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Abstract

_ACT is a computer simulation program that uses a propositional network to represent
knowledge of general facts and a set of productions (condition - action rules) to represent
knowledge of procedures.' There are currently four different mechanisms by which ACT can
make additions and médifications to its set of 'proddctions as required for procedural iearning:
designation, strengthening, generalization, and discrimination. Designation refers to the ability
of productions to call for the creation of new productions. Strengtheniﬁg a production may
have important consequences for performance, since a production’s strength determines the
amount of system resources that will be' allocated to its processing. Fina-lly, geder'alization
and discrimination refer to complementary processes that produce better performance by
either extending or restricting the range of situations in whicH a produciion will apply. These
learning mechanisms are used to simulate experiments on schema abstraction by Franks and
Bransford (1971), Hayes-Roth and Hayes-Roth (1977), and Medin and Schaffer (1978). The
mechanisms are used to predict recognition trials to criterion, as well as final test recognition
and classification. ACT successfully accounts for the effects of distance of instances from a

central tendency, frequency of individual instances, and inter-item similarity.



1 Introduction

We are interested in understanding learning. For many years learning theory was
practically synonymous with experimental psychology; hcwever, its boundaries have shrunk
to such an extent that they barely overlap at all with those of modern cognitive psychology.
Cognitive psy;:hologists, by and large, concern themselves with a detailed analysis of the
mechanisms that underlie adult human intelligence. This analysis has gone on too long without
adequate attention to the question of how these complex mechanisms could be acquired. In
an attempt to answer this question, we have adopted one of the methodological approaches
of modern cognitive psychology: Results of detailed experimental analyses of cognitive
behaviors are elaborated into a computer simulation of those behaviofs. The simulation
program provides new predictions for a further experimental testing whose outcome iﬁ then

used to modify the simulation and the whole process then repeats itself.

Our computer simulation is called ACT. The ACT system embodies the extremely powerful
thesis that a single set of learning processes underlies the whole gamut of human
learning--from children learning their first language by hearing examples of adult speech to

adults learning to program a computer by reading textbook instructions.

_ In this paper we will give a general overview of the ACT learning theory and describe its
application to research on abstraction of schemas. Elsewhere we have provided somewhat
more technical discussions of the ACT system and describéd its application to other dOmain.;,
(Anderson, 1976; Anderson, Kline, and Lewis, 1977; Anderson, Kline and Beasley, 1977;

Anderson, Kline and Beasley, in press).

A. The ACT System

In ACT knowledge is divided into two categories: declarative and procedural. The
declarative knowledge is represented in a propositional network similar to semantic network
representations proposed elsewhere (Quillian, 1969; Anderson and Bower, 1973; Norman and

Rumelhart, 1975). While the network aspects of this representation are important for such



ACT processes as spreading activation, they are not important to the current learning
discussion. For present purposes we will consider ACT’s declarative knowledge as a set of

assertions or propositions and ignore the technical aspects of its network representation.

ACT represents its procedural knowledge as a set of productions. The ACT production
system can be seen as a considerable extension and modification of the prodyction systems
developed at Carnegie-Mellon (Newell, 1972, 1973; Rychener and Newell, 1977). A
Production is a condition - action rule.< The condition is an abstract specification of a set of
propositions. If a 'set of propositions can be found in the data .base which meets this
specification, the production will perform its action. Actions ¢an both add to the contents of

the data base and cause the system to emit observablie responses.

ACT’s productions can only have their conditions satisfied by active propositions. ACT’s
activation mechanism is designed such that the only kpropositions active are those that have
recently been added to the data base or that are closely éssociated to propositions which
have been added. Propositions are added to the data base either through input from the
environment or through the execution of productions. Thus, this activation system gives ACT
the property of being immediately responsive to changes in its environment or in its internal

state.

ACT’s basic control structure is an iteration through successive cycles, where each cycle
co;\sists of a production selection phase followed by an execution phase. On each cycle an
APPLYLIST is computed which is a probabilistically defined subset of all of the productions
whose conditions are satisfied by active propositions. The probability that a production will
be placed on the APPLYLIST depends on the strength (s) of that production relative to the
sum (5) of the strengths of all the productions whose conditions mention active elements; that
is, this probability varies with s/§. Discussion of the process of assigning a strength to a
production will be postponed until a later section; all that needs to be said here is that this
strength reflects just how successful past applications of this production have been. Thus
one component of the. production-selection phase consists .of choosing out of all the

productions which could apply those which are the most likely to apply successfully. Further



q

discussion of the details of production selection and execution is best conducted in the

context of an example.

B. An Example Production System

Table 1 presents a set of productions for adding two numbers.! Let us consider how this
production set would apply to the addition problem of 32 + 18. We assume this problem is
encoded by a set of propositions which may approximately be rendered as:

The goal is to add 32 and 18
32 begins with a 2

The 2 is followed by a 3

32 ends with this 3

18 begins with a 8

The 8 is followed by a 1
18 ends with this 1

The above propositions encode the digits from right to left as is required by the standard

addition algorithm.

The condition of Pl in Table 1 is satisfied by making the following correspondences

between elements of the condition and propositions in the data base:

The goal is to add LVnumber! and LVnumber2=The goal is to add 32 and 18
LVnumber! begins with a LVdigitl = 32 begins with a 2
LVnumber? begins with a LVdigit2 = 18 begins with a 8

In making these correspondences, the variables LVnumberl, LVnumber2, LVdigitl, and
LVdigit2 are bound to the values 32, 18, 2, and 8 respectively. The LV prefix indicates that
these are local variables and can be bound to anything. .Since they onI); maintain their
binding within the production, other productions are not constrained to match these variables

"in the same way. The action of Pl, the subgoal is to add LVdigit! and LVdigit2, becomes,

lThe productions presented in this paper sre translations of the formal synisx of the implemented productons into
(hopefully) more readable prose. The reader inlsrested in the sctual implemeniation delails may request listings of the
implemented versions and examples of their operation.



given the values of the variables, an instruction to place the proposition, The subgoal is to

add 2 and 8, into the data base. This serves as a cue to productions that will actually add 2

and 8.

After the execution of Pl the first element of the condition of production P2 is satisfied:

The subgoal is to add LVdigit! and LVdigit2=The subgoal is to add 2 and 8

The remaining condition of. P2 matches a proposition in the data base about integer addition:

LVsum is the sum of LVdigit! and LVdigit2 = 10 is the sum of 2 and 8

The action of P2 adds to the data base The subgoal is to put out 10.

The next production to apply is PS which is matched as follows:

The subgoal is to put out LVsum = The subgoal is to put out 10
The subgoal is to add LVdigit! and LVdigit2=The subgoal is to add 2 and 8
LVsum is greater than 9 = 10 is greater than 9
LVsum is the sum of LVdigit3 and 10 = [0 is the sum of 0 and 10
The action of PS5 writes out 0 as the first digit in the answer, places a proposition in the dat‘a

base, The subgoal is to do the next digits after 2 and 8, to the effect that this column is

finished, and sets a.carry flag.

Insert Table 1 about here

It is worth considering why no other production besides PS can apply. All the conditions
of prodbction P3 match, but P5 contains all the conditions of P3 plus two additional
propositions. Because its condition contains more elements, P5 is applied rather than P3.
This illustrates the prihciple of specificity - if two productions match but the condition of one
of them is a subset of the condition of the other, then the production with the larger number

of conditions (more specific) will apply instead of the production with fewer conditions (more



Pl:

P2

P3:

Pa:

PS:

P6:

P7:

P8:

IF

THEN
IF
THEN
IF

THEN

IF

THEN

IF

THEN

IF

THEN

IF

THEN

IF

THEN

Table |
A Set of Productions for Adding Two Numbers

the goal is to add LVnumberl and LVnhumber?2
and LVnumberl begins with a LVdigitl

and LVnumber?2 begins with a LVdigit2

the subgoal is to then add LVdigitl and LVdigit2

the subgoal is to add LVdigitl and LVdigit2
and LVsum is the sum of LVdigitl and LlegltZ
the subgoal is to put out LVsum

the subgoal is to put out LVsum

and the subgoal is to add LVdigitl and LVdigit2

write LVsum

and the subgoal is to add the digits after LVdigitl and LVdigit2

the subgoal is to put out LVsum

and the subgoal is to add LVdigitl and LlegllZ

and there is a carry

and LVsuml! is the sum of LVsum plus 1

write LVsuml

and the subgoal is to do the digits after Llegltl and LVdigit2
and remove the carry flag

the subgoal is to put out LVsum

and the subgoal is to add LVdigitl and LVdigit2
and LVsum is greater than 9

and LVsum is the sum of LVdigit3 and 10

write LVdigit3

and the subgoal is to do the next dlglts after LVdigitl and LVdigit2

and set the carry flag

the subgoal is to put out LVsum

and the subgoal is to add LVdigitl and LVdigit2

and there is a carry

and LVsum is greater than 9

and LVsum is the sum of LVdigit3 and 9

write LVdigit3

and the subgoal is to do the digits after LVdigitl and LVdigit2

the subgoal is to put out the digits after LVdigitl and LVdigit2
and the LVdigitl is followed by a LVdigit3

and the LVdigit2 is followed by a LVdigit4

the subgoal is to add LVdigit3 and LVdigit4

the subgoal is to add the digits after LVdigitl and LVdigit2
and the goal is to add LVnumberl and LVnumber?2

and LVnumberl ends with the LVdigitl

and LVnumber2 ends with the LVdigit2

the goal is satisfied
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general). Productions P4 and P6 do not‘apply because there is no carry into the first column.
One might wonder why P1 or P2 do not apply again since their conditions were satisfied once
by data base elements that have not been changed. The current version of the ACT
production system does not allow production conditions to match twice to exactly the same
data-base propositions. This constraint serves to avoid unwanted repetitions of the same

productions and thus some of the danger of infinite loops.

Production P7 applies next, adding The subgoal is to add 3 and ! to the data base so that
the next column can be addéd. Production P2 next applies, finds the sum, and adds The
subgoal is v,to put out 4 to the data base. Production P4 adds the carry to LVsum and writes

out the second digit of the answer, 5. P8 then applies, noting that the problem is finished.
This example illustrates a number of important features of the ACT production system.

(1) Individual productions act on the information in long-term memory. They communicate

with one another by ehteriﬁg information into memory.

(2) Productions tend to apply in sequences where one production applies after another has
entered some element into the data base. Thus the action of one production can help evoke

other productions.

(3) The condition of a production specifies an abstract patlter'n‘ of propositions in the data
base. The more pl;oposilions that a condition requires in its pattern, the more difficult itis to
satisty that condition. Similarly, the more a condition relies on constants instead of variables

to describe its pattern, the more difficult it is to satisfy that condition.

II Learning in ACT

ACT can learn both by adding propositions to its data base and by adding productions. It
can also learn by modifying strengths of propositions and productions. We will concentrate
here on the learning that involves productions. Production learning tends to involve the more

significant events of cognitive restructuring. It is also through production learning that ACT.



accounts for schema abstractions.

Productions can be added to the data base in one of two ways. They can be added by
deliberate designation as in the encoding of instructions or they can be encoded by
spontaneous restructuring of proauctions in response to experience. We will talk about two
varieties of spontaneous restructuring, generalization and discrimination. There is another
spontaneous process, strengthening, which adjusts strengths of productions in response to
their record of success. QOur discussion of learning will be divided to thrée subsections - éne
" to describe the déliberate designation, another to describe generalization and discrimination,

and a third to describe the mechanisms of strength adjuslmeni.

A. Designation

Productions can designate the creation of other productions in their action just as they can
designate the creation of propositional structure. We will illustrate the basic idea with an
example. Consider how ACT might assimilate the following rules defining various types of

LISP expressions (adapted from the second chapter of Weissman, 1967):

1., If an expression is a number it is an atom,

2. If an expression is a literal (a string of characters) it is
an atom, '

3. If an expression is an atom it is an S-expression,

4, ‘1f an expression is a dotted pair, it is an S-expression,

5, If an expression begins with a left parenthesis, followed by

" an S-expression, followed by a dot, followed by an

S-expression, followed by a right parenthesis, it is a
dotted pair,

After receiving this instruction ACT will have the sentences ex'pressing these rules
represented in its data base. However this representation, by itself, does not allow it to
perform any of the cognitive operations that would normally be thought of as demonstrating
en "understanding” of these rules. In order to obtain such an understanding, a means of

integrating these rules into ACT’s procedural knowledge is required. Since these rules have



the form of conditionals (antecedent implies consequent), they can be trar;s‘lated in a fairly
straightforward manner into the condition-action format of productions. Table 2 illustrates
four ACT productions for performing such a trans!ation.2 Production P9 handles the
antecedents of the first four conditionals. For exanible, P9 matches the segment If an
expression is a number...of rule (1) by binding LVword to the word number and LVconceptl to
the concept @NUMBER that ACT considers underlies that word. Its action is to save the

proposition An objeci is a @NUMBER for the condition of a new production.

Insert Table 2 about here

Production P10 is responsible for actually building the productions encoding these rules. It
obtains the actions of these new productions from its own prqcessing of the consequent
parts of the rules, while the conditions of these new productions have aflready been
identified, so P10 only needs to retrieve.them. For example, in the casé of rule (1), P10
applies after P9, matching the remainder of the sentence... it is an atom. Thé local variables
LVword and LVconcept receive values of atom and @ATOM, respectively, in the process of

matching. The action of P10 builds the production:

P13: IF an object is a @NUMBER
THEN it is an @ATOM - '

Production P13 is the mechanism by which ACT can actually make the inferences authorized

by rule (1).

Productions P11 and P12 are responsible for processing complex conditionals like (5). P11

zThose produclions and some others in this paper embody some clearly over-simplified notions about language
comprehension; » more adequate treatmenl would only distract attention from the learning processes which are the
matters of present interest, however. For a discussion of language processing within the ACT framework see Anderson,
Kiine, and Lewis (1977). (One complication necessary to any complete analysis of language comprehension is,
nevertheless, being observed in some of the examples in this paper -- the distinction between words snd the concepts
underlying them.) -
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Table 2

A Set of Productions for Encoding Rules about LISP expressions

P9: IF there is a sentence beginning: "IF an expression is a LVword...”
- and LVconcept is the concept for LVword
THEN save an object is a LVconcept for a new condition

P10 IF the sentence ends: ".itis a LVword"
and LVconcept is the concept for LVword
and LVcondition is the saved condition

THEN BUILD IF (Vcondition
THEN it is a LVconcept

Pil: IF there is a sentence beginning: "IF an expression begins with a LVword..”
and LVconcept is the concept for LVword
THEN save IF an object begins with an LVconcept for a new condition
and LVconcept is the last concept

P12: IF the sentence continues: "..followed by a LVword”
and LVconcept is the last concept
and LVconceptl is the concept for LVword
THEN add the LVconcept! is before a LVconcept to the new condition
. and LVconceptl is the last concept
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processos the first begins phrase and P12 each subsequent followed by phrase. After the
antecedent of the conditional has been entirely processed, production P10 will apply to

process the consequent and the designate a production. In the case of rule (5) this .

production would be:

P1l4a: IF an object begins with a ®LEFT-PARENTHESIS
and the @LEFT-PARENTHESIS is before a @5-EXPRESSION
and the @S-EXPRESSION is before a @DOT
and the @DOT is before a @5-EXPRESSION
and the @S-EXPRESSION is before a @RIGHT-PARENTHESIS
THEN it is a ®@DOTTED-PAIR

This designation process serves in any learning situation as the initial means of introducing
productions into the system. Once productions are introduced, the generalization and
discrimination processes can operate to create new productions. The designating productions
in Téble 2 are quite sophisticated. Howevef, one can also propose much 'more primitive
designating productions. For instance, it would not be unreasonable to propose that a child

has the following production which encodes a simple principle of reinforcement:

P15: IF LVevent occurs just before ACT performs LVaction
and LVaction is followed by reinforcement
THEN BUILD IF LVevent
THEN LVaction

B. Generalization and Discrimination

It is the ability to performvsuccessfully in novel situations that is the hallmark of human
cognition. For example, productivity has often been identified as the most important feature
of natural languages, where this refers to the speaker’s ability to generate and comprehend
utterances never before encountered. Traditional learning theories are generally considered
inadequate to account for this productivity and ACT’s generalization abilities must eventually

be evaluated against this same standard.
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While it is possible for ACT to designate new productions to apply in situations where
existing ones do not, this kind of generalization requires having designating productions that
correctly anticipate future needs. It is plausible that ACT could have such designating
productions to guide its generalizations in areas in which it possesses some expertise.
However, there are many situations where it would be unreasonable to assume such
expertise. For this reason, ACT has the ability to create new productions automatically that
are generalizations of its.existing productions. This ability, while less powerful than the>
ability to designate generalizations, is applicable even in cases where ACT has no reliable

expectations about the characteristics of the material it must learn.

We will use an example from the schema abstraction literature to illustrate ACT’s automatic
generalization.mechanism. Figure 1 illustrates the stimuli from Experimgnts 3 and 4 of Franks
and éransford (i971). The 12 figures on the left hand side of the figure were presented to
subjects for study. We will assume that Ss designate productions to recognize each stimulus.

So for the first stimulus item subjects would designate the following production:

P16: IF a triangle is to the right of a circle
and a‘square is to the right of a heart
and the first pair is above the second pair
THEN this is an instance of the study material

For the third stimulus the following production would be designated:

P17: IF a circle is to the right of a triangle
and a square is to the right of a heart
and the first pair is above the second pair
THEN this is an instance of the study material
From these two productions a generalization can be formed that captures what these two

productions have in common. This involves deleting terms on which the two productions

differ and replacing these terms by local variables. Thus, we have the following
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AQUISITION RECOGNITION
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Figure 1: The material used in Franks and Bransford (1971).

geﬂeralization:3

P18: IF a LVshapel is to the right of a LVshape2
and a square is to the right of a heart
and the first pair is above the second pair

THEN this is an instance of the study material

This generalization can be thought of as an attempt on ACT's part to arrive at a more

3Al discussed in detail elsewhere (Anderson, Kiine, & Beasley, in press) there can be many different maximal common
generalizations. In this case there is another maximal common generalization besides P18. This gensralization preserves
the information that there is a frisngle and a hesrt in both stimuli but consequently looses information about the position
of the shapes. This generslizetion could be rendered in our spproximate syntax as:

IF there is a triangle

and there is 8 heart

and » square is to the right of » heart

and the second pair is below snother pair

THEN this is an instance of the study material
In our simulations we will be working wilh the first generalization.
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general characterization.of the study material. Note that ACT’s generalization mechanism
needs only two examples to propose a generalizationf1 This generalization does not replace
the original two but rather co-exists with them as an alternate means of characterizing the
stimulus set. Which production will actually produce the response depends on the strength

mechanism that we will describe shortly.

Restrictions are needed on how many elements can be deleted in making a generalization.

Consider, ACT’s representation for the sixth stimulus from the Franks énd Bransford set:

P19: IF a circle is to the right of a triangle
and a heart is to the right of a blank
and the first pair is above the second pair
THEN this is an instance of the stimulus material
If we allowed this stimulus to be generalized with stimulus 1 (P16) we would get the

following generalization:

P20: IF a LVshapel is to the right of a LVshape2
and a LVshape3 is to the right of a LVshaped

and the first pair is above the second pair

THEN this is an instance of the stimulus material
This production will accept any array of geometric objects as an instance of the study
“material. While it is conceivable that any possible array may be an experimental stimulus, this
seems like too strong a generalization to make just on the basis of these two examples.
Therefore, a limit is placed on the proportion of constants that can be replaced by variables.

In the current system no more than half of the constants in the production with least

constants can be replaced by variables in a generalization. The terms that ACT considers

4'7.his feature of generalization (two instances to make a generalization) fits well with the following observation
about induciions which has been atiributed to George Miller (by E. Smith, personal communication): "Suppose one person
comes into your office and says, 'l cannot make our appointment. 1 am going to Brazil’ A second person comes into
your office and says, 'Could you teach my class for me, 1 am going to Brazil’ You immediately ask the question, 'Why is
everyone going to Brazil?’"
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constants are italicized. There are five constants  in productions P16, P17, and P18.
Production P18 is an acceptable generalization from P16 and P17 because it only involves
replacement of two of the constants Production P20 is not an acceptable generallzahon from

P16 and P19 because it |nvo|ves replacement of 4 of the 5 constants.

Even with this restriction on the proportion of constants deleted it is likely that
unacceptably many geﬁeralizations will be formed. A realistic simulation of an adult human’s
entire procedural knowledge would require hundreds of thousands of ACT productions.
Under these circumstances it would be disastrous to attempt- to generalize all poséible pairs
of productions. ACT only attempts to form generalizations when.a new production has been
designated. Although no potential generalizations Would be missed if a generaliz\ation was
attempted for each possible pairing of this newly-designed produétion with existing
productions, an enormous computational cost is required even under this scheme. For this
reason generalizations are attempted only for pairings of newly-designated productions with
the praductions on the APPLYLIST. .Since a production is on the APPLYLIST only if the
constants it references are active and it has met a strength criterion (see p. 3), this implies
that attempts to generalize Qill be restricted to productions that are .relevant to the current

context and which have enough strength to indicate a history of past success:
Discrimination

Even with these restrictions placed on it, ACT’s generalization mechanisms will produce
productions that are overgeneralizations of the desired production. However, given our. goal
of a psychologically realistic simulation, such overgeneralizations on ACT’s part are actuyally
desirable since it can be shown that people make similar overgeneralizations. For exa_rﬁple,
children learning language (and, it appears, aduits learning a second language - see Bailey,
Madder, and Krashen, 1974) overgeneralize morpherﬁic rules. Thus a child will generate
mans, gived, etc. ACT will do the same. It is also possible that productions will be directly
designated in overgeneral form. Thus, for instance, ACT might generate the following rule for

predicting rice growing:
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P21: IF the climate of LVplace is warm
and there is ample rainfall in LVplace
THEN LVplace can grow rice

This rule is overgeneral in that it fails to specify that the terrain be flat.

To correct overgeneralizations ACT must create more discriminate productions. A
production can be made more discriminate either by adding clauses to the condition or by
replacing variables by constants. So production P22 serves as a discrimination of P21 by the

addition of a clause:

P22: IF the climate of LVplace is warm
and there is ample rainfall in LVplace
: and the terrain is flat in LVplace
THEN LVplace can grow rice

Such a discriminate production does not replace P21 but rather coexists with it. Because of
the specificity principle described earlier (p. 5), P22 will apply rather than P21 if both are

selected f;)r application.

It is possible for ACT to directly designate such productions to correct overgeneral ones.
However, just as in the case of designated generalizations, the existence of the required
designating producvtions is plausible only for domains in which ACT already possesses some
expertise. In such domains, ACT could possess the knowledge required to debug its own
errors intelligently, but in the majority 6‘f cases it 'will rely on its automatic discrimination

mechanism.

ACT’s automatic discrimination mechanism requires that it have examples both of correct
and incorrect application of a production. This raises the issue of how ACT can get feedback
on the operation of its productions. Productions place new propositions into the data base
and emit observable responses; either of these actions can be declared incorrect by a human
observer or by ACT itself. In the absence of such a declaration an action is considered

carrect. That is, the only distinction made by the discrimination mechanism is between
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negative feedback and its absence. Since the way in which ACT declares that the action of a
production is incorrect is to apply another production that makes such a declaration as part
of its own action, arbitrarily complex ACT computations can be performed to decide the

correctness of any particular action.

The discrimination mec'ha.nism will only attempt to discriminate a production when it has
both a correct and an incorrect application of that producfion to compare. Basically, fhis
algorithm remembers and compares the variable bi.ndings in the correct and incorrect
application-s By finding a variable that had different bindings in these two applications it is
possible to place restnchons on that variable that would prevent the match that led to the
unsuccessful apphcahon while still permitting the match that led to the successful application.
Although we have explored other ways of restricting this variable, in the simulations of
schema abstraction that will be discussed a new production was formed from the old
production simply by replacing the variable by the constant it was bound to during the

successful application.

.

As an example of a discrimination process, we will consider a categorization experiment
from Medin and Schaffer (1978). We will focus on two instances they presented from
category A. One was two large red triangles and the other was two large blue circles. From

these two examples, ACT would designate the following categorization productions:

pP23: IF a stimulus has two large red triangles
THEN it is in category A

pP24: IF a stimulus has two large blue circles
THEN it is in category A

From these two ACT would form the following generalization:

P25: IF a stimulus has two large LVcolor LVshapes
THEN it is in category A
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However, this turned out to be an overgeneralization. To be in category A the stimulus
had to be either red or a circle or or both.. Thus, the counter-example was presented of two
large blue triangles which was a stimulus in category B. Generalization P25 misapplied in this
circumstance. By noting what distinguished the circumstances of co«;rect applicatfons of
generalization P25 from the circumstances of incorrect application, both of the following
productions would eventually be formed by the discrimination mechanism. These prodqctions

will always produce correct classifications.

P26: IF a stimulus Has two large red LVshapes
THEN it is in category A

P27: IF a stimulus has two large LVcolor circles
THEN it is in category A

These productions were formed from P25 by replacing one of its variables by the binding
that variable had during a successful application -- (i.e. an application to a stimulus that was
actually from cétegory A. As an aside, these two produttions illustrate how ACT can encode

disjunctive concepts by the use of multiple productions).

C. Production Strength

When a new production is created by the designation process there is no assurance that
its condition is really the best characterization of the circumstances in which its action is
appropriate. For this reason, generalization and discrimination processes exist to give ACT
the opportunity to evaluate alternative conditions for this action. It is the responsibility of

ACT’s strength mechanisms to perform the evaluation of these competing productions.

Through experience with the ACT system we have created a set of parameters that appear
to yield human-like performance. The first time a production is created (by designation,
generalization, or discrimination) it is given a strength of .1. Should that production be
recreated its strength is incremented by .05. Furthermore, a production has its strength

incremented by .025 every time it applies or a production consistent with it applies. (One
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production is considered consistent with another if its condition is more general and its action
is identical.) Finally, whenever a production receives negative feedback its strength is
reduced by a factor of 1/4 and the same happens to the strength of all productions
consistent with it. Since a multiplicative adjustment produces a greater change in strength

than an additive adjustment, a "punishment” is more effective than a "reinforcement”.

Note that productions ;':re created out of what might be considered a "reinforcing™ event.
That is, the designation ot production occurs because for some reason ACT considers this to
be a "good” rule. Generalization occurs in response to a designation event - that is,
generalizations are found by comparing designated pl:oductions with productions on the
APPLYLIST. Since, designation and generalization can lead to an increase in strength and
negative feedback leads to a decrease in strength, the ACT strength mechanism can be seen
to have a principle of reinforcement built into it. There is also a principle of exercise - a
production gains strength just by applying. This prmc:ple is motivated by the observation

that behavnors become more reliably evoked and rapidly executed by sheer exercise.

Both decrements and increments in strength generalize to more general productions. This
means that if a more general production is created it can rapidly gain strength even if it does

not apply nor is it recreated.

It is important to understand how production strength affects performance and how it
interacts with specificity. Recall that a production’s strength encodes the probability that it
will apply. If s is the strength of a production and § the total strength of all productions
selected, the probability of that production being chosen on a cycle for application is

-7 6575 where b is a parameter currently set at 15. Of course, if it is not applied one cycle
and the circumstances do not change, it can apply on a later cycle. Thus, strength affects

both the latency and reliability of production application.

While selection rules based on strength can make some of the required choices among
competing productions, it is clear that strength cannot be the sole criterion. For example,

people reliably generate irregular plurals (e.g., men) under circumstances in which the "add s"
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rule for regular plurals is presumably also applicable. This reliable performance is obtained
despite the fact that the productions responsible for generating regular plurals are applied
much more frequently than those for irregulars and therefore should be much stronger.
ACT’s solution to the prbblem of excep.tions to strong general rules relies .on the
- specificity-ordering principle to decide which productions on the APPLYLIST should actually
execute. This principle accounts for the execution of a production generating an irregular
plural since its condition presumably contains all of the requirements for generating the.

regular plural and must, in addition, make reference to the specific noun to be pluralized.

The precedence of exceptions over much stronger general rules does not imply that
excep'ﬁons always apply, however. In order to benefibt from the specific_ity-orderin'g principle
exceptions must first have achieved the amount of strength necessafy to be ‘placed on the
APPLYLIST. Furthermore, because the amount of strength necessary depends on the
strengths of the 'other productions that could apply, the stronger a general rule is, the more
strength its exceptions need in order to apply reliably. ’This property of the ACT model is
consistent with the fact that words with irregular inflections tend to have high frequencies of

occurrence.

Production strength is an important way in which ACT differs from other computer-based
learning systems (e.g., Andgrson, 1977; Vere, 1977; Hayes-Roth & McDermott, 1976; Sussman,
1975; Winston, 1970; Waterman, 1974). The learning of all these systems has an all-or-none
character that ACT would share if creating new productions was its only learning mechanism.
Qur hope is that strengt.h mechanisms modulate the all-or-none character of production
creation in a way that enables ACT to cope with the kind of world that people have to cope
with -- a world where data is not perfectly reliable and contingencies change in such a way

that even being as cautious as possible it is certain that occasional errors will be made.

D. Review of Critical Assumptions

It is worthwhile, as a review, to state what the critical assumptions are which underlie the

ACT learning model.
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1. Productions can be designated by other productions.

2. When a production is designated an attempt will be made to generalize it with all the

productions in the APPLYLIST.

3. Generalization occurs by replacing constants on which two productions -differ by

variables.

4. A generalization of two productions will be formed if.they have the same action and if
no more than half of the constants in the production with the least constants are replaced by

variables in forming a generalization.

5. If a production has a record of both a correct and incorrect application a discrimination

will be formed.

6. A discrimination is formed by filling in one variable of the production with the value
that variable had during its correct application but did not have during its in.correct

application,
7. Upon creation productions are give_n strength of .1.
8. Upon an attempt to recreate a production its strength is increased by .05.
9. Everytime-a production is applied its strength is increased by .025

10. When any of events 7, 8, or 9 occur a strength increment of .025 is inherited by all

consistent productions.

11. If a production is found to misapply its strength is decreased by 1/4 as is the

strength of all consistent productions.

12. If S is the total strength of all productions selected and s is the strength of a

particular selected production, the probability of its being applied if it matches is 1-e~15s/S,

13. If two productions on the APPLYLIST both match the data and one is more specific, the
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more specific production will apply.

III Applications to Schema Abstraction

There is a growing literature concerned with the process by which subjects form concepts
by .detecting regularities among stimuli (e.g., Franks & Bransford, 1971; Hayeszoth &
Hayes-Roth, 1977; Newmann, 1974; Posner & Keele, 1970; Reed, 1972; Reitman & Bower,
1973; Rosch & Mervis, 1975). This literature is often referred to as studying prototype

formation, hut‘for various reasons we prefer to refer to it as studying schema abstraction.

There are a number of features of this research area that distinguish if from the related
research area that is often called concept formation: In the concept formation literature the
concept that is to be discovered is usually quite sirnple (e.g. red and a triangle) and subjects
are often able to verbalize the hypothesesi they are considering at any point. In contrast,
the conc;epts used in the schema abstraction literature may be quite complex. For example,
trwese concepts might be defined in terms of a linear discriminant function (e.g. Reed, 1972) or
solely by a listing of the exemplars (e.g., Medin & Schaffer, 1978). Subjects will often emerge
from such experiments without being able to verbalize the criteria they are using to correctly
classify instances. Their instructions may even suggest that they should avoid formulating
explicit hypotheses .and should simply study the instances one-by-one. Within the ACT
framework there is a corresponding distinction between forming a concept by the action of a
general set of productions -for hypothesis testing versus forming a concept by the acfion of

the automatic learning mechanisms of generalization, discrimination, and strengthening.

Our intention in the rest of this paper is to show that ACT’s automatic learning mechanisms
have a straightforward application to schema abstraction. In outline, this application is as
follows: For each instance presented ACT designates a production that recognizes and/or
categorizes that instance alone. Generalizations occur through the comparison of pairs of
these productions. If feedback about the correctness of these generalizations is provided
then the discrimination process can be evoked. Our working definition of a concept will be

this set of designations, generalizations, and discriminations. It turns out that such sets of
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productions nicely'g:apture the family resemblance structure that has been claimed for natural
categories (e.g. Rosch & Mervis, 1975). It also turns out that ACT simulations can account for

the results of various experiments in the literature on schema abstraction.

A. Franks and Bransford: Illustration of Basic Phenomena

We have already introduced (Figure 1) the material used by Franks and Bransford in one of
their experiments on schema abstraction. Subjects studied the (2 pictures on the left of
Figure 1 twice and then were transferred to a recognition phase in which they had to give
re;ognition ratings of the 16 figures on the right of Figure 2 plus 6 other figures, called
non-cases, which violated the rules under which the cases were generated. The 16 test
cases in Figure 1 were generated by applying 0, 1, 2, or 3 transformations to the base
figures. Half of these 16 were éctually studied and half were not. While Franks and
Bransford do not report subjects’ performance for each stimulus, they doQ report that
confidence ratings for recognition generally decreased with the number of transformations

and was lowest for the non-cases.

We attempted to simuiate the Franks and.Bransford experiment by having ACT go through
propositional encodings of the items in the study set twice, designating a recognition
production for each " stimulus it :~‘.aw.5 Then at test ACT was again presented with
propositional encodings of the stimuli and the production which applied (if any) was noted.
Sufficient generalizaiion had occurred so that most of the stimuli were recognized by at least

one of the productions.

A critical question was how to map the production selected onto a confidence rating. We
assumed that ACT’s confidence would be a function of the number of constants in the stimulus
(and therefore an inverse function of the number of variables). This procedure for assigning

confidence will be used throughout this paper. This is a reasonable procedure for assigning

sfho simulations were nol performed with the general purpose ACT simulation program, but rather with s special
purpose simulation which runs about 10 times faster. This special simulation does not have all the general compulational
features of ACT. Rather, it is especially designed to allow us to follow only the interaction of strengthening,
discrimination, and generalization.
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confidence, since the more constants in the recognizing production the closer it is to an
encoding of an actual test item. In the extreme, if the stimulus is recognized by a production
with no variables the subject can be sure that the item was studied since a non-variabilized

production is an encoding of a study item.

Note that this procedure for assigning confidence implicitly weights the strength of
productions as well as their number of constants. Since strength of productions determines
whether a production is selected, the stronger the productions that can classify an instance
the more of these productions that will be selected and, thus, the more likely it is that a
production with many constants will be selected. This increased probability of selecting a
production with many constants translates quite directly into an increase in the probability of
a high confidence rating because of ACT’s plfeference for applying the most specific
‘productions that have been selected. We have given some thought to the possibility that
strength should have more than an implicit role in assigning confidence. That is, confidence
coLrld be made a joint function of number of constants in a production that applies and the
strength of that production. Considering a production’s strength in assigning confidence
could be justified by the fact that strength reflects the production’s past success in
classifying instances and therefore predicts how successful the current application will be.
We have not gone to this more complex procedure for assigning confidence mainly because

we have been able to account for all the results just using the number of constants.

Consider again production P16 (on p. 10) which encodes the first item in the stimulus set:

P16: IF a triangle is to the right of a circle
and a square is to the right of a heart
and the first pair is above the second pair
THEN this is an instance of the study material

The five constants that can be replaced by variables are italicized. If this production applied,
ACT would assign a confidence rating of 5 to its recognition of that stimulus. If all five
constants were replaced by variables we would have a production that would recognize

anything and if this applied we would assign a confidence of 0. For shorthand, we will denote
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the production above as TCSHA where each lelfgar is the first letter of one of the constants.
Variables will be denoted by hyphens. Therefore, production P18 (on p. 11) would be
denoted --SHA.

To obtain predictions for this experiment we ran ten ACT simulations. Each simulation
involved giving ACT a study phase and then following this with five passes through the test
material. Since the process of production selection is probabilistic, ACT’s ratings varied from
one test to another. Altogether we cbtained fifty ratings for each test stimulus and the data
we report will be based on averages of theée fifty ratings. The practice -of having five test
trials for each study represents a departure form the Franks and Bransford experiment.
However, since the study phase was relatively expensive in computational terms, it made

sense to get as much data as possible from each study ph'ase that was simulated.

The numbers that were obtained from these simulations ,dépend on the rather arbitrary
values for the strengthening parameters that were. detailed earlier (p.p. 17, 18).6 It is
\:urrently impractical and probably premature to perform a search of the parameter space to
determine the best fitting parameters. For this reason, we usc;d these arbifrary values for all
of thé simulations that will be reported and had to be content to predict the relative ordering

of conditions rather than their exact values. .

The test stimuli identified as base or O-transformations (1, 9 in Figure 1) were given a
me.an rating of 1.66‘ (i.e. mean number of constants in matching productions); the test stimuli
(2-5, 10-13) identified as one transformation away from the base were rated 1.24; the stimuli
(6, 7, 14, 15) identified as two steps away were rated 1.11; the stimuli (8, 16) three steps
away were value 1.13; and the non-cases were 'rated .65. This corresponds to Franks and
Bransford’s report of an overall correlation between closeness to base and rating. (Franks

and Bransford do not report the actual ratings.)

One additional parameter besides those discussed earlisr is required. If ACT had all of the productions that would be
needed lo account for a subject's tolal procedural knowledge, some of these, although irrelevant to the schema
absiraction task, would be selected snyway and their strengths would contribute to S in assumption 12 (p. 21). For all
of the simulations reported in this paper the contrbution of such irrelevant productions to S was set to 20.
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Neumann (1974) performed a replication of Franks and Bransford and he did report mean
ratings for each of the five categories of test stimuli. Subjects assigned ratings of +1 to +5
to the stimuli that they thought they recognized and assigned ratings of -1 to -5 to stimuli
they did not recognize. Mean ratings were 2.79 for base stimuli, 2.18 for 1-transformation
stimuli, .49 for 2-transformation stimuli, .90 for 3-transformation stimuli, and -.26 for
non-case stimuli. While the 6rdering ACT scores corresponds perfectly to the ordering of
these mean ratings, a comparison of the exact values is not meaningful because the scales are
different. Some monotonic transformation is required to convert the ACT scores which are
based on the number of constants in the recognizing production into the -5 to +5 confidence
scale used by Neumann’s subjects. If the transformation from ACT match score to confidence
were linear there should be a strong correlation between the two measures. In fact, the
correlation is .927 suggesting such a linear transformation might not be that far from the.

truth.

This experiment does not provide a particularly telling test of the ACT learning model;_ but
it is a good introduction in that it serves to illustrate that ACT can account for one of the
basic phenomena of schema abstraction -- namely that confidence falls off with distance from
the stimuli that are the central tendency of the category. Subsequent experiments will deal
with the issue of whether the details of ACT’s abstraction process correspond to the details

of human abstraction.

To help understand how ACT accounts for preference for central stimuli like 1 or 9,
consider Figure 2 which compares the specificity network around test stimulus 1 during one
of the ten simulations (Part a) with the specificity network around test stimulus 8 (Part b). In
our notation, test stimulus 1 is ACTHS and test stimulus 8 is ATCBH. Both were presented
twice during study and so have strength .15. However, ACTHS is more similar to other stimuli
and so has entered into more generalizations. Hence, there is a denser network above
ACTHS. (Actually, the network around ACTHS is even denser than Figure 2 but we have
eliminated some of the generalizations to make the figure easier to read). ATCBH differs from

all other stimuli on at least two dimensions. There are no l-variable productions above
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ATCBH. On the other hand there are two 1-variable productions (ACT-S and‘ -CTHS) above
ACTHS with a combined strength of .40. ACTBH does have two 2-variable productions above
it (A-C-H and ATC--), but their combined strength of .325 is still much less than the combined
strength of 1.475 possessed by the four 2-variable productions above ACTHS (A--HS, -CT-=S,
-C-’-HS, AC-H-; only three of these are illustrated). A similar picture is obtained when we look
at the 3- and 4-variable generalizations: There are two 3-variable productions above ATCBH
(A---H and A-C--) with strength 1.025; but there are six 3-variable productions above ACTHS
(A---S, ---HS, -C--S, -C-H-, AC---, A--H-; only four of these are illustrated) with total
strength 3.4. Finally, ATCBH was involved in no 4-variable generalizations while ACTHS is
involved in three (----S, -C---, ---H-) with total strength 3.25. Table 3a summarizes these

comparisons.

Under some approximating assurhptions, it is possible to derive the expected match values
from these strengths. Assume that if a n-varfab!e production is selected which matches the
stimulus, it will apply in preference to all n+l variable productions. This assumption is an
approximate realization of ACT’s specificity ordering. Let Qi,s be the probability of at least
one i-variable production being selected for stimulus S. The probability Pi,s that one of the

i-variable productions will be the one that applies to classify stimulus S is:

i-1
Pie=Qgll- > Pie] (1)
j=0

That is, the probability that a i-variable production will be the one to apply is the probability
that a i-variable production is selected times the probability that no more.discriminate

production is also selected. Then expected rating for stimulus § is:

a
Rs = 2 (5-P; (2)
i=0



a
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ACT-S
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b)

APCSH ATCBH ATCHS

Figure 2: Part a illustrates the specificity network around stimulus 1
(ACTHS) and part b illustrates the specificity network around stimulus 8
(ATCHS).
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By the end of this experiment, the total strength of all productions, relevant. and irrelevant,
was about 35. Therefore, according to assumption 12 in Section 11D, if ti,s is the strength of
all of the productions matching S that have i variables, then the probability of at least one

being selected is:

Q¢ = 1 - e 15is/35 (3)
From equation (3) we can derive the probabilities of selecting productions with various

numbers of variables and these are given in Part (b) of Table 3.

Insert Table 3 about here

From these values we can calculate by equation (1) the probabilities of applying an i-variable
production, Pi,s' subject to the specificity restriction. These probabilities are given in Part ¢
of Table 3., Substituting these values into equation (2) yields the expected confidence

ratings:

RaCTHS= 2.730
RaTspH= 1.194

In actual fact, the rating difference between O-transformation stimuli like ACTHS and
4-transformation stimuli like ATSBH is considerably less than this expected difference. This
can be shown to be due to the following fact: If two productions are selected that match a
stimulus and neither has a condition that is a subset of the other, the one to apply is
determined probabilistically by reiative strength and not number of non-variable condition
elements. Thus, unlike our analysis, it is not always the production with the least number of
variables that applies. For instance, if ---H- and ACT-S are both selected, the more
variabilized ---H- may apply because neither production is above the other in the specificity
network. Nonetheless, the above analysis does illustrate in approximate terms why

O-transformation stimuli get better ratings than the non-central stimuli.
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Table 3

Analysis of the Differences between the stimuli ACTHS and ATSBH

(a) Strengths of classifying productions with different numbers of variables

O-variables
1-variable

2-variables
3-variables
J-variables

ACTHS

.150
.400
1.475
3.400
3.250

ATSBH
.150

325
1.025

(b) Probabilities of selecting productions with different numbers of variables

ACTHS

.062
.158
.469
767
752

ATCBH

.062

130
356

(c) Probabilities of applying productions with different numbers of variables

ACTHS

.062
.148
371
321
.073

ATCBH

.062

122
299
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B. Hayes-Roth and Hayes-Roth: Variation of Instance Frequency

One of the interesting features of the ACT simulation of the Franks and Bransford
experiment is that the ratings of the 3-transformation slimuli.are predicted to have slightly
higher ratings than the 2-transfromation stimuli and this prediction was confirmed in the data
of Neumann. ACT makes this prediction because both of the 3-transformation stimuli were
presented for study while only one of the four 2-transformation stimuli was studied. It is
weak memory for the instances that were studied which gives the 3-transformation stimuli
this slight advantage. The Franks and Bransford paradigm has not been sysiematically
studied for instance memory, but the ACT simulation predicls a weak advantage for studied

stimuli over comparable non-studied stimuli.

Hayes-Roth and Hayes-Roth (1977) report a study, one function of which was to obtain
data relevant to the issue of memory for instances. They presented subjects with
‘three-attribute descriptions of people. One attribute was age and could have values 30, 40,
50, and 60. Another was education and could have values junior high, high school, trade
school, college. The third was marital status which could have values single, married,
divorced, widowed. Subjects were also given proper name and hobby but these dimensions
were not critical. Thus, a subject might hear the description "John Doe, 30 years oid, junior
high education, single, plays chess.” Subjects’ task was to learn to classify these individuals

as members of club 1, members of club 2, or neither: club.

The four values of each dimension will be represented symbolically byAlhe numbers 1 - 4.
The assignment of the symbolic values 1| - 4 to the values of each dimension was randomized
for each subject. In our discussion we will refer to stimuli by these numbers. Thus' "lil"
might refer to "40 years, high school, single." The rules determining assignment of individuals

to clubs were as follows:

1. If one of values was a 4, the individual belonged to neither club.
2. If there were more 1’s than 2’s and no 4’s the individual was assigned to club 1.

3. If there were more 2’s than 1’s and no 4’s the individual was assigned to club 2.
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4. If there were as many 1’s as 2's the individual was assigned with a 507 probability
to club 1 and with 507 probability to club 2.
Thus, 1’s were diagnostic of club 1, 2°s were diagnostic of club-2, 3’s were don’t cares, and
' &’s disqualified club membership. A prototypical member of club 1 would be 111 and a

prototypical member of club 2 would be 222. These prototypes were never presented.

We will assume that for each individual encountered, subjects designated a production
mapping that individual’s features into a prediction about club memBership. So, for instance,

a subject might form the following production:

If a person is forty years old
and he has gone to high school
and he is single

Then he is a member of club 1

Or, more symbolically, we will represent this production as 111-1.

Hayes-Roth and Hay‘es-Roth varied the frequency with which various éxemplars were
studied and Table 4 shows these frequencies. A study trial consisted of first presenting the
subject with an exemplar, asking him to classify it, and then providing feedback as to the
correctness of the classification. In the case of equivocal exemplars like 132 the subject was
given feedback half the time specifying club 1 and half the time specifying club 2. The
feedback aspect to this experiment is a significant difference from the Franks and Bransford
experiment. Negative feedback will lead to the evocation of ACT’s discrimination mechanism

which was silent during the earlier simulation.

Insert Table 4 about here

Table 4 also indicates which items were tested. Subjects were first asked to categorize.

each of the stimuli and then they were asked to decide whether each of the stimuli had been
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Table 4

Initial Classification Exemplars and Test Items
_in Hayes-Roth and Hayes-Roth (1977)

Exemplar Club Number of Initial Tested for recognition
classifications and final classification
112 1 10 Yes
121 1 10 Yes
211 1 10 Yes
113 1 1 Yes
131 1 1 Yes
311 1 1 . Yes
133 1 1 Yes
313 1 1 Yes
331 1 1 Yes
221 2 10 Yes
212 2 10 Yes
122 2 10 Yes
223 2 1 Yes
232 2 1 Yes
322 2 1 Yes
233 2 1 Yes
323 2 1 Yes
332 2 1 Yes
132 Either 10 Yes
321 Either 10 . Yes
213 Either 10 Yes
231 _ Either 0 Yes
123 Either 0 Yes
312 Either 0 Yes
111 1 0 Yes
222 -2 0 Yes
333 Either 0 Yes
a44 Neither 0 Yes
411 Neither 1 No
422 Neither 1 No
141 Neither 1 No
242 Neither 1 No
114 Neither 1 No
224 Neither 1 No
441 Neither - 1 No
442 Neither 1 No
144 Neither 1 No
244 Neither 1 No
414 Neither 1 No
424 Neither 1 No
134 Neither 1 No



234
413
423
341
342
124
214
412
421
241
142
143
243
314
324
431
432

Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
Neither
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Table 4, continued

L S I T N e e e SN =

No
No
No
No
No
No
No
No

No
No

No
No
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studied or not. The recognition judgment was assigned a confidence from 1 - 5 as was the

categorization judgment.

Table 5 gives the mean recognition ratings as well as mean categorization ratings for seven
different classes of stimuli. The recognition ratings were averages formed by weighting
rejection confidences negatively and acceptance confidences positively. The categorization
ratings were averages formed by weighting negatively the confidences ascribed to incorrect
category assignments and weighting positively the confidences ascribed to correct category

assignments.

Insert Table 5 about here

The first class iﬁ Table 5 is formed from two prototypes which were never in fact studied. -
ThAey‘receive the highest categorization rating and a relatively high recognition rating,
indicating that subjects have extracted the central tendency of this set. The second class
consists of the non-prototypes which have received ten study trials each. They have the
highest recognition ratings, reflecting their high degree of exposure, and the second highest
categorization rating. They get higher recognition ratings than the third class which is closer
to (or as close to) the prototype. This reflects some residual instance memory. The third
class would perhaps be regarded as closer to the prototype than the second because its
members have "don’t-care” elements rather than an element that directly violates the
category’s prototype. The third class is clearly closer to the prototype than the fourth*
whose members have two don’t care items. The third and fourth classes have one exposure
of each member, but the third class receives a higher rating reflecting the fact it is closer to
the prototypes. The fifth class is equivocal between the two categories and probably is
. further from either prototype than are classes 3 or 4. Still it is given higher recognition
ratings than classes 1, 3, or 4 reflecting its greater exposure. However, it does get a lower
rating than class 2 despite the fact that members have the same frequency of exposure. This

may be due to distance from prototype or the equivocal response assignment in study.
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Table 5

Recognition and classification from Hayes-Roth and Hayes-Roth
compared to ACT’s match scores

Recognition ' Classification
Subject’s ACT’s Subject’s ACT’s
degree of degree of degree of degree of
confidence match confidence match
Non-Practiced _ 1.88 .96 ‘ 2.61 .96
Prototypes
(111,222)
Much Practiced 2.53 1.46 2.34 ' .86"
Non-Prototypes
(112,121,211,
221,212,122)
Little Practiced .83 .78 2.27 .78
Close-to-Prototype :
(113, 131, 311,
223, 232, 322)
Little Practiced -2.25 42 2.81 .41
Far-from-Prototype
{133, 313, 331,
233, 323, 332)
Much Practiced 1.34 1.25 - -
Equivocal
(132, 321, 213)
Non-Practiced -.93 .46 - -
Equivocal
(231, 123, 312)
Non-Practiced -2.52 .07 - -

Anti-Prototypes
(333, 444)
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Categorization ratings are not meaningful for class 5 nor are they for classes 6 or 7. Class 6
is just as equivocal as class 5 but was never studied so it receives lower recognition ratings.
The lowest recognition ratings are reserved for class 7 which contains non-presented

instances composed of all 3’s or all 4’s,

There two features to emphasize about this data. First, ratings are influenced by a rather
complex mixture of frequency of exposure and closeness to prototype. Second, the rank
orderings -of the recognition and classification data are not identical. Therefore, these data

should provide a chéllenging test for the ACT simulation program.
Simulation

This experiment was simulated with ‘the same parameter settings as the Franks and
Bransford experirﬁent. The one significant difference was that ACT was given feedback about
the correctness of its classifications. This meant that produétions would not simply increase
in strength with every application, but rather would either increase or decrease in strength
depending on their success in classification. Providing feedback also meant that it was
possible for ACT to compare variable bindings on successful applications in order to produce
more discriminate versions of its overgeneral productions. A study session consisted of
passing through 132 classify-then-feedback trials presented in random order. After this the
28 test stimuli were presented in random order five times. This whole procedure was
repeated ten times. The data we will report is averaged from the fifty test trials given to

each stimuli.

As in the Franks and Bransford.experiment, confidence was based on the number of
constants in the production that recognized the stimulus. In this experiment that number
would vary from | to 3. A value of O was assigned if no production was evoked to
categorize the stimulus. These mean match scores are reported in Table 5. The
categorization scores were taken by weighting negatively the confidences of incorrect
classifications and weighting positively the confidences of correct classifications and ignoring

the confidences of classifications to the neither-club category. Class 2 received .a

-
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classification rating that was much lower than its recognition rating. This reflects the
application of productions assigning the stimuli to the wrong category. Such productions
were formed through the generalization process. For example, generalizing 12121 with

321-1 would yield the production -21-1 which would misclassify the instance 221.

The general hypothesis is that the ACT scores will be monotonically.ahd perhaps linearly
related to the obtained ratings. The monotonic hypothesis is clearly confirmed in thai ACT
perfectly predicts the rank ordering of the seven recognition scores and the rank ordering of
the four classification scores. The linear hypothesis also fares quite well - a correlation of

.968 is obtained for the recognition scores and of .948 for the classification scores.

Hayes-Roth and Hayes-Roth present a model for their data which is quite similar to the
ACT model. (We will discuss similarities to othe'r models bat the end of the paper). They
_derive a set of pairwise comparisons among conditions which their model better predicts than
any of a large class of categorization models. ACT’s predictions correspond exactly with
those of Hayes-Roth and Hayes-Roth on these pairwise conditions. However, the ACT model
is more powerful than theirs, predicting the complete ordering of conditions and offers a
possibility of assigning an interval scale to that ordering. They are unable to do this on the
basis of their model, but it is something that falls out of a theory which has a computer

simulation.

One important aspect of the ACT simulation of this experiment is its prediction of better
performance on the class 5 stimuli than on the class 3 stimuli, despite the fact that both
types of stimuli we presented equally frequently. The reason for this is the equivocal nature
of the response assignment for class 5 which results in punishment of the productions that
classify these stimuli and the consequent weakening of these productions. Most of the ACT
predictions for the experiments under discussion rely on the generalization mechanism or
discrimination and generalization in concert. This, however, is an instance of a result which

depends solely on the discrimination mechanism.
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C. Medin and Schaffer: Effects of Inter-item similarity

An interesting series of experiments has been performed by Medin and Schaffer (1378)
who show that under some circumstances, how tybical an instance is considered of a category
depends, not on how close it is to the central tendency of the instances in the category, but
rather how close it is to specific instances in the category. Particularly important is whether
there are any category members which are very similar to this instance. Their experiments
are also interesting because they report data on the time it takes to learn to make a

classification.

They presented subjects with stimuli that took one of two values on four dimensions: color
(red or blue), form (circle or triangle), size (large or small), and number (1 or 2). As in the
Hayes-Roth and Hayes-Roth e*periment these stimuli are best referred to abstractly with the
numbers O and ! for the values on each dimension. Values were randomly assigned .to
number for each subject. Thus, for one subject a 1101 might be a single small red circle.
Subjects had to learn to classify these as members of category A or category B. The material
was always designed so that 1111 was the central tendency for category A and 0000 was

the central tendency for category 2.

1. Experiment 1

Table 6 illustrates the material for Experiment 1. The A training stimuli were designed so
that for each dimension there are two training stimuli that have values of 1 on that dimension.
The B training stimuli were similarly designed so that two O values can be found for each
dimension. Thus the A prototype would be 1111 and the B prototype would be 0000.
Subjects were trained in categorizing the material until they had correctly categorized all six
twice in a row or until twenty trials through the six items expired. Then subjects were given
transfer trials in which they saw the six old stimuli plus six new ones. Subjects’ task was to
indicate what category each stimulus came from. The categorization judgments were made on

a 3 point scale varying from 1 = guess to 3 = high confidence. Medin and Schaffer
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transformed these scores to a 6 point scale where 1 = high confidence wrong and 6 = high
confidence correct. Subjects made categorization judgments shortly after study and after a
weeks’ delay. The mean scores, averaged over immediate and delay as reported by Medin

and:y Schaffer, are in Table 6. A value of 3.5 reflects chance performance.

Insert Table 6 about here .

Medin and. Schaffer were particularly interested in transfer to the new stimuli. They
predicted higher performance on the A transfer stimuli than on the B transfer stimuli even
though the stimuli are all equally similar to their prototypes. They méde this brediction‘
because the A tra;wsfer stimuli agree in three positions with two of the study items (0111
with 1111 and- 0101, 1101 with 1111 and 0101, 1110 with llll‘and 1010) while the B
transfer stimuli agree in three positions with only one study item (all with the prototypical
0000). Moreover, each of the B transfer stimuli agree in three positions with an A study
stimulus (1000 with 1010, 0010 with 1010, 0001 with 0101). The Medin and Schaffer

predictions were verified.

ACT simulations of this experiment were performed with the same parameter settings as
the previous experiments. Each simulation involved training ACT to criterion or until the
twenty trials were up. Then, five test passes through the twelve items were administered to
get classification ratings for each item. The strength of each production was then reduced by
507 to simulate the loss of strength with a week’s delay and five more ratings were obtained
for each stimuli. Ten such simulations were performed. Therefore, the ACT match ratings are
calculated on 100 ratings per stimulus. The number of constants in the classifying production
(weighted positively for correct classification and negatively for incorrect ones) was again
taken to be ACT’s confidence rating. Table 6 gives ACT resulls in terms of trials to criterion

" and mean match ratings. The ACT trials to criterion provide a good, but not perfect, rank
order correlation (r=289) with the actual data. Similarly, the ACT match scores provide a

good, but not perfect, rank order correlation (r=.88) with the actual classification ratings. The
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Table 6

Stimuli used in Experiment 1 of Medin and Schaffer (1978),
number of errors on training stimuli, classification confidences,

A Training Stimuli
111}
1010
0101
B Training Stimuli
0000
1011
0100
A Transfer Stimuli
0111
1101
1110
B Transfer Stimuli
1000
0010
0001

and ACT simulation

Errors in
Original Learning

Data ACT
3.6 2.1
4.7 3.8
4.4 3.6
3.1 3.3
4.9 6.6
3.8 3.3

Final
Categoriz

Data

4.8
4.6
4.8

5.2
45
4.9

4.3
4.4
3.6

3.5
4.0
3.2

ation

ACT’s
Match

2.38
2.28
2.20

2.79
.81
2.65

1.22
1.26
1.57
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linear correlation between the match scores and actual rating scores (r=383) is aéaln fairly
high suggesting the possibility of a linear transformation of one into the other. Note that in
simulating this experiment, unlike Franks and Bransford or Hayes-Roth and Hayes-Roth, ACT
has the more demanding task of predicting the data obtained for individual stimuli. The Iess.
than perfect correlations may reflect this but they may also reflect that both the data points
it is trying to predict and its own estimates of those data pbints tend to be less reliab!e~ than

in previous simulations.

One consequence of. the small number of stimuli in this experiment is that it is possible to
consider the total set of classifying productions that are generated by ACT’s automatic -
learning mechanisms. Figure 3 illustrates that conditions of both tl"te A-response prodvuctions
-and the B-response productions arrange_d according .to their s_pecificity ordering. As for the
A-response productions, the 1111 and 0101 productions generalize to form the -1-1
production. Also, the 1111 and 1010 productions generalize to produce a i-l- production.
This productibn can misapply in training and match the 1011 B stimulus. This mistake can
evoke the discrimination process and so give rise to 1-10 and 111- productions which
discriminate between the successful and unsuccessful contexts of application of the 1-1-
generalization. These discriminations did not appear in all the simulation runs as they
depended on a particular sequence of events happéning and ACT sometimes reached learning

criterion before this sequence was complete.

As for the B-response productions, there is only one generalization: 0000 and 0100 can
combine to form 0-00. Note that a generalization could be formed from 0000 and 1011 which
would be -0O--. However, this would involve replacing more than 507 of the constants by
variables. In other words, this generalization is not allowed because the productions it
merges are just too dissimilar. Note that none of the productions in Figure 3 can match the B
transfer stimuli. This accounts for their low rating. In contrast, at least one of the A
generalizations match each of the A transfer stimuli: -1-1 matches 0111 and 1101, while
1-1-, 1-10, and 111- all match 1110. This accounts for the higher rating of the A transfer

stimuli. Medin and Schaffer had constructed the material so that the A transfer stimuli would
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(a)

A-productions

| 10lo ool

(b)

B-productions |
0-00

0000 [O11 0100
Figure 3: Part a illustrates the specificity network of A productions and

part b illustrates the specificity network of B productions.

be closer to study items than the B transfer stimuli. The consequence in ACT is that the A

transfer stimuli are closer to a number of the generalizations that arose from the study

-elements.

2. Experiments 2 and 3
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Medin and Schaffer used very similar procedures for experiments 2 and 3. As in
experiment 1 there were four dimensions with two values on each. However, in these
experiments there were more study and test stimuli. Experiment 2 used the same geometric
stimuli as Experiment | while Experiment 3 used Brunswik faces that varied in the dimensions
of nose size, mouth height, eye separation, and eye height. There were two procedural
differences between these two experiments and 1. First, the~ criterion for passing out of the
study phase was one c;arrect pass through all nine ‘study'stimuli or 16 total passes through
the material (32 passes in experiment 3). The second procedural difference was that there

was no delayed test at a week.

fhe ACT simulation was basicaily fhé same as for experiment 1 with twé changes to reflect
the procedural changes. First, we used the criterion of one correct pass or 20 total passes
(a comp_romisé between the 16 in Experiment 2 and the 32 in Experiment 3). Second, there
was no attempt té simulate performance at a del;y since Medin and Schaffer do not collect

such data.

Table 7 presents the data from the two experiments and from the ACT simulation.
Transfer stimuli were classified as A or B by Medin and Schaffer according to a linear
discrimiriant function calculated to separate the A and B training stimuli. In general, subjects
learned more slowly in Experiment 3 with the faces than Experiment 2 with the geometric
stimuli. This may be due to the fact that the face material had distracting irrelevant
dimensions. In any case, we used just one simulation run of ACT to fit both sets of data. As
discussed earlier, our concern is to be able to reproduce the ordinal trends in the data, and

not to perform the kind of parameter search required to get exact fits.

Again the prototype of Category A is 1111 and for Category B it is 0000. Medin and
Schaffer were particularly interested in the contrast between the A training stimuli 1110 and
1010. While 1110 is closer to the A prototype than 1010, 1010 is closer to the A training
instances. For example, the only A training stimulus that 1110 is one feature removed from is
101_0, and it is this close to two of the B stimuli, 1100 and 0110. By contrast, 1010 is one

feature removed from the two A training stimuli 1110 and 1011 and there are no B training
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stimuli one feature distant. As they predicted performance was higher on 1010 when
measured either by the number of errors on training trials or by the sub‘sequent classification
ratings. ACT predicts fhis because a 1 - 10 generalization will be formed from the 1110 and
1010 combination and a 101- generalization will be formed from.the 1010 and 1011
combination which will help classify 1010. In contrast, there is only one three-item
generalization (101-) to classify 1011 and there is a B generalization (e.g., -1-0) that will

misclassify the 1110 stimulus.

In general, ACT does a good job of predicting the rank orderings of the error data. ACT’s
rank ordering correlates .88 with the ordering in experiment 2 and .80 with experiment 3. It
is worth noting that the rank orderings of experiments 2 and 3 only correlate .85 with e'aé:h
other. So ACT is doing about as well as could be expected without introducing a lot of
additional machinery about the salience of individual dimensions. As for rank orderings of
classification data, ACT’s match scores correlate .79 with Experiment 2 and .89 witf\
Experiment 3. The two experiments only correlate with each other .77. Another test was
performed of the hypothesis that the ACT match scores were related to the confidence
ratings by a linear transformation. The correiations between the actual ratings and ACT’s

match scores were .73 for Experiment 2 and .81 for Experiment 3.

Insert Table 7 about here

3. Experiment 4

The final experiment we simulated was Experiment 4 from Medin and Schaffer which used
geometric stimuli again. The materials for this experiment are illustrated in Table 8. Subjects
were given a maximum of 16 passes through the material to achieve the criterion of one
perfect recall. ACT was run given the same 16 trial limit. Table 8 also presents the data

from the experiment and from the ACT simulation.

Again a linear discriminant function was calculated to separate A from B training stimuli and
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then used to classify the transfer stimuli. Again 1111 would bé regarded as the prototype
for the A stimuli and 0000 for the B stimuli. Despite this, Medin and Schaffer predicted that
subjects would display better . performances on a nﬁmber of A stimuli than on their B
counterparts -- 0110 better than 1001, 0111 better than leOO, 1101 better than 0010, 1011
better than 0100, and 1111 than 0000. As can be seen, ACT makes these same predictions.
Medin and Schaffer made these predictions on the basis of the number of other stimuli similar
to the favored A instances. ACT makes these predictions because if there are a large number
of similar stimuli generalizations will be_made. These predictions are supported by the data

except for the 0110 vs. 1001 contrast.

Insert Table 8 about' here

The correlation between the rank order of ACT errors and the rank order of the data is
fairly high (r=.62). The rank order correlation with classification ratings and ACT match
scores is somewhat higher (r=79). Again as a test of a linear relation we performed a
correlation between the actual ratings and match scores. This correlation was even higher

(r=283).

4. Summing Up Medin and Schaffer Experiments

Medin and Schaffer designed their e'xperimenls to show the inadequacies of an independent
cue theory which creates a prototype out of the modal values on each dimension and'assigns
rank orderings according to distance from these prototypes. Their data clearly refute such a
modél and indicate that subjects are sensitive to‘ similarities among individual ihstances.
Fortunately, ACT lines up with Medin and Schaffer in predicting this result. Medin and
Schaffer’s theory is that subjects only store instances and that ratings are particularly
influenced by what instances are close to a test instance. ACT’s ratings are also influenced
by what instances are close to a test instance because these result in generalizations that

will classify the test instance.
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Medin and Schaffer derived predictions from their theory and compared these with
predictions from an independent-cue-prototypes model. Rank order correlations were
reported between these models and their data. It is interesting to compare the correlations
of these two models with ACT. The three sels of rank order correlations are reported in
Table 9 for Experiments 2, 3; and 4 (Medin and Schaffer do not report correlations for
Experiment 1). There are two remarks that need to be made about interpreting these data.
First, Medin and Schaffer’s correlations concern percent-correct classification while ACT’s
previously reported classification correlations concerned confidence ratings. The ratings and
percent correct are not perfectly correlated. We chose to report correlations with ratings
because. this measure tends to be more informative.” For instance, if oné compares two stimuli
in the Medin and Schaffer experiments with identical percent-correct classification, one
studied at;\d the other not,~the studied one will tend to receive higher mean confidence.
Averaging over 10 non-studied stimuli and 17 comparable studied stimuli with mean correct
identification of 817, the non-studied stimuli were rated 4.60 and the studied stimuli 4.83.
ACT predicts this because some of the studied stimulus judgments will result from the
application of the production that was designated to classify just that stimulus. In contrast,
all judgments for the non-studied stimuli resuit from the application 'of generalizations.
Application of a designated production results in higher confidence than application of a
generalization because the designated production has no variables. This dissociation between

confidence and percent correct is not predicted by the other models.

A second remark is that the independent cue model and the Medin-Schaffer context model
estimated separate parameters for the salience of each dimension. This allows them to.
account for variation among dimensions -- both real and random. The impact of this is cleer
in Experiment 2 wvs. 3. These two experiments have the same structure. The
" independent-cue and context theories display rank order correlations of about .8 with the
data of Experiment 2 and about .9 with Experiment 3. However, the two experiments only

correlate with each other .69 in rank order of percent correct classification.

ACT’s correlations are uniformly below those of the Medin and Schaffer context model.
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They are also below the independent-cue model except for Experiment 4 which was explicitly
designed to discriminate maximally between the independent-cue model and the Medin and
Schaffer theory. It need§ to be emphasized, however, that ACT’s predictions were done
without any parameter search and without any parameters for cue saliehce Thus, in ACT we
are using a O-parameter model to fit the data while the context model had 4 parameters and

mdependent-cue model had 5 parameters.

One atheoretical way to give ACT four degrees of freedom is to identify for it the best
four conditions and only requiré it to predict the ordering of the remaining 12 conditions.
This was done in the last column of Table 9. Now ACT correlates better than either model in
Experiments 3 and 4 and is only slightly worse than the other models in Experiment 2. Given
that ACT did this well with the addition of four totally atheoretical parameters we suspect
that an ACT model that estimated separate parameters for the salience of each of the four
dimensions would do at least as well as the Medin and Schaffer model in accounting for the

data.

Insert Tabie 9 about here

D. Comparison of ACT with Other Models

There are three basic types of models for schema abstraction. One type proposes that
subjects form a single characterization of the central tendency of the category. A frequent
suggestion is that they distinguish a particular instance (it need not be one they have actually
seen) as the prototype for the concept. Other instances are members of the category to the
extent that they are similar to this prototype. This class of models would include Franks and
Bransford (1971), Bransford and Franks (1972), Rosch and Mervis (1975), Posner and Keele
(1968), and Reed (1972). In order to account for the effects of instance frequency
demonstrated by Hayes-Roth and Hayes-Roth the prototypes would have to be augmented by

some memory for the individual instances studied. ‘However, it is much more difficult for
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profotype models to accomodate the results of Medin and Schaffer that indicate that subjects

are sensitive to similarities among individual instances.

A second class of theories are those that propose subjects store individual instances only,
and make their category judgments on the basis of the similarity between the test instance
and the stored instances. Among the theories in this class is the Medin and Schaffer theory.
A difficulty for the Medin and Schaffer version of the store-instances-only model was ihe
decorrelation found in Hayes-Roth and Hayes-Roth between recognition and classification.
They found that the prototypes received the highest classification ratings but the
trequently-presented non-prototypes had the highest recognition ratings. This suggests that
information is acquired both about the instances and about theirv more abstractv

characteristics.

In a certain sense, any results that can be accounted for by altheory that says that
spbjects store abstractions can also be accounted for by a theory that says subjects only
store instances. A store-instance-only theory could always be proposed that went through a
test process equivalent to calculating an abstraction from the stored instances and making 2
judgment on the basis of the abstraction. However, a difficulty for the instance model is the
frequent phenomena of subjects reporting verbally the existence of abstract

characterizations or prototypes (e.g.,, Reed, 1972).

The third class of models is that which proposes that subjects store co-occurrence
information about feature combinations. ACT is an instance of such a model as are those
proposed by Reitman and Bower (1973), Hayes-Roth and Hayes-Roth (1977), and one aspect
of Neumann's (1974) model. These models can potentially store all subsets of feature
combinations. Thus, they store instances as a special case. The Hayes-Roth and Hayes-Roth
experiment showed this model has advantages over many versions of the instance-only or
prototype models. However, the Medin and Schaffer version of the instance-only model can

accomodate their results.

It is very difficult to find empirical predictions that distinguish ACT from the various other
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feature-set models. Perhaps, it would be best to regard them as equivalent given the current
state of our knowledge and simply conclude.that subjects respond in terms feature-sets.
However, there are a number of reasons for preferring ACT’s version of the feature-set
model. First, it is a fully specified process Enodel. As Medin and Schaffer argue, it is often
difficult to see in any detail how some of the feature-set models apply to particular

paradigms or produce particular results.

Second,'ACT has a reasonably ‘efficient way of storing feature-sets. It only stores those
subsets of properties and features that have arisen because of generalization or
discrimination rather than attempting to store all possible subsets of features froﬁw a![
observed instances. While it seems as if there should be empirical consequences of these
different ways of storing feature-sets, our efforts to find them have not been successful.
However, if there is very little differénce in behavior, that would seem to be all the more

reason to prefer the more efficient storage requirements of ACT.

Third, it. needs to be emphasized that the ACT learning mechanisms were not fashioned th>
account for schem; abstraction. Rather they were designed in light of more general
considerations about the nature of the rules that need to be acqﬁired and the information
typically available to acquisition méchanisms in real world situations. We were particularly
concerned that our mechanisms should be capable of dealing with language acquisition and
rules for making inference§ and predictions about one’s environment. The mechanisms were
designed to both be robust (in being able to deal with many different rules in many different
situations) and to be efficient. Their success in accounting for schema abstraction represents

an independent confirmation of the learning theory.

Before concluding, we would like to discuss one characteristic of feature-set models which
may seem unappealing on first encounter. This is the fact that they store so many different
characterizations of the category. ACT may not be so bad as some of the other theories, but
still having a set of productions for recognizing instances of a category seems far less
economical than having a single prototype. Hoﬁever, the remark that needs to be made is

that natural categories defy economical representations. This has been stressed in



51

discussions of their family resemblance structure by Wittgenstein (e.g. Wittgenstein, 1953)
and more recéntly by Rosch (e.g. Rosch & Mervis, 1975). The important fact about many
natural categories (e.g., games, dogs) is that there is no set of features that define the
category nor is there a prototypical instance that functions as a standard to which all other
rategory members must be compared. On the other hand, these categories do not seem to be
unstructured; they are not merely a list of instances. The introspections of one of us (JA)

suggest that for him the category of dogs has subclasses that include the following:

(3) The very large dogs, with short noses, and floppy ears that
include the St. Bernards, Newfoundiands, and Mastiffs.

(b) The medium to large dogs with relatively long hair, and floppy
ears that include the spaniels, setters, and some of the other
retrievers.

(¢) The short and Ho.i.ry dogs which include breeds like the pekinese
and toy terriers.

(d) The large, multi-colored dogs, with medium hair, and pointed ears
which include the German Shepherds and Huskies.

The italicized portions of each description gives the physical features that seem to
characterize that subclass. A There are several things to notice about these feature-set
descriptions. First is that certain features are left unspecified; for example, subclass (2) make
no reference to coloration or hair. The implication is that these subclasses of the larger dog
category are not defined by prototypes either. A second observation is that the feature-set
descriptions overlap in complex and relatively unsystematic ways. For example, while there
is a tendency for size to distinguish the subclasses, subclass b overlaps with subclass d on
this feature so that large dogs are in both subclasses. Other features, like ear-type serve to
distinguish some subclasses (viz,, subclass d from subclasses a and b), fail to distinguish
others (viz,, subclass a from subclass b) and are irrelevant for still others (viz., subciass ¢).
Feature-set models like ACT seem uniquely suited to explain the complex, overlapping, and

only partially-specified feature structures of natural categories.
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