we have

#{k : |zk| < R}#ε Rα+ε. (2)

Conversely, suppose r is any nonnegative integer, that g is a polynomial of degree
at most a = %α&, and that zk are nonzero complex numbers such that |zk| < R
for at most Oε(Rα+ε) choices of k. Then the right-hand side of (1) defines an
entire function of order at most α.

To prove this, we first show:

Lemma. A function f has finite order and no zeros if and only if f = eg for
some polynomial g.

Proof : Clearly eg satisfies the hypotheses if g is a polynomial. Conversely, f is
an entire function with no zeros if and only if f = eg for some entire function g;
we shall show that if also |f | #ε exp |z|α+ε then g is a polynomial. Indeed
the real part of g is < O(|z|α+ε) for large z. But then the same is true of
|g(z)|, as the following argument shows. Let h = g − g(0), so h(0) = 0; and
let M = sup|z|≤2R Re h(z). By assumption M # Rα+ε for large R. Then
h1 := h/(2M − h) is analytic in the closed disc D := {z ∈ C : |z| ≤ 2R},
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with h1(0) = 0 and |h1(z)| ≤ 1 in D. Consider now the analytic function
φ(z) := 2Rh1(z)/z on D. On the boundary of that disc, |φ(z)| ≤ 1. Thus by
the maximum principle the same is true for all z ∈ D. In particular, if |z| ≤ R
then |h1(z)| ≤ 1/2. But then |h(z)| ≤ 2M . Hence |g(z)| ≤ 2M + g(0) # |z|α+ε

for large |z|, and g is a polynomial in z as claimed. Moreover, the degree of that
polynomial is just the order of f . !
We shall reduce the Theorem to this Lemma by dividing a given function f of
finite order by a product P (z) whose zeros match those of f . To show that
this product converges, we first need to obtain the bound (2) on the number of
zeros of f in a disc. We shall deduce this bound from Jensen’s inequality for the
function f0 = f/zr. This inequality states: if f0 is an analytic function on the
disc |z| ≤ R then

|f0(0)| ≤
∏

ζ

|ζ|
R

· sup
|z|=R

|f(z)|, (3)

where the product ranges over the zeros ζ of f0 in the disc, counted with mul-
tiplicity.

Let z1, z2, . . . be the zeros of f0, listed with the correct multiplicity in non-
decreasing order of |zk|:

0 < |z1| ≤ |z2| ≤ |z3| ≤ · · · .

For R > 0, let n(R) be the left-hand side of (2), which is the number of k such
that |zk| < R. Thus n(R) = k if and only if |zk| < R < |zk+1|. Consider first
f0 in |z| < 1. Let φ(z) be the Blaschke product

∏n(1)
k=1(z − zk)/(1 − z̄kz). This

is a rational function designed to have the same zeros as f0 in the unit disc
but with |φ(z)| = 1 on |z| = 1. Then f1 := f0/φ is analytic on |z| ≤ 1, and
|f(z)| = |f0(z)| = |f1(z)| on the boundary |z| = 1. Therefore by the maximum
principle |f1(0)| ≤ max|z|=1 |f(z)|, so

|f0(0)| = |φ(0)f1(0)| =
n(1)∏

k=1

|zk| · |f1(0)| ≤
n(1)∏

k=1

|zk| · max
|z|=1

|f(z)|.

Applying this to the function f0(Rz), whose zeros in the unit disc are zk/R for
k ≤ n(R), we obtain Jensen’s inequality (3). Taking logarithms, we find

log max
|z|=R

|f(z)| ≥ r log R + log |f0(0)| +
n(R)∑

k=1

log
R

|zk|

= r log R + log |f0(0)| +
∫ R

0
n(r)

dr

r
.

If f has order at most α < ∞ then log max|z|=R |f(z)| #ε Rα+ε, and we con-
clude that

n(R) =
∫ eR

R
n(R)

dr

r
≤

∫ eR

0
n(r)

dr

r
#ε Rα+ε.
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We have thus proved (2). It follows that
∑∞

k=1 |zk|−β converges if β > α, since
the sum is

∫ ∞

0
r−βdn(r) = β

∫ ∞

|z1|
r−β−1n(r) dr #

∫ ∞

|z1|
rα+ε−β−1 dr < ∞

for any positive ε < β − α. Therefore the product

P (z) := zr
∞∏

k=1

(1− z

zk
) exp

a∑

m=1

1
m

(
z

zk

)m

(4)

converges for all z ∈ C, and is not affected by any permutation of the zeros zk.
Moreover, the convergence is uniform in bounded subsets of C, because on
|z| ≤ R we have

log(1− z/zk) +
a∑

m=1

(z/zk)m/m # (z/zk)a+1 # z−a−1
k (5)

uniformly once k > n(2R). Therefore P (z) is an entire function, with the same
zeros and multiplicities as f .

It follows that f/P is an entire function without zeros. We claim that it too
has order at most α, and is thus exp g(z) for some polynomial g of degree at
most a. This would be clear if it were true that

1
P (z)

#ε exp |z|α+ε,

but such an inequality cannot hold for all z due to the zeros of P . But it is
enough to show that for each R > 0 a bound

1
P (z)

#ε expRα+ε, (6)

holds on the circle |z| = r for some r ∈ (R, 2R), because then we would have
|f(z)/P (z)| #ε expRα+ε for all z on that circle, and thus also on |z| = R by
the maximum principle. We do this next.

Write P = zrP1P2, with P1, P2 being the product in (4) over k ≤ n(4R) and
k > n(4R) respectively. We may ignore the factor zr, whose norm exceeds 1
once R > 1. The k-th factor of P2(z) is expO(|z/zk|a+1) by (5), so

log |P2(z)|# Ra+1
∑

k>n(4R)

|zk|−a−1 # Ra+1

∫ ∞

4R
r−a−1 dn(r) #ε Rα+ε,

using integration by parts and n(r) #ε rα+ε in the last step (check this!). As
to P1, it is a finite product, which we write as eh(z)

∏
k≤n(4R)(1− z/zk), where

h(z) is the polynomial

h(z) =
n(4R)∑

k=1

a∑

m=1

1
m

(
z

zk

)m

3



of degree at most a. Thus h(z) # Ra
∑

k≤n(4R) |zk|−a, which readily yields
h(z) # Rα+ε. (Again you should check this by carrying out the required partial
summation and estimates; note too that the upper bounds on the absolute
value of log |P2(z)| and h(z) yield lower as well as upper bounds on |P2(z)|
and | exph(z)|.) So far, our lower bounds on the factors of P (z) hold for all
z in the annulus R < |z| < 2R, but we cannot expect the same for P3(z) :=∏

k≤n(4R)(1−z/zk), since it may vanish at some points of the annulus. However,
we can prove that some r works by estimating the average1

− 1
R

∫ 2R

R
min
|z|=r

log |P3(z)| dr ≤ −
n(4R)∑

k=1

1
R

∫ 2R

R
log

∣∣∣1−
r

|zk|

∣∣∣ dr.

The integral is elementary, if not pretty, and at the end we conclude that the
average is again # Rα+ε. This shows that for some r ∈ (R, 2R) the desired
lower bound holds, and we have finally proved the product formula (1).

To complete the proof of our Theorem we need only show the converse: (1)
converges to an entire function of order at most α under the stated hypotheses
on r, g, zk. The convergence was proved already, and the upper bound on |f(z)|
follows readily from (5). !!
Taking logarithmic derivatives in (1), we deduce

f ′

f
(z) = g′(z) +

P ′

P
(z) = g′(z) +

r

z
+

∞∑

k=1

[
1

z − zk
+

a∑

m=1

zm−1

zm
k

]

= g′(z) +
r

z
+

∞∑

k=1

(z/zk)a

z − zk
.

We note too that if α > 0 and
∑

k |zk|−α < ∞ then there exists a constant C
such that f(z) # expC|z|α. This follows from the existence of a constant Cα

such that ∣∣∣(1− w) exp
a∑

m=1

wm/m
∣∣∣ # expCα|w|α

for all w ∈ C. Contrapositively, if f(z) is a function of order α which grows faster
than expC|z|α for all C then

∑
k |zk|−α diverges. For instance this happens for

f(s) = 1/Γ(s). [This approach may appear circular because it is proved from
the product formula for Γ(s), but it need not be; see Exercise 6 below.] As we
shall see, the same is true for f(s) = (s2− s)ξ(s); it will follow that ξ, and thus
ζ, has infinitely many nontrivial zeros ρ with real part in [0, 1], and in fact that∑

ρ |ρ|−1 diverges.
1This averaging trick is a useful technique that we’ll encounter again several times; it is

closely related to the “probabilistic method” in combinatorics, in which an object with some
property is proved to exist by showing that the property holds with positive probability.
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Exercises

1. The bound f(z) # expC|z|α was proved under the hypothesis α > 0. Is this
hypothesis necessary?

2. Find an entire function f(z) of order 1 such that |f(z)| # expO(|z|) but∑∞
k=1 |z−1

k | = ∞. [Hint: you don’t have to look very far.]

3. Supply the missing steps in our proof of (1).

4. Suppose zk (k = 1, 2, 3, . . .) are distinct complex numbers with 0 < |zk| < 1,
and mk are some positive integers. Prove that

∏
k |zk|mk > 0 if and only if there

exists a bounded nonzero analytic function f )≡ 0 on the open disc |z| < 1 with
a root at each zk of multiplicity mk.

5. Prove Jensen’s formula: if f is an analytic function on |z| ≤ R such that
f(0) )= 0 then (2π)−1

∫ 2π
0 log |f(Reiθ)|dθ = log |f(0)| +

∑
k log(R/|zk|), where

the zk are the zeros of f in |z| ≤ R with the correct multiplicities. What is
(2π)−1

∫ 2π
0 log |f(Reiθ)|dθ if f(0) = 0 but f does not vanish identically?

6. Show that 1/Γ(s) is an entire function of order 1, using only the following
tools available to Euler: the integral formulas for Γ(s) and B(s, s′), and the
identities B(s, s′) = Γ(s)Γ(s′)/Γ(s+s′) and Γ(s)Γ(1−s) = π/ sinπs. [The hard
part is getting an upper bound for 1/|Γ(s)| on a vertical strip; remember how
we showed that Γ(s) )= 0, and use the formula for |Γ(1/2 + it)|2 to get a better
lower bound on |Γ(s)|.] Use this to recover the product formula for Γ(s), up to
a factor eA+Bs which may be determined from the behavior of Γ(s) at s = 0, 1.

7. Prove that if f(z) is an entire function of order α > 0 then
∫ ∫

|z|<r
|f ′(z)/f(z)| dx dy # rα+1+ε (z = x + iy)

as r→∞. [Note that the integral is improper (except in the trivial case that
f has no zeros) but still converges: if φ is a meromorphic function on a region
U ⊂ C with simple but no higher-order poles then |φ| is integrable on compact
subsets K ⊂ U , even K that contain poles of φ.]

Reference

[Davenport 1967] Davenport, H.: Multiplicative Number Theory. Chicago:
Markham, 1967; New York: Springer-Verlag, 1980 (GTM 74). [9.67.6 & 9.80.6
/ QA 241.D32]
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Math 259: Introduction to Analytic Number Theory

The product formula for ξ(s) and ζ(s); vertical distribution of zeros

Behavior on vertical lines. We next show that (s2 − s)ξ(s) is an entire
function of order 1; more precisely:

Lemma. There exists a constant C such that (s2 − s)ξ(s) " exp(C|s| log |s|),
but no constant C ′ such that (s2 − s)ξ(s)" exp(C ′|s|).
Proof : By the functional equation ξ(s) = ξ(1 − s), it is enough to consider
s = σ + it with σ ≥ 1/2. From Stirling it follows that for fixed σ ∈ R

Re
(
log Γ(σ + it)

)
= (σ − 1

2
) log |t|− π

2
|t| + Cσ + Oσ(|t|−1).

For σ > 1, the Euler product for ζ(s) shows that log |ζ(σ + it)| = Oσ(1); indeed
we have the upper and lower bounds

ζ(σ) ≥ |ζ(σ + it)| >
∏

p

(1 + p−s)−1 = ζ(2σ)/ζ(σ).

Hence |ξ(σ + it)| is within a constant factor of |t|(σ−1)/2e−π|t|/4 for large |t|.
This estimate on |ξ(σ + it)| already proves that |(s2 − s)ξ(s)| grows faster than
exp(C ′|s|) for any C ′; together with the functional equation, it also shows that
for each σ < 0 there exists Cσ such that |ζ(σ + it)| is within a factor of Cσ of
|t|1/2−σ for large |t|.
To prove our Lemma, it remains to bound ζ(s) for s in or near the critical strip.
Generalizing our formula for analytically continuing ζ(s), we find for σ > 0

ζ(s) =
N−1∑

n=1

n−s +
N1−s

s− 1
+

∞∑

n=N

∫ n+1

n
(n−s − x−s) dx,

which for large t,N is" N1−σ + |t|N−σ, uniformly at least for σ ≥ 1/2. Taking
N = |t| + O(1) we find ζ(σ + it) " |t|1−σ for σ ≥ 1/2, |t| > 1. Together with
Stirling’s approximation, this completes the proof of our Lemma. !
A remark about our choice of N ∼ |t| in the bound ζ(σ + it) " N1−σ + |t|N−σ: of

course we wanted to choose N to make the bound as good as possible, i.e., to minimize

N1−σ + |t|N−σ. In calculus we learned to do this by setting the derivative equal to

zero. That would give N proportional to |t|, but we arbitrarily set the constant of

proportionality to 1 even though another choice would make N1−σ + |t|N−σ slightly

smaller. In general when we bound some quantity by a sum O(f(N) + g(N)) of an

increasing and a decreasing function of some parameter N , we shall simply choose N

so that f(N) = g(N) (or, if N is constrained to be an integer, so that f(N), g(N)

are nearly equal). This is much simpler and less error-prone than fumbling with

derivatives, and is sure to give the minimum to within a factor of 2, which is good

enough when we’re dealing with O(· · ·) bounds.
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Product and logarithmic-derivative formulas. By our general product
formula for an entire function of finite order we know that ξ(s) has a product
expansion:

ξ(s) =
eA+Bs

s2 − s

∏

ρ

(1− s/ρ)es/ρ, (1)

for some constants A,B, with the product ranging over zeros ρ of ξ (that is, the
nontrivial zeros of ζ) listed with multiplicity. Moreover,

∑
ρ |ρ|−1−ε <∞ for all

ε > 0 but
∑

ρ |ρ|−1 =∞. The logarithmic derivative of (1) is

ξ′

ξ
(s) = B − 1

s
− 1

s− 1
+

∑

ρ

(
1

s− ρ
+

1
ρ

)
; (2)

since ξ(s) = π−s/2Γ(s/2)ζ(s) we also get a product formula for ζ(s), and a
partial-fraction expansion of its logarithmic derivative:

ζ ′

ζ
(s) = B − 1

s− 1
+

1
2

log π − 1
2

Γ′

Γ
(
s

2
+ 1) +

∑

ρ

(
1

s− ρ
+

1
ρ

)
. (3)

(We have shifted from Γ(s/2) to Γ(s/2 + 1) to absorb the term −1/s; note that
ζ(s) does not have a pole or zero at s = 0.)

Vertical distribution of zeros. Since the zeros ρ of ξ(s) are limited to a strip
we can find much more precise information about the distribution of their sizes
than the convergence and divergence of

∑
ρ |ρ|−1−ε and

∑
ρ |ρ|−1. Let N(T ) be

the number of zeros in the rectangle σ ∈ [0, 1], t ∈ [0, T ] — which is very nearly
half of what we would call n(T ) in the context of the general product formula
for (s2 − s)ξ(s).

Theorem (von Mangoldt). As T→∞,

N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ). (4)

Proof : We follow chapter 15 of [Davenport 1967], keeping track of the fact that
Davenport’s ξ and ours differ by a factor of (s2 − s)/2.

We may assume that T does not equal the imaginary part of any zero of ζ(s).
Then

2N(T )− 2 =
1

2πi

∮

CR

ξ′

ξ
(s) ds =

1
2πi

∮

CR

d(log ξ(s)) =
1
2π

∮

CR

d(Im log ξ(s)),

where CR is the boundary of the rectangle σ ∈ [−1, 2], t ∈ [−T, T ]. Since
ξ(s) = ξ(1 − s) = ξ(s̄), we may by symmetry evaluate the last integral by
integrating over a quarter of CR and multiplying by 4. We use the top right
quarter, going from 2 to 2 + iT to 1/2 + iT . At s = 2, log ξ(s) is real, so we
have

π(N(T )−1) = Im log ξ(
1
2
+iT ) = Im(log Γ(

1
4
+

iT

2
))−T

2
log π+Im(log ζ(

1
2
+iT )).

2



By Stirling, the first term is within O(T−1) of

Im
(( iT

2
− 1

4
)
log

( iT

2
+

1
4
))
− T

2

=
T

2
log

∣∣∣∣
iT

2
+

1
4

∣∣∣∣−
1
4

Im log
( iT

2
+

1
4
)
− T

2
=

T

2
(
log

T

2
− 1

)
+ O(1).

Thus (4) is equivalent to

Im log ζ(
1
2

+ iT )" log T. (5)

We shall show that for s = σ + it with σ ∈ [−1, 2], |t| > 1 we have

ζ ′

ζ
(s) =

∑

| Im(s−ρ)|<1

1
s− ρ

+ O(log |t|), (6)

and that the sum comprises at most O(log |t|) terms, from which our desired
estimate will follow by integrating from s = 2 + iT to s = 1/2 + iT . We start
by taking s = 2 + it in (3). At that point the LHS is uniformly bounded (use
the Euler product) and the RHS is

∑

ρ

(
1

2 + it− ρ
+

1
ρ

)
+ O(log |t|)

by Stirling. Thus the sum, and in particular its real part, is O(log |t|). But
each summand has positive real part, which is at least 1/(4 + (t− Im ρ)2). Our
second claim, that |t − Im ρ| < 1 holds for at most O(log |t|) zeros ρ, follows
immediately. It also follows that

∑

| Im(s−ρ)|≥1

1
Im(s− ρ)2

" log |t|.

Now by (3) we have

ζ ′

ζ
(s)− ζ ′

ζ
(2 + it) =

∑

ρ

( 1
s− ρ

− 1
2 + it− ρ

)
+ O(1).

The LHS differs from that of (6) by O(1), as noted already; the RHS summed
over zeros with | Im(s − ρ)| < 1 is within O(log |t|) of the RHS of (6); and the
remaining terms are

(2− σ)
∑

| Im(s−ρ)|≥1

1
(s− ρ)(2 + it− ρ)

"
∑

| Im(s−ρ)|≥1

1
Im(s− ρ)2

" log |t|.

This proves (6) and thus also (5); von Mangoldt’s theorem (4) follows. !
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For much more about the vertical distribution of the nontrivial zeros ρ of ζ(s)
see [Titchmarsh 1951], Chapter 9.

Remarks

In our proof of the product formula for ξ(s) we showed that for each σ there
exists ν such that |ζ(σ + it)| " |t|ν as |t|→∞. This was more than enough to
prove that (s2 − s)ξ(s) has order 1, but one may naturally ask how small ν can
become. Let µ(σ) be the infimum of all such ν; that is,

µ(σ) := lim sup
|t|→∞

log |ζ(σ + it)|
log |t| .

We have seen that µ(σ) = 0 for σ > 1, that µ(1 − σ) = µ(σ) + σ − 1
2 by

the functional equation (so in particular µ(σ) = 1
2 − σ for σ < 0), and that

µ(σ) ≤ 1 − σ for σ < 1. For σ ∈ (0, 1) one can improve on these bounds
using the “approximate functional equation” for ζ(s) (usually attributed to
Siegel, but now known to have been used by Riemann himself) to show that
µ(σ) ≤ (1 − σ)/2; this result, and the fact that µ(σ) ≥ 0 for all σ, also follows
from general results in complex analysis, which indicate that since µ(σ) is finite
for all σ, the function µ(·) must be convex. For example, µ(1/2) ≤ 1/4, so
|ζ( 1

2 + it)|"ε |t| 14+ε.

The value of µ(σ) is not known for any σ ∈ (0, 1). The Lindelöf conjecture asserts
that µ(1/2) = 0, from which it would follow that µ(σ) = 0 for all σ ≥ 1/2 while
µ(σ) = 1

2 − σ for all σ ≤ 1/2. Equivalently, the Lindelöf conjecture asserts that
ζ(σ+it)"ε |t|ε for all σ ≥ 1/2 (excluding a neighborhood of the pole s = 1), and
thus by the functional equation that also ζ(σ+ it)"ε |t|1/2−σ+ε for all σ ≤ 1/2.
We shall see that this conjecture is implied by the Riemann hypothesis, and also
that it holds on average in the sense that

∫ T
0 |ζ( 1

2 + it)|2 dt " T 1+ε. However,
the best upper bound currently proved on µ(1/2) is only a bit smaller than 1/6;
when we get to exponential sums later this term we shall derive the upper bound
of 1/6.

Exercises

1. Show that in the product formula (1) we may take A = 0. Prove the formula

γ = lim
s→1

(
ζ(s)− 1

s− 1

)

for Euler’s constant, and use it to compute

B = lim
s→0

(ξ′

ξ
(s) +

1
s

)
= lim

s→1

(ξ′

ξ
(s) +

1
1− s

)

=
1
2

log 4π − 1− γ

2
= −0.0230957 . . ..

Show also (starting by pairing the ρ and ρ̄ terms in the infinite product) that

B = −
∑

ρ

Re(ρ)/|ρ|2,

4



and thus that | Im(ρ)| > 6 for every nontrivial zero ρ of ζ(s). [From [Davenport
1967], Chapter 12. It is known that in fact the smallest zeros have (real part
1/2 and) imaginary part ±14.134725 . . .]

2. Prove the alternative infinite product

ξ(s) =
ξ(1/2)

4(s− s2)

∏

ρ

+
[
1−

(
s− 1/2
ρ− 1/2

)2
]

,

the product extending over zeros ρ of ξ whose imaginary part is positive.

3. Let f be any analytic function on the vertical strip a < σ < b such that

Mf (σ) := lim sup
|t|→∞

log |f(σ + it)|
log |t|

is finite for all σ ∈ (a, b). Prove that Mf is a convex function on that interval.
[Hint: Apply the maximum principle to αf for suitable analytic functions α(s).]

It follows in particular that Mf is continuous on (a, b). While ζ(s) is not analytic on
vertical strips that contain s = 1, we can still deduce the convexity of µ : R→R from
µ(σ) = Mf (σ) for f(s) = ζ(s)− (1/(s− 1)).

Much the same argument proves the “three lines theorem”: if f is actually bounded on

the strip then log supt |f(σ + it)| is a convex function of σ. The name of this theorem

alludes to the equivalent formulation: if a < σ1 < σ2 < σ3 < b then the supremum

of |f(s)| on the line s = σ2+it is bounded by a weighted geometric mean of its suprema

on the lines s = σ1 + it and s = σ3 + it.

Reference

[Titchmarsh 1951] Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function.
Oxford: Clarendon, 1951. [HA 9.51.14 / QA351.T49; 2nd ed. revised by D.R.
Heath-Brown 1986, QA246.T44]
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Math 259: Introduction to Analytic Number Theory

A zero-free region for ζ(s)

We first show, as promised, that ζ(s) does not vanish on σ = 1. As usual nowa-
days, we give Mertens’ elegant version of the original arguments of Hadamard
and (independently) de la Vallée Poussin. Recall that

−ζ ′(s)
ζ(s)

=
∞∑

n=1

Λ(n)
ns

has a simple pole at s = 1 with residue +1. If ζ(s) were to vanish at some
1 + it then −ζ ′/ζ would have a simple pole with residue −1 (or −2,−3, . . .)
there. The idea is that

∑
n Λ(n)/ns converges for σ > 1, and as s approaches 1

from the right all the terms contribute towards the positive-residue pole. As
σ→ 1 + it from the right, the corresponding terms have the same magnitude
but are multiplied by n−it, so a pole with residue −1 would force “almost all”
the phases n−it to be near −1. But then near 1 + 2it the phases n−2it would
again approximate (−1)2 = +1, yielding a pole of positive residue, which is not
possible because then ζ would have another pole besides s = 1.

To make precise the idea that if n−it ≈ −1 then n−2it ≈ +1, we use the identity

2(1 + cos θ)2 = 3 + 4 cos θ + cos 2θ,

from which it follows that the right-hand side is positive. Thus if θ = t log n we
have

3 + 4 Re(n−it) + Re(n−2it) ≥ 0.

Multiplying by Λ(n)/nσ and summing over n we find

3
[
−ζ ′

ζ
(σ)

]
+ 4 Re

[
−ζ ′

ζ
(σ + it)

]
+ Re

[
−ζ ′

ζ
(σ + 2it)

]
≥ 0 (1)

for all σ > 1 and t ∈ R. Fix t &= 0. As σ→1+, the first term in the LHS of this
inequality is 3/(σ−1)+O(1), and the remaining terms are bounded below. If ζ
had a zero of order r > 0 at 1+it, the second term would be −4r/(σ−1)+O(1).
Thus the inequality yields 4r ≤ 3. Since r is an integer, this is impossible, and
the proof is complete.

We next use (1), together with the partial-fraction formula

−ζ ′

ζ
(s) =

1
s− 1

+ B1 +
1
2

Γ′

Γ
(
s

2
+ 1)−

∑

ρ

(
1

s− ρ
+

1
ρ

)
,

to show that even the existence of a zero close to 1 + it is not possible. How
close depends on t; specifically, we show:1

1See for instance Chapter 13 of Davenport’s book [Davenport 1967] cited earlier. This
classical bound has been improved; the current record of 1 − σ " log−2/3−ε |t|, due to
Korobov and perhaps Vinogradov, has stood for 40 years. See [Walfisz 1963] or [Montgomery
1971, Chapter 11].
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Theorem. There is a constant c > 0 such that if |t| > 2 and ζ(σ + it) = 0 then

σ < 1− c

log |t| . (2)

Proof : Let σ ∈ [1, 2] and2 |t| ≥ 2 in the partial-fraction formula. Then the
B1 and Γ′/Γ terms are O(log |t|), and each of the terms 1/(s − ρ), 1/ρ has
positive real part as noted in connection with von Mangoldt’s theorem on N(T ).
Therefore3

−Re
ζ ′

ζ
(σ + 2it) < O(log |t|),

and if some ρ = 1− δ + it then

−Re
ζ ′

ζ
(σ + 2it) < O(log |t|)− 1

σ + δ − 1
.

Thus (1) yields
4

σ + δ − 1
<

3
σ − 1

+ O(log |t|).

In particular, taking4 σ = 1+4δ yields 1/20δ < O(log |t|). Hence δ ( (log |t|)−1,
and our claim (2) follows. !
Once we obtain the functional equation and partial-fraction decomposition for
Dirichlet L-functions L(s,χ), the same argument will show that (2) also gives a
zero-free region for L(s,χ), though with the implied constant depending on χ.

Remarks

The only properties of Λ(n) that we used in the proof of ζ(1 + it) &= 0 are that
facts that Λ(n) ≥ 0 for all n and that

∑
n Λ(n)/ns has an analytic continuation

with a simple pole at s = 1 and no other poles of real part ≥ 1. Thus the same
argument exactly will show that

∏
χ mod q L(s,χ), and thus each of the factors

L(s,χ), has no zero on the line σ = 1.

The 3 + 4 cos θ + cos 2θ trick is worth remembering, since it has been adapted
to other uses. For instance we shall revisit and generalize it when we develop
the Drinfeld-Vlăduţ upper bounds on points of a curve over a finite field and
the Odlyzko-Stark lower bounds on discriminants of number fields. See also the
following Exercises.

2Any lower bound > 1 would do — and the only reason we cannot go lower is that our
bounds are in terms of log |t| so we do not want to allow log |t| = 0.

3Note that we write < O(log |t|), not = O(log |t|), to allow the possibility of an arbitrarily
large negative multiple of | log t|.

41+αδ will do for any α > 3. This requires that αδ ≤ 1, for instance δ ≤ 1/4 for our choice
of α = 4, else σ > 2; but we’re concerned only with δ near zero, so this does not matter.
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Exercises

1. Use the inequality 3 + 4 cos θ + cos 2θ ≥ 0 to give an alternative proof that
L(1,χ) &= 0 when χ is a complex Dirichlet character (a character such that
χ &= χ).

2. Show that for each α > 2 there exists t ∈ R such that
∫ ∞

−∞
exp(−|x|α + itx) dx < 0.

(Yes, this is related to the present topic; see [EOR 1991, p.633]. The integral is
known to be positive for all t ∈ R when α ∈ (0, 2]; see for instance [EOR 1991,
Lemma 5].)
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Math 259: Introduction to Analytic Number Theory

Proof of the Prime Number Theorem;
the Riemann Hypothesis

We finally have all the ingredients that we need to assemble a proof of the Prime
Number Theorem with an explicit error bound. We shall give an upper bound
on |(ψ(x)/x) − 1| that decreases faster than any power of 1/ log x as x→∞,
though slower than any positive power of 1/x. Specifically, we show:

Theorem. There exists an effective constant C > 0 such that

ψ(x) = x + O(x exp(−C
√

log x)) (1)

for all x ≥ 1.

Proof : There is no difficulty with small x, so we may and shall assume that
x ≥ e, so log x ≥ 1. We use our integral approximation

ψ(x) =
1

2πi

∫ 1+ 1
log x +iT

1+ 1
log x−iT

−ζ ′

ζ
(s) xs ds

s
+ O

(
x log2 x

T

)
(T ∈ [1, x]) (2)

to ψ(x). Assume that T ≥ e, and that T does not coincide with the imaginary
part of any ρ. Shifting the line of integration leftwards, say to real part −1,
yields

ψ(x)−
(

x−
∑

| Im(ρ)|<T

xρ

ρ

)
= I1 + I2 −

ζ ′

ζ
(0) + O

(
x log2 x

T

)
, (3)

in which I1, I2 are the integrals of −(ζ ′(s)/ζ(s))xs ds/s over the vertical line
σ = −1, |t| < T and the horizontal lines σ ∈ [−1, 1 + 1/ log x], t = ±T respec-
tively. We next show that I1 is small, and that I2 can be made small by adding
O(1) to T . The vertical integral I1 is clearly

& log T

x
sup

|t|<T

∣∣∣∣
ζ ′

ζ
(−1 + it)

∣∣∣∣&
log2 T

x
.

The horizontal integrals in I2 are

& 1
T

∫ 1+ 1
log x

−1
xσ dσ · sup

σ∈[−1,2]

∣∣∣∣
ζ ′

ζ
(σ + iT )

∣∣∣∣ .

The σ integral is & x/ log x. We have seen already that for s = σ + iT and
−1 ≤ σ ≤ 2 we have

ζ ′(s)/ζ(s) =
∑

|T−Im ρ|<1

1
s− ρ

+ O(log T ),

1



in which the sum has O(log T ) terms. Since the number of Im ρ in the interval
[T − 1, T + 1] is & log T , some point in the middle half of that interval is at
distance ( 1/ log T from all of them; choosing that as our new value of T , we
see that each term is& log T , and thus that the sum is& log2 T . In conclusion,
then,

I2 & x log2 T/T log x.

Better estimates can be obtained (we could save a factor of log T by averaging
over [T − 1

2 , T + 1
2 ]), but are not necessary because x log2 T/T log x is already

less than the error (x log2 x)/T in (2).

Thus the RHS of (3) may be absorbed into the O((x log2 x)/T ) error. In the
LHS, we use our zero-free region, that is, the lower bound

1− σ > c/ log |t|, (4)

to find that
|xρ| = xRe(ρ) & x1− c

log T = x exp
(
−c

log x

log T

)
.

Since1
∑

| Im(ρ)|<T

1
|ρ| <

∑

| Im(ρ)|<T

1
| Im ρ|

= 2
∫ T

1

dN(t)
t

=
2N(T )

T
+ 2

∫ T

1

N(t) dt

t2
& log T +

∫ T

1

log t dt

t
& log2 T,

we thus have ∑

|ρ|<T

xρ

ρ
& x log2 T exp

(
−c

log x

log T

)
.

Therefore ∣∣∣∣
ψ(x)

x
− 1

∣∣∣∣&
(

1
T

+ exp
(
−c

log x

log T

))
log2 x.

We choose T so that the logarithms − log T , − log x/ log T of the two terms
1/T , exp(−c log x/ log T ) are equal. That is, we take T = exp

√
log x. Then

both terms are O(exp(−C1 log1/2 x)) for some C1 > 0. We then absorb the
factor log2 x into this estimate by changing C1 to any positive C < C1, and at
last complete the proof of (1). !!
The equivalent result for π(x) follows by partial summation:

Corollary. There exists an effective constant C > 0 such that

π(x) = li(x) + O(x exp(−C
√

log x)).

for all x ≥ 1.
1We can use

∫ T
1 because we have shown that there are no complex zeros ρ with | Im(ρ)| ≤ 1.

If there were such zeros, we could absorb their terms xρ/ρ into the error estimate. We shall
do this in the proof of the corresponding estimates on ψ(x, χ).
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[Recall that li(x) is the principal value of
∫ x
0 dy/ log y, whence

li(x) =
∫ x

2
dy/ log y + O(1) = x/ log x + O(x/ log2 x).]

Proof : We have seen already that

π(x) =
ψ(x)
log x

+
∫ x

2
ψ(y)

dy

y log2 y
+ O(x1/2). (5)

On the other hand, integration by parts yields

li(x) =
x

log x
−

∫ x

2
y d(1/ log y) + O(1) =

x

log x
+

∫ x

2

dy

log2 y
+ O(1).

The Corollary now follows from (1). !
The Riemann Hypothesis and some consequences

The error estimate in (1), while sufficient to prove the Prime Number Theorem,
is not nearly as strong as one might wish. The growth rate of |ψ(x) − x| and
|π(x)− li(x)| hinges on the Riemann Hypothesis (RH), which we introduce next.

The RH and its generalizations are arguably the most important open problems
in mathematics. We shall see and explore some of these generalizations later.
The original RH is Riemann’s inspired guess that all the nontrivial zeros of ζ(s)
have real part equal to 1/2, i.e., lie on the critical line σ = 1/2 at the center
of the critical strip. At the time there was scant evidence for the conjecture:
the symmetry of the zeros with respect to the critical line, and also numerical
computations of the first few zeros (not reported in Riemann’s memoir but found
among his papers after his death). The conjecture is now supported by a wealth
of numerical evidence, as well as compelling analogies with “geometrical” zeta
functions for which the conjecture has been proved — notably the zeta functions
of varieties over finite fields, for which the RH was proved by Hasse [1936]
(elliptic curves), Weil [1940, 1941, 1948] (arbitrary curves and abelian varieties),
and Deligne (the general case). These analogies also suggest that proving the
“arithmetical” RH and its generalizations will involve fundamental new insights
in number theory, quite beyond the immediate applications to the distribution
of primes and related arithmetical functions. For now we content ourselves with
the most direct connections between the RH and the error estimate in the Prime
Number Theorem.

If the RH holds then we may take T = x in (3) to find ψ(x) = x+O(x1/2 log2 x).
More generally:

Proposition. Suppose there exists θ with 1/2 ≤ θ < 1 such that Re ρ ≤ θ for
all zeros ρ of ζ. Then ψ(x) = x + O(xθ log2 x) and π(x) = li(x) + O(xθ log x)
for large x.

Proof : Take T = x + O(1) in (3). By our bounds on I1, I2, the right-hand side
is O(log2 x). By hypothesis, each of the terms xρ/ρ has absolute value at most

3



xθ/|ρ| < xθ/| Im ρ|. Hence
∣∣∣∣∣

∑

| Im(ρ)|<T

xρ

ρ

∣∣∣∣∣ < 2xθ
∑

0<Im(ρ)<T

1
Im ρ

.

We have seen already that the last sum is O(log2 T ); here T = x + O(1), so we
conclude that

ψ(x)− x = O(xθ log2 T ) + O(log2 x) = O(xθ log2 x),

as claimed. The corresponding estimate on π(x) − li(x) then follows from (5),
since θ ≥ 1/2. !
A converse implication also holds:

Proposition. Suppose there exists θ with 1/2 ≤ θ < 1 such that ψ(x) =
x + Oε(xθ+ε) for all ε > 0. Then ζ(s) has no zeros of real part > θ. The same
conclusion holds if π(x) = li(x) + Oε(xθ+ε).

(So, for instance, RH is equivalent to the assertion that π(x) = lix+O(x1/2 log x).
The hypotheses on π(x) and ψ(x) are equivalent, again by (5).)

Proof : Write −ζ ′(s)/ζ(s) =
∑

n Λ(n)n−s as a Stieltjes integral and integrate
by parts to find

−ζ ′

ζ
(s) = s

∫ ∞

1
ψ(x)x−s−1 dx =

s

s− 1
+ s

∫ ∞

1
(ψ(x)− x) x−s−1 dx (σ > 1).

If ψ(x)−x&ε xθ+ε then the resulting integral for s/(s−1)+ζ ′(s)/ζ(s) extends
to an analytic function on σ > θ, whence that half-plane contains no zeros
of ζ(s). !
Note the amusing consequence that an estimate ψ(x) = x + Oε(xθ+ε) would
automatically improve to ψ(x) = x + O(xθ log2 x), and similarly for π(x).

Remarks

One may naturally ask whether ψ(x) tends to be larger or smaller than its
approximation x, and likewise whether π(x) tends to be larger or smaller than
li(x). For the former question, our formula (3) suggests that ψ(x) can as easily
be larger or smaller than x: the terms xρ/ρ in the formula (3) for x − ψ(x)
oscillate as x increases, and if we choose log x uniformly from [1, U ] then the
phase of each term tends to uniform distribution on the circle as U→∞. It may
be surprising then that π(x) behaves quite differently: it is very hard to find
any x such that π(x) > li(x). This is because π(x) is expressed as a Stieltjes
integral involving not ψ(x) but

∑
p<x log p, and

ψ(x)−
∑

p<x

log p ∼ ψ(x1/2) ∼ x1/2.

Under the Riemann Hypothesis, x1/2 is exactly of the same asymptotic order as
each of the terms xρ/ρ in (3), and much larger than each single term because
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|ρ|−1 < 1/14. For large x, we can imagine the terms xρ/ρ (Im ρ > 0) as random
complex numbers zρ drawn independently from the circle |z| = x1/2/ρ.2 Then∑

ρ xρ/ρ = 2 Re
∑

(Im ρ)>0 zρ. Since
∑

ρ 1/|ρ|2 < ∞, this heuristic suggests
that for “random large x” the scaled error x−1/2(ψ(x) − x) is drawn from a
distribution symmetric about the origin, and thus that x−1/2(

∑
p<x log p − x)

is drawn from a distribution symmetric about −1. Since
∑

ρ 1/|ρ| = +∞, it is
possible for −2 Re

∑
(Im ρ)>0 zρ to exceed x, and thus for

∑
p<x log p to exceed

x and likewise for π(x) to exceed li(x). But this does not happen routinely, and
indeed it was once thought that li(x) might always exceed π(x).

Littlewood first showed that the difference changes sign infinitely often. In
particular, there exist x such that π(x) > li(x). But none has been found yet.
The earliest explicit upper bound on the smallest such x was the (in)famously
astronomical “Skewes’ number” [Skewes 1933]. That bound has since fallen,
but still stands at several hundred digits, too large to reach directly even with
the best algorithms known for computing π(x) — algorithms that themselves
depend on the analytical formulas such as (2); see [LO 1982].

Exercises

1. Use the partial-fraction decomposition of ζ ′/ζ to get the following exact
formula:

ψ(x) = x−
∑

ρ

xρ

ρ
− ζ ′

ζ
(0)− 1

2
log(1− x−2).

Here
∑

ρ is taken to mean limT→∞
∑

|ρ|<T ; and if x = pk, so that ψ(x) is
discontinuous at x, then we interpret ψ(x) as (ψ(x− ε)+ψ(x+ ε))/2. Note that
− 1

2 log(1 − x−2) is the sum of −xr/r over the trivial zeros r = −2,−4,−6, . . .
See [Davenport 1967, Chapter 17].

2. Show that the improvement 1−σ > cε/ log(2/3)+ε |t| on (4) yields an estimate
O

(
x exp(−Cε log(3/5)−ε x)

)
on the error in the Prime Number Theorem.

3. Prove that

lim
x→∞

(
log x−

x∑

n=1

Λ(n)
n

)
= γ,

and give an error bound both unconditionally and under the Riemann Hypoth-
esis. Deduce that log x−

∑
p<x log p/p and log log x−

∑
p<x 1/p approach finite

limits as x→∞. (The last of these refines Euler’s theorem that
∑

p 1/p diverges.)

4. [A theorem of Mertens; see for instance [Titchmarsh 1951], pages 38–39.]
Prove that

lim
x→∞

(
log log x−

x∑

n=1

Λ(n)
n log n

)
= −γ,

2We shall later make this heuristic more precise, and show that it is equivalent to the
conjecture that the numbers γ > 0 such that ζ( 1

2 + iγ) = 0 are Q-linearly independent. This
conjecture is almost certainly true and extremely difficult to prove. See [RS 1994] and [BFHR
2001] for more information.
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(Warning: this requires a contour integral involving log
(
(s − 1)ζ(s)

)
, which

cannot be pushed past the zero-free region.) Deduce that

lim
x→∞

(
log x

∏

p<x

p− 1
p

)
= e−γ .

As in the previous exercise, and give error bounds both unconditionally and
under the Riemann Hypothesis.

In the last exercise, we illustrate the power of the method we used to prove the Prime
Number Theorem by applying it to different kind of asymptotic averaging problem.
We’ll address a special case posed as an open problem in [Rawsthorne 1984]:

Set a0 = 1 and for n ≥ 1, an = an′ + an′′ + an′′′ where n′ = "n/2#,
n′′ = "n/3#, n′′′ = "n/6#. Find limn→∞ an/n.

(It is not immediately obvious even that the limit exists.) The general problem can be

solved in much the same way, though one usually gets somewhat less precise estimates

on the vertical distribution of the zeros than are available for our special case. Only

two solutions were received (see Math. Magazine 58, 51–52): the solution outlined

here, and a solution by Erdős, Odylzko, Hildebrand, Pudaite, and Reznick, which

they subsequentely generalized in [EHOPR 1987]. Their method corresponds to one

of the “elementary proofs” of the Prime Number Theorem. The sequence {a(n)} of

Rawsthorne’s problem is now #A007731 in Sloane’s On-Line Encyclopedia of Integer

Sequences.

5. i) Let f(s) = 1 − 2−s − 3−s − 6−s. Note that f has a simple zero at s = 1.
Prove that all its other zeros lie in the strip |σ| < 1, and that f has log 6

2π T +O(1)
zeros ρ with 0 < Im ρ < T ; more precisely, that each rectangle

{σ + it : |σ| ≤ 1,

∣∣∣∣
log 6
2π

t− n

∣∣∣∣ < 1/2}

(n ∈ Z) contains a unique zero of f (so in particular the zeros are all simple).
NB Unlike the case of ζ(s), here there is no functional equation, nor a “Riemann
Hypothesis”; indeed, it can be shown that some complex zeros have real parts
arbitrarily close to 1, as well as zeros whose real parts are arbitrarily close to −1.
ii) Let an be the coefficients of the Dirichlet series

∑∞
n=1 an/ns = 1/f(s). Show

that an ≥ 0, with equality unless n = 2a3b for some integers a, b. Find a
constant C such that

∑
n<x an ∼ Cx as x→∞. Can you give an explicit error

bound?
iii) Solve Rawsthorne’s problem above. How far can you generalize it? (Warning:
for more general recursions of this kind you may have to contend with multiple
poles, or simple poles that nearly coincide and have large residues.)
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Math 259: Introduction to Analytic Number Theory

L(s,χ) as an entire function; Gauss sums

We first give, as promised, the analytic proof of the nonvanishing of L(1,χ) for a
Dirichlet character χ mod q; this will complete our proof of Dirichlet’s theorem
that there are infinitely primes in the arithmetic progression {mq+a : m ∈ Z>0}
whenever (a, q) = 1, and that the logarithmic density of such primes is 1/ϕ(q).1

We follow [Serre 1973, Ch. VI §2]. Functions such as ζ(s), L(s,χ) and their
products are special cases of what Serre calls “Dirichlet series”: functions

f(s) :=
∞∑

n=1

ane−λns (1)

with an ∈ C and 0 ≤ λn < λn+1→∞. [For instance, L(s,χ) is of this form with
λn = log n and an = χ(n).] We assume that the an are small enough that the
sum in (1) converges for some s ∈ C. We are particularly interested in series
such as

ζq(s) :=
∏

χ mod q

L(s,χ)

whose coefficients an are nonnegative. Then if (1) converges at some real σ0, it
converges uniformly on σ ≥ σ0, and f(s) is analytic on σ > σ0. Thus a series
(1) has a maximal open half-plane of convergence (if we agree to regard C itself
as an open half-plane for this purpose), namely σ > σ0 where σ0 is the infimum
of the real parts of s ∈ C at which (1) converges. This σ0 is then called the
“abscissa of convergence”2 of (1).

We claim that if σ0 is finite then it is a singularity of f ; that is:

Proposition. Suppose that the series (1) has positive coefficients an, and that
there exists ρ ∈ R such that the series converges in the half-plane σ > ρ and
extends to an analytic function in a neighborhood of ρ. Then the abscissa of
convergence of the series is strictly smaller than ρ.

Proof : Since f(s − ρ) is again of the form (1) with nonnegative coefficients
eλnρan, it is enough to prove the Proposition for ρ = 0. Since f is then analytic
in σ > 0 and also in |s| < δ for some δ > 0, it is analytic in |s − 1| ≤ 1 + ε for
sufficiently small ε, specifically any ε <

√
1 + δ2−1. Expand f in a Taylor series

about s = 1. Since (1) converges uniformly in a neighborhood of that point, it
may be differentiated termwise, and we find that its m-th derivative there is

f (m)(1) =
∞∑

n=1

(−λn)mane−λn .

1Davenport gives a simpler proof of Dirichlet’s theorem, also involving L-functions but
not yet obtaining even the logarithmic density, in Chapter 4, attributing the basic idea to
Landau 1905.

2The quaint word “abscissa” for “x-coordinate” is still sometimes encountered in analytic
geometry, alongside “ordinate” (a.k.a. “y-coordinate”).
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Taking s = −ε, we obtain the convergent sum

f(−ε) =
∞∑

m=0

(−1− ε)m

m!
f (m)(1) =

∞∑

m=0

(1 + ε)m

m!

[ ∞∑

n=1

(+λn)mane−λn

]
.

Since all the terms in the sum are nonnegative, the sum converges absolutely,
and may be summed in reverse order. Therefore

f(−ε) =
∞∑

n=1

an

[ ∞∑

m=0

e−λn
(1 + ε)m

m!
λm

n

]
.

But the new inner sum is just a Taylor series for eλnε. So we have shown
that the series (1) converges at s = −ε, and thus has abscissa of convergence
σ0 ≤ −ε < 0 = ρ. !
We can now prove:

Theorem. Let χ be a nontrivial character mod q. Then L(1,χ) (= 0.

Proof : We know already that L(s,χ) extends to a function on σ > 0 analytic
except for the simple pole of L(s,χ0) at s = 1. If any L(s,χ) vanished at s = 1
then

ζq(s) :=
∏

χ mod q

L(s,χ)

would extend to an analytic function on σ > 0. But we observed already that
ζq(s) is a Dirichlet series

∑
n ann−s with nonnegative coefficients that converges

at least in σ > 1. By our Proposition, this series would thus converge in σ > 0.
But we also have an ≥ 1 if n = kϕ(q) for some k coprime to q. Therefore∑

n ann−σ diverges for σ ≤ 1/ϕ(q). This contradiction proves that no L(1,χ)
vanish. !
We have thus established Dirichlet’s theorem on the infinitude and logarithmic
density of primes qm + a. But we want more than logarithmic density, namely
asymptotics of π(x, a mod q), or equivalently of π(x,χ). As with the Prime
Number Theorem, it will be enough to estimate

ψ(x,χ) :=
∑

n<x

χ(n)Λ(n),

for which we have an integral approximation

ψ(x,χ) =
1

2πi

∫ 1+ 1
log x +iT

1+ 1
log x−iT

−L′

L
(s,χ) xs ds

s
+ O

(
x log2 x

T

)
(T ∈ [1, x]).

We therefore seek a partial-fraction decomposition for L′/L, which in turn leads
us to prove an analytic continuation and functional equation for L(s,χ).

Our key tool in proving the functional equation for ζ(s) was the Poisson sum-
mation formula, which we recovered from the Fourier series of

F (x) :=
∞∑

m=−∞
f(x + m)

2



by setting x = 0. We now need this Fourier series

F (x) =
∞∑

n=−∞
f̂(n)e−2πinx

for fractional x. (Here f̂ is the Fourier transform of f , defined by

f̂(y) =
∫ +∞

−∞
e2πixyf(x) dx. (2)

as before.) Let a )→ c(a) be any function from Z/qZ to C. Then we have

∞∑

m=−∞
c(m)f(m/q) =

∑

a mod q

c(a)F (a/q) =
∞∑

n=−∞
ĉ(−n)f̂(n), (3)

where ĉ is the discrete Fourier transform of c, defined by

ĉ(n) :=
∑

a mod q

c(a)e2πina/q. (4)

Now suppose c is a primitive character χ mod q. We use the notation τn for its
discrete Fourier transform; that is,

τn(χ) :=
∑

a mod q

χ(a)e2πina/q.

We claim:

Lemma. Assume that χ is a primitive character mod q. Then

τn(χ) = χ(n)τ1(χ) (5)

holds for all n ∈ Z. That is, the discrete Fourier transform of a primitive
character χ is τ1(χ)χ. If n is coprime to q then (5) holds for all characters
χ mod q, primitive or not.

Proof : If gcd(n, q) = 1 then we may replace a by n−1a, from which τn(χ) =
χ(n)τ1(n) follows. If (n, q) > 1 then χ(n) = 0, so we want to show τn(χ) = 0.
Let d = (n, q) and q0 = q/d, and rearrange the τn(χ) sum according to a mod q0 :

τn(χ) =
∑

a0 mod q0

∑

a mod q

a≡a0 mod q0

χ(a)e2πina/q =
∑

a0 mod q0

e2πina0/q




∑

a≡a0 mod q0

χ(a)



 .

We claim that the inner sum vanishes. This is clear unless gcd(a0, q0) = 1. In
that case the inner sum is

χ(a1)
∑

a mod q

a≡1 mod q0

χ(a),
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for any a1 ≡ a0 mod q0 . But this last sum is the sum of a character on the group
of units mod q congruent to 1 mod q0 , and so vanishes unless that character is
trivial — and if χ(a) = 1 whenever a ≡ 1 mod q0 then χ comes from a character
mod q0 (why?) and is thus not primitive. This completes the proof. !
We generally abbreviate τ1(χ) as τ(χ), and call that number

τ(χ) :=
∑

a mod q

χ(a)e2πia/q (6)

the Gauss sum of the character χ. We then have:

Theorem. Let f : R→C be any function satisfying the hypotheses of Poisson
summation. Then for any primitive character χ mod q we have

∞∑

m=−∞
χ(m)f(m/q) = τ(χ)

∞∑

n=−∞
χ(−n)f̂(n). (7)

Proof : Substitute the formula (5) of our Lemma into (3). !
This may be regarded as the “twist by χ” of the Poisson summation formula.

For even characters χ, we know what to do next: take f(x) = e−πu(qx)2 in (7),
and apply the Mellin transform to the resulting identity. This is actually easier
than our proof of the functional equation for ζ(s), because we do not need to
split the integral in two. (Ultimately this is because, unlike ζ(·), the L-function
of a nontrivial primitive character has no poles.) Let3

θχ(u) :=
∞∑

n=−∞
χ(n)e−πn2u.

By (7), together with the fact that the Fourier transform of f(x) = e−πu(qx)2 is
f̂(y) = u−1/2q−1e−πu−1(y/q)2 , we obtain

θχ(u) =
τ(χ)
qu1/2

∞∑

n=−∞
χ(−n)e−πu−1(n/q)2 =

τ(χ)
qu1/2

θχ(1/q2u). (8)

Note that, unless q = 1, it follows that θχ(u) is rapidly decreasing as u→0+,
because χ(0) = 0. Integrating termwise, we find

2π−s/2Γ(s/2)L(s,χ) =
∫ ∞

0
θχ(u)us/2 du

u

for Re(s) > 1. Since θχ(u)+ exp(−π/q2u) as u→0+, the integral converges for
all s, and gives the analytic continuation of L(s,χ) to an entire function with

3Our θχ(u) is called ψ(qu, χ) in [Davenport 1967, Ch.9].
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zeros at the poles s = 0,−2,−4,−6, . . . of Γ(s/2). Moreover, by (8) the integral
is also

τ(χ)
q

∫ ∞

0
θχ(1/q2u)u(s−1)/2 du

u
=

τ(χ)
q

∫ ∞

0
θχ(u)(q2u)(1−s)/2 du

u

=
τ(χ)
qs

∫ ∞

0
θχ(u)u(1−s)/2 du

u
.

This last integral is 2τ(χ)q−sΓ( 1
2 (1 − s))π(s−1)/2L(1 − s,χ) for σ ∈ (0, 1), and

thus by analytic continuation for all s ∈ C. We can write the functional equation
symmetrically by setting

ξ(s,χ) := (π/q)−s/2Γ(s/2)L(s,χ),

which is now an entire function: ξ(s,χ) is related with ξ(s,χ) by

ξ(s,χ) =
τ(χ)
√

q
ξ(1− s,χ). (9)

What about odd χ? The same definition of θχ would yield zero. We already
indicated (in the exercises on the functional equation for ζ and ξ) the correct
approach: we apply (7) not to the Gaussian e−πu(qx)2 but to its derivative,
which is proportional to xe−πu(qx)2 . Using the general fact that the Fourier
transform of f ′ is 2πiyf̂(y) (integrate by parts in the definition (2) of f̂ ′) we see
that the Fourier transform of xe−πu(qx)2 is (iy/(u1/2q)3)e−πu−1(y/q)2 . So, if we
define4

ϑχ(u) :=
∞∑

n=−∞
nχ(n)e−πn2u,

we find
ϑχ(u) =

τ(χ)
iq2u3/2

ϑχ(1/q2u). (10)

This time we must multiply ϑχ by u(s+1)/2 du/u to cancel the extra factor of n.
We obtain the integral formula

2π−(s+1)/2Γ((s + 1)/2)L(s,χ) =
∫ ∞

0
ϑχ(u)u(s+1)/2 du

u

for L(s,χ). Again (10) together with χ(0) = 0 tells us that ϑχ(u) vanishes
rapidly as u→0+, and thus that our integral extends to an entire function of s;
note however that the resulting trivial zeros of L(s,χ) are at the negative odd
integers. The functional equation (10) again gives us a relation between L(s,χ)
and L(1− s,χ), which this time has the symmetrical form

ξ(s,χ) =
τ(χ)
i
√

q
ξ(1− s,χ), (11)

4Our ϑχ(u) is Davenport’s ψ1(qu, χ).
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with
ξ(s,χ) := (π/q)−(s+1)/2Γ((s + 1)/2)L(s,χ).

We may combine (9) with (11) by introducing an integer a depending on χ:

a :=

{
0, if χ(−1) = +1;
1, if χ(−1) = −1.

That is, a = 0 or 1 according as χ is even or odd. We then have:

Theorem. Let χ be any primitive character mod q, and a = 0 or 1 as above.
Define

ξ(s,χ) := (π/q)−(s+a)/2Γ((s + a)/2)L(s,χ).

Then the ξ functions of χ and χ are related by the functional equation

ξ(s,χ) =
τ(χ)
ia
√

q
ξ(1− s,χ). (12)

Note that this holds even for the case q = 1, in which L(s,χ) and ξ(s,χ) reduce
to ζ(s) and ξ(s). In that case, we concluded that (s2−s)ξ(s) is an entire function
of order 1. For q > 1, the function ξ(s,χ) has no poles, and we find in the same
way that ξ(s,χ) is an entire function of order 1. We shall develop its product
formula and deduce the asymptotics of ψ(x,χ) in the next lecture notes.

Meanwhile, we prove some basic results concerning Gauss sums. First we find
|τ(χ)|:
Proposition. The Gauss sum τ(χ) of any primitive Dirichlet character χ mod q
has absolute value q1/2.

Proof : We obtain this as a special case of the Parseval identity for discrete
Fourier transforms: ∑

n mod q

|ĉ(n)|2 = q
∑

a mod q

|c(a)|2 (13)

for any function a )→ c(a) from Z/qZ to C. The identity (13) can be proved
either directly or by observing that the functions a )→ e2πina/q are orthogonal
with constant norm q. Now take c(a) = χ(a). We have seen that ĉ(n) =
τ(χ)χ(n). Therefore (13) becomes |τ(χ)|2φ(q) = qϕ(q), whence |τ(χ)|2 = q as
claimed. !
The Gauss sum may be regarded as a discrete analogue of the Gamma integral:
the factors xs−1 and e−x in the integral Γ(s) =

∫∞
0 xs−1e−x dx are a varying

homomorphism from R∗
>0 to C∗ and a fixed homomorphism from the additive

group R to C∗; in the Gauss sum (6), these are replaced by the varying ho-
momorphism χ from (Z/qZ)∗ and the fixed homomorphism a )→ e2πia/q from
(Z/qZ,+). The analogy is particularly close when q is prime, in which case
Z/qZ, like R, is a field. In this case the Beta integral has a corresponding
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analogue in the Jacobi sums

J(χ,χ′) :=
∑

c mod q

χ(c)χ′(1− c).

We do not require that χ and χ′ be primitive. Note that unlike τ(χ), which may
involve both q-th and (q − 1)st roots of unity, the Jacobi sum J(χ,χ′) involves
only (q − 1)st roots. Nevertheless it can be evaluated in terms of Gauss sums:

Proposition. Let χ,χ′ be Dirichlet characters mod q. Then

J(χ,χ′) =
τ(χ)τ(χ′)
τ(χχ′)

, (14)

provided that none of χ,χ′,χχ′ is the trivial character χ0. If χ = χ′ = χ0 then
J(χ,χ′) = q − 2; if exactly one of χ and χ′ is trivial then J(χ,χ′) = −1; and if
χ,χ′ are nontrivial but χχ′ = χ0 then J(χ,χ′) = −χ(−1).

Proof : It is clear that J(χ0,χ0) = q − 2, so we henceforth assume that χ,χ′

are not both trivial. As in our evaluation of B(s, s′) in terms of the Gamma
function, we consider the double sum

τ(χ)τ(χ′) =
∑ ∑

a,a′ mod q

χ(a)χ′(a′)e2πi(a+a′)/q.

Let b = a + a′. The terms with b = 0 sum to

χ′(−1)
∑

a mod q

χχ′(a) =

{
χ(−1)(q − 1), if χ′ = χ;
0, otherwise.

To sum the terms for fixed nonzero b, let a = cb and a′ = (1− c)b to find

e2πib/qχχ′(b)
∑

c mod q

χ(c)χ′(1− c) = e2πib/qχχ′(b)J(χ,χ′). (15)

Hence if χχ′ = χ0 (that is, if χ′ = χ), we have

τ(χ)τ(χ′) = χ(−1)(q − 1)− J(χ,χ′).

But
τ(χ) =

∑

a mod q

χ(a)e2πia/q =
∑

a mod q

χ(a)e−2πia/q = χ(−1)τ(χ), (16)

so

J(χ,χ) = χ(−1)(q − 1)− τ(χ)τ(χ′) = χ(−1)(q − 1− |τ(χ)|2) = −χ(−1).

(We could also have obtained this directly from χ(c)χ(1−c) = χ(c−1−1), which
in turn yields an alternative proof of |τ(χ)| = q1/2 in the prime case.) Otherwise
(15) yields (14). !
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Corollary. The Jacobi sum J(χ,χ′) has absolute value q1/2 if each of χ,χ′,χχ′

is nontrivial.

The formula (14) is the beginning of a long and intricate chapter of the arith-
metic of cyclotomic number fields; it can also be used to count solutions of
certain Diophantine equations mod q, showing for instance that if q ≡ 1 mod 3
then there are q/9 + O(√q ) values of c (= 0, 1 in Z/qZ such that both c and
1− c are cubes. See the Exercises for more details and examples.

Remarks

Our extended Poisson identity (3) also has a generalization to locally compact
abelian groups. Let G be such a group, H a closed subgroup, and K a closed
subgroup of H. Then the annihilators H⊥,K⊥ in Ĝ are closed subgroups, with
H⊥ ⊆ K⊥. Moreover, K⊥/H⊥ is canonically identified with the Pontrjagin
dual of H/K. Then one can choose Haar measures on G, H, H/K, and K⊥

such that ∫

x∈H
c(x + K)f(x) =

∫

y∈K⊥
ĉ(−y + H⊥)f̂(y).

under suitable hypothesis on the functions c : H/K→C and f : H→C. The
formula (3) is the special case G = Ĝ = R, K = K⊥ = Z, H = q−1Z, H⊥ = qZ.

The formula for ξ(s,χ), and the distinction between even and odd characters χ,
can be interpreted structurally as follows. Let χ be a primitive character mod q.
We mentioned already that L(s,χ) is a factor in a product formula for ζK(s),
the zeta function of the cyclotomic number field K = Q(e2πi/q); and that for
any number field K, the Euler product for ζK can be “completed” to a function
ξK(s) that satisfies a functional equation ξK(s) = ξK(1 − s). The additional
factors come from the discriminant and archimedean valuations of K. When
K is cyclotomic, we can also give such an interpretation of ξ(s,χ). We may
regard χ as a character of the group (Z/qZ)∗ which is canonically isomorphic
with the Galois group G = Gal(K/Q). For each prime p ! q, the number χ(p)
that appears in the local factor (1 − χ(p)p−s)−1 is then the image under χ of
the p-Frobenius element in G. That is, this factor records the p-adic behavior
of the Galois extension K/Q. Just as the factor Γ(s/2) in ξ(s) = ξQ(s) was
regarded as a local factor at the archimedean place of Q, the factor Γ((s+a)/2)
in ξ(s,χ) can be regarded as an archimedean local factor. Instead of Frobenius,
the archimedean place is associated with complex conjugation, whose image in
Gal(K/Q) is identified with −1 ∈ (Z/qZ)∗ under the isomorphism from (Z/qZ)
to G. The factor Γ((s+ a)/2), which depends on χ(−1), thus records the image
under χ of complex conjugation.

We could also have obtained the identity |τ(χ)|2 = q indirectly from the twisted
Poisson formula (7). If f is a function such that both f, f̂ satisfy the Poisson
hypotheses, we may apply (7) twice to find that either

τ(χ)τ(χ) = χ(−1)q (17)

or
∑

m∈Z χ(m)f(m/q) = 0. Since the latter possibility cannot hold for all f
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(for instance, consider f(x) = exp(−C(x−1/q)2) for large C), we have deduced
(17). But (17) is equivalent to |τ(χ)|2 = q by the formula (16) which relates
τ(χ) and τ(χ).

Exercises

On general Dirichlet series:

1. Suppose the λn are closed under addition.
i) Show that for any right half-plane H = {s ∈ C : Re(s) ≥ σ0} or H = {s ∈
C : Re(s) > σ0} the space of Dirichlet series (1) that converge absolutely in H
is closed under multiplication. (We allow σ = −∞, in which case H = C, as
well as σ = +∞, in which case we are dealing with formal Dirichlet series.)
ii) If f(s) =

∑∞
n=1 ane−λns and g(s) =

∑∞
n=1 bne−λns are two such functions

then the sequence of coefficients of fg(s) is the convolution a∗b of the sequences
an, bn. Prove that convolution is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c). [NB: While
this is suggested by part (i), it is not quite an immediate consequence, unless
you exclude formal Dirichlet series and show that two Dirichlet series that are
equal on H have the same coefficients.] Note that when λn = nλ1 this recovers
the usual (additive) convolution (a ∗ b)n =

∑
j+k=n ajbk.

iii) When λn = log n, we have (a ∗ b)n =
∑

jk=n ajbk. Show that the result of
part (ii) includes Möbius inversion: if cn =

∑
d|n ad then an =

∑
d|n µ(n/d)cd.

2. Consider a Dirichlet series (1) in which an need not be positive reals. Clearly
this series still has an abscissa of absolute convergence. Less obvious, but still
true, is that it also has an abscissa of ordinary convergence. Show that if
the sum (1) converges in the usual sense of limN→∞

∑N
1 at some s0 then it

converges also in σ ≥ Re(s0), the convergence being uniform in arg(s− s0) ≤ α
for each α < π/2. Deduce that (1) defines an analytic function on σ ≥ Re(s0).
[Since f(s − s0) is again of the form (1), it is enough to prove this claim for
s0 = 0. Assume then that

∑∞
n=1 an converges, and let A(x) = −

∑
λn>x an; by

hypothesis A(x)→0 as x→∞. For large M,N with M ≤ N , write

N∑

n=M

ane−λns =
∫ λN

λM

e−λs dA(λ),

etc. This is equivalent to the route taken by Serre, but probably more transpar-
ent to us. Note that the convergence of the Dirichlet series for L(s,χ) on σ > 0
now follows automatically from its convergence for positive real s.]

3. Are the Dirichlet series (1) that converge (but might not converge abso-
lutely) on a given right half-plane H closed under multiplication? (Hint: use
the method of the previous Exercise to show that any such Dirichlet series f
satisfies f(s)+ 1 + |s| on H.)

On L-functions:

4. Complete the missing steps in the proof of (11).

5. Suppose χ is a real character. Then (12) relates ξ(s,χ) with ξ(s, 1 − χ).
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Deduce that L(s,χ) has a zero of even or odd multiplicity at s = 1/2 according as
τ(χ) = +ia

√
q or τ(χ) = −ia

√
q. In particular, in the minus case L(1/2,χ) = 0.

But it is known that in fact the minus case never occurs:

τ(χ) = +i a√q (18)

holds for all primitive real χ mod q. This was first proved by Gauss after much work.

(Davenport proves this in the special case of prime q in Chapter 2, using a later method

of Dirichlet that relies on Poisson summation; we outline another proof in the next

few Exercises.) It follows that the order of vanishing of L(s, χ) at s = 1/2 is even; it is

conjectured, but not proved, that in fact L(1/2, χ) > 0 for all Dirichlet characters χ.

More complicated number fields are known whose zeta functions do vanish (always to

even order) at s = 1/2.

On Gauss sums:

6. Suppose χ is a character mod q = q1q2 with q1, q2 coprime. Then χ = χ1χ2

for some characters χi mod qi, and χ is primitive if and only if both χ1 and χ2

are primitive. (You have shown this in the course of enumerating primitive
characters.) In this case, express τ(χ) in terms of the qi, χi, and τ(χi).

7. Suppose further that χ is a real character. Then the same is true of χ1 and χ2

(why?). Use your result in the previous Exercise, together with Quadratic Reci-
procity, to verify that (18) holds for χ if it holds for each of χ1 and χ2. (In
the opposite direction, if one proves in some other way that (18) holds for all
primitive real Dirichlet characters then one can deduce Quadratic Reciprocity.)
Conclude that (18) holds for all real characters if it holds for real characters
mod q where q is either 4, 8, or an odd prime. Verify the three cases of even q,
and show that if χ is the primitive real character modulo an odd prime q then

τ(χ) =
∑

n mod q

e2πin2/q. (19)

8. Observe that
∑

n mod q e2πin2/q is the trace of the operator T : Cq→Cq that
takes a complex-valued function c on Z/qZ to its discrete Fourier transform ĉ.
Show that ˆ̂c(a) = q c(−a), and thus that each of the q eigenvalues λ of T is
one of ±q1/2 or ±iq1/2. Thus we can evaluate τ(q) =

∑
λ λ by determining the

multiplicity of each of these four eigenvalues. We already know that τ(χ) =
±q1/2 or ±iq1/2 according as q ≡ 1 or −1 mod 4. Check that this reduces the
determination of τ(χ) to computing det T . Compute this determinant (Hint: T
is represented by a Vandermonde matrix, and only the phase of detT is at issue
because |det T | =

∏
λ |λ| = qq/2) to complete the proof of the formula (18) for

the sign of τ(χ).

The trace description of the sum in (19) does not depend on the primality of q, and

yields N−1/2 ∑
n mod N e2πin2/N ∈ Z[i] for all integers N ≥ 1. It is known that in fact

N−1/2
∑

n mod N

e2πin2/N =
1 + (−i)N

1− i
;
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that is, 1 + i, 1, 0, or i according as N ≡ 0, 1, 2 or 3 mod 4.

9. Can you find a τ analog of the duplication formula for the Gamma function?

On Jacobi sums:

10. For characters χ1, . . . ,χn modulo a prime q, define the generalized Jacobi
sum J(χ1, . . . ,χn) by

J(χ1, . . . ,χn) :=
∑

· · ·
∑

χ1(a1) · · ·χn(an),

where the sum extends over all (a1, . . . , an) mod q such that a1 + · · · + an = 1.
Evaluate J(χ1, . . . ,χn) in terms of Gauss sums under suitable hypotheses on
the χi. What is the analogous formula for definite integrals?

11. Let χ be the Legendre symbol modulo an odd prime q. Evaluate τ(χ)n in
two ways to count the number of solutions mod q of x2

1 + · · · + x2
n = 1. If n

is also an odd prime, use your formula to recover Quadratic Reciprocity (Hint:
how many solutions are fixed under cyclic permutation of the xi?). Can you
modify this proof to also obtain the supplementary formula (2/q) = χ8(q)?

This proof of Quadratic Reciprocity can be modified to avoid explicit use of τ(χ),
because the solutions of x2

1 + · · · + x2
n = 1 can also be enumerated inductively by

elementary means starting from results such as the parametrization of Pythagorean
triples.

The usual way to recover Quadratic Reciprocity from the fact that τ(χ)2 = q∗ = ±q

is to compare τ(χ) with τn(χ) mod n. On the one hand, they differ by a factor χ(n).

On the other hand, if n is prime then τn(χ) ≡ τ(χ)n mod n, and thus equals τ(χ) or

−τ(χ) according as q∗ is a square mod n or not.

12. [Jacobi sums and Fermat curves mod q.] Let q be a prime, n a positive
integer, and G the group of Dirichlet characters χ mod q such that χn = 1. This
is a cyclic group of order gcd(n, q − 1) (why?). Prove that

∑
χ,χ′∈G J(χ,χ′) is

the number of solutions of xn + yn = 1 in nonzero x, y ∈ Z/qZ. Conclude that
this number is q + O(n2q1/2), and thus that if “Fermat’s Last Theorem” holds
in Z/qZ then q + n4.

More precisely, the “Fermat curve” Fn : xn+yn = zn in the projective plane over Z/qZ
has q + 1−

∑
i λi points, where each λi is −J(χ, χ′) for one of the (|G|− 1)(|G|− 2)

choices of χ, χ′ ∈ G such that χ, χ′, χχ′ are all nontrivial. In particular, if q ≡ 1 mod n
then (|G|−1)(|G|−2) = (n−1)(n−2) = 2g where g is the genus of Fn. In this case the
λi are the “eigenvalues of Frobenius” of Fn, and the fact that they all have norm q1/2

is a special case of the Riemann hypothesis for the function field of an algebraic curve
over a finite field. (If q is coprime to n but not 1 mod n then Fn still has (n−1)(n−2)
eigenvalues of Frobenius, which include the Jacobi sums but also other eigenvalues
whose effect on the point counts of Fn appears only over finite extensions of Z/qZ.)

The last Exercise develops these ideas further for two curves of genus 1: the cubic

Fermat curve F3, and a quotient of F4 whose Q-rational points were determined by

Fermat.
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13. i) Suppose q is a prime congruent to 1 mod 3. It is known that q can be
written uniquely as (a2 + 27b2)/4 for some positive integers a, b. Show that the
number of solutions of x3 + y3 = 1 with x, y ∈ Z/qZ is q− 2± a, and determine
the correct sign. Conclude that 2 is a cube mod q if and only if 2|a, i.e., if and
only if q = m2 + 27n2.
ii) Suppose q is an odd prime. How many solutions mod q do the equations
y2 = x4 − 1 and y2 = x3 − x have? (This should be easy if q ≡ −1 mod 4; for
q ≡ +1 mod 4, cf. the previous 1 1

2 Exercises.)

These enumerations of rational points on x3 + y3 = 1 and y2 = x3 − x mod q are now

known to be special cases of the arithmetic of elliptic curves of complex multiplication;

see for instance [Silverman 1986].
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Math 259: Introduction to Analytic Number Theory

The asymptotic formula for primes in arithmetic progressions;
the Extended Riemann Hypothesis, concerning the zeros of L(s,χ)

Now that we have the functional equation for L(s,χ), the asymptotics for
ψ(x,χ), and thus also for ψ(x, a mod q) and π(x, a mod q), follow just as they
did for ψ(x) and π(x) — at least if we are not very concerned with how the im-
plied constants depend on q. We also state the Extended Riemann Hypothesis
and relate it with conjectural improvements of the error estimates. The proofs
are similar enough that we relegate most of the details to the Exercises. We
shall soon see how to better control the dependence of our estimates on q. But
the relatively crude bounds below are still of interest because these bounds, but
not the later improvements for L(s,χ), generalize to other Dirichlet series such
as the zeta functions of number fields; see the final Exercise.

Let χ be a primitive character mod q > 1. We readily adapt our argument
showing that (s2 − s)ξ(s) is an entire function of order 1 to show that ξ(s,χ) is
an entire function of order 1, and thus has a Hadamard product

ξ(s,χ) = AeBss1−a
∏

ρ

(1− s/ρ)es/ρ. (1)

Here A = ξ(0,χ) or ξ′(0,χ) according as χ is odd or even. The product ranges
over zeros of ξ(s,χ), counted with multiplicity and excluding the simple zero at
the origin if χ is even; that is, ρ ranges over the “nontrivial zeros” of L(s,χ),
those with σ ∈ [0, 1]. Thus

ξ′

ξ
(s,χ) = B +

1− a

s
+

∑

ρ

(
1

s− ρ
+

1
ρ

)
. (2)

Note that B depends on χ; see Exercise 1 below. Fortunately it will usually
cancel out from our formulas. It follows that

L′

L
(s,χ) = B − 1

2
log

q

π
− 1

2
Γ′

Γ
((s + a)/2) +

1− a

s
+

∑

ρ

(
1

s− ρ
+

1
ρ

)
. (3)

How are these zeros ρ distributed? We noted already that their real parts lie in
[0, 1]. If L(ρ,χ) = 0 then by the functional equation 0 = L(1−ρ,χ) = L(1−ρ̄,χ).
Thus the zeros are symmetrical about the line σ = 1/2, but not (unless χ is
real) about the real axis. So the proper analog of N(T ) is half of N(T,χ), where
N(T,χ) is defined as the number of zeros of L(s,χ) in σ ∈ (0, 1), |t| < T , counted
with multiplicity. [NB this excludes the trivial zero at s = 0, which occurs for
even χ.] Again we evaluate this by integrating ξ′/ξ around a rectangle. The new
factor qs/2 in ξ(s,χ) introduces an extra term of (T/2π) log q into the formula
for N(T,χ)/2. That factor is also responsible for the new term − 1

2 log q in (3),

1



which forces us to subtract O(log q) from our lower bound on the real part of
(L′/L)(s,χ). This bound now becomes

L′

L
(s,χ) =

∑

| Im(s−ρ)|<1

1
s− ρ

+ O(log |qt|)

(σ ∈ [−1, 2]), the sum comprising O(log |qt|) terms. We conclude:

Theorem. The estimate

1
2
N(T,χ) =

T

2π
log

qT

2π
− T

2π
+ O(log qT ) (4)

holds for all T ≥ 2, with an implied constant independent of q.

(The lower bound on T could be replaced by any T0 > 1, possibly changing the
implied constant if q = 1 and T0 is too close to 1.)

Proof : See Exercise 2. !
To isolate the primes in arithmetic progressions mod q, we need also characters
that are not primitive, such as χ0. Let χ1 be the primitive character mod q1|q
underlying a nonprimitive χ mod q. Then

L(s,χ) =
∏

p|q

(
1− χ1(p)p−s

)
· L(s,χ1).

The elementary factor
∏

p|q(1−χ1(p)p−s) has, for each p dividing q but not q1,
a total of (T/π) log p+O(1) purely imaginary zeros of absolute value < T . This,
together with the estimate (4) for N(T,χ1), shows that the RHS of (4) is an
upper bound on 1

2N(T,χ), even when χ is not principal.

The horizontal distribution of ρ is subtler. We noted already that the logarith-
mic derivative of

ζq(s) :=
∏

χ mod q

L(s,χ)

is a Dirichlet series −
∑

n Λq(n)n−s with Λq(n) ≥ 0 for all n, and deduced that
the 3 + 4 cos θ + cos 2θ trick shows that ζq, and thus each factors L(s,χ), does
not vanish at s = 1 + it. We can then adapt the proof of the classical zero-
free region for ζ(s); since, however, ζq(s) is the product of ϕ(q) L-series, each
of which contributes O(log |qt|) to the bound on (ζ ′q/ζq)(σ + it), the resulting
zero-free region is not 1 − σ < c/ log |t| or even 1 − σ < c/ log |qt| but 1 −
σ < c/(ϕ(q) log |qt|). Moreover, the fact that this only holds for say |t| > 2 is
newly pertinent: unlike ζ(s), the L-series might have zeros of small imaginary
part. [Indeed it is known that there are Dirichlet L-series that vanish on points
arbitrarily close to the real axis.] Still, for every q there are only finitely many
zeros with |t| ≤ 2. So our formula

ψ(x,χ) =
1

2πi

∫ 1+ 1
log x +iT

1+ 1
log x−iT

−L′

L
(s,χ) xs ds

s
+ O

(
x log2 x

T

)
(T ∈ [1, x])
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yields an estimate as before, with only the difference that when χ %= χ0 there is
no “main term” coming from a pole at s = 1. We thus find

ψ(x,χ)&χ x exp(−Cχ

√
log x) (5)

for some constant Cχ > 0. Multiplying by χ(a) and averaging over χ (including
χ0, for which ψ(x,χ0) = x + O(x exp(−C

√
log x)) instead of (5), we obtain

ψ(x, a mod q) =
1

ϕ(q)
x + Oq(x exp(−Cq

√
log x)), (6)

and thus

π(x, a mod q) =
1

ϕ(q)
li(x) + Oq(x exp(−Cq

√
log x)). (7)

Note however that the dependence of the error terms on q is unpredictable. The
zero-free region depends explicitly on q (though as we shall see it need not shrink
nearly as fast as 1/(ϕ(q) log q), a factor which alone would make Cq proportional
to (ϕ(q) log q)−1/2), but it excludes a neighborhood of the real axis. It would
then seem that to specify Cχ and &χ we would have to compute for each χ the
largest Re(ρ). There’s also the matter of the contribution of the B’s from (3).

Consider, by comparison, the consequences of the Extended Riemann Hypothesis
(ERH), which is the conjecture that each nontrivial zero ρ of an L-series associ-
ated to a primitive Dirichlet character χ has real part 1/2.1 Our analysis of ψ(x)
under RH then carries over almost verbatim to show that ψ(x,χ)& x1/2 log2 x
as long as q < x with an absolute and effective implied constant, and thus that

ψ(x, a mod q) =
x

ϕ(q)
+ O(x1/2 log2 x) (8)

holds if L(s,χ) satisfies ERH for all Dirichlet characters mod q1 with q1|q, again
with the O-constant effective and independent of q. It would also follow that

π(x, a mod q) =
li(x)
ϕ(q)

+ O(x1/2 log x). (9)

Again there are some remarkable effects of the difference between ψ(x, a mod q)
and the sum of log p over the primes counted in π(x, a mod q). Most strikingly,
for nontrivial real characters χ, π(x,χ) tends to be negative, because the con-
tribution of

∑
n<x χ(n2)Λ(n2) to ψ(x,χ) is asymptotic to +

√
x. For instance,

π(x, 1 mod 4) < π(x, 3 mod 4) for “most” x, where one might intuitively expect
that π(x,χ4) could as easily be positive as negative. This is the “Chebyshev’s
Bias” of the title of [RS 1994], and [BFHR 2001], to which we refer for more
precise statements, as well as subtler effects of this kind and numerical compu-
tations of the theoretical and “experimental” sizes of these biases.

1Attributed by Davenport to “Piltz in 1884” (page 129). We distinguish ERH from the
Generalized Riemann Hypothesis (GRH), which pertains to much more general Dirichlet series,
such as a zeta function of a number field or the L-series attached to a modular form.
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Exercises

1. Show that the real part of the term B of (2) is −
∑

ρ Re(1/ρ). Conclude that
Re(B) < 0. [Davenport 1967, page 85.]

In the next three Exercises you will fill in the proofs outlined above of formu-
las for N(T,χ), ψ(x,χ) ψ(x, a mod q), and π(x, a mod q). Again the complete
proofs may be found in [Davenport 1967] and elsewhere.

2. Complete the missing steps in the proof of (4).

3. Complete the missing steps in the proof of (5), (6), and (7).

4. Verify that, under the relevant ERH, the O-constant in (9) does not depend
on q. Obtain an analogous estimate on the weaker assumption that ζq has no
zeros of real part > θ for some θ ∈ ( 1

2 , 1). Show that if for some q we have
π(x, a mod q) &ε xθ+ε for all a ∈ (Z/q)∗ then all the L(s,χ) for Dirichlet
characters χ mod q are nonzero on σ > θ.

5. [The Prime Number Theorem for number fields] Let K be a number field of
degree n = r1 + 2r2. We already defined the zeta function

ζK(s) :=
∑

I

|I|−s =
∏

℘

(1− |℘|−s)−1 (σ > 1),

in which |I| is the norm of an ideal I, and the sum and product extend re-
spectively over nonzero ideals I and prime ideals ℘ of the ring of integers OK .
We also reported that ζK is known to extend to a meromorphic function on C,
regular except for a simple pole at s = 1, that satisfies a functional equation
ξK(s) = ξK(1− s), where

ξK(s) := Γ(s/2)r1Γ(s)r2(4−r2π−n|d|)s/2ζK(s)

and d is the discriminant of K. In particular, (s2−s)ξK(s) is an entire function;
it is also known that it is an entire function of order 1. Use this to obtain an
approximation of the number of nontrivial zeros ρ of ζK such that | Im(ρ)| ≤ T ,
with an error estimate depending explicitly on n and |d|. Obtain a zero-free
region for ζK , and deduce that

#{℘ : |℘| ≤ x} = li(x) + O(x exp(−CK

√
log x))

for some constant CK > 0.
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Math 259: Introduction to Analytic Number Theory

A nearly zero-free region for L(s,χ), and Siegel’s theorem

We used positivity of the logarithmic derivative of ζq to get a crude zero-free
region for L(s,χ). Better zero-free regions can be obtained with some more effort
by working with the L(s,χ) individually. The situation is most satisfactory for
complex χ, that is, for characters with χ2 != χ0. (Recall that real χ were also
the characters that gave us the most difficulty in the proof of L(1,χ) != 0; it
is again in the neighborhood of s = 1 that it is hard to find a good zero-free
region for the L-function of a real character.)

To obtain the zero-free region for ζ(s), we started with the expansion of the
logarithmic derivative

−ζ ′

ζ
(s) =

∞∑

n=1

Λ(n)n−s (σ > 1)

and applied the inequality

0 ≤ 1
2
(z + 2 + z̄)2 = Re(z2 + 4z + 3) = 3 + 4 cos θ + cos 2θ (z = eiθ)

to the phases z = n−it = eiθ of the terms n−s. To apply the same inequality to

−L′

L
(s,χ) =

∞∑

n=1

χ(n)Λ(n)n−s,

we must use z = χ(n)n−it instead of n−it, obtaining

0 ≤ Re
(
3 + 4χ(n)n−it + χ2(n)n−2it

)
.

Multiplying by Λ(n)n−σ and summing over n yields

0 ≤ 3
[
−L′

L
(σ,χ0)

]
+ 4 Re

[
−L′

L
(σ + it, χ)

]
+ Re

[
−L′

L
(σ + 2it, χ2)

]
. (1)

Now we see why the case χ2 = χ0 will give us trouble near s = 1: for such χ the
last term in (1) is within O(1) of Re(−(ζ ′/ζ)(σ + 2it)), so the pole of (ζ ′/ζ)(s)
at s = 1 will undo us for small |t|.
Let us see how far (1) does take us. Our bounds will involve log q for small |t|,
and log q|t| for large |t|. To cover both ranges, and also to accommodate the
case q = 1 (the Riemann zeta function), we use the convenient and conventional
abbreviation

L := log q(|t| + 2).

We shall prove:

1



Theorem. There is a constant c > 0 such that if L(σ + it, χ) = 0 for some
primitive complex Dirichlet character χ mod q then

σ < 1− c

L
. (2)

If χ is a real primitive character then (2) holds for all zeros of L(s,χ) with at
most one exception. The exceptional zero, if it exists, is real and simple.

Proof : We again apply (1) for suitable σ, t with 1 < σ ≤ 2. The first term is

≤ 3
[
−ζ ′

ζ
(σ)

]
<

3
σ − 1

+ O(1).

For the remaining terms, we use the partial-fraction expansion

−L′

L
(s,χ) =

1
2

log
q

π
+

1
2

Γ′

Γ
((s + a)/2)−Bχ −

1− a

s
−

∑

ρ

(
1

s− ρ
+

1
ρ

)
.

To eliminate the contributions of Bχ and
∑

ρ 1/ρ we use this formula to evaluate
(L′/L)(2,χ)− (L′/L)(s,χ). By the Euler product we have (L′/L)(2,χ) = O(1).
Since also 1/2− 1/s = O(1), we have

−L′

L
(s,χ) =

1
2

Γ′

Γ
((s + a)/2)−

∑

ρ

(
1

s− ρ
− 1

2− ρ

)
+ O(1).

Next take real parts. For ρ of real part in [0, 1] we have Re(1/(2−ρ))$ |2−ρ|−2.
To estimate the sum of this over all ρ, we may apply Jensen’s theorem to
ξ(2+s,χ), finding that the number (with multiplicity) of |ρ| at distance at most r
from 2 is O(r log qr), and thus by partial summation that

∑
ρ |2− ρ|−2 $ log q.

We estimate the real part of the Γ′/Γ term by Stirling as usual, and find

Re
[
−L′

L
(s,χ)

]
< O(L )−

∑

ρ

Re
1

s− ρ
.

Again each of the Re(1/(s− ρ)) is nonnegative, so the estimate remains true if
we include only some of the zeros ρ, or none of them.

In particular it follows that

Re
[
−L′

L
(σ + 2it, χ2)

]
< O(L ), (3)

at least when χ2 is a primitive character. If χ2 is not primitive, but still not
the trivial character χ0, then (3) holds when χ2 is replaced by its corresponding
primitive character; but the error thus introduced is at most

∑

p|q

p−σ

1− p−σ
log p <

∑

p|q

log p ≤ log q < L ,
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so can be absorbed into the O(L ) error. But when χ2 = χ0 the partial-fraction
expansion of its −L′/L has a term +1/(s− 1) which cannot be discarded, and
can absorbed into O(L ) only if s is far enough from 1. We thus conclude that
(3) holds unless χ2 = χ0 and |t| < c/ log q, the implied constant in (3) depending
on c. (Equivalently, we could change O(L ) to 1/|t| + O(L ) when χ2 = χ0.)

The endgame is the same as we have seen for the classical zero-free region for
ζ(s): if there is a zero ρ = 1− δ + it with δ small, use its imaginary part t in (1)
and find from the partial-fraction expansion that

Re
[
−L′

L
(σ + it, χ)

]
< O(L )− 1

σ − Re(ρ)
.

Combining this with our previous estimates yields

4
σ + δ − 1

<
3

σ − 1
+ O(L );

choosing σ = 1 + 4δ as before yields 1/δ $ O(L ) under the hypotheses of (3),
completing the proof of (2) with the possible exception of real χ and zeros of
imaginary part $ 1/ log q.

Next suppose that χ is a real character and fix some δ > 0, to be chosen later. We
have a zero-free region for |t| ≥ δ/ log q. To deal with zeros of small imaginary
part, let s = σ in (1) — or, more simply, use the inequality1 1 + Re(eiθ) ≥ 0 —
to find ∑

| Im(ρ)|<δ/ log q

Re(1/(σ − ρ)) <
1

σ − 1
+ O(log q),

the implied O-constant not depending on δ. Each term Re(1/(σ − ρ)) equals
Re(σ−ρ)/|σ−ρ|2. Choosing σ = 1+(2δ/ log q) we find that | Im(ρ)| < 1

2 (σ−1) <
1
2 Re(σ − ρ), and thus that |σ − ρ|2 < 5

4 Re(σ − ρ)2. Therefore Re(1/(σ − ρ)) >
4
5/ Re(σ − ρ). So,

4
5

∑

| Im(ρ)|<δ/ log q

(
1− Re(ρ) +

2δ

log q

)−1

<
log q

2δ
+ A log q,

for some constant A independent of the choice of δ. Therefore, if δ is small
enough, we can find c > 0 such that at most one ρ can have real part greater
than 1 − c/ log q. (Specifically, we may choose any δ < 3/10A, and take c =
2δ(3− 10Aδ)/5(1 + 2Aδ).) Since ρ’s are counted with multiplicity and come in
complex conjugate pairs, it follows that this exceptional zero, if it exists, is real
and simple. !
This exceptional zero is usually denoted by β. Of course we expect, by the
Extended Riemann Hypothesis, that there is no such β. The nonexistence of β,
though much weaker than ERH, has yet to be proved; but we can still obtain

1That is, use the positivity of −ζ′
χ/ζχ, where ζχ(s) = ζ(s)L(s, χ) is the zeta function of

the quadratic number field corresponding to χ.
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some strong restrictions on how β can vary with q and χ. We begin by showing
that at most one of the Dirichlet characters mod q can have an L-series with
an exceptional zero, and deduce a stronger estimate on the error terms in our
approximate formulas for ψ(x, a mod q) and π(x, a mod q). Since χ need not be
primitive, it follows that in fact β cannot occur even for characters of different
moduli if we set the threshold low enough:

Theorem. [Landau 1918] There is a constant c > 0 such that, for any distinct
primitive real characters χ1,χ2 to (not necessarily distinct) moduli q1 , q2 at most
one of L(s,χ1) and L(s,χ2) has an exceptional zero β > 1− c/ log q1q2.

Proof : Since χ1,χ2 are distinct primitive real characters, their product χ1χ2,
while not necessarily primitive, is also a nontrivial Dirichlet character, with
modulus at most q1q2 . Hence −(L′/L)(σ,χ1χ2) < O(log q1q2) for σ > 1. Let2

F (s) = ζ(s)L(s,χ1)L(s,χ2)L(s,χ1χ2) (4)

Then −F ′/F is the sum of the negative logarithmic derivatives of ζ(s), L(s,χ1),
L(s,χ2), and L(s,χ1χ2), which is the positive Dirichlet series

∞∑

n=1

(1 + χ1(n))(1 + χ2(n))Λ(n)n−s.

In particular, this series is positive for real s > 1. Arguing as before, we find
that if βi are exceptional zeros of L(s,χi ) then

1
σ − β1

+
1

σ − β2
<

1
σ − 1

+ O(log q1q2);

if βi > 1 − δ then we may take σ = 1 + 2δ to find 1/6δ < O(log q1q2), whence
δ & 1/ log q1q2 as claimed. !
In particular, for each q there is at most one real character mod q whose L-series
has an exceptional zero β > 1 − (c/ log q). This lets us obtain error terms
that depend explicitly on q and (if it exists) β in the asymptotic formulas for
ψ(x, a mod q) and π(x, a mod q). For instance (see e.g. Chapter 20 of [Daven-
port 1967]), we have:

Theorem. For every C > 0 there exists c > 0 such that whenever gcd(a, q) = 1
we have

ψ(x, a mod q) =
(
1 + O(exp−c

√
log x)

) x

ϕ(q)
(5)

and
π(x, a mod q) =

(
1 + O(exp−c

√
log x)

) li(x)
ϕ(q)

(6)

2If χ1χ2 is itself primitive then F (s) is the zeta function of a biquadratic number field K,
namely the compositum of the quadratic fields corresponding to χ1 and χ2. In general ζK(s) =
ζ(s)L(s, χ1)L(s, χ2)L(s, χ3) where χ3 is the primitive character underlying χ1χ2; thus F (s)
always equals ζK(s) multiplied by a finite Euler product.
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for all x > exp(C log2 q), unless there is a Dirichlet character χ mod q for which
L(s,χ) has an exceptional zero β, in which case

ψ(x, a mod q) =
(

1− χ(a)xβ−1

β
+ O(exp−c

√
log x)

)
x

ϕ(q)
(7)

and
π(x, a mod q) =

1
ϕ(q)

(
li(x)− li(xβ) + O(x exp−c

√
log x)

)
(8)

for all x > exp(C log2 q). The constant implicit in each O(·) may depend on C
but not on q.

Proof : See the Exercises. !
Just how close can this β come to 1? We first show that very small 1− β imply
small L(1,χ). Since L(1,χ) =

∫ 1
β L′(σ,χ) dσ, it is enough to prove an upper

bound on |L′(σ,χ)| for σ near 1. We show:

Lemma. There exists an absolute constant C such that |L′(σ,χ)| < C log2 q
for any nontrivial Dirichlet character χ mod q and any σ ≤ 1 such that 1−σ ≤
1/ log q.

Proof : We may assume q > 2, so that the series
∑∞

n=1 χ(n)(log n)n−σ for
−L′(σ,χ) converges if 1− σ ≤ 1/ log q. Split this sum into

∑
n≤q +

∑
n>q. The

first sum is O(log2 q), because the n-th term has abolute value at most

n1−σ

n
log n ≤ q1−σ

n
log n ≤ e

n
log n.

The sum over n > q can be bounded by partial summation together with the
crude estimate |

∑N
q χ(n)| < q, yielding an upper bound e log q, which is again

O(log2 q). !
Corollary. If for some Dirichlet character χ mod q the L-series L(s,χ) has a
zero β > 1− (1/ log q) then L(1,χ) < C(1− β) log2 q.

But the Dirichlet class number formula for the quadratic number field cor-
responding to χ gives L(1,χ) & q−1/2. (We shall soon prove this directly.)
Therefore

1− β & 1
q1/2 log2 q

.

Siegel [Siegel 1935] proved a much better inequality:

Theorem. For each ε > 0 there exists Cε > 0 such that

L(1,χ) > Cεq
−ε

holds for all real Dirichlet characters χ mod q. Hence there exists C ′ε > 0 such
that any zero β of L(s,χ) satisfies

1− β > C ′εq
−ε.
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Proof : Let χ1,χ2 be different primitive real characters to moduli q1 , q2 > 1,
and let

λ = L(1,χ1)L(1,χ2)L(1,χ1χ2) = (s− 1)F (s)
∣∣
s=1

,

with F (s) as in (4). We shall prove that there exist universal constants θ < 1
and A,B,C > 0 such that

F (s) > A− Bλ

1− s
(q1q2)C(1−s) (9)

holds for all s ∈ (θ, 1). (Specifically, we can use θ = 9/10 and A = 1/2, C = 8.)
Assume (9) for the time being. Since F (s) is positive for s > 1 and has a simple
pole at s = 1, we have F (β) ≤ 0 for any β ∈ (θ, 1) such that F has no zero in
(θ, 1). Of course F (β) ≤ 0 also holds if β is a zero of F . For such β we have

λ >
A

B
(1− β)(q1q2)−C(1−β). (10)

We shall fix χ1 and β and use (10) to deduce a lower bound on L(1,χ2) for all
χ2 mod q2 such that q2 > q1 . If there is some real χ1 such that L(β1 ,χ1) = 0 for
some β1 > 1− (ε/2C) then we use that character for χ1 and the zero β1 for β.
Otherwise F (s) never has a zero in (1− (ε/2C), 1), so we choose χ1 arbitrarily
and β subject to 0 < 1− β < ε/2C. Then for any primitive χ2 mod q2 > q1 we
use (10), together with the upper bound L(1,χ)$ log q (see the Exercises), to
find that

L(1,χ2) > c q−C(1−β)
2 / log q2 ,

with c depending only (but ineffectively!) on ε via χ1 and β. Since C(1− β) <
ε/2, Siegel’s theorem follows.

It remains to prove (9). Siegel originally showed this using class field theory; we
follow the more direct approach of [Estermann 1948]. (See also [Chowla 1950]
for another direct proof.)

Since F (s) has a nonnegative Dirichlet series, its Taylor series about s = 2 is

F (s) =
∞∑

m=0

bm(2− s)m

with b0 = F (2) > 1 and all bm > 0. Since F is entire except for a simple pole
of residue λ at s = 1, we have the Taylor expansion

F (s)− λ

s− 1
=

∞∑

m=0

(bm − λ)(2− s)m,

valid for all s ∈ C. Consider this on |s − 2| = 3/2. We have there the crude
bounds L(s,χ1) $ q1 , L(s,χ2) $ q2 , L(s,χ1χ2) $ q1q2 , and of course ζ(s) is
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bounded on |s− 2| = 3/2. So, F (s)$ (q1q2)2 on this circle, and thus the same
is true of F (s)− λ/(s− 1). Hence

|bm − λ|$ (2/3)m(q1q2)2.

For any fixed θ ∈ (1/2, 1) it follows that
∞∑

m=M

|bm − λ| (2− s)m $ (q1q2)2
(2

3
(2− θ)

)M

holds for all s ∈ (θ, 1). Since b0 > 1 and bm ≥ 0, we thus have

F (s)− λ

s− 1
≥ 1− λ

(2− s)M − 1
1− s

−O(q1q2)2
(2

3
(2− θ)

)M
.

Let M be the largest integer such that the error estimate O(q1q2)2((4−2θ)/3)M

is < 1/2. Then

F (s) >
1
2
− λ

1− s
(2− s)M .

But
(2− s)M = exp(M log(2− s)) < expM(1− s),

and expM $ (q1q2)O(1), which completes the proof of (9) and thus of Siegel’s
theorem.

Remarks

Unfortunately the constants Cε and C ′ε in Siegel’s theorem, unlike all such con-
stants that we have encountered so far, are ineffective for every ε < 1/2, and
remain ineffective almost seventy years later. This is because we need more than
one counterexample to reach a contradiction. What can be obtained effectively
are constants Cε such that 1−β > Cεq−ε holds for every q and all real primitive
characters mod q, with at most a single exception (q, χ,β). This β, if it exists,
is called the “Siegel zero” or “Siegel-Landau zero”. Note that a zero β of some
L(s,χ) that violates the ERH may or may not qualify as a Siegel(-Landau) zero
depending on the choice of ε and Cε.

Dirichlet’s class number formula relates L(1,χ) for real characters χ with the
class number of quadratic number fields. Siegel’s theorem and its refinements
thus yield information on these class numbers. For instance, if χ is an odd
character then the imaginary quadratic field K = Q(

√
−q ) has a zeta function

ζK(s) that factors into ζ(s)L(s,χ). Let h(K) be the class number of K. Siegel’s
theorem, together with Dirichlet’s formula, yields the estimate h(K)&ε q1/2−ε.
In particular, h(K) > 1 for all but finitely many K. But this does not reduce
the determination of all such K to a finite computation because the implied
constant cannot be made effective. Gauss had already conjectured in 1801 (in
terms of binary quadratic forms, see Disq. Arith., §303) that h(K) = 1 only for
K = Q(

√
−q ) with

q = 3, 4, 7, 8, 11, 19, 43, 67, 163.

7



But the closest that Siegel’s method can bring us to this conjecture is the the-
orem that there is at most one further such q. Heilbronn and Linfoot showed
this a year before Siegel’s theorem [HL 1934] using a closely related method
[Heilbronn 1934].

It was only with much further effort that Heegner ([1952], corrected by Deuring
[1968]), and later Baker [1966] and Stark [1967] (working independently and
using different approaches), proved Gauss’s conjecture, at last exorcising the
“tenth discriminant”. None of these approaches yields an effective lower bound
on h(K) that grows without limit as q→∞. Such a bound was finally obtained
by Goldfeld, Gross, and Zagier ([Goldfeld 1976], [GZ 1986]), but it grows much
more slowly than q1/2−ε; namely, h(K) > c log q/ log log q (and h(K) > c′ log q
for prime q). Even this was a major breakthrough that combined difficult alge-
braic and analytic techniques. See [Goldfeld 1986] for an overview.

Exercises

1. Complete the derivation of (5,6,7,8) from our (nearly) zero-free region for
Dirichlet L-functions.

2. Show that for each ε > 0 there exists C such that whenever gcd(a, q) = 1 we
have

|ϕ(q) ψ(x, a mod q)− x| < εx

for all x > qC , unless there is a Dirichlet character χ mod q for which L(s,χ)
has an exceptional zero β, in which case

|ϕ(q) ψ(x, a mod q)− x− (xβ/β)| < εx

for all x > qC . [NB qC = exp(C log q).] Use this argument, together with the
fact that ψ(x, a mod q) ≥ 0, to give an alternative proof of Landau’s theorem
(at most one exceptional zero for any character mod q). Also, obtain the cor-
responding estimates for π(x, a mod q), and deduce that there is an absolute
constant C such that if there is no exceptional zero then there exists a prime
p ≡ a mod q with p < qC . (Linnik [1944] showed this unconditionally, by show-
ing that very small values of 1− β force the other zeros farther away from the
line σ = 1.)

3. Check that |L′(σ,χ)| $A log2 q holds in any interval 0 ≤ 1 − σ ≤ A/ log q.
How does the implied constant depend on A? Use the same method to show
that also |L(σ,χ)| $ log q in the same interval, and in particular at σ = 1.
What bound can you obtain on the higher derivatives of L(σ,χ) for σ near 1?

4. Prove that for every ε > 0 there exist positive constants A, c such that if
L(1,χ) < Aq−ε for some primitive Dirichlet character χ mod q then L(β, χ) = 0
for some β such that 1− β < c/ log q. [Use the fact that

L(1,χ) = L(σ,χ) exp
∫ σ

1
−L′

L
(s,χ) ds,

or work directly with the product formula for L(s,χ). This Exercise, which
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shows that small L(1,χ) implies small 1− β, may be regarded as a qualitative
converse of our computation showing that small 1− β implies small L(1,χ).]
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Math 259: Introduction to Analytic Number Theory

Formulas for L(1,χ)

Let χ be a primitive character mod q > 1. We shall obtain a finite closed form
for L(1,χ). As with several of our other formulas involving L(s,χ), this one
will have one shape if χ is even (χ(−1) = +1), another if the character is odd
(χ(−1) = −1).

Recall our formula

χ(n) =
1

τ(χ)

∑

a mod q

χ(a)e2πina/q.

This yields

L(1,χ) =
1

τ(χ)

∑

a mod q

χ(a)
∞∑

n=1

1
n

e2πian/q, (1)

the implied interchange of sums being justified if the inner sum converges for
each a mod q coprime with q. But this convergence follows by partial summation
from the boundedness of the partial sum

∑M
n=1 e2πian/q for all nonzero a mod q.

In fact we recognize it as the Taylor series for

− log(1− e2πia/q) = − log
(

2 sin
aπ

q

)
+

iπ

2

(
1− 2a

q

)

(if we choose the representative of a mod q with 0 < a < q). Either the real or
the imaginary part will disappear depending on whether χ is odd or even.

Assume first that χ is even. Then the terms (1−2a/q) cancel in (a, q−a) pairs.
Moreover, the terms χ(a) log 2 sum to zero, and we have

L(1,χ) = − 1
τ(χ)

∑

a mod q

χ(a) log sin
aπ

q
. (2)

For example, if χ is a real character then
√

qL(1,χ) = 2 log ε

where

ε =
"q/2#∏

a=1

sinχ(a) aπ

q

is a cyclotomic unit of Q(√q ). The Dirichlet class number formula then asserts
in effect that ε = εh

0 where ε0 is the fundamental unit of that real quadratic field
and h is its class number.
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If on the other hand χ is odd then it is the logarithm terms that cancel in
symmetrical pairs. Using again that fact that

∑
a mod q χ(a) = 0 we simplify (1)

to

L(1,χ) = − iπ

qτ(χ)

q−1∑

a=1

aχ(a) (3)

In particular if χ is real then (again using the sign of τ(χ) for real characters)

L(1,χ) = −πq−3/2
q−1∑

a=1

aχ(a).

Thus
∑q−1

a=1 aχ(a) is negative, and by Dirichlet equals −q times the class number
of the imaginary quadratic field Q(

√
−q ), except for q = 3, 4 when that field

has extra roots of unity.

Let us concentrate on the case of real characters to prime modulus q ≡ −1 mod 4.
The inequality

∑q−1
a=1 aχ(a) < 0 suggests that the quadratic residues mod q tend

to be more numerous in the interval [1, q/2] than in [q/2, q]. We can prove this
by evaluating the sum

Sχ(N) :=
N∑

n=1

χ(n)

at N = q/2. We noted already that for any nontrivial character χ mod q we
have Sχ(q) = 0 and thus |Sχ(N)| < q for all N . In fact, using the Gauss-sum
formula for χ(n) we have

Sχ(N) =
1

τ(χ)

∑

a mod q

χ(a)
N∑

n=1

e2πina/q =
−1

τ(χ)

∑

a mod q

χ(a)
1− e2πiNa/q

1− e−2πia/q
. (4)

We note in passing that this formula quickly yields:

Lemma ([Pólya 1918], [Vinogradov 1918]). There exists an absolute constant A
such that

|Sχ(N)| < Aq1/2 log q

for all primitive Dirichlet characters χ mod q (q > 1) and all N ∈ Z.

Proof : We have (1−e2πiNa/q)/(1−e−2πia/q) % max(q/a, q/(q−a)). We already
saw that |τ(χ)| = q1/2. Therefore (4) yields

Sχ(N) % q1/2
"q/2#∑

a=1

1
a
% q1/2 log q. !

Now let χ be the quadratic character modulo a prime q ≡ −1 mod 4 and let
N = (q − 1)/2. (What would happen for q ≡ +1 mod 4?) Then (4) becomes

Sχ((q − 1)/2) =
q−1∑

n=1

χ(n)φ(n/q)
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where φ(x) is the periodic function defined by

φ(x) =






0, if 2x ∈ Z;
+1/2, if 0 < x− &x' < 1/2;
−1/2, otherwise

(“square wave”). This has the Fourier series

φ(x) =
2
π

(
sin 2πx +

1
3

sin 6πx +
1
5

sin 10πx +
1
7

sin 14πx + · · ·
)
.

We thus have

Sχ((q − 1)/2) =
1
iπ

∞∑

m=1
m odd

1
m

q−1∑

a=1

χ(a)(e2πima/q − e−2πima/q)

The inner sum is
τ(χ)(χ(m)− χ(−m)) = 2i

√
q χ(m).

Thus our final formula for Sχ((q − 1)/2) is

2√q

π

∑

m odd

χ(m)
m

=
(2− χ(2))√q

π
L(1,χ).

It follows, as claimed, that there are more quadratic residues than nonresidues
in [1, q/2]; in fact, once q > 3 the difference between the counts is either h or 3h
according as χ(2) = 1 or −1, that is, according as q is 7 or 3 mod 8. Even the
positivity of Sχ((q − 1)/2) has yet to be proved without resort to such analytic
methods!

Exercises

1. Show directly that if χ is a primitive, odd, real character mod q > 4 then∑q−1
a=1 aχ(a) is a multiple of q, at least when q is prime.

2. Suppose χ is a primitive character mod q, and n is a positive integer such
that (−1)n = χ(−1). Prove that q1/2π−nL(n, χ) is a rational number by finding
a closed form that generalizes our formula for n = 1.

For instance, if χ = χ4 we have π−nL(n, χ) = (−1)nEn−1/(2n+1(2n− 1)!), where the

integer En−1 is the (n− 1)-st Euler number.

3. Using the functional equation, conclude that L(n, χ) ∈ Q for all real Dirichlet
characters χ (possibly trivial and/or non-primitive) and integers n ≤ 0.

4. What can you say of Sχ(&q/4')? What about the sums
∑q−1

a=1 amχ(a) for
m = 2, 3, . . .? (See [ACW 1967], [TW 1999].)
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Math 259: Introduction to Analytic Number Theory

The Selberg (quadratic) sieve and some applications

An elementary and indeed näıve approach to the distribution of primes is the
following argument: an integer n is prime if and only if it is not divisible by
the primes ≤

√
n; but half the integers are odd, 2/3 are not multiples of 3,

4/5 not multiples of 5, etc., and divisibility by any prime is independent of
divisibility by finitely many other primes, so. . . Moreover, if n is restricted
to an arithmetic progression a mod q with (a, q) = 1 then the same factors
(p − 1)/p arise except those for which l|q, from which we recover the factor∏

p|q p/(p− 1) = q/φ(q) in the asymptotic formula for π(qx, a mod q).

The problem with estimating π(x) etc. this way is that the divisibilities aren’t
quite independent. This is already implicit in our trial-division test for primality:
if n is known to contain no primes ≤

√
n, the conditional probability that it be

a multiple of some other prime p ∈ (
√

n, n) is not 1/p but zero. Already for
small p, the number of n < x divisible by p is not quite x/p but x/p + O(1),
and similarly for n divisible by a product of distinct primes; so if we try to
use the principle of inclusion and exclusion to recover the number of primes
n < x, or even of n not divisible by r primes p1, . . . , pr, we get an estimate of
x

∏r
i=1(1 −

1
pi

) as expected, but with an “error term” O(2r) that swamps the
estimate long before r can get usefully large.

This quandary is prototypical of “sieve” situations, in which we have a set S of
A integers such that #(S∩DZ)/A is approximated by a multiplicative function
α(D) of the squarefree integer D, and are interested in the number A(

∏
p∈P p)

of n ∈ S not divisible by any of the primes p in a given set P . (For instance, if
S is an interval then α(D) = 1/D; in general, α must be multiplicative for the
divisibility of a random n ∈ S by a prime p to be approximately independent
of its divisibility by any other primes.) Several methods are now known for
deriving “sieve inequalities”, which are nontrivial upper bounds on A(

∏
p∈P p).

These inequalities use a variety of methods, but curiously the resulting bounds
are similar in many important contexts, and often exceed the expected number
by a factor asymptotic to 2. We shall develop one of the most general such
inequalities, due to Selberg, and give some typical examples of its use in analytic
number theory. While we state Selberg’s sieve in the context of divisibility, in
fact all that we are using is that each prime p sifts out a subset of S and that the
events that a random n ∈ S survives these tests for different p are approximately
independent. Thus Selberg’s sieve has a counterpart in the context of probability
theory, for which see the final Exercise. Selberg’s and many other sieves are
collected in [Selberg 1969]; nice applications of sieve inequalities to other kinds
of problems in number theory are interspersed throughout [Serre 1992].

Assume, then, that an (n ∈ Z) are nonnegative real numbers with
∑

n∈Z an =
A < ∞, and that α is a multiplicative function satisfying 0 ≤ α(d) ≤ 1 for
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each d (equivalently, for each prime d). For each squarefree d > 0 let

Ad :=
∑

m∈Z

amd = A α(d) + r(d);

in any application, the r(d) must be small compared to A. Let P be a finite set
of primes, and D the squarefree integer

∏
p∈P p. We are interested in

A(D) :=
∑

(n,D)=1

an,

which is the number of n ∈ A not divisible by any of the primes in P . We hope
that A(D) is approximately A

∏
p|D(1 − α(p)), with an error that is usefully

small if the r(d) are. What we can show is:

Theorem (Selberg): For each z ≥ 1 we have

A(D) ≤ A

S(D, z)
+ R(D, z), (1)

where S, R are defined by

S(D, z) :=
∑

d|D
d≤z

∏

p|d

α(p)
1− α(p)

, R(D, z) :=
∑

d|D
d≤z2

3ω(d)|r(d)|

and ω(d) :=
∑

p|d 1, the number of distinct prime factors of d.

Remark : Given D and α, the series S(D, z) and R(D, z) are increasing functions
of z because they accumulate more positive terms as z grows. For z = 1 we have
S(D, z) = 1 and R(D, z)=0, so (1) is the trivial inequality A(D) ≤ A(1) = A.
For z ≥ D we have

S(D, z) = S(D,D) =
∑

d|D

∏

p|d

α(p)
1− α(p)

=
∏

p|D

(
1 +

α(p)
1− α(p)

)
=

∏

p|D

1
1− α(p)

,

so 1/S(D, z) is the expected factor
∏

p|D(1 − α(p)), and (1) is implied by the
inclusion-exclusion estimate

∣∣A(D) − A
∏

d|D(1 − α(p))
∣∣ ≤

∑
d|D |r(d)|. Thus

Selberg’s inequality may be regarded as an interpolation between inclusion-
exclusion and the trivial A(D) ≤ A. Note that (1) is only an upper bound: we
do not claim that |A(D)−A/S(D, z)|( R(D, z).

Proof : Let λd (d|D) be arbitrary real parameters with λ1 = 1 (and eventually
λd = 0 once d > z). Then

A(D) ≤
∑

n

an

( ∑

d|(n,D)

λd

)2

=
∑∑

d1,d2|D

λd1λd2

∑

[d1,d2]|n

an,

where [d1, d2] := lcm(d1, d2). The inner sum is just A[d1,d2], so we have

A(D) ≤
∑∑

d1,d2|D

λd1λd2

(
Aα([d1, d2]) + r([d1, d2])

)
≤ AQ + R,
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where Q is the quadratic form

Q :=
∑∑

d1,d2|D

α([d1, d2])λd1λd2

in the λd, and
R :=

∑∑

d1,d2|D

∣∣λd1λd2r([d1, d2])
∣∣.

Now for d|D the number of pairs d1, d2 such that d = [d1, d2] is 3ω(d) (why?);
thus (1) will follow from the following

Lemma: The minimum of the quadratic form Q subject to the conditions λ1 = 1
and d > z ⇒ λd = 0 is 1/S(D, z), and is attained by λd with |λd| ≤ 1.

Proof of Lemma: By continuity we may assume that 0 < α(p) < 1 for all
p ∈ P . (In fact, for our purpose we can exclude from the start the possibilities
α(p) = 0 or 1 — do you see why?) Since [d1, d2] gcd(d1, d2) = d1d2 and α is
multiplicative, we have

Q =
∑∑

d1,d2|D

α(d1)λd1 · α(d2)λd2

α(gcd(d1, d2))
.

Selberg’s key insight is that this quadratic form is diagonalized by introducing
coefficients δ(e) for e|D, determined by

1
α(d)

=
∑

e|d

δ(e).

Then
Q =

∑

e|D

δ(e)
[∑

e|d

α(d)λd

]2
.

Let x(e), then, be defined by

x(e) :=
∑

e|d

λdα(d).

By Möbius inversion we find

δ(e) =
∏

p|e

1− α(p)
α(p)

, λd =
1

α(d)

∑

d|e

µ(e/d)x(e).

Our conditions on the λd then become
∑

e|D

µ(e)x(e) = α(1)λ1 = 1, e > z ⇒ x(e) = 0.

By the Schwarz inequality, the minimum of Q subject to these conditions is
[ ∑

e|D, e≤z

1
δ(e)

]−1
= 1/S(D, z),
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and is attained at x(e) = µ(e)
/
(δ(e)S(D, z)). This yields

S(D, z)λd =
µ(d)
α(d)

∑

d|e≤z

1
δ(e)

=
µ(d)

α(d)δ(d)

∑

f|(D/d)
f≤z/d

1
δ(f)

.

But we have
1

α(d)δ(d)
=

∑

e|d

1
δ(e)

:

both sides of the equation are multiplicative functions of the squarefree integer d
(since α, δ are both multiplicative), and the equation holds for prime d by our
above formula for δ(e). Thus we have

S(D, z)λd = µ(d)
∑∑

e,f

1
δ(ef)

,

with each ef ≤ z and no ef values repeated. Thus the sum has absolute value
at most S(D, z), so |λd| ≤ 1 as claimed. This concludes the proof of the Lemma,
and thus also of Selberg’s inequality (1). !!
Typically we will let D = D(y) =

∏
p≤y p. For instance, we show:1

Corollary. Fix q. For all a, x0, A such that gcd(a, q) = 1, we have

π(x0 + Aq, a mod q)− π(x0, a mod q) <
( 2q

φ(q)
+ O(

log log A

log A
)
) A

log A
. (2)

Proof : Let an be the characteristic function of the arithmetic progression

{n|n ≡ a mod q, 0 < n− x0 < Aq}.

Then A(D(y)) is an upper bound on π(x0+Aq, a mod q)−π(x0, a mod q)−π(y).
We take α(n) = 1/n if gcd(n, q) = 1 and α(n) = 0 otherwise. Then |r(d)| ≤ 1
for each d, and so R(D, z) is bounded by the sum of the n−s coefficients of
ζ3(s) for n ≤ z2, so is ( (z log z)2. [An equivalent and more elementary way to
handle

∑
n≤x 3ω(n) is to note that 3ω(n) is at most the number of representations

n = n1n2n3 of n as a product of three positive integers.] As to S(D, z), we take
z = y and expand α/(1− α) in a geometric series to find

S(D, z) >
∑

n≤z
(n,q)=1

1
n

=
φ(q)

q
log z + O(1). (3)

Thus Selberg’s bound (1) is (q/φ(q))A/ log z + O(z2 log2 z). We choose y = z =
A1/2/ log2A, and deduce the upper bound (2), absorbing the correction π(y)
into the error term since π(y) < y < A1/2. !

1This result in fact predates Selberg, because this choice of an is regular enough to be
treated with earlier sieve inequalities.
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In particular, we may to obtain an elementary upper bound on π(Aq, a mod q)
by taking x0 = 0. The implied O-constant in (2) depends on q, but tractably
and effectively so, without invoking zeros of L-functions and the like. The only
issue is the dependence on q of the O(1) error in (3). We may write

∑

n≤z
(n,q)=1

1
n

=
∑

d|q

µ(q/d)
$z/d%∑

n=1

1
dn

=
∑

d|q

µ(q/d)
d

(log z + O(1 + log d)).

Thus the error in (3) is bounded by

∑

d|q

|µ(q/d)|1 + log d

d
.

For instance, we readily deduce that for all ε there exists an effective q0(ε) such
that if q > q0(ε) then

π(x0 + Aq, a mod q)− π(x0, a mod q) < (2 + ε)
q

φ(q)
A

log A

for all A, x0, a with A > q. If the coefficient 2 were any smaller, this upper
bound would be enough to banish the Siegel-Landau zero!

Exercises

1. What are the λd if z ≥ D? Explain.

2. Complete the two proofs outlined above that
∑

n≤x 3ω(n) ( x(log x)2 (one
by comparison with the coefficients of ζ3, the other by counting solutions of
n1n2n3 ≤ x). Can you prove that in fact

∑
n≤x 3ω(n) ∼ Cx(log x)2 for some

constant C > 0, and numerically compute C?

3. Prove that for each integer n > 0 the number of primes p < x such that
p + 2n is also prime is On(x/ log2 x). In particular, conclude that the sum

1
3

+
1
5

+
1
5

+
1
7

+
1
11

+
1
13

+
1
17

+
1
19

+
1
29

+
1
31

+
1
41

+
1
43

+ · · ·

of the reciprocals of twin primes converges. (This result was first obtained by
Brun [1919] using his less powerful sieve inequality. The sum may be considered
“convergent” if it is finite, that is, if the twin-prime conjecture is false.)

4. Prove that for all ε > 0 there exists an effective constant x0(ε) such that, for
each x > x0(ε), there are at most ((8/π) + ε)x/ log x integers n < x such that
n2 + 1 is a prime. Generalize.

It is of course a famous open problem to find a similar lower bound on the number of
such n, or even to prove that it is unbounded as x→∞ — that is, to prove that there
are infinitely many primes of the form n2 +1. More generally, one conjectures that for
every irreducible polynomial P ∈ Z[X] there exist infinitely many integers n such that
P (n) is prime, provided that for each prime p there exists at least one n ∈ Z such that
P (n) $≡ 0 mod p. This, in turn, is the special case k = 1 of “Hypothesis H” of Schinzel
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and Sierpiński, which asserts that for irreducible polynomials P1, . . . , Pk ∈ Z[X] there
are infinitely many n ∈ Z such that each Pi(n) is prime, provided that for each prime p
there exists at least one n ∈ Z such that Pi(n) $≡ 0 mod p for each i. Hypothesis H
is also a generalization of a conjecture of Dickson on the simultaneous primality of
ain + bi, which itself generalizes the twin prime conjecture. In each case one expects
that in fact the number of n < x such that each Pi(n) is prime is asymptotic to
cx/(log x)k for some constant c given by an infinite product over p depending on the
polynomials Pi (assuming that Pi $= ±Pj for distinct i, j; this is the Bateman-Horn
conjecture). For more information on these various conjectures, see Chapter 6 of
[Ribenboim 1996], particularly pages 372, 391, and 409. The only case of any of these
conjectures that has been proved is the case of a single linear polynomial, which is
Dirichlet’s theorem. Sieve methods, including Selberg’s, yield an upper bound with
the same asymptotic behavior but a larger c.

As usual, one can formulate analogous problems over polynomial rings such as Fq[T ]

in place of Z. For instance, fix P ∈ Fq[T, X], and ask whether there exist infinitely

many polynomials n(T ) such that P (T, n(T )) is irreducible. A necessary condition is

that P be irreducible as a polynomial of two variables and that for each nonconstant

p ∈ Fq[T ] there exist n ∈ Fq[T ] such that P (T, n(T )) is not a multiple of p. One might

be tempted to conjecture that again this necessary condition is also sufficient; but here

this conjecture is false! Explicit families of counterexamples are given in [CCG 2003].

In any event, one can use the same sieve inequalities to give an upper bound O(qd/d)

on the number of n(T ) of degree at most d for which P (T, n(T )) is irreducible.

5. Let pi (i ∈ [m] := {1, 2, . . . ,m}) be probabilities, i.e., real numbers in
[0, 1]; and let E1, . . . , Em be events approximating independent events with those
probabilities, i.e., such that for each I ⊆ [m] the probability that Ei occurs for
all i ∈ I is

∏
i∈I pi +r(I). Obtain upper bounds on the probability that none of

the Ei occurs, bounds which correspond to and/or generalize Selberg’s (1). (See
for instance [Chow 1998], where an even further generalization is proposed.)
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Math 259: Introduction to Analytic Number Theory

Introduction to exponential sums; Weyl equidistribution

The “exponential” in question is the complex exponential, which we normalize
with a factor of 2π and abbreviate by e(·):

e(x) := e2πix

(with x ∈ R in most cases). On occasion we also use the notation

em(x) := e(mx) = e2πimx;

note that e1(x) = e(x) and e0(x) = 1 for all x. An “exponential sum” is
a sum of the form

∑N
n=1 e(xn) for some real numbers xn, or more generally∑N

n=1 χ(an)e(xn) for some real xn, integral an, and character χ. (We have
already seen the examples of Gauss and Jacobi sums.) The general problem
is to find a nontrivial estimate on such a sum, which usually means an upper
bound significantly smaller than N on its absolute value. Such problems are
ubiquitous in number theory, analytic and otherwise, and occasionally arise in
other branches of mathematics (we mentioned [CEP 1996] in the Introduction).
Sometimes these sums arise directly or nearly so; for instance, the Lindelöf
conjecture concerns the size of

ζ(1/2 + it) =
N∑

n=1

n−1/2−it +
N1/2−it

it− 1/2
+ O(tN−1/2),

so it would follow from a proof of

"t2#∑

n=1

n−1/2−it # |t|ε,

which in turn would follow by partial summation from good estimates on

M∑

n=1

n−it =
M∑

n=1

e

(
t log n

2π

)
.

Likewise the Lindelöf conjecture for a Dirichlet L-series L(s,χ) hinges on upper
bounds on

∑M
n=1 χ(n)e(t log n/(2π)). Often the translation of a problem to esti-

mating exponential sums takes more work. We have already seen one example,
the Pólya-Vinogradov estimate on

∑N
n=1 χ(n) (which is already an “exponen-

tial sum” as we have defined the term, with all xn = 0, but whose analysis
required the Gauss exponential sums). Our next example is Weyl’s criterion for
equidistribution mod 1.
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A sequence c1, c2, c3, . . . of real numbers is said to be equidistributed mod 1 if
the fractional parts 〈cn〉 cover each interval in R/Z in proportion to its length;
that is, if

lim
N→∞

1
N

#{n ≤ N : a ≤ 〈cn〉 ≤ b} = b− a (1)

for all a, b such that 0 ≤ a ≤ b ≤ 1. This is connected with exponential sums
via a famous result of Weyl [1914]:

Theorem. For a sequence {cn}∞n=1 in R (or equivalently in R/Z), the following
are equivalent:

(i) Condition (1) holds for all a, b such that 0 ≤ a ≤ b ≤ 1;

(ii) For any continuous function f : (R/Z)→C,

lim
N→∞

1
N

N∑

n=1

f(cn) =
∫ 1

0
f(t) dt; (2)

(iii) For each m ∈ Z,

lim
N→∞

1
N

N∑

n=1

em(cn) = δm

[
=

∫ 1

0
em(t) dt

]
. (3)

Note that (iii) is precisely the problem of nontrivially estimating an exponential
sum.

Proof : (i)⇒(ii) Condition (i) means that (ii) holds when f is the characteristic
function of an interval (NB such a function is not generally continuous, but it is
integrable, which is enough for the sequel); also both sides of (2) are linear in f ,
so (ii) holds for finite linear combinations of such characteristic functions, a.k.a.
step functions. If |f(t)| < ε for all t ∈ R/Z then both sides of (2) are bounded
by ε for all N . Thus (ii) holds for any function on R/Z uniformly approximable
by step functions. But this includes all continuous functions.

(ii)⇒(i) Estimate the characteristic function of [a, b] from below and above by
continuous functions whose integral differs from b− a by at most ε.

(ii)⇒(iii) is clear because (iii) is a special case of (ii).

(iii)⇒(ii) follows from Fejér’s theorem: every continuous function on R/Z is
uniformly approximated by a finite linear combination of the functions em. !
[NB the approximation is in general not an initial segment of the Fourier series
for f . See [Körner 1988], chapters 1–3 (pages 3–13). The existence of uniform
approximations is also a special case of the Stone-Weierstrass theorem.]

Interlude on the “little oh” notation o(·). We have gotten this far with-
out explicitly using the “little oh” notation; this is as good a place as any to
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introduce it. The notation f = o(g) means that1 (g > 0 and) (f/g)→0. This
begs the question “approaches zero as what?”, whose answer should usually be
clear from context if it is not stated explicitly. Thus Weyl’s theorem states that
{cn} is equidistributed mod 1 if and only if

∑N
n=1 em(cn) = o(N) as N→∞ for

each nonzero m ∈ Z; that is, if and only if for each m *= 0 we can improve
on the trivial bound |

∑N
n=1 em(cn)| ≤ N by a factor that tends to ∞ with N .

For instance, we have Weyl’s first application of this theorem: For r ∈ R the
sequence {nr} is equidistributed mod 1 if and only if r /∈ Q. Indeed if r is
rational then 〈nr〉 takes only finitely many values; but if r is irrational then for
each m we have em(r) *= 1 and thus

N∑

n=1

em(nr) =
em((N + 1)r)− em(r)

em(r)− 1
= Om(1) = om(N).

(As with Om(·), the subscript in om(·) emphasizes that the convergence to 0 may
not be uniform in m.) In general, we cannot reasonably hope that

∑N
n=1 em(cn)

is bounded for each m, but we will be often able to show that the sum is o(N),
which suffices to prove equidistribution. For instance, we’ll see that if P ∈ R[x]
is a polynomial at least one of whose nonconstant coefficients is irrational then
{P (n)} is equidistributed mod 1. (This was Weyl’s main application of his
theorem in [Weyl 1914]; the example of {nr} is the special case of linear poly-
nomials.) We’ll also show this for {log10(n!)} and thus obtain the distribution
of the first d digits of n! for each d.

Exercises

1. (An easy variation on Weyl’s theorem.) Let An ⊂ R be finite subsets with
#(An)→∞, and say that An is asymptotically equidistributed modulo 1 if

lim
n→∞

#{t ∈ An : a ≤ 〈t〉 ≤ b}
#(An)

= b− a

for all a, b such that 0 ≤ a ≤ b ≤ 1. Prove that this is the case if and only if

lim
n→∞

1
#(An)

∑

t∈An

em(t) = δm.

Show that this condition is satisfied by An constructed as follows: let en be some
positive integers, qn = cnen+1 be primes such that qn/e2

n→∞, and an arbitrary
elements of (Z/qnZ)∗; and let An be the set of anr/qn for representatives r of
the cn residue classes of nonzero en-th powers mod qn.

Presumably such An remain asymptotically equidistributed mod 1 if we require only

that qn ! eθ
n for some θ > 1, but this is much harder to prove.

1Sometimes g = 0 is allowed, in which case f = o(g) means that (f/g)→0, except at
points where g = 0, at which f must also vanish. Equivalently, for all ε > 0 it is true
that eventually |f | ≤ εg. For instance, we could use this notation to write the definition of
the derivative as follows: a function F is differentiable at x if there exists F ′(x) such that
F (y) = F (x) + F ′(x)(y − x) + o(y − x) as y→x.
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2. (Recognizing other distributions mod 1.) In Weyl’s theorem suppose condi-
tion (iii) holds for all nonzero m *= ±1, but

lim
N→∞

1
N

N∑

n=1

e±1(cn) = 1/2.

What can you conclude about the limits in (i) and (ii)? Generalize.

3. (Weyl in higher dimensions.) What should it mean for a sequence of vectors
in Rk to be equidistributed mod Zk? Generalize Weyl’s theorem to give a
necessary and sufficient condition for equidistribution of a sequence in (R/Z)k.
Deduce a condition on the entries of a vector r ∈ Rk that is necessary and
sufficient for {nr}∞n=1 to be equidistributed mod Zk.

4. (An application of equidistribution mod Zk.) Prove that inft∈R |ζ(σ + it)| =
ζ(2σ)/ζ(σ) for each σ > 1, and indeed that

lim inf
|t|→∞

|ζ(σ + it)| = ζ(2σ)/ζ(σ), lim sup
|t|→∞

|ζ(σ + it)| = ζ(σ).

What can you say about the behavior of log ζ(σ + it), or more generally of
log L(σ + it, χ), for fixed σ > 1 and Dirichlet character χ?

5. (Basic properties of o(·).) If f = o(g) then f = O(g). If f = o(g) and
g = O(h), or f # g and g = o(h), then f = o(h) (assuming that the same
implied limit is taken in both premises). If f1 = o(g1) and f2 = O(g2) then
f1f2 = o(g1g2); if moreover f2 = o(g2) then f1+f2 = o(g1+g2) = o(max(g1, g2)).
Given a positive function g, the functions f such that f = o(g) constitute a
vector space.

6. (Effective and ineffective o(·).) An estimate f = o(g) is said to be effective if
for each ε > 0 we can compute a specific point past which |f | < εg (or |f | ≤ εg
if g = 0 is allowed); otherwise it is ineffective. Show that the transformations in
the previous exercise preserve effectivity. Give an example of an ineffective o(·).
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Math 259: Introduction to Analytic Number Theory

Exponential sums II: the Kuzmin and Montgomery-Vaughan estimates

[Blurb on algebraic vs. analytical bounds on exponential sums goes here]

While proving that an arithmetic progression with irrational step size is equidis-
tributed mod 1, we encountered the estimate

∣∣∣∣∣

N∑

n=1

e(cn)

∣∣∣∣∣ ≤
2

|1− e(c)| = 1/| sinπc|# ‖c‖−1,

where ‖c‖ is the distance from c to the nearest integer. Kuzmin (1927) obtained
a much more general estimate of this kind:

Proposition. Let cn (0 ≤ n ≤ N) be a sequence of real numbers whose sequence
of differences δn := cn − cn−1 (1 ≤ n ≤ N) is monotonic and contained in
[k + λ, k + 1− λ] for some k ∈ Z and λ > 0. Then

∣∣∣∣∣

N∑

n=0

e(cn)

∣∣∣∣∣ ≤ cot
πλ

2
# λ−1.

Proof : Let

ζn =
1

1− e(δn)
=

e(cn−1)
e(cn−1)− e(cn)

.

Note that the ζn are collinear:

ζn = (1 + i cot πδn)/2;

since the sequence {δn} is monotonic, the ζn are positioned consecutively on the
vertical line Re(ζ) = 1/2. Now our exponential sum is

N∑

n=0

e(cn) = e(cN ) +
N∑

n=1

(e(cn−1)− e(cn))ζn

= (1− ζN )e(cN ) + ζ1e(c0) +
N−1∑

n=1

e(cn)(ζn+1 − ζn).

Thus
∣∣∣∣∣

N∑

n=0

e(cn)

∣∣∣∣∣ ≤ |ζ1| +
N−1∑

n=1

|ζn+1 − ζn| + |1− ζN | = |ζ1| + |ζN − ζ1| + |ζN |,

where in the last step we used the monotonicity of Im(ζn) and the fact that
Re(ζn) = 1/2. The conclusion of the proof,

|ζ1| + |ζN − ζ1| + |ζN | ≤ 1
sinπλ

+
1

tanπλ
= cot

πλ

2
,
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is an exercise in trigonometry. !
For instance, it follows that for t/π < N1 < N2 we have

N2∑

n=N1

n−it # N2/t,

since we are dealing with cn = −(t log n)/2π and thus δn ∼ −t/2nπ. By partial
summation it follows that

N2∑

n=N1

n−1/2−it # 1
t

∫ N2

N1

n−3/2 · n dn # t−1N1/2
2 ,

and thus

ζ(1/2 + it) =
N∑

n=1

n−1/2−it + O(1),

uniformly for all N, t with |t|/π < N # t2.

With some more work, we can (and soon will) push the upper limit of the
sum further down, but not (yet?) all the way to tε; as n decreases, the phase
e((t log n)/2π) varies more erratically, making the sum harder to control. Still,
if we sum random complex numbers of norm cn, the variance of the sum is∑

n |cn|2, so we expect that the sum would grow as the square root of that,
which for ζ(1/2 + it) would make it log1/2 |t| “on average”. We shall prove this
as an application of one of a series of general mean-square results of this kind,
in which the summands are not independent variables but complex exponentials
with different frequencies:

f(t) =
∑

µ∈A

cµe(µt)

for some finite set A ⊂ R and coefficients cµ ∈ C. For example, to estimate∫ T2

T1
|ζ(σ + it)|2 dt for some nonnegative T1, T2, we will take A = {(2π)−1 log n :

πn < T2} and cµ = n−σ for each µ = (2π)−1 log n ∈ A.

To begin with, if we fix A and cµ then clearly
∫ T2

T1

|f(t)|2 dt = (T2 − T1)
∑

µ∈A

|cµ|2 + O(1).

How does the “O(1)” depend on A, cµ, T1, T2? Consider first the special case
that A is contained in an arithmetic progression {µ0+nδ : n ∈ Z} with common
difference δ > 0. Then e(−µ0t)f(t) is a periodic function of period δ−1, and∫ T2

T1
|f(t)|2 dt = (T2− T1)

∑
µ∈A |cµ|2 holds exactly if T2− T1 ∈ δ−1Z. It follows

that for any T1, T2 we have
∣∣∣∣
∫ T2

T1

|f(t)|2 dt− (T2 − T1)
∑

µ∈A

|cµ|2
∣∣∣∣ < δ−1

∑

µ∈A

|cµ|2. (1)
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Remarkably the same inequality can be proved under the much weaker hypoth-
esis that |µ − ν| ≥ δ for all distinct µ, ν ∈ A. We follow [Vaaler 1985], who
attributes the argument to Selberg in 1974.

Lemma. Let χI be the characteristic function of the interval I = [T1, T2].
Suppose β−,β+ : R→R are functions such that:
i) β−(z) ≤ χI(z) ≤ β+(z) for all real z;
ii)

∫∞
−∞ β−(z) dz and

∫∞
−∞ β+(z) dz converge, say to B− and B+ respectively;

iii) The Fourier transforms

β̂−(r) =
∫ ∞

−∞
β−(z) e(rz) dz, β̂+(r) =

∫ ∞

−∞
β+(z) e(rz) dz

vanish for all real r with |r| ≥ δ.
Then for every finite set A ⊂ R such that |µ− ν| ≥ δ for all distinct µ, ν ∈ A,
and any cµ ∈ C, we have

B−
∑

µ∈A

|cµ|2 ≤
∫ T2

T1

|f(t)|2 dt ≤ B+

∑

µ∈A

|cµ|2

where f(t) =
∑

µ∈A cµe(µt).

Proof : By (i) we have
∫ ∞

−∞
|f(t)|2β−(t) dt ≤

∫ T2

T1

|f(t)|2 dt ≤
∫ ∞

−∞
|f(t)|2β+(t) dt.

We expand |f(t)|2 into
∑∑

µ,ν∈A cµc̄νe((µ − ν)t), and find that the lower and
upper bounds are

∑∑
µ,ν∈A cµc̄ν β̂±(µ−ν). By (ii), the main terms (with µ = ν)

sum to B±
∑

µ∈A |cµ|2; by (iii), the cross terms (with µ *= ν) vanish. !
It is not at all obvious that any functions β± can be found that satisfy all three
conditions of the Lemma. Note that we must have β±(z) =

∫ δ
−δ β̂±(r) e(−rz) dr

by condition (iii) and the inversion formula for Fourier transforms, so in partic-
ular the β±(z) must extend to entire functions of z = x + iy with β±(x + iy) #
exp 2πδ|y|. We construct suitable β± as follows.

The Beurling function B(z) is defined by

B(z) :=
(

sinπz

π

)2
[

2
z

+
∞∑

n=0

1
(n− z)2

−
∞∑

m=1

1
(m + z)2

]
. (2)

This is an entire function of z, because the double zeros of sin2 πz at z ∈ Z
cancel the double poles of 1/(n− z)2 and 1/(m + z)2. Beurling [1938] proved:

Proposition. i) 0 ≤ B(z)−sgn(z) < 2/(πz)2 for all z ∈ R, with B(z) = sgn(z)
if and only if z is a nonzero integer.
ii)

∫∞
−∞(B(z)− sgn(z)) dz = 1.
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iii) For z = x + iy ∈ C we have B(z) − sgn(x) # (1 + |z|)−2 exp 2π|y|; in
particular, B(z) # exp 2π| Im(z)| for all z ∈ C.

Here sgn(z) is the sign (a.k.a. signum) of the real number z, equal to 1, −1, or 0
according as z is positive, negative, or zero.

Assuming this Proposition, consider the functions β± defined by

β−(z) = −1
2

[
B

(
δ(T1 − z)

)
+ B

(
δ(z − T2)

)]
,

β+(z) = +
1
2

[
B

(
δ(z − T1)

)
+ B

(
δ(T2 − z)

)]
.

By (i), together with the observation that χI(z) =
(
sgn(z−T1)+sgn(T2−z)

)
/2,

we have β−(z) ≤ χI(z) ≤ β+(z) for all real z. The same observation together
with (ii) yields

∫ ∞

−∞
β±(z) dz = ±1

δ
+

∫ ∞

−∞
χI(z) dz = T2 − T1 ± 1

δ
.

Finally, by (iii) the β±(z) are analytic with β±(z) # z−2 exp 2πδ| Im(z)|. Thus
for |r| ≥ δ we can prove

∫∞
−∞ β±(z) e(rz) dz = 0 by contour integration, moving

the path of integration up if r ≥ δ and down if r ≤ −δ. This together with
the preceding Lemma establishes the inequality (1) whenever |µ− ν| ≥ δ for all
distinct µ, ν ∈ A.

It remains to prove the Proposition on Beurling’s function.

Proof : We use the well-known partial-fraction decomposition (π/ sinπz)2 =∑∞
n=−∞ 1/(z − n)2, which we shall write as

( π

sinπz

)2
=

∞∑

n=0

1
(n− z)2

+
∞∑

m=1

1
(m + z)2

. (3)

i) We have B(0) = 1 > sgn(0). For z > 0 we use (3) to write

B(z)− 1 = 2
(

sinπz

π

)2
[

1
z
−

∞∑

m=1

1
(m + z)2

]
.

Since 1/(t + z)2 is a decreasing function of t on [0,∞), we have
∫ ∞

1

dt

(t + z)2
<

∞∑

m=1

1
(m + z)2

<

∫ ∞

0

dt

(t + z)2
.

Thus
∑∞

m=1 ∈ (1/(z + 1), 1/z), so B(z) ≥ 1 with equality if and only if z ∈ Z,
and B(z)− 1 ≤ 2(sinπz/πz)2 ≤ 2/(πz)2. Likewise, for z < 0 we use

B(z) + 1 = 2
(

sinπz

π

)2
[

1
z

+
∞∑

n=0

1
(n− z)2

]
.
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Since 1/(t− z)2 is a decreasing function of t on [0,∞), we have
∞∑

n=0

1
(n− z)2

>

∫ ∞

0

dt

(t− z)2
=

1
−z

,

so B(z) ≥ −1, again with equality if and only if z ∈ Z. On the other hand,
∞∑

n=0

1
(n− z)2

=
1
z2

+
∞∑

n=1

1
(n− z)2

<
1
z2

+
∫ ∞

0

dt

(t− z)2
=

1
−z

+
1
z2

,

from which B(z) + 1 ≤ 2(sinπz/πz)2 ≤ 2/(πz)2. We have proved the claimed
inequality whether z is zero, positive, or negative.

ii) By part (i), the integral converges, and thus equals 1
2

∫∞
−∞(B(z)+B(−z)) dz.

But (B(z) + B(−z))/2 is simply ((sinπz)/πz)2, and it is well-known that
∫ ∞

−∞

(
sinπz

πz

)2

dz = 1.

(For instance, one may calculate that ((sinπz)/πz)2 =
∫ 1
−1(1− |r|) e(rz) dz, and

then use Fourier inversion.) Hence
∫∞
−∞(B(z)− sgn(z)) dz = 1 as claimed.

iii) We may assume |z| > 1. Again we use our formulas for B(z)− 1 or B(z)+1
according as x ≥ 0 or x ≤ 0. In the former case,

1
z
−

∞∑

m=1

1
(m + z)2

=
∞∑

m=1

∫ m

m−1

(
1

(t + z)2
− 1

(m + z)2

)
dt

#
∞∑

m=1

1
|m + z|3 #

1
z2

.

Likewise if x ≤ 0 we have z−1 +
∑∞

n=0(n − z)−2 # 1/z2. Since sin2 πz #
exp 2π|y|, the claimed inequality follows. !
The inequality (1) is not quite enough for us to prove directly that

∫ T

0
|ζ(

1
2

+ it)|2 dt ∼ T log T, (4)

because so far we must approximate ζ( 1
2 +it) by a partial sum of length N , |t|

to assure an O(1) error, and thus must take δ # 1/N # 1/T and get an
error term in (1) proportional to the main term T log T . We can nevertheless
obtain (4) in two ways, by improving our estimates on exponential sums either
individually or in mean square. (See also the Exercises.) For now we continue
with the mean-square approach.

Again we set f(t) =
∑

µ∈A cµe(µt), and integrate |f(t)|2 termwise. This time
we write the result as

∫ T2

T1

|f(t)|2 dt− (T2 − T1)
∑

µ∈A

|cµ|2 = QA()c2)−QA()c1),
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where QA is the sesquilinear form on CA defined by

QA()x) =
1

2πi

∑∑

µ,ν∈A
µ"=ν

xµx̄ν

µ− ν

and cj ∈ CA (j = 1, 2) are the vectors with µ coordinate cµe(µTj). The termwise
estimate |QA()x)| ≤ π−1

∑∑
µ>ν |xµxν |/(µ − ν) is already sufficient to prove

T−1
∫ T
0 |ζ(1/2 + it)|2 dt # log2 T . But remarkably a tighter estimate holds in

this general setting. Let
δ(µ) = min

ν
|ν − µ|,

the minimum taken over all ν ∈ A other than µ itself. We shall show:

Theorem (Montgomery-Vaughan Hilbert Inequality). For any finite set
A ⊂ R and any )c ∈ CA we have

|QA()c)|#
∑

µ∈A

|cµ|2

δ(µ)
,

and thus ∫ T2

T1

∣∣∣
∑

µ∈A

cµe(µt)
∣∣∣
2
dt =

∑

µ∈A

[
T2 − T1 +

θ

δ(µ)

]
|cµ|2

with θ # 1.

Why “Hilbert Inequality” and not simply “Inequality”? Because this is a grand
generalization of the original Hilbert inequality, which is the special case A =
{µ ∈ Z : |µ| < M}. In that case our function f(t) is Z-periodic, and as
Schur observed the inequality |QA()c)| < (1/2)

∑
µ |cµ|2 follows from the integral

formula QA()c) = i
∫ 1
0 (t− 1

2 )|f(t)|2 dt (though as we’ve seen in the periodic case
the resulting estimate on

∫ T2

T1
|f(t)|2 dt is even easier than the upper bound on

|QA()c)|).
The Montgomery-Vaughan inequality does not have as precise an error bound
as (1), but it has the advantage that the coefficient of |cµ|2 is smaller when
the distance from µ to the rest of A greatly exceeds δ = minµ∈A δ(µ). For
example, the formula (4) for the second moment of ζ( 1

2 + it) follows quickly
from Montgomery-Vaughan: take A = {log n/2π : n = 1, 2, 3, . . . , N} to find
that ∫ T2

T1

∣∣∣∣
N∑

n=1

cnnit

∣∣∣∣
2

dt =
N∑

n=1

(T2 − T1 + O(n))|cn|2

for any T1, T2, cn; then choose (T1, T2) = (−T,−T/2) and cn = n−1/2 to find

∫ T

T/2

∣∣∣∣
N∑

n=1

n−1/2−it

∣∣∣∣
2

dt =
1
2
T log N + O(T + N),
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and conclude that
∫ T

T/2
|ζ(1/2 + it)|2 dt =

1
2
T log T + O(T

√
log T ),

from which (4) follows.

Proof of the Montgomery-Vaughan Hilbert inequality: Consider CA as a finite-
dimensional complex Hilbert space with inner product

〈)c,)c′〉 :=
∑

µ∈A

cµc̄′µ/δ(µ).

Then QA()x) = 〈)x, L)x〉 where L is the Hermitian operator taking )x to the vector
with µ coordinate (2πi)−1δ(µ)

∑
ν %=µ xν/(µ − ν), and we want to show that

〈)c, L)c〉 # 〈)c,)c〉 for all )c ∈ CA. But this is equivalent to the condition that L
have norm O(1) as an operator on that Hilbert space, and since the operator is
Hermitian it is enough to check that [−QA()c) =]〈)c, L)c〉 # 1 holds when )c is a
normalized eigenvector. Thus it is enough to prove that QA()c) # 1 for all A,)c
such that ∑

µ∈A

|cµ|2/δ(µ) = 1

and there exists some λ ∈ R such that

δ(µ)
∑

ν %=µ

cν/(µ− ν) = iλcµ

for each µ ∈ A, in which case λ = 2πQA()c).

Now for any )c we have

|2πQ()c)|2 =
∣∣∣
∑

ν

c̄ν

∑

µ%=ν

cµ

µ− ν

∣∣∣
2
≤

(∑

ν

|cν |2

δ(ν)

)(∑

ν

δ(ν)
∣∣∣
∑

µ%=ν

cµ

µ− ν

∣∣∣
2)

.

By assumption
∑

ν |cν |2/δ(ν) = 1. For the other factor, we expand

∣∣∣
∑

µ%=ν

cµ

µ− ν

∣∣∣
2

=
∑

µ%=ν

∣∣∣∣
cµ

µ− ν

∣∣∣∣
2

+
∑∑

µ1 %=µ2

cµ1 c̄µ2

(µ1 − ν)(µ2 − ν)
.

The single sum contributes
∑

µ

|cµ|2
∑

ν %=µ

δ(ν)
(µ− ν)2

to
∑

ν δ(ν)
∣∣∑

µ%=ν cµ/(µ− ν)
∣∣2; let Tµ be the inner sum

∑
ν %=µ δ(ν)/(µ− ν)2, so

the above contribution is
∑

µ |cµ|2Tµ. The double sum contributes

∑∑

µ1 %=µ2

cµ1 c̄µ2

∑

ν %=µ1,µ2

δ(ν)
(µ1 − ν)(µ2 − ν)

.
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The key trick is now to use the partial fraction decomposition

1
(µ1 − ν)(µ2 − ν)

=
1

µ2 − µ1

(
1

µ1 − ν
− 1

µ2 − ν

)

to rewrite this last triple sum as
∑∑

µ1 %=µ2

cµ1 c̄µ2

µ2 − µ1

[ ∑

ν %=µ1,µ2

( δ(ν)
(µ1 − ν)

− δ(ν)
(µ2 − ν)

)]
.

The point is that the first part of the inner sum is almost independent of µ2,
while the second half is almost independent of µ1: the other µ enters only as a
single excluded ν. That is, the triple sum is

∑∑

µ1 %=µ2

cµ1 c̄µ2

µ2 − µ1

[(
S(µ1)−

δ(µ2)
µ1 − µ2

)
−

(
S(µ2)−

δ(µ1)
µ2 − µ1

)]

where
S(µ) :=

∑

ν %=µ

δ(ν)
µ− ν

.

And now we get to use the eigenvalue hypothesis to show that the S(µj) terms
cancel each other. Indeed we have

∑∑

µ1 %=µ2

cµ1 c̄µ2

µ2 − µ1
S(µ1) =

∑

µ1

cµ1S(µ1)
∑

µ2 %=µ1

c̄µ2

µ2 − µ1

and the inner sum is just iλc̄µ1/δ(µ1), so

∑∑

µ1 %=µ2

cµ1 c̄µ2

µ2 − µ1
S(µ1) = iλ

∑

µ

S(µ)
|cµ|2

δ(µ)
.

The same computation shows that

∑∑

µ1 %=µ2

cµ1 c̄µ2

µ2 − µ1
S(µ2) = iλ

∑

µ

S(µ)
|cµ|2

δ(µ)
,

so the S(µj) terms indeed drop out! Collecting the surviving terms, we are thus
left with

|2πQ()c)|2 ≤
∑

µ∈A

|cµ|2Tµ +
∑∑

µ1 %=µ2

cµ1 c̄µ2

δ(µ1) + δ(µ2)
(µ2 − µ1)2

. (5)

By now all the coefficients are positive, so we will have no further magic cancel-
lations and will have to just estimate how big things can get. We’ll need some
lemmas (which are the only place we actually use the definition of δ(µ)!): first,
for each k = 2, 3, . . .,

µ ∈ A ⇒
∑

ν %=µ

δ(ν)
(µ− ν)k

#k δ(µ)1−k; (6)
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second,

µ1, µ2 ∈ A ⇒
∑

ν %=µ1,µ2

δ(ν)
(µ1 − ν)2(µ2 − ν)2

# [δ(µ1)−1] + [δ(µ2)−1]
(µ1 − µ2)2

. (7)

Now the first sum in (5) is O(1) because

Tµ =
∑

ν %=µ

δ(ν)
(µ− ν)2

# 1
δ(µ)

by the case k = 2 of (6). The second sum will be bounded by Cauchy-Schwarz.
That sum is bounded by twice

B :=
∑∑

µ1 %=µ2

|cµ1 c̄µ2 |
δ(µ1)

(µ2 − µ1)2
=

∑∑

µ%=ν

|cµc̄ν |
δ(µ)

(µ− ν)2
.

Since
∑

µ |cµ|2/δ(µ) = 1, we have

|B|2 ≤
∑

ν

δ(ν)
(∑

µ%=ν

|cµ|δ(µ)
(µ− ν)2

)2
.

Expanding and switching
∑

’s we rewrite this as

|B|2 ≤
∑∑

µ1,µ2

|cµ1cµ2 |δ(µ1)δ(µ2)
( ∑

ν %=µ1,µ2

δ(ν)
(µ1 − ν)2(µ2 − ν)2

)
.

When µ1 = µ2, the inner sum is # δ(µ)−3 (by (6) with k = 4), so the contribu-
tion of those terms is #

∑
µ |cµ|2/δ(µ) = 1. When µ1 *= µ2 we apply (7), and

the resulting estimate on the sum of the cross-terms is twice the double sum
defining B! So, we’ve shown (modulo the proofs of (6, 7)) that B2 # 1 + B.
Thus B # 1 and we’re finally done.

Exercises

On the Kuzmin inequality:

1. Prove (4) in yet another way as follows. Write

∫ T

0

∣∣∣
N∑

n=1

n−1/2−it
∣∣∣
2
dt− T

N∑

n=1

1
N

+ 2
∑∑

0<n<n′≤N

(nn′)−1/2 Im
(n′/n)iT

log(n′/n)
.

For each j = 1, 2, 3, . . . use Kuzmin to obtain nontrivial bounds on
∑

n′=n+j

(nn′)−1/2(n′/n)iT / log(n′/n)iT .

(This is closely related to the van der Corput bounds that will be our next
topic.)
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On the Beurling function:

2. Show that B(z) = B(z − 1) − 2π−2 sin2 πz/(z3 − z2). Explain how this can
be used to efficiently compute B(z) to high accuracy. (There are at least two
approaches, one of which works also for large and/or complex z.)

3. Prove that the constant δ−1 in (1) is best possible. Use this to show that the
Beurling function minimizes

∫∞
−∞(f(z) − sgn(z)) dz over all entire functions f

satisfying f(z) ≥ sgn(z) for z ∈ R and f(z) # exp 2π| Im(z)| for all z ∈ C.

Beurling showed that in fact B(z) is the unique minimizing function. The same argu-

ment shows that if T2 − T1 is a positive integer then our β± are optimal; but they are

not unique: see [GV 1981, p.289] for Selberg’s description of all the optimal β±. When

T2 − T1 /∈ Z, the best β± are slightly better than those constructed from Beurling’s

function; Logan [1977] found the optimal β± in this case and proved their uniqueness.

4. (A further application of β+ to mean-square bounds on exponential sums;
look up “Large Sieve” in [Selberg 1969] for the context)
i) Suppose T2, T1 ∈ Zδ. Prove that there exists an entire function f such that
β+(z) = |f(z)|2 for all z ∈ R and f(z) # |z|−1 expπδ| Im(z)| for all z ∈ C,
and thus that f |R is an L2 function with f̂ supported on |r| ≤ δ/2. [Hint: a
polynomial P ∈ R[x] is nonnegative for all real x if and only if P = |Q|2 for
some Q ∈ C[x]. According to [Vaaler 1985], the result holds even without the
hypothesis that T2 − T1 ∈ Zδ, using a theorem of Fejér.]
ii) Now let S(x) be a trigonometric polynomial of the form

∑T2
n=T1

cne(nx) for
some complex numbers cn (T1 ≤ n ≤ T2), and set S∗(x) =

∑T2
T1

f(n)−1cne(nx).
Then S is the convolution of S∗ with f̂ , so

|S(x)|2 ≤
(∫ δ/2

−δ/2
|f̂(u)|2 du

)(∫ δ/2

−δ/2
|S∗(x + u)|2 du

)

= (T2 − T1 + δ−1)
∫ δ/2

−δ/2
|S∗(x + u)|2 du.

Conclude that if (δ ≤ 1 and) A ⊂ R/Z is any finite set such that ‖x− x′‖ ≥ δ
for all distinct x, x′ ∈ A then

∑

x∈A

|S(x)|2 < (T2 − T1 + δ−1)
T2∑

n=T1

|cn|2.

Explain why this is elementary when A ⊆ x0 + (ZR−1/Z) for some integer
R ≥ 1.

On the generalized Hilbert inequality:

5. Prove that the constant π in the original Hilbert inequality is best possible,
and show that it holds even if cµ is allowed to be nonzero for every integer µ
(this is in fact what Hilbert originally proved).
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6. More generally, prove that the norm of QA relative to the standard inner
product ()c,)c′) =

∑
µ∈A cµc̄′µ is less than (2δ)−1.

7. Deduce the second-moment estimate (1), albeit with a slightly worse er-
ror bound than we proved using Montgomery-Vaughan, from the generalized
Hilbert inequality (1), as follows: write

∑N
n=1 n−1/2−it = f1(t) + f2(t), where

f1(t) =
∑A

n=1 n−1/2−it and f2(t) =
∑N

n=A+1 n−1/2−it; use (1) to estimate
∫ T

T/2 |f1(t)|2 dt and
∫ T

T/2 |f2(t)|2 dt; and then use ‖f1 + f2‖2 = ‖f1‖2 + O(‖f2‖2)
(triangle inequality in L2(T/2, T )).

On the Montgomery-Vaughan inequality:

8. Complete the proof by verifying the inequalities (6,7).

9. Let χ be a character (primitive or not) mod q. Obtain an asymptotic for-
mula for

∫ T
0 |L(1/2 + it, χ)|2 dt. How does the error term depend on q? (It is

conjectured that L(1/2 + it, χ) #ε (q|t|)ε; naturally this problem is still wide
open: it has the Lindelöf conjecture as a special case.)
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Math 259: Introduction to Analytic Number Theory

Exponential sums III: the van der Corput inequalities

Let f(x) be a sufficiently differentiable function, and S =
∑N

n=1 e(f(n)). The
Kuzmin inequality tells us in effect that

I If f ′(x) is monotonic and λ1 < {f ′(x)} < 1−λ1 for x ∈ [1, N ] then S # 1/λ1.

We shall use this to deduce van der Corput’s estimates on S in terms of N and
higher derivatives of f . In each case the inequality is useful only if f has a
derivative f (k) of constant sign which is significantly smaller than 1.

II If there are constants c, C with 0 < c < C such hat cλ2 < f ′′ < Cλ2 for all
x ∈ [1, N ] then

S #c,C Nλ1/2
2 + λ−1/2

2 .

III If there are constants c, C with 0 < c < C such hat cλ3 < f ′′′ < Cλ3 for
all x ∈ [1, N ] then

S #c,C Nλ1/6
3 + N1/2λ−1/6

3 .

In general there is a k-th inequality

S #c,C Nλ1/(2k−2)
k + N1−22−k

λ−1/(2k−2)
k

when cλk < f (k) < Cλk for all x ∈ [1, N ], but we’ll make use only of van der
Corput II and III.

Here is a typical application, due to van der Corput: ζ(1/2 + it) # |t|1/6 log |t|.
We have seen that

ζ(1/2 + it) =
#|t|/π$∑

n=1

n−1/2−it + O(1).

We break up the sum into segments
∑N1

n=N with N < N1 ≤ 2N , and use
f(x) = (t log x)/2π, so λk = t/Nk. Then II and III give

N ′∑

n=N

nit # |t|1/2 + N/|t|1/2,
N ′∑

n=N

nit # N1/2|t|1/6 + N/|t|1/6

for N < N ′ < N1. By partial summation of S, it follows that

N ′∑

n=N

n−1/2−it # (|t|/N)1/2 +(N/|t|)1/2,
N ′∑

n=N

n−1/2−it # |t|1/6 +N1/2/|t|1/6

Choosing the first estimate for N % |t|2/3 and the second for N # |t|2/3 we
find that the sum is # |t|1/6 in either case. Since the total number of [N,N ′]
segments is O(log |t|), the inequality ζ(1/2 + it) # |t|1/6 log |t| follows.
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The inequality II is an easy consequence of Kuzmin’s I. [NB the following is
not van der Corput’s original proof, for which see for instance Lecture 3 of
[Montgomery 1994]. The proof we give is much more elementary, but does not
as readily yield the small further reductions of the exponents that are available
with the original method.] We may assume that f ′′(x) < 1/4 on [1, N ], else
λ2 % 1 and the inequality is trivial. Split [1, N ] into O(Nλ2 + 1) intervals on
which &f ′' is constant. Let λ1 be a small positive number to be determined
later, and take out O(Nλ2 +1) subintervals of length O(λ1/λ2 +1) on which f ′

is within λ1 of an integer. On each excised interval, estimate the sum trivially
by its length; on the remaining intervals, use Kuzmin. This yields

S # (Nλ2 + 1)(λ−1
1 + λ1/λ2 + 1).

Now take λ1 = λ1/2
2 to get

S # (Nλ2 + 1)(λ−1/2
2 + 1).

But by assumption λ2 # 1, so the second factor is # λ−1/2
2 . This completes

the proof of II.

For III and higher van der Corput bounds, we shall follow Weyl by showing
that

S #
{

N

H

H∑

h=0

∣∣∣∣∣

N−h∑

n=1

e(f(n + h)− f(n))

∣∣∣∣∣

}1/2

. (1)

for H ≤ N . If f(x) has small positive k-th derivative then each f(x + h)− f(x)
has small (k−1)-st derivative, which is positive except for h = 0 when the inner
sum is N . This will let us prove III from II, and so on by induction (see the
first Exercise below).

To prove (1), define zn for n ∈ Z by zn = e(f(n)) for 1 ≤ n ≤ N and zn = 0
otherwise. Then

S =
∞∑

n=−∞
zn =

1
H

∞∑

n=−∞

(
H∑

h=1

zn+h

)
,

in which fewer than N + H of the inner sums are nonzero. Thus by the
(Cauchy-)Schwarz inequality,

|S|2 ≤ N + H

H2

∞∑

n=−∞

∣∣∣∣∣

H∑

n=1

zn+h

∣∣∣∣∣

2

# N

H2

H∑

h1,h2=1

∣∣∣∣
∑

n∈Z

zn+h1zn+h2

∣∣∣∣.

But the inner sum depends only on |h1 − h2|, and each possible h := h1 − h2

occurs at most H times. So,

|S|2 # N

H

H∑

h=0

∣∣∣∣
∑

n∈Z

zn+hzn

∣∣∣∣,

2



from which (1) follows.

Now to prove III: we may assume N−3 < λ3 < 1, else the inequality is trivial.
Apply (1), and to each of the inner sums with h (= 0 apply II with λ2 = hλ3.
This yields

|S|2 # N2

H
+

N

H

H∑

h=1

[N(hλ3)1/2 + (hλ3)−1/2]

= N2
(
(Hλ3)1/2 + H−1

)
+ N/(Hλ3)1/2.

Now make the first two terms equal by taking H = &λ−1/3
3 ':

|S|2 # N2λ1/3
3 + Nλ−1/3

3 .

Extracting square roots yields III.

Exercises

1. Prove the van der Corput estimates IV, V, etc. by induction.

2. Prove that {logb n!}∞n=0 is equidistributed mod 1 for any b > 1.

3. Use (1) to prove the equidistribution of {nP (n)} mod 1 for any polynomial
P (x) with an irrational coefficient (which was Weyl’s original application of (1)).
Give necessary and sufficient conditions on polynomials P1, P2, . . . , Pk ∈ R[x] for
the sequence of vectors (P1(n), P2(n), . . . , Pk(n)) to be equidistributed mod Zk.

Reference

[Montgomery 1994] Montgomery, H.L.: Ten lectures on the interface between
analytic number theory and harmonic analysis. Providence: AMS, 1994 [AB
9.94.9].
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X-RAY OF RIEMANN’S ZETA-FUNCTION

J. ARIAS-DE-REYNA

1. Introduction

This paper is the result of the effort to give the students of the subject
Analytic Number Theory an idea of the complexity of the behaviour of the
Riemann zeta-function. I tried to make them see with their own eyes the
mystery contained in its apparently simple definition.

There are precedents for the figures we are about to present. In the
tables of Jahnke-Emde [9] we can find pictures of the zeta-function and
some other graphs in which we can see some of the lines we draw. In the
dissertation of A. Utzinger [21], directed by Speiser, the lines Re ζ(s) = 0
and Im ζ(s) = 0 are drawn on the rectangle (−9, 10)× (0, 29).

Besides, Speiser’s paper contains some very interesting ideas. He proves
that the Riemann Hypothesis is equivalent to the fact that the non trivial
zeros of ζ ′(s) are on the right of the critical line. He proves this claim
using an entirely geometric reasoning which is on the borderline between
the proved and the admissible. Afterwards rigorous proofs of this statement
have been given.

Our figures arise from a simple idea. If f(z) = u(z) + iv(z) is a mero-
morphic function, then the curves u = 0 and v = 0 meet precisely at the
zeros and poles of the function. That is the reason why we mark the curves
where the function is real or the curves where it is imaginary on the z-plane.
In order to distinguish one from the other, we will draw with thick lines
the curves where the function is real and with thin lines the curves where
the function is imaginary.

When I distributed the first figure (the X ray of the zeta function) to
my students, I was surprised at the amount of things one could see in the
graphic. I spent a whole hour commenting on this figure.

Afterwards, I have kept thinking about these graphics. I believe they
can be used to systematize the knowledge which today is scattered. The
graphics give it a coherency which makes it easier to remember.

Date: Submitted to a journal on September 13, 2002.
1991 Mathematics Subject Classification. Primary: 11M06, 11M26.
Key words and phrases. Zeta-function, Riemann-Siegel formula, Gram Points, Gram’s Law,
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2. The X ray

2.1. Remarkable Points. Recall that the Riemann zeta-function is de-
fined for Re(s) > 1 by the series

ζ(s) = 1 +
1
2s

+
1
3s

+ · · ·

but it is possible to extend it to the whole plane as a meromorphic function
with a single pole in s = 1, which is simple.

We already have the X ray on sight. The main thing to take into
account is that the thick lines are formed by those points s in which ζ(s)
is real, and the thin lines by those in which ζ(s) is imaginary.

In the figure we see that, in fact, the lines have a simpler behaviour
on the right of the line s = 1, that is, on the right of the grey strip which
represents the so called critical strip: 0 ≤ Re(s) ≤ 1.

In the figure the real axis, the oval and a thick line that surrounds
the oval stand specially out.

We can see that the real axis cuts lots of thin lines, first the oval in
the pole s = 1, and in s = −2, which is a zero of the function, later, a line
in s = −4, another in s = −6, . . . , which are the so called trivial zeros
of the zeta-function. In the figure we can see these zeros up to s = −28,
because the graph represents the rectangle (−30, 10) × (−10, 40). These
zeros situated in the negative part of the real axis seem to draw the spine
of this X ray.

In the critical strip we see that thick and thin lines meet, that is, we
detect the existence of non trivial zeros. With two decimal digits they are
0.5+ i14.13, 0.5+ i21.02, 0.5+ i25.01, 0.5+ i30.42, 0.5+ i32.93, 0.5+ i37.58.
They seem to have a real part equal to 1

2 . In fact, it is possible to prove it.

The next remarkable points are the points in which the real axis meets
a thick line. These are points at which the derivative ζ ′(s) = 0. Since the
function ζ(s) is real when s is real and since it has zeros in the points −2n,
Rolle’s theorem from elemental calculus tells us that these zeros have to
exist, one between each pair of consecutive even numbers.

For every meromorphic function f(s) = u(s) + iv(s), the lines u = 0
(and the lines v = 0) are smooth curves, except in the points where the
derivative vanishes, in which case two or more curves meet.

An important property which is valid in the general case of a mero-
morphic function is the monotony of the function along the curves.

Let us think of a thick line v = 0. In this curve, the function f is real.
At each point of this curve, the derivative of v in the direction of the curve
vanishes. If the derivative of f does not vanish in any point of the curve,
neither will the derivative of u = f .
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Figure 1. X ray of ζ(s)

So, if on a portion of a curve the derivative of f does not vanish, then
the function varies monotonously as we moves along the curve. In fact, the
derivative of u in the direction of the curve can not vanish on that portion
of the curve, so that it will keep having a constant sign.

When we are dealing with the u = 0 curves, the monotonous function
is v = f/i.
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We would like to know, for each line and each direction, whether the
function increases or decreases. But before tackling this point, we must
give each line a name.

2.2. The numbering of the lines. There are three special lines which
we will not number: the oval, the one that surrounds the oval, and the real
axis.

The rest of the lines can be numbered with integer numbers. In the
first place, there are thin lines which pass through the zeros in −4, −6, −8,
. . . Line −2n is the line which cuts the real axis at the point −2n.

Between these lines we can find thick lines. For example, there is one
line which goes between the lines numbered −4 and −6. This one does
not go through the point −5, but it cuts the real axis on a point which is
between −4 and −6. We will say that this one is line −5. In the same way
lines −(2n + 1), n = 2, 3, . . . , are defined. These are thick lines which cut
the real axis between −2n and −2n− 2.

In this way, we now know which are the lines numbered n for n = −4,
−5, −6, . . . . If we consider now how these lines cut the left border of the
figure (line x = −30), we see that the lines already numbered are followed
by other lines, so that it seems natural to call line −3 the thick line which
runs parallel to line −4, above it, until the latter turns to cut the real axis
while the thick line goes on to the right, crossing the critical strip at a
height near 10.

So, the even lines are always lines in which the function ζ(s) is purely
imaginary, while the odd lines are thick lines in which ζ(s) is real. We must
also add that, in many cases, two lines join in a zero. For example, lines
−2 and 0 join in the first non trivial zero of the zeta-function. Lines 5 and
7 also join in the third zero.

This numbering does not include the symmetrical lines below the real
axis.

Now we can speak of concrete lines. Do you see how line 11 turns? It
seems it intended to continue with line 13 or 15, but in the end it follows
another path, cutting lines 10 and 12.

2.3. Lines on the right of the critical strip. The behaviour on the right
of the critical strip is governed by the fact that there are no thin lines. This
is easy to understand. For Re(s) = σ → +∞ we have ζ(s) → 1 uniformly.
So, there exists an abscissa σ0 so that for σ > σ0 it holds Re ζ(s) > 0.
It follows that the function does not take purely imaginary values in this
half-plane. It is not difficult to prove that there are no thin lines passing
through the half-plane σ > 1.63622 . . . .

On the right, the only thick lines that exist are essentially parallel to
the x axis, and they are equally spaced. In order to understand the reason,
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16
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15

Figure 2. Numbering the lines

we start with

Im ζ(s) = −
∞∑

n=2

sin(t log n)
nσ

.

For big enough values of σ, the first term of this sum dominates the
rest of them. It is clear that this first term vanishes for t = nπ/ log 2. So,
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some parallel lines, separated by a distance which is approximately equal
to π/ log 2 ≈ 4.53236014 . . . , exist.

We can see in the figure that these parallel lines, when crossing the
critical strip, alternatively, contain a non trivial zero, or not. It is easy
to explain. The derivative of ζ(s) along the line which goes at a height
nπ/ log 2, when σ ' 0, is given by

∂

∂σ
ζ(s) =

∂

∂σ

(
1 +

cos(t log 2)
2σ

+ · · ·
)
≈ −cos(t log 2)

2σ
log 2 ≈ −(−1)n

2σ
log 2.

Thus, when the function ζ(s) runs along this curve from right to left, (part-
ing from 1), it is increasing for even values of n. So, for even n, ζ(s) will
take on this line the values in (1,+∞). On the other hand, for odd n it
will take the values in (1,−∞), and, in particular, it will vanish.

Of course we are using the fact that the function is monotonous on the
lines, which depends on the fact that the derivative ζ ′(s) does not vanish
on these lines. This is what happens to the line surrounding the oval, which
ought to contain a zero but does not. So we shall call one of these lines
parallel only when ζ ′(s) (= 0 on it.

2.4. Orientating ourselves. It holds limσ→+∞ ζ(σ + it) = 1. uniformly
in t. Let us suppose that we go along line −1, starting form the zero on
the critical line, and going to the right. The function will take values in
the interval (0, 1), starting from zero and tending to 1. The points we leave
on our left, that is, the ones which are a little above line −1, will turn into
points on the left of the segment (0, 1), that means, points from the first
quadrant.

If, on the contrary, we start from the zero and move to the left following
line −1 between lines −2 and 0, the zeta-function will take negative values,
in the interval (−∞, 0). The points between lines −1 and 0 will turn into
points from the second quadrant.

If we situate ourselves at the zero with our arms outstretched, the right
arm to the right and the left one to the left, we see in front of us a thin line
(line 0), on which the function will take values ix with x > 0. Behind us
we have a line (line −2) in which it will take values ix with x < 0. On the
northeast we have points s which turn into values ζ(s) situated on the first
quadrant. On the northwest we have a region which turns into the second
quadrant, etc.

In a line such as line −3, which comes from the right and does not con-
tain any zeros, the zeta-function takes real values greater than 1, precisely
all the points in the interval (1, +∞), because it is known that, on the left,
the modulus of the zeta-function tends to infinity.
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I

IV

IV

I

IV

III

II

II

−2

0

1

−1

−3

Figure 3. Each region transform into a quadrant.

2.5. The regions of the plane. The lines in the graphics divide the plane
into regions. It is easy to realize that the points of one of these regions have
to turn by the function ζ(s) into points of the same quadrant.

If the points of a region Ω turn into the first quadrant, for example,
and crossing a thin line we reach another region, then the points of this new
region will turn into points of the second quadrant; if, on the contrary, we
leave Ω crossing a thick line, then the new region will turn into the fourth
quadrant.

We have various ways to know into which quadrant will a given region
turn. For example, if we situate ourselves at a non trivial zero and we
orientate in the way described above, then the region in the northeast will
turn into the first quadrant, the one situated in the northwest in the second,
and so on.

Another way to see it could be to take into account that, if we walk
along a thick line, so that the function ζ(s), which is real, increases, then we
know that on our left we have a region which turns into the first quadrant
and on our right one which turns into the fourth quadrant. For example,
let us consider the thick line number 1 (this is the line which comes from
the right and goes between the first and the second non trivial zeros of the
zeta-function). and let us walk through it to the left. That is, we walk
through this line coming from +∞. The values of the zeta-function on the
points of this line are greater than 1, and, as we walk through it, the values
on its points are growing. Then, the region on our right will turn into the
first quadrant.
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3

9

Ω

4

5

8
A

B

C

D

E

F

G

H

Figure 4. The region Ω.

As an exercise, we frame this question: Into what do the points of the
oval turn?

2.6. The equation ζ(s) = a. Let us consider an equation of the form
ζ(s) = a. Where are its solutions? How are they distributed?

If a is situated in a determined quadrant, say the first, then there will
not be any solution in the region bordered by lines −2 and −1. In fact,
the points of this region turn into points from the third quadrant. Thus,
the solutions have to be situated in the regions we know to turn into the
first quadrant. We can say how many solutions are there in each of these
regions.

For example, let us consider the region Ω, bordered by lines 9, 8, 5, 4
and part of line 3.

As s runs through the border of this region, ABCDEFGHA, the image
ζ(s) runs through a closed path, according to the following table

s A→ B C → D D → E F → G G → H

ζ(s) 1 → +∞ +i∞→ 0 0 → +∞ +i∞→ 0 0 → 1

so that ζ(s) goes round the first quadrant twice. Thus, if a is a point from
the first quadrant, the equation ζ(s) = a will have exactly two solutions
when s ∈ Ω, according to the argument principle.

It is clear that, under the former conditions, the equation ζ ′(s) = 0
must have a solution in the region Ω. There are other solutions of ζ ′(s) = 0,
one for each of the lines −3, −5, −7, . . . precisely in the points at which
these lines meet the real axis.
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In the X ray figure we thus see 14 solutions of ζ ′(s) = 0, situated on
the real axis, and, besides, the existence of two more can be inferred, one
in the region called Ω and the other in the region situated between lines 11
and 17.

2.7. The construction of the graphics. The first one who calculated
zeros of the function ζ(s) was Riemann himself. Gram [7] calculated the
first ten zeros and proved that they were the only ones satisfying 0 <
Im(ρ) < 50. The following step in this direction were the works of Backlund
[2], who managed to prove that the zeros α + iβ, with α > 0 and 0 <
β < 200 where exactly 79, every one of them with real part α = 1/2.
Later, Hutchinson [8] managed to extend these calculations up to 300. This
task has been followed by many mathematicians like Titchmarsh, Comrie,
Turing, Lehmer, Rosser, and so on.

We have used the same technics they used to localize certain values of
σ, the solutions of Re ζ(σ + it) = 0 or Im ζ(σ + it) = 0. Afterwards, we
have written other programs, based on these, ones which situate the points
belonging to the same line in order.

These graphics owe much to the program Metafont, created by Knuth
to design the fonts used by TEX, and to its modification MetaPost, by
J. D. Hobby, which allows one to obtain PostScript graphics.

For |σ − 1/2| > 5/2 I have proved that the curves follow the path I
have drawn here, but for the area near the critical strip I just followed the
method until I was convinced that the curves follow the path I have drawn.
This has required, in some cases, the calculation of numerous points on
each line. So they can not be considered proved.

2.8. The existence of non trivial zeros. One of the problems which
have arised in drawing these graphics was to know the number of a line.
Applying the Stirling series for log Γ(s) and the functional equation of ζ(s)
we can prove the following:

Theorem 1. The number of a line passing through the point −1 + it (with
t > 5) is the integer number which is nearer to

(2.1)
2t

π
log

t

2π
− 2t

π
+

1
2
.

Logically, the role of line σ = −1 is not important as long as we are
not near the critical strip.

If we watch all the lines coming to the critical strip from the left and
we know that the thin lines can not surpass a certain point, we see they
must come back and they can not do it unless they cut the thick lines which
accompany them. This little rigorous reasoning can be turned into a proof,
by means of the argument principle, of the following theorem.
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Theorem 2. Let us suppose that −1 + iT is on one of the parallel lines
which do not contain any zero. The number of non trivial zeros ρ = β + iγ
below this line and satisfying β > 0 is equal to the integer number nearest
to

(2.2)
T

2π
log

T

2π
− T

2π
+

7
8
.

A

BC

D

Proof. In order to prove it, let us consider the
region bordered by the lines σ = −1, σ = 2,
line number 3 and the line which is referred to
in the statement. In the figure we have repre-
sented the case when this line is line number
17. The number of zeros we are looking for is
equal to the variation of the argument of ζ(s)
along this curve. But, along the segment AB,
there is no variation, because all the segment
turns into points of the first and the fourth
quadrant, starting and finishing on the real
axis. In the portions of the curves CB and
DA there is also no variation because on them
the function ζ(s) is real. Thus, the variation
of the argument is exactly the one which takes
place in the segment CD. This segment cuts
several lines. As it goes from one to the other,
the argument of ζ(s) varies precisely in π/2.
This way, the variation of the argument will
be (N+3)π/2 if the highest line is line number
N . By the previous theorem N is the integer
number nearest to 2.1. It follows easily that
the number of zeros is equal to (N + 3)/4,
and thus it is the integer number nearest to
2.2. !
If the line we are dealing with is one of the
parallel line which do contain zeros, an analo-
gous reasoning proves that the number of ze-
ros below this line, counting the one which is
on line N on, is (N + 5)/4, and so it is the
integer number which is nearest to

(2.3)
T

2π
log

T

2π
− T

2π
+

11
8

.

So, the parallel lines which do not contain zeros have a number N ≡ 1 and
the ones which do contain zeros, on the contrary, satisfy N ≡ 3 (mod 4).
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3. Technics to calculate the function ζ(s).

In order to construct the graphics the possibility of calculating the
function is essential. There are two basic ways to calculate the function
ζ(s).

3.1. Euler-MacLaurin Formula. It is the following

ζ(s) =
N−1∑

n=1

1
ns

+
1
2

1
N s

+
N1−s

s− 1
+

M∑

k=1

Tk + R(N, M),

where

Tk =
B2k

(2k)!
N1−s−2k

2k−2∏

j=0

(s + j),

Bn are the Bernoulli numbers, and there are good known bounds for the
error term R(N,M).

Choosing N and M conviniently as a function of s allows one to cal-
culate ζ(s) for any s and with arbitrary precission.

3.2. Riemann-Siegel Formula. Before explaining what does it consist
of, we should define Hardy’s function (called so though it was known by
Riemann)

Z(t) = eiθ(t)ζ
(1

2
+ i t

)

with
θ(t) = Im

(
log Γ

(1
4

+ i
t

2

))
− t

2
log π.

The functional equation implies that the function Z(t) is real for real
values of t. This allows one to locate zeros ρ = β+iγ with β = 1/2, because
a change in the sign of Z(t) implies the existence of a zero with abscissa
exactly 1/2.

The Riemann-Siegel formula allows one to calculate the function for
any point s, but with a limited precission depending on who s is. We will
only write it for a point of the form s = 1/2 + it. It is the following:

Z(t) = 2
m∑

n=1

cos(θ(t)− t log n)√
n

+ g(t) + R,

where

m = ,
√

t/2π-

g(t) = (−1)m−1
( t

2π

)−1/4
h(ξ)

h(ξ) = (sec 2πξ) cos 2πφ

ξ =
( t

2π

)1/2
−m

φ = ξ − ξ2 + 1/16
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The error is O(t−3/4). The Riemann-Siegel formula requires, in order
to achieve a fixed precission, the calculation of approximately

√
t terms

of the first sum, while the Euler-MacLaurin formula requires a number of
terms of the order of t. When t ≈ 109, this difference turns out to be very
significant.

This formula has an interesting story. In a letter directed to Weier-
strass, Riemann claims that:

the two theorems I have just stated here: that between 0

and T there exist approximately T
2π log T

2π −
T
2π real roots of

the equation ξ(α) = 0.

that the series
∑

α

(
Li(x1/2+iα)+Li(x1/2−iα)

)
, when its terms

are ordered according to the incresing growth of α, tends to
the same limit than the expression

1
2πi log x

a+bi∫

a−bi

d1
s log

ξ
(
(s− 1

2 )i
)

ξ(0)

ds
xs ds

when b grows beyond boundaries.
are consecuences of a new expansion ξ which I have not been
able to simplify enough to comunicate it.

Riemann considered proved1 all his other claims contained in [14].
Because of this, it was clear that, among Riemann’s papers should

be the expansion he was talking about. Some 70 years after his death,
C. L. Siegel [16] managed to figure out these papers. It would be worth
for the reader to have a look at the photocopy of the sheets of Riemann’s
manuscript which contain the famous expansion, which can be found in
Edward’s book [6], to realize the difficulty of Siegel’s task.

4. Graphics of the zeta-function in the critical line.

In the following pages we present some graphics corresponding to the
values of t between 0 and 560. We have just drawn the strip −1 ≤ σ ≤ 2.
The part which is not represented has nothing new and our imagination can
supply it without any trouble. On the left we have pointed the values of t,
each time it increases in twenty unities, and we have written the number of
some lines (the parallel ones which do not contain any zeros). We leave till
later the explanations about some points we have marked in the graphics
with little circles, situated on the critical line.

1It seems that the Riemann’s capability to prove his claims has been doubted more than once
without proper support. To get more information on this point you can consult my paper[1].
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In the usual proof about the number of non trivial zeros up till a given
height T it is proved that a horizontal segment cutting the critical strip
between σ = −1 and σ = 2, at a height of, say, t, can only cut a number of
lines of the order log t. This, and the fact that the lines coming from the
right can not cut themselves, because that would generate a region bordered
by points where the function ζ(s) is real and bounded, allows Speiser to
infer that the lines coming from the right have to cross the critical strip
and move away to the right towards the infinity.

In fact, if one of these lines went up towards the infinity through the
critical strip it would force the others to go above it, also through the
critical line, to infinity. As there are a number of them of the order of t,
we would reach a contradiction with the results already proved about the
horizontal segment in the critical strip.

As the number of lines on the left has an order of t log t, we see that
it is necessary for some of them to go back to the right, joining others.
Speiser calls these figures, formed by two lines, when the function is real,
sheets.

The graphics give rise to some integer sequences, the most obvious is
the sequence formed by the number of lines which escape to the right. That
is,

−3,−1, 1, 3, 9, 11, 17, 23, 29, 35, 41, 47, 53, 59, 69, 75, 81, 91, 97, 103, 113,

123, 129, 135, 145, 155, 161, 171, 181, 187, 197, 207, 217, 223, 237, 247, 253

263, 273, 283, 293, 307, 313, 323, 329, 343, 353, 359, 373, 383, 393, 403, 417

423, 437, 451, 457, 467, 481, 491, 501, 511, 525, 535, 545, 559, 569, 579, . . .

Speiser suggests that it could be connected with the distribution of the
prime numbers. I could not see any conection.

Looking at these graphics, a general scheme seems to appear. Between
two parallel lines which do not contain zeros there are an even number of
thin lines, joining by pairs, a thick line coming parallel from the right cuts
one of these loops and the rest are inserted with loops of thick lines. Later
we will see how these simple ideas about the function break.

The thin lines almost do not cross over the critical line, while the thick
lines sometimes reach Re(s) = 2. In fact, we see that at a high height they
do cross over this line, this happens for the first time in the sheet formed
by lines 789 and 791. But what is really surprising happens in line 1085.
This forms a sheet with line 1091. So this sheet surrounds completely the
one formed by lines 1087 and 1089. For higher values of t this becomes
quite frequent.
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480

500
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1021

1049

1069

1097

1121

520

540

560

1135

1159

1187

1225

1235

1187

Sometimes, as in line 1187, can happen
that the path followed by the line is not
clear. In such cases we draw the con-
fusing area, for example, in this case we
can see here a square which represents
the rectangle (0.2, 0.8) × (540, 540.8),
marking the points where the function
ζ(s) is real. This way it is clear that
line 1187 turns down when it gets to the
critical line, and the pair of lines 1189
and 1191 form a sheet.

The monotony of the function on the
curves is valid except in the poles, pro-
vided we define suitably the prolonga-
tion of the curve in the points where
the derivative vanishes. In fact, in one
of these points several curves meet, and
there are as many on which the function
increases as on which the function de-
creases, thus it always is possible, when
we reach a zero of order n of the deriv-
ative, to go back with an angle of 2π/n,
so that the monotony is maintained all
through the curve.

Another particularity of the curves we
would like to emphasize is that, except
possibly the ones which go through the
poles, the curves have to leave every
compact. Thus they come from and go
to the infinity.
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5. First Theorem of Speiser

Theorem 3 (Speiser). The Riemann Hypothesis is equivalent to the fact that all
the sheets meet the critical line.

Proof. Let us recall that the sheets are the thick lines in which ζ(s) is real and
which, coming form the left, go back to the left joining another thick line.

In the first place, on each sheet, the zeta-function takes all the real values.
In fact, the fuction is real and monotonous and it tends to infinity as σ → −∞.
Thus in a sheet there is always one (and only one) zero of the function.

If some sheet would not touch the critical line, the corresponding zero would
be an exception to the Riemann Hypothesis.

The proof of the other implication is a little more intricate. In the first place,
we must notice that if a real line crosses the critical line through a point α, then it
holds that ζ(s) = 0 or else the modulus |ζ(s)| decreases as the curve goes through
this point from left to right. To see this, we notice that, since the function of Hardy
Z(t) is real for real values of t, it follows that θ(t) + arg ζ(1/2 + it) = cte, except
at one zero of the zeta-funcion. Since θ(t) is an increasing function it follows that
∂t arg ζ(1/2+ it) < 0 unless 1/2+ it is a zero of the zeta-function. Let us consider
then the analytic function

log ζ(1/2 + it) = log |ζ(1/2 + it)| + i arg ζ(1/2 + it).

From the Cauchy-Riemann equations it now follows that the derivative of |ζ(s)|
with respect to σ in the point σ = 1/2 must be negative.

If a line (of a sheet) surpasses the critical line from left to right it must go
through it again in order to come back to the left. If the zero which is on the
sheet is not one of the points where the line cuts the critical line, we can apply the
results obtained above to both of them. It follows that in one of the points it must
be satisfied that ζ(s) > 0, and in the other, ζ(s′) < 0, so that the absolute value
can be decreasing in both. Since the function is monotonous along the sheet, it
follows that the zero is situated on the right of the critical line.

Thus there are two kinds of sheets cutting the critical line. In some of them,
the zero is located in one of the two cuts between the critical line and the sheet.
In others, the zero is situated on the right of the critical line.

Consecuently, if the Riemann Hypothesis is false, there would be a zero situ-
ated on the left of the critical line, which can be situated only on a sheet which
does not cut the critical line. If the Riemann Hypothesis is true, then all the sheets
are of the kind which have a zero exactly on the line and so they cross it (or are
tangent at it).

This way, we see that if the Riemann Hypothesis is true all the sheets would
meet the critical line. !

In the figures above we can see that, in fact, all the sheets do contain a zero and
another point on which it cuts the critical line. We have marked the latter with a
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little circle. These points are the so called Gram points, and we will see some
interesting results about these points below.
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Figure 12. Zeros of ζ(s)
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6. Separating the zeros. Gram points.

In the last page we marked the zeros of the function ζ(s). We see that
there is some randomness in their distribution.

To try to understand their distribution the Gram points are brought in.
The Gram points, which we have marked with a little circle in our figures,
are points on the critical line where the function ζ(s) is real and does not
vanish. In the graphics of the following page we have marked Gram points.
It is remarkable how regularly are these points distributed.

The Gram point gn is defined as the solution of the following equation:

θ(gn) = nπ

Since Hardy’s function is real,

ζ(1/2 + i gn) = e−iθ(gn)Z(gn) = (−1)nZ(gn)

is real. Thus these points are situated on thick lines.
Looking at the preceding figures, we verify that, in most of the cases

represented there, it holds:

ζ(1/2 + i gn) > 0.

We will see later that this inequality has exceptions for greater values of t.
In the Riemann-Siegel formula, the first term, which is the most impor-

tant, has a value of (−1)n for t = gn, which partly explains the tendency
of Z(gn) to have the sign (−1)n.

An important consequence of the preceding is that Z(gn) and Z(gn+1)
have oposed signs, so that the function ζ(1/2+it) will vanish in the interval
(gn, gn+1). In Figure 14 we can see this graphically.

When one intends to calculate the real zeros of a polynomial, a first
task is to separate the zeros, that is, to find an increasing sequence of values
for t in which the polynomial takes alternatively values of different signs.
An analogous aim is achieved with Gram points.

Gram noticed that these points seemed to separate the zeros of the
zeta-function and claimed that this would be true for not too high values
of t. Hutchinson named the fact that in each interval (gn, gn+1) would be
a zero of the zeta-function Gram’s law.

Titchmarsh uses this idea to prove that there is an infinity of zeros on
the critical line, proving that the mean value of Z(g2n) is positive and that
of Z(g2n+1) is negative.
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Figure 13. Gram Points.
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Figure 14. Gram’s points separate the zeros.
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7. Second Theorem of Speiser.

We present here Speiser’s proof, and, as we have already said, his meth-
ods are between the proved and the acceptable. Everybody quotes him but
nobody reproduces his theorems. His methods do not seem convincing to
me, either, though I think his proof is essentially sound. We present it more
like a challenge: to turn it into a proof, filling its gaps. In any case, a flaw-
less proof of a stronger result can be found in Levinson and Montgomery
[12].

Theorem 4 (Speiser). The Riemann Hypothesis is equivalent to the fact
that the non trivial zeros of the derivative ζ ′(s) have a real part ≥ 1/2, that
is, that they are on the right of the critical line.

Proof. Let us assume that there is a zero a of ζ(s) on the left of the critical
line. Let us consider the lines of constant argument arg ζ(s) = cte which
come from the point a. In all of them the modulus |ζ(s)| is increasing.
Thus, these lines can not cross the critical line, because at crossing it from
left to right, the absolute value of ζ(s) ought to decrease.

They also, can not be tangent at the critical line, because the tangency
point would be a point in the critical line where arg ζ(1/2 + it) would be
stationary, and this is possible only if it is a zero. But, in the line, |ζ(s)|
increases, starting from zero, so it can not go through a zero of the function.

Thus all these lines come back to the left. Some of them go back
leaving the point a below, others leave it above. The line which separates
both kinds of lines must reach a zero of the derivative, which will allow it
to go back. This would be a zero of the derivative on the left of the critical
line.

Consequently, if the Riemann Hypothesis is false, we see that there
must exist a zero of the derivative on the left of the critical line.

Now let us suppose that ζ ′(a) = 0, where Re(a) < 1/2. We have to
find a zero of the function on the left of the critical line. We can assume
that ζ(a) "= 0, because if this were the case we would have already finished.
Since the derivative vanishes, there exist two opposite lines, of constant
argument and along which |ζ(s)| decreases. We follow these two lines, and
we must reach a zero, because |ζ(s)| decreases. If it is on the left of the
critical line, we have finished, while, in other case, it is clear that we will
reach the critical line.

Our two paths, till they reach the critical line, and the segment from
the critical line they determine, enclose a region Ω. From the point a, two
opposite paths also set off, along which |ζ(s)| increases, and the argument
of ζ(s) is constant. One of them enters our region Ω, (because in the point
a, the borderline of the region has a well-defined tangent).
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Figure 15. Zeros ζ ′(s).
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We will follow this path. Since |ζ(s)| increases to infinity along this curve,
it must leave the region Ω, but it can not do it across the curves which we
used to define it since along them |ζ(s)| < |ζ(a)|, and we are considering
a curve where the values of |ζ(s)| are greater than |ζ(a)|. It also can not
leave Ω across the segment from the critical line, because to cross it from
left to right it ought to do it with |ζ(s)| decreasing.

Thus supposing that there was no zero of ζ(s) on the left of the critical
line has lead us to a contradiction. !

Speiser’s theorem makes the zeros of ζ ′(s) far more interesting. R. Spira
who has given a complete proof of half of Speiser Theorem [18] has calcu-
lated the first ones (those which have an abscissa less than 100), which are
represented in the figure.

We see that the real curves (thick ones) seem to be attracted by the
zeros, and each sheet seem to have one zero associated with it, which would
justify their crossing the critical line to approach their corresponding zero.
In this way we have an insight about the place where the zeros which are
beyond line 113 (that we have not draw in the figure) are situated.

We see that a zero of the derivative does explain the behaviour of line
11. If the derivative vanished at a point in which the function is ζ(s) is real,
at this point two thick lines would meet perpendiculary. What happens here
is that the function is almost real in the zero and the curves resemble the
meeting we have described. This is also what happens in line 1187. If we
see the graphics with the dots we had to do in order to see the path this
line follows, we can verify that the derivative at this point has a zero with
an abscissa slightly greater than 1/2.

Because of Speiser’s reasoning we know that a line which comes parallel
from the right at a height T does not rise or fall of level until it crosses
the critical strip at a height greater than O(log T ). Thus, the number
of parallel lines below it is T log 2/π + O(log T ). This lines, alternatively,
contain a zero of ζ(s) which is not associated with a sheet, or do not contain
it. Thus the zeros which are not associated with a sheet up till a height
T is approximately equal to T log 2/2π. According to this, the number of
sheets below a height T is

T

2π
log

T

2π
− T

2π
+

7
8
−

(T log 2
2π

− 1
2

)
=

T

2π
log

T

4π
− T

2π
+

11
8

,

with an error of the order of log T .
If the remarks we have made concerning the zeros of the derivative

ζ ′(s) are true this is the number of zeros of the derivative up till a height
T . Spira conjectured this claim and Berndt [3] has proved it.
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8. Looking higher. A Counterexample to Gram’s Law

We will now see that most of the regularities in the behaviour of the
function break at a great enough height.

t = 275

t = 285

line 501

line 491

g126 = 0.5 + i 282.45472 . . .

ρ127 = 0.5 + i 282.46511 . . .

g125

g127

Gram’s law claims that between every
two consecutive Gram points there ex-
ists a zero of the function ζ(s). The re-
mark is Gram’s [7], but it was Hutchin-
son who named it Gram’s law, although
it was him who found the first coun-
terexample, which can be seen in the
figure. Gram [7] only claimed that this
would happen for the first values of n.
The interval (g125, g126) does not con-
tain zeros of the zeta-function. On
the contrary, the next interval contains
two zeros thus reestablishing the total
count.
Later Lehmer [11] finds out that the ex-
ceptions grow more frequent as n in-
creases. He also notices that, in general,
these exceptions consist of a Gram in-
terval in which there are no zeros, next
to another which has two.

Possibly the only valid rule was the one
formulated by Speiser: The number of
thick lines crossing the line σ = −1 be-
low a height T is

T

π
log

T

2π
− T

π
+

1
4

and the number of Gram points below
this height is only half this number. A
thick line which crosses the critical line
has to do it through a Gram point or
a zero. The parallel lines, alternatively,
contain a Gram point or a zero. Speiser
believes that each sheet uses a Gram
point and a zero to enter and exit the
area on the right of the critical line.
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This is true, there exists a bijectiv map between the zeros and Gram points,
but it is the one established by the fact that they are on the same sheet.
It may be convenient to call also sheet to a parallel line which does not
contain zeros and the parallel line inmediately above it.

This way, another sequence of natural numbers associated with the
graphics of the zeta-function arises. In fact, Gram points g−1, g0, g1, . . . are
associated with the zeros numbered

1, 2, 3, 4, 5, 7, 6, 8, 10, 9, 11, 13, 12, 14, 16, 15, 17, 18, 20, 19, 21, 23, 24, 22, 26,

25, 27, 28, 30, 31, 29, 32, 34, 33, 35, 36, . . .

It is a permutation σ of the natural numbers, so that |σ(n)− n| ≤ C log n.
But, actually, it is well defined only if the Riemann Hypothesis is valid.

9. Almost Counterexample to Riemann Hypothesis (Lehmer)

An important landmark in the numerical study of the zeros of the zeta-
function is Lehmer’s paper [11] in the year 1956. In it, he proves that the
first 10000 zeros of the function have a real part exactly equal to 1/2, so
that the Riemann Hypothesis is valid at least for t ≤ 9878.910.

He establishes that, at this height, one out of ten Gram interval does
not satisfy Gram’s law. The number of exceptions increases continuously.
He also finds out that in many occasions, in order to separate a zero, he
must turn to Euler-MacLaurin formula because Riemann-Siegel’s one does
not have enough precission. This happens because the zeros of the zeta-
function are very close. He studies specifically a particularly difficult case:
it is an area near t = 1114, 89, situated in the Gram interval (g6707, g6708),
where the function has two extremely close zeros,

1
2

+ i 7005.0629
1
2

+ i 7005.1006.

We will not repeat the graphics that Lehmer made about the behaviour of
the function Z(t) in a neighborhood of these points. Between these two
zeros Hardy’s function has the lowest relative maximum. This maximum
is only 0.0039675 and it occurs at the point t = 7005.0819. Looking at
the terms of Z(t) in this point we see that a few of the first terms quickly
increasing are counteracted by conspiracy of lots of small terms which sum
up, thus the maximum turns out almost negative. A negative relative
maximum would imply, it can be proved, a counterexample to the Riemann
Hypothesis. So we call this situation an almost counterexample to the
Riemann Hypothesis.
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t = 6 990

t = 7 000

line 26 805

line 26 775

g6 701

t = 7 000

t = 7 010

line 26 819

line 26 841

g6 708

g6 707

Figure 17. Almost counterexample of Lehmer
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In the figures included in this page we can see the case analyzed by
Lehmer. We notice that, from our point of view, it consists of two very
close zeros, so that, viewing it from a far distance, it seems to be a double
zero. We see that the lines seem to be continued more smoothly by the
ones which are not actually joining them. Instead, the lines turn abruptly.
Every time this is the case, that is, there are drastic changes in the direction
of the lines, there is a zero of the derivative hanging about.

It would be easy to modify the lines artificially so that the two lines
containing the Gram points would join and the other two thick lines would
join each other too. So, slightly modifying the path of the thin lines, we
could generate two zeros outside the critical line, which are symmetrical
with respect to each other.

line 26 841

g6 708

g6 707

Figure 18. Detail of the last figure.
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10. Rosser Law

Rosser, Yohe and Schoenfeld (1968) expand Lehmer’s calculations and
prove that the first 3 500 000 zeros are simple and situated on the critical
line. These authors find out a certain regularity in the failures of Gram’s
law.

They distinguish between good and bad Gram points. Good points are
those at which ζ(1/2 + ign) > 0 holds, and bad ones are the rest of them.
We know how to tell these points apart with the nacked eye in the X ray.
Bad Gram points are surrounded by a thin line.

They call Gram block to a consecutive set of bad Gram points sur-
rounded by two good ones. For example, in the precedent figure points
g6707, g6708 and g6709 form a Gram block.

Rosser’s law claims that in a Gram block there are as many zeros as
the number of Gram’s intervals.

10.1. The function S(t). Let N(T ) be the number of zeros ρ = β + iγ
with 0 ≤ γ ≤ T . An approximation to N(T ) is π−1θ(T ) + 1, so that

N(T ) = π−1θ(T ) + 1 + S(T ).

The value πS(T ) is also the variation of the argument of ζ(s) when s goes
from +∞+ iT to 1/2 + iT .

Von Mangoldt proved that, as Riemann says, S(T ) = O(log T ). Later
Littlewood proved ∫ T

0
S(t) dt = O(log T ).

Selberg proves that

S(t) = Ω±
(
(log t)1/3(log log t)−7/3

)
.

Thus, there exist values of t at which S(t) is as high as we want it to be.

10.2. First counterexample to Rosser’s law. The first counterexample
to Rosser’s law (see Figure 9) is in the Gram block

(g13999525, g13999527)

in which there is no zero of the function. In the following interval J =
(g13999527, g13999528) there are three zeros which balance the total count.

In the graphics we see how the function S(T ) takes a value greater
than 2 in a point which is situated between point g13999527 and the first
zero contained in the interval J .

This is a general rule: Gram’s law is satisfied as long as |S| < 1 and
Rosser’s law as long as |S| < 2.

We have already said that there exist points on which S takes values
as high as desired.
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t = 6 820 044

t = 6 820 054

line 55 998 101

line 55 998 075

g13 999 525

t = 6 820 054

t = 6 820 064

line 55 998 135

line 55 998 189

g13 999 544

Figure 19. First counterexample to Rosser’s law.



32 J. ARIAS-DE-REYNA

A high value of S(t) corresponds to a point in the critical line, 1/2+ it,
such that the segment from 1/2 + it to +∞ + it meets a high number of
our lines.

In the tables from [4] and [5] we see that the extreme values of S which
are known hardly surpass an absolute value of 2.

In Brent’s table is already quoted the first counterexample to Rosser’s
law associated to the Gram point number 13999525, where S(t) reaches a
value of −2.004138. In fact, we see that there is a point 1/2+ it0 impercep-
tibly above g13999527, but before the next zero of ζ(s), such that the segment
from this point to 1+ it0 meets firstly a thick line, then a thin line, followed
by another thick and another thin line. In the point +∞+it0 we start from
a value equal to 1, enter the fourth quadrant, cross a thin line and thus we
reach the third quadrant, cross a thick line entering the second quadrant,
cross another thin line and find ourselves in the first quadrant, and finally
another thick line and so we end up in the fourth quadrant. Consequently,
the argument has changed in a quantity between 2π and 5π/2, that, as we
can see, agrees with the value given by Brent.

line 55 998 101

g13 999 525

σ + it0

Figure 20. Detail of the last figure
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t = 14 253 732

t = 14 253 742

123 723 683

123 723 717

123 723 751

g30 930 929

g30 930 926

t = 14 253 742

t = 14 253 752

123 723 847

123 723 809

Figure 21. Another counterexample to Rosser’s law.
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123 723 717

g30 930 929

g30 930 926

Figure 22. Detail of the last figure.

In the example presented in this page, S reaches a value 2.0506 and
so the existence of the point 1/2 + it0 is a little clearer. In this case, S is
positive, while in the precedent it was negative.

The previously quoted result of Selberg assures us that there are points
at which S(t) is as high as desired. Thus we can assume that, in a higher
level, we will see coils which are analogous to Figures 22 and 20, but in
which an arbitary number of lines gets involved.

Watching the preceding figures one may wonder if the thin lines do
not cross the line σ = 0. This is not true, by a theorem of Bohr (see
[19] p. 300) the function ζ(s) takes every value "= 0 infinitely often in the
halfplane Re(s) > 1. In fact Van de Lune [13] has shown that σ0 = sup{σ ∈
R : Re ζ(σ + it) < 0 for some t ∈ R} is given by the unique solution of
the equation

∑
p arcsin(p−σ) = π/2, σ > 1. Brent and Van de Lune have

computed σ0 = 1.1923473371861 . . . with more than 400 decimal digits.
We finish with three figures of the zeta-function near a thousand mil-

lions, to show a ramdomly chosen area.
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line 11 386 192 121

t = 1 000 000 000

Figure 23. ζ(s) near t = 1000 000 000.
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line 11 386 192 183

t = 1 000 000 005

Figure 24 . ζ(s) near t = 1 000 000 000.
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line 11 386 192 287

line 11 386 192 237

t = 1 000 000 010

Figure 25. ζ(s) near t = 1000 000 000.
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Figure 26. Hermite polynomial H7(z)

To show how boring life can be outside Number Theory, we include the
graphics of some functions.

The first one is Hermite’s polynomial H7(z), that is,

128z7 − 1344z5 + 3360z3 − 1680z

It has a degree equal to seven and all its roots are real. Here we represent
it in the rectangle (−17, 17)2, which is enough to get a clear idea of how
the graphic is.

We can see the seven zeros of the function and the six ceros of the
derivative.

The graphics of all Hermite’s polynomials are analogous. It also looks
like the graphics of other orthogonal polynomial families. But we must
point out that a general polynomial can have a very complicated graphics.
The regularity in this case is due to the fact that it is a very particular
polynomial.
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In this page we have the X rays corresponding to the Bessel function
J7(z) and the Airy function Ai(z) defined by

Figure 27. Bessel function J7(z)

Figure 28. Airy function Ai(z)

J7(z) =
(z

2

)7
∞∑

k=0

(−1)k(z/2)k

k!(k + 7)!
, Ai(z) =

3−2/3

π

∞∑

k=0

Γ
(
(k + 1)/3

)
sin 2π

3 (k + 1)
k!

(31/3z)k

The Bessel function is represented on the rectangle (−28, 28)×(−20, 20)
and the Airy function on (−15, 15)× (−10, 10).
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The Bessel function has a zero of order 7 in the origen. Its other zeros
are real and, appart from the obvious zeros of the derivative, which are
real, the derivative does not vanish.

The Airy function is surprising because of the likeness of its X ray with
that of the Gamma function.

Figure 29. Function Γ(s)
The graphic of the function Γ(s) shows that its derivative vanishes only

at the obvious zeros. The graphics of a function and its inverse do always
coincide. The figure shows the rectangle (−10, 10)2.
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