

Technische Grundlagen für den Maschinenbau

Technisches Handbuch

FLENDER drives

Answers for industry.

SIEMENS

FLENDER drives

Technische Grundlagen für den Maschinenbau

Technisches Handbuch

Technische Zeichnungen	1
Normung	2
Physik	3
Mathematik / Geometrie	4
Mechanik / Festigkeitslehre	5
Hydraulik	6
Elektrotechnik	7
Werkstofftechnik	8
Schmieröle	9
Stirnradgetriebe	10
Wellenkupplungen	11
Schwingungen	12
Literaturverzeichnis	13

Answers for Industry.

Siemens Industry gibt Antworten auf die Herausforderungen in der Fertigungs-,

Prozess- und Gebäudeautomatisierung. Unsere Antriebs- und Automatisierungslösungen

auf Basis von Totally Integrated Automation (TIA) und Totally Integrated Power (TIP)

finden Einsatz in allen Branchen. In der Fertigungs- wie in der Prozessindustrie.

In Industrie- wie in 7weckhauten.

Sie finden bei uns Automatisierungs-, Antriebsund Niederspannungsschalttechnik sowie Industrie-Software von Standardprodukten bis zu kompletten Branchenlösungen. Mit der Industrie-Software optimieren unsere Kunden aus dem produzierenden Gewerbe ihre gesamte Wertschöpfungskette – von Produktdesign und -entwicklung über Produktion und Vertrieb bis zum Service. Mit unseren elektrischen und mechanischen Komponenten bieten wir Ihnen integrierte Technologien für den kompletten Antriebsstrang – von der Kupplung bis zum Getriebe, vom Motor bis zu Steuerungs- und Antriebslösungen für alle Branchen des Maschinenbaus. Mit der Technologieplattform TIP bieten wir Ihnen durchgängige Lösungen für die Energieverteilung.

Überzeugen Sie sich selbst von den Möglichkeiten, die Ihnen unsere Automatisierungsund Antriebslösungen bieten. Und entdecken Sie, wie Sie mit uns Ihre Wett-

Und entdecken Sie, wie Sie mit uns Ihre Wettbewerbsfähigkeit nachhaltig steigern können.

Inhaltsübersicht

Teil 1	Seite
Technische Zeichnungen	
Oberflächenbeschaffenheit	5 + 6
Form- und Lagetolerierung	7 – 21
Blattgrößen, Schriftfeld, Streifenformate	22
Schriftgrößen, Linien, Beschriftungsmuster	23
Teil 2	
Normung	
Metrisches ISO-Gewinde (Regelgewinde)	25
Metrisches ISO-Gewinde (Regel- und Feingewinde)	26
Zylindrische Wellenenden	27
ISO-Toleranzfelder und Abmaße	28 + 29
Passfedern und Keile, Zentrierbohrungen	30
Teil 3	
Physik	
International festgelegte Vorsätze	32
SI-Basiseinheiten	32
Abgeleitete SI-Einheiten	33
Gesetzliche Einheiten außerhalb des SI	33
Größen und Einheiten der Länge und ihrer Potenzen	34
Größen und Einheiten für die Zeit	35
Größen und Einheiten der Mechanik	35 – 37
Größen und Einheiten der Thermodynamik und der Wärmeübertragung	37 + 38
Größen und Einheiten der Elektrotechnik	38
Größen und Einheiten der Lichttechnik	39
Temperaturen in verschiedenen Maßeinheiten	39
Längen- und Flächenmaße	40
Raummaße und Massegrößen	41
Energie, Arbeit, Wärmemenge	41
Leistung, Energiestrom, Wärmestrom	42
Druck und Spannung	42
Geschwindigkeit	42
Physikalische Gleichungen für die geradlinige Bewegung und die Drehbewegung	43
Teil 4	
Mathematik / Geometrie	
Berechnung von Flächen	45
Berechnung von Körpern	46
Teil 5	
Mechanik / Festigkeitslehre	
Axiale Widerstandsmomente und axiale Flächenmomente 2. Grades (Flächenträgheitsmomente) verschiedener Profile	48
Durchbiegung von Trägern	49
Werte für den Kreisquerschnitt	50
Bauteilbeanspruchung und Gestaltfestigkeit	51
	-

Inhaltsübersicht

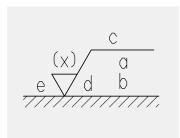
Teil 6	Seite
Hydraulik	
Hydrostatik	53
Hydrodynamik	54
Teil 7	
Elektrotechnik	
Grundformeln	56
Drehzahl, Leistung und Wirkungsgrad von Elektromotoren	57
Bauformen und Aufstellung von umlaufenden elektrischen Maschinen	58
Schutzarten für elektrische Betriebsmittel (Berührungs- und Fremdkörperschutz)	59
Schutzarten für elektrische Betriebsmittel (Wasserschutz)	60
Teil 8	
Werkstofftechnik	
Umrechnung von Dauerfestigkeitswerten verschiedener Werkstoffe	62
Mechanische Eigenschaften von Vergütungsstählen	63
Dauerfestigkeitsschaubilder der Vergütungsstähle	64
Allgemeine Baustähle	65
Dauerfestigkeitsschaubilder der allgemeinen Baustähle	66
Einsatzstähle	67
Dauerfestigkeitsschaubilder der Einsatzsstähle	68
Kaltgewalzte Stahlbänder	69
Stahlguss für allgemeine Verwendungszwecke	69
Runder Federstahldraht	70
Gusseisen mit Lamellengraphit	71
Gusseisen mit Kugelgraphit	71
Kupfer-Zinn- und Kupfer-Zinn-Zink-Gusslegierungen	72
Kupfer-Aluminium-Gusslegierungen	72
Aluminium-Gusslegierungen	73
Blei- und Zinn-Gusslegierungen für Verbundgleitlager	74
Umwertung von Härtewerten	75
Stoffwerte fester und flüssiger Stoffe	76
Längenausdehnungskoeffizient	77
Zustandsschaubild Eisen-Kohlenstoff	77
Grübchen- und Zahnfußdauerfestigkeitswerte von Stählen	77
Wärmebehandlung beim Einsatzhärten von Einsatzstählen	78
Teil 9	
Schmieröle	
Viskositäts-Temperatur-Diagramm für Mineralöle	80
Viskositäts-Temperatur-Diagramm für Synthetiköle auf Poly- $lpha$ -Olefin Basis	81
Viskositäts-Temperatur-Diagramm für Synthetiköle auf Polyglykol-Basis	82
Kinematische Viskosität und dynamische Viskosität	83
Viskositäts-Tabelle für Mineralöle	84

Inhaltsübersicht

Teil 10	Seite
Stirnradgetriebe	
Formelzeichen und Einheiten	86 + 87
Allgemeine Einführung	88
Geometrie der Evolventenzahnräder	88 – 99
Tragfähigkeit der Evolventenzahnräder	99 – 107
Getriebebauarten	107 – 110
Getriebegeräusche	111 – 114
Teil 11	
Wellenkupplungen	
Allgemeine Grundlagen	116
Drehsteife Kupplungen, Elastische Nockenkupplungen, Elastische Klauenkupplungen	117
Hochelastische Reifenkupplungen, Hochelastische Gummireifenkupplungen, Hochelastische Gummischeibenkupplungen, Elastische Bolzenkupplungen	118
Ganzstahlkupplungen, Sicherheitskupplungen, Turbokupplungen, Composite Kupplungen	119
Miniaturkupplungen, Zahnkupplungen, Lamellenschaltkupplungen	120
Strömungskupplungen, Überholkupplungen, Drehmomentbegenzer	121
Kupplungen für Pumpenantriebe	122
Kupplungssysteme für Schienenfahrzeuge	123
Kupplungssysteme für Windkraftanlagen	124
Teil 12	
Schwingungen	
Formelzeichen und Einheiten	126
Allgemeine Grundlagen	127 – 129
Lösungsansatz für einfache Drehschwinger	129 + 130
Lösung der Bewegungsdifferentialgleichung	130 + 131
Formeln für die Schwingungsberechnung	131
Begriffe, Formelzeichen und Einheiten	132
Formeln für die Schwingungsberechnung	133 – 135
Schwingungsbeurteilung	135 + 136
Teil 13	
Literaturverzeichnis für Teil 10, 11, und 12	138 + 139

Technische Zeichnungen	Seite
Oberflächenbeschaffenheit	
Angabe der Oberflächenbeschaffenheit in Zeichnungen nach DIN EN ISO 1302	5
Rauheitskenngrößen	5 + 6
Form- und Lagetolerierung	
Allgemeines	7
Anwendung und allgemeine Erläuterungen	7
Toleranzrahmen	7
Toleranzarten und zugehörige Symbole sowie eingeschlossene Toleranzen	8
Zusätzliche Symbole	8
Tolerierte Elemente	9
Toleranzzonen	9
Bezüge und Bezugssysteme	9 – 11
Theoretisch genaue Maße	11
Detaillierte Definition der Toleranzen	11 – 21
Blattgrößen, Schriftfeld, Streifenformate	
Blattgrößen für technische Zeichnungen	22
Schriftfeld für technische Zeichnungen	22
Streifenformate für technische Zeichnungen	22
Schriftgrößen	23
Linien nach DIN ISO 128, Teil 20 und Teil 24	23
Beschriftungsmuster	23

1. Angabe der Oberflächenbeschaffenheit in Zeichnungen nach DIN EN ISO 1302


.1 Symbole für die Oberflächenbeschaffenheit				
Grafische Symbole	Bedeutungen			
\bigvee	Symbol, wenn Materialabtrag durch mechanische Bearbeitung verlangt ist (ohne Anfordrungen)			
konserviert	Symbol, wenn Materialabtrag durch mechanische Bearbeitung und zusätzliche Textangaben verlangt sind			
\bigvee	Symbol, wenn Materialabtrag nicht zulässig ist (ohne Anforderungen)			
porenfrei	Symbol, wenn Materialabtrag nicht zulässig ist und zusätzliche Textangaben verlangt sind			
6.3	Materialabtrag, Oberflächenrauhwert Ra = 6,3 μm			
	Materialabtrag gilt für den Außenumriss der Ansicht			
3 🗸	Bearbeitungszugabe als Zahlenwert in mm (z.B. 3 mm)			
drallfrei 0,4 - 0,8	Materialabtrag (durch mechanische Bearbeitung), Oberflächenrauhwert <i>Ra</i> = 0,4 - 0,8 μm Anforderung an die Oberfläche "drallfrei"			

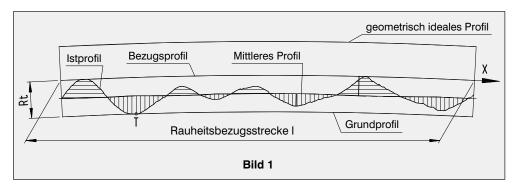
1.2 Definition der Oberflächenkenngröße Ra

Der arithmetische Mittelwert *Ra* der Profilordinaten ist in DIN EN ISO 4287 und die Messstrecken

für die Messung der Rauheit in DIN EN ISO 4288 definiert.

1.3 Angaben, die den grafischen Symbolen hinzugefügt werden

- a = Anforderungen an die Oberflächenbeschaffenheit
- b = Zwei oder mehrere Anforderungen an die Oberflächenbeschaffenheit
- c = Fertigungsverfahren, Behandlung, Überzug oder andere Anforderungen betreffend den Fertigungsprozeß usw.
- d = Oberflächenrillen und -ausrichtung
- e = Bearbeitungszugabe
- (x) = Nicht mehr anwendbar (früher Angabe von *Ra*)

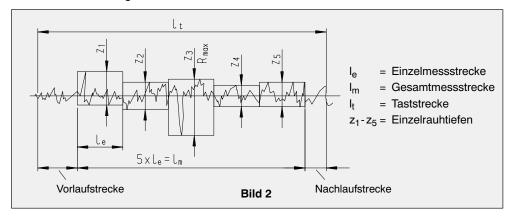

2. Rauheitskenngrößen

2.1 Rauhtiefe Rt

Die Rauhtiefe Rt in μm nach DIN 4762 Teil 1 ist der Abstand des Grundprofils vom Bezugsprofil (siehe Bild 1). Das Grundprofil ist das innerhalb der Rauheitsbezugsstrecke senkrecht

zum geometrisch idealen Profil so weit verschobene Bezugsprofil, dass den vom Bezugsprofil entferntesten Punkt des Istprofils (Punkt T im Bild 1) berührt.

Siemens MD · 2009 5



2.2 Rauhtiefe Rz

Die gemittelte Rauhtiefe Rz in μm nach DIN 4768 ist das arithmetische Mittel aus den Einzelrauhtiefen fünf aneinandergrenzender Einzelmess-

strecken (siehe Bild 2).

Anmerkung: Die Definition von Rz nach DIN und nach ISO stimmt nicht überein.

Eine genaue Umrechnung zwischen der Rauhtiefe Rz und dem Mittenrauhwert Ra und umgekehrt lässt sich weder theoretisch begründen noch empirisch nachweisen. Für Oberflächen, die durch Fertigungsverfahren der Gruppe "Spanen" erzeugt werden, ist im Beiblatt 1 zu DIN 4768 ein Umrechnungsdiagramm von Ra in Rz und umgekehrt unter Zugrundelegung von Vergleichsmessungen dargestellt. Die den Ra-Werten zugeordneten Rz-Werte sind mit Streuungen behaftet (siehe Tabelle).

2.3 Rauhtiefe Rmax

Die maximale Rauhtiefe Rmax in μm nach DIN 4768 ist die größte der auf der Gesamtmessstrecke I_m vorkommenden Einzelrauhtiefen Z_1 (siehe Bild 2). Rmax wird nur dann angewendet, wenn die größte Einzelrauhtiefe (Ausreißer) aus funktionswichtigen Gründen erfasst werden soll.

2.4 Rauheitsklassen N

Die Anwendung von Rauheitsklassen (N-Klassen) ist in Deutschland nicht zugelassen, da die Einheiten in "inch" angegeben werden.

3. Arithmetische Mittenrauhwerte Ra und Rauheitsklassen zur gemittelten Rauhtiefe Rz													
Oberflächen- rauhheitswert	μm	50	25	12,5	6,3	3,2	1,6	0,8	0,4	0,2	0,1	0,05	0,025
Ra	μin	2000	1000	500	250	125	63	32	16	8	4	2	1
Rauheitsklasse		N 12	N 11	N 10	N 9	N 8	N 7	N 6	N 5	N 4	N 3	N 2	N 1
Oberflächen-	von	160	80	40	25	12,5	6,3	3,15	1,6	0,8	0,4	0,25	0,1
rauhheitswert Rz in μm	bis	250	160	100	63	31,5	20	12,5	6,3	4	2,5	1,6	0,8

Technische Zeichnungen

Form- und Lagetolerierung

4. Allgemeines

4.1 Die aufgeführten Einzelheiten entsprechen der internationalen Norm DIN ISO 1101, Ausgabe März 1985.

Diese Norm enthält die Grundsätze der symbolischen Darstellung und der Eintragung in Zeichnungen von Form-, Richtungs-, Orts- und Lauftoleranzen und legt die zugehörige geometrische Definition fest. Der Begriff "Form- und Lagetoleranzen" in dieser Norm wird als Oberbegriff für diese Toleranzen angewendet.

4.2 Zusammenhang zwischen Maß-, Formund Lagetoleranzen

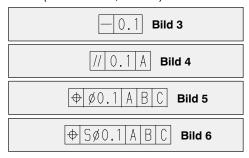
Nach den zur Zeit gültigen Normen gibt es <u>zwei</u> Möglichkeiten der Zeichnungseintragung, und zwar entsprechend:

- a) dem Unabhängigkeitsprinzip nach DIN ISO 8015, wonach Maß-, Form- und Lagetoleranzen unabhängig voneinander eingehalten werden müssen, also in keinem direkten Zusammenhang zueinander stehen. Hierbei muss in der Zeichnung ein Hinweis auf DIN ISO 8015 eingetragen sein.
- b) der Hüllbedingung nach DIN 7167, nach der die Maß- und Formtoleranzen in einem direkten Zusammenhang stehen, also die Maßtoleranzen auch die Formtoleranzen begrenzen.

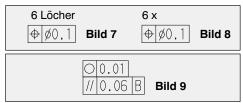
5. Anwendung und allgemeine Erläuterungen

- **5.1** Form- und Lagetoleranzen sind nur dann in Zeichnungen einzutragen, wenn sie für die Funktionstauglichkeit und/oder wirtschaftliche Fertigung des jeweiligen Werkstückes unerlässlich sind. Anderenfalls gelten die Allgemeintoleranzen nach DIN ISO 2768.
- **5.2** Werden Form- und Lagetoleranzen angegeben, so bedeutet dies nicht, dass ein bestimmtes Fertigungs-, Mess- oder Prüfverfahren angewendet werden muss.
- **5.3** Die Form- oder Lagetoleranz eines Elementes definiert die Zone, innerhalb der dieses Element (Fläche, Achse oder Mittelebene) liegen muss. Je nach zu tolerierender Zone und je nach ihrer Bemaßung ist die Toleranzzone eine der folgenden:
- die Fläche innerhalb eines Kreises;
- die Fläche zwischen zwei konzentrischen Kreisen;
- die Fläche zwischen zwei abstandsgleichen Linien oder zwei parallelen geraden Linien;
- der Raum innerhalb eines Zylinders;
- der Raum zwischen zwei koaxialen Zylindern;
- der Raum zwischen zwei parallelen Ebenen;
- der Raum innerhalb eines Quaders oder einer

Das tolerierte Element kann innerhalb dieser Toleranzzone beliebige Form und jede beliebige Richtung haben, es sei denn, es werden einschränkende Angaben gemacht.


- **5.4** Wenn nichts anderes angegeben ist, gilt die Toleranz für die gesamte Länge oder Fläche des tolerierten Elementes.
- **5.5** Das Bezugselement ist ein wirkliches Element eines Teiles, das zum Festlegen der Lage eines Bezuges benutzt wird.
- **5.6** Form- und Lagetoleranzen für Elemente, die sich auf ein Bezugselement beziehen, begrenzen nicht die Formabweichung des Bezugselements selbst. Ein Bezugselement sollte für seinen Zweck genügend genau sein. Es kann deshalb notwendig sein, für die Bezugselemente Formtoleranzen erstzulegen.

(siehe Tabelle Seite 8)


5.7 Toleranzrahmen

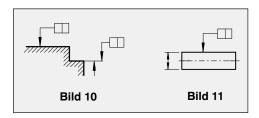
Die Toleranzanforderungen werden in einem rechteckigen Rahmen angegeben, der in zwei oder mehrere Kästchen unterteilt ist. Von oben nach unten enthalten diese Kästchen in folgender Reihenfolge (siehe Bilder 3, 4 und 5):

- das Symbol für die zu tolerierende Eigenschaft:
- den Toleranzwert in derselben Einheit wie die der Längenmaße. Diesem Wert wird das Zeichen Ø vorangesetzt, wenn die Toleranzzone kreisförmig oder zylinderförmig ist oder das Zeichen "SØ" wenn die Toleranzzone kugelförmig ist;
- falls zutreffend, den oder die Großbuchstaben, die den Bezug oder die Bezüge bezeichnen (siehe Bilder 4, 5 und 6).

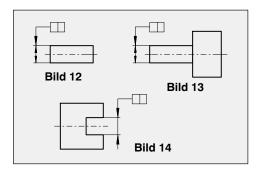
Wortangaben zur Toleranz, wie z.B. "6 Löcher", "4 Flächen" oder "6 x", werden über dem Toleranzrahmen eingetragen (siehe Bilder 7 und 8). Falls es nötig ist, mehr als eine Toleranzeigenschaft für ein Element festzulegen, sind die Toleranzangaben in Toleranzrahmen untereinander zu setzen (siehe Bild 9).

Tabelle 1: Toleranzarten und zugehörige Symbole sowie eingeschlossene Toleranzen					
Tol	eranzarten	Tolerierte Eigenschaften	Symbole	Eingeschlossene Toleranzen	
		Geradheit		-	
		Ebenheit		Geradheit	
Forn	ntoleranzen	Rundheit (Kreisform)		-	
		Zylindrizität (Zylinderform)	\bowtie	Geradheit, Parallelität, Rundheit	
Р	rofilform-	Profilform einer beliebigen Linie (Linienprofil)		-	
to	leranzen	Profilform einer beliebigen Fläche (Flächenprofil)			
	Dialeterana	Parallelität	//	Ebenheit	
	Richtungs- toleranzen	Rechtwinkligkeit		Ebenheit	
		Neigung (Winkligkeit)		Ebenheit	
Ľ	<u></u>	Position	+	-	
-agetoleranzen	Orts- toleranzen	Konzentrizität (für Mittel- punkte), Koaxialität (für Achsen)	0	-	
Laget		Symmetrie	=	Geradheit, Ebenheit, Parallelität	
	Lauf	einfacher Lauf	1	Rundheit, Koaxialität Konzentrizität	
	Lauf- toleranzen	Gesamtlauf	11	Rundlauf, Koaxialität, Ebenheit, Parallelität, Rechtwinkligkeit	

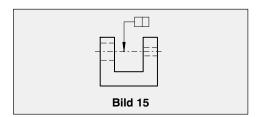
Tabelle 2: Zusätzliche Symbole					
Beschreibungen		Symbole			
	ullin				
Kennzeichnung des tolerierten Elementes	mit Buchstabe	<u> </u>			
Kennzeichnung des Bezuges (nur mit Buchstaben)		A A			
Kennzeichnung der Bezugsstelle \emptyset 2 = Maß für die Fläche A1 = Bezugselement un		Ø2 A1			
Theoretisch genaues Maß	50				
Projizierte (vorgelagerte) Toleranzzone	P				
Maximum-Material-Bedingung Abhängigkeit von Maß-, Form- und Lagetoleranzen	M				
Minimum-Material-Bedingung Maß, das den Minimum-Materialzustand eines Form					
Freier-Zustand-Bedingung (Nicht formstabile Teile)	F				
Hüllbedingung: Eine geometrisch ideale Hülle darf v maß nicht durchbrochen werden	E				


Technische Zeichnungen

Form- und Lagetolerierung

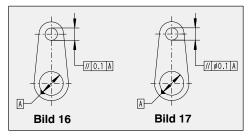

5.8 Tolerierte Elemente

Der Toleranzrahmen wird mit dem tolerierten Element durch eine Bezugslinie mit Bezugspfeil verbunden, und zwar folgendermaßen:

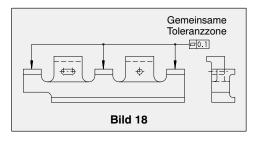

 Der Bezugspfeil wird auf die Konturlinie des Elementes oder eine Maßhilfslinie gesetzt, wenn sich die Toleranz auf die Linie oder Fläche selbst bezieht (siehe Bilder 10 und 11); dabei muss der Bezugspfeil deutlich seitlich versetzt von der Maßlinie angebracht werden.

Bezugspfeil und Bezugslinie werden als Verlängerung einer Maßlinie gezeichnet, wenn sich die Toleranz auf die Achse oder Mittelebene des so bemaßten Elementes bezieht (siehe Bilder 12 bis 14).

 Der Bezugspfeil steht auf der Achse oder Mittelebene, wenn das tolerierte Element die gemeinsame Achse oder Mittelebene von zwei oder mehr Elementen ist (siehe Bild 15).



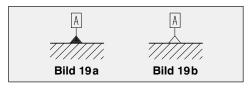
Anmerkung:


Ob eine Toleranz auf die Kontur eines zylinderförmigen oder symmetrischen Elementes oder auf seine Achse bzw. Mittelebene bezogen wird, hängt von den funktionellen Anforderungen ab.

5.9 Toleranzzonen

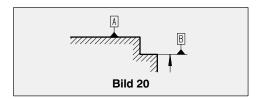
Die Toleranzzone ist die Zone, innerhalb der alle Punkte eines geometrischen Elementes (Punkt, Linie, Fläche, Mittelebene) liegen müssen. Die Weite der Toleranzzone liegt in der Richtung des Pfeiles der Bezugslinie, der den Toleranzrahmen mit dem tolerierten Element verbindet, es sei denn, dem Toleranzwert ist das Zeichen Ø vorangestellt (siehe Bilder 16 und 17).

Wird eine gemeinsame Toleranzzone auf mehrere einzelne Elemente angewendet, so wird die Anforderung durch die Wortangabe "Gemeinsame Toleranzzone" über dem Toleranzrahmen ergänzt (siehe Bild 18).



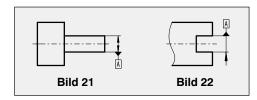
5.10 Bezüge und Bezugssysteme

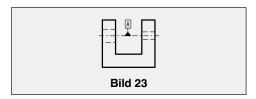
Bezugselemente sind Elemente, nach denen ein Werkstück zur Erfassung der tolerierten Abweichung ausgerichtet wird.


5.10.1 Bezieht sich ein toleriertes Element auf einen Bezug, so wird letzterer im Allgemeinen durch Bezugsbuchstaben gekennzeichnet. Derselbe Buchstabe, der den Bezug kennzeichnet, wird im Toleranzrahmen wiederholt.

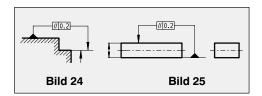
Zur Kennzeichnung des Bezuges wird ein Großbuchstabe in einem Bezugsrahmen angegeben, der mit einem Bezugsdreieck verbunden ist (siehe Bilder 19a und 19b).

Das Bezugsdreieck mit dem Bezugsbuchstaben steht:

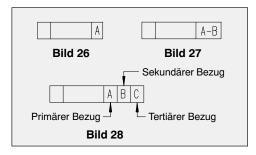

 auf der Konturlinie des Elementes oder auf der Maßhilfslinie (aber deutlich seitlich versetzt von der Maßlinie), wenn der Bezug die Linie oder Fläche selbst ist (siehe Bild 20).


 als Verlängerung der Maßlinie, wenn der Bezug die Achse oder die Mittelebene ist (siehe Bild 21 und Bild 22).

Anmerkung:

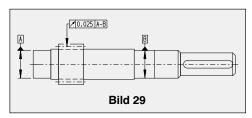

Reicht der Platz für 2 Maßpfeile nicht aus, so kann einer davon durch das Bezugsdreieck ersetzt werden (siehe Bild 22).

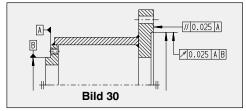
- auf der Achse oder Mittelebene, wenn der Bezug:
- a) die Achse oder Mittelebene eines einzelnen Bezuges ist (z.B. ein Zylinder);
- b) die gemeinsame Achse oder Mittelebene von zwei Elementen ist (siehe Bild 23).



Kann der Toleranzrahmen direkt mit dem Bezug durch eine Bezugslinie verbunden werden, so kann der Bezugsbuchstabe entfallen (siehe Bilder 24 und 25).

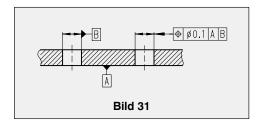
Ein einzelner Bezug wird durch einen Großbuchstaben gekennzeichnet (siehe Bild 26).


Ein durch zwei Bezüge gebildeter gemeinsamer Bezug wird durch zwei Bezugsbuchstaben gekennzeichnet, die durch einen waagerechten Strich verbunden sind (siehe Bild 27 und Bild 29). In einem Bezugssystem (siehe auch Punkt 5.10.2) ist die Reihenfolge der Ausrichtung zweier oder mehrerer Bezüge von Bedeutung. Die Bezugsbuchstaben sind in verschiedene Kästchen zu setzen, wobei die Reihenfolge von links nach rechts die Rangordnung angibt und der zuerst angegebene Bezugsbuchstabe dem richtungsgebenden Bezugselement entsprechen sollte (siehe Bilder 28, 30 und 31).


5.10.2 Bezugssystem

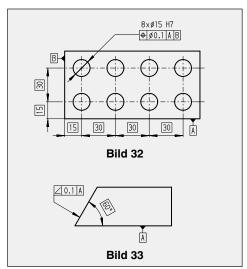
Ein Bezugssystem ist eine Gruppe von zwei oder mehreren Bezügen, auf die gemeinsam sich ein toleriertes Element bezieht. Ein Bezugssystem wird häufig erforderlich, weil sich die <u>Richtung</u> einer <u>kurzen Achse</u> allein nicht bestimmen lässt.

Bezug, gebildet aus zwei Formelementen (gemeinsamer Bezug).


Bezugssystem, gebildet aus zwei Bezügen (richtungsgebender Bezug "A" und kurze Achse "B").

Technische Zeichnungen

Form- und Lagetolerierung


Bezugssystem aus einer Ebene und einer dazu senkrechten Achse eines Zylinders: Der Bezug "A" ist die Ebene, die durch die ebene Berührungsfläche gebildet wird. Der Bezug "B" ist die Achse des größten einbeschriebenen Zylinders, die rechtwinklig zum Bezug "A" ist (siehe Bild 31).

5.11 Theoretisch genaue Maße

Sind Positions- oder Neigungstoleranzen für ein Element vorgeschrieben, so dürfen die Maße, die die theoretisch genaue Lage bzw. das theoretisch genaue Profil oder den theoretisch genauen Winkel bestimmen, nicht toleriert werden. Diese Maße werden in einen rechteckigen Rahmen gesetzt, z.B. [30]. Die entsprechenden Ist-

maße des Teiles unterliegen nur der im Toleranzrahmen angegebenen Positions- oder Neigungstoleranz (siehe Bilder 32 und 33).

5.12 Definitionen der Toleranzen

Symbol Definition der Toleranzzone Zeichnungseintragung und Erklärung 5.12.1 Geradheitstoleranz Die in eine Ebene projizierte Toleranz-Jede parallel zur Zeichenebene der tolerierzone wird begrenzt durch zwei parallele ten Darstellung liegende Linie der oberen gerade Linien vom Abstand t. Fläche muss zwischen zwei parallelen Geraden vom Abstand 0,1 liegen. 0.1 Bild 34 Bild 35 Jeder Abschnitt von 200 Länge jeder beliebigen Mantellinie der durch den Pfeil bezeichneten zylindrischen Fläche muss zwischen zwei parallelen Geraden vom Abstand 0.1 liegen. Bild 36

Symbol	Definition der Toleranzzone	Zeichnungseintragung und Erklärung
	Wenn die Toleranz in zwei zueinander senkrechten Richtungen angegeben ist, wird die Toleranzzone begrenzt durch einen Quader vom Querschnitt t ₁ x t ₂ .	Die Achse des Stabes muss innerhalb eines Quaders von 0,1 Weite in senkrechter Richtung und 0,2 Weite in waagerechter Richtung liegen.
_	Bild 37 Wenn vor dem Toleranzwert das Zeichen ∅ steht, wird die Toleranzzone begrenzt	Die Achse des mit dem Toleranzrahmen verbundenen Zylinders muss innerhalb einer
	durch einen Zylinder vom Durchmesser t.	zylinderieri Zylinders muss imernaib einer zylindrischen Toleranzzone vom Durchmes- ser 0,08 liegen.
	Bild 39	Bild 40
	5.12.2 Ebenheitstoleranz	
	Die Toleranzzone wird begrenzt durch zwei parallele Ebenen vom Abstand t.	Die Fläche muss zwischen zwei parallelen Ebenen vom Abstand 0,08 liegen.
		0.08
	Bild 41	Bild 42
	5.12.3 Rundheitstoleranz	
	Die Toleranzzone wird in der betrachteten Ebene begrenzt durch zwei konzentri- sche Kreise vom Abstand t.	Die Umfangslinie jedes Querschnittes des Außendurchmessers muss zwischen zwei in derselben Ebene liegenden konzentrischen Kreisen vom Abstand 0,03 liegen.
		00.03
\circ	Bild 43	Bild 44
		Die Umfangslinie jedes Querschnittes muss zwischen zwei in derselben Ebene liegen- den konzentrischen Kreisen vom Abstand 0,1 liegen.
		Bild 45

Symbol	Definition der Toleranzzone	Zeichnungseintragung und Erklärung				
	5.12.4 Zylinderformtoleranz					
	Die Toleranzzone wird begrenzt durch zwei koaxiale Zylinder vom Abstand t.	Die betrachtete Zylindermantelfläche muss zwischen zwei koaxialen Zylindern vom Abstand 0,1 liegen.				
	Bild 46	Bild 47				
	5.12.5 Parallelitätstoleranz					
	Parallelitätstoleranz einer Linie zu einer B	ezugslinie				
	Wenn die Toleranzzone nur in einer Richtung angegeben ist, wird die in eine Ebene projizierte Toleranzzone begrenzt durch zwei zur Bezugslinie parallele gerade Linien vom Abstand t.	Die tolerierte Achse muss zwischen zwei geraden Linien vom Abstand 0,1 liegen, die parallel zur Bezugsachse A verlaufen. Die Toleranzzone erstreckt sich in senkrechter Richtung (siehe Bilder 49 und 50).				
	1	Bild 49 Bild 50				
	Bild 48	Die tolerierte Achse muss zwischen zwei ge-				
//	t	raden Linien vom Abstand 0,1 liegen, die parallel zur Bezugsachse A verlaufen. Die Toleranzzone erstreckt sich in waagerechter Richtung.				
	Bild 51	Bild 52				
	Wenn die Toleranz in zwei zueinander senkrechten Ebenen angegeben ist, wird die Toleranzzone begrenzt durch einen zur Bezugsachse parallelen Quader vom Querschnitt t ₁ x t ₂ .	Die tolerierte Achse muss innerhalb eines Quaders liegen, der eine Weite von 0,2 in waagerechter Richtung und 0,1 in senkrech- ter Richtung hat und der parallel zur Bezugs- achse A liegt (siehe Bilder 54 und 55).				
	t ₂	///0.2IA ///0.1IA ////0.1IA ////0.1IA				
	Bild 53	Bild 54 Bild 55				

0 1 1	D 6 W 1 T 1					
Symbol	Definition der Toleranzzone	Zeichnungseintragung und Erklärung				
	Parallelitätstoleranz einer Linie zu einer B	ezugslinie				
	Wenn dem Toleranzwert das Zeichen Ø vorangestellt ist, wird die Toleranzzone begrenzt durch einen zur Bezugsachse parallelen Zylinder vom Durchmesser t.	Die tolerierte Achse muss innerhalb eines Zylinders vom Durchmesser 0,03 liegen, der parallel zur Bezugsachse A ist. Bild 57				
	Parallelitätstoleranz einer Linie zu einer B	ezugsfläche				
	Die Toleranzzone wird begrenzt durch zwei zur Bezugsfläche parallele Ebenen vom Abstand t.	Die tolerierte Achse des Loches muss zwischen zwei zur Bezugsfläche B parallelen Ebenen vom Abstand 0,01 liegen.				
	Dild to	Bild 59				
	Bild 58 Parallelitätstoleranz einer Fläche zu einer					
//	Die Toleranzzone wird begrenzt durch zwei zur Bezugslinie parallele Ebenen vom Abstand t.	Die tolerierte Fläche muss zwischen zwei zur Bezugsachse C des Loches parallelen Ebe- nen vom Abstand 0,1 liegen.				
		(// 0.1 C) C				
	Bild 60	Bild 61				
	Parallelitätstoleranz einer Fläche zu einer	Bezugsfläche				
	Die Toleranzzone wird begrenzt durch zwei zur Bezugsfläche parallele Ebenen vom Abstand t.	zur Bezugsfläche D parallelen Ebenen vom Abstand 0,01 liegen, (Bild 63).				
	Bild 62	Auf einer Teillänge von 100 in jeder beliebigen Lage und jeder beliebigen Richtung auf der tolerierten Fläche müssen alle Punkte zwischen zwei zur Bezugsfläche Aparallelen Ebenen vom Abstand 0,01 liegen (Bild 64).				

Symbol Definition der Toleranzzone

Zeichnungseintragung und Erklärung

5.12.6 Rechtwinkligkeitstoleranz

Rechtwinkligkeitstoleranz einer Linie zu einer Bezugslinie

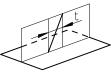
Die in einer Ebene projizierte Toleranzzone wird begrenzt durch zwei zur Bezugslinie senkrechte parallele gerade Linien vom Abstand t.

Die tolerierte Achse des schrägen Loches muss zwischen zwei parallelen und zur Bezugsachse A senkrechten Ebenen vom Abstand 0,06 liegen.

Rechtwinkligkeitstoleranz einer Linie zu einer Bezugsfläche

Wenn die Toleranz nur in einer Richtung angegeben ist, wird die in eine Ebene projizierte Toleranzzone begrenzt durch zwei zur Bezugsfläche senkrechte parallele gerade Linien vom Abstand t.

Die tolerierte Achse des Zylinders muss zwischen zwei parallelen, zur Bezugsfläche senkrechten Ebenen vom Abstand 0,1 liegen.



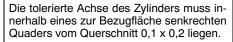

Bild 67

Bild 68

Wenn die Toleranz in zwei zueinander

senkrechten Richtungen angegeben ist, wird die Toleranzzone begrenzt durch einen zur Bezugsfläche senkrechten Quader vom Querschnitt t₁ x t₂.

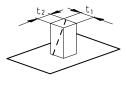


Bild 69

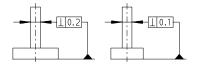


Bild 70

Wenn vor dem Toleranzwert das Zeichen Ø steht, wird die Toleranzzone begrenzt durch einen zur Bezugsfläche senkrechten Zylinder vom Durchmesser t.

Bild 71

Die tolerierte Achse des Zylinders muss innerhalb eines zur Bezugsfläche A senkrechten Zylinders vom Durchmesser 0,01 liegen.

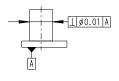
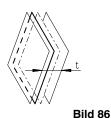
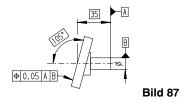


Bild 72


Symbol	Definition der Toleranzzone	Zeichnungseintragung und Erklärung							
	Rechtwinkligkeitstoleranz einer Fläche zu	einer Bezugslinie							
	Die Toleranzzone wird begrenzt durch zwei parallele und zur Bezugslinie senkrechte Ebenen vom Abstand t. Bild 73								
	Rechtwinkligkeitstoleranz einer Fläche zu	einer Bezugsfläche							
	Die Toleranzzone wird begrenzt durch zwei parallele und zur Bezugsfläche senkrechte Ebenen vom Abstand t.	Die tolerierte Fläche muss zwischen zwei parallelen und zur Bezugsfläche A senkrechten Ebenen vom Abstand 0,08 liegen.							
	t	10.08 A							
	Bild 75	Bild 76							
	5.12.7 Neigungstoleranz								
	Neigungstoleranz einer Linie zu einer Bezugslinie								
	Linie und Bezugslinie liegen in derselben Ebene. Die in eine Ebene projizierte Tole- ranzzone wird begrenzt durch zwei im vorgeschriebenen Winkel zur Bezugslinie geneigte parallele gerade Linien vom Ab-	Die tolerierte Achse des Loches muss zwischen zwei parallelen Linien vom Abstand 0,08 liegen, die im Winkel 60° zur Bezugsachse A - B geneigt sind.							
	stand t.	A B B							
	Bild 77	Bild 78							
	Neigungstoleranz einer Fläche zu einer B	ezugsfläche							
	Die Toleranzzone wird begrenzt durch zwei im vorgeschriebenen Winkel zur Be- zugsfläche geneigte Ebenen vom Ab- stand t.	Die tolerierte Fläche muss zwischen zwei parallelen Ebenen vom Abstand 0,08 liegen, die um 40° zur Bezugsfläche A geneigt sind.							
	The state of the s	(0.08 A)							
	Bild 79	Bild 80							

Technische Zeichnungen


Form- und Lagetolerierung

Symbol Definition der Toleranzzone Zeichnungseintragung und Erklärung 5.12.8 Positionstoleranz Positionstoleranz einer Linie Wenn die Toleranz nur in einer Richtung Jede der tolerierten Linien muss zwischen angegeben ist, wird die in eine Ebene prozwei parallelen geraden Linien vom Abstand jizierte Toleranzzone begrenzt durch zwei 0,05 liegen, die in Bezug auf die Fläche A parallele gerade Linien vom Abstand t (Bezugsfläche) symmetrisch zum theoreund liegt symmetrisch zum theoretisch tisch genauen Ort liegen. genauen Ort der Linie. ⊕|0.05|A Bild 82 Die Achse des Loches muss innerhalb eines Bild 81 Zylinders vom Durchmesser 0,08 liegen, dessen Achse sich in Bezug auf die Flächen A und B (Bezugsflächen) am theoretisch genauen Ort befindet. ⊕ | Ø 0. 08 | A | B Wenn dem Toleranzwert das Zeichen ∅ Bild 84 vorangestellt ist, wird die Toleranzzone begrenzt durch einen Zylinder vom Jede der Achsen der acht Löcher muss innerhalb eines Zylinders vom Durchmesser Durchmesser t, dessen Achse am theoretisch genauen Ort der tolerierten Linie 0.1 liegen, dessen Achse sich in Bezug auf liegt. die Flächen A und B (Bezugsflächen) am theoretisch genauen Ort des betrachteten Loches befindet. Ф Ø0.1 A В Bild 83 Bild 85 Positionstoleranz einer ebenen Fläche oder einer Mittelebene Die Toleranzzone wird begrenzt durch zwei parallele Ebenen vom Abstand t, die

symmetrisch zum theoretisch genauen Ort der betrachteten Fläche liegen.

Die geneigte Fläche muss zwischen zwei parallelen Ebenen vom Abstand 0,05 liegen, die symmetrisch zum theoretisch genauen Ort der tolerierten Fläche, bezogen auf die Bezugsfläche A und die Achse des Bezugszylinders B (Bezugslinie) liegen.

17

Symbol Definition der Toleranzzone Zeichnungseintragung und Erklärung 5.12.9 Konzentrizitäts- und Koaxialitätstoleranz Konzentrizitätstoleranz eines Punktes Die Toleranzzone wird begrenzt durch Die Mitte des Kreises, der mit dem Toleranzeinen Kreis vom Durchmesser t. dessen rahmen verbunden ist, muss innerhalb eines Mitte mit dem Bezugspunkt überein-Kreises vom Durchmesser 0,01 liegen, der stimmt. konzentrisch zur Mitte des Bezugskreises A ist. Ø Ø0.01 A Bild 88 Bild 89 \bigcirc Koaxialitätstoleranz einer Achse Wenn dem Toleranzwert das Zeichen Ø Die Achse des Zylinders, der mit dem Tolevorangestellt ist, wird die Toleranzzone ranzrahmen verbunden ist, muss innerhalb begrenzt durch einen Zylinder vom eines zur Bezugsachse A - B koaxilalen Zy-Durchmesser t, dessen Achse mit der linders vom Durchmesser 0,08 liegen. Bezugsachse übereinstimmt. Ø Ø0.08 A-B Bild 90 Bild 91 5.12.10 Symmetrie Symmetrietoleranz einer Mittelebene Die Toleranzzone wird begrenzt durch Die Mittelebene der Nut muss zwischen zwei zwei zur Bezugsachse oder Bezugsparallelen Ebenen vom Abstand 0,08 liegen, ebene symmetrisch liegende Ebenen die symmetrisch zur Mittelebene des Bevom Abstand t. zuaselementes A lieaen. Bild 92 Bild 93 Symmetrietoleranz einer Linie oder einer Achse Wenn die Toleranz nur in einer Richtung Die Achse des Loches muss zwischen zwei angegeben ist, wird die in eine Ebene parallelen Ebenen vom Abstand 0,08 liegen, projizierte Toleranzzone begrenzt durch die symmetrisch zur gemeinsamen Mittelzwei zur Bezugsachse (oder Bezugsebene der Bezugsnuten A und B liegen. ebene) symmetrisch liegende parallele = 0.08 A-B gerade Linien vom Abstand t. Bild 94 Bild 95

Technische Zeichnungen Form- und Lagetolerierung

Symbol	Definition der Toleranzzone	Zeichnungseintragung und Erklärung				
	Symmetrietoleranz einer Linie oder einer	Achse				
=	Wenn die Toleranz in zwei zueinander senkrechten Richtungen angegeben ist, wird die Toleranzzone begrenzt durch einen Quader vom Querschnitt t ₁ x t ₂ , dessen Achse mit der Bezugsachse übereinstimmt.	Die Achse des Loches muss innerhalb eines Quaders von 0,1 in waagerechter und 0,05 in senkrechter Richtung liegen, dessen Achse die Schnittlinie der beiden Bezugsmit- telebenen der Bezugsnuten A - B und C - D ist.				
		© = 0.1 C-D = 0.05 A-B				
	Bild 96	Bild 97				
	5.12.11 Lauftoleranz					
	Rundlauftoleranz					
	Die Toleranzzone wird in jeder beliebigen Messebene senkrecht zur Achse von zwei konzentrischen Kreisen vom Abstand t begrenzt, deren Mitte mit der Bezugsachse übereinstimmt.	Bei einer Umdrehung um die Bezugsachse A - B darf die Rundlaufabweichung in jeder Messebene 0,1 nicht überschreiten.				
	Tolerierte Fläche Messebene	Bei Drehung um die Bezugsachse des Loches A um den tolerierten Teil des Umfanges darf die Rundlaufabweichung in jeder achs-				
	Bild 98	senkrechten Ebene nicht größer als 0,2 sein.				
#	Im allgemeinen gilt die Lauftoleranz für vollständige Umdrehung um die Achse. Sie kann jedoch auch so begrenzt werden, dass sie nur für einen Teil des Umfangs gilt.	Bild 100 Bild 101				
	Planlauftoleranz					
	Die Toleranzzone wird in jedem beliebigen radialen Abstand von zwei Kreisen von Abstand t begrenzt, die in einem Messzylinder liegen, dessen Achse mit der Bezugsachse übereinstimmt.	Bei einer Umdrehung um die Bezugsachse D darf die Planlaufabweichung an jeder be- liebigen Messposition nicht größer als 0,1 sein.				
	Messzylinder Bild 102	Bild 103				

Symbol Definition der Toleranzzone Zeichnungseintragung und Erklärung Lauftoleranz in beliebiger Richtung Die Toleranzzone wird in jedem beliebi-Bei einer Umdrehung um die Bezugsachse gen Messkegel, dessen Achse mit der C darf die Laufabweichung in jedem beliebi-Bezugsachse übereinstimmt, von zwei gen Messkegel nicht größer als 0,1 sein. Kreisen vom Abstand t begrenzt. Wenn **7** 0.1 C nicht anders angegeben, ist die Messrichtung senkrecht zur Fläche. Messkegel **Bild 105** Bei einer Umdrehung um die Bezugsachse C darf die Laufabweichung in jedem Messkegel, gemessen in senkrechter Richtung zur Tangente einer gekrümmten Fläche, nicht größer als 0,1 sein. **Bild 104 Bild 106** Lauftoleranz in vorgeschriebener Richtung Die Toleranzzone wird in jedem beliebi-Bei einer Umdrehung um die Bezugsachse gen Messkegel mit vorgeschriebenem C darf die Laufabweichung in iedem Mess-Kegelwinkel, dessen Achse mit der Bekegel in der vorgeschriebenen Richtung zugsachse übereinstimmt, von zwei Kreinicht größer als 0,1 sein. **∕** 0.1 C sen vom Abstand t begrenzt. **Bild 107** 5.12.12 Gesamtlauftoleranz Gesamtrundlauftoleranz Die Toleranzzone wird begrenzt von zwei Bei mehrmaliger Drehung um die Bezugskoaxialen Zylindern von Abstand t, deren achse A - B und bei axialer Verschiebung Achsen mit den Bezugsachsen übereinzwischen Werkstück und Messgerät müsstimmen. sen alle Punkte der Oberfläche des tolerierten Elementes innerhalb der Gesamtrundlauftoleranz von t = 0,1 liegen. Bei der Verschiebung muss entweder das Messgerät oder das Werkstück entlang einer Linie geführt werden, die die theoretisch genaue Form hat und in richtiger Lage zur Bezugsachse ist. 29 0.1 A-B **Bild 108 Bild 109**

Technische Zeichnungen Form- und Lagetolerierung

Symbol	Definition der Toleranzzone	Zeichnungseintragung und Erklärung
	Gesamtplanlauftoleranz	
21	Die Toleranzzone wird begrenzt von zwei parallelen Ebenen von Abstand t, die senkrecht zur Bezugsachse sind. Bild 110	Bei mehrmaliger Drehung um die Bezugsachse D und bei radialer Verschiebung zwischen Werkstück und Messgerät müssen alle Punkte der Oberfläche des tolerierten Elementes innerhalb der Gesamtplanlauftoleranz von t = 0,1 liegen. Bei der Verschiebung muss entweder das Messgerät oder das Werkstück entlang einer Linie geführt werden, die die theoretisch genaue Form hat und in richtiger Lage zur Bezugsachse ist.

Blattgrößen, Schriftfeld, Streifenformate

Technische Zeichnungen, Auszug aus DIN EN ISO 5457.

6. Blattgrößen

Die Norm DIN EN ISO 5457 gilt für die Gestaltung von Zeichnungsvordrucken, auch wenn

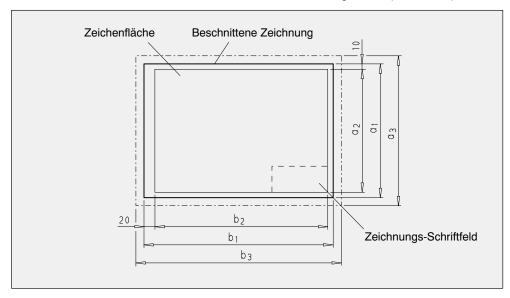

diese rechnerunterstützt erstellt werden. Sie kann sinngemäß auch für andere technische Unterlagen angewendet werden. Die nachstehend aufgeführten Blattgrößen sind DIN EN ISO 5457 entnommen.

Tabelle 3 Formate der beschnittenen und unbeschnittenen Bögen und der Zeichenfläche											
Blattgrößen nach DIN EN ISO 5457, Reihe A	Beschnittene Zeichnung a ₁ x b ₁ mm	Zeichenfläche ¹⁾ a ₂ x b ₂ mm	Unbeschnittenes Blatt a ₃ x b ₃ mm								
Α0	841 x 1189	821 x 1159	880 x 1230								
A1	594 x 841	574 x 811	625 x 880								
A 2	420 x 594	400 x 564	450 x 625								
А3	297 x 420	277 x 390	330 x 450								
A 4	210 x 297	180 x 277	240 x 330								

Die wirklich zur Verfügung stehende Zeichenfläche ist um das Schriftfeld, den Heftrand, den evtl. Feldeinteilungsrand usw. kleiner.

6.1 Schriftfeld

Die Formate ≥ A3 werden im Querformat ausgeführt. Das Schriftfeld ist in der unteren rechten Ecke des beschnittenen Formats angeordnet. Bei Format A4 ist das Schriftfeld an der unteren Formatseite angeordnet (Hochformat).

6.2 Streifenformate

Streifenformate sollen vermieden werden. Andernfalls entstehen sie durch Kombination der

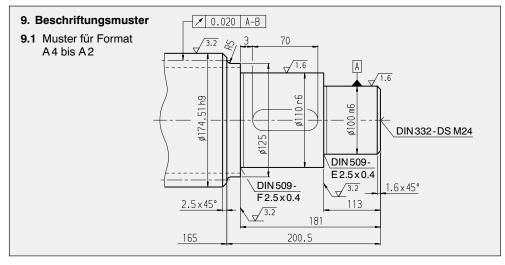
Maße der kurzen Seite eines A-Formates mit der langen Seite eines anderen größeren A-Formates.

Technische Zeichnungen

Schriftgrößen, Linien, Beschriftungsmuster

7. Schriftgrößen

Tabelle 4: Schriftgrößen für Zeichnungsformate (h = Schrifthöhe, b = Linienbreite)										
		Papierf	ormate							
Anwendungsbereich für Beschriftung	A0 ur	nd A1	A2, A3 und A4							
	h	b	h	b						
Art, Zeichnungs-Nr.	10	1	7	0,7						
Texte und Nennmaße	5	0,5	3,5	0,35						
Toleranzen, Rauhwertangaben, Symbole	3,5	0,35	2,5	0,25						


7.1 Die den Papierformaten zugeordneten Schriftgrößen gemäß Tabelle 4 sind in Abhängigkeit von ihrem Anwendungsbereich unbedingt einzuhalten. Größere Schrifthöhen sind darüber hinaus zulässig. Kleinere Schrifthöhen werden bis ca. 20% akzeptiert, wenn beengte Verhältnisse in der zeichnerischen Darstellung es erforderlich machen.

8. Linien nach DIN ISO 128, Teil 20 und Teil 24

Tabelle 5: Liniengruppen, Linienarten und Linienbreiten										
Liniengruppe	0,5	0,7								
Zeichnungsformat	A4, A3, A2	A1, A0								
Linienart	Linien	breite								
Vollinie (breit)	0,5	0,7								
Vollinie (schmal)	0,25	0,35								
Strichlinie (schmal) — — — — — —	0,25	0,35								
Strichpunktlinie (breit) — - — - —	0,5	0,7								
Strichpunktlinie (schmal)	0,25	0,35								
Strich-Zweipunktlinie (schmal)	0,25	0,35								
Freihandlinie (schmal)	0,25	0,35								

8.1 Es dürfen nur die Liniengruppen 0,5 und 0,7 mit den zugehörigen Linienbreiten nach Tabelle 5 angewendet werden. Die Zuordnung

zu den Zeichnungsformaten A1 und A0 ist Vorschrift. Für die Formate A4, A3 und A2 kann auch die Liniengruppe 0,7 verwendet werden.

Siemens MD · 2009 23

Inhaltsübersicht Teil 2

Normung	Seite
Metrisches ISO-Gewinde (Regelgewinde)	25
Metrisches ISO-Gewinde (Auswahl von Regel- und Feingewinde)	26
Zylindrische Wellenenden	27
ISO-Toleranzfelder und Abmaße Innenmaß (Bohrungen)	28
ISO-Toleranzfelder und Abmaße Außenmaß (Wellen)	29
Passfedern und Keile, Zentrierbohrungen	30

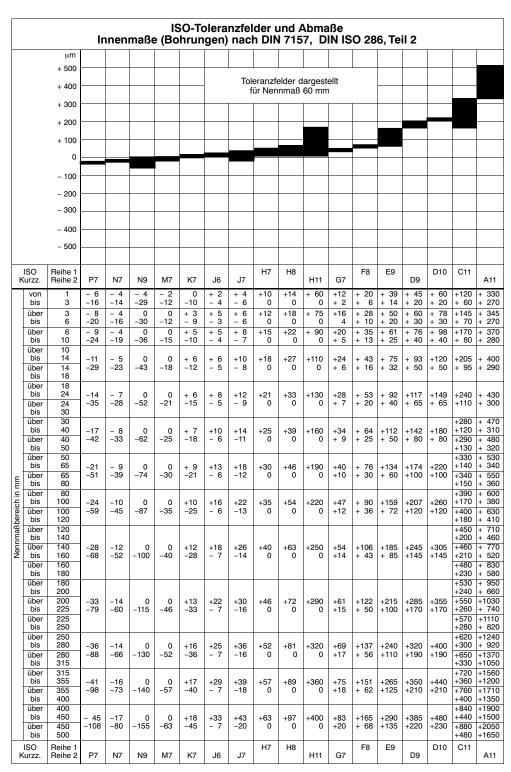
Normung Metrisches ISO-Gewinde (Regelgewinde)

Metrisches ISO-Gewinde (Regelgewinde) in Anlehnung an DIN 13, Teil 1 $D_1 = d - 2 H_1$ $d_2 = D_2 = d - 0,64952 P$ $d_3 = d - 1,22687 P$ H = 0,86603 P $H_1 = 0,54127 P$ $h_3 = 0,61343 P$ $R = \frac{H}{6} = 0,14434 P$ Durchmesser des Muttergewindes

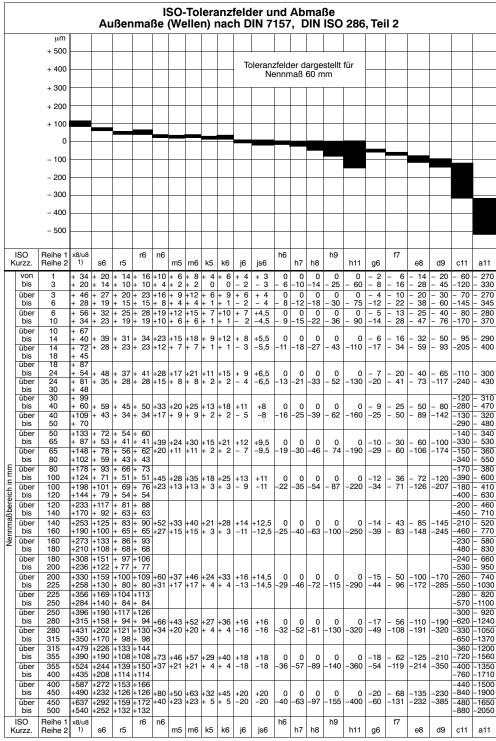
Die Durchmesser der Reihe 1 sollen möglichst denen der Reihe 2 und diese wieder denen der Reihe 3 vorgezogen werden

3,5 0,6 3,110 2,764 2,850 0,368 0,325 0,087 6,78	Gewinde- Nenndurchmesser		Stei- gung	Flanken- durch- messer	Kerndurd	Kerndurchmesser		detiefe	Run- dung	Span- nungs- quer- schnitt	
Reihe 1 Reihe 2 Reihe 3 mm mm mm mm mm mm mm		d = D		Р	$d_2 = D_2$	d_3	D_1	h ₃	H ₁	R	A _s 1)
3,5 0,6 3,110 2,764 2,850 0,368 0,325 0,087 6,78 4 0,7 3,545 3,141 3,242 0,429 0,379 0,101 8,78 4,5 0,75 4,013 3,580 3,688 0,460 0,406 0,108 11,3 5 0,8 4,480 4,019 4,134 0,491 0,433 0,115 14,2 6 1 1,5350 4,773 4,917 0,613 0,541 0,144 28,9 8 1,25 7,188 6,466 6,647 0,767 0,677 0,180 36,6 9 1,25 8,188 7,466 7,647 0,767 0,677 0,180 48,1 10 1,5 9,026 8,160 8,376 0,920 0,812 0,217 78,0 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12	Reihe 1	Reihe 2	Reihe 3	mm	mm	mm	mm	mm	mm	mm	
4 0,7 3,545 3,141 3,242 0,429 0,379 0,101 8,78 4,5 0,75 4,013 3,580 3,688 0,460 0,406 0,108 11,3 5 0,8 4,480 4,019 4,134 0,491 0,433 0,115 14,2 6 1 5,350 4,773 4,917 0,613 0,541 0,144 20,1 8 1,25 7,188 6,466 6,647 0,767 0,677 0,180 36,6 9 1,25 8,188 7,466 7,647 0,767 0,677 0,180 48,1 10 1,5 9,026 8,160 8,376 0,920 0,812 0,217 72,3 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 115 16 2 14,7	3			0,5	2,675	2,387	2,459	0,307	0,271	0,072	5,03
4,5 0,75 4,013 3,580 3,688 0,460 0,406 0,108 11,3 5 0,8 4,480 4,019 4,134 0,491 0,433 0,115 14,2 6 1 5,350 4,773 4,917 0,613 0,541 0,144 20,1 8 1,25 7,188 6,466 6,647 0,767 0,677 0,180 36,6 9 1,25 8,188 7,466 7,647 0,767 0,677 0,180 36,6 10 1,5 9,026 8,160 8,376 0,920 0,812 0,217 58,0 11 1,5 10,026 9,160 9,376 0,920 0,812 0,217 72,3 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 157 18 2,5		3,5		0,6	3,110	2,764	2,850	0,368	0,325	0,087	6,78
5 0,8 4,480 4,019 4,134 0,491 0,433 0,115 14,2 6 1 5,350 4,773 4,917 0,613 0,541 0,144 20,1 8 7 1 6,350 5,773 5,917 0,613 0,541 0,144 28,9 8 1,25 7,188 6,466 6,647 0,767 0,677 0,180 36,6 9 1,25 8,188 7,466 7,647 0,767 0,677 0,180 48,1 10 1,5 9,026 8,160 8,376 0,920 0,812 0,217 72,3 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 293 20 2,5 <td>4</td> <td></td> <td></td> <td>0,7</td> <td>3,545</td> <td>3,141</td> <td>3,242</td> <td>0,429</td> <td>0,379</td> <td>0,101</td> <td>8,78</td>	4			0,7	3,545	3,141	3,242	0,429	0,379	0,101	8,78
6 1 5,350 4,773 4,917 0,613 0,541 0,144 20,1 8 1,25 7,188 6,466 6,647 0,767 0,677 0,180 36,6 9 1,25 8,188 7,466 7,647 0,767 0,677 0,180 36,6 10 1,5 9,026 8,160 8,376 0,920 0,812 0,217 58,0 11 1,5 10,026 9,160 9,376 0,920 0,812 0,217 72,3 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 115 16 2 14,701 13,546 13,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 245 20 2,5 <td< td=""><td></td><td>4,5</td><td></td><td>0,75</td><td>4,013</td><td>3,580</td><td>3,688</td><td>0,460</td><td>0,406</td><td>0,108</td><td>11,3</td></td<>		4,5		0,75	4,013	3,580	3,688	0,460	0,406	0,108	11,3
8 7 1 6,350 5,773 5,917 0,613 0,541 0,144 28,9 8 1,25 7,188 6,466 6,647 0,767 0,677 0,180 36,6 9 1,25 8,188 7,466 7,647 0,767 0,677 0,180 48,1 10 1,5 9,026 8,160 8,376 0,920 0,812 0,217 58,0 11 1,5 10,026 9,160 9,376 0,920 0,812 0,217 72,3 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 115 16 2 14,701 13,546 13,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 245 20 2	5			0,8	4,480	4,019	4,134	0,491	0,433	0,115	14,2
8 1,25 7,188 6,466 6,647 0,767 0,677 0,180 36,6 9 1,25 8,188 7,466 7,647 0,767 0,677 0,180 48,1 10 1,5 9,026 8,160 8,376 0,920 0,812 0,217 58,0 11 1,5 10,026 9,160 9,376 0,920 0,812 0,217 72,3 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 115 16 2 14,701 13,546 13,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 193 20 2,5 18,376 16,933 17,294 1,534 1,353 0,361 193 24 3	6			1	5,350	4,773	4,917	0,613	0,541	0,144	20,1
9 1,25 8,188 7,466 7,647 0,767 0,677 0,180 48,1 10 1,5 9,026 8,160 8,376 0,920 0,812 0,217 58,0 11 1,5 10,026 9,160 9,376 0,920 0,812 0,217 72,3 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 115 16 2 14,701 13,546 13,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 193 20 2,5 18,376 16,933 17,294 1,534 1,353 0,361 193 24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 30 3,5			7	1	6,350	5,773	5,917	0,613	0,541	0,144	28,9
10 1,5 9,026 8,160 8,376 0,920 0,812 0,217 58,0 11 1,5 10,026 9,160 9,376 0,920 0,812 0,217 72,3 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 115 16 2 14,701 13,546 13,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 193 20 2,5 18,376 16,933 17,294 1,534 1,353 0,361 245 22 2,5 20,376 18,933 19,294 1,534 1,353 0,361 303 24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 30 3,5	8			1,25	7,188	6,466	6,647	0,767	0,677	0,180	36,6
11 1,5 10,026 9,160 9,376 0,920 0,812 0,217 72,3 12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 115 16 2 14,701 13,546 13,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 193 20 2,5 18,376 16,933 17,294 1,534 1,353 0,361 245 22 2,5 20,376 18,933 19,294 1,534 1,353 0,361 303 24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 27 3 25,051 23,319 23,752 1,840 1,624 0,433 459 30 3,5			9	1,25	8,188	7,466	7,647	0,767	0,677	0,180	48,1
12 1,75 10,863 9,853 10,106 1,074 0,947 0,253 84,3 14 2 12,701 11,546 11,835 1,227 1,083 0,289 115 16 2 14,701 13,546 13,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 193 20 2,5 18,376 16,933 17,294 1,534 1,353 0,361 245 22 2,5 20,376 18,933 19,294 1,534 1,353 0,361 303 24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 27 3 25,051 23,319 23,752 1,840 1,624 0,433 459 30 3,5 27,727 25,706 26,211 2,147 1,894 0,505 561 33 3,5	10			1,5	9,026	8,160	8,376	0,920	0,812	0,217	58,0
14 2 12,701 11,546 11,835 1,227 1,083 0,289 115 16 2 14,701 13,546 13,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 193 20 2,5 18,376 16,933 17,294 1,534 1,353 0,361 245 22 2,5 20,376 18,933 19,294 1,534 1,353 0,361 303 24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 27 3 25,051 23,319 23,752 1,840 1,624 0,433 459 30 3,5 27,727 25,706 26,211 2,147 1,894 0,505 561 33 3,5 30,727 28,706 29,211 2,147 1,894 0,505 694 36 4			11	1,5	10,026	9,160	9,376	0,920	0,812	0,217	72,3
16 2 14,701 13,546 13,835 1,227 1,083 0,289 157 18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 193 20 2,5 18,376 16,933 17,294 1,534 1,353 0,361 245 22 2,5 20,376 18,933 19,294 1,534 1,353 0,361 303 24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 27 3 25,051 23,319 23,752 1,840 1,624 0,433 459 30 3,5 27,727 25,706 26,211 2,147 1,894 0,505 561 33 3,5 30,727 28,706 29,211 2,147 1,894 0,505 694 36 4 33,402 31,093 31,670 2,454 2,165 0,577 817 42 4,5	12	12		1,75	10,863	9,853	10,106	1,074	0,947	0,253	84,3
18 2,5 16,376 14,933 15,294 1,534 1,353 0,361 193 20 2,5 18,376 16,933 17,294 1,534 1,353 0,361 245 22 2,5 20,376 18,933 19,294 1,534 1,353 0,361 303 24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 27 3 25,051 23,319 23,752 1,840 1,624 0,433 459 30 3,5 27,727 25,706 26,211 2,147 1,894 0,505 561 33 3,5 30,727 28,706 29,211 2,147 1,894 0,505 694 36 4 33,402 31,093 31,670 2,454 2,165 0,577 817 42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5		14		2	12,701	11,546	11,835	1,227	1,083	0,289	115
20 2,5 18,376 16,933 17,294 1,534 1,353 0,361 245 22 2,5 20,376 18,933 19,294 1,534 1,353 0,361 303 24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 27 3 25,051 23,319 23,752 1,840 1,624 0,433 459 30 3,5 27,727 25,706 26,211 2,147 1,894 0,505 561 33 3,5 30,727 28,706 29,211 2,147 1,894 0,505 694 36 4 33,402 31,093 31,670 2,454 2,165 0,577 817 39 4 36,402 34,093 34,670 2,454 2,165 0,577 976 42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5	16			2	14,701	13,546	13,835	1,227	1,083	0,289	157
22 2,5 20,376 18,933 19,294 1,534 1,353 0,361 303 24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 27 3 25,051 23,319 23,752 1,840 1,624 0,433 459 30 3,5 27,727 25,706 26,211 2,147 1,894 0,505 561 33 3,5 30,727 28,706 29,211 2,147 1,894 0,505 694 36 4 33,402 31,093 31,670 2,454 2,165 0,577 817 39 4 36,402 34,093 34,670 2,454 2,165 0,577 976 42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5 42,077 39,479 40,129 2,760 2,436 0,650 1306 48 5		18		2,5	16,376	14,933	15,294	1,534	1,353	0,361	193
24 3 22,051 20,319 20,752 1,840 1,624 0,433 353 27 3 25,051 23,319 23,752 1,840 1,624 0,433 459 30 3,5 27,727 25,706 26,211 2,147 1,894 0,505 561 33 3,5 30,727 28,706 29,211 2,147 1,894 0,505 694 36 4 33,402 31,093 31,670 2,454 2,165 0,577 817 39 4 36,402 34,093 34,670 2,454 2,165 0,577 976 42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5 42,077 39,479 40,129 2,760 2,436 0,650 1306 48 5 44,752 41,866 42,587 3,067 2,706 0,722 1473 52 5	20			2,5	18,376	16,933	17,294	1,534	1,353	0,361	245
27 3 25,051 23,319 23,752 1,840 1,624 0,433 459 30 3,5 27,727 25,706 26,211 2,147 1,894 0,505 561 33 3,5 30,727 28,706 29,211 2,147 1,894 0,505 694 36 4 33,402 31,093 31,670 2,454 2,165 0,577 817 39 4 36,402 34,093 34,670 2,454 2,165 0,577 976 42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5 42,077 39,479 40,129 2,760 2,436 0,650 1306 48 5 44,752 41,866 42,587 3,067 2,706 0,722 1473 52 5 48,752 45,866 46,587 3,067 2,706 0,722 1758 56 5,5		22		2,5	20,376	18,933	19,294	1,534	1,353	0,361	303
30 3,5 27,727 25,706 26,211 2,147 1,894 0,505 561 33 3,5 30,727 28,706 29,211 2,147 1,894 0,505 694 36 4 33,402 31,093 31,670 2,454 2,165 0,577 817 39 4 36,402 34,093 34,670 2,454 2,165 0,577 976 42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5 42,077 39,479 40,129 2,760 2,436 0,650 1306 48 5 44,752 41,866 42,587 3,067 2,706 0,722 1473 52 5 48,752 45,866 46,587 3,067 2,706 0,722 1758 56 5,5 52,428 49,252 50,046 3,374 2,977 0,794 2030 60 5,5	24			3	22,051	20,319	20,752	1,840	1,624	0,433	353
33 3,5 30,727 28,706 29,211 2,147 1,894 0,505 694 36 4 33,402 31,093 31,670 2,454 2,165 0,577 817 39 4 36,402 34,093 34,670 2,454 2,165 0,577 976 42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5 42,077 39,479 40,129 2,760 2,436 0,650 1306 48 5 44,752 41,866 42,587 3,067 2,706 0,722 1473 52 5 48,752 45,866 46,587 3,067 2,706 0,722 1758 56 5,5 52,428 49,252 50,046 3,374 2,977 0,794 2030 60 5,5 56,428 53,252 54,046 3,374 2,977 0,794 2362 64 6		27		3	25,051	23,319	23,752	1,840	1,624	0,433	459
36 4 33,402 31,093 31,670 2,454 2,165 0,577 817 39 4 36,402 34,093 34,670 2,454 2,165 0,577 976 42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5 42,077 39,479 40,129 2,760 2,436 0,650 1306 48 5 44,752 41,866 42,587 3,067 2,706 0,722 1473 52 5 48,752 45,866 46,587 3,067 2,706 0,722 1758 56 5,5 52,428 49,252 50,046 3,374 2,977 0,794 2030 60 5,5 56,428 53,252 54,046 3,374 2,977 0,794 2362 64 6 60,103 56,639 57,505 3,681 3,248 0,866 2676	30			3,5	27,727	25,706	26,211	2,147	1,894	0,505	561
39 4 36,402 34,093 34,670 2,454 2,165 0,577 976 42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5 42,077 39,479 40,129 2,760 2,436 0,650 1306 48 5 44,752 41,866 42,587 3,067 2,706 0,722 1473 52 5 48,752 45,866 46,587 3,067 2,706 0,722 1758 56 5,5 52,428 49,252 50,046 3,374 2,977 0,794 2030 60 5,5 56,428 53,252 54,046 3,374 2,977 0,794 2362 64 6 60,103 56,639 57,505 3,681 3,248 0,866 2676		33		3,5	30,727	28,706	29,211	2,147	1,894	0,505	694
42 4,5 39,077 36,479 37,129 2,760 2,436 0,650 1121 45 4,5 42,077 39,479 40,129 2,760 2,436 0,650 1306 48 5 44,752 41,866 42,587 3,067 2,706 0,722 1473 52 5 48,752 45,866 46,587 3,067 2,706 0,722 1758 56 5,5 52,428 49,252 50,046 3,374 2,977 0,794 2030 60 5,5 56,428 53,252 54,046 3,374 2,977 0,794 2362 64 6 60,103 56,639 57,505 3,681 3,248 0,866 2676	36			4	33,402	31,093	31,670	2,454	2,165	0,577	817
45 4,5 42,077 39,479 40,129 2,760 2,436 0,650 1306 48 5 44,752 41,866 42,587 3,067 2,706 0,722 1473 52 5 48,752 45,866 46,587 3,067 2,706 0,722 1758 56 5,5 52,428 49,252 50,046 3,374 2,977 0,794 2030 60 5,5 56,428 53,252 54,046 3,374 2,977 0,794 2362 64 6 60,103 56,639 57,505 3,681 3,248 0,866 2676		39		4	36,402	34,093	34,670	2,454	2,165	0,577	976
48 5 44,752 41,866 42,587 3,067 2,706 0,722 1473 52 5 48,752 45,866 46,587 3,067 2,706 0,722 1758 56 5,5 52,428 49,252 50,046 3,374 2,977 0,794 2030 60 5,5 56,428 53,252 54,046 3,374 2,977 0,794 2362 64 6 60,103 56,639 57,505 3,681 3,248 0,866 2676	42			4,5	39,077	36,479	37,129	2,760	2,436	0,650	1121
52 5 48,752 45,866 46,587 3,067 2,706 0,722 1758 56 5,5 52,428 49,252 50,046 3,374 2,977 0,794 2030 60 5,5 56,428 53,252 54,046 3,374 2,977 0,794 2362 64 6 60,103 56,639 57,505 3,681 3,248 0,866 2676		45		4,5	42,077	39,479	40,129	2,760	2,436	0,650	1306
56 5,5 52,428 49,252 50,046 3,374 2,977 0,794 2030 60 5,5 56,428 53,252 54,046 3,374 2,977 0,794 2362 64 6 60,103 56,639 57,505 3,681 3,248 0,866 2676	48			5	44,752	41,866	42,587	3,067	2,706	0,722	1473
60 5,5 56,428 53,252 54,046 3,374 2,977 0,794 2362 64 6 60,103 56,639 57,505 3,681 3,248 0,866 2676		52		5	48,752	45,866	46,587	3,067	2,706	0,722	1758
64 6 60,103 56,639 57,505 3,681 3,248 0,866 2676	56			5,5	52,428	49,252	50,046	3,374	2,977	0,794	2030
		60		5,5	56,428	53,252	54,046	3,374	2,977	0,794	2362
68 6 64,103 60,639 61,505 3,681 3,248 0,866 3055	64			6	60,103	56,639	57,505	3,681	3,248	0,866	2676
		68		6	64,103	60,639	61,505	3,681	3,248	0,866	3055

1) Der Spannungsquerschnitt n. DIN 13 Teil 28 ist aus der Formel $A_s = \frac{\pi}{4} \cdot \left(\frac{d_2 + d_3}{2}\right)^2$ errechnet.


Siemens MD · 2009 25

Auswahl für Gewinde-Nenndurchmesser und Steigungen für Regel- und Feingewinde von 1 bis 68 mm Durchmesser in Anlehnung an DIN ISO 261


von 1 bis 68 mm Durchmesser in Anlehnung an DIN ISO 261											
	Gewinde durchm d = D	esser	Regel- gewinde		Steigungen P für Feingewinde						
Reihe 1	Reihe 2	Reihe 3		4	3	2	1,5	1,25	1	0,75	0,5
1 1,2	1,4		0,25 0,25 0,3								
1,6 2	1,8		0,35 0,35 0,4								
2,5 3	2,2		0,45 0,45 0,5								
4 5	3,5		0,6 0,7 0,8								0,5 0,5
6 8 10			1 1,25 1,5					1,25	1	0,75 0,75 0,75	0,5 0,5
12	14	15	1,75 2				1,5 1,5 1,5	1,25 1,25	1 1 1		
16	18	17	2 2,5			2	1,5 1,5		1 1 1		
20 24	22		2,5 2,5 3			2 2 2	1,5 1,5 1,5		1 1 1		
	27	25 26	3			2	1,5 1,5 1,5				
30		28 32	3,5			2	1,5 1,5 1,5				
36	33	35	3,5 4		3	2	1,5 1,5 1,5				
	39	38 40	4		3	2	1,5 1,5				
42 48	45		4,5 4,5 5		3 3 3	2 2 2	1,5 1,5 1,5				
	52	50 55	5		3	2 2	1,5 1,5 1,5				
56	60	58	5,5 5,5	4 4	3 3	2 2	1,5 1,5 1,5				
64	68	65	6 6	4	3	2 2 2					
06									,	Siamana N	4D 0000

Zylindrische Wellenenden						Zylindrische Wellenenden									
	nach	DIN	748 / 1		FLENDER- Werknorm W 0470				nach DIN 748 / 1				We	ENDEF erknorr / 0470	n
Dur mes Rei	ser	ISO- Tole- ranz-	Lär lang	nge kurz	Durch- messer	Länge	ISO- Tole- ranz-	Dur mes Re	sser	ISO- Tole- ranz-	Lär lang	nge kurz	Durch- messer	Länge	ISO- Tole- ranz-
1 mm	2 mm	feld	mm	mm	mm	mm	feld	1 mm	2 mm	feld	mm	mm	mm	mm	feld
6	111111		16	111111	111111	111111		100	1111111		210	165	100	111111	m6
7			16					110			210	165	110	180	1110
8			20					120	130		210 250	165 200	120 130	210	
9			20					140	100		250	200	140		
10			23	15					150		250	200	150	240	
11 12			23 30	15 18				160	170		300 300	240 240	160 170	270	
14 16			30 40	18 28	14 16	30		180	190		300 350 350	240 280 280	180 190 200	310	
19 20 22		k6	40 50 50	28 36 36	19 20 22	35	k6	220			350	280	220	350	
24 25			50 60	36 42	24 25	40		250	240260		410 410 410	330 330 330	240 250 260	400	
28 30			60 80	42 58	28 30	50		280			470	380	280	450	n6
32 35 38			80 80 80	58 58	32 35 38	60		320	300	m6	470 470	380 380	300 320	500	
40			110	58 82	40				340		550	450	340	550	
42			110	82	42	70		360	380		550 550	450 450	360 380	590	
45 48 50			110 110 110	82 82 82	45 48 50	80		400	420		650 650	540 540	400 420	650	
55			110	82	55	90	m6		440		650	540	440	690	
60 65			140 140	105 105	60 65	105		450	460		650 650	540 540	450 460	750	
70 75		m6	140 140	105 105	70 75	120		500	480		650 650	540 540	480 500	790	
80 85			170 170	130 130	80 85	140		560	530		800 800	680 680			
90 95			170 170	130 130	90 95	160		630	600		800 800	680 680			

Siemens MD ⋅ 2009 27

Normung ISO-Toleranzfelder und Abmaße Außenmaße (Wellen)

¹⁾ Bis Nennmaß 24 mm: x8; über 24 mm Nennmaß: u8

Siemens MD · 2009 29

Maße der Passfedern und Keile										Passfedern und Keile	
Durch- messer- bereich		Breite	Höhe	Wellen- nut- tiefe	Nat nutt		Längen siehe unten				nach DIN 6885 Teil 1, 6886 und 6887
d		b	h	t ₁	t		Į.	1		I	Mitnehmerverbindung ohne Anzug
				· ·	DIN			DI	N		
über	bis	1)	2)		6885/1	6886/ 6887	688		6886		
mm	mm	mm	mm	mm	mm	2) mm	von mm	bis mm	von mm	bis mm	11.7
6	8	2	2	1,2	1,0	0,5	6	20	6	20	d1
8 10	10 12	3 4	3 4	1,8 2,5	1,4 1,8	0,9 1,2	6 8	36 45	8 10	36 45	Passfeder und Nut nach DIN 6885 Teil 1
12 17 22	17 22 30	5 6 8	5 6 7	3 3,5 4	2,3 2,8 3.3	1,7 2,2 2.4	10 14 18	56 70 90	12 16 20	56 70 90	Spannungsverbindung mit Anzug
30	38	10	8	5	3,3	2,4	22	110	25	110	
38 44	44 50	12 14	8	5 5,5	3,3 3,8	2,4 2,9	28 36	140 160	32 40	140 160	1,100
50 58	58 65	16 18	10 11	6	4,3 4,4	3,4 3,4	45 50	180 200	45 50	180 200	
65	75	20	12	7,5	4,9	3,9	56	220	56	220	_ d
75 85	85 95	22 25	14 14	9 9	5,4 5,4	4,4 4,4	63 70	250 280	63 70	250 280	Treib- und Einlegekeil und Nut nach DIN 6886
95	110	28	16	10	6,4	5,4	80	320	80	320	Das Toleranzfeld der Nabennutbreite b
110 130	130 150	32 36	18 20	11 12	7,4 8.4	6,4 7,1	90 100	360 400	90 100	360 400	für Passfedern bei leichtem Sitz ist ISO JS9 und bei festem Sitz ISO P9, das
150	170	40	22	13	9,4	8,1	110	400	110	400	der Wellennutbreite b bei leichtem Sitz
170 200	200 230	45 50	25 28	15 17	10,4 11,4	9,1 10,1	125 140	400 400	125 140	400 400	ISO N9 und bei festem Sitz ISO P9
230	260	56	32	20	12,4	11,1	160	400	140	400	Das Maß h des Treibkeiles nennt die größte Höhe des Keiles und das Maß to
260	290	63	32 36	20	12,4	11,1	180	400		•	die größte Tiefe der Nabennut. Die
290 330	330 380	70 80	40	22 25	14,4 15,4	13,1 14,1	200 220	400 400	Längen nicht fest- gelegt		Wellen- und Naben-Nutmaße nach DIN 6887 - Nasenkeile - sind gleich
380 440	440 500	90 100	45 50	28 31	17,4 19,5	16,1 18,1	250 280	400 400			denen nach DIN 6886
Längen mm 6 8 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 1 1 bzw. I 90 100 110 125 140 160 180 200 220 250 280 320 360 400											

	Maße der Zentrierbohrungen 60° in mm										Zentrierbohrungen	
Empt Durch ber	- d	Bohrungs- durch- messer		Form B						nst- iße	in Wellenenden (Zentrierungen) n. DIN 332 Teil 1	
d		d ₁		1)	b c		2 d ₃		t			
über bis												
6 10	10 25	2	1,6 2 2,5		5,5 5,6 3,3	0,5 0,6 0,8	3,3 4,2 5,3	25	5 6,3 8	3,4 4,3 5,4		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25	25 63		3,15	5 10 12,7		0,9 1,2	6,7		10 12,5		5,8 3,6	Form B
63	100	0 4 5 6,3		15	15,6 1 20 1		10,6 1		16 18	10,8 12,9		DIN 332/1
Empfo Durchm bere	nesser- iche					Form	DS		t2 t1 t3			
d ₆ ²⁾		d ₁	d_2	d_3	d_4	d_5	t ₁	t ₂	t ₃	t_4	t ₅	Passfedernut t4
über	bis		3)				+2	min.	+1	*	~	S
7 10	10 13	M3 M4	2,5 3,3	3,2 4,3	5,3 6,7	5,8 7,4	9 10	12 14	2,6 3,2	1,8 2,1	0,2 0,3	
13	16	M5	4,2	5,3	8,1	8,8	12,5	17	4	2,4	0,3	9 22°°°25
16 21	21 24	M6 M8	5 6,8	6,4 8,4	9,6 12,2	10,5 13,2	16 19	21 25	5 6	2,8 3,3	0,4 0,4	
24	30	M10	8,5	10,5	14,9	16,3	22	30	7,5	3,8	0,6	Form DS (mit Gewinde)
30 38	38 50	M12 M16	10,2 14	13 17	18,1 23	19,8 25,3	28 36	37 45	9,5 12	4,4 5,2	0,7	DIN 332/2
50	85	M20	17,5	21	28,4	31,3	42	53	15	6,4	1,0 1,3	1) Abstechmaß, wenn Zentrierung wegfällt
85	130	M24	21	25	34,2		50	63	18	8	1,6	Durchmesser gilt für das fertige Werkstück Abmessungen nicht nach DIN 332 Teil 2
130 225	225 320	M30* M36*	26,5 32	31 37	40,2 49.7	44,6 55	60 74	77 93	22 22	8 11	1,9 2,3	Kernloch-Bohrerdurchmesser nach
320	500	M42*		43	60,3	66,6	84	105	26	15	2,7	DIN 336 Teil 1

Inhaltsübersicht Teil 3

Physik	Seite
International festgelegte Vorsätze	32
SI-Basiseinheiten	32
Abgeleitete SI-Einheiten mit besonderen Namen und besonderen Einheitszeichen	33
Gesetzliche Einheiten außerhalb des SI	33
Größen und Einheiten der Länge und ihrer Potenzen	34
Größen und Einheiten für die Zeit	35
Größen und Einheiten der Mechanik	35 – 37
Größen und Einheiten der Thermodynamik und der Wärmeübertragung	37 + 38
Größen und Einheiten der Elektrotechnik	38
Größen und Einheiten der Lichttechnik	39
Temperaturen in verschiedenen Maßeinheiten	39
Längenmaße	40
Flächenmaße	40
Raummaße	41
Massegrößen	41
Energie, Arbeit, Wärmemenge	41
Leistung, Energiestrom, Wärmestrom	42
Druck und Spannung	42
Geschwindigkeit	42
Physikalische Gleichungen für die geradlinige Bewegung und die Drehbewegung	43

Siemens MD ⋅ 2009 31

International festgelegte Vorsätze

Dezimale Vielfache und dezimale Teile von Einheiten werden mit Vorsätzen und Vorsatzzeichen dargestellt. Vorsätze und Vorsatzzeichen werden nur zusammen mit Einheitennamen und Einheitenzeichen benutzt.

Faktor, mit dem die Einheit multipliziert wird	Vorsatz	Vorsatz- zeichen	Faktor, mit dem die Einheit multipliziert wird	Vorsatz	Vorsatz- zeichen
10 ⁻¹⁸	Atto	а	10 ¹	Deka	da
10 ⁻¹⁵	Femto	f	10 ²	Hekto	h
10 ⁻¹²	Piko	р	10 ³	Kilo	k
10 ⁻⁹	Nano	n	10 ⁶	Mega	М
10 ⁻⁶	Mikro	μ	10 ⁹	Giga	G
10 ⁻³	Milli	m	10 ¹²	Tera	Т
10-2	Zenti	С	10 ¹⁵	Peta	Р
10 ⁻¹	Dezi	d	10 ¹⁸	Exa	E

Vorsatzzeichen und Einheitenzeichen werden ohne Zwischenraum geschrieben und bilden zusammen das Zeichen einer neuen Einheit. Ein Exponent am Einheitenzeichen gilt auch für das Vorsatzzeichen.

Bei der Angabe von Größen durch Vorsatzzeichen und Einheitenzeichen sollen die Vorsätze so gewählt werden, dass die Zahlenwerte zwischen 0,1 und 1000 liegen.

Beispiel:

1 cm³ = 1 · (10⁻²m)³ = 1 · 10⁻⁶m³
1
$$\mu$$
s = 1 · 10⁻⁶s
10⁶s⁻¹ = 10⁶Hz = 1 MHz

 Vorsätze werden nicht auf die SI-Basiseinheit – Kilogramm (kg), sondern auf die Einheit Gramm (g) angewendet.

Beispiel:

Milligramm (mg), nicht Mikrokilogramm (μkg).

Beispiel:

12 kN statt 1,2 · 10⁴N 3,94 mm statt 0,00394 m 1,401 kPa statt 1401 Pa 31 ns statt 3,1 · 10⁻⁸s

 Kombinationen von Vorsätzen mit den folgenden Einheiten sind verboten:

Winkeleinheiten: Grad, Minute, Sekunde Zeiteinheiten: Minute, Stunde, Jahr, Tag Temperatureinheit: Grad Celsius

SI-Basiseinheiten						
Pagiogröße.	SI-Basiseinheit		Pooingröß o	SI-Basis	SI-Basiseinheit	
Basisgröße	Name	Zeichen	Basisgröße	Name	Zeichen	
Länge	Meter	m	Thermodynamische	Kelvin	К	
Masse	Kilogramm	kg	Temperatur	Keivin	^	
Zeit	Sekunde	S	Stoffmenge	Mol	mol	
Elektr. Stromstärke	Ampere	Α	Lichtstärke	Candela	cd	

Physik Abgeleitete SI-Einheiten Gesetzliche Einheiten außerhalb des SI

Abgeleitete SI-Einheiten mit besonderen Namen und besonderen Einheitszeichen					
Größe	SI-Einh	eit	Donichung		
Globe	Name	Zeichen	Beziehung		
Ebener Winkel	Radiant	rad	1 rad = 1 m/m		
Raumwinkel	Steradiant	sr	1 sr = 1 m ² /m ²		
Frequenz eines periodi- schen Vorganges	Hertz	Hz	1 Hz = 1 s ⁻¹		
Kraft	Newton	N	$1 N = 1 kg \cdot m/s^2$		
Druck, mechanische Spannung	Pascal	Pa	1 Pa = 1 N/m² = 1 kg/ (m·s²)		
Energie, Arbeit, Wärme- menge	Joule	J	$1 J = 1 N \cdot m = 1 W \cdot s = 1 kg \cdot m^2/s^2$		
Leistung, Wärmestrom	Watt	W	1 W = 1 J/s = 1 kg \cdot m ² /s ³		
Elektrische Ladung, Elektrizitätsmenge	Coulomb	С	1 C = 1 A·s		
Elektrisches Potential, Elektrische Spannung	Volt	V	$1 \text{ V} = 1 \text{ J/C} = 1 \text{ (kg} \cdot \text{m}^2\text{)/(A} \cdot \text{s}^3\text{)}$		
Elektrische Kapazität	Farad	F	$1 F = 1 C/V = 1 (A^2 \cdot s^4)/(kg \cdot m^2)$		
Elektrischer Widerstand	Ohm	Ω	1 $\Omega = 1 \text{ V/A} = 1 \text{ (kg} \cdot \text{m}^2\text{)/A}^2 \cdot \text{s}^3\text{)}$		
Elektrischer Leitwert	Siemens	S	1 S = 1 Ω^{-1} = 1 (A ² · s ³)/(kg · m ²)		
Celsius-Temperatur	Grad Celsius	°C	0 °C = 273,15 K Δ1 °C = Δ1 K		
Induktivität	Henry	Н	1 H = 1 V·s/A		

Gesetzliche Einheiten außerhalb des SI					
Größe	Einheitenname	Einheitenzeichen	Definition		
Ebener Winkel	Vollwinkel Gon Grad Minute Sekunde	1) gon ° 2) , 2) " 2)	1 Vollwinkel = 2π rad 1 gon = $(\pi/200)$ rad 1° = $(\pi/180)$ rad 1' = $(1/60)$ ° 1" = $(1/60)$ '		
Volumen	Liter	1	$1 I = 1 dm^3 = (1/1000) m^3$		
Zeit	Minute Stunde Tag Gemeinjahr	min ²⁾ h ²⁾ d ²⁾ a ²⁾	1 min = 60 s 1 h = 60 min = 3600 s 1 d = 24 h = 86400 s 1 a = 365 d = 8760 h		
Masse	Tonne	t	1 t = 10 ³ kg = 1 Mg		
Druck	Bar	bar	1 bar = 10 ⁵ Pa		

- 1) Ein Zeichen für den Vollwinkel ist international nicht festgelegt
- 2) Nicht mit Vorsätzen verwenden

	Größen und Einheiten der Länge und ihrer Potenzen			
Formel- zeichen	Größe	SI-Einheit Zeichen Name	B.: Bemerkung W.E.: Weitere gesetzliche Einheiten N.E.: Nicht mehr zugelassene Einheiten	
I	Länge	m (Meter)	B.: Basiseinheit W.E.: μm, mm, cm, dm, km usw. N.E.: Mikron (μ): 1 μ = 1 μm Ångström (Å): 1 Å = 10 ⁻¹⁰ m	
A	Fläche	m ² (Quadratmeter)	W.E.: mm^2 , cm^2 , dm^2 , km^2 Ar (a): 1 a = $10^2 m^2$ Hektar (ha): 1 ha = $10^4 m^2$	
V	Volumen	m ³ (Kubikmeter)	W.E.: mm^3 , cm^3 , dm^3 Liter (I): 1 I = 1 dm^3	
Н	Flächen- moment 1. Grades	m ³	B.: Statisches Moment, Widerstandsmoment W.E.: mm ³ , cm ³	
I	Flächen- moment 2. Grades	m ⁴	B.: Früher: Flächenträgheitsmoment W.E.: mm ⁴ , cm ⁴	
αβ	Ebener Winkel	rad (Radiant)	B.: $1 \text{ rad} = \frac{1 \text{ m (Bogen)}}{1 \text{ m (Radius)}} = \frac{1 \text{ m}}{1 \text{ m}} = 1 \text{m/m}$ 1 rad $1 \text{ Grad} = 1^{\circ} = \frac{\pi}{180} \text{ rad}$ $90^{\circ} = \frac{\pi}{2} \text{ rad}$ W.E.: $\mu \text{rad}, \text{mrad}$ $Grad(^{\circ}): 1^{\circ} = \frac{\pi}{180} \text{ rad}$ $Minute('): 1' = \frac{1^{\circ}}{60}$ $Sekunde(''): 1'' = \frac{1'}{60}$ $Gon(gon): 1 \text{ gon} = \frac{\pi}{200} \text{ rad}$ N.E.: Rechter Winkel (L): $1L = \frac{\pi}{2} \text{ rad}$ $Neugrad(g): 1g = 1 \text{ gon}$ $Neuminute(^{\circ}): 1^{\circ} = \frac{1}{100} \text{ gon}$ $Neuminute(^{\circ}): 1^{\circ} = \frac{1}{100} \text{ gon}$ $Neusekunde(^{\circ}): 1^{\circ} = \frac{1^{\circ}}{100}$	
Ω	Raumwinkel	sr (Steradiant)	B.: 1 sr = $\frac{1 \text{ m}^2 \text{ (Kugeloberfläche)}}{1 \text{ m}^2 \text{ (Quadrat des Kugelradius)}} = 1 \frac{\text{m}^2}{\text{m}^2}$	

Physik Größen und Einheiten für die Zeit und die Mechanik

	Größen und Einheiten für die Zeit				
Formel- zeichen	Größe	SI-Einheit Zeichen Name	B.: Bemerkung W.E.: Weitere gesetzliche Einheiten N.E.: Nicht mehr zugelassene Einheiten		
t	Zeit, Zeitspanne, Dauer	s (Sekunde)	B.: Basiseinheit W.E.: ns, μs, ms, ks Minute (min): 1 min = 60 s Stunde (h): 1 h = 60 min Tag (d): 1 d = 24 h Gemeinjahr (a): 1 a = 365 d (Keine Vorsätze für dezimale Vielfache und dezimale Teile von min, h, d, a anwenden)		
f	Frequenz, Periodenfre- quenz	Hz (Hertz)	W.E.: kHz, MHz, GHz, THz Hertz (Hz): 1 Hz = 1/s		
n	Umdrehungs- frequenz (Drehzahl)	s ⁻¹	B.: Kehrwert der Dauer einer Umdrehung W.E.: min ⁻¹ = 1/min		
V	Geschwindig- keit	m/s	W.E.: cm/s, m/h, km/s, km/h $1 \text{ km/h} = \frac{1}{3,6} \text{ m/s}$		
a	Beschleuni- gung	m/s ²	B.: Zeitbezogene Geschwindigkeit W.E.: cm/s ²		
g	Fall- beschleuni- gung	m/s ²	B.: Die Fallbeschleunigung ist örtlich verschieden. Normfallbeschleunigung (g_n) : $g_n = 9,80665 \text{ m/s}^2 \approx 9,81 \text{ m/s}^2$		
ω	Winkel- geschwindig- keit	rad/s	W.E.: rad/min		
α	Winkel- beschleuni- gung	rad/s²	W.E.: °/s²		
V	Volumen- strom	m ³ /s	W.E.: I/s, I/min, dm ³ /s, I/h, m ³ /h usw.		

	Größen und Einheiten der Mechanik			
Formel- zeichen	Größe	SI-Einheit Zeichen Name	B.: Bemerkung W.E.: Weitere gesetzliche Einheiten N.E.: Nicht mehr zugelassene Einheiten	
m	Masse	kg (Kilogramm)	B.: Basiseinheit W.E.: μg, mg, g, Mg Tonne (t): 1 t = 1000 kg	
m'	Längen- bezogene Masse	kg/m	B.: m' = m/l W.E.: mg/m, g/km; In der Textilindustrie: Tex (tex): 1 tex = 10 ⁻⁶ kg/m = 1 g/km	
m"	Flächen- bezogene Masse	kg/m²	B.: m" = m/A W.E.: g/mm ² , g/m ² , t/m ²	

	Größen und Einheiten der Mechanik (Fortsetzung)				
Formel- zeichen	Größe	SI-Einheit Zeichen Name	B.: Bemerkungen W.E.: Weitere gesetzliche Einheiten N.E.: Nicht mehr zugelassene Einheiten		
б	Dichte	kg/m ³	B.: $\varrho = m/V$ W.E.: g/cm^3 , kg/dm^3 , Mg/m^3 , t/m^3 , kg/l $1g/cm^3 = 1 kg/dm^3 = 1 Mg/m^3 =$ $1 t/m^3 = 1 kg/l$		
J	Massen- moment 2. Grades, Trägheits- moment	kg ⋅ m²	B.: Anstelle des bisherigen Schwungmomentes GD^2 GD^2 in kpm^2 jetzt : $J = \frac{GD^2}{4}$ W.E.: $g \cdot m^2$, $t \cdot m^2$		
ṁ	Massen- strom	kg/s	W.E.: kg/h, t/h		
F	Kraft	N (Newton)	W.E.: μ N, mN, kN, MN usw., 1 N = 1 kg m/s ² N.E.: kp (1 kp = 9,80665 N)		
G	Gewichts- kraft	N (Newton)	B.: Produkt aus Masse und Fallbeschleunigung W.E.: kN, MN, GN usw.		
M, T	Dreh- moment	Nm	W.E.: μNm, mNm, kNm, MNm usw. N.E.: kpm, pcm, pmm usw.		
M _b	Biege- moment	Nm	W.E.: Nmm, Ncm, kNm usw. N.E.: kpm, kpcm, kpmm usw.		
p	Druck	Pa (Pascal)	B.: 1 Pa = 1 N/m ² W.E.: Bar (bar): 1 bar = 100000 Pa = 10 ⁵ Pa µbar, mbar N.E.: kp/cm ² , at, ata, atü, mmWS, mmHg, Torr 1kp/cm ² = 1 at = 0,980665 bar 1 atm = 101325 Pa = 1,01325 bar 1 Torr = 101325 Pa = 133,322 Pa 1 mWS = 9806,65 Pa = 9806,65 N/m ² 1 mmHg = 133,322 Pa = 133,322 N/m ²		
p _{abs}	Absoluter Druck	Pa (Pascal)			
P _{amb}	Umgebender Atmosphä- rendruck	Pa (Pascal)			
p _e	Überdruck	Pa (Pascal)	p _e = p _{abs} - p _{amb}		
σ	Normal- spannung (Zug- oder Druckspannung)	N/m²	W.E.: N/mm^2 1 $N/mm^2 = 10^6 N/m^2 = 1 MPa$		
τ	Schub- spannung	N/m ²	W.E.: N/mm ²		
ε	Dehnung	m/m	B.: ΔI / I W.E.: μm/m, cm/m, mm/m		

Physik Größen und Einheiten der Mechanik, der Thermodynamik und der Wärmeübertragung

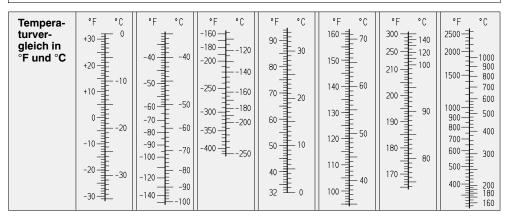
	Größen und Einheiten der Mechanik (Fortsetzung)				
Formel- zeichen	Größe	SI-Einheit Zeichen Name	B.: Bemerkungen W.E.: Weitere gesetzliche Einheiten N.E.: Nicht mehr zugelassene Einheiten		
W, A	Arbeit	J	B.: 1 J = 1 Nm = 1 Ws W.E.: mJ, kJ, MJ, GJ, TJ, kWh 1 kWh = 3,6 MJ		
E, W	Energie	(Joule)	N.E.: kpm, cal, kcal 1 cal = 4,1868 J, 860 kcal = 1 kWh		
Р	Leistung	W (Watt)	B.: 1 W = 1 J/s = 1 Nm/s W.E.: μW, mW, kW, MW usw. kJ/s, kJ/h, MJ/h usw. N.E.: PS, kpm/s, kcal/h		
Q	Wärme- strom		1 PS = 735,49875 W 1 kpm/s = 9,81 W 1 kcal/h = 1,16 W 1 hp = 745,70 W		
η	Dynamische Viskosität	Pa·s	B.: 1 Pa·s = 1 Ns/m ² W.E.: dPa·s, mPa·s N.E.: Poise (P): 1 P = 0,1 Pa·s		
v	Kinematische Viskosität	m²/s	W.E.: mm²/s, cm²/s N.E.: Stokes (St): 1 St = 1/10000 m²/s 1cSt = 1 mm²/s		

	Größen und Einheiten der Thermodynamik und der Wärmeübertragung			
Formel- zeichen	Größe	SI-Einheit Zeichen Name	B.: Bemerkungen W.E.: Weitere gesetzliche Einheiten N.E.: Nicht mehr zugelassene Einheiten	
Т	Thermo- dynamische Temperatur	K (Kelvin)	B.: Basiseinheit 273,15 K = 0 °C 373,15 K = 100 °C W.E.: mK	
t	Celsius- Temperatur	°C	B.: Der Grad Celsius (°C) ist der besondere Name für das Kelvin (K) bei der Angabe von Celsius-Temperaturen. Die Temperaturspanne von 1 K ist gleich der Temperaturspanne von 1 °C.	
Q	Wärme, Wärmemenge	J	1 J = 1 Nm = 1 Ws W.E.: mJ, kJ, MJ, GJ, TJ N.E.: cal, kcal	
а	Temperatur- leitfähigkeit	m²/s	$\begin{split} a &= \frac{\lambda}{\varrho \cdot c_p} \\ \lambda \left[W/(m \cdot K) \right] &= \text{Wärmeleitfähigkeit} \\ \varrho \left[kg/m^3 \right] &= \text{Dichte des Körpers} \\ c_p \left[J/(kg \cdot K) \right] &= \text{Spezifische Wärmekapazität bei konstantem Druck} \end{split}$	

Physik Größen und Einheiten der Thermodynamik, der Wärmeübertragung und der Elektrotechnik

Größer	Größen und Einheiten der Thermodynamik und der Wärmeübertragung (Fortsetzung)				
Formel- zeichen	Größe	SI-Einheit Zeichen Name	B.: Bemerkungen W.E.: Weitere gesetzliche Einheiten N.E.: Nicht mehr zugelassene Einheiten		
Н	Enthalpie (Wärmeinhalt)	J	B.: Unter bestimmten Bedingungen aufgenommene Wärmemenge W.E.: kJ; MJ; usw. N.E.: cal, Mcal usw.		
S	Entropie	J/K	1 J/K = 1 Ws/K = 1 Nm/K W.E.: kJ/K N.E.: kcal/deg, kcal/°K		
α h	Wärme- übergangs- koeffizient	$W/(m^2 \cdot K)$	W.E.: W/(cm ² · K); kJ/(m ² · h · K) N.E.: cal/(cm ² · s · grd) kcal/(m ² · h · grd) $\approx 4.2 \text{ kJ/}(\text{m}^2 \cdot \text{h} \cdot \text{K})$		
С	Spezifische Wärme- kapazität	J / (K · kg)	1 J / (K · kg) = W · s / (kg · K) B.: Massenbezogene Wärmekapazität N.E.: cal / (g · grd), kcal / (kg · grd) usw.		
α_{l}	Thermischer Längen- ausdehnungs- koeffizient	K ⁻¹	m/(m·K) = K ⁻¹ B.: Auf Temperatureinheit bezogenes Längenverhältnis W.E.: μm/(m·K), cm/(m·K), mm/(m·K)		
α_{V}	Thermischer Volumen- ausdehnungs- koeffizient	K ⁻¹	m ³ /(m ³ ·K) = K ⁻¹ B.: Auf Temperatureinheit bezogenes Volumenverhältnis N.E.: m ³ /(m ³ ·deg)		

	Größen und Einheiten der Elektrotechnik				
Formel- zeichen	Größe	SI-Einheit Zeichen Name	B.: Bemerkungen W.E.: Weitere gesetzliche Einheiten N.E.: Nicht mehr zugelassene Einheiten		
ı	Elektrische Stromstärke	A (Ampere)	B.: Basiseinheit W.E.: pA, nA, μA, mA, kA usw.		
Q	Elektrische Ladung, Elektrizitäts- menge	C (Coulomb)	1 C = 1 A · s 1 Ah = 3600 As W.E.: pC, nC, μC, kC		
U	Elektrische Spannung	V (Volt)	$\begin{array}{l} 1 \; V = 1 \; W/A = 1 \; J/(s \cdot A) \\ = 1 \; A \cdot \Omega = 1 \; N \cdot m/(s \cdot A) \\ W.E.: \; \mu V, \; m V, \; k V, \; M V \; usw. \end{array}$		
R	Elektrischer Widerstand	Ω (Ohm)	$\begin{array}{c} 1~\Omega = 1~V/A = 1~W/A^2 \\ 1~J/(s\cdot A^2) = 1~N\cdot m/(s\cdot A^2) \\ W.E.:~~\mu\Omega;~~m\Omega;~~k\Omega~~usw. \end{array}$		
G	Elektrischer Leitwert	S (Siemens)	B.: Kehrwert des elektrischen Widerstandes 1 S = 1 Ω^{-1} = 1/ Ω ; G = 1/R W.E.: μ S, mS, kS		
С	Elektrische Kapazität	F (Farad)	$\begin{array}{c} 1 \; F = 1 \; C/V = 1 \; A \cdot s/V \\ = 1 \; A^2 \cdot s/W = 1 \; A^2 \cdot s^2/J \\ = 1 \; A^2 \cdot s^2/\left(N \cdot m\right) \\ W.E.: \; pF, \; \mu F \; usw. \end{array}$		


Physik Größen und Einheiten der Lichttechnik Temperaturen in verschiedenen Maßeinheiten

	(Größen und Eir	heiten der Lichttechnik
Formel- zeichen	Größe	SI-Einheit Zeichen Name	B.: Bemerkungen W.E.: Weitere gesetzliche Einheiten N.E.: Nicht mehr zugelassene Einheiten
I	Lichtstärke	cd (Candela)	B.: Basiseinheit 1 cd = 1 lm (lumen) / sr (Steradiant) W.E.: mcd, kcd
L	Leuchtdichte	cd / m ²	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Φ	Lichtstrom	lm (Lumen)	1 lm = 1 cd · sr W.E.: klm
E	Beleuchtungs- stärke	lx (Lux)	1 lx = 1 lm/m ²

	Temperaturen in versch	niedenen Maßeinheiten	
Kelvin K T _K	Grad Celsius °C t _C	Grad Fahrenheit °F t _F	Grad Rankine °R T _R
$T_{K} = 273, 15 + t_{C}$	$t_{\rm C} = T_{\rm K} - 273, 15$	$t_F = \frac{9}{5} \cdot T_K - 459,67$	$T_R = \frac{9}{5} \cdot T_K$
$T_{K} = 255,38 + \frac{5}{9} \cdot t_{F}$	$t_{C} = \frac{5}{9} \left(t_{F} - 32 \right)$	$t_{F} = 32 + \frac{9}{5} \cdot t_{C}$	$T_{R} = \frac{9}{5} (t_{c} + 273, 15)$
$T_K = \frac{5}{9} \cdot T_R$	$t_{\rm C} = \frac{5}{9} \ T_{\rm R} - 273, 15$	$t_F = T_R - 459,67$	$T_{R} = 459,67 + t_{F}$

	Vergleich einiger Temperaturen										
0,00	- 273,15	- 459,67	0,00								
+ 255,37	- 17,78	0,00	+ 459,67								
+ 273,15	0,00	+ 32,00	+ 491,67								
+ 273,16 ¹⁾	+ 0,01 ¹⁾	+ 32,02	+ 491,69								
+ 373,15	+ 100,00	+ 212,00	+ 671,67								

 Der Tripelpunkt des Wassers liegt bei + 0,01 °C. Das ist der Temperaturpunkt des reinen Wassers, bei dem gleichzeitig Eis, Wasser und Dampf miteinander im Gleichgewicht auftreten (bei 1013,25 hPA).

	Längenmaße												
Einheit		Inch (Zoll) in	Foot ft	Yard yd	Stat mile	Naut mile	mm	m	km				
1 in	= = = =	1	0,08333	0,02778	-	-	25,4	0,0254	-				
1 ft		12	1	0,3333	-	-	304,8	0,3048	-				
1 yd		36	3	1	-	-	914,4	0,9144	-				
1 stat mile		63 360	5280	1760	1	0,8684	-	1609,3	1,609				
1 naut mile		72 960	6080	2027	1,152	1	-	1853,2	1,853				
1 mm	= =	0,03937	3,281 · 10 ⁻³	1,094 · 10 ⁻³	-	-	1	0,001	10 ⁻⁶				
1 m		39,37	3,281	1,094	-	-	1000	1	0,001				
1 km		39370	3281	1094	0,6214	0,5396	10 ⁶	1000	1				

- 1 Deutsche Landmeile = 7500 m
- 1 Geograph. Meile = 7420,4 m = 4 Bogenminuten des Äquators (1° Äquator = 111,307 km)
- 1 Internationale Seemeile
- 1 Deutsche Seemeile (sm)
- 1 Mille marin (franz.)

= 1852 m = 1 Bogenminute des Längengrades (1° Längenkreis

= 111,121 km)

Astronomische Maßeinheiten

- 1 Lichtsekunde = 300000 km 1 Lj (Lichtjahr) = 9,46 · 10¹² km
- 1 parsec (Parallaxensekunde, Sternweite) = 3,26 Lj
- 1 Astronomische Einheit (mittlere Entfernung Erde-Sonne) = $1,496 \cdot 10^8$ km

Typographische Maßeinheit: 1 Punkt (p) = 0,376 mm

Weitere Längenmaße des Zollmaßsystems

- 1 micro-in = 10^{-6} in = $0.0254 \mu m$
- 1 mil = 1 thou = 0,001 in = 0,0254 mm
- 1 line = 0.1 in = 2.54 mm
- 1 fathom = 2 yd = 1,829 m
- 1 engineer's chain = 100 eng link = 100 ft = 30,48 m
- 1 rod = 1 perch = 1 pole = 25 surv link = 5,029 m
- 1 surveyor's chain = 100 surv link = 20,12 m
- 1 furlong = 1000 surv link = 201,2 m
- 1 stat league = 3 stat miles = 4,828 km

Weitere Längenmaße des metrischen Maßsystems

Frankreich: 1 toise = 1,949 m

Rußland:

1 Myriameter = 10 000 m

1 werschok = 44.45 mm 1 saschen = 2.1336 m 1 arschin = 0,7112 m

1 werst = 1,0668 km

1 shaku = 0,3030 m

1 ken = 1.818 m

1 ri = 3,927 km

				F	lächenr	naße					
Einheit		sq in	sq ft	sq yd	sq mile	cm ²	dm ²	m ²	а	ha	km ²
1 square inch 1 square foot 1 square yard 1 square mile	= = =	1 144 1296 -	- 1 9 -	- 0,1111 1 -	- - - 1	6,452 929 8361 –	0,06452 9,29 83,61 –	- 0,0929 0,8361 -		- - - 259	- - - 2,59
1 cm ² 1 dm ² 1 m ² 1 a 1 ha 1 km ²	= = = = =	0,155 15,5 1550 - - -	- 0,1076 10,76 1076 - -	- 0,01196 1,196 119,6 - -	- - - - - 0,3861	1 100 10000 - -	0,01 1 100 10000 - -	- 0,01 1 100 10000	- 0,01 1 100 10000	- - 0,01 1 100	- - - - 0,01 1

Weitere Flächenmaße des Zollmaßsystems

- 1 sq mil = $1 \cdot 10^{-6}$ sq in = 0.0006452 mm²
- 1 sq line = 0.01 sq in = 6.452 mm²
- 1 sq surveyor's link = $0.04047 \, \text{m}_2$
- 1 sq rod = 1 sq perch = 1 sq pole = 625 sq surv link = 25,29 m²
- 1 sq chain = 16 sq rod = 4.047 a
- 1 acre = 4 rood = 40,47 a
- 1 township (US) = $36 \text{ sq miles} = 3,24 \text{ km}^2$
- 1 circular in $=\frac{\pi}{4}$ sq in =5,067 cm² (Kreisfläche mit \emptyset 1 in)
- 1 circular mil = $\frac{\pi}{4}$ sq mil = 0,0005067mm² (Kreisfläche mit Ø 1 mil)

Weitere Flächenmaße des metrischen Maßsystems

Rußland:

1 kwadr. archin $= 0,5058 \text{ m}^2$ 1 kwadr. saschen = $4,5522 \text{ m}^2$

1 dessiatine = 1.0925 ha1 kwadr. werst $= 1,138 \text{ km}^2$

Japan:

 $= 3.306 \, \text{m}^2$ 1 tsubo

1 se = 0.9917a1 ho-ri $= 15,42 \text{ km}^2$

Physik Raummaße und Massegrößen Energie, Arbeit, Wärmemenge

				Ra	ummaß	е				
Einheit		cu in	cu ft	US-liquid quart	US- gallon	Imp quart	lmp gallon	cm ³	dm ³ (l)	m ³
1 cu in 1 cu ft 1 cu yd	11 11 11	1 1728 46656	- 1 27	0,01732 29,92 807,9	- 7,481 202	0,01442 24,92 672,8	- 6,229 168,2	16,39 - -	0,01639 28,32 764,6	- 0,02832 0,7646
1 US liquid quart 1 US gallon	= =	57,75 231	0,03342 0,1337	1 4	0,25 1	0,8326 3,331	0,2082 0,8326	946,4 3785	0,9464 3,785	-
1 Imp quart 1 Imp gallon	= =	69,36 277,4	0,04014 0,1605	1,201 4,804	0,3002 1,201	1 4	0,25 1	1136 4546	1,136 4,546	-
1 cm ³ 1 dm ³ (l) 1 m ³		0,06102 61,02 61023	- 0,03531 35,31	- 1,057 1057	- 0,2642 264,2	- 0,88 880	- 0,22 220	1 1000 10 ⁶	0,001 1 1000	10 ⁶ 0,001 1

```
1 US minim = 0.0616 \text{ cm}^3 \text{ (USA)}
1 US fl dram = 60 \text{ minims} = 3.696 \text{ cm}^3
1 US fl oz = 8 fl drams = 0,02957 l
1 US gill = 4 fl oz = 0,1183 l
1 US gill = 4 fl 02 = 0,1183 |
1 US liquid pint = 4 gills = 0,4732 |
1 US liquid quart = 2 liquid pints = 0,9464 |
1 US gallon = 4 liquid quarts = 3,785 |
1 US dry pint = 0,5506 |
1 US dry quart = 2 dry pints = 1,101 |
1 US peck = 8 dry quarts = 8,811 |
1 US peck = 8 dry quarts = 8,811 |
1 US peck = 8 dry quarts = 8,811 |
```

- 1 US bushel = 4 pecks = 35,24 | 1 US liquid barrel = 31,5 gallons = 119,2 | 1 US barrel = 42 gallons = 158,8 | (für Rohöl)
- 1 US cord = 128 cu ft = 3,625 m³

- 1 Imp minim = $0,0592 \text{ cm}^3$ (GB)
- 1 Imp fl drachm = 60 minims = 3,552 cm³ 1 Imp fl oz = 8 fl drachm = 0.02841 I
- 1 Imp gill = 5 fl oz = 0,142 l
- 1 Imp pint = 4 gills = 0,5682 I 1 Imp quart = 2 pints = 1,1365 I
- 1 Imp gallon = 4 quarts = 4,5461 I
- 1 Imp pottle = 2 quarts = 2,273 I
- 1 Imp peck = 4 pottles = 9,092 I 1 Imp bushel = 4 pecks = 36.37 I
- 1 Imp quarter = 8 bushels = 64 gallons = 290,94 I

				M	lassegrö	ßen							
Einheit		dram	oz	lb	short cwt	long cwt	short ton	long ton	g	kg	t		
1 dram 1 oz (ounce) 1 lb (pound)	= = =	1 0,0625 0,003906 - - - - 1 1,772 0,00177 16 1 0,0625 - - - - - 28,35 0,02835 256 16 1 0,01 0,008929 - - 453,6 0,4536								- - -			
1 short cwt (US) 1 long cwt (GB/US)													
1 short ton (US) 1 long ton (GB/US)	=	1 1	32000 35840	2000 2240	20 22,4	17,87 20	1 1,12	0,8929 1	-	907,2 1016	0,9072 1,016		
1g 1kg 1t	= = =	0,5643 564,3 -	0,03527 35,27 35270	0,002205 2,205 2205	- 0,02205 22,05	- 0,01968 19,68	- - 1,102	- 0,9842	1 1000 10 ⁶	0,001 1 1000	10 ⁻⁶ 0,001 1		
1 stone = 14 lb = 6 1 short quarter = 1 1 long quarter = 1/ 1 quintal oder 1 cer 1 quintal = 100 livr	1 grain = 1 / 7000 lb = 0,0648 g (GB) 1 stone = 14 lb = 6,35 kg (GB) 1 short quarter = 1/4 short cwt = 11,34 kg (IOSA) 1 long quarter = 1/4 long cwt = 12,7 kg (GB / USA) 1 quintal oder 1 cental = 100 lb = 45,36 kg (F) 1 kilopound = 1kp = 1000 lb = 453,6 kg (USA) 1 kilopound = 1kp = 1000 lb = 453,6 kg (USA) 1 grain = 1 / 7000 lb = 0,0648 g (GUS) 1 solotnik = 96 dol = 4,2659 g (GUS) 1 lot = 3 solotnik = 12,7978 g (GUS) 1 funt = 32 lot = 0,409 kg (GUS) 1 pud = 40 funt = 16,38 kg (GUS) 1 berkowetz = 163,8 kg (GUS) 1 kwan = 1000 tael = 1000 momme = 10000 fun = 3,75 kg (J) (J) 1 hyaku kin = 1 picul = 16 kwan = 60 kg (J)												
tdw = tons dead v	wei					ffes (Ladur			ennstof	+ Verpfle	egung),		

Energie, Arbeit, Wärmemenge
meist in long tons angegeben, also 1 tdw = 1016 kg
tdw = tons dead weight = Tragfahigkeit eines Frachtschiftes (Ladung + Ballast + Brennstoff + Verpflegung),

	Energie, Arbeit, Wärmemenge												
Arbeit		ft lb	erg	J = Nm = Ws	kpm	PSh	hph	kWh	kcal	Btu			
1 ft lb	П	1	13,56 · 10 ⁶	1,356		0,5121 · 10-6		0,3768 · 10 ⁻⁶					
1 erg	=	73,76 · 10 ⁻⁹		100 · 10 ⁻⁹		37,77 · 10 ⁻¹⁵		27,78 · 10 ⁻¹⁵					
1 Joule (WS)	=	0,7376	10 · 106	1	0,102	377,7 · 10 ⁻⁹	372,5 · 10 ⁻⁹	277,8 · 10 ⁻⁹	238 · 10 ⁻⁶	948,4 · 10 ⁻⁶			
1 kpm	=	7,233	98,07 · 10 ⁶	9,807	1	3,704 · 10 ⁻⁶	3,653 · 10 ⁻⁶	2,725 · 10 ⁻⁶	2,344 · 10 ⁻³	9,301 · 10 ⁻³			
1 PSh	=		26,48 · 10 ¹²		270 · 10 ³	1	0,9863	0,7355	632,5	2510			
1 hph	=		26,85 · 10 ¹²	$2,685 \cdot 10^{6}$	273,8 · 10 ³	1,014	1	0,7457	641,3	2545			
1 kWh	=	$2,655 \cdot 10^{6}$	36 · 1012	$3,6 \cdot 10^{6}$	$367,1 \cdot 10^{3}$	1,36	1,341	1	860	3413			
1 kcal	=	$3,087 \cdot 10^3$	41,87 · 10 ⁹	4186,8	426,9	1,581 · 10 ⁻³	1,559 · 10 ⁻³	1,163 · 10 ⁻³	1	3,968			
1 Btu	=	778,6	10,55 · 10 ⁹	1055	107,6	398,4 · 10 ⁻⁶	392,9 · 10 ⁻⁶	293 · 10 ⁻⁶	0,252	1			

1 in oz = 0,072 kpcm; 1 in lb = 0,0833ft lb = 0,113 Nm, 1 thermi (franz.) = 4,1855 · 10⁶ J; 1 therm (englisch) = 105,51 · 10⁶ J Bei Kolbenmaschinen gebräuchlich: 1 Literathmosphäre (Liter x Atmosphäre) = 98,067 J

Leistung, Energiestrom, Wärmestrom, Druck und Spannung, Geschwindigkeiten

	Leistung, Energiestrom, Wärmestrom													
Leistung		erg/s	W	kpm/s	PS	hp	kW	kcal/s	Btu/s					
1 erg/s	=	1	10 ⁻⁷	0,102 · 10 ⁻⁷		0,1341 · 10-9	10 ⁻¹⁰	23,9 · 10 ⁻¹²	94,84 · 10-12					
1W :	=	10 ⁷	1	0,102	1,36 ·10 ⁻³	1,341 · 10 ⁻³	10 ⁻³	239 · 10 ⁻⁶	948,4 · 10 ⁻⁶					
	=	$9,807 \cdot 10^{7}$	9,807	1	13,33 · 10 ⁻³	13,15 · 10 ⁻³	9,804 · 10 ⁻³	2,344 · 10 ⁻³	9,296 · 10 ⁻³					
1 PS (ch) 2) :	=	$7,355 \cdot 10^9$	735,5	75	1	0,9863	0,7355	0,1758	0,6972					
1hp :	=	$7,457 \cdot 10^9$	745,7	76,04	1,014	1	0,7457	0,1782	0,7068					
1 kW =	=	10 ¹⁰	1000	102	1,36	1,341	1	0,239	0,9484					
1 kcal/s	=	$41,87 \cdot 10^{8}$	4187	426,9	5,692	5,614	4,187	1	3,968					
1 Btu/s	=	10,55 · 10 ⁹	1055	107,6	1,434	1,415	1,055	0,252	1					

¹ poncelet (Franz.) = 980,665 W; Schwungmoment: 1 kgm² = 3418 lb in ²

Druck und Spannung													
μbar = dN/m²	mbar = cN/ cm ²	bar = daN/ cm ²	kp/m² mm WS	p/cm ²	kp/cm ² = at	kp/ mm ²	Torr = mm QS	atm	lb sq ft	lb sq in	long ton sq in	sh ton sq in	
1	0,001	-	0,0102	-	-	-	-	-	-	-	-	-	
1000	1	0,001	10,2	1,02	-	-	0,7501	-	2,089	0,0145	-	-	
10 ⁶	1000	1	10197	1020	1,02	0,0102	750,1	0,9869	2089	14,5	0,0064	0,0072	
98,07	-	-	1	0,1	0,0001	-	-	-	0,2048	-	-	-	
980,7	0,9807	-	10	1	0,001	-	0,7356	-	2,048	0,0142	-	-	
-	980,7	0,9807	10000	1000	1	0,01	735,6	0,9678	2048	14,22	-	-	
-	98067	98,07	10 ⁶	10 ⁵	100	1	73556	96,78	-	1422	0,635	0,7112	
1333	1,333	0,00133	13,6	1,36	0,00136	-	1	-	2,785	0,01934	-	-	
-	1013	1,013	10332	1033	1,033	_	760	1	2116	14,7	-	-	
478,8	0,4788	-	4,882	0,4882	-	-	0,3591	-	1	-	-	-	
68948	68,95	0,0689	703,1	70,31	0,0703	-	51,71	0,068	144	1	-	0,0005	
-	-	154,4	-	-	157,5	1,575	-	152,4	-	2240	1	1,12	
-	-	137,9	-	-	140,6	1,406	-	136,1	-	2000	0,8929	1	
	= dN/m ² 1 1000 10 ⁶ 98,07 980,7 - 1333 - 478,8	= cN/ dN/m² = cN/ cm² 1 0,001 1000 1 106 1000 98,07 - 980,7 0,9807 - 980,7 - 980,7 1333 1,333 - 1013	= cN/ daN/ cm² daN/ c	μbar ed N/m² mbar ed N/m² bar ed N/m² kp/m² mm wS 1 0,001 - 0,0102 1000 1 0,001 10,2 106 1000 1 10197 98,07 - - 1 980,7 0,9807 - 10 - 980,7 0,9807 1000 - 98067 98,07 106 1333 1,333 0,00133 13,6 - 1013 1,013 10332 478,8 0,4788 - 4,882 68948 68,95 0,0689 703,1 - - 154,4 -	μbar = dN/γ cm² mbar daN/γ cm² kp/m² mm wS p/cm² 1 0,001 - 0,0102 - 1000 1 0,001 10,2 1,02 106 1000 1 10197 1020 98,07 - - 1 0,1 980,7 0,9807 - 10 1 - 980,7 0,9807 10000 1000 - 98067 98,07 106 105 1333 1,333 0,00133 13,6 1,36 - 1013 1,013 10332 1033 478,8 0,4788 - 4,882 0,4882 68948 68,95 0,0689 703,1 70,31 - - 154,4 - -	μbar ed N/m2 mbar eat e cN/m2 bar ed AN/m2 kp/m² mm WS p/cm² kp/cm² eat 1 0,001 - 0,0102 - - 1000 1 0,001 10,2 1,02 - 106 1000 1 10197 1020 1,02 98,07 - - 1 0,1 0,0001 980,7 0,9807 - 10 1 0,001 - 98,07 1069 105 100 1333 1,333 0,00133 13,6 1,36 0,00136 - 1013 1,013 10332 1033 1,033 478,8 0,4788 - 4,882 0,4882 - 68948 68,95 0,0689 703,1 70,31 0,0703 - - 154,4 - - 157,5	μbar = dN/mode (N/m) mbar = cN/mode (m) kp/m² (m) kp/m² (m) p/cm² kp/cm² (m) kp/m² (m) 1 0,001 - 0,0102 - - - - 1000 1 0,001 10,2 1,02 - - - 106 1000 1 10197 1020 1,02 0,0102 98,07 - - 1 0,1 0,0001 - - 980,7 0,9807 10000 1000 1 0,01 - 98067 98,07 106 105 100 1 1333 1,333 0,00133 13,6 1,36 0,00136 - - 1013 1,013 10332 1033 1,033 - 478,8 0,4788 - 4,882 0,4882 - - - - 154,4 - - 157,5 1,575	μbar = dN/γ cm² mbar daN/γ cm² kp/m² mm wS p/cm² kp/cm² at kp/cm² mm QS 1 0,001 - 0,0102 - - - - 1000 1 0,001 10,2 1,02 - - - 0,7501 106 1000 1 10197 1020 1,02 0,0102 750,1 98,07 - - 1 0,1 0,0001 - - 980,7 0,9807 - 10 1 0,001 - 0,7356 - 98067 98,07 106 105 100 1 735,6 - 98067 98,07 106 105 100 1 735,6 - 98067 98,07 106 105 100 1 735,6 - 1013 1,013 10332 1033 1,033 - 760 478,8 0,4788 - 4,882 0,4882 - </td <td>μbar = dN/m/m/2 = cN/m/m/m/m/m/m bar = daN/mm/m/m/m kp/m²/mm/m/m/m p/cm² kp/cm²/mm kp/cm²/mm² kp/cm²/mm² Torr = mm/mm atm 1 0,001 - 0,0102 -</td> <td>μbar σ (N/M)/m² mbar σ (αN/m²) bar = daN/m² kp/m² y (m² kp/m² kp/cm² kp/cm² kp/m² Torr = mm g (N) atm lb sq ft 1 0,001 - 0,0102 -<td>μbar edN/m/m2 mbar daN/mom² bar = daN/m² kp/m² mm p/cm² kp/cm² = at kp/cm² Torr = mm² atm lb sq ft lb sq in 1 0,001 - 0,0102 -</td><td>μbar ed N/m/m² mbar daN/ cm² bar = daN/ cm² kp/m² ws kp/cm² kp/cm² kp/cm² km² Torr = mm at m mg sq in atm gr ft lb sq ft long ton sq in 1 0,001 - 0,0102 - <</td></td>	μbar = dN/m/m/2 = cN/m/m/m/m/m/m bar = daN/mm/m/m/m kp/m²/mm/m/m/m p/cm² kp/cm²/mm kp/cm²/mm² kp/cm²/mm² Torr = mm/mm atm 1 0,001 - 0,0102 -	μbar σ (N/M)/m² mbar σ (αN/m²) bar = daN/m² kp/m² y (m² kp/m² kp/cm² kp/cm² kp/m² Torr = mm g (N) atm lb sq ft 1 0,001 - 0,0102 - <td>μbar edN/m/m2 mbar daN/mom² bar = daN/m² kp/m² mm p/cm² kp/cm² = at kp/cm² Torr = mm² atm lb sq ft lb sq in 1 0,001 - 0,0102 -</td> <td>μbar ed N/m/m² mbar daN/ cm² bar = daN/ cm² kp/m² ws kp/cm² kp/cm² kp/cm² km² Torr = mm at m mg sq in atm gr ft lb sq ft long ton sq in 1 0,001 - 0,0102 - <</td>	μbar edN/m/m2 mbar daN/mom² bar = daN/m² kp/m² mm p/cm² kp/cm² = at kp/cm² Torr = mm² atm lb sq ft lb sq in 1 0,001 - 0,0102 -	μbar ed N/m/m² mbar daN/ cm² bar = daN/ cm² kp/m² ws kp/cm² kp/cm² kp/cm² km² Torr = mm at m mg sq in atm gr ft lb sq ft long ton sq in 1 0,001 - 0,0102 - <	

¹ psi = $0.00689 \, \text{N} \, / \, \text{mm}^2$

Die Wichte von Quecksilber ist mit 13,595 kg/dm³ angenommen.

	Geschwindigkeit													
Einheit	Einheit m/s m/min km/h ft/min mile/h													
m/s m/min km/h ft/min mile/h	= = = =	1 0,0167 0,278 0,0051 0,447	60 1 16,67 0,305 26,82	3,6 0,06 1 0,0183 1,609	196,72 3,279 54,645 1 87,92	2,237 0,0373 0,622 0,0114 1								

¹ N/m² (Newton/m²) = 10 μ b, 1 barye (Franz.) = 1 μ b, 1 pièze (pz) (Franz.) = 1 sn/m² \approx 102 kp/m², 1 hpz = 100 pz = 1,02 kp/m², 1 micron (USA) = 0,001 mm QS = 0,001 Torr.

[&]quot;Inches Hg" werden in den USA von oben gerechnet, also 0 inches Hg = 760 mm QS und 29,92 inches Hg = 0 mm QS = absolutes Vakuum.

Physik Physikalische Gleichungen

für die geradlinige Bewegung und die Drehbewegung Grundformeln Zei-Bezeichnung Ein-heit Zel-chen Geradlinige Bewegung Drehbewegung

	heit	CHEH	Geradlinige Bewegung	Drehbewegung				
Gleichförmige Bewegung			Weg pro Zeit	Winkelgeschwindigkeit = Drehwinkel in Bogenmaß/Zeit				
Geschwindigkeit	m/s	V	$v = \frac{s_2 - s_1}{t_2 - t_1} = \frac{\Delta s}{\Delta t} = \text{konst.}$	$\omega = \frac{\varphi_2 - \varphi_1}{t_2 - t_1} = \frac{\Delta \varphi}{\Delta t} = \text{konst.}$				
Winkel- geschwindigkeit	rad/s	ω	Bei Bewegung vo	om Stillstand aus:				
Drehwinkel	rad	φ	$v = \frac{s}{t}$	$\omega = \frac{\varphi}{t}$				
Weg	m	s	$s = v \cdot t$	Drehwinkel $\varphi = \omega \cdot t$				
Gleichförmig beschleunigte Bewegung			Beschleunigung gleich Änderung der Geschwindigkeit durch Zeit Winkelbeschleunigung gl Änderung der Winkel geschwindigkeit durch Z					
Beschleunigung	m/s ²	а	$a = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t} = \text{konst.}$	$\alpha = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t} = \text{konst.}$				
Winkel- beschleunigung	rad/s²	α	Bei Bewegung vo	om Stillstand aus:				
			$a = \frac{v}{t} = \frac{v^2}{2s} = \frac{2s}{t^2}$	$\alpha = \frac{\omega}{t} = \frac{\omega^2}{2\varphi} = \frac{2\varphi}{t^2}$				
Geschwindigkeit	m/s	V	$v = a \cdot t = \sqrt{2 a \cdot s}$	$\omega = \alpha \cdot t$				
Umfangs- geschwindigkeit	m/s	v		$v = r \cdot \omega = r \cdot \alpha \cdot t$				
Weg	m	s	$s = \frac{v}{2} \cdot t = \frac{a}{2} \cdot t^2 = \frac{v^2}{2a}$	$\varphi = \frac{\omega}{2} \cdot t = \frac{\alpha}{2} \cdot t^2 = \frac{\omega^2}{2\alpha}$				
Bei gleichförmiger Bewegung und konst. Kraft bzw. konst. Drehmoment			Kraft · Weg	Drehmoment · Drehwinkel im Bogenmaß				
Arbeit	J	W	$W = F \cdot s$	$W = M \cdot \varphi$				
			Arbeit in der Zeiteinheit = Kraft · Geschwingigkeit	Arbeit in der Zeiteinheit = Drehmoment · Winkel- geschwindigkeit				
Leistung	W	Р	$P = \frac{W}{t} = F \cdot v$	$P = \frac{W}{t} = M \cdot \omega$				
Bei ungleichförmi- ger (beschleunigter) Bewegung Kraft	N	F	Beschleunigende Kraft = Masse · Beschleunigung F = m · a	Beschl. Moment = Massenmom. 2. Grades · Winkelbeschleunigung M = J · α				
Nail	IN	Г	r = III · a					
Bei jeder Bewegung			Bewegungsenergie (kinetische Energie) gleich halbe Masse Quadrat der Geschwindigkeit	Drehbewegungsenergie (kinetische Energie der Drehung) gleich halbes Massenträgheits- moment · Quadrat der Winkelge- schwindigkeit				
Energie	J	E _k	$E_k = \frac{m}{2} \cdot v^2$	$E_{k} = \frac{J}{2} \cdot \omega^2$				
Potentielle Energie (infolge der Schwerkraft)	J	Ep		Gewichtskraft · Höhe E _p = G · h = m · g · h				
Fliehkraft	N	F _F	$F_F = m \cdot r_s \cdot \omega^2 (r_s =$	$F_F = m \cdot r_S \cdot \omega^2$ ($r_S = Schwerpunktradius$)				

Inhaltsübersicht Teil 4

Mathematik / Geometrie	Seite
Berechnung von Flächen	45
Berechnung von Körpern	46

A = Fläche

che

U = Umfang

 $A = a^2$

 $a = \sqrt{A}$

 $d = a\sqrt{2}$

 $A = A_1 + A_2 + A_3$

 $= \frac{a \cdot h_1 + b \cdot h_2 + b \cdot h_3}{2}$

Rechteck

 $A = a \cdot b$

$$d = \sqrt{a^2 + b^2}$$

 $A = \frac{r^2}{2} (2\sqrt{3} - \pi)$

$$\approx 0, 16 \cdot r^2$$

Parallelogramm

 $A = a \cdot h$

$$a = \frac{A}{h}$$

Kreis

 $A = \frac{d^2 \cdot \pi}{4} = r^2 \cdot \pi$

 $\approx\,0,785\,\cdot\,d^2$

$$U\,=\,2\,\cdot\,r\,\cdot\,\pi\,\,=\,\,d\,\cdot\,\pi$$

Trapez

 $A = m \cdot h$

$$m = \frac{a + b}{2}$$

Kreisring

 $A = \frac{\pi}{4} \cdot (D^2 - d^2)$

$$=$$
 (d + b) b · π

$$b = \frac{D - d}{2}$$

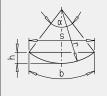
Dreieck

 $A = \frac{a \cdot h}{2}$

$$a = \frac{2 \cdot A}{h}$$

Kreisausschnitt

 $A = \frac{r^2 \cdot \pi \cdot \alpha^{\circ}}{360^{\circ}}$ $= \frac{b \cdot r}{2}$ $b = \frac{r \cdot \pi \cdot \alpha^{\circ}}{180^{\circ}}$


Gleichseitiges Dreieck

 $A = \frac{a^2}{4} \sqrt{3}$

$$d = \frac{a}{2}\sqrt{3}$$

Kreisabschnitt

 $A = \frac{r^2}{2} \left(\frac{\alpha^{\circ} \cdot \pi}{180^{\circ}} - \sin \alpha \right)$

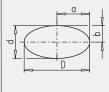
$$= \frac{1}{2} \left[r (b - s) + sh \right]$$

$$s = 2 r sin \frac{\alpha}{2}$$

$$h = r (1 - \cos \frac{\alpha}{2}) = \frac{s}{2} \tan \frac{\alpha}{4}$$
$$\hat{\alpha} = \frac{\alpha^{\circ} \cdot \pi}{180^{\circ}}$$

$$b\,=\,r\,\cdot\,\hat{\alpha}$$

Sechseck



 $A = \frac{3 \cdot a^2 \cdot \sqrt{3}}{2}$

$$d = 2 \cdot a$$

$$s = \sqrt{3} \cdot a$$

Ellipse

 $A = \frac{D \cdot d \cdot \pi}{4} = a \cdot b \cdot \pi$

$$U \approx \frac{D+d}{2} \cdot \pi$$

$$U = \pi (a+b) \left[1 + \frac{1}{2} \right]$$

$$\frac{1}{4} \left(\frac{a-b}{a+b} \right)^2 + \frac{1}{64} \left(\frac{a-b}{a+b} \right)^4$$

 $+ \frac{1}{256} \left(\frac{a-b}{a+b} \right)^6 \cdots$

А	cr	ıτe	CK	

 $A = 2a^2 (\sqrt{2} + 1)$

$$d = a\sqrt{4 + 2\sqrt{2}}$$

$$s = a \left(\sqrt{2 + 1} \right)$$

V = Volumen M = Mantelfläche O = Oberfläche $V = \frac{\pi \cdot h}{12} (D^2 + Dd + d^2)$ Würfel Kegelstumpf $V = a^3$ $M = \frac{\pi \cdot m}{2} (D + d)$ $= 2 \cdot \pi \cdot p \cdot h$ $O = 6 \cdot a^2$ $m = \sqrt{\left(\frac{D-d}{2}\right)^2 + h^2}$ $d = a\sqrt{3}$ Quader Kugel $V = \frac{4}{3} r^3 \pi = \frac{1}{6} \cdot d^3 \pi$ $V = a \cdot b \cdot c$ $\approx 4,189 \cdot r^3$ O = 2 (ab + ac + bc) $O = 4 \pi \cdot r^2 = \pi \cdot d^2$ $d = \sqrt{a^2 + b^2 + c^2}$ Schiefer Quader Kugelzone $V = \frac{\pi \cdot h}{6} (3a^2 + 3b^2 + h^2)$ $V = A \cdot h$ (Prinzip von Cavalieri) $M = 2 \cdot r \cdot \pi \cdot h$ Pyramide Kugelabschnitt $V = \frac{\pi \cdot h}{6} \left(\frac{3}{4} s^2 + h^2 \right)$ $=\pi h^2 \left(r-\frac{h}{3}\right)$ $V = \frac{A \cdot h}{3}$ $=\frac{\pi}{4} (s^2 + 4h^2)$ Kugelausschnitt Pyramidenstumpf $V = \frac{2}{3} \cdot h \cdot r^2 \cdot \pi$ $V = \frac{h}{3} (A_1 + A_2 + \sqrt{A_1 \cdot A_2})$ $O = \frac{\pi \cdot r}{2} (4h + s)$ Zylinder Kreisring $V = \frac{d^2 \cdot \pi}{4} h$ $V = \frac{D \cdot \pi^2 \cdot d^2}{a}$ $M\,=\,2\,\cdot\,r\,\cdot\,\pi\,\cdot\,h$ $O = D \cdot d \cdot \pi^2$ $O = 2 \cdot r \cdot \pi \cdot (r + h)$ Hohlzylinder Kreistonnenkörper $V = \frac{h \cdot \pi}{4} (D^2 - d^2)$ $V = \frac{h \cdot \pi}{12} (2D^2 + d^2)$ $V = \frac{r^2 \cdot \pi \cdot h}{3}$ Kegel Prismatoid $V = \frac{h}{6} (A_1 + A_2 + 4A)$ $m = \sqrt{h^2 + \left(\frac{d}{2}\right)^2}$

Inhaltsübersicht Teil 5

Mechanik / Festigkeitslehre	Seite
Axiale Widerstandsmomente und axiale Flächenmomente 2. Grades (Flächenträgheitsmomente) verschiedener Profile	48
Durchbiegung von Trägern	49
Werte für den Kreisquerschnitt	50
Bauteilbeanspruchung und Gestaltfestigkeit	51

Mechanik / Festigkeitslehre Axiale Widerstandsmomente und axiale

Flächenmomente 2. Grades

(Flächenträgheitsmomente) verschiedener Profile

Querschnitt	Widerstandsmoment	Flächenmoment 2. Grades		
1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	$W_1 = bh^2/6$ $W_2 = hb^2/6$	$I_1 = bh^3/12$ $I_2 = hb^3/12$		
1 0	$W_1 = W_2 = a^3/6$	$I_1 = I_2 = a^4/12$		
	$W_1 = bh^2/ 24 \text{ für e} = \frac{2}{3} h$ $W_2 = hb^2/ 24$	$I_1 = bh^3/36$ $I_2 = hb^3/48$		
1 2 1	$W_1 = \frac{5}{8} R^3 = 0,625 R^3$ $W_2 = 0,5413 R^3$	$I_1 = I_2 = \frac{5}{16} \sqrt{3} R^4 = 0,5413 R^4$		
b1/2 b1/2	$W_1 = \frac{6b^2 + 6bb_1 + b_1^2}{12(3b + 2b_1)} h^2$ $f \ddot{u} = \frac{1}{3} \frac{3b + 2b_1}{2b + b_1} h$	$I_1 = \frac{6b^2 + 6bb_1 + b_1^2}{36(2b + b_1)} h^3$		
	$W_1 = \frac{BH^3 - bh^3}{6H}$	$I_1 = \frac{BH^3 - bh^3}{12}$		
1 1 1	$W_1 = W_2 = \pi D^3 / 32 \approx D^3 / 10$	$I_1 = I_2 = \pi D^4 / 64 \approx D^4 / 20$		
2 1 1 0 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	oder bei klein	$I_1 = I_2 = \frac{\pi}{64} \; (\text{D}^4 - \text{d}^4)$ er Wanddicke s: $I_1 = I_2 = \pi \text{sr}^3 \left[1 + (\text{s}/2\text{r})^2 \right] \approx \pi \text{sr}^3$		
2 1 2 2 - 1 5	$W_1 = \pi a^2 b/4$ $W_2 = \pi b^2 a/4$	$I_1 = \pi a^3 b/4$ $I_2 = \pi b^3 a/4$		
		$I_{1} = \frac{\pi}{4} (a_{1}^{3} b_{1} - a_{2}^{3} b_{2})$ er Wanddicke s: $= 2 (a - a_{2}) = 2 (b - b_{2})$ $I_{1} \approx \frac{\pi}{4} a^{2} (a + 3b) s$		
1	$W_1 = I_1 / e = 0,1908 r^3$ mit $e = r \left(1 - \frac{4}{3\pi}\right) = 0,5756 r$ Achse 1-1 = Sch	$I_1 = [\pi/8 - 8/(9\pi)] r^4 = 0,1098 r^4$ werpunktachse		

	ängen (mm) F, F _A , F _E lastizitätsmodul (N/mm²) I Fläche	₂ , α _A , α _B Winkel (°) ₃ Kräfte (N) nmoment 2. Grades (mm ⁴) nträgheitsmoment)
F S F _B	$w(x) = \frac{Fl^3}{3EI} \left[1 - \frac{3}{2} \cdot \frac{x}{l} + \frac{1}{2} \left(\frac{x}{l} \right)^3 \right]$ $F_B = F$	$f = \frac{Fl^3}{3EI}$ $\tan \alpha = \frac{Fl^2}{2EI}$
L Q F _B	$w(x) = \frac{ql^4}{8EI} \left[1 - \frac{4}{3} \cdot \frac{x}{l} + \frac{1}{3} \left(\frac{x}{l} \right)^4 \right]$ $F_B = q \cdot l$	$f = \frac{ql^4}{8EI}$ $\tan \alpha = \frac{ql^3}{6EI}$
Q ₀	$w(x) = \frac{q_0 I^4}{120EI} \left[4 - 5 \cdot \frac{x}{I} + \left(\frac{x}{I}\right)^5 \right]$ $F_B = \frac{q_0 \cdot I}{2}$	$f = \frac{q_0 l^4}{30EI} \qquad \tan \alpha = \frac{q_0 l^3}{24EI}$
F _A	$w(x) = \frac{Fl^3}{16EI} \cdot \frac{x}{l} \left[1 - \frac{4}{3} \left(\frac{x}{l} \right)^2 \right] \qquad x = \frac{Fl^3}{16EI} \cdot \frac{x}{l} \left[1 - \frac{4}{3} \left(\frac{x}{l} \right)^2 \right]$	$\leq \frac{1}{2} \qquad f = \frac{Fl^3}{48EI} \qquad \tan \alpha = \frac{Fl^2}{16EI}$
0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, ,	$\leq a$ $f = \frac{Fl^3}{3EI} \left(\frac{a}{l}\right)^2 \left(\frac{b}{l}\right)^2 \tan \alpha_1 = \frac{f}{2a} \left(1 + \frac{l}{b}\right)$
$F_{A} = \sqrt{\frac{1}{(1+b)/3a}} F_{B}$ $x_{1\text{max}} = a\sqrt{(1+b)/3a} \text{ für a > b}$	$\begin{aligned} w_2(x_2) &= \frac{F1^3}{6E1} \cdot \frac{b}{1} \left(\frac{a}{1} \right)^2 \frac{x_2}{1} \left(1 + \frac{1}{a} - \frac{x_2^2}{ab} \right) x_2 \le \\ F_A &= F \frac{b}{1} \qquad F_B = F \frac{a}{1} \end{aligned}$	b $f_{\text{max}} = f \frac{l+b}{3b} \sqrt{\frac{l+b}{3a}} \tan \alpha_2 = \frac{f}{2b} \left(1 + \frac{l}{a}\right)$
a und b für a < b vertauschen		
L/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$x = \le a < 1/2$	$\frac{I_0^3}{EI} \left(\frac{a}{I}\right)^2 \left(1 - \frac{4}{3} \cdot \frac{a}{I}\right) \tan \alpha_1 = \frac{FI^2}{2EI} \cdot \frac{a}{I} \left(1 - \frac{a}{I}\right)$ $\frac{EI_0^3}{EI} \cdot \frac{a}{I} \left[1 - \frac{4}{3} \left(\frac{a}{I}\right)^2\right] \tan \alpha_2 = \frac{FI^2}{2EI} \cdot \frac{a}{I} \left(1 - 2\frac{a}{I}\right)$
	-	2 ² (1, 2 a)
F _B X ₂ F _B	$\begin{aligned} w_1(x_1) &= \frac{F ^3}{2EI} \left\lfloor \frac{1}{3} \left(\frac{x_1}{I} \right)^3 - \frac{a}{I} \left(1 + \frac{a}{I} \right) \frac{x_1}{I} + \left(\frac{a}{I} \right) \right. \\ x_1 &\leq a & f &= \frac{F ^3}{2EI} \left(\frac{a}{I} \right)^2 \left(1 + \frac{2}{3} \cdot \frac{a}{I} \right) \\ w_2(x_2) &= \frac{F ^3}{2EI} \cdot \frac{a}{I} \cdot \frac{x_2}{I} \left(1 - \frac{x_2}{I} \right) & x_2 \leq I \\ F_A &= F_B = F \end{aligned}$	
FA 3 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-	$f = \frac{Fl^3}{3EI} \left(\frac{a}{l}\right)^2 \left(1 + \frac{a}{l}\right) \tan \alpha_A = \frac{Fl^2}{6EI} \cdot \frac{a}{l}$
$x_{1\text{max}} = L/\sqrt{3}$ F_{B} x_{2}	$w_{2}(x_{2}) = \frac{Fi^{3}}{6EI} \cdot \frac{x_{2}}{I} \left[\frac{2a}{I} + \frac{3a}{I} \cdot \frac{x_{2}}{I} - \left(\frac{x_{2}}{I} \right)^{2} \right] \times F_{A} = F \frac{a}{I} \qquad F_{B} = F \left(1 + \frac{a}{I} \right)$	$f_{2} \le a$ $f_{max} = \frac{FI^{3}}{9\sqrt{3}EI} \cdot \frac{a}{I}$ $\tan \alpha_{B} = 2\tan \alpha_{A}$ $\tan \alpha = \frac{FI^{2}}{6EI} \cdot \frac{a}{I} \left(2 + 3\frac{a}{I}\right)$
L q q	$w(x) = \frac{qI^4}{24EI} \cdot \frac{x}{I} \left[1 - 2 \left(\frac{x}{I} \right)^2 + \left(\frac{x}{I} \right)^3 \right]$	$0 \le x \le I$ $f_m = \frac{5ql^4}{384EI}$ $\tan \alpha = \frac{ql^3}{24EI}$
F _A L/2 F _B	$F_{A} = \frac{q \cdot l}{2} \qquad F_{B} = \frac{q \cdot l}{2}$	

Axiales Widerstandsmoment: $W_a = \frac{\pi \cdot d^3}{32}$

Flächeninhalt: $A = \frac{\pi \cdot d^2}{4}$

Polares Widerstandsmoment: $W_p = \frac{\pi \cdot d^3}{16}$ Axiales Flächenmoment

 $\text{Masse:} \qquad \qquad \text{m} = \frac{\pi \cdot \text{d}^2}{4} \cdot \text{I} \cdot \varrho$

2. Grades (axiales Flächenträgheitsmoment):

Dichte für Stahl: $\varrho = 7,85 \; \frac{\text{kg}}{\text{dm}^3}$

Polares Flächenmoment 2. Grades (polares Flächenträgheitsmoment).

 $I_p = \frac{\pi \cdot d^4}{32}$

 $I_a = \frac{\pi \cdot d^4}{64}$

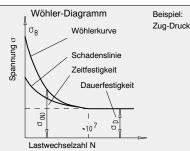
Massenmoment 2. Grades (Massenträgheitsmoment): $J = \frac{\pi \cdot d^4 \cdot l \cdot \varrho}{32}$

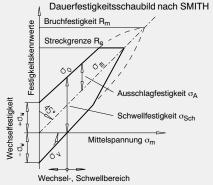
	g									1	-
d	A	W _a	I _a	Masse/I	J/I	d	A	W _a	I _a	Masse / I	J/I
mm	cm ²	cm ³	cm ⁴	kg/m	kgm ² /m	mm	cm ²	cm ³	cm ⁴	kg/m	kgm²/m
6 7	0,293 0,385	0,0212 0,0337	0,0064 0,0118	0,222 0,302	0,000001 0,000002	115 120	103,869 113,097	149,3116 169,6460	858,5414 1017,8760	81,537 88,781	0,134791 0,159807
8	0,503	0,0503	0,0201	0,395	0,000003	125	122,718	191,7476	1198,4225	96,334	0,188152
9	0,636	0,0716	0,0322	0,499	0,000005	130	132,732	215,6900	1401,9848	104,195	0,220112
10 11	0,785 0,950	0,0982 0,1307	0,0491 0,0719	0,617 0,746	0,000008 0,000011	135 140	143,139 153,938	241,5468 269,3916	1630,4406 1895,7410	112,364 120,841	0,255979 0,296061
12	1,131	0,1696	0,1018	0,888	0,000016	145	165,130	299,2981	2169,9109	129,627	0,340676
13	1,327	0,2157	0,1402	1,042	0,000022	150	176,715	331,3398	2485,0489	138,721	0,390153
14 15	1,539 1,767	0,2694 0,3313	0,1986 0,2485	1,208 1,387	0,000030 0,000039	155 160	188,692 201,062	365,5906 402,1239	2833,3269 3216,9909	148,123 157,834	0,444832 0,505068
16	2,011	0,4021	0,3217	1,578	0,000051	165	213,825	441,0133	3638,3601	167,852	0,571223
17	2,270	0,4823	0,4100	1,782	0,000064	170	226,980	482,3326	4099,8275	178,179	0,643673
18	2,545	0,5726	0,5153	1,998	0,000081	175	240,528	526,1554	4603,8598	188,815	0,722806
19 20	2,835 3,142	0,6734 0,7854	0,6397 0,7854	2,226 2,466	0,000100 0,000123	180 185	254,469 268,803	572,5553 621,6058	5152,9973 5749,8539	199,758 211,010	0,809021 0,902727
21	3,464	0,9092	0,9547	2,719	0,000150	190	283,529	673,3807	6397,1171	222,570	1,004347
22	3,801	1,0454	1,1499	2,984	0,000181	195	298,648	727,9537	7097,5481	234,438	1,114315
23	4,155	1,1945	1,3737	3,261	0,000216	200	314,159	785,3982	7853,9816	246,615	1,233075
24 25	4,524 4,909	1,3572 1,5340	1,6286 1,9175	3,551 3,853	0,000256 0,000301	210	346,361 380,133	909,1965 1045,3650	9546,5638 11499,0145	271,893 298,404	1,498811 1,805345
26	5,309	1,7255	2,2432	4,168	0,000352	230	415,476	1194,4924	13736,6629	326,148	2,156656
27 28	5,726 6,158	1,9324 2,1551	2,6087 3,0172	4,495 4,834	0,000410 0,000474	240 250	452,389 490,874	1357,1680 1533,9808	16286,0163 19174,7598	355,126 385,336	2,556905 3,010437
29	6,605	2,3944	3,4719	5,185	0,000474	260	530,929	1725,5198	22431,7569	416,779	3,521786
30	7,069	2,6507	3,9761	5,549	0,000624	270	572,555	1932,3740	26087,0491	449,456	4,095667
32 34	8,042 9,079	3,2170 3,8587	5,1472 6,5597	6,313 7,127	0,000808 0,001030	280 300	615,752 706,858	2155,1326 2650,7188	30171,8558 39760,7820	483,365 554,884	4,736981 6,242443
36	10,179	4,5804	8,2448	7,127	0,001030	320	804,248	3216,9909	51471,8540	631,334	8,081081
38	11,341	5,3870	10,2354	8,903	0,001607	340	907,920	3858,6612	65597,2399	712,717	10,298767
40	12,566	6,2832	12,5664	9,865	0,001973	360	1017,876	4580,4421	82447,9575	799,033	12,944329
42 44	13,854 15,205	7,2736 8,3629	15,2745 18,3984	10,876 11,936	0,002398 0,002889	380 400	1134,115 1256,637	5387,0460 6283,1853	102353,8739 125663,7060	890,280 986,460	16,069558 19,729202
46	16,619	9,5559	21,9787	13,046	0,003451	420	1385,442	7273,5724	152745,0200	1087,572	23,980968
48 50	18,096 19,635	10,8573 12,2718	26,0576 30,6796	14,205 15,413	0,004091 0,004817	440 460	1520,531 1661,903	8362,9196 9555,9364	183984,2320 219786,6072	1193,617 1304,593	28,885524 34,506497
52	21,237	13,9042	35,8908	16,671	0,005635	480	1809,557	10857,3442	260576,2608	1420,503	40,910473
54	22,902	15,4590	41,7393	17,978	0,006553	500	1693,495	12271,8463	306796,1572	1541,344	48,166997
56 58	24,630 26,421	17,2411 19,1551	48,2750 55,5497	19,335 20,740	0,007579 0,008721	520 540	2123,717 2290,221	13804,1581 15458,9920	358908,1107 417392,7849	1667,118 1797,824	56,348573 65,530667
60	28,274	21,2058	63,6173	22,195	0,009988	560	2463,009	17241,0605	482749,6930	1933,462	75,791702
62	30,191	23,3978	72,5332	23,700	0,011388	580	2642,079	19155,0758	555497,1978	2074,032	87,213060
64 66	32,170 34,212	25,7359 28,2249	82,3550 93,1420	25,253 26,856	0,012930	600 620	2827,433 3019,071	21205,7504 23397,7967	636172,5116 725331,6994	2219,535 2369,970	99,879084 113,877076
68	36,317	30,8693	104,9556	28,509	0,016478	640	3216,991	25735,9270	823549,6636	2525,338	129,297297
70	38,485	33,6739	117,8588	30,210	0,018504	660	3421,194	28224,8538	931420,1743	2685,638	146,232967
72 74	40,715 43,008	36,6435 39,7828	131,9167 147,1963	31,961 33,762	0,020711 0,023110	680 700	3631,681 3848,451	30869,2894 33673,9462	1049555,8389 1178588,1176	2850,870 3021,034	164,780267 185,038334
76	45,365	43,0964	163,7662	35,611	0,025711	720	4071,504	36643,5367	1319167,3201	3196,131	207,109269
78	47,784	46,5890	181,6972	37,510	0,028526	740	4300,840	39782,7731	1471962,6056	3376,160	231,098129
80 82	50,265 52,810	50,2655 54,1304	201,0619 221,9347	39,458 41,456	0,031567 0,034844	760 780	4536,460 4778,362	43096,3680 46589,0336	1637661,9830 1816972,3105	3561,121 3751,015	257,112931 285,264653
84	55,418	58,1886	244,3920	43,503	0,034844	800	5026,548	50265,4824	2010619,2960	3945,840	315,667229
86	58,088	62,4447	268,5120	45,599	0,042156	820	5281,017	54130,4268	2219347,4971	4145,599	348,437557
88	60,821	66,9034	294,3748	47,745	0,046217	840	5541,769	58188,5791	2443920,3207	4350,289	383,695490
90 92	63,617 66,476	71,5694 76,4475	322,0623 351,6586	49,940 52,184	0,050564 0,055210	860 880	5808,805 6082,123	62444,6517 66903,3571	2685120,0234 2943747,7113	4559,912 4774,467	421,563844 462,168391
95	70,882	84,1726	399,8198	55,643	0,062772	900	6361,725	71569,4076	3220623,3401	4993,954	505,637864
100	78,540	98,1748	490,8739	61,654	0,077067	920	6647,610	76447,5155	3516585,7151	5218,374	552,103957
105 110	86,590 95,033	113,6496 130,6706	596,6602 718,6884	67,973 74,601	0,093676 0,112834	940 960	6939,778 7238,229	81542,3934 86858,7536	3832492,4910 4169220,1722	5447,726 5682,010	601,701321 654,567567
	20,000	150,0.00	1.0,0004	,	3,2334	980	7542,964	92401,3084	4527664,1126	5921,227	710,843266
						1000	7853,982	98174,7703	4908738,5156	6165,376	770,671947
50										Siemen	s MD - 2009

Für die Bauteilbeanspruchung vorliegende Spannungsverläufe: Belastungsfall

Oberspannung: Mittelspannung: Unterspannung:

 $\sigma_{\rm o} = \sigma_{\rm sch}$ $\sigma_{\rm m} = \sigma_{\rm sch}/2$


wechselnd $\sigma_0 = + \sigma_w$ $\sigma_m = 0$ $\sigma_{II} = - \sigma_{w}$


allg. schwingend $\sigma_{o} = \sigma_{m} + \sigma_{a}$ $\sigma_{m} = \sigma_{v}$ (Vorspannung) $\sigma_{\rm u} = \sigma_{\rm m} - \sigma_{\rm a}$

Für die Bauteilberechnung maßgebende Festigkeitskennwerte des Werkstoffes:

Schwellfestigkeit σ_{Sch} Wechselfestigkeit σ_W Bruchfestigkeit R_m Ausschlagfestigkeit σ_{Δ} Dauerfestigkeitskennwerte σ_{D} Streckgrenze R_e; R_{p0.2}

Bei Beanspruchungen unterhalb der Schadenslinie erfolgt noch keine Vorschädigung des Werkstoffes

Zulässige Benung am Bauteil anspruchung

Gestaltfestigkeit des Bauteils

 $\frac{\sigma_D \cdot b_0 \cdot b_d}{S \cdot \beta_k}$

mit: σ_D = Maßgebender Dauerfestigkeitswert des Werkstoffes

> b₀ = Oberflächenzahl (≤ 1) b_d = Größenzahl (≤ 1)

 $\beta_k = \text{Kerbwirkungszahl} (\geq 1)$ S = Sicherheit (1,2 ... 2)

Vergleichsspannung σ_{V}

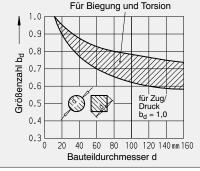
Vergleichsspan-

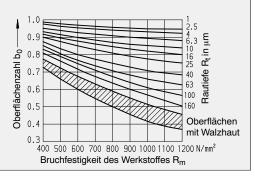
 σ_{v}

Für den häufig auftretenden Belastungsfall der Überlagerung von Biegung und Torsion gilt nach der Gestaltänderungsenergiehypothese (GEH):

σ_{zul.}

mit:


σ = Einachsige Biegespannung


 τ = Torsionspannung

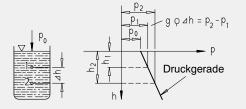
α₀ = Anstrengungsverhältnis nach Bach

$$\sigma_{v} = \sqrt{\sigma^2 + 3 (\alpha_0 \tau)^2}$$

Biegung wechselnd, Torsion schwellend: $\alpha_0 \approx 0.7$ Biegung wechselnd, Torsion wechselnd: $\alpha_0 \approx 1.0$ Biegung statisch, Torsion wechselnd: $\alpha_0 \approx 1.6$

Siemens MD · 2009

51


5

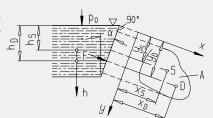
Hydraulik	Seite
Hydrostatik (Quelle: K. Gieck, Technische Formelsammlung, 29. Auflage, Gieck Verlag, Heilbronn)	53
Hydrodynamik (Quelle: K. Gieck, Technische Formelsammlung, 29. Auflage, Gieck Verlag, Heilbronn)	54

Hydrostatik

Druckverteilung in einer Flüssigkeit

$$p_1 = p_0 + g \varrho h_1$$

 $P_2 = p_1 + g \varrho (h_2 - h_1) = p_1 + g \varrho \Delta h$

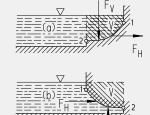


Flüssigkeitsdruckkraft auf ebene Flächen

Unter der Flüssigkeitsdruckkraft F wird die Kraft verstanden, die allein die Flüssigkeit - also ohne Berücksichtigung des Druckes p₀ - auf die Wand ausübt.

$$F = g \varrho y_s A \cos \alpha = g \varrho h_s A$$

$$y_D = \frac{I_X}{y_s A} = y_s + \frac{I_s}{y_s A}$$
 ; $x_D = \frac{I_{xy}}{y_s A}$ m, mm


Flüssigkeitsdruckkraft auf gekrümmte Flächen

Die Flüssigkeitsdruckkraft auf die gekrümmte Fläche (1 - 2) wird in eine horizontale Komponente F_H und eine vertikale Komponente F_V zerlegt.

F_V ist gleich der Gewichtskraft der über der Fläche (1 - 2), befindlichen Flüssigkeit (a) oder befindlich zu denkenden Flüssigkeit (b) mit dem Volumen V. Die Wirkungslinie verläuft durch den Volumenschwerpunkt.

$$F_V = g \varrho V$$
 (N, kN)

F_H ist gleich der Flüssigkeitsdruckkraft auf die zu F_H senkrechte Projektion der betrachteten Fläche (1 - 2).

Auftrieb

Die Auftriebskraft FA ist gleich der Gewichtskraft der verdrängten Flüssigkeiten mit den Dichten ϱ und ϱ '.

$$F_A = g \varrho V + g \varrho' V' \qquad (N, kN)$$

Handelt es sich bei dem Fluid mit der Dichte ϱ ' um ein Gas, dann gilt:

$$F_A \approx g \varrho V$$
 (N, kN)

Mit ok Dichte des Körpers gilt:

 $\varrho = \varrho_k \text{ der K\"{o}rper schwebt}$

 $\varrho < \varrho_k$ der Körper sinkt

in der Flüssigkeit

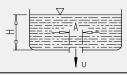
= Schwerpunkt der Fläche A

D = Druckmittelpunkt I_x, I_s = Trägheitsmomente

= Zentrifugalmoment der Fläche A bezogen auf die x- und y-Achse

Siemens MD · 2009

53

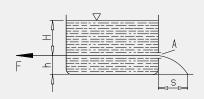

6

Ausfluss von Flüssigkeiten aus Gefäßen

Gefäß mit Bodenöffnung

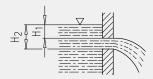
$$v = \phi \sqrt{2 g H}$$

$$\dot{V} = \phi \epsilon A \sqrt{2 g H}$$


Gefäß mit kleiner Seitenöffnung

$$v\,=\,\phi\,\sqrt{2\,\,g\,H}$$

$$s = 2\sqrt{H h}$$
 (ohne jegliche Reibwerte)


$$\dot{V} = \phi \; \epsilon \; A \; \sqrt{2 \; g \; H}$$

$$F = \rho \dot{V} V$$

Gefäß mit großer Seitenöffnung

$$\dot{V} = \frac{2}{3} \epsilon b \sqrt{2 g} (H_2^{3/2} - H_1^{3/2})$$

Gefäß mit Überdruck auf Flüssigkeitsspiegel

$$v = \phi \sqrt{2 (g H + \frac{p_{\ddot{u}}}{\varrho})}$$

$$\dot{V} \,=\, \phi \,\, \epsilon \,\, A \,\, \sqrt{2 \,\, \left(\, g \,\, H \,\, + \frac{p_{\tilde{u}}}{\varrho} \right)} \, \label{eq:Variation}$$

Gefäß mit Überdruck an Ausflussstelle

$$v = \varphi \sqrt{2 \frac{p_{\ddot{u}}}{\varrho}}$$

$$\dot{V} \,=\, \phi \,\, \epsilon \,\, A \,\, \sqrt{2 \,\,\, \frac{p_{\ddot{u}}}{\varrho}} \label{eq:Variation}$$

- v: Ausflussgeschwindigkeit
- g: Fallbeschleunigung
- o: Dichte
- pii: Überdruck gegenüber Außendruck
- φ : Flüssigkeits-Reibungsbeiwert (für Wasser $\varphi = 0.97$)
- ε: Einschnürzahl (ε = 0,62 für scharfkantige Öffnung) (ε = 0,97 für gut gerundete Öffnung)
- F: Reaktionskraft
- V: Volumenstrom
- b: Öffnungsbreite

Inhaltsübersicht Teil 7

Elektrotechnik	Seite
Grundformeln	56
Drehzahl, Leistung und Wirkungsgrad von Elektromotoren	57
Bauformen und Aufstellung von umlaufenden elektrischen Maschinen	58
Schutzarten für elektrische Betriebsmittel (Berührungs- und Fremdkörperschutz)	59
Schutzarten für elektrische Betriebsmittel (Wasserschutz)	60

Ohm	nsches Gesetz:			γ	Q
U =	$I \cdot R$ $I = \frac{U}{R}$	$R = \frac{U}{I}$	Stoff	$\left[\frac{m}{\Omega\;mm^2}\right]$	$\left[\frac{\Omega \text{ mm}^2}{\text{m}}\right]$
Reih	enschaltung von Wide	erständen:	a) Metalle		
R =	$R_1 + R_2 + R_3 + + R_4$	R_n	Aluminium	36	0,0278
	Gesamtwiderstand $[\Omega]$		Bismut	0,83	1,2
			Blei	4,84	0,2066
K _n =	= Einzelwiderstand $[\Omega]$		Cadmium Eisendraht	13 6,710	0,0769
Para	Illelschaltung von Wid	erständen:	Gold	43,5	0,150,1 0,023
1.	.	_	Kupfer	58	0,01724
 	$\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$	1	Magnesium	22	0,045
	Gesamtwiderstand $[\Omega]$	"	Nickel	14,5	0,069
			Platin	9,35	0,107
$ R_n $	= Einzelwiderstand $[\Omega]$		Quecksilber	1,04	0,962
Flak	trische Leistung:		Silber Tantal	61 7,4	0,0164 0,135
Elek	urische Leistung:	Strom-	Wolfram	18,2	0,155
	Leistung	aufnahme	Zink	16,5	0,061
			Zinn	8,3	0,12
Gleichstrom		$I = \frac{P}{II}$	b) Legierungen		
chs	$P = U \cdot I$	$I = \overline{U}$	Aldrey (AlMgSi)	30,0	0,033
]ei			Bronze I	48	0,02083
			Bronze II Bronze III	36 18	0,02778 0,05556
			Konstantan (WM 50)	2,0	0,50
│ . ╒			Manganin	2,32	0,43
Einphasen- Wechselstrom		_	Messing	15,9	0,063
las els	$P = U \cdot I \cdot \cos \varphi$	$I = \frac{P}{U \cdot \cos \varphi}$	Neusilber (WM 30)	3,33	0,30
dri sks	'	U·cos φ	Nickel-Chrom	0,92	1,09
ШŠ			Nickelin (WM 43)	2,32	0,43
_			Platinrhodium	5,0	0,20
			Stahldraht (WM 13) Wood-Metall	7,7 1,85	0,13 0,54
			VVOOd-IVICIAII	1,00	0,54
l lo		D	c) Sonstige Leiter		
Drehstrom	$P = 1,73 \cdot U \cdot I \cdot \cos \varphi$	I = 1	Graphit	0,046	22
le le		1,73 · U · cos φ	Kohlenstifte homog.	0,015	65
			Retortengraphit	0,014	70
Wide	erstand eines Leiters	L		1	I
R =	$\frac{1}{\gamma \cdot A} = \frac{1 \cdot \varrho}{A}$				
	Widerstand (Ω)				
	Länge des Leiters (m) Elektrische Leitfähigke	it (m/O mm²\			
	Querschnitt des Leiters				
	Spezifischer elektrische				
	$(\Omega \text{ mm}^2/\text{m})$				
	· · · · · · · · · · · · · · · · · · ·		l		

56

$$n = \frac{f \cdot 60}{p}$$

 $n = Drehzahl (min^{-1})$

f = Frequenz (Hz)

p = Anzahl der Polpaare

Beispiel: f = 50 Hz, p = 2

$$n = \frac{50 \cdot 60}{2} = 1500 \, \text{min}^{-1}$$

Wirkungsgrad:

$$\eta = \frac{P_{ab}}{P_{ab}} \cdot 100 \left[\%\right]^{1)}$$

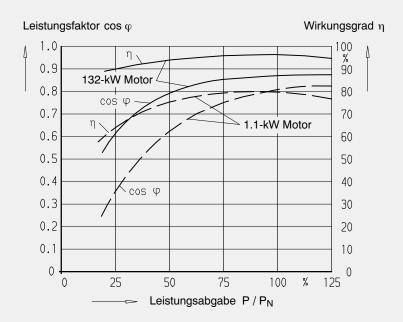
Beispiel:

Wirkungsgrad und Leistungsfaktor für einen vierpoligen 1,1-kW-Motor und einen 132-kW-Motor in Abhängigkeit von der Belastung

Leistung:

Abgegebene Leistung 1)

Gleichstrom:


$$P_{ab} = U \cdot I \cdot \eta$$

Einphasenwechselstrom:

$$\mathsf{P}_{\mathsf{ab}} = \mathsf{U} \cdot \mathsf{I} \cdot \mathsf{cos} \phi \cdot \mathsf{\eta}$$

Drehstrom:

$$P_{ab} = 1.73 \cdot U \cdot I \cdot \cos \varphi \cdot \eta$$

1) P_{ab} = An der Welle des Motors abgegebene mechanische Leistung P_{zu} = Aufgenommene elektrische Leistung

Siemens MD · 2009

57

Bauformen und Aufstellung von umlaufenden elektrischen Maschinen (Auszug aus DIN EN 50347)									
	Maschinen mit Lagerschilden, waagerechte Anordnung								
Е	Bauform Erklärung								
Kurz- zei- chen	Bild	Lagerung	Ständer (Gehäuse) Welle Allgemeine Ausführung Bauform / Erklä Befestigung of Aufstellung						
В3		2 Lager- schilde	mit Füßen	freies Wellen- ende	-	Aufstellung und Unterbau			
B 5		2 Lager- schilde	ohne Füße	freies Wellen- ende	Befestigungsflansch in Lagernähe, Zugang von der Gehäuseseite	Flanschanbau			
В6		2 Lager- schilde	mit Füßen	freies Wellen- ende	Bauform B3, nötigenfalls Lagerschilde um -90° gedreht	Befestigung an der Wand, Füße auf Antriebsseite gesehen links			
В7		2 Lager- schilde	mit Füßen	freies Wellen- ende	Bauform B3, nötigenfalls Lagerschilde um 90° gedreht	Befestigung an der Wand, Füße auf Antriebsseite gesehen rechts			
В8		2 Lager- schilde	mit Füßen	freies Wellen- ende	Bauform B3, nötigenfalls Lagerschilde um 180° gedreht	Befestigung an der Decke			
B 35		2 Lager- schilde	mit Füßen	freies Wellen- ende	Befestigungsflansch in Lagernähe, Zugang von der Gehäuseseite	Aufstellung auf Unterbau mit zusätzlichem Flansch			

	Maschinen mit Lagerschilden, senkrechte Anordnung								
Е	Bauform Erklärung								
Kurz- zei- chen	Bild	Lager			Bauform / Erklärung Befestigung oder Aufstellung				
V 1		2 Lager- schilde	ohne Füße	freies Wellen- ende unten	Befestigungsflansch in Lagernähe auf Antriebsseite, Zugang von der Gehäuseseite	Flanschanbau unten			
V 3	77	2 Lager- schilde	ohne Füße	freies Wellen- ende oben	Befestigungsflansch in Lagernähe auf Antriebsseite, Zugang von der Gehäuseseite	Flanschanbau oben			
V 5		2 Lager- schilde	mit Füßen	freies Wellen- ende unten	-	Befestigung an der Wand oder auf Unterbau			
V 6		2 Lager- schilde	mit Füßen	freies Wellen- ende oben	-	Befestigung an der Wand oder auf Unterbau			

Elektrotechnik

Schutzarten für elektrische Betriebsmittel (Berührungs- und Fremdkörperschutz)

Schutzarten für elektrische Betriebsmittel (Auszug aus DIN EN 60529)									
Bezeichnungsbeispiel	Schutzart DIN EN 60529 IP 4 4								
Benennung ————									
DIN-Nummer —									
Kennbuchstaben —									
Erste Kennziffer —————									
Zweite Kennziffer									
Ein Gehäuse mit dieser Bezeichn über 1 mm Durchmesser und geg	ung ist gegen das Eindringen von festen Fremdkörpern en Spritzwasser geschützt.								

Schutzgrade für den Berührungs- und Fremdkörperschutz (erste Kennziffer)

Erste Kennziffer	Schutzgrad (Berührungs- und Fremdkörperschutz)
0	Kein besonderer Schutz
1	Schutz gegen Eindringen von festen Fremdkörpern mit einem Durchmesser größer als 50 mm (große Fremdkörper) 1) Kein Schutz gegen absichtlichen Zugang, z.B. mit der Hand, jedoch Fernhalten großer Körperflächen
2	Schutz gegen Eindringen von festen Fremdkörpern mit einem Durchmesser größer als 12 mm (mittelgroße Fremdkörper) 1) Fernhalten von Fingern oder ähnlichen Gegenständen
3	Schutz gegen Eindringen von festen Fremdkörpern mit einem Durchmesser größer als 2,5 mm (kleine Fremdkörper) 1) 2) Fernhalten von Werkzeugen, Drähten oder ähnlichem mit einer Dicke größer als 2,5 mm
4	Schutz gegen Eindringen von festen Fremdkörpern mit einem Durchmesser größer als 1 mm (kornförmige Fremdkörper) 1) 2) Fernhalten von Werkzeugen, Drähten oder ähnlichem mit einer Dicke größer als 1 mm
5	Schutz gegen schädliche Staubablagerungen. Das Eindringen von Staub ist nicht vollkommen verhindert; aber der Staub darf nicht in solchen Mengen eindringen, dass die Arbeitsweise des Betriebsmittels beeinträchtigt wird (staubgeschützt). 3) Vollständiger Berührungsschutz
6	Schutz gegen Eindringen von Staub (staubdicht) Vollständiger Berührungsschutz

- Bei Betriebsmitteln der Schutzgrade 1 bis 4 sind gleichmäßig oder ungleichmäßig geformte Fremdkörper mit drei senkrecht zueinander stehenden Abmessungen größer als die entsprechenden Durchmesser-Zahlenwerte am Eindringen gehindert.
- Für die Schutzgrade 3 und 4 fällt die Anwendung dieser Tabelle auf Betriebsmittel mit Abflusslöchern oder Kühlluftöffnungen in die Verantwortung des jeweils zuständigen Fachkomitees.
- 3) Für den Schutzgrad 5 fällt die Anwendung dieser Tabelle auf Betriebsmittel mit Abflusslöchern in die Verantwortung des jeweils zuständigen Fachkomitees.

Elektrotechnik

Schutzarten für elektrische Betriebsmittel (Wasserschutz)

	Schutzarten für elektrische Betriebsmittel (Auszug aus DIN EN 60529)
Bezeichnung	gsbeispiel Schutzart DIN EN 60529 IP 4 4
Benennung	
DIN-Nummer	
Kennbuchsta	iben
Erste Kennzif	ffer ———————————————————————————————————
Zweite Kennz	ziffer
	mit dieser Bezeichnung ist gegen das Eindringen von festen Fremdkörpern urchmesser und gegen Spritzwasser geschützt,
	Schutzgrade für den Wasserschutz (zweite Kennziffer)
Zweite Kennziffer	Schutzgrad (Wasserschutz)
0	Kein besonderer Schutz
1	Schutz gegen tropfendes Wasser, das senkrecht fällt. Es darf keine schädliche Wirkung haben (Tropfwasser).
2	Schutz gegen tropfendes Wasser, das senkrecht fällt. Es darf bei einem bis zu 15° gegenüber einer normalen Lage gekippten Betriebsmittel (Gehäuse) keine schädliche Wirkung haben (Schrägfallendes Tropfwasser)
3	Schutz gegen Wasser, das in einem beliebigen Winkel bis 60° zur Senkrechten fällt. Es darf keine schädliche Wirkung haben (Sprühwasser).
4	Schutz gegen Wasser, das aus allen Richtungen gegen das Betriebsmittel (Gehäuse) spritzt. Es darf keine schädliche Wirkung haben (Spritzwasser).
5	Schutz gegen einen Wasserstrahl aus einer Düse, der aus allen Richtungen gegen das Betriebsmittel (Gehäuse) gerichtet wird. Er darf keine schädliche Wirkung haben (Strahlwasser).
6	Schutz gegen schwere See oder starken Wasserstrahl. Wasser darf nicht in schädlichen Mengen in das Betriebsmittel (Gehäuse) ein- dringen (Überfluten).
7	Schutz gegen Wasser, wenn das Betriebsmittel (Gehäuse) unter festgelegten Druck- und Zeitbedingungen in Wasser getaucht wird. Wasser darf nicht in schädlichen Mengen eindringen (Eintauchen).
8	Das Betriebsmittel (Gehäuse) ist geeignet zum dauernden Untertauchen in Wasser bei Bedingungen, die durch den Hersteller zu beschreiben sind (Untertauchen). 1)
	hutzgrad bedeutet normalerweise ein luftdicht verschlossenes Betriebsmittel. Bei en Betriebsmitteln darf jedoch Wasser eindringen, sofern es keine schädliche at.

8

Inhaltsübersicht Teil 8

Werkstofftechnik	Seite
Umrechnung von Dauerfestigkeitswerten verschiedener Werkstoffe	62
Mechanische Eigenschaften von Vergütungsstählen	63
Dauerfestigkeitsschaubilder der Vergütungsstähle	64
Allgemeine Baustähle	65
Dauerfestigkeitsschaubilder der allgemeinen Baustähle	66
Einsatzstähle	67
Dauerfestigkeitsschaubilder der Einsatzstähle	68
Kaltgewalzte Stahlbänder	69
Stahlguss für allgemeine Verwendungszwecke	69
Runder Federstahldraht	70
Gusseisen mit Lamellengraphit	71
Gusseisen mit Kugelgraphit	71
Kupfer-Zinn- und Kupfer-Zinn-Zink-Gusslegierungen	72
Kupfer-Aluminium-Gusslegierungen	72
Aluminium-Gusslegierungen	73
Blei- und Zinn-Gusslegierungen für Verbundgleitlager	74
Umwertung von Härtewerten	75
Stoffwerte fester und flüssiger Stoffe	76
Längenausdehnungskoeffizient	77
Zustandsschaubild Eisen-Kohlenstoff	77
Grübchen- und Zahnfußdauerfestigkeitswerte von Stählen	77
Wärmebehandlung beim Einsatzhärten von Einsatzstählen	78

Werkstofftechnik

Umrechnung von Dauerfestigkeitswerten verschiedener Werkstoffe

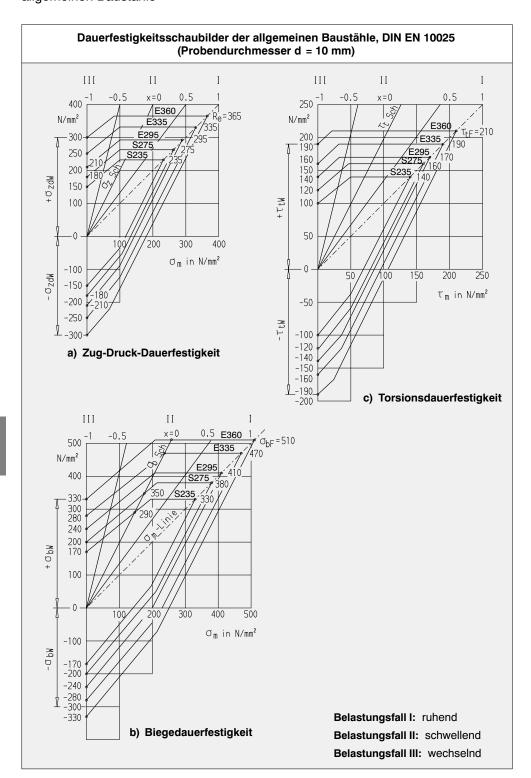
Umrechnung von Dauerfestigkeitswerten verschiedener Werkstoffe											
We sheet off	Zug	3)	В	iegung ¹⁾		Torsion 1)					
Werkstoff	σ_{W}	σ_{Sch}	σ_{bW}	σ_{bSch}	σ_{bF}	$ au_{W}$	$ au_{Sch}$	τ_{F}			
Baustahl	0,45 · R _m	1,3 · σ _W	0,49 · R _m	1,5 · σ _{bW}	1,5 · R _e	0,35 · R _m	1,1 · τ _W	0,7 · R _e			
Vergütungs- stahl	0,41 · R _m	1,7 · σ _W	0,44 · R _m	1,7 · σ _{bW}	1,4 · R _e	0,30 · R _m	1,6·τ _W	0,7 · R _e			
Einsatzstahl	0,40 · R _m	1,6 · σ _W	0,41 · R _m	1,7 · σ _{bW}	1,4 · R _e	0,30 · R _m	1,4·τ _W	0,7 · R _e			
Grauguss	0,25 · R _m	1,6 · σw	0,37 · R _m	1,8 · σ _{bW}	_	0,36 · R _m	1,6·τ _W	-			
Leichtmetall	0,30 · R _m	_	0,40 · R _m	-	_	0,25 · R _m	_	-			

- 1) Für polierte Rundproben von etwa 10 mm Druchmesser
- 2) Im einsatzgehärteten Zustand. Ermittelt an Rundprobe von etwa 30 mm Durchmesser. $R_{\rm m}$ und $R_{\rm e}$ vom Kernmaterial.
- 3) Für Druck ist σ_{Sch} größer, z.B. bei Federstahl $\sigma_{dSch} \approx$ 1,3 · σ_{Sch} Für Grauguss $\sigma_{dSch} \approx$ 3 · σ_{Sch}

Factickeitowarte	Belastungsart						
Festigkeitswerte	Zug	Biegung	Torsion				
Zugfestigkeit	R _m	-	-				
Streckgrenze Fließgrenze	R _e	σ _b F	$ au_{F}$				
Wechselfestigkeit	σ_{W}	σ_{bW}	τ _W				
Schwellfestigkeit	♂Sch	^Ơ bSch	[⊤] Sch				

Werkstofftechnik Mechanische Eigenschaften von Vergütungsstählen

Vergütungsstähle (Auszug aus DIN EN 10083) Mechanische Eigenschaften der Stähle in vergütetem Zustand											
Durchmesser											
Werkst	off-	bis 16 mm			über 160 bis 250 mm						
Kurz- zeichen	Nr.	Streck- grenze (0,2 Gr) N/mm ² min. R _e R _{p 0,2}	Zug- festigkeit N/mm ² R _m	Streck- grenze (0,2 Gr) N/mm ² min. Re Rp 0,2	Zug- festigkeit N/mm ² R _m	Streck- grenze (0,2 Gr) N/mm² min. R _e R _{p 0,2}	Zug- festigkeit N/mm ² R _m	Streck- grenze (0,2 Gr) N/mm ² min. R _e R _{p 0,2}	Zug- festigkeit N/mm ² R _m	$\begin{array}{c} \text{Streck-}\\ \text{grenze}\\ (0,2\\ \text{Gr})\\ \text{N/mm}^2\\ \text{min.}\\ \text{R}_e\\ \text{R}_{p0,2} \end{array}$	Zug- festigkeit N/mm ² R _m
C22 C35 C45 C55 C60	1.0402 1.0501 1.0503 1.0535 1.0601	350 430 500 550 580	550 - 700 630 - 780 700 - 850 800 - 950 850 -1000	300 370 430 500 520	500 - 650 600 - 750 650 - 800 750 - 900 800 - 950	- 320 370 430 450	- 550 - 700 630 - 780 700 - 850 750 - 900	1 1 1 1	- - - -	1 1 1 1 1	- - - -
C22E C35E C35R C45E	1.1151 1.1181 1.1180 1.1191	350 430 430 500	550 - 700 630 - 780 630 - 780 700 - 850	300 370 370 430	500 - 650 600 - 750 600 - 750 650 - 800	- 320 320 370	- 550 - 700 550 - 700 630 - 780	- - -	- - -		- - -
C45R C55E C55R C60E	1.1201 1.1203 1.1209 1.1221	500 550 550 580	700 - 850 800 - 950 800 - 950 850 -1000	430 500 500 520	650 - 800 750 - 900 750 - 900 800 - 950	370 430 430 450	630 - 780 700 - 850 700 - 850 750 - 900	- - -	- - -	- - -	- - -
C60R 28Mn6	1.1223 1.1170	580 590	850 – 1000 780 – 930	520 490	800 - 950 690 - 840	450 440	750 – 900 640 – 790	-	-		_
38Cr2 46Cr2 34Cr4	1.7003 1.7006 1.7033	550 650 700	800 - 950 900 -1100 900 -1100	450 550 590	700 - 850 800 - 950 800 - 950	350 400 460	600 - 750 650 - 800 700 - 850	- - -	- - -	- - -	- - -
34CrS4 37Cr4 37CrS4 41Cr4	1.7037 1.7034 1.7038 1.7035	700 750 750 800	900 –1100 950 –1150 950 –1150 1000 –1200	590 630 630 660	800 - 950 850 - 1000 850 - 1000 900 - 1100	560	700 - 850 750 - 900 750 - 900 800 - 950	- - -	- - -		- - -
41CrS4 25CrMo4 34CrMo4	1.7039 1.7218 1.7220	700 800	900 –1100 1000 –1200	660 600 650	900 – 1100 800 – 950 900 – 1100	560 450 550	700 - 850 800 - 950	400 500	650 - 800 750 - 900	- 450	- 700 - 850
34CrMoS4 42CrMo4 42CrMoS4 50CrMo4	1.7226 1.7225 1.7227 1.7228	900 900 900	1000 – 1200 1100 – 1300 1100 – 1300 1100 – 1300	650 750 750 780	900-1100 1000-1200 1000-1200 1000-1200	650	800 - 950 900 - 1100 900 - 1100 900 - 1100	500 550 550 650	750 - 900 800 - 950 800 - 950 850 -1000	450 500 500 550	700 - 850 750 - 900 750 - 900 800 - 950
36CrNiMo4 34CrNiMo6 30CrNiMo8			1100 – 1300 1200 – 1400 1250 – 1450	800 900 1050	1000-1200 1100-1300 1250-1450	700 800 900	900 – 1100 1000 – 1200 1100 – 1300	600 700 800	800 - 950 900 -1100 1000 -1200	550 600 700	750 – 900 800 – 950 900 –1100
51CrV4 30CrMoV9	1.8159 1.7707	900 1050	1100-1300 1250-1450	800 1020	1000-1200 1200-1450	700 900	900-1100 1100-1300	650 800	850 – 1000 1000 – 1200	600 700	800 – 950 900 –1100


Dauerfestigkeitsschaubilder der Vergütungsstähle, DIN EN 10083 (in vergütetem Zustand, Probendurchmesser d = 10 mm) П Ш N/mm^2 p0.2=1050 1000 700 N/mm^2 600 800 41Cr4 500 600 400 C45E 400 +OzdW 300 200 245 200 600 800 1000 100 σ_{m} in N/mm² Mpz D--200 100 400 500 600 700 $\tau_{\rm m}$ in N/mm 2 -400 -100 Ttw -600 -200 a) Zug-Druck-Dauerfestigkeit -300 c) Torsionsdauerfestigkeit -400 Ш Π Die nicht dargestellten Vergütungsstähle können wie folgt eingesetzt 1400 werden: N/mm² 1200 34CrNiMo6 wie 30CrNiMo8 30CrMoV4 wie 30CrNiMo8 1000 42CrMo4 wie 50CrMo4 36CrNiMo4 wie 50CrMo4 800 51CrV4 wie 50CrMo4 34CrMo4 wie 41Cr4 600 28Cr4 wie 46Cr2 400 MQD+ C45 wie C45E C22 wie C22E 200 C60 und C50 liegen etwa zwischen C45E und 46Cr2. 0 1200 800 1000 1400 200 400 600 C40, 32Cr2, C35, C30 und σ_{m} in N/mm² C25 liegen etwa zwischen 200 Map-C22E und C45E. -400 Belastungsfall I: ruhend Belastungsfall II: schwellend b) Biegedauerfestigkeit Belastungsfall III: wechselnd

Allgemeine Baustähle (Auszug aus DIN EN 10025) Zugfestigkeit R_m Obere Streckgrenze Be-Werkstoff-R_{eH} in N/mm² (Minimum) in N/mm² handfür für lungs-Erzeugnisdicken Erzeugnisdicken zu-Kurz-Kurzzeistand in mm in mm zeichen chen nach Nr. DIN EN (Deutsch-≥3 > 40 >63 > 80 >16 1) <3 >100 ≤16 >100 land) 10025 ≤ 63 ≤100 ≤100 ≤40 ≤80 290... 310... 175 St33 1.0035 S185 U, N 185 540 510 2) St37-2 1.0037 S235JR U, N 235 225 215 205 195 1.0036 USt37-2 S235JRG1 U. N 360... 340... RSt37-2 1.0038 S235JRG2 U, N, 510 470 Vach Vereinbarung 235 225 215 215 215 Nach Vereinbarung St37-3U 1.0114 S235JO U 1.0116 S235J2G3 St37-3N Ν St44-2 1.0044 S275JR U, N 430... 410... 275 265 255 245 235 St44-3U 1.0143 S275JO U 580 560 St44-3N 1.0144 S275J2G3 Ν St52-3U 1.0553 S355JO U 510... 490... 355 345 335 325 315 680 630 1.0570 S355J2G3 St52-3N Ν 490... 470... St50-2 1.0050 E295 U, N 295 285 275 265 255 660 610 590... 570... St60-2 1.0060 E335 U. N 335 325 315 295 305 770 710 670... 690... St70-2 1.0070 E360 U. N 365 345 355 335 325 900 830

¹⁾ N normalgeglüht; U warmgewalzt, unbehandelt

²⁾ Dieser Wert gilt nur für Dicken bis 25 mm

WerkstofftechnikDauerfestigkeitsschaubilder der allgemeinen Baustähle

Einsatzstähle

Einsatzstähle Gütevorschriften (Auszug aus DIN EN 10084)										
Werkstoff-		1) bei Ø 11		be	i ∅ 30	bei ∅ 63				
Kurz- zeichen (Deutsch- land)	Nr.	Kurzzei- chen nach DIN EN 10084	Behandlungs- zustand	Streck- grenze R _e N/mm ² min.	Zugfestig- keit R _m N/mm ²	Streck- grenze R _e N/mm ² min.	Zugfestig- keit R _m N/mm ²	Streck- grenze R _e N/mm ² min.	Zugfestig- keit R _m N/mm ²	
C10 Ck10	1.0301 1.1121	C10 C10E		390 390	640 – 790 640 – 790	295 295	490 - 640 490 - 640		-	
C15 Ck15 Cm15 15Cr13	1.0401 1.1141 1.1140 1.7015	C15 C15E C15R 15Cr13	IIN EN 10084	440 440 440 510	740 - 890 740 - 890 740 - 890 780 -1030 880 -1180	355 355 355 440	590 - 790 590 - 790 590 - 790 690 - 890 780 -1080	- - - -	- - - - 640 - 940	
16MnCrS5 20MnCr5 20MnCrS5	1.7139 1.7147 1.7149	16MnCrS5 20MnCr5 20MnCrS5	Einzelheiten siehe DIN EN 10084	635 735 735	880 – 1180 1080 – 1380 1080 – 1380	590 685	780 – 1080 980 – 1280 980 – 1280	440 540 540	640 – 940 780 –1080 780 –1080	
20MoCr4 20MoCrS4 25MoCrS4	1.7321 1.7323 1.7325	20MoCr4 20MoCrS4 25MoCrS4	Einze	635 635 735	880 -1180 880 -1180 1080 -1380	590 590 685	780 –1080 780 –1080 980 –1280	- - -	- - -	
15CrNi6 18CrNi8	1.5919 1.5920	15CrNi6 18CrNi8		685 835	960 –1280 1230 –1480	635 785	880 – 1180 1180 – 1430	540 685	780 –1080 1080 –1330	
17CrNiMo6	1.6587	18CrNiMo7-6		835	1180 –1430	785	1080 –1330	685	980 –1280	
1) Die Brin	ellhärte	ist je nach Be	handlı	ungszus	tand unters	chiedlich	ו			
Behandlungszustand				Bedeutung						
С				behandelt auf Scherbarkeit						
G				weichgeglüht						
BF				behandelt auf Festigkeit						
BG				behandelt auf Ferrit-Perlit-Gefüge						

Dauerfestigkeitsschaubilder der Einsatzstähle, DIN EN 10084 (Kernfestigkeit nach Einsatzhärtung, Probendurchmesser d = 10 mm) Ш П Ī П III500 N/mm^2 T_{tF}=480 N/mm^2 900 18CrNi8 15CrNi6 800 400 20MnCr5 16MnCr5 5CrNi6 700 √685 350 635 600 300 - 51ó 500 250 480 440 400 200 350 ĕpz ₹ 300 o 200 100 100 0 0 100 200 300 400 500 200 400 600 800 -100 in N/mm² T_m in N/mm² σm -200 -100 Mpz -300 トせ 330 O -350 -200 -400 -500 -250 -550 -300 -600 -350 a) Zug-Druck-Dauerfestigkeit c) Torsionsdauerfestigkeit Η Ш 1200 1040 1000 150rNi6 7 ,960 800 N/mm² 600 480 400 3 O 200 Die nicht dargestellten Einsatzstähle können wie folgt eingeordnet werden: 0 200 400 600 800 1000 25MoCr4 wie 20MnCr5 in N/mm² 17CrNiMo6 wie 18CrNi8 -200 MQ D -370-400 Belastungsfall I: ruhend -600 +-61,0 Belastungsfall II: schwellend b) Biegedauerfestigkeit Belastungsfall III: wechselnd

Werkstofftechnik

Kaltgewalzte Stahlbänder Stahlguss für allgemeine Verwendungszwecke

Kalt	Kaltgewalzte Stahlbänder (Auszug aus DIN EN 10132)							
	Werkstoff-		Zugfestigkeit					
Kurzzeichen (Deutschland)	Nummer	Kurzzeichen nach DIN EN 10132	R _m ¹⁾ N/mm ² höchstens					
C55 Ck55	1.0535 1.1203	C55 C55E	610					
C60 Ck60	1.0601 1.1221	C60 C60E	620					
C67 Ck67	1.0603 1.1231	C67 C67S	640					
C75 Ck75	1.0605 1.1248	C75 C75S	640					
Ck85 Ck101	1.1269 1.1274	C85S C100S	670 690					
71Si7	1.5029	71Si7	800					
67SiCr5	1.7103	67SiCr5	800					
50CrV4	1.8159	50CrV4	740					

1) $R_{\rm m}$ für den kaltgewalzten und weichgeglühten Zustand; für Banddicken bis 3 mm

Stahlguss für allgemeine Verwendungszwecke (Auszug aus DIN 1681)									
Werkstof	f- 	Streckgrenze	Zugfestigkeit R _m	Kerbsch (ISO-V- A ≤ 30 mm	,				
Kurzzeichen	Nummer	N/mm ² min.	N/mm ² min.	Mittelv					
GS-38 (GE200)	1.0420	200	380	35	35				
GS-45 (GE240)	1.0446	230	450	27	27				
GS-52 (GE260)	1.0552	260	520	27	22				
GS-60 (GE300)	1.0558	300	600	27	20				

Die mechanischen Eigenschaften gelten für Proben, die aus Probestücken mit Dicken bis 100 mm genommen werden. Die Werte der Streckgrenze gelten darüber hinaus auch für das Gussstück selbst, sofern die Wanddicke ≤ 100 mm ist.

¹⁾ Aus jeweils drei Einzelwerten bestimmt.

	Runder Federstahldraht (Auszug aus DIN EN 10218)								
Draht-		Drahtsorte							
durchmesser	Α	В	С	D					
mm		Zugfestigkeit R _m in N/mm ²							
0,07	-	-	-	2800 – 3100					
0,3	-	2370 – 2650	-	2660 – 2940					
1	1720 – 1970	1980 – 2220	-	2230 – 2470					
2	1520 – 1750	1760 – 1970	1980 – 2200	1980 – 2200					
3	1410 – 1620	1630 – 1830	1840 – 2040	1840 – 2040					
4	1320 – 1520	1530 – 1730	1740 – 1930	1740 – 1930					
5	1260 – 1450	1460 – 1650	1660 – 1840	1660 – 1840					
6	1210 – 1390	1400 – 1580	1590 – 1770	1590 – 1770					
7	1160 – 1340	1350 – 1530	1540 – 1710	1540 – 1710					
8	1120 – 1300	1310 – 1480	1490 – 1660	1490 – 1660					
9	1090 – 1260	1270 – 1440	1450 – 1610	1450 – 1610					
10	1060 – 1230	1240 – 1400	1410 – 1570	1410 – 1570					
11	-	1210 – 1370	1380 – 1530	1380 – 1530					
12	-	1180 – 1340	1350 – 1500	1350 – 1500					
13	-	1160 – 1310	1320 – 1470	1320 – 1470					
14	-	1130 – 1280	1290 – 1440	1290 – 1440					
15	-	1110 – 1260	1270 – 1410	1270 – 1410					
16	-	1090 – 1230	1240 – 1390	1240 – 1390					
17	-	1070 – 1210	1220 – 1360	1220 – 1360					
18	-	1050 – 1190	1200 – 1340	1200 – 1340					
19	-	1030 – 1170	1180 – 1320	1180 – 1320					
20	-	1020 – 1150	1160 – 1300	1160 – 1300					

WerkstofftechnikGusseisen mit Lamellengraphit Gusseisen mit Kugelgraphit

Gusseisen mit Lamellengraphit (Auszug aus DIN EN 1561)								
	Werkstoff-			dicken mm	Zug- festigkeit ¹⁾ R _m	Brinell- härte	Druck- festigkeit ²⁾	
Kurzzeichen	Nummer	Kurzzei- chen nach DIN 1691	über	bis	N/mm ²	HB 30	N/mm ²	
EN-GJL-100	EN-JL1010	GG-10	5	40	min. 100 ²⁾	-	_	
EN-GJL-150	EN-JL1020	GG-15	10 20 40 80	20 40 80 150	130 110 95 80	225 205 - -	600	
EN-GJL-200	EN-JL1030	GG-20	10 20 40 80	20 40 80 150	180 155 130 115	250 235 - -	720	
EN-GJL-250	EN-JL1040	GG-25	10 20 40 80	20 40 80 150	225 195 170 155	265 250 - -	840	
EN-GJL-300	EN-JL1050	GG-30	10 20 40 80	20 40 80 150	270 240 210 195	285 265 - -	960	
EN-GJL-350	EN-JL1060	GG-35	10 20 40 80	20 40 80 150	315 280 250 225	285 275 - -	1080	

Die Werte gelten für Gussstücke, die in Sandformen oder in Formen mit vergleichbarem Wärmediffusionsvermögen hergestellt werden.

- 1) Diese Werte sind Anhaltswerte
- 2) Werte im getrennt gegossenen Probestück mit 30 mm Rohgussdurchmesser.

Gusseisen mit Kugelgraphit (Auszug aus DIN EN 1563)							
	Eigensch	aften in ange	gossenen Probestü	cken			
Werkstoff-			Wanddicke des Gussstückes	Dicke des angegosse- nen Probe- stückes	Zug- festig- keit R _m	0,2% Dehn- grenze R _{p0,2}	
Kurzzeichen	Nummer	Kurzzei- chen nach DIN 1693	mm	mm	N/mm ²	N/mm ²	
EN-GJS-400-18U-LT	EN-JS1049	GGG-40.3	von 30 bis 60 über 60 bis 200	40 70	390 370	250 240	
EN-GJS-400-15U	EN-JS1072	GGG-40	von 30 bis 60 über 60 bis 200	40 70	390 370	250 240	
EN-GJS-500-7U	EN-JS1082	GGG-50	von 30 bis 60 über 60 bis 200	40 70	450 420	300 290	
EN-GJS-600-3U	EN-JS1092	GGG-60	von 30 bis 60 über 60 bis 200	40 70	600 550	360 340	
EN-GJS-700-2U	EN-JS1102	GGG-70	von 30 bis 60 über 60 bis 200	40 70	700 650	400 380	

Werkstofftechnik

Kupfer-Zinn- und Kupfer-Zinn-Zink-Gusslegierungen Kupfer-Aluminium-Gusslegierungen

Kupfer-Zinn- und Kupfer-Zinn-Zink-Gusslegierungen (Auszug aus DIN EN 1982)							
W Kurzzeichen	erkstoff- Nummer	Kurzzeichen nach DIN 1705	Lieferform	$\begin{array}{c} 0.2\%\text{-}\\ \text{Grenze} ^{1)}\\ \text{R}_{\text{p0,2}}\\ \text{min. in}\\ \text{N/mm}^2 \end{array}$	Zugfestig- keit ¹⁾ R _m min. in N/mm ²		
CuSn12-C-GS CuSn12-C-GZ CuSn12-C-GC	CC483K	G-CuSn12 GZ-CuSn12 GC-CuSn12	Sandguss Schleuderguss Strangguss	140 150 140	260 280 280		
CuSn12Ni-C-GS CuSn12Ni-C-GZ CuSn12Ni-C-GC	CC484K	G-CuSn12Ni GZ-CuSn12Ni GC-CuSn12Ni	Sandguss Schleuderguss Strangguss	160 180 170	280 300 300		
CuSn12Pb2-C-GS CuSn12Pb2-C-GZ CuSn12Pb2-C-GC	CC482K	G-CuSn12Pb GZ-CuSn12Pb GC-CuSn12Pb	Sandguss Schleuderguss Strangguss	140 150 140	260 280 280		
CuSn10-Cu-GS	CC480K	G-CuSn10	Sandguss	130	270		
CuSn7Zn4Pb7-C-GS CuSn7Zn4Pb7-C-GZ CuSn7Zn4Pb7-C-GC	CC493K	G-CuSn7ZnPb GZ-CuSn7ZnPb GC-CuSn7ZnPb	Sandguss Schleuderguss Strangguss	120 130 120	240 270 270		
CuSn7Zn2Pb3-C-GS	CC492K	G-CuSn6ZnNi	Sandguss	140	270		
CuSn5Zn5Pb5-C-GS	CC491K	G-CuSn5ZnPb	Sandguss	90	220		
CuSn3Zn8Pb5-C-GS	CC490K	G-CuSn2ZnPb	Sandguss	90	210		

1) Werkstoffeigenschaften im Probestab

Kupfer-Aluminium-Gusslegierungen (Auszug aus DIN EN 1982)								
W Kurzzeichen	erkstoff- Nummer	Kurzzeichen nach DIN 1714	Lieferform	0,2%-Grenze $^{1)}$ $R_{p0,2}$ min. in N/mm 2	Zugfestig- keit ¹⁾ R _m min. in N/mm ²			
CuAl10Fe2-C-GS	CC331G	G-CuAl10Fe	Sandguss	180	500			
CuAl10Fe2-C-GM		GK-CuAl10Fe	Kokillenguss	200	550			
CuAl10Fe2-C-GZ		GZ-CuAl10Fe	Schleuderguss	200	550			
CuAl10Ni3Fe2-C-GS	CC332G	G-CuAl9Ni	Sandguss	200	500			
CuAl10Ni3Fe2-C-GK		GK-CuAl9Ni	Kokillenguss	230	530			
CuAl10Ni3Fe2-C-GZ		GZ-CuAl9Ni	Schleuderguss	250	600			
CuAl10Fe5Ni5-C-GS	CC333G	G-CuAl10Ni	Sandguss	270	600			
CuAl10Fe5Ni5-C-GM		GK-CuAl10Ni	Kokillenguss	300	600			
CuAl10Fe5Ni5-C-GZ		GZ-CuAl10Ni	Schleuderguss	300	700			
CuAl10Fe5Ni5-C-GC		GC-CuAl10Ni	Strangguss	300	700			
CuAl11Fe6Ni6-C-GS	CC334G	G-CuAl11Ni	Sandguss	320	680			
CuAl11Fe6Ni6-C-GM		GK-CuAl11Ni	Kokillenguss	400	680			
CuAl11Fe6Ni6-C-GZ		GZ-CuAl11Ni	Schleuderguss	400	750			

¹⁾ Werkstoffeigenschaften im Probestab

Aluminium-Gusslegierungen

Aluminium-Gusslegierungen (Auszug aus DIN EN 1706)							
	Werkstoff-		0,2%-Grenze R _{p0,2}	Zugfestigkeit R _m			
Kurzzeichen	Nummer	Kurzzeichen nach DIN 1725-2	in N/mm ²	in N/mm ²			
AC-AlCu4MgTi	AC-21000	G-AlCu4TiMg	200 bis 220	300 bis 320			
AC-AlCu4Ti	AC-21100	G-AlCu4Ti	180 bis 220	280 bis 330			
AC-AlSi7Mg	AC-42100	G-AlSi7Mg	180 bis 210	230 bis 290			
AC-AlSi10Mg(a)	AC-43000	G-AlSi10Mg	80 bis 220	150 bis 240			
AC-AlSi10Mg(Cu)	AC-43200	G-AlSi10Mg(Cu)	80 bis 200	160 bis 240			
AC-AlSi9Mg	AC-43300	G-AISi9Mg	180 bis 210	230 bis 290			
AC-AlSi10Mg(Fe)	AC-43400	G-AlSi10Mg	140	240			
AC-AlSi11	AC-44000	G-AlSi11	70 bis 80	150 bis 170			
AC-AlSi12(a)	AC-44200	G-AlSi12	70 bis 80	150 bis 170			
AC-AlSi12(Fe)	AC-44300	GD-AlSi12	130	240			
AC-AlSi6Cu4	AC-45000	G-AlSi6Cu4	90 bis 100	150 bis 170			
AC-AlSi9Cu3(Fe)	AC-46000	GD-AlSi9Cu3	140	240			
AC-AlSi8Cu3	AC-46200	G-AlSi9Cu3	90 bis 140	150 bis 240			
AC-AlSi12(Cu)	AC-47000	G-AlSi12(Cu)	80 bis 90	150 bis 170			
AC-AlSi12Cu1(Fe)	AC-47100	GD-AlSi12(Cu)	140	240			
AC-AlMg3(a)	AC-51100	G-AIMg3	70	140 bis 150			
AC-AIMg9	AC-51200	GD-AIMg9	130	200			
AC-AIMg5	AC-51300	G-AIMg5	90 bis 100	160 bis 180			
AC-AIMg5(Si)	AC-51400	G-AIMg5Si	100 bis 110	160 bis 180			

Werkstofftechnik

Blei- und Zinn-Gusslegierungen für

Verbundgleitlager

Blei- und Zinn-Gusslegierungen für Verbundgleitlager (Auszug aus DIN ISO 4381)								
Werkstoff	-	Brinellhärte ¹⁾ HB 10/250/180			0,2%-Grenze ¹⁾ R _{p 0,2} in N/mm ²			
Kurzzeichen	Nummer	20 °C	50 °C	120 °C	20 °C	50 °C	100 °C	
PbSb15SnAs	2.3390	18	15	14	39	37	25	
PbSb15Sn10	2.3391	21	16	14	43	32	30	
PbSb14Sn9CuAs	2.3392	22	22 16		46	39	27	
PbSb10Sn6	2.3393	16	16	14	39	32	27	
SnSb12Cu6Pb	2.3790	25	20	12	61	60	36	
SnSb8Cu4	2.3791	22	17	11	47	44	27	
SnSb8Cu4Cd	2.3792	28	25	19	62	44	30	

¹⁾ Werkstoffeigenschaften im Probestab

Werkstofftechnik Umwertung von Härtewerten (DIN EN ISO 18265)

Zug- festig- keit	Vickers- härte	Brinellhärte 2)	F	Rockw	ellhär	te	Zug- festig- keit	Vickers- härte	2)		kwelll	
N/mm ²	(F≥98N)	$\left(0,102 \cdot \frac{F}{D^2} = 30 \frac{N}{mm^2}\right)$	HRB	HRC	HRA	HRD	N/mm ²	(F≥98N)	$\left(0,102 \cdot \frac{F}{D^2} = 30 \frac{N}{mm^2}\right)$	HRC	HRA	HRD
255 270 285 305 320	80 85 90 95 100	76,0 80,7 85,5 90,2 95,0	41,0 48,0 52,0 56,2				1155 1190 1220 1255 1290	360 370 380 390 400	342 352 361 371 380	37,7 38,8 39,8	69,8	52,8 53,6 54,4 55,3 56,0
335 350 370 385 400	105 110 115 120 125	99,8 105 109 114 119	62,3 66,7				1320 1350 1385 1420 1455	410 420 430 440 450	390 399 409 418 428	41,8 42,7 43,6 44,5 45,3	71,8 72,3 72,8	56,8 57,5 58,2 58,8 59,4
415 430 450 465 480	130 135 140 145 150	124 128 133 138 143	71,2 75,0 78,7				1485 1520 1555 1595 1630	460 470 480 490 500	437 447 (456) (466) (475)	46,1 46,9 47,7 48,4 49,1	74,1 74,5 74,9	60,1 60,7 61,3 61,6 62,2
495 510 530 545 560	155 160 165 170 175	147 152 156 162 166	81,7 85,0				1665 1700 1740 1775 1810	510 520 530 540 550	(485) (494) (504) (513) (523)	49,8 50,5 51,1 51,7 52,3	76,1 76,4 76,7	62,9 63,5 63,9 64,5 64,8
575 595 610 625 640	180 185 190 195 200	171 176 181 185 190	87,1 89,5 91,5				1845 1880 1920 1955 1995	560 570 580 590 600	(532) (542) (551) (561) (570)	53,0 53,6 54,1 54,7 55,2	77,8 78,0 78,4	65,4 65,8 66,2 66,7 67,0
660 675 690 705 720	205 210 215 220 225	195 199 204 209 214	92,5 93,5 94,0 95,0 96,0				2030 2070 2105 2145 2180	610 620 630 640 650	(580) (589) (599) (608) (618)	55,7 56,3 56,8 57,3 57,8	79,2 79,5 79,8	67,5 67,9 68,3 68,7 69,0
740 755 770 785 800	230 235 240 245 250	219 223 228 233 238	96,7 98,1 99,5	20,3 21,3 22,2	60,7 61,2 61,6	40,3 41,1 41,7		660 670 680 690 700		58,3 58,8 59,2 59,7 60,1	80,6 80,8	69,4 69,8 70,1 70,5 70,8
820 835 850 865 880	255 260 265 270 275	242 247 252 257 261	(101) (102)	23,1 24,0 24,8 25,6 26,4	62,0 62,4 62,7 63,1 63,5	42,2 43,1 43,7 44,3 44,9		720 740 760 780 800		61,0 61,8 62,5 63,3 64,0	82,2 82,6 83,0	71,5 72,1 72,6 73,3 73,8
900 915 930 950 965	280 285 290 295 300	266 271 276 280 285	(104) (105)	27,8	63,8 64,2 64,5 64,8 65,2	45,3 46,0 46,5 47,1 47,5		820 840 860 880 900		64,7 65,3 65,9 66,4 67,0	84,1 84,4 84,7	74,3 74,8 75,3 75,7 76,1
995 1030 1060 1095 1125	310 320 330 340 350	295 304 314 323 333		31,0 32,3 33,3 34,4 35,5	65,8 66,4 67,0 67,6 68,1	48,4 49,4 50,2 51,1 51,9		920 940		67,5 68,0	85,3 85,6	76,5 76,9

Die eingeklammerten Zahlen sind Härtewerte, die außerhalb des Definitionsbereichs der genormten Härteprüfverfahren liegen, praktisch jedoch vielfach als Näherungswert benutzt werden. Darüber hinaus gelten die eingeklammerten Brinellhärtewerte nur dann, wenn mit einer Hartmetallkugel gemessen wurde.

- 1) International üblich, z.B. ASTM E 18-74 (American Society for Testing and Materials)
- 2) Errechnet aus HB = 0,95 HV (Vickershärte)

Ermittlung der Rockwellhärte HRA, HRB, HRC und HRD nach DIN EN 10109, Teil 1

Ermittlung der Vickershärte nach DIN 50133, Teil 1

Ermittlung der Brinellhärte nach DIN EN 10003, Teil 1

Ermittlung der Zugfestigkeit nach DIN EN 10002, Teil 1 und Teil 5

Stoff (fest)	ttlere Dichte	e d	er Er	de :	= 5,517 g	ı/cm ³
Aluminium	(fest) Sy	ym- ool	Dichte g/cm	-	Schmelz- tempera- tur t in °C	Wärmeleit fähigkeit 7 bei 20 °C W/(mK)
Aluminium	nit		3,3		1800	8,14
Aluminium-Bronze					1480	-
Antimon Sb 6,67 630 22,5 Arsen As 5,72 — — — — — — — — — — — — — — — — — — —			2,5 :	2,8		9,89
Arsen As 5,72 — — — Rhodium Rotgum Asphalt 1,1 1,5 80 100 0,698 Barium Ba 3,59 704 — — Bariumchlorid 3,1 960 — — Sandsteir Beryllium Be 1,85 1280 1,65 Schamöteir Belein Pb 11,3 327,4 34,7 Borax Bilei Pb 11,3 327,4 34,7 Borax Brubildium Borax Brubinsenstein 3,4 3,9 1565 — Schamöteir Bruneisenstein 3,4 3,9 1565 — Schwefel, find Schwind Schwin		Ra	5		700	-
Asbest		Re	21		3175	71
Asphalt		Rh	12,3		1960	88
Barium Ba 3,59 704 Bariumchlorid 3,1 960 1,67 Sandsteir Schamitsts Schiefer Schwefel, rho Schwersp Schwersp Schwefel, rho Schwersp Schwefel, rho Schwersp			8,8		950	38
Bariumchlorid Sand, trock Sand, trock Basalt, natur Sand, trock Sandstein Sa		Rb	1,52		39	58
Basalt, natur		Ru	12,2		2300	106
Beryllium			1,41		1480	0,58
Beion Pb 11,3 327.4 34,7			2,12		≈1500	2,3
Blei			1,82		≈2000	≈1,2
Bor (amorph) B 1.73 2300 - Borax 1.72 740 - Borax 1.72 740 - Borax Brauneisenstein 3.4 3,9 1565 - Boronze 8,83 910 64 Chlorkalzium 2.2 774 - Schwerlel, mo Schwerspi Selen, ro Schwerspi Selen			2,62	2,7	≈2000	≈0,5
Borax 1,72 740 - Braunelsenstein 3,43,9 1565 - Schwerel, mo Moslizun, molicitus, molicitus, molicitus, molicitus, molicitus, molicitus, molicitus, mo			4		2200	11,6
Braunelsenstein		S	2,07		112,8	0,27
Bronze		S	1,96		119	0,13
Chrom		_	4,5		1580	-
Chrom Cr 7,1 1800 69 Silizium Chromnickel 7,4 1430 52,335 Bilziumkari Deltametall 8,6 950 104,7 Siliziumkari Diamant C 3,5 - - Eisen, rein Fe 7,86 1530 81 Speckstein (1 Fette 0,920,94 30175 0,209 Stahl, unleg. u. ni Gallium Ga 5,9 29,75 - Germanium Ge 5,32 936 58,615 Glas, Fenster -2,8 -1300 0,35 Steinkohl Glas, Fenster -2,8 -1300 0,35 Tantal Glas, Fenster -2,2 -2,8 -1300 0,35 Tantal Glad Au 19,29 1063 310 Tellur Graphit C 2,24 -3800 168 Titan Grauguss 7,25 1200 58 Tonta Harigummi		Se	4,4		220	0,2
Chromnickel		Ag	10,5		960	407
Deltametall		Si	2,33		1420	83
Diamant			3,12		1816	15,2
Eisen, rein Fet 7,86 1530 81 Fette 0,92 0,94 30175 0,209 Gallium Ga 5,9 29,75 - Gallium Ge 5,32 936 58,615 Gips 2,3 1200 0,45 Steinkohlf Steinkohlf Gals, Fenster -2,5 -700 0,81 Glas, Fenster -2,8 -1300 0,35 Ganit 2,6 2,8 - 3,5 Graphit C 2,24 -3800 168 Titan Grauguss 7,25 1200 58 Titan Grauguss 7,25 1200 58 Titan Thorium Graphit C 2,24 -3800 168 Titan Grauguss 7,25 1200 58 Titan Thorium Hartymemi -1,4 - 0,17 Uran 99,99			2,4		1010	1,69
Fette			2,7		1460	3,26
Gallium Ga 5,9 29,75 - Unmagnetis Germanium Ge 5,32 936 58,615 Wolframstahl Steinkohl			7,9 7,9		1460	47 58 14
Germanium Ge 5,32 936 58,615 Wolframstahl Gips 2,3 1200 0,45 Steinkohl Glas, Fenster -2,5 -700 0,81 Strontium Glimmer -2,8 -1300 0,35 Tantal Gold Au 19,29 1063 310 Tellur Granit 2,6 -2,8 -3800 168 Trattal Grauguss 7,25 1200 58 Titan Thorium Hartgewebe 1,3 1,142 - 0,34 0,35 Ton Hartgewebe 1,3 1,42 - 0,17 Hartgewebe 1,3 1,5 Ton Hartgummi -1,4 - 0,17 Hartmetall K20 14,8 2000 81 Vanadium Holizer 0,45 .0,85 - 0,12 .0,17 Vanadium Weißmeta Zink Weißmeta Zink Zementa, abgeb Zementa, abgeb Zementa, abgeb Zement						
Gips 2,3 1200 0,45 Steinkohl Glas, Fenster −2,5 −700 0,81 Strontium Glimmer −2,8 −1300 0,35 Tantal Gold Au 19,29 1063 310 Tantal Graphit C 2,24 ~3800 168 Titlum Grauguss 7,25 1200 58 Titlum Titlum Titlum 0,34 0,35 Ton Hartgewebe 1,3,1,42 – 0,34 0,34 0,35 Ton Uran 99,99 Vanadium Uran 99,99 Vanadium Uran 99,99 Vanadium Uran 99,99 Vanadium Weißmela Weißme			8		1450	16,28
Glas, Fenster			8,7		1450	26
Glimmer		C	1,35		-	0,24
Gold Au 19,29 1063 310 Tellur Thorium Titan		Sr T-	2,54		797	0,23
Granit 2,62,8 - 3,5 Thorium Graphit C 2,24 ~3800 168 Titan Grauguss 7,25 1200 58 Tombak Hartgewebe 1,31,42 - 0,340,35 Ion Hartgewebe 1,31,42 - 0,340,35 Ion Hartgewebe 14,8 2000 81 Uran 99,32 Hartgewebe 0,450,85 - 0,120,17 Uran 99,32 Hartgewebe 0,450,85 - 0,120,17 Weigher Hartgewebe 0,450,85 - 0,120,17 Weigher Indium In 7,25 2450 59,3 Weigher Kadium Cd 8,64 321 92,1 Weißmet Kalzium Ca 1,55 850 - 2,2 Zink Kalziumoxyd (Kalk) 3,4 2575 0,2 Zink Zink Zink Zink Zink Zink Zink		Ta	16,6		2990	54
Graphit C 2,24 ~3800 168 Titan Grauguss 7,25 1200 58 Tombak Hartgewebe 1,31,42 — 0,340,35 Ton Hartmetall K20 14,8 2000 81 Variadus Hartmetall K20 0,450,85 — 0,120,17 Weichgum Hartmetall K20 14,8 2000 81 Variadus Hartmetall K20 14,8 2000 81 Variadus Hartmetall K20 14,8 2000 81 Variadus Hartmetall K20 0,450,85 — 0,120,17 WeiGhret Indium In 7,31 156 24 Wirid 3,4 321 92,1 Weißmeta Kalkstein 2,6 — 2,2 2 2 Kalziumoxyd (Kalk) 3,4 2572 — 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <td< td=""><td></td><td>Те</td><td>6,25</td><td></td><td>455</td><td>4,9</td></td<>		Те	6,25		455	4,9
Grauguss 7,25 1200 58 Tombak Hartgewebe 1,31,42 - 0,340,35 Tombak Hartgummi −1,4 - 0,17 Uran 99,99 Hartmetall K20 14,8 2000 81 Vanadiun Hölzer 0,450,85 - 0,120,17 Weißmeta Indium In 7,31 156 24 Weißmeta Iridium Ir 22,5 2450 59,3 Wismut Kadmium K 0,86 63,6 110 Zásium Kalium K 0,86 63,6 110 Zásium Kaliziumoxyd (Kalk) 3,4 2572 - Zer Kalziumoxyd (Kalk) 3,4 2572 - Zink Kobatt Co 8,8 1490 69,4 Zink Koshatt 1,61,9 - 0,184 Zink Korida (AL ₂ O ₃) 3,94 2050 1223 Zirk Korida (AL ₂ O ₃) 1,8 2,6 - 0,99 1		Th	11,7		≈1800	38
Hartgewebe		Ti	4,5		1670	15,5
Harfgummi			8,65		1000	159
Hartmetall K20		U	1,8 18,7		15001700 1133	0,93 1,28 28
Hölzer		V	6,1	1	1890	
Indium		v	11,	0	1090	31,4 0,14 0,23
Iridium			7,5 1		300400	34,969,8
Kadmium Cd 8,64 321 92,1 Wolfram Zäsium Kallium K 0,86 63,6 110 Zäsium Kalzium Ca 1,55 850 – 2,2 Kalziumoxyd (Kalk) 3,4 2572 – Zink Kautschuk, roh 0,95 125 0,2 Zink Kobalt Co 8,8 1490 69,4 Zirkonium Kochsalz 2,15 802 – Koks 1,61,9 – 0,184 Konstantan 8,89 1600 23,3 Korwind (AL ₂ O ₃) 3,94 2050 1223 Kreide 1,82,6 – 0,92 Kupfer Cu 8,9 1083 384 Leder, trocken 1,91 – 0,15 Stoff (flüss Stoff (flüss Mangasium elgierung 1,81,83 650 69,8145,4 Benzin Benzi		Bi	9,8		271	8,1
Kalium		W	19,2		3410	130
Kalkstein 2,6 - 2,2 Zement, abgeb Kalzium Ca 1,55 85 - Zer Kalziumoyd (Kalk) 3,4 2572 - Zink Kautschuk, roh 0,95 125 0,2 Zink Kobalt Co 8,8 1490 69,4 Zirkonium Kochsalz 2,15 802 - - Koks 1,61,9 - 0,184 Zirkonium Kornstantan 8,89 1600 23,3 Korud (AL ₂ O ₃) 3,94 2050 1223 Korud (AL ₂ O ₃) 3,94 2050 1223 Korud (AL ₂ O ₃) Xirkonium		Cs	1,87		29	-
Kalzium Ca 1,55 850 - Zer Kalziumoxyd (Kallk) 3,4 2572 - Zink Kautschuk, roh 0,95 125 0,2 Zinh Kobalt Co 8,8 1490 69,4 Zirkonium Kochsalz 2,15 802 - Koks 1,61,9 - 0,184 Konstantan 8,89 1600 23,3 Korund (AL ₂ O ₃) 3,94 2050 1223 Kreide 1,82,6 - 0,92 Kupfer Cu 8,9 1083 384 Leder, trocken 0,91 - 0,15 Lithium Li 0,53 179 71 Magnesium legierung 1,81,83 650 69,8145,4 Mangan Mn 7,43 1250 30 Ather Mennige, Blei 8,69,1 - 0,7 Benzoin, re Benzoin, re Benzoin, re Benzoin, re Dieselkrafts Glyzerin Harzoi Harzoi Harzoi Harzoi <td< td=""><td></td><td>00</td><td>2 2</td><td></td><td>-</td><td>0,9 1,2</td></td<>		00	2 2		-	0,9 1,2
Kalziumoxyd (Kalk)		Ce	6,79		630	
Kautschuk, roh 0,95 125 0,2 Zinn Kobalt Co 8,8 1490 69,4 Zirkonium Kochsalz 2,15 802 - Korsdentan 8,89 1600 23,3 Korund (AL ₂ O ₃) 3,9 4 2050 12 23 Korund (AL ₂ O ₃) 3,9 4 2050 12 23 Korund (AL ₂ O ₃) 3,9 4 2050 12 23 Korund (AL ₂ O ₃) Korund (AL ₂ O ₃) 3,9 4 2050 12 23 Korund (AL ₂ O ₃) Korund (AL ₂ O ₃) All and an		Zn	6,86		419	110
Kobalt		Sn	7,2		232	65
Kochsalz 2,15 802 - Koks 1,61,9 - 0,184 Konstantan 8,89 1600 23,3 Korund (AL₂O₃) 3,94 2050 1223 Kreide 1,82,6 - 0,92 Kupfer Cu 8,9 1083 384 Leder, trocken 0,91 - 0,15 Lithium Li 0,53 179 71 Magnesium Mg 1,74 657 157 Magnesiumlegierung 1,81,83 650 69,8145,4 Mangan Mn 7,43 1250 30 Mennige, Blei 8,69,1 - 0,7 Benzin Messing 8,5 900 116 Dieselkrafts Molybdan Mo 10,2 2600 145 Messing 8,8 ~1300 19,7 Harzol Neusiber 8,7 1020 48 Heizol EL Neusiber		Zr	6,5		1850	22
Koks 1,6 1,9 - 0,184 Konstantan 8,89 1600 23,3 Korund (AL ₂ O ₃) 3,9 4 2050 12 23 Kreide 1,8 2,6 - 0,92 Kupfer Cu 8,9 1083 384 Leder, trocken 0,9 1 - 0,15 Lithium Li 0,53 179 71 Magnesium Magnesium Mg 1,74 657 157 Magnesiumlegierung 1,8 1,83 650 69,8145,4 Marmor 2,6 2,8 1290 2,8 Benzin Marmor 2,6 2,8 1290 2,8 Benzin Mensing 8,5 9,1 - 0,7 Dieselkrafts Molybdān Mo 10,2 2600 145 Glyzerin Moneimetall 8,8 ~1300 19,7 Heizöl El Neusilber 8,7 1020 48 Leinöl Nickel Ni 8,9		- 1	0,0			ı
Konstantan						
Korund (AL ₂ O ₃) 3.9 4 2050 12 23 Kreide 1,8 2,6 - 0,92 Kupfer Cu 8,9 1083 384 Leder, trocken 0,9 1 - 0,15 Lithium Li 0,53 179 71 Magnesium Mg 1,74 657 157 Magnesiumlegierung 1,8 1,83 650 69,8 145,4 Mangan Mn 7,43 1250 30 Ather Marmor 2,6 2,8 1290 2,8 Benzin Mennige, Blei 8,6 9,1 - 0,7 Benzol, re Messing 8,5 900 116 Glyzerin Monelmetall 8,8 ~1300 19,7 Harzol Monelmetall 8,8 ~1300 19,7 Harzol Natrium Na 0,98 97,5 126 Heizol EL El El El El El El E						
Kreide 1,82,6 - 0,92 Kupfer Cu 8,9 1083 384 Leder, trocken 0,91 - 0,15 Lithium Li 0,53 179 71 Magnesium Mg 1,74 657 157 Mangensiumlegierung 1,81,83 650 69,8145,4 Mamgan Mn 7,43 1250 30 Ather Marmor 2,62,8 1290 2,8 Benzol, re Mennige, Blei 8,69,1 - 0,7 Benzol, re Messing 8,5 900 116 Glyzerin Molybdān Mo 10,2 2600 145 Glyzerin Matrium Na 0,98 97,5 126 Heizöl EL Neusilber 8,7 1020 48 Leinöl Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43						
Kupfer Cu 8,9 1083 384 Leder, trocken 0,9						
Leder, trocken		ı			Cirl-	٠٠ ١ ٠٠
Lithium Li 0,53 179 71 Magnesium Mg 1,74 657 157 Magnesiumlegierung 1,8 1,83 650 69,8 145,4 Mangan Mn 7,43 1250 30 Marmor 2,6 2,8 1290 2,8 Benzin Mennige, Biel 8,5 900 116 Messing 8,5 900 116 Molybdān Mo 10,2 2600 145 Molybdān Mo 10,2 2600 145 Monelmetall 8,8 ~1300 19,7 Natrium Na 0,98 97,5 126 Neusilber 8,7 1020 48 Neusilber Ni 8,9 1452 59 Nickel Ni 8,9 1452 59 Nickel Ni 8,9 1452 59 Nickel Ni 8,6 2415 54,43 Osmium Os 22,5 2500 − Methylcholo Palladium Pd 12 1552 70,9 Paraffin 0,9 52 0,26 Perch 1,25 − 0,13	l_		Dichte	9 6	Siede-	Wärmeleit
Magnesium Mg 1,74 657 157 Magnesiumlegierung 1,8 1,83 650 69,8 145,4 Mangan Mn 7,43 1250 30 Marmor 2,6 2,8 1290 2,8 Benzin Mennige, Blei 8,6 9,1 - 0,7 Benzol, re Mossing 8,5 900 116 Disselkrafts Molyddan Mo 10,2 2600 145 Glyzerin Monelmetall 8,8 ~1300 19,7 Harzól Harzól Neusilber 8,7 1020 48 Leinől Nickel Ni 8,9 1452 59 Niob Nb 8,6 2415 54,43 Osmium Os 22,5 2500 - Palladium Pd 12 1552 70,9 Paraffin 0,9 52 0,26 Petroleun		ym-		bei	temperatur	fähigkeit 2
Mangan Mn 7,43 1250 30 Ather Marmor 2,6 2,8 1290 2,8 Benzin Mennige, Blei 8,6 9,1 - 0,7 Benzol, re Messing 8,5 900 116 Dieselkrafts Molybdän Mo 10,2 2600 145 Glyzerin Monelmetall 8,8 - 1300 19,7 Harzöl Harzöl El Nutrium Na 0,98 97,5 126 Heizöl El Nickel Ni 8,7 1020 48 Leinöl Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 - Methylchlo Palladium Pd 12 1552 70,9 Pitroleum Perch 1,25 - 0,13 Petroleum	- 3/ b	loc			1.013MPa	bei 20 °C
Mangan Mn 7,43 1250 30 Ather Marmor 2,6 2,8 1290 2,8 Benzin Mennige, Blei 8,6 9,1 - 0,7 Benzol, re Messing 8,5 900 116 Dieselkrafts Molybdän Mo 10,2 2600 145 Glyzerin Monelmetall 8,8 - 1300 19,7 Harzöl Harzöl El Nutrium Na 0,98 97,5 126 Heizöl El Nickel Ni 8,7 1020 48 Leinöl Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 - Methylchlo Palladium Pd 12 1552 70,9 Pitroleum Perch 1,25 - 0,13 Petroleum	I	Į,	g/cm3	°C	°C	W/(mK)
Marmor 2,6 2,8 1290 2,8 Benzin Mennige, Blei 8,6 9,1 - 0,7 Benzol, re Messing 8,5 900 116 Benzol, re Molybdån Mo 10,2 2600 145 Glyzerin Monelmetall 8,8 ~1300 19,7 Harzól Harzól Natrium Na 0,98 97,5 126 Heizól EL Neusilber 8,7 1020 48 Leinől Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 - Methylchloi Palladium Pd 12 1552 70,9 Mineral-Schm Perch 1,25 - 0,13 Petroleun	er		0,72	20	35	0,14
Mennige, Blei 8,6 9,1 - 0,7 Benzol, re Messing 8,5 900 116 Dieselkrafts Molybdän Mo 10,2 2600 145 Glyzerin Monelmetall 8,8 ~1300 19,7 Harzöl Natrium Na 0,98 97,5 126 Heizöl EL Nusbler 8,7 1020 48 Leinöl Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43 Methylchio Osmium Os 22,5 2500 - Methylchio Palladium Pd 12 1552 70,9 Mineral-Schrr Perch 1,25 - 0,13 Petroleut			≈0,73	15	25 210	0,14
Messing 8,5 900 116 Dieselkrafts Molybdän Mo 10,2 2600 145 Glyzerin Monelmetall 8,8 - 1300 19,7 Harzől Natrium Na 0,98 97,5 126 Heizől EL Nickel 8,7 1020 48 Leinől Nickel Ni 8,9 1452 59 Maschinen Nilob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 - Methylchlo Palladium Pd 12 1552 70,9 Mineral-Schrr Paraffin 0,9 52 0,26 Petrolathe Petrole 1,25 - 0,13 Petrolean			0,83	15	80	0,13
Molybdān Mo 10,2 2600 145 Glyzerin Monelmetall 8,8 ~ 1300 19,7 Harzöl Natrium Na 0,98 97,5 126 Heizöl EL Neusilber 8,7 1020 48 Leinöl Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 — Methylchlo Palladium Pd 12 1552 70,9 Mineral-Schrr Paraffin 0,9 52 0,26 Petrolathe Pecch 1,25 - 0,13 Petroleun			0,83	15	210 380	0,14
Monelmetall 8.8 ~1300 19.7 Harzól Natrium Na 0,98 97,5 126 Heizől EL Neusilber 8,7 1020 48 Leinől Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 - Methylchlo Palladium Pd 12 1552 70,9 Mineral-Schrr Perch 1,25 - 0,13 Petroleun				20		
Natrium Na 0,98 97,5 126 Heizöl EL Neusilber 8,7 1020 48 Leinöl Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 - Methylchlor Palladium Pd 12 1552 70,9 Mineral-Schrr Peraffin 0,9 52 0,26 Petrolathe Pech 1,25 - 0,13 Petrolathe			1,26		290 150 300	0,29
Neusilber 8,7 1020 48 Leinöl Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 - Methylchlo Palladium Pd 12 1552 70,9 Mineral-Schrr Paraffin 0,9 52 0,26 Petrolathe Pech 1,25 - 0,13 Petroleun			0,96	20		0,15
Nickel Ni 8,9 1452 59 Maschinen Niob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 - Methylchlou Palladium Pd 12 1552 70,9 Mineral-Schm Paraffin 0,9 52 0,26 Petrolathe Pech 1,25 - 0,13 Petrolathe			~0,83	20	> 175	0,14
Niob Nb 8,6 2415 54,43 Methanol Osmium Os 22,5 2500 - Methylchlor Palladium Pd 12 1552 70,9 Mineral-Schm Paraffin 0,9 52 0,26 Petrolathe Pech 1,25 - 0,13 Petroleun			0,93	20	316	0,17
Osmium Os 22,5 2500 Methylchlor Palladium Pd 12 1552 70,9 Mineral-Schm Paraffin 0,9 52 0,26 Petrolathe Pech 1,25 - 0,13 Petroleum			0,91	15	380 400	0,125
Palladium Pd 12 1552 70,9 Mineral-Schm Paraffin 0,9 52 0,26 Petroläthe Pech 1,25 - 0,13 Petroleun			0,8	15	65	0,21
Paraffin 0,9 52 0,26 Petrolathe Pech 1,25 - 0,13 Petroleun			0,95	15	24	0,16
Pech 1,25 - 0,13 Petroleun			0,91	20	> 360	0,13
			0,66	20	> 40	0,14
rnosphor (gelb) r 1,83 44 - Quecksilbe		Ja	0,81	20	> 150	0,13
		Hg	13,55	20	357	10
			1,05	15	102	0,5
Polyamid A, B 1,13 ≈250 0,34 Schwefelsäure, Porzellan 2,2 2,5 ≈1650 ≈1 Silikonöl			1,84 0,94	15 20	338	0,47 0,22

Werkstofftechnik

Längenausdehnungskoeffizient

Zustandsschaubild Eisen-Kohlenstoff

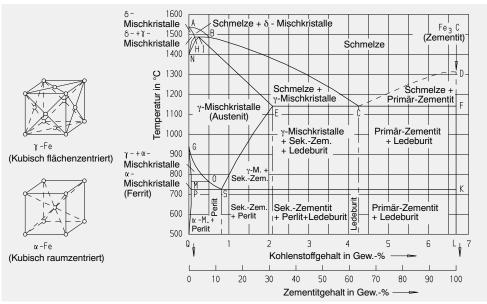
Grübchen- und Zahnfußdauerfestigkeitswerte von Stählen

Längenausdehnungskoeffizient $\,\alpha\,$

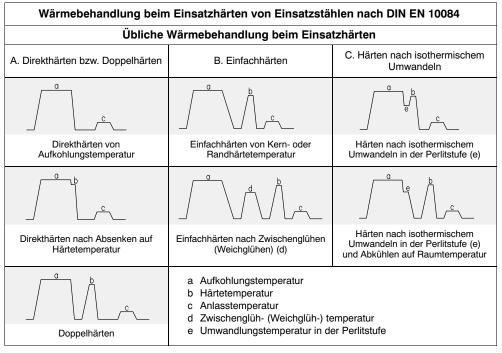
Der Längenausdehnungskoeffizient α gibt die relative Längenänderung eines Stoffes bei einer Temperaturänderung um 1 K an. Für die Längenänderung eines Körpers gilt:

$$\Delta I = I_0 \cdot \alpha \cdot \Delta T$$

mit


ΔI: Längenänderung I₀: Ausgangslänge

a: Längenausdehnungskoeffizient


ΔT: Temperaturerhöhung

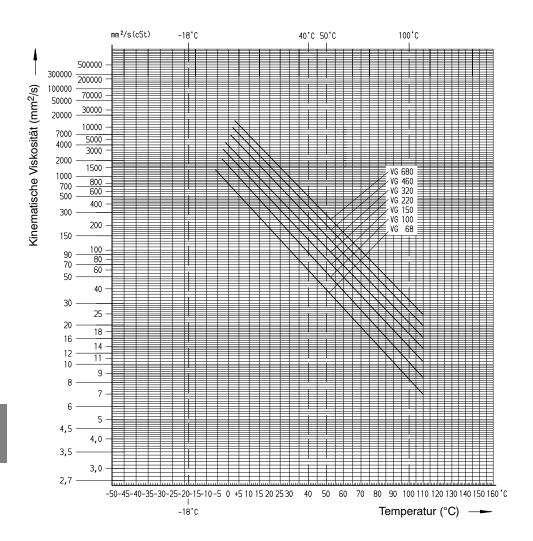
Längenausdehnungskoeffizienten einiger Stoffe bei 0 100 °C						
Stoff	α [10 ⁻⁶ /K]					
Aluminiumlegierungen	21 24					
Grauguss (z.B. GG-20, GG-25)	10,5					
Stahl, unlegiert und niedrig legiert	11,5					
Stahl, rostbeständig (18CrNi8)	16					
Stahl, Schnellarbeitsstahl	11,5					
Kupfer	17					
Messing CuZn37	18,5					
Bronze CuSn8	17,5					

Zustandsschaubild Eisen-Kohlenstoff

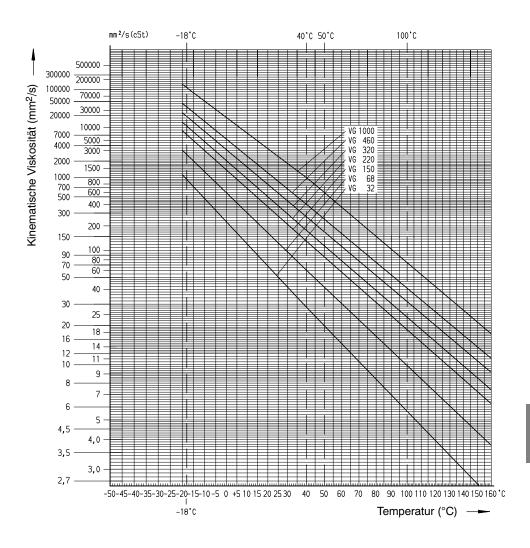
Grübchen- und Zahnfußdauerfestigkeitswerte von Stählen									
Stahlsorten	Werkstoff- Kurzzeichen	Härte am fertigen Zahnrad HV1	σ _{Hlim} N/mm²	σ _{Flim} N/mm²					
Einsatzstähle, einsatzgehärtet	16MnCr5 20MnCr5 18CrNiMo7-6	720 680 740	1470 1470 1500	430 430 500					
Vergütungsstähle, vergütet	30CrNiMo8 34CrNiMo6 42CrMo4	290 310 280	730 770 740	300 310 305					
Vergütungsstähle, nitriert	34CrNiMo6 42CrMo4	630 600	1000 1000	370 370					

Übliche Temperaturen beim Einsatzhärten									
Werksto	off-	а	I	b		С			
Kurzzeichen	Nummer	Aufkohlungs- temperatur ¹⁾ °C	Kernhärte- temperatur ²⁾ °C	Randhärte- temperatur ²⁾ °C	Abkühlmittel	Anlasser °C			
C10 C10E C15	1.0301 1.1121 1.0401		880 bis 920		Die Wahl des Ab- kühl-(Abschreck-)				
15Cr3 17Cr3 16MnCr5 16MnCr55 20MnCr5 20MnCr5 20MoCr4 20MoCr4 20MiCrMo2-2 20NiCrMo2-2	1.7015 1.7016 1.7131 1.7139 1.7147 1.7149 1.7321 1.7323 1.6523 1.6526	880 bis 980	860 bis 900	780 bis 820	mittels richtet sich, im Hinblick auf die erforderlichen Bauteileigenschaften, nach der Härtbarkeit bzw. der Einsatzhärtbarkeit des verwendeten Stahles, der Gestalt und dem Querschnitt des zu härtenden Werkstückes sowie der Wirkung des Ab-	150 bis 200			
15CrNi6 18CrNiMo7-6	1.5919 1.6587		830 bis 870		kühlmittels.				

¹⁾ Für die Wahl der Aufkohlungstemperatur maßgebende Kriterien sind hauptsächlich die gewünschte Aufkohlungsdauer, das gewählte Aufkohlungsmittel und die zur Verfügung stehende Anlage, der vorgesehene Verfahrensablauf sowie der geforderte Gefügezustand. Für ein Direkthärten wird üblicherweise unterhalb 950 °C aufgekohlt. In besonderen Fällen werden Aufkohlungstemperaturen bis über 1000 °C angewendet.

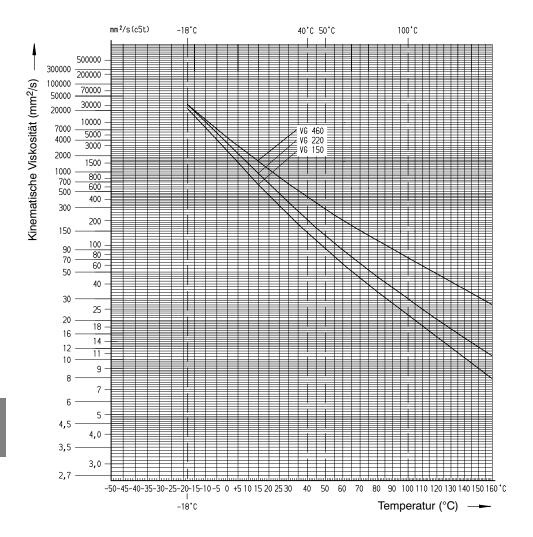

²⁾ Beim Direkthärten wird entweder von Aufkohlungstemperaturen oder einer niedrigeren Temperatur abgeschreckt. Besonders bei Verzugsgefahr kommen aus diesem Bereich vorzugsweise die niedrigeren Härtetemperaturen in Betracht.

9


Inhaltsübersicht Teil 9

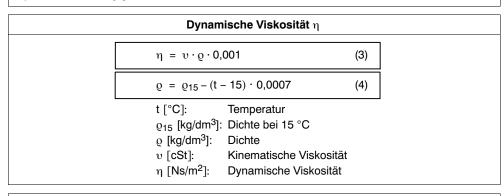
Schmieröle	Seite
Viskositäts-Temperatur-Diagramm für Mineralöle	80
Viskositäts-Temperatur-Diagramm für Synthetiköle auf Poly- $lpha$ -Olefine Base	81
Viskositäts-Temperatur-Diagramm für Synthetiköle auf Polyglykol-Basis	82
Kinematische Viskosität und dynamische Viskosität	83
Viskositäts-Tabelle für Mineralöle	84

Viskositäts-Temperatur-Diagramm für Mineralöle



Viskositäts-Temperatur-Diagramm für Synthetiköle auf Poly- α -Olefin-Basis

9


Viskositäts-Temperatur-Diagramm für Synthetiköle auf Polyglykol-Basis

Schmieröle

Kinematische Viskosität und dynamische Viskosität bei beliebigen Temperaturen für Mineralöle

		Kinematische Viskosität υ				
	Größen z	ur Ermittlung der kinematischen	Viskositä	it		
VG-Klasse		W ₄₀ [-]	W ₄₀ [-]			
32 46 68		0,18066 0,22278 0,26424		3,7664 3,7231 3,6214		
100 150 220		0,30178 0,33813 0,36990		3,5562 3,4610 3,4020		
320 460 680		0,39900 0,42540 0,45225		3,3201 3,3151 3,2958		
1000 1500		0,47717 0,50192		3,2143 3,1775		
	W	= m (2,49575 – lgT) + W ₄₀	(1)			
	υ =	$= 10^{10^{W}} - 0.8$	(2)			
1) T = t + 273,15 [K]	W [ບ [ປ	K]: Thermodynamische T o [-]: Hilfsgröße bei 40 °C	-	- ur ¹⁾		

Dichte ϱ_{15} in kg/dm 3 von Schmierölen für Zahnradgetriebe $^{2)}$ (Beispiele)									
VG-Klasse	68	100	150	220	320	460	680		
ARAL Degol BG Plus	-	0,888	0,892	0,897	0,895	0,902	0,905		
MOBIL Mobilgear 600 XP	0,880	0,880	0,890	0,890	0,900	0,900	0,910		
MOBIL Mobilgear XMP	-	0,890	0,896	0,900	0,903	0,909	0,917		
CASTROL Optigear BM	0,890	0,893	0,897	0,905	0,915	0,920	0,930		
CASTROL Tribol 1100	0,888	0,892	0,897	0,904	0,908	0,916	0,923		

2) Getriebeöle auf Mineralölbasis entsprechend der Kennzeichnung CLP nach DIN 51517 Teil 3. Diese Öle entsprechen den in DIN 51517 Teil 3 ausgewiesenen Mindestanforderungen. Sie sind für Betriebstemperaturen von -10 °C bis +90 °C (kurzzeitig +100 °C) geeignet.

Schmieröle Viskositäts-Tabelle für Mineralöle

ISO-VG	Ungefähre Zuord-	ord-						AGMA Lubri-	Zuor	efähre dnung er	
DIN 51519	nung der bisherigen DIN 51502	20 °C	40 °C	50)°C	100°C	(SSU) bei 40 °C (Mittel-	cant N° bei 40 °C	Motor- öle	Kfz- Getrie- beöle	
		cSt	cSt	cSt	Engler	cSt	werte)	,,	SAE	SAE	
5	2	8 (1,7 E)	4,6	4	1,3	1,5					
7	4	12 (2 E)	6,8	5	1,4	2,0					
10	9	21 (3 E)	10	8	1,7	2,5					
15	-	34	15	11	1,9	3,5			5 W		
22	16	55	22	15	2,3	4,5			10 W	70 W	
32	25	88	32	21	3	5,5			_	75 W	
46	00	137	46	30	4	6,5	214	1 EP	15 W		
68	36	219	68	43	6	8,5	316	2,2 EP	20 W 20	80 W	
100	49 68	345	100	61	8	11	464	3,3 EP	30	85 W	
150	92	550	150	90	12	15	696	4,4 EP	40		
220	114 144	865	220	125	16	19	1020	5,5 EP	50	90	
320	169	1340	320	180	24	24	1484	6,6 EP			
460	225	2060	460	250	33	30	2132	7 EP		140	
680	324	3270	680	360	47	40	3152	8 EP			
1000		5170	1000	510	67	50				055	
1500		8400	1500	740	98	65				250	
1) Ange	Angenäherter Vergleichswert zu ISO-VG-Klassen										

Stirnradgetriebe	Seite
Formelzeichen und Einheiten	86 + 87
Allgemeine Einführung	88
Geometrie der Evolventenzahnräder	
Begriffe und Bestimmungsgrößen der Evolventenverzahnung	88
Bezugsprofil	88
Modul	89
Werkzeugprofil	89
Erzeugung der Zahnflanken Begriffe und Bestimmungsgrößen eines Stirnrades	90 91
Geometrische Bezeichnungen	91
Teilungen	91
Profilverschiebung	92
Begriffe und Bestimmungsgrößen eines Stirnradpaares	93
Benennungen	93
Paarungsgrößen	93
Überdeckungsverhältnisse	94
Zusammenstellung der wichtigsten Formeln	95 – 97
Zahnmodifikationen	98 + 99
Tragfähigkeit der Evolventenzahnräder	
Anwendungsbereich und Zweck	99 + 100
Ausgangsgrößen	100 + 101
Allgemeine Faktoren	102
Anwendungsfaktor	102
Dynamikfaktor	102
Breitenfaktor Stimfaktor	102
Stirnfaktor Zahnflankentragfähigkeit	102 103
Wirksame Hertzsche Pressung	103
Zulässige Hertzsche Pressung	103 + 104
Zahnfußtragfähigkeit	104
Wirksame Zahnfußspannung	104 – 106
Zulässige Zahnfußspannung	106
Sicherheiten	106
Rechenbeispiel	106 + 107
Getriebebauarten	
Standardausführungen	107
Leistungsverzweigte Getriebe	107
Vergleiche	107 + 108
Lastwert	108
Bezogene Drehmomente	109 + 110
Wirkungsgrade	110
Beispiel	110
Getriebegeräusche	
Definitionen	111 + 112
Messungen	112
Ermittlung über Schalldruck	112 + 113
Ermittlung über Schallintensität	113
Vorhersagen	113 + 114
Beeinflussungsmöglichkeiten	114
Siemens MD · 2009	85

а	mm	Achsabstand eines Stirnradpaares	m _n	mm	Normalmodul
a _d	mm	Null-Achsabstand		mm	Stirnmodul
b	mm	Zahnbreite	n	min ⁻¹	Drehzahl
D	111111		р	N/mm ²	Druck, Pressung
c _p	mm	Kopfspiel zwischen Bezugsprofil und Gegenprofil	р	mm	Teilung auf dem Teilkreis
d	mm	Teilkreisdurchmesser	p _{bt}	mm	Teilung auf dem Grundkreis
da	mm	Kopfkreisdurchmesser	p _e	mm	Eingriffsteilung
d _b	mm	Grundkreisdurchmesser	p _{en}	mm	Eingriffsteilung im Normalschnitt
d _f	mm	Fußkreisdurchmesser	p _{et}	mm	Eingriffsteilung im Stirnschnitt
d _w	mm	Wälzkreisdurchmesser	per	mm	Axialteilung
е	mm	Lückenweite auf dem Teilzylinder	p _t	mm	Stirnteilung, Teilkreisteilung
e _p	mm	Lückenweite des Stirnrad-Bezugsprofils	pr _{P0}	mm	Protuberanzbetrag am Werkzeug-Bezugsprofil
f	Hz	Frequenz	q	mm	Bearbeitungszugabe auf den Stirnrad-Zahnflanken
g_{α}	mm	Länge der Eingriffsstrecke	r	mm	Teilkreisradius, Radius
h	mm	Zahnhöhe	ra	mm	Kopfkreisradius
ha	mm	Zahnkopfhöhe	r _b	mm	Grundkreisradius
h =	mm	Kopfhöhe des	r _w	mm	Wälzkreisradius
h _{aP}	mm	Stirnrad-Bezugsprofils	s	mm	Zahndicke auf dem Teilkreis
h _{aP0}	mm	Kopfhöhe des Werkzeug-Bezugsprofils	s _{an}	mm	Zahndicke auf dem Kopfkreis
h _f	mm	Zahnfußhöhe	s _p	mm	Zahndicke des Stirnrad- Bezugsprofils
h _{fP}	mm	Fußhöhe des Stirnrad-Bezugsprofils	s _{P0}	mm	Zahndicke des Werkzeug- Bezugsprofils
h _{fP0}	mm	Fußhöhe des Werkzeug-Bezugsprofils	u	-	Zähnezahlverhältnis
h _p	mm	Zahnhöhe des Stirnrad-Bezugsprofils	V	m/s	Umfangsgeschwindigkeit am Teilkreis
		Zahnhöhe des	w	N/mm	Linienlast
h _{P0}	mm	Werkzeug-Bezugsprofils	х	-	Profilverschiebungsfaktor
h _{prP0}	mm	Protuberanzhöhe des Werkzeug-Bezugsprofils	ΧE	-	Erzeugungs-Profil- verschiebungsfaktor
h _{wP}	mm	Gemeinsame Zahnhöhe zwischen Bezugsprofil	Z	-	Zähnezahl
		und Gegenprofil Änderungsfaktor der	Α	m ²	Verzahnungsfläche
k	-	Kopfhöhe	As	mm	Zahndickenabmaß
m	mm	Modul	B _L	N/mm ²	Lastwert
		•			

		D
D	mm	Baugrößenmaß
F _n	N	Zahnnormalkraft
Ft	N	Nenn-Umfangskraft am Teilkreis
G	N	Gewichtskraft
HV1	-	Vickershärte bei F = 9,81 N
K _A	-	Anwendungsfaktor
$K_{F\alpha}$	_	Stirnfaktor (Fuß)
$K_{F\beta}$	_	Breitenfaktor (Fuß)
$K_{H\alpha}$	-	Stirnfaktor (Flanke)
$K_{H\beta}$	-	Breitenfaktor (Flanke)
K _v	_	Dynamikfaktor
L _{pA}	dB	Schalldruckpegel (A-bewertet)
L _{WA}	dB	Schallleistungspegel (A-bewertet)
Р	kW	Nennleistung der Arbeitsmaschine
R _z	μm	Flankenrauheit
S _F	_	Zahnbruchsicherheit
S_{H}	-	Grübchensicherheit
S	m ²	Hüllfläche
Т	Nm	Drehmoment
Y_{β}	-	Schrägenfaktor
Yε	_	Überdeckungsfaktor
Y _{FS}	_	Kopffaktor
YR	_	Rauheitsfaktor
Y _X	_	Größenfaktor
Z_{β}	_	Schrägenfaktor
Z_{ϵ}	_	Überdeckungsfaktor
Z _H	_	Zonenfaktor
Z_{L}	_	Schmierstofffaktor
Z _v	_	Geschwindigkeitsfaktor
Z _X	_	Größenfaktor

α	Grad	Stirnprofilwinkel, Eingriffswinkel				
$\widehat{\alpha}$	rad	Winkel α im Bogenmaß $(\widehat{\alpha} = \alpha \cdot \pi / 180)$				
α_{at}	Grad	Stirnprofilwinkel am Kopf- kreis				
α_{n}	Grad	Normaleingriffswinkel				
αР	Grad	Profilwinkel des Stirnrad-Bezugsprofils				
αρ0	Grad	Profilwinkel des Werkzeug-Bezugsprofils				
α_{prP0}	Grad	Protuberanz-Profilwinkel				
α_{t}	Grad	Stirneingriffswinkel am Teilkreis				
α_{Wt}	Grad	Betriebseingriffswinkel am Wälzkreis				
β	Grad	Schrägungswinkel am Teilkreis				
βb	Grad	Schrägungswinkel am Grundkreis				
ϵ_{α}	-	Profilüberdeckung				
εβ	-	Sprungüberdeckung				
εγ	-	Gesamtüberdeckung				
ζ	Grad	Wälzwinkel der Evolvente				
η	-	Wirkungsgrad				
б	mm	Rundungsradius				
QaP0	mm	Kopfrundungsradius des Werkzeug-Bezugsprofils				
QfP0	mm	Fußrundungsradius des Werkzeug-Bezugsprofils				
σн	N/mm ²	Wirksame Hertzsche Pressung				
σ_{Hlim}	N/mm ²	Grübchendauerfestigkeit				
σ _{НР}	N/mm ²	Zulässige Hertzsche Pressung				
σ _F	N/mm ²	Wirksame Zahnfußspannung				
σ_{Flim}	N/mm ²	Zahnfußdauerfestigkeit				
σ _{FP}	N/mm ²	Zulässige Zahnfußspannung				
υ ₄₀	mm ² /s	Schmierölviskosität bei 40 °C				
Remerkung: Die Finheit rad (- Radiant) kann						

Bemerkung: Die Einheit rad (= Radiant) kann durch 1 ersetzt werden.

1. Stirnradgetriebe

1.1 Einführung

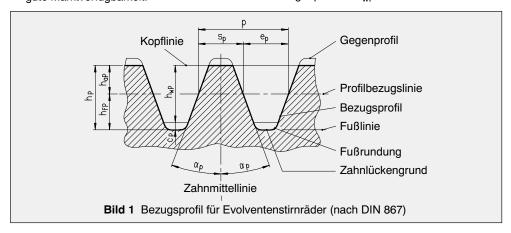
Für die Drehmoment- und Drehzahlanpassung von Kraft- und Arbeitsmaschinen verwendet man in der Industrie vorwiegend Getriebe mit einsatzgehärteten und feinbearbeiteten Zahnrädern. Die Feinbearbeitung der Zahnflanken erfolgt nach dem Aufkohlen und Härten durch Schleifen (oder Zerspanen mittels hartstoffbeschichteter Wälz- bzw. Stoßwerkzeuge). Getriebe mit einsatzgehärteten Zahnrädern weisen im Vergleich zu anderen Getrieben, z.B. mit vergüteten oder auch nitrierten Zahnrädern die größten Leistungsdichten auf, d.h. bei gleichen Drehmomenten und Drehzahlen benötigen sie den geringsten Bauraum. Zahnradgetriebe haben ferner die besten Wirkungsgrade. Die Bewegungsübertragung erfolgt schlupffrei mit konstant bleibendem Drehzahlverhältnis. Auch bei veränderlicher Drehzahlanpassung stellt ein stufenlos verstellbares Getriebe mit vor- oder nachgeschalteten Zahnradstufen in der Regel die wirtschaftlichste Lösung dar.

In Industriegetrieben kommen fast ausnahmslos Evolventenzahnräder zum Einsatz. Gegenüber anderen Zahnprofilen liegen im wesenlichen folgende technische und wirtschaftliche Vorteile vor:

- einfache Fertigung mit geradflankigen Werkzeugen;
- gleiches Werkzeug für alle Zähnezahlen;
- Erzeugung unterschiedlicher Zahnformen und Achsabstände bei gleicher Zähnezahl mit dem selben Werkzeug durch Profilverschiebung;
- gleichmäßige Bewegungsübertragung auch bei Achsabstandsabweichung vom Sollwert;
- Richtung der Zahnnormalkraft bleibt während des Zahneingriffes konstant;
- hoher Entwicklungsstand;
- gute Marktverfügbarkeit.

Durch den Einsatz von leistungsverzweigten Zahnradgetrieben können die Abtriebsdrehmomente gegenüber Getrieben ohne Leistungsverzweigung um das zwei- bis dreifache gesteigert werden. Die leistungsverzweigten Getriebe haben meist eine An- und Abtriebswelle. Innerhalb des Getriebes verzweigt sich die Leistung und fließt am Rad der Abtriebswelle wieder zusammen. Die gleichmäßige Verteilung der Leistung auf einzelne Zweige wird durch besondere konstruktive Maßnahmen erreicht.

1.2 Geometrie der Evolventenzahnräder


In den folgenden Abschnitten 1.2.1 bis 1.2.4 werden die nach DIN 3960 wichtigsten Begriffe und Bestimmungsgrößen von Verzahnungen für Stirnräder und Stirnradpaare dargestellt. /1/

1.2.1 Begriffe und Bestimmungsgrößen der Evolventenverzahnung

1.2.1.1 Bezugsprofil

Das Bezugsprofil ist der Normalschnitt durch die Verzahnung der Bezugs-Zahnstange, die der Stirnradverzahnung an einem Außenrad mit unendlich großem Durchmesser und unendlich großer Zähnezahl entspricht. Im einzelnen geht aus Bild 1 hervor:

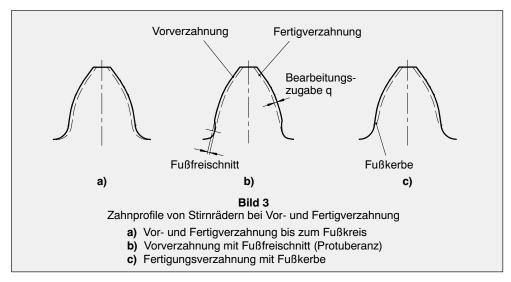
- die Flanken des Bezugsprofils sind Geraden und liegen symmetrisch unter dem Profilwinkel α_P zur Zahnmittellinie;
- zwischen dem Modul m und der Teilung p besteht die Beziehung p = πm;
- auf der Profilbezugslinie sind die Nennmaße der Zahndicke und der Lückenweite gleich groß, d.h. sp = ep = p/2;
- das Kopfspiel c_P zwischen Bezugsprofil und Gegenprofil beträgt 0,1 m bis 0,4 m;
- die Zahnkopfhöhe ist mit h_{aP} = m, die Zahnfußhöhe mit h_{fP} = m + c_P und folglich die Zahnhöhe mit h_P = 2 m + c_P festgelegt;
- die gemeinsame Zahnhöhe von Bezugs- und Gegenprofil ist hwP = 2 m.

1.2.1.2 Modul

Der Modul m des Bezugsprofils ist der im Normalschnitt geltende Normalmodul m_{n} der Stirnradverzahnung. Bei einem Schrägzahn-Stirnrad mit dem Schrägungswinkel β am Teilkreis ergibt sich in einem Stirnschnitt der

Stirnmodul $m_t = m_n/\cos\beta$. Bei einem Geradzahn-Stirnrad ist $\beta = 0$ und somit der Modul $m = m_n = m_t$. Um die Anzahl der notwendigen Verzahnungswerkzeuge zu begrenzen, ist der Modul m in Vorzugsreihe 1 und Reihe 2 genormt, siehe Tabelle 1.

Tabelle 1 Auswahl einiger Moduln m in mm (nach DIN 780)																
Reihe 1	1	1,25	1,5	2	2,5	3	4	5	6	8	10	12	16	20	25	32
Reihe 2	€ 2 1,75			3,	5 4	,5	7	7 9)	1-	4 1	8 2	2 2	28		


1.2.1.3 Werkzeugprofil

Das Werkzeug-Bezugsprofil nach Bild 2a ist das Gegenprofil zum Stirnrad-Bezugsprofil nach Bild 1. Der Werkzeug-Profilwinkel $\alpha_{P0} = \alpha_{P}$ beträgt bei Industriegetrieben in der Regel 20 Grad. Die Werkzeug-Zahndicke spo an der Werkzeug-Profilbezugslinie richtet sich nach der Bearbeitungsstufe. Das Vor-Verzahnungswerkzeug lässt auf beiden Flanken der Zähne eine Bearbeitungszugabe q für den bei der Fertigbearbeitung erforderlichen Bearbeitungsabtrag stehen. Die Werkzeug-Zahndicke ist daher bei Vor-Verzahnungswerkzeugen $s_{P0} < p/2$ und bei Fertig-Verzahnungswerkzeugen $s_{P0} = p/2$. Das Vor-Verzahnungswerkzeug erzeugt am Stirnrad den Fußkreisdurchmesser und die Fußrundung. Das Fertig-Verzahnungswerkzeug entfernt die Bearbeitungszugabe auf den Flanken, berührt gewöhnlich aber nicht - wie beim Zahnprofil im Bild 3a - den Fußkreis.

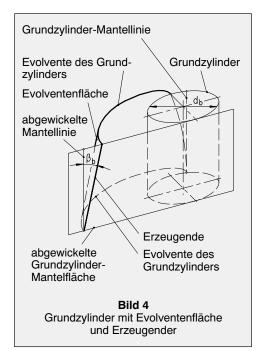
Zwischen Vor- und Fertigbearbeitung erfolgt eine Wärmebehandlung der Stirnräder, die in der Regel einen Verzug der Zähne und ein Wachsen der Fuß- und Kopfkreise bewirkt. Besonders bei Stirnrädern mit relativ großer Zähnezahl bzw. kleinem Modul besteht dann bei der Fertigbearbeitung die Gefahr der Erzeugung einer Zahnfußkerbe. Zur Vermeidung erhalten Vor-Verzahnungswerkzeuge Protuberanzflanken gemäß Bild 2b. Sie erzeugen am Stirnrad einen Fußfreischnitt, siehe Bild 3b. Am Werkzeug müssen der Protuberanzbetrag pr $_{\rm P0}$, der Protuberanzwinkel $\alpha_{\rm prP0}$ sowie der Kopfrundungsradius $\varrho_{\rm aP0}$ so bemessen sein, dass beim Stirnrad das aktive Zahnprofil nicht verkleinert und der Zahnfuß nicht übermäßig geschwächt wird.

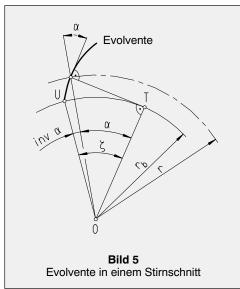
Bei Stirnradgetrieben mit kleinen Moduln nimmt man oft mit Absicht eine Fußkerbe in Kauf, wenn sie zum Fußkreis einen ausreichend großen Abstand hat und somit die Zahnfußtragfähigkeit nicht durch die Kerbwirkung beeinträchtigt, Bild 3c. Damit der Kopfkreis des Gegenrades die Fußrundung nicht berührt, ist für die Radpaarung eine Überprüfung auf Eingriffsstörungen (Interferenz) notwendig. /1/

1.2.1.4 Erzeugung der Zahnflanken

Eine Mantellinie des Grundzylinders mit dem Grundkreisdurchmesser d_b erzeugt beim Abwickeln des Mantels die Evolventenfläche eines Geradzahn-Stirnrades. Eine in der abgewickelten Mantelfläche zur Mantellinie um den Grundschrägungswinkel β_b geneigt liegende Gerade erzeugt die Evolventenfläche eines Schrägzahn-Stirnrades, Bild 4.

Die stets in einem Stirnschnitt liegende Evolente,




Bild 5, wird mit dem Stirnprofilwinkel α und dem Radius r durch die Beziehungen

$$inv\alpha = tan\alpha - \widehat{\alpha}$$
 (1)

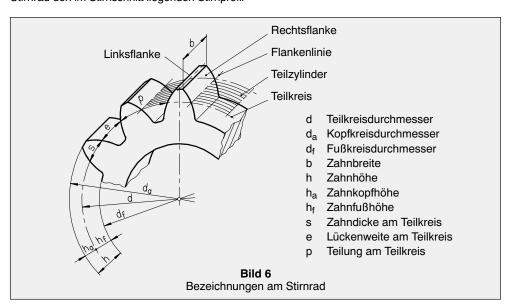
$$r = r_b / \cos\alpha \tag{2}$$

beschrieben. $r_b = d_b/2$ ist der Grundkreisradius. Der Winkel inv α wird Evolventenfunktion und der Winkel

$$\zeta = \widehat{\alpha} + \text{inv}\alpha = \tan\alpha \\ \tan\alpha \text{ wird Wälzwinkel genannt.}$$

1.2.2 Begriffe und Bestimmungsgrößen eines Stirnrades

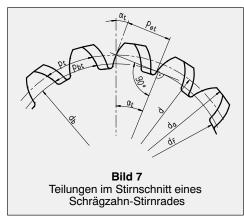
1.2.2.1 Geometrische Bezeichnungen


Bild 6 zeigt die wichtigsten geometrischen Größen eines Stirnrades.

Der Teilkreis ist der Schnitt des Teilzylinders mit einer Stirnschnittebene. Bei der Erzeugung der Zahnflanken wälzt die Wälzgerade des Werkzeuges am Teilkreis ab. Der Teilkreisumfang entspricht daher dem Produkt aus der Teilung p und Zähneanzahl z, d.h. $\pi \cdot d = p \cdot z$. Wegen $m_t = p/\pi$ folgt somit für den Teilkreisdurchmesser die Gleichung $d = m_t \cdot z$. Viele geometrische Größen des Stirnrades werden auf den Teilkreis bezogen. Am Schnittpunkt des Teilkreises mit der Evolvente bezeichnet man bei einem Schrägzahn-Stirnrad den im Stirnschnitt liegenden Stirnprofil-

winkel α als Stirneingriffswinkel α_{t_1} vgl. Bild 5 und 7. Legt man im Normalschnitt an die Evolventenfläche im Schnittpunkt mit dem Teilkreis eine Tangente, dann bezeichnet man den entsprechenden Winkel als Normaleingriffswinkel α_{n} . Er ist gleich dem Profilwinkel α_{P0} des Werkzeuges. Mit dem Schrägungswinkel β am Teilkreis besteht der Zusammenhang $\tan\alpha_n = \cos\beta \cdot \tan\alpha_t$. Bei einem Geradzahn-Stirnrad ist $\alpha_n = \alpha_t$.

Zwischen dem Grundschrägungswinkel β_b und dem Schrägungswinkel β am Teilkreis gilt die Beziehung $\sin\beta_b = \cos\alpha_n \cdot \sin\beta$. Den Grundkreisdurchmesser d_b erhält man aus dem Teilkreisdurchmesser d nach $d_b = d \cdot \cos\alpha_t$.


Bei innenverzahnten Rädern sind Zähnezahl z und damit auch die Durchmesser d, d_b , d_a , d_f negativ.

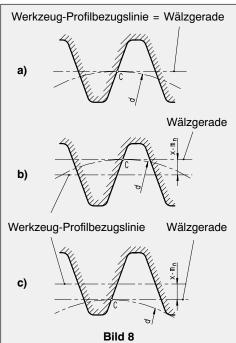
1.2.2.2 Teilungen

Die Teilung p_t eines Schrägzahn-Stirnrades (bei einem Geradzahn-Stirnrad: p) im Stirnschnitt ist die Länge des Teilkreisbogens zwischen zwei aufeinanderfolgenden Rechts- oder Linksflanken, siehe Bild 6 und 7. Mit der Zähnezahl z folgt $p_t = \pi \cdot d/z = \pi \cdot m_t$.

Die Stirneingriffsteilung p_{et} eines Schrägzahn-Stirnrades ist gleich der Grundkreisteilung p_{bt} , somit $p_{et} = p_{bt} = \pi \cdot d_b/z$. Im Normalschnitt folgt daraus die Normalteilung $p_{en} = p_{et}/\cos\beta_b$ und im Achsschnitt die axiale Teilung $p_{ex} = p_{et}/\tan\beta_b$, vgl. hierzu Bild 13.

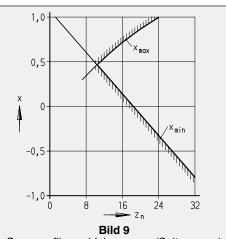
1.2.2.3 Profilverschiebung

Bei der Herstellung der Zahnflanken des Stirnrades mit einem zahnstangenförmigen Werkzeug (z.B. Wälzfräser) wälzt eine zur Werkzeug-Profilbezugslinie parallele Wälzgerade auf dem Teilkreis ab. Der Abstand (x \cdot m_n) der Wälzgeraden zur Werkzeug-Profilbezugslinie ist die Profilverschiebung und x der Profilverschiebungsfaktor, siehe Bild 8.


Die Profilverschiebung ist positiv, wenn die Werkzeug-Profilbezugslinie vom Teilkreis aus in Richtung zum Zahnkopf und negativ, wenn sie zum Zahnfuß des Stirnrades verschoben liegt. Dieses gilt sowohl für außen- als auch für innenverzahnte Stirnräder. Bei innenverzahnten Stirnrädern liegt der Zahnkopf nach innen. Die Profilverschiebung für außenverzahnte Stirnräder soll ungefähr in den im Bild 9 dargestellten Grenzen durchgeführt werden.

Die Grenzprofilverschiebungen x_{min} und x_{max} sind in Abhängigkeit von der Ersatzzähnezahl $z_n=z/(\cos\beta\cdot\cos^2\beta_b)$ dargestellt. Die obere Grenze x_{max} berücksichtigt die Spitzgrenze der Zähne und gilt für eine Zahnkopfdicke im Normalschnitt von $s_{an}=0.25~m_n$. Bei Unterschreitung der unteren Grenze x_{min} entsteht Unterschnitt, der die nutzbare Evolvente kürzt und den Zahnfuß schwächt.

Eine positive Profilverschiebung führt zu einem Zuwachs der Zahnfußdicke und damit zu einer Steigerung der Zahnfußtragfähigkeit. Bei kleinen Zähnezahlen wirkt sich dieses wesentlich stärker aus als bei großen Zähnezahlen. Am Ritzel strebt man meist eine größere Profilverschiebung als am Rad an, um so für beide Räder gleiche Zahnfußtragfähigkeiten zu erzielen, vgl. Bild 19


Weitere Kriterien zur Festlegung der Profilverschiebung enthalten /2/, /3/ und /4/. Der Profilverschiebungsfaktor x bezieht sich auf eine spielund abweichungsfreie Verzahnung. Um Zahndickenabmaße A_s (für Flankenspiel und Fertigungstoleranzen) sowie Bearbeitungszugaben q (für Vorverzahnungen) zu berücksichtigen, muss man bei der Fertigung des Stirnrades folgenden Erzeugungsprofilverschiebungsfaktor vorgeben:

$$X_{E} = x + \frac{A_{s}}{2m_{n} \cdot \tan \alpha_{n}} + \frac{q}{m_{n} \cdot \sin \alpha_{n}}$$
 (3)

Verschiedene Lagen der Werkzeug-Profilbezugslinie zur Wälzgeraden durch den Wälzpunkt C.

- a) Nullverschiebung; x = 0
- **b)** Negative Profilverschiebung; x < 0
- c) Positive Profilverschiebung: x > 0

Grenzprofilverschiebung x_{max} (Spitzgrenze) und x_{min} (Unterschnittgrenze) für außenverzahnte Stirnräder in Abhängigkeit von der Ersatzzähnezahl z_n (für innenverzahnte Stirnräder: siehe /1/ und /3/).

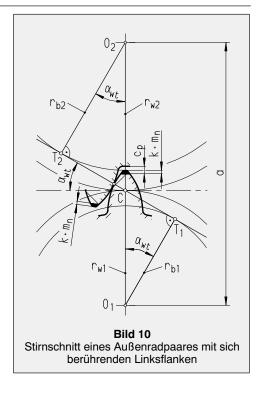
1.2.3 Begriffe und Bestimmungsgrößen eines Stirnradpaares

1.2.3.1 Benennungen

Zwei im Eingriff stehende außenverzahnte Stirnräder (Außenräder) bilden ein Außenradpaar. Bei einem Schrägzahn-Außenradpaar hat das eine Stirnrad eine rechtssteigende und das andere eine linkssteigende Flankenrichtung.

Die Paarung eines außenverzahnten mit einem innenverzahnten Stirnrad (Hohlrad) ist ein Innenradpaar. Bei einem Schrägzahn-Innenradpaar haben beide Stirnräder gleiche Flankenrichtungen, und zwar entweder rechts- oder linkssteigend. Größen für das kleinere Stirnrad (Ritzel) erhalten den Index 1 und für das größere Stirnrad (Rad bzw. Hohlrad) den Index 2.

Bei einem Null-Radpaar haben beide Stirnräder die Profilverschiebungsfaktoren $x_1 = x_2 = 0$ (Null-Räder).

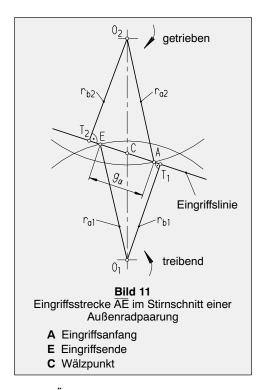

Bei einem V-Null-Radpaar haben beide Stirnräder Profilverschiebungen (V-Räder), und zwar mit $x_1 + x_2 = 0$, d.h. $x_1 = -x_2$.

Ein V-Radpaar liegt vor, wenn $x_1 + x_2 \neq 0$ ist. Eines der beiden Stirnräder kann aber den Profilverschiebungsfaktor x = 0 haben.

1.2.3.2 Paarungsgrößen

Das Zähnezahlverhältnis eines Radpaares ist das Verhältnis der Zähnezahl z_2 des Großrades zur Zähnezahl z_1 des Ritzels, somit $u=z_2/z_1$. Betriebswälzkreise mit dem Durchmesser $d_w=2\cdot r_w$ sind bei einem Stirnradpaar diejenigen Stirnschnittkreise, die im gemeinsamen Berührpunkt (Wälzpunkt C) gleiche Umfangsgeschwindigkeiten haben, Bild 10. Die Betriebswälzkreise teilen den Achsabstand $a=r_{w1}+r_{w2}$ im Verhältnis der Zähnezahlen, somit wird $d_{w1}=2\cdot a/(u+1)$ und $d_{w2}=2\cdot a\cdot u/(u+1)$.

Sowohl bei einem Null-Radpaar als auch bei einem V-Null-Radpaar ist der Achsabstand gleich dem Null-Achsabstand $a_d = (d_1 + d_2) / 2$, und die Wälzkreise sind zugleich Teilkreise, d.h. d_w = d. Dagegen ist bei einem V-Radpaar der Achsabstand nicht gleich dem Null-Achsabstand und die Wälzkreise sind nicht zugleich Teilkreise. Soll bei V-Radpaaren das Kopfspiel cp des Bezugsprofils erhalten bleiben (was nicht zwingend notwendig ist), dann ist eine Kopfhöhenänderung vorzunehmen. Diese erfasst der Kopfhöhenänderungsfaktor $k = (a - a_d) / m_n - (x_1 + x_2)$. Bei Null-Radpaaren und bei V-Null-Radpaaren ist k = 0. Bei Außenradpaaren ist k < 0, d.h. die Kopfkreisdurchmesser beider Stirnräder werden kleiner. Bei Innenradpaaren ist k > 0, d.h. die Kopfkreisdurchmesser beider Stirnräder werden größer (beim Hohlrad mit negativem Kopfkreisdurchmesser wird der Absolutbetrag kleiner).

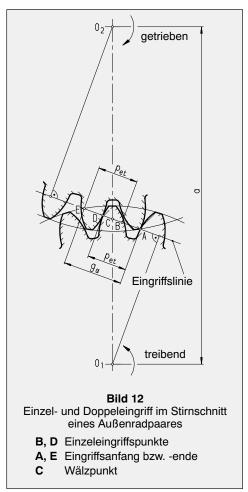


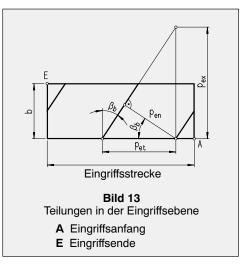
Auf der Eingriffslinie berühren sich beim Abwälzen der Zähne entweder die beiden Links- oder die beiden Rechtsflanken eines Stirnradpaares. Bei Flankenwechsel ergibt sich jeweils eine zur Mittellinie durch O_1 O_2 spiegelsymmetrisch liegende Eingriffslinie. Die Eingriffslinie im Bild 10 mit sich berührenden Linksflanken tangiert die beiden Grundkreise in den Punkten T_1 und T_2 . Sie schließt mit der gemeinsamen Tangente an die Wälzkreise den Betriebseingriffswinkel $\alpha_{\rm wt}$ ein.

Der Betriebseingriffswinkel α_{wt} ist der zum Betriebswälzkreis gehörende Stirnprofilwinkel. Er bestimmt sich nach Bild 10 aus cos α_{wt} = d_{b1} / d_{w1} = d_{b2} / d_{w2} . Für Null-Radpaare und V-Null-Radpaare ist der Betriebseingriffswinkel gleich dem Stirneingriffswinkel am Teilkreis, d.h. α_{wt} = α_t .

Die Eingriffsstrecke mit der Länge g_{α} ist der Teil der Eingriffslinie, der durch die beiden Kopfkreise der Stirnräder begrenzt wird, Bild 11.

Der Anfangspunkt A der Eingriffsstrecke ergibt sich als Schnitt der Eingriffslinie mit dem Kopfkreis des getriebenen Stirnrades und der Endpunkt E als Schnitt der Eingriffslinie mit dem Kopfkreis des treibenden Stirnrades.


1.2.3.3 Überdeckungsverhältnisse


Die Profilüberdeckung ε_{α} im Stirnschnitt ist das Verhältnis der Eingriffsstrecke gα zur Stirneingriffsteilung p_{et} , d.h. $\varepsilon_{\alpha} = g_{\alpha}/p_{et}$, vgl. Bild 12. Bei Geradzahn-Stirnradpaaren gibt die Profilüberdeckung die durchschnittliche Anzahl der Zahnpaare an, die während der Eingriffszeit eines Zahnpaares im Eingriff sind. Nach Bild 12 befindet sich das linke Zahnpaar im Einzeleingriffspunkt D, wenn das rechte Zahnpaar am Eingriffsanfang bei A in den Eingriff kommt. Das rechte Zahnpaar befindet sich im Einzeleingriffspunkt B, wenn das linke Zahnpaar am Eingriffsende bei E den Eingriff verlässt. Entlang der Einzeleingriffsstrecke BD ist ein Zahnpaar und entlang der Doppeleingriffsstrecken AB und DE sind gleichzeitig zwei Zahnpaare im Eingriff.

Bei Schrägzahn-Stirnradpaaren lässt sich erreichen, dass stets zwei oder mehr Zahnpaare gleichzeitig im Eingriff sind. Den Überdeckungsanteil infolge der Schrägstellung der Zähne erfasst die Sprungüberdeckung ϵ_{β} als das Verhältnis der Zahnbreite b zur Axialteilung p_{ex} , d.h. $\epsilon_{\beta} = b/p_{ex}$, vgl. Bild 13.

Die Gesamtüberdeckung ϵ_γ ist die Summe von Profilüberdeckung und Sprungüberdeckung, d.h. $\epsilon_\gamma = \epsilon_\alpha + \epsilon_\beta.$

Mit zunehmender Gesamtüberdeckung steigt im Allgemeinen die Tragfähigkeit, während die Geräuschanregung sinkt.

1.2.4 Zusammenstellung der wichtigsten Formeln

Die Tabellen 2 und 3 enthalten die wichtigsten Formeln zur Bestimmung der Größen eines Stirnrades und eines Stirnradpaares, und zwar sowohl für Außenrad- als auch für Innenradpaare.

Folgende Vorzeichenregeln sind zu beachten: Bei Innenradpaaren ist die Zähnezahl z_2 des Hohlrades negativ. Damit sind auch der Achsabstand a bzw. a_d und das Zähnezahlverhältnis u sowie die Durchmesser d_2 , d_{a2} , d_{b2} , d_{f2} , d_{w2} und die Ersatzzähnezahl z_{n2} negativ.

Bei der Auslegung eines Stirnradpaares für die Stirnradstufe sind von den Ausgangsgrößen der Tabelle 2 und 3 in der Regel nur der Normaleingriffswinkel α_n und das Zähnezahlverhältnis u

gegeben. Die Ritzelzähnezahl legt man im Hinblick auf Laufruhe sowie ausgewogene Fuß- und Flankentragfähigkeit mit etwa z $_1$ = 18 ... 23 fest. Bei Forderung nach hoher Fußtragfähigkeit kann man bis z $_1$ = 10 heruntergehen. Der Schrägungswinkel wird mit β = 10 bis 15 Grad, in Sonderfällen auch bis zu 30 Grad vorgegeben. Die Profilverschiebungsgrenzen im Bild 9 sind zu beachten. Beim Ritzel sollte der Profilverschiebungsfaktor etwa im Bereich x $_1$ = 0,2 bis 0,6 und ab etwa lul > 2 die Breite im Bereich b $_1$ = (0,35 bis 0,45) a liegen. Der Achsabstand a richtet sich entweder nach der geforderten Leistungsübertragung oder nach den baulichen Gegebenheiten.

10

Tabelle 2 Bestimmungsgrößen für ein Stirnrad *)

Ausgangsgrößen:

m_n mm Normalmodul

 α_n Grad Normaleingriffswinkel

β Grad Schrägungswinkel am Teilkreis

z – Zähnezahl *)

x – Profilverschiebungsfaktor

x_E - Erzeugungsprofilverschiebungsfaktor, siehe Gleichung (3)

h_{aP0} mm Werkzeugkopfhöhe

Berechnungsgröße	Formel
Stirnmodul	$m_t = \frac{m_n}{\cos \beta}$
Stirneingriffswinkel	$\tan \alpha_t = \frac{\tan \alpha_n}{\cos \beta}$
Grundschrägungswinkel	$\sin\beta_b = \sin\beta \cdot \cos\alpha_n$
Teilkreisdurchmesser	$d = m_t \cdot z$
Kopfkreisdurchmesser (k siehe Tabelle 3)	$d_a = d + 2 m_n (1 + x + k)$
Fußkreisdurchmesser	$d_f = d - 2 (h_{aP0} - m_n \cdot x_E)$
Grundkreisdurchmesser	$d_b = d \cdot cos\alpha_t$
Stirnteilung	$p_t = \frac{\pi \cdot d}{z} = \pi \cdot m_t$
Stirneingriffsteilung Grundkreisteilung	$p_{et} = p_{bt} = \frac{\pi \cdot d_b}{z} = p_t \cdot \cos \alpha_t$
Profilwinkel am Kopfkreis im Stirnschnitt	$\cos \alpha_{at} = \frac{d_b}{d_a}$
Zahndicke am Teilkreis im Stirnschnitt	$s_t = m_t \left(\frac{\pi}{2} + 2 \cdot x \cdot \tan \alpha_n \right)$
Zahndicke am Teilkreis im Normalschnitt	$s_n = s_t \cdot \cos \beta$
Zahndicke am Kopfkreis im Stirnschnitt	$s_{at} = d_a \left(\frac{s_t}{d} + inv\alpha_t - inv\alpha_{at} \right)$ **)
Ersatzzähnezahl	$z_n = \frac{z}{\cos\beta \cdot \cos^2\beta_b}$

^{*)} Beim Hohlrad ist z negativ einzusetzen

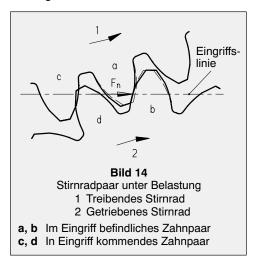
^{**)} inv α , siehe Gleichung (1).

Tabelle 3 Bestimmungsgrößen für ein Stirnradpaar *)

Ausgangsgrößen:

Es müssen die Bestimmungsgrößen für Ritzel und Rad nach Tabelle 2, ferner die Zahnbreiten b_1 und b_2 , sowie entweder der Achsabstand a oder die Summe der Profilverschiebungsfaktoren $x_1 + x_2$ gegeben sein.

Berechnungsgröße	Formel		
Zähnezahlverhältnis	$u = \frac{z_2}{z_1}$		
Betriebseingriffswinkel (a vorgegeben)	$\cos\alpha_{\text{wt}} = \frac{m_t}{2 \cdot a} (z_1 + z_2) \cos\alpha_t$		
Summe Profilverschiebungsfaktoren	$x_1 + x_2 = \frac{z_1 + z_2}{2 \cdot \tan \alpha_n} (inv\alpha_{wt} - inv\alpha_t)$		
Betriebseingriffswinkel (x ₁ + x ₂ vorgegeben)	$inv\alpha_{wt} = 2 \frac{x_1 + x_2}{z_1 + z_2} tan\alpha_n + inv\alpha_t$		
Achsabstand	$a = \frac{m_t}{2} (z_1 + z_2) \frac{\cos \alpha_t}{\cos \alpha_{wt}}$		
Null-Achsabstand	$a_d = \frac{m_t}{2} (z_1 + z_2) = \frac{d_1 + d_2}{2}$		
Kopfhöhenänderungsfaktor **)	$k = \frac{a - a_d}{m_n} - (x_1 + x_2)$		
Betriebswälzkreisdurchmesser Ritzel	$d_{w1} = \frac{2 \cdot a}{u+1} = d_1 \frac{\cos \alpha_t}{\cos \alpha_{wt}}$		
Betriebswälzkreisdurchmesser Rad	$d_{w2} = \frac{2 \cdot a \cdot u}{u + 1} = d_2 \frac{\cos \alpha_t}{\cos \alpha_{wt}}$		
Länge der Eingriffsstrecke	$g_{\alpha} = \frac{1}{2} \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \frac{u}{ u } \sqrt{d_{a2}^2 - d_{b2}^2} \right) - a \cdot \sin \alpha_{wt}$		
Profilüberdeckung	$ \epsilon_{\alpha} = \frac{g_{\alpha}}{Pet} $		
Sprungüberdeckung	$ \epsilon_{\beta} = \frac{b \cdot \tan \beta_b}{p_{et}} $ $b = min (b_1, b_2)$		
Gesamtüberdeckung	$\varepsilon_{\gamma} = \varepsilon_{\alpha} + \varepsilon_{\beta}$		


^{*)} Bei Innenradpaaren z₂ und a negativ einsetzen

^{**)} Siehe Abschnitt 1.2.3.2.

1.2.5 Zahnmodifikationen

Die in den vorausgegangenen Abschnitten 1.2.1 bis 1.2.4 angegebenen Bestimmungsgrößen beziehen sich auf abweichungsfreie Stirnräder. Die hochfesten Zahnradwerkstoffe ermöglichen jedoch eine hohe Lastausnutzung der Getriebe. Infolgedessen kommt es zu merklichen Verformungen der elastischen Getriebebauteile.

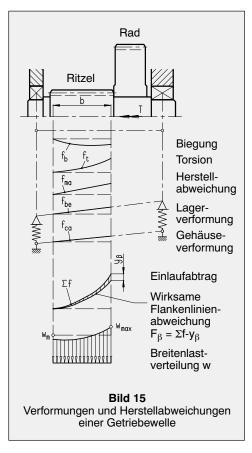
Die Durchbiegung an den Zahnköpfen beträgt in der Regel ein Vielfaches der fertigungsbedingten Formabweichungen. Dieses führt zu Störungen des Zahneingriffs am Ein- und Austritt, vgl. Bild 14. Tragfähigkeit und Geräuschanregung werden negativ beeinflusst.

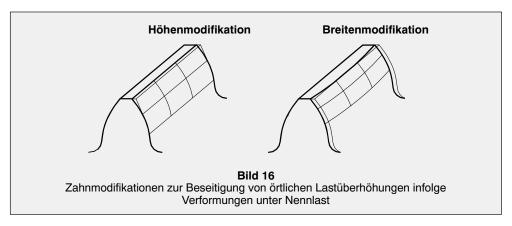
Die Belastung bewirkt außerdem Durchbiegungen und Verdrillungen von Ritzel- und Radwelle, Ritzel- und Radkörper sowie Lagerabsenkungen und Gehäuseverformungen. Hieraus ergeben sich Schiefstellungen der Zahnflanken, die häufig beträchtlich höher liegen als fertigungsbedingte Flankenlinienabweichungen, siehe Bild 15. Es kommt zu ungleichmäßigem Breitentragen, was ebenfalls Tragfähigkeit und Geräuschanregung ungünstig beeinflusst.

Der Einlaufabtrag von einsatzgehärteten Zahnrädern macht nur wenige Mikrometer aus und kann die genannten Abweichungen nicht kompensieren. Um das hohe Tragvermögen von einsatzgehärteten Zahnrädern wieder herzustellen und vermehrte Geräuschbildung zu senken, werden gezielte Abweichungen von der Evolvente (Höhenmodifikation) und von der theoretischen Flankenlinie (Breitenmodifikation) gefertigt, um so unter Last wieder nahezu ideale Geometrien mit gleichmäßiger Lastverteilung zu erhalten.

Die lastbedingten Modifikationen werden nur für eine Last – in der Regel für 70 ... 100% der dau-

ernd wirkenden Nennlast - berechnet und gefertigt /5,6,7/. Man erhält bei geringer Teillast Tragbilder, die nicht über die gesamte Zahnhöhe und -breite reichen. Dieses muss vor allem bei Tragbildkontrollen unter niedrigen Belastungen berücksichtigt werden. Die maximale örtliche Lastüberhöhung ist jedoch bei Teillast immer geringer als die theoretisch gleichmäßige Lastverteilung unter Vollast. Bei Teillast verringert sich bei modifizierten Verzahnungen wegen unvollständiger Traganteile der Überdeckungsgrad, wodurch die Geräuschanregungspegel im unteren Teillastbereich ansteigen. Mit steigender Belastung nehmen die Traganteile und damit der Überdeckungsgrad zu, so dass die Anregungspegel sinken. Radpaare, die nur gering belastet werden, benötigen keine Modifikationen.




Bild 16 zeigt übliche Höhen- und Breitenmodifikationen. Bei der Höhenmodifikation werden die Flanken an den Zahnköpfen von Ritzel und Rad um den Betrag zurückgenommen, um den sie jeweils am Ein- und Austritt infolge Zahndurchbiegungen vorstehen. Statt Kopf- können

98

Stirnradgetriebe

Geometrie der Evolventenzahnräder Tragfähigkeit der Evolventenzahnräder

auch Fußrücknahmen gefertigt werden, was jedoch wesentlich aufwendiger ist. Man erreicht so eine allmähliche Lastzunahme des in Eingriff kommenden bzw. Lastabnahme des austretenden Zahnes. Bei der Breitenmodifikation wird häufig der Flankenlinienmodifikation eine symmetrische Breitenballigkeit überlagert. Hiermit erzielt man gleichmäßiges Breitentragen bzw. Abbau von Lastkonzentrationen an den Zahnenden bei Achsverlagerungen.

1.3 Tragfähigkeit der Evolventenzahnräder

1.3.1 Anwendungsbereich und Zweck

Die Tragfähigkeitsberechnung der Stirnräder erfolgt üblicherweise nach dem Rechenverfahren DIN 3990 /8/ (identisch mit ISO 6336), das als Tragfähigkeitsgrenzen Grübchenbildung, Zahnfußdauerbruch und Warmfressen berücksichtigt. Die Berechnung nach diesem Verfahren ist wegen des verhältnismäßig großen Normenumfanges nur mit Hilfe von EDV-Programmen praktikabel durchführbar. Den Getriebeherstellern steht in der Regel ein solches Hilfsmittel zur Verfügung. Als Standardwerk gilt das FVA-Stirnradprogramm /9/, welches außerdem noch weitere Rechenverfahren einschließt, wie z.B. die Verfahren nach Niemann, AGMA, DNV, LRS und andere.

DIN 3990 schlägt zur Bestimmung einzelner Faktoren verschiedene Verfahren A, B, C... vor. Verfahren A ist jeweils genauer als Verfahren B usw. Die Anwendungsnorm /10/ nach DIN 3990 beruht auf vereinfachten Verfahren. Wegen der – wenn auch eingeschränkten – Allgemeingültigkeit ist sie jedoch immer noch verhältnismäßig aufwendig.

Das folgende Berechnungsverfahren für die Grübchen- und Fußtragfähigkeit von einsatzgehärteten Stirnrädern stellt eine weitere Vereinfachung gegenüber der Anwendungsnorm dar, ohne jedoch an Aussagekraft einzubüßen. Dieses ist möglich, weil zur Erzielung hoher Tragfähigkeiten bestimmte Bedingungen eingehalten werden, welche zur Folge haben, dass kein Fressen auftritt. Die Fress-Tragfähigkeitsberechnung bleibt daher im folgenden unberücksichtigt.

Es muss ausdrücklich betont werden, dass für die Tragfähigkeit von Getrieben das genaue Rechenverfahren gegenüber dem Vereinfachten stets von größerer Aussagekraft und daher in Grenzfällen allein maßgebend ist.

Konstruktion, Werkstoffauswahl, Fertigung, Wärmebehandlung und Betrieb der Industriegetriebe unterliegen bestimmten Regeln, die zu einer langen Lebensdauer der Stirnräder führen. Diese Regeln sind:

- Verzahnungsgeometrie nach DIN 3960;
- Stirnräder aus einsatzgehärtetem Stahl;
 Zahnflanken in DIN-Qualitätsstufe 6 oder besser feinbearbeitet;
- Werkstoffqualität und Wärmebehandlung durch Qualitätskontrollen gemäß DIN 3990 /11/ belegt;
- Vorschriftsmäßige Einsatzhärtungstiefen nach /12/ mit Oberflächenhärten von 58 ... 62 HRC;
- Zahnräder mit notwendigen Zahnmodifikationen und ohne schädigende Schleifkerben im Zahnfuß;
- Getriebe dauerfest ausgelegt; d.h. Lebensdauerfaktoren Z_{NT} = Y_{NT} = 1,0;
- Zahnflankendauerfestigkeit σ_{Hlim} ≥ 1200 N/mm²;
- Unterkritischer Betriebsbereich, d. h. Wälzkreisgeschwindigkeit kleiner als ca. 35 m/s;
- Ausreichende Schmierölversorgung;
- Verwendung von vorschriftsmäßigen Getriebeölen der Kraftstufe 12 nach FZG-Test und ausreichender Graufleckentragfähigkeit;
- Betriebstemperatur maximal 95 °C.

Unter diesen Voraussetzungen lassen sich in der Tragfähigkeitsberechnung nach DIN 3990 eine Reihe von Faktoren fest vorgeben, so dass sich der Rechengang zum Teil stark vereinfacht. Die Nichteinhaltung der obigen Voraussetzungen bedeutet aber nicht unbedingt eine geringere Tragfähigkeit. In Zweifelsfällen sollte man jedoch nach dem genaueren Verfahren rechnen.

1.3.2 Ausgangsgrößen

Basis für die Tragfähigkeitsberechnung ist das Nenndrehmoment der Arbeitsmaschine. Ersatzweise kann auch vom Nenndrehmoment des Antriebsmotors ausgegangen werden, sofern dies dem Drehmomentbedarf der Arbeitsmaschine entspricht.

Um eine Stirnradstufe berechnen zu können, müssen die in Tabelle 4 aufgeführten Größen vorgegeben sein, und zwar in den dort angegebenen Einheiten. Die geometrischen Größen werden nach Tabelle 2 und 3 berechnet. Sie sind gewöhnlich in den Werkstattzeichnungen der Stirnräder enthalten.

Tabelle 4 Ausgangsgrößen				
Kurzzeichen	Kurzzeichen Bedeutung			
Р	Leistung	kW		
n ₁	Ritzeldrehzahl	min ⁻¹		
a	Achsabstand	mm		
m _n	Normalmodul	mm		
d _{a1}	Kopfkreisdurchmesser des Ritzels	mm		
d _{a2}	Kopfkreisdurchmesser des Rades	mm		
b ₁	Zahnbreite des Ritzels	mm		
b ₂	Zahnbreite des Rades	mm		
z ₁	Zähnezahl des Ritzels	-		
z ₂	Zähnezahl des Rades	-		
x ₁	Profilverschiebungsfaktor des Ritzels	-		
x ₂	Profilverschiebungsfaktor des Rades	-		
α_{n}	Normaleingriffswinkel	Grad		
β	Schrägungswinkel am Teilkreis	Grad		
υ ₄₀	Kinematische Schmierölviskosität bei 40 °C	mm ² /s		
R _{z1}	Rauhtiefe der Ritzelflanke	μm		
R _{z2}	Rauhtiefe der Radflanke	μm		

Im weiteren Verlauf der Rechnung werden die in Tabelle 5 angegebenen Größen benötigt. Sie leiten sich aus den Ausgangsgrößen nach Tabelle 4 ab.

Tabelle 5 Abgeleitete Größen				
Bezeichnung	Beziehung	Einheiten		
Zähnezahlverhältnis	$u = z_2/z_1$	-		
Teilkreisdurchmesser des Ritzels	$d_1 = z_1 \cdot m_n/\cos\beta$	mm		
Zahnumfangskraft am Teilkreis des Ritzels	$F_t = \frac{6 \cdot 10^7}{\pi} \cdot \frac{P}{d_1 \cdot n_1}$	N		
Zahnumfangskraft am Wälzkreis	$F_{u} = F_{t} \cdot \frac{d_{1}}{2 \cdot a} (u+1)$	N		
Umfangsgeschwindigkeit am Teilkreis	$v = \pi \cdot d_1 \cdot n_1/60000$	m/s		
Schrägungswinkel am Grundkreis	$\beta_b = \arcsin(\cos\alpha_n \cdot \sin\beta)$	Grad		
Ersatzzähnezahl des Ritzels	$z_{n1} = z_1 / (\cos\beta \cdot \cos^2\beta_b)$	-		
Ersatzzähnezahl des Rades	$z_{n2} = z_2 / (\cos\beta \cdot \cos^2\beta_b)$	_		
Stirnmodul	$m_t = m_n / \cos \beta$	mm		
Stirneingriffswinkel	$\alpha_{\rm t} = \arctan (\tan \alpha_{\rm n} / \cos \beta)$	Grad		
Betriebseingriffswinkel	$\alpha_{\text{wt}} = \arccos \left[(z_1 + z_2) m_t \cdot \cos \alpha_t / (2 \cdot a) \right]$	Grad		
Stirneingriffsteilung	$p_{et} = \pi \cdot m_t \cdot \cos \alpha_t$	mm		
Grundkreisdurchmesser des Ritzels	$d_{b1} = z_1 \cdot m_t \cdot \cos \alpha_t$	mm		
Grundkreisdurchmesser des Rades	$d_{b2} = z_2 \cdot m_t \cdot \cos \alpha_t$	mm		
Länge der Eingriffsstrecke	$g_{\alpha} = \frac{1}{2} \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \frac{u}{ u } \sqrt{d_{a2}^2 - d_{b2}^2} \right) - a \cdot \sin \alpha_{wt}$	mm		
Profilüberdeckungsgrad	$\varepsilon_{\alpha} = g_{\alpha} / p_{et}$	_		
Sprungüberdeckungsgrad	$ \epsilon_{\beta} = b \cdot \tan \beta_b / p_{et} b = \min (b_1, b_2) $	_		

1.3.3 Allgemeine Faktoren

1.3.3.1 Anwendungsfaktor

Der Anwendungsfaktor K_A erfasst auf die Zahnräder wirkende Zusatzkräfte, die außerhalb des Getriebes ihre Ursache haben. Er ist abhängig von den Charakteristiken der Antriebs- und Abtriebsmaschine, den Kupplungen, den Massenund Steifigkeitsverhältnissen und den Betriebsverhältnissen.

Der Anwendungsfaktor bestimmt sich aus dem Lastkollektiv für das einzelne Zahnrad. Nach Möglichkeit sollte K_A durch eine genaue Messung oder eine umfassende Systemanalyse bestimmt werden. Da weder das eine noch das andere Verfahren häufig ohne großen Aufwand durchführbar ist, bietet Tabelle 6 Anhaltswerte, die für alle Räder eines Getriebes gleichermaßen gelten.

Tabelle 6 Anwendungsfaktor K _A						
Arbeitsweise der Antriebsmaschine	Arbeitsweise der getriebenen Maschine					
	gleichmäßig	mäßige Stöße	mittlere Stöße	starke Stöße		
gleichmäßig	1,00	1,25	1,50	1,75		
leichte Stöße	1,10	1,35	1,60	1,85		
mäßige Stöße	1,25	1,50	1,75	2,00 oder höher		
starke Stöße	1,50	1,75	2,00	2,25 oder höher		

1.3.3.2 Dynamikfaktor

Der Dynamikfaktor K_v erfasst die im Zahneingriff verursachten inneren dynamischen Zusatz-kräfte. Mit z_1 , v und u nach Tabelle 4 und 5 berechnet er sich aus

$$K_v = 1 + 0,0003 \cdot z_1 \cdot v \sqrt[3]{\frac{u^2}{1 + u^2}}$$
 (4)

1.3.3.3 Breitenfaktor

Der Breitenfaktor $K_{H\beta}$ berücksichtigt die Überhöhung der Zahnflankenbeanspruchung infolge ungleichmäßiger Lastverteilung über der Zahnbreite. Er kann nach /8/ mit Hilfe verschiedener Methoden bestimmt werden. Genaue Methoden, die auf umfangreiche Messungen oder Rechnungen oder auch auf Kombinationen von beiden beruhen, sind sehr aufwendig. Einfache Methoden sind dagegen ungenau und ergeben wegen der Abschätzung zur sicheren Seite hin meistens höhere Faktoren.

Für normale Stirnradverzahnungen ohne Breitenkorrekturen kann der Breitenfaktor gemäß Methode D nach /8/ in Abhängigkeit von der Zahnbreite b und dem Teilkreisdurchmesser d₁ des Ritzels wie folgt berechnet werden:

$$K_{H\beta} = 1.15 + 0.18 (b/d_1)^2 + 0.0003 \cdot b$$
 (5)

mit b = min (b₁, b₂). Der Getriebehersteller führt in der Regel eine Analyse der Breitenlastverteilung nach einer genauen Rechenmethode durch /13/. Falls notwendig, fertigt er zur Erzielung gleichmäßigen Breitentragens über der Zahnbreite Breitenmodifikationen, siehe Abschnitt 1.2.5. Unter diesen Gegebenheiten liegt der Breitenfaktor im Bereich von $K_{H\beta}=1,1\dots1,25$. Als grobe Regel gilt: Eine sinnvoll gewählte breitensymmetrische Balligkeit reduziert den über 1,0 liegenden Betrag von $K_{H\beta}$ um etwa 40 bis 50% und eine gezielt gefertigte Breitenmodifikation um etwa 60 bis 70%.

Bei schlanken Wellen mit einseitig angeordneten Rädern oder bei von außen auf die Wellen wirkenden Querkräften bzw. -momenten können bei nicht breitenkorrigierten Rädern die Breitenfaktoren Werte von 1,5...2,0 und in Extremfällen sogar bis 2,5 annehmen.

Der Breitenfaktor $K_{F\beta}$ zur Bestimmung der überhöhten Zahnfußbeanspruchung folgt näherungsweise aus dem Breitenfaktor $K_{H\beta}$ nach der Beziehung

$$K_{F\beta} = (K_{H\beta})^{0,9}$$
 (6)

1.3.3.4 Stirnfaktoren

Die Stirnfaktoren $K_{H\alpha}$ bzw. $K_{F\alpha}$ berücksichtigen die Auswirkung ungleichmäßiger Kraftaufteilung auf mehrere gleichzeitig im Eingriff befindliche Zahnpaare. Unter den in Abschnitt 1.3.1 zugrundegelegten Voraussetzungen folgt gemäß Methode B nach /8/ sowohl für die Flanken- als auch die Fußbeanspruchung

$$K_{H\alpha} = K_{F\alpha} = 1.0 \tag{7}$$

102

1.3.4 Zahnflankentragfähigkeit

Für die Berechnung der Grübchentragfähigkeit wird die Hertzsche Pressung am Wälzkreis zugrunde gelegt. Die wirksame Hertzsche Pressung σ_H wird für Ritzel und Rad gleich vorausgesetzt. Sie darf die zulässige Hertzsche Pressung σ_{HP} nicht überschreiten, d.h. $\sigma_H \leq \sigma_{HP}$.

1.3.4.1 Wirksame Hertzsche Pressung

Die wirksame Hertzsche Pressung ist lastabhängig und folgt gleichermaßen für Ritzel und Rad aus der Beziehung

$$\sigma_{H} = Z_{E} Z_{H} Z_{\beta} Z_{\epsilon} \sqrt{K_{A} K_{V} K_{H\alpha} K_{H\beta} \frac{u+1}{u} \frac{F_{t}}{d_{1} \cdot b}}$$
 (8)

3,0

2,8

2,6

2,4

2,2

2,0

1,8

1,6

Tabelle 4.

0,01

-0,005

0.00

0,01

0.02

0.03

0,04

0,06

0.08

10

 σ_{H} $\,$ Wirksame Hertzsche Pressung in N/mm² Ferner bedeuten:

 gemeinsame Zahnbreite von Ritzel und Rad

Ft, u, d₁ nach Tabelle 5

K_A Anwendungsfaktor nach Tabelle 6

K_v Dynamikfaktor nach Gl. (4)

KHB Breitenfaktor nach Gl. (5)

K_{Hα} Stirnfaktor nach GI. (7)

Z_E Elastizitätsfaktor; Z_E = 190√N/mm² für Zahnräder aus Stahl

Z_H Zonenfaktor nach Bild 17

Z_β Schrägenfaktor nach Gl. (9)

 Z_{ϵ} Überdeckungsfaktor nach Gl. (10) oder (11)

Mit ß nach Tabelle 4 gilt:

$$Z_{\beta} = \sqrt{\cos\!\beta}$$
 (9)

Mit ϵ_{α} und ϵ_{β} nach Tabelle 5 gilt:

$$Z_{\epsilon} = \sqrt{\frac{4 - \epsilon_{\alpha}}{3} \left(1 - \epsilon_{\beta}\right) + \frac{\epsilon_{\beta}}{\epsilon_{\alpha}}} \quad \text{für } \epsilon_{\beta} < 1 \quad \ (10)$$

$$Z_{\epsilon} = \sqrt{\frac{1}{\epsilon_{\alpha}}} \qquad \text{für } \epsilon_{\beta} \geqq 1 \tag{11}$$

Ritzel und Rad gleich und werden nachfolgend ermittelt.

20

Bild 17

Zonenfaktor Z_H abhängig vom Schrägungswinkel β sowie von den Zähnezahlen z_1 , z_2 ,

und Profilverschiebungsfaktoren x1, x2; vgl.

- β

30

40°

Der Schmierstofffaktor errechnet sich mit der Schmierölviskosität υ_{40} nach Tabelle 4 aus:

$$Z_{L} = 0.91 + \frac{0.25}{\left(1 + \frac{112}{v_{40}}\right)^{2}}$$
 (13)

1.3.4.2 Zulässige Hertzsche Pressung

Die zulässige Hertzsche Pressung bestimmt sich aus

$$\sigma_{HP} = Z_L Z_V Z_X Z_R Z_W \frac{\sigma_{Hlim}}{S_H}$$
 (12)

 σ_{HP} zulässige Hertzsche Pressung in N/mm². Sie ist für Ritzel und Rad unterschiedlich groß, wenn die Werkstoffestigkeiten σ_{Hlim} verschieden sind. Die Faktoren Z_L , Z_V , Z_R , Z_W und Z_X sind für

10

Für den Geschwindigkeitsfaktor gilt mit der Umfangsgeschwindigkeit v nach Tabelle 5

$$Z_{v} = 0.93 + \frac{0.157}{\sqrt{1 + \frac{40}{v}}}$$
 (14)

Der Rauheitsfaktor bestimmt sich mit der mittleren Rauhtiefe $R_Z = \left(R_{Z1} + R_{Z2}\right)/2$ des Radpaares sowie dem Zähnezahlverhältnis u und dem Teilkreisdurchmesser d₁ des Ritzels, vgl. Tabelle 4 und 5, aus

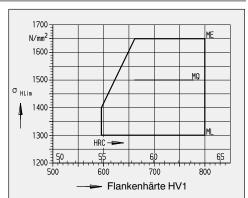
$$Z_{R} = \left[\frac{0.513}{R_{z}} \sqrt[3]{(1 + |u|) d_{1}}\right]^{0.08}$$
 (15)

Der Werkstoffpaarungsfaktor beträgt für ein Radpaar mit gleichen Flankenhärten

$$Z_{W} = 1,0$$
 (16)

Der Größenfaktor errechnet sich mit dem Modul $m_{\mbox{\scriptsize n}}$ nach Tabelle 4 aus

$$Z_X = 1,05 - 0,005 \,\mathrm{m_n}$$
 (17)


mit der Einschränkung $0.9 \le Z_X \le 1$.

oHlim Grübchendauerfestigkeit des Zahnradwerkstoffes. Für Zahnräder aus Einsatzstahl, einsatzgehärtet, weist Bild 18 in Abhängigkeit von der Oberflächenhärte der Zahnflanken und der Werkstoffqualität einen Bereich von 1300 ... 1650 N/mm² aus. Unter den Voraussetzungen gemäß Abschnitt 1.3.1 kann für Ritzel und Rad die Qualität MQ zugrunde gelegt werden, vgl. Tabelle Seite 77.

S_H geforderter Sicherheitsfaktor gegen Grübchenbildung, vgl. Abschnitt 1.3.6.

1.3.5 Zahnfußtragfähigkeit

Beim Nachweis der Zahnfußtragfähigkeit legt man die maximale Beanspruchung in der Zahnfußrundung an der 30-Grad-Tangente zugrunde. Für Ritzel und Rad ist jeweils getrennt zu zeigen, dass die wirksame Zahnfußspannung σ_F die zulässige Zahnfußspannung σ_{FP} nicht überschreitet, d.h. $\sigma_F < \sigma_{FP}$.

Bild 18

Grübchendauerfestigkeit σ_{Hlim} von legierten Einsatzstählen, einsatzgehärtet, in Abhängigkeit von der Oberflächenhärte HV1 der Zahnflanken und der Werkstoffqualität.

ML geringer Qualitätsnachweis MQ normaler Qualitätsnachweis ME hoher Qualitätsnachweis vgl. /11/

1.3.5.1 Wirksame Zahnfußspannung

Die lastabhängigen Zahnfußspannungen sind für Ritzel und Rad in der Regel unterschiedlich groß. Sie bestimmen sich aus der Beziehung:

$$\sigma_{F} = K_{A} K_{V} K_{F\alpha} K_{F\beta} \cdot \frac{F_{t}}{b \cdot m_{n}} \cdot Y_{FS} Y_{\beta} Y_{\epsilon} \quad (18)$$

σ_F wirksame Zahnfußspannung in N/mm²

Folgende Faktoren sind für Ritzel und Rad gleich groß:

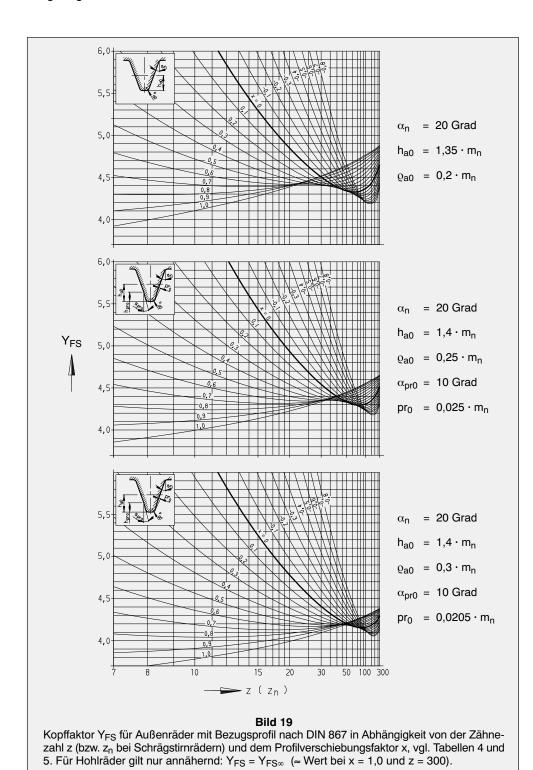
m_n, F_t nach Tabelle 4 und 5

K_A Anwendungsfaktor nach Tabelle 6

K_v Dynamikfaktor nach Gl. (4)

K_{Fβ} Breitenfaktor nach Gl. (6)

K_F Stirnfaktor nach Gl. (7)


Y_E Überdeckungsfaktor nach Gl. (19)

 Y_{β} Schrägenfaktor nach Gl. (20)

Folgende Faktoren sind für Ritzel und Rad unterschiedich groß:

b₁, b₂ Zahnbreiten von Ritzel und Rad nach Tabelle 4. Sind die Breiten von Ritzel und Rad ungleich, so ist für das breitere von beiden je Zahnende höchstens ein Überstand von ein mal Modul als mittragend anzunehmen.

Y_{FS1}, Kopffaktoren nach Bild 19. Sie erfas-Y_{FS2} sen den komplexen Spannungszustand einschließlich der Kerbwirkung in der Zahnfußrundung.

Siemens MD · 2009 105

10

Mit dem Schrägungswinkel β nach Tabelle 4 und dem Sprungüberdeckungsgrad ϵ_β nach Tabelle 5 folgen:

$$Y_{\varepsilon} = 0.25 + \frac{0.75}{\varepsilon_{\alpha}} \cdot \cos^2 \beta \qquad (19)$$

mit der Einschränkung 0,625 $\leq Y_{\epsilon} \leq 1$

$$Y_{\beta} = 1 - \varepsilon_{\beta} \cdot \frac{\beta}{120^{\circ}}$$
 (20)

mit der Einschränkung

$$Y_{\beta} \ge \text{max.} [(1 - 0.25 \epsilon_{\beta}); (1 - \beta/120)].$$

1.3.5.2 Zulässige Zahnfußspannung

Die zulässige Zahnfußspannung bestimmt sich für Ritzel und Rad aus

$$\sigma_{FP} = Y_{ST} Y_{\delta relT} Y_{RrelT} Y_X \frac{\sigma_{Flim}}{(S_F)}$$
 (21)

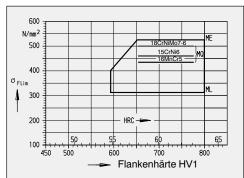
 σ_{FP} zulässige Zahnfußspannung in N/mm². Sie ist für Ritzel und Rad unterschiedlich groß, wenn die Werkstofffestigkeiten σ_{Flim} verschieden sind. Die Faktoren Y_{ST} , $Y_{\delta relT}$, Y_{RrelT} und Y_X können für Ritzel und Rad näherungsweise gleich groß gesetzt werden.

 Y_{ST} Spannungskorrekturfaktor der Prüfräder zur Bestimmung der Zahnfußdauerfestigkeit σ_{Flim} . Für Standard-Referenzprüfräder legt die Norm $Y_{ST}=2,0$ fest.

 $Y_{\delta relT}$ relative Stützziffer (Kerbempfindlichkeit des Werkstoffes), bezogen auf Standard-Referenzprüfrad. Näherungsweise $Y_{\delta relT}=1,0.$

In Abhängigkeit vom Modul m_n gilt näherungsweise für den relativen Oberflächenfaktor (Rauheitsfaktor für Zahnfußrundung), bezogen auf Standard-Referenzprüfrad

$$\begin{array}{lll} Y_{RrelT} = 1{,}00 \; f\ddot{u}r & m_n \leq & 8 \; mm \\ = 0{,}98 \; f\ddot{u}r \; 8 \; mm \; < \; m_n \leq & 16 \; mm \\ = 0{,}96 \; f\ddot{u}r & m_n \; > & 16 \; mm \end{array} \tag{22}$$


und für den Größenfaktor

$$Y_X = 1,05 - 0,01 \text{ m}_n$$
 (23)

mit der Einschränkung 0,8 $\leq Y_X \leq 1$.

σ_{Flim} Zahnfußdauerfestigkeit des Zahnradwerkstoffes. Bild 20 zeigt für Zahnräder aus Einsatzstahl, einsatzgehärtet, in Abhängigkeit von der Oberflächenhärte der Zahnflanken und der Werkstoffqualität einen Bereich von 310...520 N/mm². Unter den Voraussetzungen nach Abschnitt 1.3.1 kann für Ritzel und Rad die zur Qualität MQ gehörende Festigkeit zugrunde gelegt werden, vgl. Tabelle Seite 77.

S_F geforderter Sicherheitsfaktor gegen Zahnfußdauerbruch, vgl. Abschnitt 1.3.6.

Bild 20

Zahnfußdauerfestigkeit σ_{Flim} von legierten Einsatzstählen, einsatzgehärtet, in Abhängigkeit von der Oberflächenhärte HV1 der Zahnflanken und der Werkstoffqualität.

ML geringer Qualitätsnachweis MQ normaler Qualitätsnachweis ME hoher Qualitätsnachweis vgl. /11/

1.3.6 Sicherheiten

Als Mindestsicherheiten werden nach DIN gefordert:

gegen Grübchenbildung $S_H = 1,0$ gegen Zahnfußdauerbruch $S_F = 1,3$.

In der Praxis sind höhere Sicherheitswerte gebräuchlich. Bei mehrstufigen Getrieben legt man für die teuren Endstufen die Sicherheiten um 10 bis 20% und für die preiswerten Vorstufen meist noch höher fest.

Für risikoreiche Einsatzfälle gibt man die Sicherheiten ebenfalls höher vor.

1.3.7 Rechenbeispiel

Ein Elektromotor treibt über ein mehrstufiges Stirnradgetriebe eine Kohlenmühle. Die letzte Getriebestufe soll berechnet werden.

Gegeben: Nennleistung P = 3300 kW; Ritzeldrehzahl n_1 = 141 min⁻¹; Achsabstand a = 815 mm; Normalmodul m_n = 22 mm; Kopfkreisdurchmesser d_{a1} = 615,5 mm und d_{a2} = 1100 mm; Ritzel- und Radbreite b_1 = 360 mm und b_2 = 350 mm; Zähnezahlen z_1 = 25 und z_2 = 47; Profilverschiebungsfaktoren x_1 = 0,310 und x_2 = 0,203; Normaleingriffswinkel α_n = 20 Grad; Schrägungswinkel β = 10 Grad; kinematische Schmierölviskosität v_{40} = 320 cSt; Flankenrauheiten R_{z1} = R_{z2} = 4,8 μm.

Die Stirnräder bestehen aus dem Werkstoff 18CrNiMo7-6, sind einsatzgehärtet und mit Profilmodifikation sowie breitensymmetrischer Balligkeit geschliffen.

Stirnradgetriebe

Tragfähigkeit der Evolventenzahnräder Getriebebauarten

Nachrechnung: (Werte z.T. gerundet)

Zähnezahlverhältnis u = 1,88; Teilkreisdurchmesser des Ritzels d $_1$ = 558,485 mm; Zahnumfangskraft am Teilkreis F $_t$ = 800425 N; Umfangsgeschwindigkeit am Teilkreis v = 4,123 m/s; Grundschrägungswinkel β_b = 9,391 Grad; Ersatzzähnezahlen z $_{n1}$ = 26,08 und z $_{n2}$ = 49,03; Stirnmodul m $_t$ = 22,339 mm; Stirneingriffswinkel α_t = 20,284 Grad; Betriebseingriffswinkel α_t = 22,244 Grad; Stirneingriffsteilung p $_t$ = 65,829 mm; Grundkreisdurchmesser d $_t$ = 523,852 mm und d $_t$ = 984,842 mm; Länge der Eingriffstrecke g $_t$ = 98,041 mm; Profilüberdeckungsgrad $_t$ = 1,489; Sprungüberdeckungsgrad $_t$ = 0,879.

Anwendungsfaktor $K_A=1,50$ (E-Motor mit gleichmäßiger Arbeitsweise, Kohlenmühle mit mittleren Stößen); Dynamikfaktor $K_V=1,027$; Breitenfaktor $K_{H\beta}=1,20$ [nach Gl. (5) folgt $K_{H\beta}=1,326$; wegen symmetrischer Breitenballigkeit kann jedoch mit kleinerem Wert gerechnet werden], $K_{F\beta}=1,178$; $K_{H\alpha}=K_{F\alpha}=1,0$.

Zahnflankentragfähigkeit:

Elastizitätsfaktor $Z_E=190 \sqrt{N/mm^2}$; Zonenfaktor $Z_H=2,342$; Schrägenfaktor $Z_\beta=0,992$; Überdeckungsfaktor $Z_\epsilon=0,832$. Nach Gl. (8) ergibt sich für Ritzel und Rad die Hertzsche Pressung $\sigma_H=1251 \ N/mm^2$.

Schmierstofffaktor Z_L = 1,047; Geschwindigkeitsfaktor Z_V = 0,978; Rauheitsfaktor Z_R = 1,018; Werkstoffpaarungsfaktor Z_W = 1,0; Größenfaktor Z_X = 0,94. Mit der Grübchendauerfestigkeit von σ_{Hlim} = 1500 N/mm² bestimmt man aus GI. (12) zunächst ohne Berücksichtigung des Sicherheitsfaktors die zulässige Hertzsche Pressung σ_{HP} = 1470 N/mm².

Die Sicherheit gegen Grübchenbildung folgt aus $S_H = \sigma_{HP}/\sigma_H = 1470/1251 = 1,18$. Die auf das Drehmoment bezogene Sicherheit beträgt $S_H{}^2 = 1,38$.

Zahnfußtragfähigkeit:

Überdeckungsfaktor $Y_\epsilon=0,738$; Schrägenfaktor $Y_\beta=0,927$; Kopffaktoren $Y_{FS1}=4,28$ und $Y_{FS2}=4,18$ (für $h_{a0}=1,4$ mn; $\varrho_{a0}=0,3$ mn; $\alpha_{pr0}=10$ Grad; $\varrho_{r0}=0,0205$ mn). Aus Gleichung (18) erhält man die wirksamen Zahnfußspannungen $\sigma_{F1}=537$ N/mm² für das Ritzel und $\sigma_{F2}=540$ N/mm² für das Rad.

Spannungskorrekturfaktor $Y_{ST}=2.0$; relative Stützziffer $Y_{\delta relT}=1.0$; relativer Oberflächenfaktor $Y_{RrelT}=0.96$; Größenfaktor $Y_X=0.83$. Ohne Berücksichtigung des Sicherheitsfaktors folgen mit der Zahnfußdauerfestigkeit $\sigma_{Flim}=500$ N/mm² aus Gl. (21) die zulässigen Zahnfußspannungen für Ritzel und Rad zu $\sigma_{FP1}=\sigma_{FP2}=797$ N/mm²

Die auf das Drehmoment bezogenen Sicherheiten gegen Zahnfußdauerbruch betragen $S_F =$

 σ_{FP}/σ_F : für das Ritzel S_{F1} = 797/537 = 1,48 und für das Rad S_{F2} = 797/540 = 1,48.

1.4 Getriebebauarten

1.4.1 Standardausführungen

In der industriellen Praxis setzt man verschiedene Arten von Zahnradgetrieben ein. Vorzugsweise finden Standardgetriebe in Stirnrad- und Kegelstirnradausführung mit festgelegter Übersetzungs- und Größenstufung Verwendung. Diese ein- bis vierstufigen und nach dem Baukastenprinzip erstellten Getriebe decken einen großen von den Arbeitsmaschinen verlangten Drezahl- und Drehmomentbereich ab. Zusammen mit einem genormten Elektromotor sind solche Getriebe in der Regel die wirtschaftlichste Antriebslösung.

Daneben gibt es aber auch Fälle, in denen man nicht auf einen Standardantrieb zurückgreift. U.a. gilt dieses für große Drehmomente, die oberhalb des Bereiches der Standardgetriebe liegen. In solchen Fällen kommen Sondergetriebe zum Einsatz. Hierbei spielen leistungsverzweigte Getriebe eine große Rolle.

1.4.2 Leistungsverzweigte Getriebe

Grundsätzlich sind die höchsten Abtriebsdrehmomente von Zahnradgetrieben durch die Grenzen der Fertigungsmöglichkeiten gegeben, da Verzahnungsmaschinen Großräder nur bis zu einem maximalen Durchmesser herstellen können. Eine weitere Steigerung der Abtriebsdrehmomente ist dann nur noch mit Hilfe der Leistungsverzweigung im Getriebe realisierbar. Aber auch bei kleineren Drehmomenten finden leistungsverzweigte Stirnradgetriebe trotz ihrer größeren Anzahl innen liegender Bauteile wegen bestimmter Vorteile ein breites Anwendungsfeld, u.a. auch in Standardausführung. Im folgenden werden typische Merkmale der einen oder anderen Bauart aufgezeigt.

1.4.3 Vergleiche

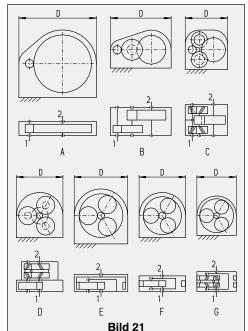

Nachstehend werden ein- und zweistufige Getriebe bis zu einer Übersetzung i = 16 betrachtet. Bei üblichen Stirnradgetrieben machen die letzte bzw. letzte und vorletzte Getriebestufe in der Regel ca. 70 bis 80% des Gesamtgewichtes und auch des Herstellungsaufwandes aus. Das Vorschalten weiterer Getriebestufen zur Erzielung höherer Übersetzungen ändert also nichts an der nachfolgenden grundsätzlichen Darstellung.

Bild 21 zeigt schematisch Stirnradgetriebe ohne und mit Leistungsverzweigung. Welle 1 ist jeweils schnell- und Welle 2 langsamdrehend. Mit den Drehzahlen $\rm n_1$ und $\rm n_2$ lautet die Übersetzung

$$i = n_1 / n_2 \tag{24}$$

Siemens MD · 2009 107

Die Durchmesserverhältnisse der Räder der im Bild 21 gezeigten Getriebe entsprechen der Übersetzung i = 7. Die Getriebe haben gleiche Abtriebsdrehmomente, so dass Bild 21 bereits einen maßstäblichen Größenvergleich bietet. Die Getriebe A, B und C weisen versetzte und die Getriebe D, E, F, G koaxiale Wellenanordnungen auf.

Schematische Darstellung von Stirnradgetriebebauarten ohne und mit Leistungsverzweigung. Übersetzung i = 7. Maßstäblicher Größenvergleich von Getrieben mit gleichem Abtriebsmoment.

Getriebe A ist ein- und Getriebe B zweistufig. Beide Getriebe sind ohne Leistungsverzweigung. Zweistufig und leistungsverzweigt sind die Getriebe C, D, E, F und G. Bei den Getrieben C und D haben die Zwischenräder verschieden große Durchmesser, bei E, F und G sind die Zwischenräder einer Welle zu einem Rad vereint, so dass man sie auch als einstufige Getriebe ansieht.

Das Getriebe C hat zweifache Leistungsverzweigung. Die gleichmäßige Leistungsaufteilung wird in der schnelldrehenden Stufe durch Doppelschrägverzahnung und axiale Beweglichkeit der Welle 1 erzielt. Im Getriebe D verzweigt sich die Leistung der schnelldrehenden Getriebewelle gleichmäßig auf drei Räder, was durch radiale Beweglichkeit des kleinen Zentralrades der Welle 1 erreicht wird. In der lang-

sam drehenden Stufe teilt sich die Leistung mittels Doppelschrägverzahnung und axialer Beweglichkeit der Zwischenwelle insgesamt sechsfach.

Um gleichmäßige Leistungsverzweigung auf die drei Zwischenräder der Getriebe E, F und G zu bewerkstelligen, ist meistens das kleine Zentralrad der Welle 1 radial beweglich. Das große Zentralrad ist ein Hohlrad und beim Getriebe E mit Welle 2 sowie bei den Getrieben F und G mit dem Gehäuse verbunden. Bei den Getrieben F und G bildet der Steg mit der Welle 2 eine Einheit. Die Zwischenräder kreisen als Planeten um die Zentralachse. Doppelschrägverzahnung und axiale Beweglichkeit der Zwischenräder gewährleisten beim Getriebe G gleichmäßige Leistungsaufteilung auf sechs Zweige.

1.4.3.1 Lastwert

Der Lastwert B_L ermöglicht es, dass bei den folgenden Betrachtungen auch Stirnradgetriebe mit unterschiedlichen Festigkeitswerten der Zahnradwerkstoffe untereinander vergleichbar sind.

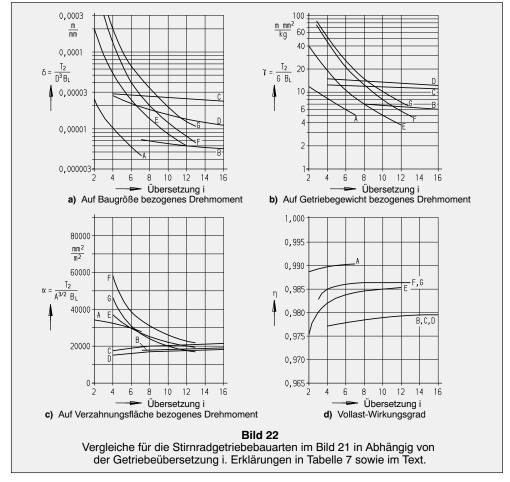
Nach /14/ ist der Lastwert die auf den Ritzelwälzkreisdurchmesser d_w und die tragende Zahnbreite b bezogene Zahnumfangskraft F_u, d.h.

$$B_{L} = \frac{F_{u}}{b \cdot d_{w}}$$
 (25)

Die zulässigen Lastwerte der Zahneingriffe von Stirnradgetrieben kann man, wie in /15/ gezeigt, aus der Grübchentragfähigkeit, vgl. Abschnitt 1.3.4, näherungsweise mit folgender Beziehung bestimmen:

$$B_L \approx 7 \cdot 10^{-6} \frac{u}{u+1} \frac{\sigma^2_{Hlim}}{K_A \cdot S_H^2}$$
 (26)

mit B_L in N/mm² und Grübchendauerfestigkeit σ_{Hlim} in N/mm² sowie Zähnezahlverhältnis u, Anwendungsfaktor K_A und Grübchensicherheit S_H . Das Zähnezahlverhältnis u ist betragsmäßig stets größer als 1 und bei Innenradpaaren negativ (siehe Tabelle 3).


Der Lastwert B_L ist eine spezifische Größe und unabhängig von der Baugröße des Stirnradgetriebes. Für praktisch ausgeführte Getriebe gelten: Stirnräder aus Einsatzstahl $B_L = 4 \dots 6 \, \text{N/mm}^2$; Stirnräder aus Vergütungsstahl $B_L = 1 \dots 1,5 \, \text{N/mm}^2$; Planetenstufen mit Hohlrädern aus Vergütungsstahl, Planeten- und Sonnenräder aus Einsatzstahl $B_L = 2,0 \dots 3,5 \, \text{N/mm}^2$.

1.4.3.2 Bezogene Drehmomente

Bild 22 zeigt bezogene Drehmomente für die Getriebe im Bild 21 in Abhängigkeit von der Übersetzung i. Tabelle 7 gibt weitere Erklärungen. Das Drehmoment T₂ wird beim Vergleich der Baugrößen auf das Größenmaß D, beim Vergleich der Gewichte auf das Getriebegewicht G

und beim Vergleich der Verzahnungsflächen auf die Mantelflächen A der Wälzkreiszylinder bezogen. Getriebegewicht G und Verzahnungsfläche A sind ein Maß für den Herstellaufwand. Je höher eine Kurve im Bild 22 liegt, desto besser schneidet das betreffende Getriebe im Vergleich zu den anderen ab.

Tabelle 7 Bezogene Drehmomente					
Vergleichskriterium	Einheiten der Grundgrößen				
Baugröße	$\delta = \frac{T_2}{D^3 \; B_L}$		T ₂ in Nm B _L in N/mm ²		
Gewicht	$\gamma = \frac{T_2}{G B_L}$	m mm² kg	D in mm		
Verzahnungsfläche	$\alpha = \frac{T_2}{A^{3/2} \; B_L}$	$\frac{\text{mm}^2}{\text{m}^2}$	G in kg A in m ²		

Siemens MD ⋅ 2009 109

Für alle in Bild 21 und 22 erklärten Getriebe gelten die gleichen Voraussetzungen. So liegt für alle Getriebe das Größenmaß D um den Faktor 1,15 höher als die Summe der Wälzkreisdurchmesser. Ähnliche Festlegungen gelten für Getriebehöhe und -breite. Auch die Gehäusewanddicke steht in einer festen Beziehung zum Größenmaß D /15/.

Bei gegebenem Drehmoment T₂ und mit nach GI. (26) ermitteltem Lastwert B_L kann für eine gegebene Übersetzung i das Größenmaß D, das Getriebegewicht G und die Verzahnungsfläche A überschlägig aus Bild 22 bestimmt werden. Die Gewichte von Baukastengetrieben liegen aber in der Regel höher, da die Gehäusemaße nach anderen Gesichtspunkten festgelegt werden.

Bezogen auf Baugröße und Gewicht ist bei den Planetengetrieben F und G bei kleinen Übersetzungen i das Drehmoment am größten. Für Übersetzungen i < 4 wird anstelle des Sonnenrades das Planetenrad Kleinrad. Bauraum und Tragfähigkeit der Planetenradlager nehmen stark ab. Es ist üblich, für i < 4,5 die Planetenradlager im Planetenträger anzuordnen.

Bei Übersetzungen oberhalb i ≈ 7 ist das auf Baugröße und Gewicht bezogene Drehmoment der Getriebe C und D, die nur außenverzahnte Räder haben, am größten. Das auf die Verzahnungsfläche bezogene Drehmoment liegt beim Planetengetriebe nur bei kleinen Übersetzungen günstiger als bei den übrigen Getrieben. Es ist aber zu berücksichtigen, dass innenverzahnte Hohlräder gegenüber außenverzahnten Rädern bei gleicher Fertigungsqualität einen größeren Herstellungsaufwand erfordern.

Die Vergleiche zeigen, dass es ein optimales Getriebe mit allen in sich vereinenden Vorzügen über die gesamte Übersetzungsbreite nicht gibt. So ist das auf Baugröße und Gewicht bezogene Abtriebsdrehmoment beim Planetengetriebe am günstigsten, und zwar um so mehr, je kleiner die Übersetzung der Planetenstufe ist. Mit zunehmender Übersetzung nimmt jedoch das bezogene Drehmoment stark ab. Bei Übersetzungen oberhalb i = 8 liegen leistungsverzweigte Getriebe, die nur außenverzahnte Räder haben, günstiger, weil mit zunehmender Übersetzung bei diesen Getrieben das bezogene Drehmoment relativ schwach abfällt.

Hinsichtlich der Verzahnungsfläche bieten Planetengetriebe keine so großen Vorteile gegenüber leistungsverzweigten Getrieben mit nur außenverzahnten Rädern.

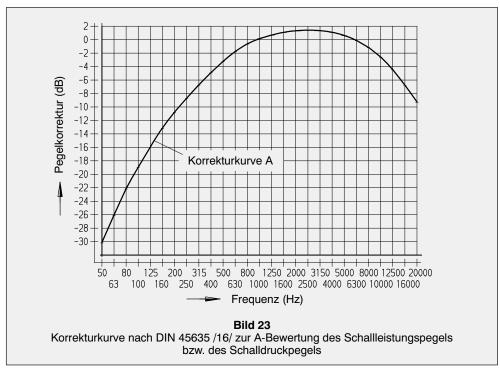
1.4.3.3 Wirkungsgrade

Beim Wirkungsgradvergleich, Bild 22 d, werden nur die Leistungsverluste in den Zahneingriffen berücksichtigt. Unter Vollast machen sie bei üblichen Stirnradgetrieben mit Wälzlagerungen etwa 85% des gesamten Leistungsverlustes aus. Der Wirkungsgrad als ein Maß für den Energieverlust folgt bei Leistungszufuhr an der Welle mit den Drehmomenten T₁ und T₂ aus der Beziehung

$$\eta = \left| \frac{1}{i} \frac{T_2}{T_1} \right| \tag{27}$$

Für alle in Bild 21 dargestellten Getriebe liegen die gleichen Zahnflankenreibungszahlen $\mu_Z=0,06$ zugrunde. Ferner werden nicht profilverschobene Räder sowie Ritzelzähnezahlen z = 17 für alle Getriebe einheitlich vorausgesetzt /15/, so dass Vergleichbarkeit gegeben ist.

Das einstufige Getriebe A hat den besten Wirkungsgrad. Da der Leistungsfluss bei den zweistufigen Getrieben B, C, D, E, F und G jeweils zwei Zahneingriffe passiert, liegen dort die Wirkungsgrade niedriger. Bei den Getrieben E, F und G ergeben die Innenradpaare aufgrund geringerer Gleitgeschwindigkeiten in den Zahneingriffen bessere Wirkungsgrade gegenüber den Getrieben B, C und D, die nur Außenradpaare haben


Bei den Planetengetrieben F und G bewirkt die verlustfreie Kupplungsleistung eine weitere Verbesserung des Wirkungsgrades. Er liegt daher höher als der anderer vergleichbarer leistungsverzweigter Getriebe. Bei höheren Übersetzungen müssen aber mehr Planetenstufen hintereinander geschaltet werden, so dass der Vorteil des besseren Wirkungsgrades gegenüber Getrieben B, C und D wieder verloren geht.

1.4.3.4 Beispiel

Gegeben: Zwei hintereinander geschaltete Planetenstufen vom Typ F, Gesamtübersetzung i = 20, Abtriebsdrehmoment $T_2 = 3 \cdot 10^6$ Nm, Lastwert $B_L = 2,3$ N/mm². Ein Gewichtsminimum erhält man etwa bei einer Übersetzungsaufteilung von i = $5 \cdot 4$ der schnelllaufenden und langsamlaufenden Stufe. Die Gewichte betragen nach Bild 22b mit $\gamma_1 = 30$ m mm²/kg und $\gamma_2 = 45$ m mm²/kg für die schnelllaufende Stufe ungefähr 10,9 t und für die langsamlaufende Stufe ungefähr 30 t, zusammen also 40,9 t. Der Gesamtwirkungsgrad ergibt sich aus Bild 22 d zu $η = 0,986 \cdot 0,985 = 0,971$.

Vergleicht man dagegen ein Getriebe vom Typ D mit gleicher Übersetzung i = 20 und dem gleichen Abtriebsdrehmoment $T_2=3\cdot 10^6$ Nm, jedoch mit besserem Lastwert $B_L=4$ N/mm², dann ist dieses Getriebe nach Bild 22 mit $\gamma=11$ m mm²/kg und dem daraus folgenden Gewicht von 68,2 t sogar 67% schwerer. Dafür liegt der Wirkungsgrad η mit = 0,98 besser. Die beiden Planetenstufen vom Typ F haben zusammen gegenüber dem Getriebe von Typ D eine 45% höhere Verlustleistung. Außerdem herrscht in der Stufe mit i = 4 Raummangel für die Wälzlager der Planetenräder.

Getriebegeräusche

1.5 Getriebegeräusche

1.5.1 Definitionen

Ein Getriebegeräusch setzt sich wie alle anderen Geräusche aus Tönen verschiedener Frequenzen f zusammen.

Ein Stärkemaß ist der Schalldruck p. Er ist der Unterschied zwischen höchstem (bzw. niedrigstem) und mittlerem Druck in einer Luftschallwelle, die das Ohr erreicht.

Der Schalldruck kann für eine einzelne Frequenz oder als Zusammenfassung für einen Frequenzbereich (Einwertangabe) ermittelt werden. Er ist vom Abstand zur Schallquelle abhängig.

Im Allgemeinen werden nicht absolute Werte, sondern Verstärkungs- oder Pegelmaße in Bel (B) oder Dezibel (dB) benutzt.

Die Umrechnung der absoluten Werte erfolgt für den Schalldruck

$$L_p = 20 \cdot \log(p/p_0) \text{ [dB]}$$
 (28)

und für die Schallleistung

$$L_W = 10 \cdot \log(P/P_0) [dB]$$
 (29)

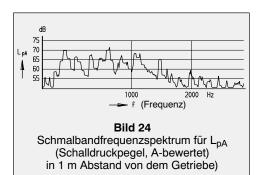
Die Bezugswerte (z.B. p_0 und P_0) sind in DIN EN ISO 1683 festgelegt. Für den Schalldruck dient die Hörschwelle des Menschen bei 2 kHz als Bezugswert ($p_0 = 2 \cdot 10^{-5}$ Pa). Für die Umrechnung der Schallleistung gilt ($P_0 = 10^{-12}$ W).

Um die unterschiedliche Empfindlichkeit des menschlichen Ohres bei den verschiedenen Frequenzen zu berücksichtigen, wird der physikalische Schalldruckwert bei den verschiedenen Frequenzen nach der Bewertungskurve A korrigiert, siehe Bild 23.

 $\bar{\text{A}}$ -bewertete Größen werden gekennzeichnet, indem dem Formelzeichen ein Index "A" angehängt wird. (z.B. Schalldruck L_p , A-bewerteter Schalldruck L_{pA}).

Außer Schalldrücken an bestimmten Orten können Schallleistungen und Schallintensitäten einer gesamten Anlage bestimmt werden.

Von der Getriebeleistung wird ein sehr kleiner Teil in Schallleistung umgesetzt. Das geschieht im wesentlichen an den Zahneingriffen, aber auch an den Lagern, Lüfterflügeln oder durch Ölbewegungen. Die Weiterleitung von den Quellen an die äußeren Getriebeflächen erfolgt hauptsächlich durch Körperschall (Materialschwingungen). Von den äußeren Oberflächen wird Luftschall abgestrahlt.

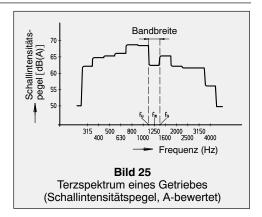

10

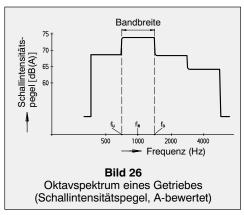
Die Schallleistung L_{WA} ist die von der Schallquelle emittierte und A-bewertete Schallleistung und damit eine von der Entfernung unabhängige Größe. Die Schallleistung kann wiederum in einen durchschnittlichen Schalldruck für einen bestimmten Ort umgerechnet werden. Der Schalldruck nimmt mit der Entfernung von der Schallquelle ab.

Die Schallintensität ist die durch eine senkrecht zur Abstrahlrichtung liegende Fläche hindurchtretende Schallleistung. Bei einer punktförmigen Schallquelle ergibt sie sich aus der Schalleistung L $_{W}$, dividiert durch die kugelförmige Hüllfläche $4 \cdot \pi \cdot r^2$, die die Schallquelle konzentrisch umgibt. Die Schallintensität ist wie der Schalldruck vom Abstand zur Schallquelle abhängig, im Gegensatz dazu aber eine gerichtete Größe.

Das Erfassungsgerät speichert den Schalldruck oder die Schallintensität über einen bestimmten Zeitraum und schreibt im Spektrum (Koordinatensystem) die dB-Werte in Frequenzbereichen (Bändern) auf.

Bei sehr kleinen Frequenzbereichen, z.B. 10 Hz oder 1/12 Oktaven, spricht man von Schmalbändern, siehe Bild 24.

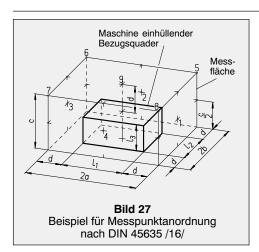



Im Terzspektrum und im Oktavspektrum erscheinen Stufenbilder, siehe Bilder 25 und 26. Die Bandbreite ergibt sich im Terzspektrum (Spektrum mit 1/3 Oktaven) aus

$$f_0 / f_u = \sqrt[3]{2}$$
, d.h. $f_0 / f_u = 1,26$,
 $f_0 = f_m \cdot 1,12$ und $f_u = f_m / 1,12$;

 f_m = mittlere Bandfrequenz, f_0 = obere Bandfrequenz, f_u = untere Bandfrequenz. Bei Oktaven ist die obere Bandfrequenz doppelt so groß wie die untere bzw.

$$f_0 = f_m \cdot 1,41 \text{ und } f_u = f_m / 1,41.$$


Der Summenpegel ist eine (aus Einzelpegeln des erfassten Frequenzbereiches durch logarithmische Addition sich ergebende) Einwertangabe. Der Summenpegel ist der übliche Aussagewert für Getriebegeräusche. Der Schalldruckpegel gilt für einen bestimmten Abstand, im Allgemeinen 1 m von der Gehäuseoberfläche als idealisiertem Quader.

1.5.2 Messungen

Die wesentliche Geräuschemissionskenngröße ist der Schallleistungspegel.

1.5.2.1 Ermittlung über Schalldruck

In DIN 45635 Teil 1 und Teil 23 ist angegeben, wie die Schallleistungspegel eines konkreten Getriebes zu ermitteln sind /16/. Dazu werden Schalldruckpegel L_{pA} an festgelegten Punkten rund um das Getriebe gemessen und auf Schalleistungspegel L_{WA} umgerechnet. Eine Hilfsgröße ist das Messflächenmaß L_{S} , welches von der Summe der Messflächen abhängig ist. Wenn das Getriebe auf schallharter Unterlage steht, wird der Boden nicht berücksichtigt, Beispiel siehe Bild 27.

Um tatsächlich nur die Geräuschabgabe des Getriebes zu finden, müssen Korrekturen für Fremdgeräusche und Raumeinfluss angesetzt werden. Sie werden durch Messung von Hintergrundgeräuschen (verursacht durch die Geräusche der Nachbarmaschinen) und Raumeigenschaften (Nachhallzeit, Raumresonanzen) abgeschätzt und fließen als Korrekturfaktoren in die Schallleistungsberechnung ein. Werden die Hintergrundgeräusche zu groß (Grenzwerte für Korrekturfaktor erreicht), kann das Verfahren aufgrund ungenügender Genauigkeit nicht mehr angewendet werden.

1.5.2.2 Ermittlung über Schallintensität

Mit einer besonderen Messsonde, in der 2 Mikrofone sich gegenüberliegen, wird die Getriebeoberfläche rundherum in einem kleinen Abstand von z.B. 10 cm von Hand überfahren (abgestrichen). Über die vorgegebene Zeit, z.B. 2 min, werden die Pegel gemittelt. Die so ermittelte Schallintensität stellt den mittleren Schallenergiefluss dar, der durch die gescannte Fläche tritt. Die Schallleistung lässt sich bestimmen, indem

die Schallintensität mit der gescannten Oberfläche multipliziert wird. Das Verfahren ist in DIN EN ISO 9614-2 genormt. Aufgrund der besonderen Eigenschaft der Messsonde, die Schalleinfallsrichtung bestimmen zu können, lassen sich Hintergrundgeräusche sehr einfach eliminieren.

Die Resultate stimmen mit den nach DIN 45635 ermittelten Werten überein. Aufgrund der geringeren Empfindlichkeit für Störgeräusche ist das Schallintensitätsverfahren in der Regel genauer (geringere Messunsicherheit) und auch bei starken Hintergrundgeräuschen (z.B. in Industrieanlagen) anwendbar.

1.5.3 Vorhersagen

Der Schallleistungspegel eines zu bauenden Getriebes ist nicht genau vorausberechenbar. Man kann sich aber auf Erfahrungen stützen. Anhaltswerte gibt z.B. die VDI-Richtlinie 2159 /17/. Auch Getriebehersteller haben vielfach eigene Aufzeichnungen.

Grundlagen für die VDI-Richtlinie sind Messungen an einer großen Zahl von Industriegetrieben. Haupteinflussgrößen für Getriebegeräusche sind Getriebetyp, durchgesetzte Leistung, Herstellqualität und Drehzahlen. VDI 2159 unterscheidet nach Stirnradgetrieben mit Wälzlagern, siehe Bild 28, Stirnradgetrieben mit Gleitlagern (Turbogetriebe), Kegelrad- und Kegelstirnradgetrieben, Planetengetrieben und Schneckengetrieben. Desweiteren bietet die Richtlinie Angaben zu stufenlosen Antrieben.

Bild 28 zeigt beispielhaft ein Emissionskennfeld für Stirnradgetriebe. Ähnliche Kennfelder gibt es auch für die anderen genannten Getriebetypen. Innerhalb der Kennfelder sind 50%- und 80%-Linien eingezeichnet. Z.B. bedeutet die 80%-Linie, dass 80% der erfassten Industriegetriebe im Geräusch niedriger liegen.

Die Linien werden durch mathematische Gleichungen erfasst. Die Gleichungen für die 80%-Linien lauten nach VDI 2159:

Getriebetypen	Schallleistungs-Summenpegel L_{WA}
Wälzlager-Stirnradgetriebe	77,1 + 12,3 · log P / kW (dB)
Gleitlager-Stirnradgetriebe	85,6 + 6,4 · log P / kW (dB)
Kegelrad-, Kegelstirnradgetriebe	71,7 + 15,9 · log P / kW (dB)
Planetengetriebe	87,7 + 4,4 · log P / kW (dB)
Schneckengetriebe	65,0 + 15,9 · log P / kW (dB)

Einschränkungen siehe VDI 2159.

Siemens MD · 2009 113

Typ: Außenverzahnte Stirnradgetriebe mit überwiegend (> 80%) folgenden charakteristischen

Eigenschaften

Gehäuse: Gussgehäuse **Lagerung:** Wälzlager

Schmierung: Tauchschmierung

Aufstellung:

starr auf Stahl bzw. auf Beton **Leistung:** 0,7 bis 2400 kW

Antriebsdrehzahl (= max. Drehzahl): 1000 bis 5000 min⁻¹ (meist 1500 min⁻¹)

Max. Umfangsgeschwindigkeit:

1 bis 20 ms⁻¹

Abtriebsdrehmoment: 100 bis 200 000 Nm

Anzahl Getriebestufen: 1 bis 3

Angaben zur Verzahnung:

Schnellste Stufe schrägverzahnt (β = 10° bis 30°), gehärtet, feinbearbeitet, DIN Qualität 5 bis 8

Zur Berechnung eines Schalldruckpegels aus

den angegebenen Schallleistungswerten kommt

ein Verfahren zum Einsatz, das mit dem Mess-

verfahren in DIN 45635 vergleichbar ist. Dabei

wird angenommen, dass die Schallenergie vom Objekt in alle Richtungen gleichförmig abge-

strahlt wird und sich ungehindert ausbreiten

kann (freie Schallausbreitung). Diese Annahme

führt zum so genannten Messflächen-Schall-

druckpegel, dem mittleren Schalldruck in einem

Der Messflächen-Schalldruckpegel LpA in 1 m

Abstand errechnet sich aus dem Schalllei-

 $L_{pA} = L_{WA} - L_{s}$ (dB)

festgelegten Abstand vom Getriebe.

130 Logarithmische Regression L_{WA} = 77.1 + 12.3 x log P/kW dB Schallleistungspegel LwA 120 (80%-Linie) Bestimmtheitsmaß r² = 0.83 110 Aussagewahrscheinlichkeit 90% 100 90 80 80% 50% 70 60 0,1 2 5 10 100 1000 10000 kW Mechanische Leistung P Bild 28 Emissionskennfeld für Stirnradgetriebe

Anmerkung:

Für dieses Beispiel errechnet sich bei 1 m Abstand mit einer Messfläche $S=21~m^2$ und einem Messflächenmaß $L_S=13,2~dB$ ein Messflächenschalldruckpegel von $102-13,2\approx89~dB$ (A), Toleranz $\pm3~dB$. (Messfehler nach DIN EN ISO 9614-2 für Messungen im Industrieumfeld mit Genauigkeitsklasse 2).

(Industriegetriebe) nach VDI 2159 /17/

Einzelpegel in einem Frequenzspektrum sind für Getriebe wegen der Vielzahl der Einflussgrößen nicht sicher vorherzusagen.

stungs-Summenpegel zu

(30)

$$L_{s} = 10 \cdot \log S (dB) \tag{31}$$

 S = Summe der gedachten, das Getriebe in 1 m Abstand umhüllenden Flächen (m²) (idealisierter Quader)

Angabebeispiel für P = 100 kW bei einem 2-stufigen Stirnrad-Wälzlagergetriebe der Größe 200 (Achsabstand der 2. Stufe in mm) in Standard-Qualität:

"Der Schallleistungspegel, ermittelt nach DIN 45635 (Schalldruckmessung) oder nach der Schallintensitäts-Messmethode beträgt 102 ± 3 dB (A). Raum- und Ankoppelungseinflüsse sind nicht berücksichtigt. Wenn Messungen vereinbart werden, finden sie auf dem Prüfstand des Herstellers statt."

1.5.4 Beeinflussungsmöglickeiten

Durch die Wahl anderer als der Standard-Geometrien und durch besondere Zahnmodifikationen (siehe Abschnitt 1.2.5) können Getriebegeräusche günstig beeinflusst werden. Ein solches Vorgehen zieht in manchen Fällen bei gleicher Baugröße eine Minderung der Leistungsfähigkeit (z.B. Modulverkleinerung), auf jeden Fall aber besonderen konstruktiven und fertigungstechnischen Aufwand nach sich. Von Bedeutung sind auch Gehäusegestaltung, Massenverteilungen, Wälzlagerbauarten, Schmierung und Kühlung.

Manchmal bleibt nur der Weg über eine Kapselung der Getriebe, durch die üblicherweise je nach Bedingungen 10 bis 25 dB Verringerung der Summenpegel möglich ist.

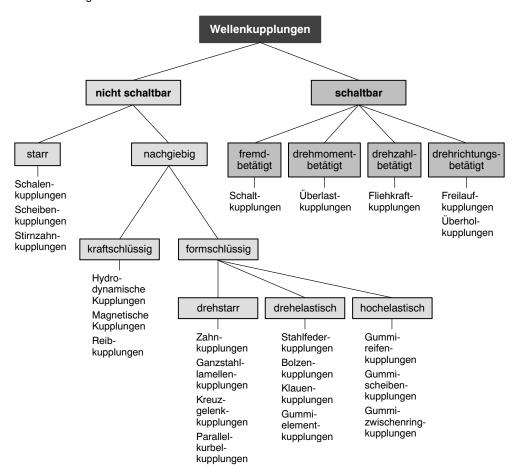
Es ist darauf zu achten, dass nicht über gekoppelte Elemente (Kupplungen, Befestigung) Körperschall an andere Stellen gelangt, von wo wieder Luftschall abgestrahlt wird.

Eine Schallschutzhaube behindert allerdings nicht nur die Luftschallausbreitung, sondern auch die Wärmeabgabe eines Getriebes und benötigt mehr Platz.

Wellenkupplungen	Seite
Allgemeine Grundlagen	116
Drehsteife Kupplungen, Elastische Nockenkupplungen, Elastische Klauenkupplungen	117
Hochelastische Reifenkupplungen, Hochelastische Gummireifenkupplungen, Hochelastische Gummischeibenkupplungen, Elastische Bolzenkupplungen	118
Ganzstahlkupplungen, Sicherheitskupplungen, Turbokupplungen, Composite Kupplungen	119
Miniaturkupplungen, Zahnkupplungen, Lamellenschaltkupplungen	120
Strömungskupplungen, Überholkupplungen, Drehmomentbegrenzer	121
Kupplungen für Pumpenantriebe	122
Kupplungssysteme für Schienenfahrzeuge	123
Kupplungssysteme für Windkraftanlagen	124

Siemens MD ⋅ 2009 115

2. Wellenkupplungen


2.1 Allgemeine Grundlagen

In Maschinenanlagen werden die Antriebe aus Einzelkomponenten wie Antriebsmaschine, Getriebe, Wellen und Arbeitsmaschine aufgebaut. Die Verbindung dieser Komponenten erfolgt durch Kupplungen. Die Aufgaben der Kupplungen sind:

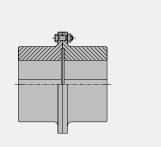
- Übertragung von Drehbewegung und Drehmoment
- Ausgleich von Wellenverlagerungen (Radial, Axial, Winkel)
- Verminderung der Drehschwingungsbelastung, Beeinflussung und Verschiebung der Resonanzlagen

- Dämpfung von Drehmoment- und Geschwindigkeitsstößen
- Unterbrechung der Drehbewegung (Schaltkupplung)
- Begrenzung des Drehmomentes (Sicherheitskupplung)
- Schallisolierung
- · Elektrische Isolierung

Die Vielfalt möglicher Kupplungsvarianten ist in der Übersicht Bild 29 dargestellt. Die Kupplungen unterscheiden sich nach den beiden Hauptgruppen nicht schaltbar und schaltbar.

Bild 29 Übersicht möglicher Bauformen von Wellenkupplungen

11

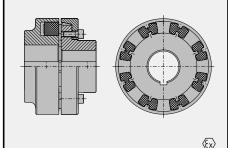

116 Siemens MD · 2009

Scheibenkupplungen

Drehsteife Kupplungen

Verbindet zwei Wellenenden drehsteif und genau zentrisch miteinander • sind geeignet für schwerbeanspruchte Wellen • unterliegen keinem Verschleiß und sind wartungsfrei • sind für beide Drehrichtungen zu verwenden

Nenndrehmoment: 1 300 ... 180 000 Nm

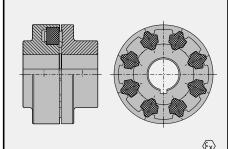

auf Anfrage

N-EUPEX

Elastische Nockenkupplungen

Universell einsetzbare Kupplung zum Ausgleich von Wellenverlagerungen • größtmögliche Betriebssicherheit da **durchschlagsicher** • geeignet für Steckmontage und vereinfachte Montage bei dreiteiliger Ausführung

Nenndrehmoment: 19 ... 62 000 Nm

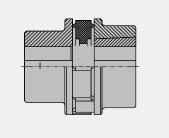

Katalog MD 10.1

N-EUPEX-DS

Elastische Nockenkupplungen

Trennen von An- und Abtrieb bei Ausfall der elastischen Elemente (ohne Durchschlagsicherung) • universell einsetzbar, da mit allen Teilen des N-EUPEX-Programms kombinierbar

Nenndrehmoment: 19 ... 21 200 Nm


Katalog MD10.1

BIPEX

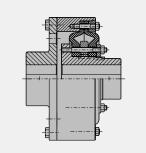
Elastische Klauenkupplungen

Durchschlagsichere Universalkupplung • sehr kompakte Konstruktion, hohe Leistungsdichte • bestens geeignet für Steckmontage und Laterneneinbau • auch mit Taper-Buchse für einfache Montage und Bohrungsanpassung

Nenndrehmoment: 13.5 ... 3 700 Nm

Katalog MD 10.1

Wellenkupplungen

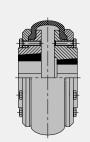

Hochelastische Reifenkupplungen, Hochelastische Gummireifenkupplungen, Hochelastische Gummischeibenkupplungen, Elastische Bolzenkupplungen

ELPEX

Hochelastische Reifenkupplungen

Verdrehspielfreie Kupplung • einsetzbar auch bei großen Wellenversetzungen • dynamisch hoch beanspruchbar, gute Dämpfungseigenschaften

Nenndrehmoment: 1 600 ... 90 000 Nm

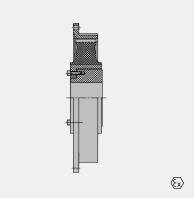

Katalog MD 10.1

ELPEX-B

Hochelastische Gummireifenkupplungen

Verdrehspielfreie Kupplung • Ausgleich von sehr großem Wellenversatz • der Gummireifen kann sehr leicht ohne Verschieben der gekuppelten Maschinen gewechselt werden • einfache Montage auf den Anschlusswellen mit Taper-Buchse

Nenndrehmoment: 24 ... 14 500 Nm


Katalog MD 10.1

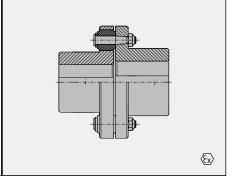
ELPEX-S

Hochelastische Gummischeibenkupplungen

Zur Koppelung von Maschinen mit stark ungleichförmigem Drehmomentverlauf • sehr einfache Steckmontage • Wechsel der Gummischeibenelemente ohne Verschieben der gekuppelten Maschinen möglich • Flansch mit Abmessungen nach SAE J620d

Nenndrehmoment: 330 ... 63 000 Nm

Katalog MD 10.1


RUPEX

Elastische Bolzenkupplungen

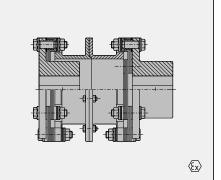
Durchschlagsichere Universalkupplung für mittlere bis höchste Drehmomente mit guter Verlagerungsmöglichkeit • kompakte Konstruktion, geringe Gewichte und Massenträgheitsmomente • geeignet für Steckmontage

Nenndrehmoment: 200 ... 1 300 000 Nm

Katalog MD 10.1

11

118 Siemens MD · 2009

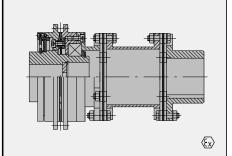

ARPEX - ARS (ARF/ARC/ARW)

Ganzstahlkupplungen

Spielfreie, drehstarre Kupplung • Ausgleich radialer, winkliger und axialer Wellenverlagerung durch zwei flexible Lamellenpakete • Pakete aus nicht rostendem Federstahl • einfache Montage der Kupplung durch kompakte Lamellenpakete • Baukastensystem: viele Standardbauarten durch Kombination von Standardbauteilen

Nenndrehmoment: 92 ... 1 450 000 Nm

Katalog MD 10.1

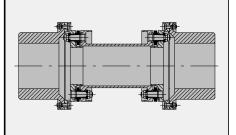

ARPEX - AKR

Sicherheitskupplungen

Sowohl bei langsam als auch bei schnell steigendem Drehmoment trennt die Sicherheitskupplung bei Erreichen des Abschaltmoments die gekoppelten Aggregate • nach dem Schaltvorgang sind die beiden Kupplungshälften berührungsfrei, so dass ein verschleißfreier Auslauf erfolgen kann

Nenndrehmoment: 10 ... 75 000 Nm

Katalog MD 10.11

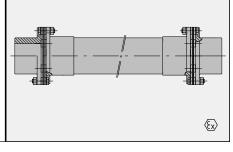

ARPEX - ART

Turbokupplungen

Wurden für den Einsatz in der Energietechnik, der petrochemischen Industrie und in Schiffsantrieben entwickelt • Einsatzmöglichkeiten in allen hochtourigen Anwendungen, wo eine zuverlässige Drehmomentübertragung bei gleichzeitiger Wellenverlagerung verlangt wird • entsprechen den Anforderungen der API 671

Nenndrehmoment: 1 000 ... 535 000 Nm

Katalog MD 10.9


ARPEX - ARS Composite

Composite Kupplungen

Korrosionbeständige, extrem leichte Kupplung für Antriebe mit großen Wellenabständen (z.B. Kühlturmlüfter) • bis zu 6 Meter ohne zusätzliche Lagerung der Hülse möglich • einfache Handhabung und Montage • wartungs- und verschleißfrei • schwingungsarm

Nenndrehmoment: 1 250 ... 7 600 Nm

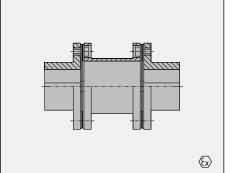
Katalog MD 10.5

11

⟨£χ⟩

Wellenkupplungen

Miniaturkupplungen, Zahnkupplungen, Lamellenschaltkupplungen

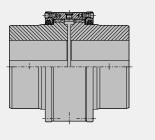

ARPEX - ARM

Miniaturkupplungen

Einsatz in Antriebsfällen mit sehr kleinen Drehmomenten • Einsatzgebiete: Regel- und Steueranlagen, Werkzeugmaschinen, Computertechnik, Tachoantriebe, Mess- und Zählwerke, Druck- und Verpackungsmaschinen, Schritt- und Servomotoren, Prüfstände

Nenndrehmoment: 5 ... 25 Nm

Katalog MD 10.10


ZAPEX-ZW

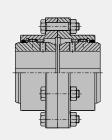
Zahnkupplungen

Doppelgelenkige Kupplung gleicht Winkelabweichungen, Parallel- und Axialversatz aus • Langzeitschmierung durch konstruktive Maßnahmen und Einsatz spezieller Dichtungen • kleine Abmessungen, einsetzbar bei hoher Stoßbelastung • in vielfältigen Bauformen und Varianten erhältlich

Nenndrehmoment: 1 300 ... 7 200 000 Nm

Katalog MD 10.1

⟨£x⟩

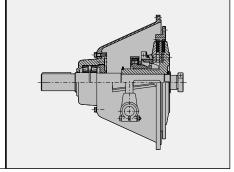

ZAPEX-ZN

Zahnkupplungen

Bedarfs- und Leistungsoptimierte Kupplung mit höchstem Drehmoment und größter Bohrung für besonders raue Betriebsbedingungen • Doppelgelenkige Kupplung gleicht Winkelabweichungen, Parallel- und Axialversatz aus • geringe Rückstellkräfte bei Wellenversatz • kleine Abmessungen, einsetzbar bei hoher Stoßbelastung, mit großen Sicherheitsreserven

Nenndrehmoment: 1 020 ... 162 500 Nm

Katalog MD 10.1


PLANOX

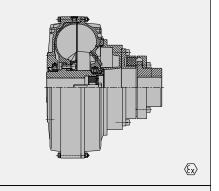
Lamellenschaltkupplungen

Konstante Drehmomentübertragung durch federnde Anpressung • viele Einsatzmöglichkeiten durch mechanische, elektrische, pneumatische oder hydraulische Schalteinrichtungen • Schutz gegen Überlastung eines Antriebes

Nenndrehmoment: 10 ... 30 000 Nm

auf Anfrage

Wellenkupplungen


Strömungskupplungen, Überholkupplungen, Drehmomentbegrenzer

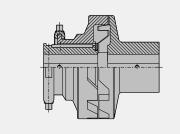
FLUDEX

Strömungskupplungen

Sanftes und stoßfreies Anfahren und Beschleunigen großer Massen bei entlastetem Motoranlauf • Drehmomentbegrenzung beim Anfahren und im Überlastfall • ausgezeichnete Schwingungstrennung und Stoßdämpfung • verschleißfreie Drehmomentübertragung

Nennleistungen: 0,5 ... 2 500 kW

Katalog MD 10.1


UZWN

Überholkupplungen

Überholkupplungen gestatten den Antrieb von Wellen und Maschinen, zuerst mit einem Hilfsantrieb mit niedriger Drehzahl für das Anlaufen, und dann mit dem Hauptantrieb mit höherer Drehzahl für den Vollbetrieb, wobei durch Überholung der Hilfsantrieb abgeschaltet wird.

Nenndrehmoment: 9 000 ... 100 000 Nm

Maßzeichnung M 495

Zertifiziert entsprechend Richtlinie 94/9/EG (ATEX 95)
Diese Kupplung ist besonders für den Einsatz in explosionsfähiger
Umgebung geeignet

SECUREX

Drehmomentbegrenzer

Siemens bietet mit SECUREX ein einzigartiges Baukastenprogramm an mechanischen Sicherheitskupplungen. Durch vielfältige Kombinationsmöglichkeiten von Standardbauteilen können die Funktionen Überlast absichern und Wellenversatz ausgleichen mit nur einer kompakten Einheit erfüllt werden.

Siemens bündelt mit SECUREX jahrzehntelang erworbene Erfahrung sowohl im Bereich Überlastschutz als auch beim Ausgleich von Wellenverlagerungen zu einem Produktprogramm.

SECUREX baut auf dem breiten Sortiment an FLENDER Standardkupplungen verschiedener Grundbauarten in Kombination mit standardisierten Sicherheitselementen auf. So können kostengünstige Kupplungslösungen realisiert werden.

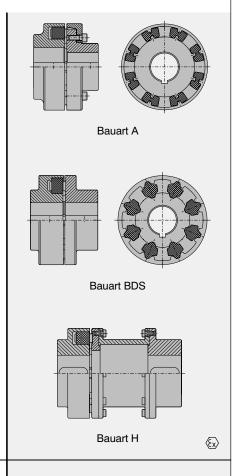
Siemens konzentriert sich mit diesem SECUREX-Baukastensystem auf seine Kernkompetenz im Drehmomentenbereich bis 1.500.000 Nm und schöpft damit aus seinem reichen Fundus an applikations- und produktbezogenem Know-How (z.B. Rutschnaben im Windenergiebereich, Brechbolzenlösungen im Walzwerksbereich, Abschaltkupplungen in Extruderanlagen, usw.).

Katalog K 440

Siemens MD · 2009

Kupplungen für Pumpenantriebe

N-EUPEX


Elastische Nockenkupplungen

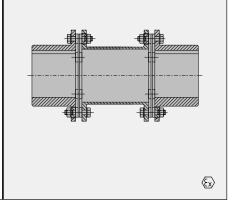
- Millionenfach bewährtes Antriebselement in Pumpenantrieben
- Preiswert, zuverlässig, weltweit verfügbar
- Vollständiges, anwendungsorientiertes Sortiment!
 Neben der durchschlagsicheren Standardausführung ist auch eine speziell für den Ex-Bereich entwickelte durchschlagende Variante verfügbar

Bauarten B / BDS - zweiteilige Ausführung Bauarten A / ADS - dreiteilige Ausführung

Bauarten H / HDS - Ausführung mit Ausbaustück

Zertifiziert nach Richtlinie 94/9/EG (ATEX 95)

Katalog MD 10.1


ARPEX - ARP

Ganzstahlkupplungen

Wurden speziell für den Einsatz in Pumpenantrieben entwickelt

- Entsprechen den Anforderungen der API 610
- Ausführung nach API 671, "NON SPARKING" und zertifiziert nach Richtlinie 94/9/EG (ATEX 95) ebenfalls lieferbar

Nenndrehmoment: 100 ... 17 000 Nm

Katalog MD 10.1

Kupplungssysteme für Schienenfahrzeuge

Antriebskupplungen

Membrankupplung, Bauart MBG

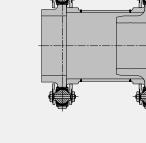
- Ganzstahl-Membrankupplung zur Verbindung von Motor und Getriebe
- Spielfrei, Ausgleich von relativ geringem Wellenversatz

Max. Nenndrehmoment: 3 425 Nm Max. Wellendurchmesser: 86 mm

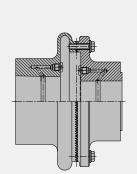
Bahn-Zahnkupplung, Bauart ZBG

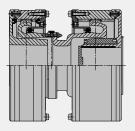
- Doppelgelenkige fettgeschmierte Zahnkupplung zwischen Motor und Getriebe
- Ausgleich von extrem hohem Wellenversatz
- Zwischenstück geteilt mit balliger Außenverzahnung

Max. Nenndrehmoment: 15 000 Nm Max. Wellendurchmesser: 100 mm



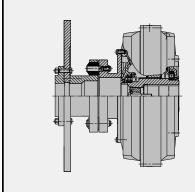
Abtriebskupplungen


Gummi-Kugelgelenkkupplung Bauart GKG


- Doppelgelenkige elastische spielfreie Kupplung zwischen Achsgetriebe und Triebradachse
- Verschleiß- und wartungsarm
- Ausgleich von extrem großem Wellenversatz bei geringen Rückstellkräften

Max. Nenndrehmoment: 13 440 Nm Max. Wellendurchmesser: 260 mm

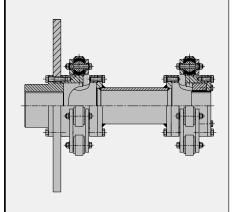
auf Anfrage



Kupplungssysteme für Windkraftanlagen

FLUDEX

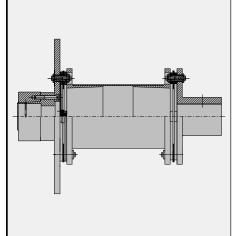
Strömungskupplungen in Kombination mit anderen Kupplungen


- Strömungskupplung mit Schlupf zwischen 2 und 3%. Drehmomentspitzen durch Windböen werden geglättet
- Kombination mit RUPEX-Kupplung bei geringem Wellenversatz
- Kombination mit Gummi-Kugelgelenkkupplung oder ARPEX-Kupplung bei großem Wellenversatz

auf Anfrage

Gummi-Kugelgelenkkupplungen Bauart GKGW mit Bremsscheibe

- Gummielastische Kugellager für extremen Wellenversatz zwischen Getriebe und Generator
- Sehr geringe Rückstellkräfte
- Elektrisch und Körperschall isolierend
- Verschleißteile und Kupplung sind demontierbar ohne den Generator zu verschieben
- Optional mit drehmomentbegrenzender Rutschnabe



auf Anfrage

ARPEX

Ganzstahl-Lamellenkupplungen

- Ausführung mit 6-eck oder 4-eck Lamellen für sehr große Wellenversatzwerte
- Optional mit Rutschnabe zur Begrenzung der Drehmomentbelastung bei Generatorkurzschluss
- Leichtbauendes Zwischenstück aus Glasfaser-Verbundwerkstoff zur Blitzschutzisolation
- Konusverschraubung der Lamellenpakete zur vereinfachten Montage

auf Anfrage

Inhaltsübersicht Teil 12

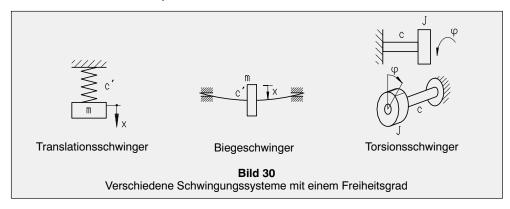
Schwingungen	Seite
Formelzeichen und Einheiten	126
Allgemeine Grundlagen	127 – 129
Lösungsansatz für einfache Drehschwinger	129 + 130
Lösung für Bewegungsdifferentialgleichung	130 + 131
Formeln für die Schwingungsberechnung	131
Begriffe, Formelzeichen und Einheiten	132
Formeln für die Schwingungsberechnung	133 – 135
Schwingungsbeurteilung	135 + 136

Siemens MD · 2009 125

а	m	Länge des Lastüberhanges	
Α	m ²	Fläche eines Querschnittes	
Α	m, rad	Amplitude der Schwingung	
A _D ; A _e		Dämpfungsarbeit, elastische Arbeit	
С	Nm/rad	Drehsteifigkeit	
C'	N/m	Translations-, Biegesteifigkeit	
d	m	Durchmesser	
di	m	Innendurchmesser	
da	m	Außendurchmesser	
D	ı	Dämpfungsgrad (Lehrsche Dämpfung)	
D _m	m	Mittlerer Windungsdurchmesser (Schraubenfeder)	
e =	2,718	Euler'sche Zahl	
Е	N/m ²	Elastizitätsmodul	
f, f _e	Hz	Frequenz, Eigenfrequenz	
f	m	Durchbiegung unter Last	
F	N	Kraft	
F (t)	N	Zeitlich veränderliche Kraft	
G	N/m ²	Schubmodul	
i	-	Übersetzung	
i _F	-	Anzahl der Windungen (Schraubenfeder)	
la	m ⁴	Axiales Flächenmoment 2. Grades	
Ιp	m ⁴	Polares Flächenmoment 2. Grades	
J, J_i	kgm ²	Massenträgheitsmoment	
J*	kgm ²	Reduziertes Massenträgheits- moment eines Zweimassen- schwingers	
k	Nms/ rad	Geschwindigkeitsproportionale Dämpfung bei Torsionsschwin- gungen	
k'	Ns/m	Geschwindigkeitsproportionale Dämpfung bei Translations- und Biegeschwingungen	
- 1	m	Länge, Lagerabstand	
m, m _i	kg	Masse	
M (t)	Nm	Zeitlich veränderliches Erreger- moment	
M ₀	Nm	Momentenamplitude	
M ₀ *	Nm	Reduzierte Momentenamplitude beim Zweimassenschwinger	
n _e	1/min	Eigenfrequenz (Schwingungen pro Minute)	
n ₁ ; n ₂	min ⁻¹	Antriebsdrehzahl, Abtriebsdrehzahl	
q	-	Einflussfaktor zur Berücksichtigung der Wellenmasse bei Berechnung der Biegeeigenfrequenz	
t	s	Zeit	
Т	s	Periodendauer einer Schwingung	

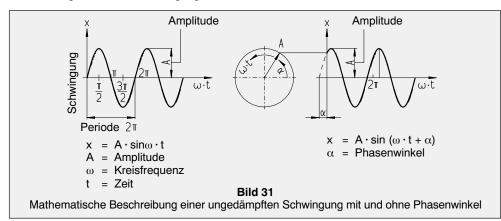
Т	Nm	Drehmoment
V	m ³	Volumen
V	-	Vergrößerungsfunktion, Verhältnis der dynamischen zur statischen Belastung
х	m	Wegkoordinate (Translation, Biegung)
Ŷ	m	Wegamplitude
α	rad	Phasenwinkel
γ	rad	Phasenwinkel bei freier Schwingung
δ	1/s	Abklingkonstante
ε	rad	Phasenverschiebungswinkel bei erzwungener Schwingung
η	-	Frequenzverhältnis der Erre- gerfrequenz zur Eigenfrequenz
λ_{i}	-	Eigenwertfaktor für i-te Eigen- frequenz
Λ	-	Logarithmisches Dekrement
π =	3,14159	Verhältnis Kreisumfang zum Durchmesser
Q	kg/m ³	Spezifische Dichte
φ, φί	rad	Drehwinkel
φ̂	rad	Winkelamplitude einer Schwingung
φ	rad/s	Winkelgeschwindigkeit (erste zeitliche Ableitung ϕ)
φ	rad/s ²	Winkelbeschleunigung (zweite zeitliche Ableitung von φ)
ϕ_{h}	rad	Schwingwinkel der freien Schwingung (homogene Lösung)
φр	rad	Schwingwinkel der erzwunge- nen Schwingung (partikuläre Lösung)
$\hat{\phi}_{\text{p}}$	rad	Winkelamplitude der erzwun- genen Schwingung
$\hat{\phi}_{\text{stat}}$	rad	Winkelamplitude der erzwungenen Schwingung bei Belastung (ϕ = 0)
ψ	-	Verhältnismäßige Dämpfung nach DIN 740 /18/
ω	rad/s	Winkelgeschwindigkeit, Eigen- kreisfrequenz der gedämpften Schwingung
ω_0	rad/s	Eigenkreisfrequenz der ungedämpften Schwingung
Ω	rad/s	Kreisfrequenz der Erreger- schwingung

Bemerkung: Die Einheit rad (= Radiant) kann durch 1 ersetzt werden.

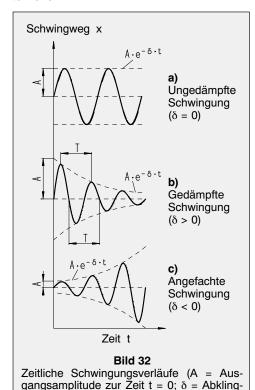

12

3. Schwingungen

3.1 Allgemeine Grundlagen


Schwingungen sind mehr oder weniger regelmäßig erfolgende zeitliche Schwankungen von Zustandsgrößen. Der Zustand eines schwingenden Systems kann durch geeignete Größen wie Weg, Winkel, Geschwindigkeit, Druck, Temperatur, elektrische Spannung/Strom und ähnliche gekennzeichnet werden.

Ein mechanisches Schwingungssystem besteht in der einfachsten Form aus einer Masse und einer eingespannten Feder, wobei die Masse als kinetischer und die Feder als potentieller Energiespeicher fungieren, vgl. Bild 30. Bei einem Schwingungsvorgang kommt es zu einer periodischen Umwandlung von potentieller in kinetische Energie und umgekehrt, d.h. die Bewegungsenergie der Masse und die in der Feder gespeicherte Energie werden in bestimmten Zeitabschnitten ausgetauscht. Je nach der Bewegungsart der Masse unterscheidet man Translations- (Biege-) und Drehschwingungssysteme sowie gekoppelte Schwingungssysteme, in denen Translations- und Drehschwingungen gleichzeitig auftreten und sich gegenseitig beeinflussen.


Ein weiteres Unterscheidungsmerkmal für die Schwingungsart ist, ob es sich um eine freie Schwingung oder um eine von außen erzwungene Schwingung handelt, und ob der Schwingungsverlauf ohne (ungedämpft) oder mit Energieverlusten (gedämpft) abläuft.

Eine freie, ungedämpfte Schwingung liegt dann vor, wenn während des Schwingungsvorganges weder Energie zugeführt noch durch innere Reibung entzogen wird, so dass der einmal zugeführte Energieinhalt der Schwingung erhalten bleibt. Das System führt in diesem Fall stationäre Eigenschwingungen aus, deren Frequenz nur durch die Eigenschaften des Feder-Masse-Systems bestimmt wird (Eigenfrequenz), Bild 32 a). Der zeitliche Schwingungsverlauf x lässt sich durch die konstante Schwingungsamplitude A und eine harmonische Funktion (Sinus, Cosinus) beschreiben, deren Argumente die Eigenkreisfrequenz $\omega = 2 \cdot \pi \cdot f$ (f = Eigenfrequenz in Hertz) und die Zeit enthält, vgl. Bild 31.

Siemens MD · 2009 127

Wird dem Schwinger in jeder Schwingungsperiode ein gewisser Anteil der Schwingungsenergie durch innere oder äußere Reibung entzogen, so liegt eine gedämpfte Schwingung vor. Die Schwingungsamplituden nehmen beim Vorliegen einer konstanten, geschwindigkeitsproportionalen Dämpfung (Newtonsche Reibung) nach einer geometrischen Reihe ab, Bild 32 b). Alle technischen Schwingungssysteme sind mehr oder weniger starken Dämpfungswirkungen unterworfen.

konstante) Wird der Schwinger durch eine äußere periodische Kraft F (t) oder Moment M (t) angeregt, so

liegt eine erzwungene oder erregte Schwingung vor. Durch die periodische äußere Erregerkraft kann dem Schwinger Energie zugeführt bzw. entzogen werden.

Nach einer Einschwingphase schwingt ein gedämpftes Schwingungssystem nicht mehr mit seiner Eigenfreguenz, sondern mit der Freguenz der äußeren Erregerkraft.

Resonanz liegt dann vor, wenn die Frequenz der äußeren Erregerkraft der Eigenfrequenz des Schwingungssystems entspricht. Bei ungedämpften Systemen wachsen dann die Schwingungsamplituden unbegrenzt an, Bild 32 c). Bei

gedämpften Systemen wächst die Schwingungsamplitude solange an, bis die durch die Erregerkraft zugeführte Energie und die durch die Dämpfungsarbeit in Wärme umgesetzte Energie im Gleichgewicht stehen. Resonanzstellen können zu hohen Bauteilbelastungen führen und sind deshalb zu vermeiden bzw. zügig zu durchfahren. (Beispiel: Biegeeigenfrequenz bei Turbogetrieben).

Die Resonanzstelle (Eigenfrequenz = Erregerfrequenz, kritische Schwingungen) unterteilt den Bereich der sich einstellenden Schwingungsamplituden in das unterkritische und das überkritische Schwingungsgebiet. Bei technischen Schwingungssystemen (z.B. Antriebe) wird in der Regel ein Mindestfrequenzabstand von 15% oder größer von einer Resonanzstelle gefordert. Technische Schwingungssysteme bestehen oft aus mehreren Massen, die durch Feder- und Dämpfungselemente miteinander verbunden sind. Solche Systeme besitzen so viele Eigenfrequenzen mit entsprechenden Eigenschwingungsformen, wie sie Bewegungs-Freiheitsgrade haben. Ein freies, d.h. nicht eingespanntes Drehschwingungssystem mit n Massen besitzt z.B. n-1 Eigenfrequenzen. Alle diese Eigenfrequenzen können durch periodische äußere und innere Kräfte zu Schwingungen angeregt werden, wobei meistens nur die unteren Eigenfrequenzen und besonders die Grundfrequenz (erste Eigenfrequenz) von Bedeutung sind. Bei technischen Antriebssystemen treten folgende Anregungsmechanismen für Schwingungen auf:

a) aus Antrieb:

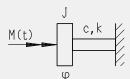
Anfahrvorgänge bei Elektromotoren, Netzkurzschlüsse, Diesel- und Ottomotoren, Turbinen, instationäre Vorgänge, Anfahrstöße, Regelvorgänge

b) aus Überwachungselementen:

Zahneingriff, Unwucht, Gelenkwelle, Ausrichtungsfehler, Lagereinfluss

c) aus Abtrieb:

Prinzip der Arbeitsmaschine, gleichförmig, ungleichförmig, z.B. Kolbenverdichter, Propeller


In der Regel lassen sich periodische Anregungsfunktionen in Form von Sinus- und Cosinusfunktionen und deren Überlagerungen beschreiben. Bei der Analyse von Schwingungsvorgängen kann häufig eine Fourieranalyse behilflich sein, die periodische Anregungsverläufe in Grundund Oberschwingungen zerlegt und somit im Vergleich mit den Eigenfrequenzen eines Systems mögliche Resonanzstellen aufzeigt.

Bei einfachen Schwingern mit einer oder wenigen (maximal 4) Massen lassen sich bei stationärer Anregung analytische Lösungen für die Eigenfrequenzen und den zeitlichen Schwingungsverlauf angeben. Für instationär belastete Schwingungssysteme mit einer oder mehreren Massen lassen sich dagegen nur noch Lösungen mit numerischen Simulationsprogrammen berechnen. Dies gilt erst recht für Schwinger mit nichtlinearen oder periodisch veränderlichen Parametern (nichtlineare Verdrehsteifigkeit von Kupplungen; periodische Zahneingriffssteifigkeiten). Mit EDV-Programmen lassen sich für umfangreiche Schwingungssysteme nichtlinear, parametererregt) die Belastungen bei stationärer wie bei instationärer Erregung simulieren und die Ergebnisse in Form von Frequenzanalysen, zeitlichen Belastungsverläufen und Resonanzüberhöhungen darstellen. Antriebssysteme mit drehelastischen Kupplungen können dynamisch nach DIN 740 /18/ ausgelegt werden. In dieser Norm werden vereinfachte Lösungsansätze für stoßbeanspruchte und periodisch belastete Antriebe aufgezeigt, wobei der Antriebsstrang auf einen Zweimassenschwinger reduziert wird.

3.2 Lösungsansatz für einfache Drehschwinger

Analytische Lösung für einen periodisch angeregten Ein- (eingespannt) bzw. Zweimassendrehschwinger, Bild 33.

freier Zweimassenschwinger

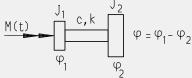


Bild 33 Massendrehschwinger

J, J₁, J₂ = Massenträgheitsmoment [kgm²]

= Drehsteifigkeit [Nm/rad]

= Geschwindigkeitsproportionale Dämpfung [Nms/rad] = Äußeres Erregermoment [Nm], zeitlich veränderlich

= Drehwinkel [rad], $(\varphi = \varphi_1 - \varphi_2)$ bei Zweimassenschwingern als Relativwinkel)

= Winkelgeschwindigkeit [rad/s] (1. zeitliche Ableitung von φ) = Winkelbeschleunigung [rad/s²] (2. zeitliche Ableitung von φ)

Bewegungsdifferentialgleichung:

Eigenkreisfrequenz (ungedämpft): ω₀

$\omega_0 = \sqrt{\frac{c}{I}}$ [rad/s] Einmassenschwinger:

$$\ddot{\varphi} + \underbrace{\frac{k}{J}}_{2\delta} \dot{\varphi} + \underbrace{\frac{c}{J}}_{\omega_2^2} \cdot \varphi = \frac{M(t)}{J}$$
 (32)

$$\omega_0 = \sqrt{c \cdot \frac{J_1 + J_2}{J_1 \cdot J_2}} \quad [rad/s]$$
 (37)

Zweimassenschwinger mit Relativkoordinate:

$$\ddot{\phi} + \underbrace{\frac{k}{J^{\star}}}_{2\delta} \cdot \dot{\phi} + \underbrace{\frac{c}{J^{\star}}}_{\omega_{0}^{2}} \cdot \phi = \frac{M(t)}{J_{1}}$$
(33)

$$mit \ \varphi = \varphi_1 - \varphi_2 \tag{34}$$

$$J^* = \frac{J_1 \cdot J_2}{J_1 + J_2} \tag{35}$$

Eigenfrequenz:

$$f_0 = \frac{\omega_0}{|Hz|}$$

$$f_{e} = \frac{\omega_{0}}{2\pi}$$
 [Hz] (38)

$$n_e = \frac{\omega_0 \cdot 30}{\pi}$$
 [1/min] (39)

$$\delta = \frac{k}{J} = \text{Abklingkonstante}$$
 [1/s] (40)

$$\begin{array}{lll} \omega_0 &=& \text{Eigenkreisfrequenz des ungedämpften} \\ && \text{Schwingers [rad/s]} \\ \text{f}_e &=& \text{Eigenfrequenz [Hertz]} \end{array}$$

n_e = Eigenfrequenz [1/min]

Siemens MD · 2009 129 12

(36)

Schwingungen

Lösungsansatz für einfache Drehschwinger Lösung der Bewegungsdifferentialgleichung

Gedämpfte Eigenkreisfrequenz:

$$\omega = \sqrt{\omega_0^2 - \delta^2} = \omega_0 \cdot \sqrt{1 - D^2} \tag{41}$$

Dämpfungsgrad (Lehrsche Dämpfung): D

$$D = \frac{\delta}{\omega_0} = \frac{\mathbf{k} \cdot \omega_0}{2 \cdot \mathbf{c}} = \frac{\psi}{4\pi}$$
 (42)

ψ = Verhältnismäßige Dämpfung bei drehelastischer Kupplung, Ermittlung aus Dämpfungshysterese einer Schwingungsperiode nach DIN 740 /18/ bzw. nach Katalog FLENDER Standardkupplungen.

$$\psi \ = \ \frac{\text{Dämpfungsarbeit}}{\text{elastische Verformungsarbeit}} \ = \ \frac{A_D}{A_e}$$

Anhaltswerte für einige Bauteile:

D = 0,001...0,01 Wellen (Werkstoffdämpfung von Stahl)

D = 0,04...0,08 Verzahnungen von Getrieben

D = 0,04...0,15 (0,2) Drehelastische Kupplungen

D = 0,01...0,04 Zahnkupplungen, Ganzstahlkupplungen, Gelenkwellen

Statische Federkennlinie für einen Belastungszyklus

Apple A

drehelastischen Bauteiles

3.3 Lösung der Bewegungsdifferentialgleichung

Periodisches Erregermoment

$$M(t) = M_0 \cdot \cos \Omega \cdot t \tag{43}$$

M₀ = Momentenamplitude [Nm]

 Ω = Erregerkreisfrequenz [rad/s]

Gesamtlösung:

$$\varphi = \varphi_{h} + \varphi_{p} \tag{44}$$

a) Freie Schwingung (homogene Lösung φ_h)

$$\varphi_{h} = A \cdot e^{-\delta \cdot t} \cdot \cos(\omega \cdot t - \gamma) \tag{45}$$

Die Konstanten A und γ werden aus den Anfangsbedingungen bestimmt, z.B. durch ϕ_h = 0 und $\dot{\phi}_h$ = 0 (Anfangswertproblem).

Bei gedämpften Schwingern ($\delta > 0$) verschwindet der freie Schwingungsanteil nach einer Einschwingzeit.

b) Erzwungene Schwingung (partikuläre Lösung ϕ_p)

$$\begin{split} \phi_p &= \frac{M_0^\star}{c} \cdot \frac{1}{\sqrt{(1-\eta^2)^2 + 4D^2 \cdot \eta^2}} \\ &\cdot \cos{(\Omega \cdot t - \epsilon)} \end{split}$$

Phasenwinkel:
$$\tan \varepsilon = \frac{2 \cdot D \cdot \eta}{1 - n^2}$$
 (47)

(46)

Frequenzverhältnis:
$$\eta = \frac{\Omega}{\omega_0}$$
 (48)

Einmassenschwinger:

$$\mathsf{M}_0^{\,\star} = \mathsf{M}_0 \tag{49}$$

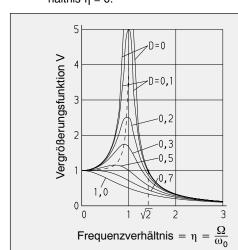
Zweimassenschwinger:

$$M_0^* = \frac{J_2}{J_1 + J_2} \cdot M_0 \tag{50}$$

c) Vergrößerungsfunktion

$$\varphi_{p} = \frac{M_{0}^{\star}}{c} \cdot V \cdot \cos (\Omega \cdot t - \varepsilon)$$
 (51)

$$V = \frac{1}{\sqrt{(1 - \eta^2)^2 + 4D^2 \cdot \eta^2}} = \frac{\hat{\phi}_p}{\hat{\phi}_{stat}} = \frac{M}{M_0^*}$$
 (52)


Schwingungen

Lösung der Bewegungsdifferentialgleichung Formeln für die Schwingungsberechnung

= Schwingungsamplitude der erzwungenen Schwingung

 $\hat{\phi}_{\text{stat}}$ = Schwingungsamplitude der erzwungenen Schwingung bei dem Frequenzverhältnis $\eta = 0$.

Die Vergrößerungsfunktion gibt das Verhältnis der dynamischen Belastung im Vergleich zur statischen Belastung an und ist ein Maß für die Zusatzbelastung infolge von Schwingungen (Bild 35).

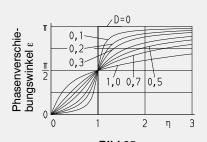
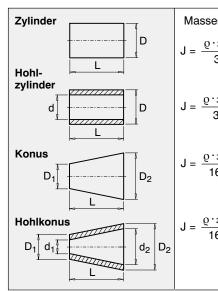


Bild 35 Vergrößerungsfunktionen für die erzwungene, gedämpfte und ungedämpfte Schwingung bei periodischer Momentenanregung (Kraftanregung)

Vergrößerungsfunktionen V und Phasenverschiebungswinkel ε.

3.4 Formeln für die Schwingungsberechnung

Zur Berechnung der Eigenfrequenzen und Schwingungsbelastungen muss ein allgemeines Schwingungssystem in ein berechenbares Ersatzsystem mit punktförmigen Massen, masselosen Feder- und Dämpfungselementen überführt werden.


3.4.1 Masse

 $m = \varrho \cdot V$ [kg]

V = Volumen [m³]

3.4.2 Massenträgheitsmoment

$$J = \int r^2 dm$$
: Allgemeine Integralformel

Massenträgheitsmoment
$$J = \frac{\varrho \cdot \pi \cdot L}{32} \cdot D^4$$

$$J = \frac{\varrho \cdot \pi \cdot L}{\varrho \cdot \pi \cdot L} \cdot (D^4 - d^4)$$

$$J = \frac{\varrho \cdot \pi \cdot L}{160} \cdot \frac{D_1^5 - D_2^5}{D_1 - D_2}$$

$$J = \frac{\varrho \cdot \pi \cdot L}{160} \cdot \left(\frac{D_1^5 - D_2^5}{D_1 - D_2} \right) \quad c = \frac{3}{4}$$
$$- \frac{d_1^5 - d_2^5}{d_1 - d_2}$$

$$c = \frac{\pi \cdot G}{32 L} \cdot D^4$$

$$J = \frac{\varrho \cdot \pi \cdot L}{32} \cdot (D^4 - d^4) \qquad c = \frac{\pi \cdot G}{32 L} \cdot (D^4 - d^4)$$

$$J = \frac{\varrho \cdot \pi \cdot L}{160} \cdot \frac{D_1^5 - D_2^5}{D_1 - D_2} \quad c = \frac{3 \cdot \pi \cdot G}{32 L} \cdot \frac{(D_1^3 \cdot D_2^3)}{(D_1^2 + D_1 D_2 + D_2^2)}$$

$$\begin{split} J &= \frac{\varrho \cdot \pi \cdot L}{160} \cdot \left(\frac{D_1{}^5 - D_2{}^5}{D_1 - D_2} \right| \ c &= \frac{3 \cdot \pi \cdot G}{32 \ L} \cdot \left[\frac{(D_1{}^3 \cdot D_2{}^3)}{(D_1{}^2 + D_1 D_2 + D_2{}^2)} \right. \\ &\left. - \frac{d_1{}^5 - d_2{}^5}{d_1 - d_2} \right) \\ &\left. - \frac{(d_1{}^3 \cdot d_2{}^3)}{(d_1{}^2 + d_1 d_2 + d_2{}^2)} \right] \end{split}$$

Tabelle 8 Formelzeichen und Einheiten für Translations- und Drehschwingungen					
Begriff	Größe	Einheit	Erläuterung		
Masse, Massenträgheits- moment	m J	kg kg⋅m²	Translatorisch schwingende Masse m, drehschwingende Masse mit dem Mas- senträgheitsmoment J		
Augenblickswert der Schwingung (Weg, Winkel)	χ φ	m rad *)	Momentaner zeitabhängiger Wert des Schwingungsausschlages		
Amplitude	$\mathbf{x}_{max,}\hat{\mathbf{x}},\;\mathbf{A}$ $\phi_{max,}\hat{\phi},\;\mathbf{A}$	m rad	Amplitude ist der maximale Augenblicks- wert (Scheitelwert) einer Schwingung		
Schwinggeschwindig- keit	x φ	m/s rad/s	Schwinggeschwindigkeit; Schnelle ist der Augenblickswert der Wechselgeschwin- digkeit in Schwingungsrichtung		
Trägheitskraft, Moment der Trägheits- kräfte	m·ẍ J·ÿ	N N·m	Die d'Alembertsche Trägheitskraft bzw. das Moment der Trägheitskräfte wirkt ent- gegen der positiven Beschleunigung		
Federkonstante, Drehfederkonstante	c' c	Nm N·m/rad	Lineare Federn		
Federkraft, Federmoment	c'·x c·φ	N N·m	Bei linearen Federn ist die Federrück- wirkung proportional zur Auslenkung		
Dämpfungskonstante (Dämpfungskoeffizient), Dämpfungskonstante für Drehbewegungen	k' k	N·s/m Nms/rad	Bei Newtonscher Reibung ist die Dämpf- ungskraft proportional der Geschwindig- keit und der Dämpfungskonstanten (li- neare Dämpfung)		
Dämpfungsfaktor, (Abklingkoeffizient)	$\delta = k'/(2 \cdot m)$ $\delta = k/(2 \cdot J)$	1/s 1/s	Der Dämpfungsfaktor ist die auf die doppelte Masse bezogene Dämpf- ungskonstante		
Dämpfungsgrad, (Lehrsche Dämpfung)	$D = \delta/\omega_0$	_	Für D < 1 liegt eine gedämpfte Schwingung, für D \geq 1 ein aperiodischer Fall vor		
Dämpfungsverhältnis	$\begin{array}{c} \hat{x}_n / \hat{x}_{n+1} \\ \hat{\phi}_n / \hat{\phi}_{n+1} \end{array}$	- -	Das Dämpfungsverhältnis ist das Verhältnis zweier um eine Periode aus- einanderliegender Amplituden		
Logarithmisches Dämpfungsdekrement	$\Lambda = \frac{2 \cdot \pi \cdot D}{\sqrt{1 - D^2}}$	_	$ \Lambda = \ln \left(\hat{\mathbf{x}}_{n} / \hat{\mathbf{x}}_{n+1} \right) \Lambda = \ln \left(\hat{\mathbf{\phi}}_{n} / \hat{\mathbf{\phi}}_{n+1} \right) $		
Zeit	t	S	Laufende Zeitkoordinate		
Phasenwinkel	α	rad	Bei positivem Wert handelt es sich um einen Voreilwinkel		
Phasenverschiebungs- winkel	$\varepsilon = \alpha_1 - \alpha_2$	rad	Differenz der Phasenwinkel zweier Schwingungsvorgänge mit gleicher Kreisfrequenz		
Periodendauer	$T = 2 \cdot \mathbf{\pi} / \omega_0$	s	Zeit, in der eine einzelne Schwingung abläuft		
Frequenz der Eigenschwingung	$f = 1/T = \omega_0/(2 \cdot \pi)$	Hz	Frequenz ist der reziproke Wert der Periodendauer, Schwingungen pro Sek.		
Kreisfrequenz der Eigenschwingung	$\omega_0 = 2 \cdot \pi \cdot f$	rad/s	Kreisfrequenz ist die Zahl der Schwingungen in $2 \cdot \pi$ Sekunden		
Eigenkreisfrequenz, (Eigenfrequenz)	$\omega_0 = \sqrt{c/m}$ $\omega_0 = \sqrt{c/J}$	rad/s rad/s	Schwingfrequenz der Eigenschwingung (ungedämpft) des Systems		
Eigenkreisfrequenz bei Dämpfung	$\omega_{d} = \sqrt{\omega_{0}^{2} - \delta^{2}}$	rad/s	Für sehr kleinen Dämpfungsgrad D < 1 wird $\omega_{\text{d}} \approx \omega_0$		
Erregerfrequenz	Ω	rad/s	Kreisfrequenz der Erregung		
Kreisfrequenzverhältnis	$\eta = \Omega/\omega_0$	_	Resonanz liegt bei η = 1 vor		

^{*)} Die Einheit rad kann durch 1 ersetzt werden.

3.4.3 Bestimmung der Steifigk	ceit				
Tabelle 9 Berechnung der Steifigkeit (Beispiele)					
Beispiele	Steifigkeit	Formelzeichen			
Schraubenfeder	$c' = \frac{G \cdot d^4}{8 \cdot D_m^3 \cdot i_F} \left[\frac{N}{m} \right]$	i _F = Anzahl der Windungen G = Schubmodul ¹⁾ d = Drahtdurchmesser D _m = Mittlerer Windungs- durchmesser			
Torsionsstab	$c = \frac{G \cdot I_p}{I} \left[\frac{Nm}{rad} \right]$ Welle: $I_p = \frac{\pi \cdot d^4}{32}$ Hohlwelle: $I_p = \frac{\pi}{32} \left(d_a^4 - d_i^4 \right)$	I _p = Polares Flächen- moment 2. Grades I = Länge d, d _i , d _a = Durchmesser der Wellen			
Zugstab	$c' = \frac{E \cdot A}{I} \left[\frac{N}{m} \right]$	E = Elastizitätsmodul ¹⁾ A = Querschnittsfläche			
Kragbalken	$c' = \frac{F}{f} = \frac{3 \cdot E \cdot I_a}{I^3} \left[\frac{N}{m} \right]$ Welle: $I_a = \frac{\pi \cdot d^4}{64}$ Hohlwelle: $I_a = \frac{\pi}{64} (d_a^4 - d_i^4)$	F = Kraft f = Verformung im Massenschwerpunkt unter der Kraft F I _a = Axiales Flächenmo- ment 2. Grades			
Biegebalken (mittige Last)	$c' = \frac{F}{f} = \frac{48 \cdot E \cdot I_a}{I^3} \left[\frac{N}{m} \right]$				
Biegebalken mit überhängender Last	$c' = \frac{F}{f} = \frac{3 \cdot E \cdot I_a}{a^2 \cdot (I + a)} \left[\frac{N}{m} \right]$	I = Lagerabstand a = Länge des Lastüber- hanges			

Messung der Steifigkeit:

Die Steifigkeit lässt sich im Versuch auch über Verformungsmessungen bestimmen. Dies ist besonders dann hilfreich, wenn die geometrische Struktur sehr komplex ist und rechnerisch nur schwer erfasst werden kann.

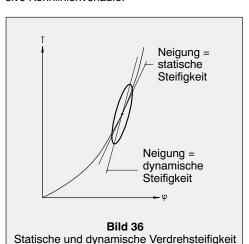
Translation:

$$c' = \frac{F}{f} \quad [N/m] \tag{53}$$

F = Aufgebrachte Kraft [N]

f = Gemessene Verformung [m]

Torsion:


$$c = \frac{T}{\omega} \quad [Nm/rad] \tag{54}$$

T = Aufgebrachtes Torsionsmoment [Nm]

φ = Gemessener Verdrehwinkel [rad]

Weiterhin sind Steifigkeitsmessungen erforderlich, wenn die Werkstoffeigenschaften des Federmaterials sehr komplex sind und rechnerisch nicht genau beschrieben werden können. Dies gilt z.B. für Gummiwerkstoffe, deren Federeigenschaften von der Temperatur, der Belastungsfrequenz, der Last und der Beanspruchungsart (Zug, Druck, Schub) abhängig sind. Anwendungsbeispiele hierfür sind drehelastische Kupplungen und gummielastische Puffer für die Schwingungsisolation von Maschinen und Verbrennungsmotoren.

Die Steifigkeitskennlinien dieser Elemente zeigen zudem oft, je nach Belastungsrichtung des Gummiwerkstoffes, nichtlinear progressive Kennlinienverläufe.

Bei Kupplungen wird in der Regel die dynamische Steifigkeit angegeben, die bei einer

Schwingfrequenz von 10 Hz gemessen wird (Schwingungsamplitude = 25% vom Kupplungsnennmoment). Die dynamische Verdrehsteifigkeit ist größer als die statische Verdrehsteifigkeit, siehe Bild 36.

3.4.4 Überlagerung verschiedener Steifigkeiten

Zur Ermittlung von resultierenden Steifigkeiten müssen die Einzelsteifigkeiten zusammengefasst werden, wobei je nach Anordnung Reihenschaltungen oder Parallelschaltungen vorliegen können.

Reihenschaltung:

Merkregel: Die Einzelfedern einer Reihenschaltung tragen die gleiche Belastung, die Verformungen sind dagegen unterschiedlich.

$$\frac{1}{c_{\text{ges}}} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} + \dots + \frac{1}{c_n}$$
 (55)

Parallelschaltung:

Merkregel: Die Einzelfedern einer Parallelschaltung unterliegen immer einer gleichen Verformung.

$$c_{ges} = c_1 + c_2 + c_3 + ... + c_n$$
 (56)

3.4.5 Umrechnungen

Werden Antriebe oder Wellen mit unterschiedlichen Drehzahlen zu einem Schwingungssystem zusammengefasst, so müssen die Steifigkeiten und die Massen auf eine Bezugsdrehzahl (Antrieb oder Abtrieb) umgerechnet werden. Die Umrechnung erfolgt mit dem Quadrat der Übersetzung:

Übersetzung:

$$i = \frac{n_1}{n_2} = \frac{Bezugsdrehzahl}{Drehzahl}$$
 (57)

Umrechnung von Steifigkeiten c_{n2} und Massen J_{n2} mit der Drehzahl n_2 auf die entsprechenden Werte c_{n1} und J_{n1} mit der Bezugsdrehzahl n_1 :

$$c_{n1} = c_{n2}/i^2 (58)$$

$$J_{n1} = J_{n2}/i^2 (59)$$

Vor einer Zusammenfassung von Steifigkeiten und Massen mit unterschiedlichen Eigendrehzahlen muss zunächst die Umrechnung auf die gemeinsame Bezugsdrehzahl erfolgen.

3.4.6 Eigenfrequenzen

 a) Formeln zur Berechnung der Eigenfrequenzen eines fest eingespannten Einmassenschwingers und eines freien Zweimassenschwingers.

Eigenfrequenz f_e in Hertz (1/s):

Einmassenschwinger:

Torsion:
$$f_e = \frac{1}{2\pi} \sqrt{\frac{c}{J}}$$

(60)
$$f_{e} = \frac{1}{2\pi} \sqrt{c} \frac{J_{1} + J_{2}}{J_{1} \cdot J_{2}}$$
 (61)

c = Drehsteifigkeit in [Nm/rad] J, J_i = Massenträgheitsmoment in [kgm²]

Translation, Biegung :
$$f_e = \frac{1}{2\pi} \sqrt{\frac{c'}{m}}$$
 (62) $f_e = \frac{1}{2\pi} \sqrt{c' \frac{m_1 + m_2}{m_1 \cdot m_2}}$

c' = Translationssteifigkeit (Biegesteifigkeit) in [N/m] m, m_i = Masse in [kg]

 Biegeeigenfrequenzen von beidseitig gelagerten Wellen mit aufgesetzten Massen bei bekannter Verformung f durch das Eigengewicht.

$$f_{e} = \frac{q}{2\pi} \sqrt{\frac{g}{f}} \qquad [Hz] \tag{64} \label{eq:fe}$$

g = 9,81 m/s² Fallbeschleunigung

f = Durchbiegung durch Eigengewicht [m]

q = Faktor, der den Einfluss der Wellenmassen auf die aufgesetzte Masse widerspiegelt

q = 1 Wellenmasse wird gegenüber aufgesetzter Masse vernachlässigt

q = 1,03 ... 1,09 übliche Werte bei Berücksichtigung der Wellenmassen

q = 1,13 Vollwelle ohne aufgesetzte Scheibe

Biegeeigenfrequenzen für Wellen bei Berücksichtigung der Eigenmassen (Kontinuum);
 allgemeine Formel für die Eigenfrequenz in der Ordnung f_{e, i}.

$$f_{e,i} = \frac{1}{2\pi} \cdot \left(\frac{\lambda_i}{I}\right)^2 \cdot \sqrt{\frac{I \; E}{\varrho \cdot A}} \; \left[Hz\right] \tag{65}$$

 λ_i = Eigenwertfaktor für die i-te Eigenfrequenz

I = Länge der Welle [m]

 $E = E-Modul [N/m^2]$

I = Flächenträgheitsmoment [m⁴]

 $\varrho = \text{Dichte [kg/m}^3]$

A = Querschnittsfläche [m²]

d = Durchmesser bei Vollwelle [m]

Tabelle 10 λ-Werte für die ersten drei Eigenfrequenzen je nach Einspannung

Lagerung	λ ₁	λ_2	λ3
L.	1,875	4,694	7,855
	4,730	7,853	10,966
	π	2π	3π
	3,927	7,069	10,210

Für die Vollwelle mit beidseitig freien Auflagern vereinfacht sich Gl. (65) zu:

$$f_{e,i} = \frac{\pi \cdot d}{8} \left(\frac{i}{I} \right)^2 \cdot \sqrt{\frac{E}{Q}} \quad [Hz]$$
 (66)

i = 1, 2, 3 ... Ordnung der Biegeeigenfrequenzen.

3.5 Schwingungsbeurteilung

Die dynamische Belastung von Maschinen kann messtechnisch mit Hilfe von verschiedenen Verfahren ermittelt werden. So lassen sich z.B. Drehschwingungsbelastungen in Antrieben mit Hilfe von Dehnungsmessstreifen (DMS) auf den Wellen direkt messen. Allerdings ist hierzu ein erheblicher Aufwand für die Applizierung der DMS, die Kalibrierung und die Signalübertragung und Auswertung erforderlich. Da sich die Drehmomente in Wellen über Lagerreaktionskräfte in Getrieben, Riementrieben usw. abstützen, wird bei dynamischen Belastungen Körperschall erzeugt, der durch Sensoren an den Lagerstellen in verschiedenen Richtungen (axial, horizontal, vertikal) erfasst werden kann. Je nach Erfordernis können die Amplituden des Schwingweges, der Schwinggeschwindigkeit und der Schwingbeschleunigung in der Summe

(63)

(Effektive Schwinggeschwindigkeit) oder frequenzselektiv erfasst und ausgewertet werden. Neben der Drehmomentbelastung in den Wellen bilden sich im Körperschallsignal auch Unwuchten, Ausrichtfehler, Zahneingriffsimpulse, Lagergeräusche und sich anbahnende Maschinenschäden ab.

Zur Beurteilung des aktuellen Maschinenzustandes wird in der Regel die effektive Schwinggeschwindigkeit (Schnelle) nach der VDI-Richtlinie 2056 ¹⁾ oder DIN ISO 10816-1 /19,20/ herangezogen, die den Körperschall im Frequenzbereich von 10 - 1000 Hertz berücksichtigt. Je nach Maschinenaufstellung (elastische oder starre Fundamente) und durchgesetzter Leistung werden 4 Maschinengruppen definiert (Tabelle 11). Je nach Schwingschnelle wird der Schwingungszustand einer Maschine als "gut", "brauchbar",

"noch zulässig" und "unzulässig" beurteilt. Schwingschnellen im "unzulässigen" Bereich erfordern in der Regel Maßnahmen zur Verbesserung des Schwingungszustandes der Maschine (Auswuchten, Ausrichtung verbessern, defekte Maschinenteile austauschen, Resonanzen verschieben), oder es muss im Einzelnen nachgewiesen werden, dass der Schwingungszustand die Lebensdauer der Maschine nicht beeinträchtigt (Erfahrung, rechnerischer Nachweis).

Körperschall wird an der Maschinenoberfläche in Form von Luftschall abgestrahlt und belastet das Umfeld durch die entstehenden Geräusche. Zur Geräuschbeurteilung werden Schalldruckpegel- und Schallintensitätsmessungen durchgeführt. Eine Bewertung von Getriebegeräuschen erfolgt nach VDI-Richtlinie 2159 oder nach DIN 45635 /17,16/, siehe Abschnitt 1.5.

Tabelle 11 Beurteilungsgrenzen nach VDI-Richtlinie 2056 1) für 4 Maschinengruppen					
Maschinen-	Hierzu gehören Getriebe und Maschinen mit	Beurteilungsstufen nach VDI 2056 ("Effektive Schwingungsgeschwindigkeit" in mm/s)			
gruppen	Antriebsleistungen	gut	brauchbar	noch zulässig	unzulässig
К	bis etwa 15 kW ohne be- sondere Fundamente.	bis 0,7	0,7 1,8	1,8 4,5	ab 4,5
М	von etwa 15 bis 75 kW ohne besondere Fundamente von etwa 75 bis 300 kW und einer Aufstellung auf hochabgestimmten, starren oder schweren Fundamenten.	bis 1,1	1,1 2,8	2,8 7,1	ab 7,1
G	oberhalb von etwa 300 kW und einer Aufstellung auf hochabgestimmten, starren oder schweren Fundamenten.	bis 1,8	1,8 4,5	4,5 11	ab 11
т	oberhalb von etwa 75 kW und einer Aufstellung auf tiefabgestimmten, elastischen Fundamenten (insbesondere auch nach Leichtbau-Richtlinien gestaltete Stahlfundamente).	bis 2,8	2,8 7	7 18	ab 18

^{1) 08/97} ohne Ersatz zurückgezogen; siehe /20/

136 Siemens MD · 2009

Seite

Literaturverzeichnis für Teil 10, 11 und 12

138 + 139

Siemens MD · 2009 137

Literaturverzeichnis

- /1/ DIN 3960: Begriffe und Bestimmungsgrößen für Stirnräder (Zylinderräder) und Stirnradpaare (Zylinderradpaare) mit Evolventenverzahnung, Ausgabe März 1987, Beuth Verlag GmbH, Berlin
- /2/ DIN 3992: Profilverschiebung bei Stirnrädern mit Außenradverzahnung, Ausgabe März 1964, Beuth Verlag GmbH, Berlin
- /3/ DIN 3993: Geometrische Auslegung von zylindrischen Innenradpaaren, Teil 3, Ausgabe August 1981, Beuth Verlag GmbH, Berlin
- /4/ DIN 3994: Profilverschiebung bei geradverzahnten Stirnrädern mit 05-Verzahnung, August Ausgabe 1963, Beuth Verlag GmbH, Berlin
- /5/ Niemann, G. und Winter, H.: Maschinenelemente, Band II, Getriebe allgemein, Zahnradgetriebe-Grundlagen, Stirnradgetriebe, 3. Auflage, Springer Verlag, (Heidelberg, New York, Tokio 1985)
- /6/ Sigg, H.: Profile and longitudinal corrections on involute gears. Semi-Annual Meeting of the AGMA 1965, Paper 109.16
- /7/ Hösel, Th.: Ermittlung von Tragbild und Flankenrichtungskorrekturen für Evolventen-Stirnräder, Berechnungen mit dem FVA-Programm "Ritzelkorrektur", Zeitschrift Antriebstechnik 22, (1983) Nr. 12
- /8/ DIN 3990: Tragfähigkeitsberechnung von Stirnrädern,
 - Teil 1: Einführung und allgemeine Einflussfaktoren,
 - Teil 2: Berechnung der Grübchentragfähigkeit,
 - Teil 3: Berechnung der Zahnfußtragfähigkeit,
 - Teil 4: Berechnung der Fresstragfähigkeit,
 - Beuth Verlag GmbH, Berlin, Dezember 1987
- /9/ FVA-Stirnradprogramm: Vergleich und Zusammenfassung von Zahnradberechnungen mit Hilfe von EDV-Anlagen (jeweils neuester Programmstand), FVA-Forschungsvorhaben Nr. 1, Forschungsvereinigung Antriebstechnik, Frankfurt am Main
- /10/ DIN 3990: Tragfähigkeitsberechnung von Stirnrädern mit Evolventenverzahnung, Anwendungsnorm für Industriegetriebe,
 - Teil 11: Detail-Methode, Februar 1989,
 - Teil 12: Einfach-Methode, Entwurf Mai 1987,
 - Beuth Verlag GmbH, Berlin
- /11/ DIN 3990: Tragfähigkeitsberechnung von Stirnrädern, Teil 5: Dauerfestigkeitswerte und Werkstoffqualitäten, Beuth Verlag GmbH, Berlin

Literaturverzeichnis

- /12/ FVA-Arbeitsblatt zum Forschungsvorhaben Nr. 8: Grundlagenversuche zur Ermittlung der richtigen Härtetiefe bei Wälz- und Biegebeanspruchung. Stand Dezember 1976, Forschungsvereinigung Antriebstechnik, Frankfurt am Main
- /13/ FVA-Ritzelkorrekturprogramm: EDV-Programm zur Ermittlung der Zahnflankenkorrekturen zum Ausgleich der lastbedingten Zahnverformungen (jeweils neuester Programmstand), FVA-Forschungsvorhaben Nr. 30, Forschungsvereinigung Antriebstechnik, Frankfurt am Main
- /14/ Niemann, G.: Maschinenelemente 2. Bd., Springer-Verlag Berlin, Heidelberg, New York, 1965
- /15/ Theissen, J.: Vergleichskriterien für Großgetriebe mit Leistungsverzweigung, VDI-Bericht 488 "Zahnradgetriebe 1983 - mehr Know how für morgen", VDI-Verlag, 1983
- /16/ DIN 45635: Geräuschmessung an Maschinen,
 - Teil 1: Luftschallemission, Hüllflächen-Verfahren, Rahmenverfahren für 3 Genauigkeitsklassen, April 1984,
 - Teil 23: Luftschallmessung, Hüllflächen-Verfahren Getriebe, Juli 1978, Beuth Verlag GmbH, Berlin
- /17/ VDI-Richtlinien 2159: Emissionskennwerte technischer Schallquellen; Getriebegeräusche; Verein Deutscher Ingenieure, Juli 1985
- /18/ DIN 740: Nachgiebige Wellenkupplungen. Teil 2. Begriffe und Berechnungsgrundlagen. August 1986, Beuth Verlag GmbH, Berlin
- /19/ VDI-Richtlinien 2056: Beurteilungsmaßstäbe für mechanische Schwingungen von Maschinen. VDI-Handbuch Schwingungstechnik; Verein Deutscher Ingenieure; Oktober 1964; (08.97 ohne Ersatz zurückgezogen)
- /20/ DIN ISO 10816-1: Mechanische Schwingungen. Bewertung der Schwingungen von Maschinen durch Messungen an nichtrotierenden Teilen. August 1997, Beuth Verlag GmbH, Berlin

Siemens MD · 2009 139

Technisches Handbuch 5. Auflage März 2009 Copyright by Siemens AG, Bocholt

140 Siemens MD · 2009

Die Informationen in dieser Broschüre enthalten lediglich allgemeine Beschreibungen bzw. Leistungsmerkmale, welche im konkreten Anwendungsfall nicht immer in der beschriebenen Form zutreffen bzw. welche sich durch Weiterentwicklung der Produkte ändern können. Die gewünschten Leistungsmerkmale sind nur dann verbindlich, wenn sie bei Vertragsschluss ausdrücklich vereinbart werden.

Alle Erzeugnisbezeichnungen können Marken oder Erzeugnisnamen der Siemens AG oder anderer, zuliefernder Unternehmen sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

Siemens AG Industry Sector Drive Technologies Division Mechanical Drives Postfach 1364 46393 BOCHOLT DEUTSCHLAND Änderungen vorbehalten Bestell-Nr.: E86060-T5701-A101-A1 Dispo 18500 BU 0309 5.0 Ro 148 De Nd 0312 5.0 Ro Gedruckt in Deutschland © Siemens AG 2009

www.siemens.de/antriebstechnik