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Preface

Obijectives

This text is intended for students beginning the study of mechanical engineering
design. The focus is on blending fundamental development of concepts with practi-
cal specification of components. Students of this text should find that it inherently
directs them into familiarity with both the basis for decisions and the standards of
industrial components. For this reason, as students transition to practicing engineers,
they will find that this text is indispensable as a reference text. The objectives of the
text are to:

Cover the basics of machine design, including the design process, engineering me-
chanics and materials, failure prevention under static and variable loading, and char-
acteristics of the principal types of mechanical elements.

Offer a practical approach to the subject through a wide range of real-world applica-
tions and examples.

Encourage readers to link design and analysis.

Encourage readers to link fundamental concepts with practical component specification.

New to This Edition

This eighth edition contains the following significant enhancements:

New chapter on the Finite Element Method. In response to many requests from
reviewers, this edition presents an introductory chapter on the finite element method.
The goal of this chapter is to provide an overview of the terminology, method, capa-
bilities, and applications of this tool in the design environment.

New transmission case study. The traditional separation of topics into chapters
sometimes leaves students at a loss when it comes time to integrate dependent topics
in a larger design process. A comprehensive case study is incorporated through stand-
alone example problems in multiple chapters, then culminated with a new chapter
that discusses and demonstrates the integration of the parts into a complete design
process. Example problems relevant to the case study are presented on engineering
paper background to quickly identify them as part of the case study.

Revised and expanded coverage of shaft design. Complementing the new transmis-
sion case study is a significantly revised and expanded chapter focusing on issues rel-
evant to shaft design. The motivating goal is to provide a meaningful presentation that
allows a new designer to progress through the entire shaft design process — from gen-
eral shaft layout to specifying dimensions. The chapter has been moved to immedi-
ately follow the fatigue chapter, providing an opportunity to seamlessly transition
from the fatigue coverage to its application in the design of shafts.

* Availability of information to complete the details of a design. Additional focus is

placed on ensuring the designer can carry the process through to completion.
XV
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By assigning larger design problems in class, the authors have identified where the
students lack details. For example, information is now provided for such details as
specifying keys to transmit torque, stress concentration factors for keyways and re-
taining ring grooves, and allowable deflections for gears and bearings. The use of in-
ternet catalogs and engineering component search engines is emphasized to obtain
current component specifications.

o Streamlining of presentation. Coverage of material continues to be streamlined to
focus on presenting straightforward concept development and a clear design proce-
dure for student designers.

Content Changes and Reorganization

A new Part 4: Analysis Tools has been added at the end of the book to include the new
chapter on finite elements and the chapter on statistical considerations. Based on a sur-
vey of instructors, the consensus was to move these chapters to the end of the book
where they are available to those instructors wishing to use them. Moving the statisti-
cal chapter from its former location causes the renumbering of the former chapters 2
through 7. Since the shaft chapter has been moved to immediately follow the fatigue
chapter, the component chapters (Chapters 8 through 17) maintain their same number-
ing. The new organization, along with brief comments on content changes, is given
below:

Part 1: Basics

Part 1 provides a logical and unified introduction to the background material needed for
machine design. The chapters in Part 1 have received a thorough cleanup to streamline
and sharpen the focus, and eliminate clutter.

e Chapter 1, Introduction. Some outdated and unnecessary material has been removed.
A new section on problem specification introduces the transmission case study.

e Chapter 2, Materials. New material is included on selecting materials in a design
process. The Ashby charts are included and referenced as a design tool.

e Chapter 3, Load and Stress Analysis. Several sections have been rewritten to im-
prove clarity. Bending in two planes is specifically addressed, along with an example
problem.

* Chapter 4, Deflection and Stiffness. Several sections have been rewritten to improve
clarity. A new example problem for deflection of a stepped shaft is included. A new
section is included on elastic stability of structural members in compression.

Part 2: Failure Prevention

This section covers failure by static and dynamic loading. These chapters have received
extensive cleanup and clarification, targeting student designers.

* Chapter 5, Failures Resulting from Static Loading. In addition to extensive cleanup
for improved clarity, a summary of important design equations is provided at the end
of the chapter.

e Chapter 6, Fatigue Failure Resulting from Variable Loading. Confusing material on
obtaining and using the S-N diagram is clarified. The multiple methods for obtaining
notch sensitivity are condensed. The section on combination loading is rewritten for
greater clarity. A chapter summary is provided to overview the analysis roadmap and
important design equations used in the process of fatigue analysis.
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Part 3: Design of Mechanical Elements

Part 3 covers the design of specific machine components. All chapters have received
general cleanup. The shaft chapter has been moved to the beginning of the section. The
arrangement of chapters, along with any significant changes, is described below:

Chapter 7, Shafts and Shaft Components. This chapter is significantly expanded and
rewritten to be comprehensive in designing shafts. Instructors that previously did not
specifically cover the shaft chapter are encouraged to use this chapter immediately
following the coverage of fatigue failure. The design of a shaft provides a natural pro-
gression from the failure prevention section into application toward components. This
chapter is an essential part of the new transmission case study. The coverage of
setscrews, keys, pins, and retaining rings, previously placed in the chapter on bolted
joints, has been moved into this chapter. The coverage of limits and fits, previously
placed in the chapter on statistics, has been moved into this chapter.

Chapter 8, Screws, Fasteners, and the Design of Nonpermanent Joints. The sec-
tion on setscrews, keys, and pins, has been moved from this chapter to Chapter 7.
The coverage of bolted and riveted joints loaded in shear has been returned to this
chapter.

Chapter 9, Welding, Bonding, and the Design of Permanent Joints. The section on
bolted and riveted joints loaded in shear has been moved to Chapter 8.

Chapter 10, Mechanical Springs.
Chapter 11, Rolling-Contact Bearings.
Chapter 12, Lubrication and Journal Bearings.

Chapter 13, Gears — General. New example problems are included to address design
of compound gear trains to achieve specified gear ratios. The discussion of the rela-
tionship between torque, speed, and power is clarified.

Chapter 14, Spur and Helical Gears. The current AGMA standard (ANSI/AGMA
2001-D04) has been reviewed to ensure up-to-date information in the gear chapters.
All references in this chapter are updated to reflect the current standard.

Chapter 15, Bevel and Worm Gears.
Chapter 16, Clutches, Brakes, Couplings, and Flywheels.
Chapter 17, Flexible Mechanical Elements.

Chapter 18, Power Transmission Case Study. This new chapter provides a complete
case study of a double reduction power transmission. The focus is on providing an ex-
ample for student designers of the process of integrating topics from multiple chap-
ters. Instructors are encouraged to include one of the variations of this case study as a
design project in the course. Student feedback consistently shows that this type of
project is one of the most valuable aspects of a first course in machine design. This
chapter can be utilized in a tutorial fashion for students working through a similar
design.

Part 4: Analysis Tools

Part 4 includes a new chapter on finite element methods, and a new location for the
chapter on statistical considerations. Instructors can reference these chapters as needed.

Chapter 19, Finite Element Analysis. This chapter is intended to provide an intro-
duction to the finite element method, and particularly its application to the machine
design process.
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e Chapter 20, Statistical Considerations. This chapter is relocated and organized as a
tool for users that wish to incorporate statistical concepts into the machine design
process. This chapter should be reviewed if Secs. 5-13, 6-17, or Chap. 11 are to be
covered.

Supplements

The 8" edition of Shigley’s Mechanical Engineering Design features McGraw-Hill’s ARIS
(Assessment Review and Instruction System). ARIS makes homework meaningful—and
manageable—for instructors and students. Instructors can assign and grade text-specific
homework within the industry’s most robust and versatile homework management sys-
tem. Students can access multimedia learning tools and benefit from unlimited practice
via algorithmic problems. Go to aris.mhhe.com to learn more and register!

The array of tools available to users of Shigley’s Mechanical Engineering Design
includes:

Student Supplements

 Tutorials—Presentation of major concepts, with visuals. Among the topics covered
are pressure vessel design, press and shrink fits, contact stresses, and design for static
failure.

* MATLAB® for machine design. Includes visual simulations and accompanying source
code. The simulations are linked to examples and problems in the text and demonstrate
the ways computational software can be used in mechanical design and analysis.

* Fundamentals of engineering (FE) exam questions for machine design. Interactive
problems and solutions serve as effective, self-testing problems as well as excellent
preparation for the FE exam.

e Algorithmic Problems. Allow step-by-step problem-solving using a recursive com-
putational procedure (algorithm) to create an infinite number of problems.

Instructor Supplements (under password protection)
e Solutions manual. The instructor’s manual contains solutions to most end-of-chapter
nondesign problems.

* PowerPoint® slides. Slides of important figures and tables from the text are provided
in PowerPoint format for use in lectures.
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List of Symbols

This is a list of common symbols used in machine design and in this book. Specialized
use in a subject-matter area often attracts fore and post subscripts and superscripts.
To make the table brief enough to be useful the symbol kernels are listed. See
Table 14-1, pp. 715-716 for spur and helical gearing symbols, and Table 15-1,
pp. 769770 for bevel-gear symbols.
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Area, coefficient

Area variate

Distance, regression constant

Regression constant estimate

Distance variate

Coefficient

Brinell hardness

Variate

Distance, Weibull shape parameter, range number, regression constant,
width

Regression constant estimate

Distance variate

Basic load rating, bolted-joint constant, center distance, coefficient of
variation, column end condition, correction factor, specific heat capacity,
spring index

Distance, viscous damping, velocity coefficient

Cumulative distribution function

Coefficient of variation

Distance variate

Helix diameter

Diameter, distance

Modulus of elasticity, energy, error

Distance, eccentricity, efficiency, Naperian logarithmic base

Force, fundamental dimension force

Coefficient of friction, frequency, function

Figure of merit

Torsional modulus of elasticity

Acceleration due to gravity, function

Heat, power

Brinell hardness

Rockwell C-scale hardness

Distance, film thickness

Combined overall coefficient of convection and radiation heat transfer
Integral, linear impulse, mass moment of inertia, second moment of area
Index

Unit vector in x-direction
xxiii
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J Mechanical equivalent of heat, polar second moment of area, geometry
factor

Unit vector in the y-direction

Service factor, stress-concentration factor, stress-augmentation factor,
torque coefficient

Marin endurance limit modifying factor, spring rate

k variate, unit vector in the z-direction

Length, life, fundamental dimension length
Lognormal distribution

Length

Fundamental dimension mass, moment

Moment vector, moment variate

Mass, slope, strain-strengthening exponent

Normal force, number, rotational speed

Normal distribution

Load factor, rotational speed, safety factor

Design factor

Force, pressure, diametral pitch

DF Probability density function

Pitch, pressure, probability

First moment of area, imaginary force, volume
Distributed load, notch sensitivity

Radius, reaction force, reliability, Rockwell hardness, stress ratio
Vector reaction force

Correlation coefficient, radius

Distance vector

Sommerfeld number, strength

S variate

Distance, sample standard deviation, stress
Temperature, tolerance, torque, fundamental dimension time
Torque vector, torque variate

Distance, Student’s t-statistic, time, tolerance

Strain energy

Uniform distribution

Strain energy per unit volume

Linear velocity, shear force

Linear velocity

Cold-work factor, load, weight

Weibull distribution

Distance, gap, load intensity

Vector distance

Coordinate, truncated number

Coordinate, true value of a number, Weibull parameter
X variate

Coordinate

Coordinate, deflection

y variate

Coordinate, section modulus, viscosity

Standard deviation of the unit normal distribution
Variate of z

H o X
Zz
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Coefficient, coefficient of linear thermal expansion, end-condition for
springs, thread angle

Bearing angle, coefficient

Change, deflection

Deviation, elongation

Eccentricity ratio, engineering (normal) strain

Normal distribution with a mean of 0 and a standard deviation of s
True or logarithmic normal strain

Gamma function

Pitch angle, shear strain, specific weight

Slenderness ratio for springs

Unit lognormal with a mean of 1 and a standard deviation equal to COV
Absolute viscosity, population mean

Poisson ratio

Angular velocity, circular frequency

Angle, wave length

Slope integral

Radius of curvature

Normal stress

Von Mises stress

Normal stress variate

Standard deviation

Shear stress

Shear stress variate

Angle, Weibull characteristic parameter

Cost per unit weight

Cost
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Mechanical Engineering Design

Mechanical design is a complex undertaking, requiring many skills. Extensive relation-
ships need to be subdivided into a series of simple tasks. The complexity of the subject
requires a sequence in which ideas are introduced and iterated.

We first address the nature of design in general, and then mechanical engineering
design in particular. Design is an iterative process with many interactive phases. Many
resources exist to support the designer, including many sources of information and an
abundance of computational design tools. The design engineer needs not only to develop
competence in their field but must also cultivate a strong sense of responsibility and
professional work ethic.

There are roles to be played by codes and standards, ever-present economics, safety,
and considerations of product liability. The survival of a mechanical component is often
related through stress and strength. Matters of uncertainty are ever-present in engineer-
ing design and are typically addressed by the design factor and factor of safety, either
in the form of a deterministic (absolute) or statistical sense. The latter, statistical
approach, deals with a design’s reliability and requires good statistical data.

In mechanical design, other considerations include dimensions and tolerances,
units, and calculations.

The book consists of four parts. Part 1, Basics, begins by explaining some differ-
ences between design and analysis and introducing some fundamental notions and
approaches to design. It continues with three chapters reviewing material properties,
stress analysis, and stiffness and deflection analysis, which are the key principles nec-
essary for the remainder of the book.

Part 2, Failure Prevention, consists of two chapters on the prevention of failure of
mechanical parts. Why machine parts fail and how they can be designed to prevent fail-
ure are difficult questions, and so we take two chapters to answer them, one on pre-
venting failure due to static loads, and the other on preventing fatigue failure due to
time-varying, cyclic loads.

In Part 3, Design of Mechanical Elements, the material of Parts 1 and 2 is applied
to the analysis, selection, and design of specific mechanical elements such as shafts,
fasteners, weldments, springs, rolling contact bearings, film bearings, gears, belts,
chains, and wire ropes.

Part 4, Analysis Tools, provides introductions to two important methods used in
mechanical design, finite element analysis and statistical analysis. This is optional study
material, but some sections and examples in Parts 1 to 3 demonstrate the use of these tools.

There are two appendixes at the end of the book. Appendix A contains many use-
ful tables referenced throughout the book. Appendix B contains answers to selected
end-of-chapter problems.

Design

To design is either to formulate a plan for the satisfaction of a specified need or to solve
a problem. If the plan results in the creation of something having a physical reality, then
the product must be functional, safe, reliable, competitive, usable, manufacturable, and
marketable.

Design is an innovative and highly iterative process. It is also a decision-making
process. Decisions sometimes have to be made with too little information, occasion-
ally with just the right amount of information, or with an excess of partially contradictory
information. Decisions are sometimes made tentatively, with the right reserved to adjust
as more becomes known. The point is that the engineering designer has to be personally
comfortable with a decision-making, problem-solving role.
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Design is a communication-intensive activity in which both words and pictures are
used, and written and oral forms are employed. Engineers have to communicate effec-
tively and work with people of many disciplines. These are important skills, and an
engineer’s success depends on them.

A designer’s personal resources of creativeness, communicative ability, and problem-
solving skill are intertwined with knowledge of technology and first principles.
Engineering tools (such as mathematics, statistics, computers, graphics, and languages)
are combined to produce a plan that, when carried out, produces a product that is func-
tional, safe, reliable, competitive, usable, manufacturable, and marketable, regardless
of who builds it or who uses it.

Mechanical Engineering Design

Mechanical engineers are associated with the production and processing of energy and
with providing the means of production, the tools of transportation, and the techniques
of automation. The skill and knowledge base are extensive. Among the disciplinary
bases are mechanics of solids and fluids, mass and momentum transport, manufactur-
ing processes, and electrical and information theory. Mechanical engineering design
involves all the disciplines of mechanical engineering.

Real problems resist compartmentalization. A simple journal bearing involves fluid
flow, heat transfer, friction, energy transport, material selection, thermomechanical
treatments, statistical descriptions, and so on. A building is environmentally controlled.
The heating, ventilation, and air-conditioning considerations are sufficiently specialized
that some speak of heating, ventilating, and air-conditioning design as if it is separate
and distinct from mechanical engineering design. Similarly, internal-combustion engine
design, turbomachinery design, and jet-engine design are sometimes considered dis-
crete entities. Here, the leading string of words preceding the word design is merely a
product descriptor. Similarly, there are phrases such as machine design, machine-element
design, machine-component design, systems design, and fluid-power design. All of
these phrases are somewhat more focused examples of mechanical engineering design.
They all draw on the same bodies of knowledge, are similarly organized, and require
similar skills.

Phases and Interactions of the Design Process

What is the design process? How does it begin? Does the engineer simply sit down at
a desk with a blank sheet of paper and jot down some ideas? What happens next? What
factors influence or control the decisions that have to be made? Finally, how does the
design process end?

The complete design process, from start to finish, is often outlined as in Fig. 1-1.
The process begins with an identification of a need and a decision to do something
about it. After many iterations, the process ends with the presentation of the plans
for satisfying the need. Depending on the nature of the design task, several design
phases may be repeated throughout the life of the product, from inception to termi-
nation. In the next several subsections, we shall examine these steps in the design
process in detail.

Identification of need generally starts the design process. Recognition of the need
and phrasing the need often constitute a highly creative act, because the need may be
only a vague discontent, a feeling of uneasiness, or a sensing that something is not right.
The need is often not evident at all; recognition is usually triggered by a particular
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Figure 1-1

The phases in design,
acknowledging the many
feedbacks and iterations.

T
| Identification of need

{l Definition of problem |<—
| Synthesis '7‘
|
Analysis and optimization
| |

4| Evaluation

| Presentation |

Iteration

adverse circumstance or a set of random circumstances that arises almost simultaneously.
For example, the need to do something about a food-packaging machine may be indi-
cated by the noise level, by a variation in package weight, and by slight but perceptible
variations in the quality of the packaging or wrap.

There is a distinct difference between the statement of the need and the definition
of the problem. The definition of problem is more specific and must include all the spec-
ifications for the object that is to be designed. The specifications are the input and out-
put quantities, the characteristics and dimensions of the space the object must occupy,
and all the limitations on these quantities. We can regard the object to be designed as
something in a black box. In this case we must specify the inputs and outputs of the box,
together with their characteristics and limitations. The specifications define the cost, the
number to be manufactured, the expected life, the range, the operating temperature, and
the reliability. Specified characteristics can include the speeds, feeds, temperature lim-
itations, maximum range, expected variations in the variables, dimensional and weight
limitations, etc.

There are many implied specifications that result either from the designer’s par-
ticular environment or from the nature of the problem itself. The manufacturing
processes that are available, together with the facilities of a certain plant, constitute
restrictions on a designer’s freedom, and hence are a part of the implied specifica-
tions. It may be that a small plant, for instance, does not own cold-working machin-
ery. Knowing this, the designer might select other metal-processing methods that
can be performed in the plant. The labor skills available and the competitive situa-
tion also constitute implied constraints. Anything that limits the designer’s freedom
of choice is a constraint. Many materials and sizes are listed in supplier’s catalogs,
for instance, but these are not all easily available and shortages frequently occur.
Furthermore, inventory economics requires that a manufacturer stock a minimum
number of materials and sizes. An example of a specification is given in Sec. 1-16.
This example is for a case study of a power transmission that is presented throughout
this text.

The synthesis of a scheme connecting possible system elements is sometimes
called the invention of the concept or concept design. This is the first and most impor-
tant step in the synthesis task. Various schemes must be proposed, investigated, and
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quantified in terms of established metrics.! As the fleshing out of the scheme progresses,
analyses must be performed to assess whether the system performance is satisfactory or
better, and, if satisfactory, just how well it will perform. System schemes that do not
survive analysis are revised, improved, or discarded. Those with potential are optimized
to determine the best performance of which the scheme is capable. Competing schemes
are compared so that the path leading to the most competitive product can be chosen.
Figure 1-1 shows that synthesis and analysis and optimization are intimately and
iteratively related.

We have noted, and we emphasize, that design is an iterative process in which we
proceed through several steps, evaluate the results, and then return to an earlier phase
of the procedure. Thus, we may synthesize several components of a system, analyze and
optimize them, and return to synthesis to see what effect this has on the remaining parts
of the system. For example, the design of a system to transmit power requires attention
to the design and selection of individual components (e.g., gears, bearings, shaft).
However, as is often the case in design, these components are not independent. In order
to design the shaft for stress and deflection, it is necessary to know the applied forces.
If the forces are transmitted through gears, it is necessary to know the gear specifica-
tions in order to determine the forces that will be transmitted to the shaft. But stock
gears come with certain bore sizes, requiring knowledge of the necessary shaft diame-
ter. Clearly, rough estimates will need to be made in order to proceed through the
process, refining and iterating until a final design is obtained that is satisfactory for each
individual component as well as for the overall design specifications. Throughout the
text we will elaborate on this process for the case study of a power transmission design.

Both analysis and optimization require that we construct or devise abstract models
of the system that will admit some form of mathematical analysis. We call these mod-
els mathematical models. In creating them it is our hope that we can find one that will
simulate the real physical system very well. As indicated in Fig. 1-1, evaluation is a
significant phase of the total design process. Evaluation is the final proof of a success-
ful design and usually involves the testing of a prototype in the laboratory. Here we
wish to discover if the design really satisfies the needs. Is it reliable? Will it compete
successfully with similar products? Is it economical to manufacture and to use? Is it
easily maintained and adjusted? Can a profit be made from its sale or use? How likely
is it to result in product-liability lawsuits? And is insurance easily and cheaply
obtained? Is it likely that recalls will be needed to replace defective parts or systems?

Communicating the design to others is the final, vital presentation step in the
design process. Undoubtedly, many great designs, inventions, and creative works have
been lost to posterity simply because the originators were unable or unwilling to
explain their accomplishments to others. Presentation is a selling job. The engineer,
when presenting a new solution to administrative, management, or sUpervisory persons,
is attempting to sell or to prove to them that this solution is a better one. Unless this can
be done successfully, the time and effort spent on obtaining the solution have been
largely wasted. When designers sell a new idea, they also sell themselves. If they are
repeatedly successful in selling ideas, designs, and new solutions to management, they
begin to receive salary increases and promotions; in fact, this is how anyone succeeds
in his or her profession.

'An excellent reference for this topic is presented by Stuart Pugh, Total Design—Integrated Methods for
Successful Product Engineering, Addison-Wesley, 1991. A description of the Pugh method is also provided
in Chap. 8, David G. Ullman, The Mechanical Design Process, 3rd ed., McGraw-Hill, 2003.
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Design Considerations

Sometimes the strength required of an element in a system is an important factor in the
determination of the geometry and the dimensions of the element. In such a situation
we say that strength is an important design consideration. When we use the expression
design consideration, we are referring to some characteristic that influences the design
of the element or, perhaps, the entire system. Usually quite a number of such charac-
teristics must be considered and prioritized in a given design situation. Many of the
important ones are as follows (not necessarily in order of importance):

1 Functionality 14 Noise
2 Strength/stress 15 Styling
3 Distortion/deflection/stiffness 16 Shape
4 Wear 17 Size
5 Corrosion 18 Control
6 Safety 19 Thermal properties
7 Reliability 20 Surface
8 Manufacturability 21 Lubrication
9 Utility 22 Marketability
10 Cost 23 Maintenance
11 Friction 24 Volume
12 Weight 25 Liability
13 Life 26 Remanufacturing/resource recovery

Some of these characteristics have to do directly with the dimensions, the material, the
processing, and the joining of the elements of the system. Several characteristics may
be interrelated, which affects the configuration of the total system.

Design Tools and Resources

Today, the engineer has a great variety of tools and resources available to assist in the
solution of design problems. Inexpensive microcomputers and robust computer soft-
ware packages provide tools of immense capability for the design, analysis, and simu-
lation of mechanical components. In addition to these tools, the engineer always needs
technical information, either in the form of basic science/engineering behavior or the
characteristics of specific off-the-shelf components. Here, the resources can range from
science/engineering textbooks to manufacturers’ brochures or catalogs. Here too, the
computer can play a major role in gathering information.”

Computational Tools

Computer-aided design (CAD) software allows the development of three-dimensional
(3-D) designs from which conventional two-dimensional orthographic views with auto-
matic dimensioning can be produced. Manufacturing tool paths can be generated from the
3-D models, and in some cases, parts can be created directly from a 3-D database by using
a rapid prototyping and manufacturing method (stereolithography)—paperless manufac-
turing! Another advantage of a 3-D database is that it allows rapid and accurate calcula-
tions of mass properties such as mass, location of the center of gravity, and mass moments
of inertia. Other geometric properties such as areas and distances between points are
likewise easily obtained. There are a great many CAD software packages available such

2An excellent and comprehensive discussion of the process of “gathering information” can be found in
Chap. 4, George E. Dieter, Engineering Design, A Materials and Processing Approach, 3rd ed.,
McGraw-Hill, New York, 2000.
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as Aries, AutoCAD, CadKey, I-Deas, Unigraphics, Solid Works, and ProEngineer, to
name a few.

The term computer-aided engineering (CAE) generally applies to all computer-
related engineering applications. With this definition, CAD can be considered as a sub-
set of CAE. Some computer software packages perform specific engineering analysis
and/or simulation tasks that assist the designer, but they are not considered a tool for the
creation of the design that CAD is. Such software fits into two categories: engineering-
based and non-engineering-specific. Some examples of engineering-based software for
mechanical engineering applications—software that might also be integrated within a
CAD system—include finite-element analysis (FEA) programs for analysis of stress
and deflection (see Chap. 19), vibration, and heat transfer (e.g., Algor, ANSYS, and
MSC/NASTRAN); computational fluid dynamics (CFD) programs for fluid-flow analy-
sis and simulation (e.g., CFD++, FIDAP, and Fluent); and programs for simulation of
dynamic force and motion in mechanisms (e.g., ADAMS, DADS, and Working Model).

Examples of non-engineering-specific computer-aided applications include soft-
ware for word processing, spreadsheet software (e.g., Excel, Lotus, and Quattro-Pro),
and mathematical solvers (e.g., Maple, MathCad, Matlab, Mathematica, and TKsolver).

Your instructor is the best source of information about programs that may be available
to you and can recommend those that are useful for specific tasks. One caution, however:
Computer software is no substitute for the human thought process. You are the driver here;
the computer is the vehicle to assist you on your journey to a solution. Numbers generated
by a computer can be far from the truth if you entered incorrect input, if you misinterpreted
the application or the output of the program, if the program contained bugs, etc. It is your
responsibility to assure the validity of the results, so be careful to check the application and
results carefully, perform benchmark testing by submitting problems with known solu-
tions, and monitor the software company and user-group newsletters.

Acquiring Technical Information

We currently live in what is referred to as the information age, where information is gen-
erated at an astounding pace. It is difficult, but extremely important, to keep abreast of past
and current developments in one’s field of study and occupation. The reference in Footnote
2 provides an excellent description of the informational resources available and is highly
recommended reading for the serious design engineer. Some sources of information are:

e Libraries (community, university, and private). Engineering dictionaries and encyclo-
pedias, textbooks, monographs, handbooks, indexing and abstract services, journals,
translations, technical reports, patents, and business sources/brochures/catalogs.

* Government sources. Departments of Defense, Commerce, Energy, and Transportation;
NASA; Government Printing Office; U.S. Patent and Trademark Office; National
Technical Information Service; and National Institute for Standards and Technology.

e Professional societies. American Society of Mechanical Engineers, Society of
Manufacturing Engineers, Society of Automotive Engineers, American Society for
Testing and Materials, and American Welding Society.

e Commercial vendors. Catalogs, technical literature, test data, samples, and cost
information.

e Internet. The computer network gateway to websites associated with most of the
categories listed above.’

3Some helpful Web resources, to name a few, include www.globalspec.com, www.engnetglobal.com,
www.efunda.com, www.thomasnet.com, and www.uspto.gov.
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This list is not complete. The reader is urged to explore the various sources of
information on a regular basis and keep records of the knowledge gained.

The Design Engineer’s Professional Responsibilities

In general, the design engineer is required to satisfy the needs of customers (man-
agement, clients, consumers, etc.) and is expected to do so in a competent, responsi-
ble, ethical, and professional manner. Much of engineering course work and practical
experience focuses on competence, but when does one begin to develop engineering
responsibility and professionalism? To start on the road to success, you should start
to develop these characteristics early in your educational program. You need to cul-
tivate your professional work ethic and process skills before graduation, so that
when you begin your formal engineering career, you will be prepared to meet the
challenges.

It is not obvious to some students, but communication skills play a large role here,
and it is the wise student who continuously works to improve these skills—even if it
is not a direct requirement of a course assignment! Success in engineering (achieve-
ments, promotions, raises, etc.) may in large part be due to competence but if you can-
not communicate your ideas clearly and concisely, your technical proficiency may be
compromised.

You can start to develop your communication skills by keeping a neat and clear
journal/logbook of your activities, entering dated entries frequently. (Many companies
require their engineers to keep a journal for patent and liability concerns.) Separate
journals should be used for each design project (or course subject). When starting a
project or problem, in the definition stage, make journal entries quite frequently. Others,
as well as yourself, may later question why you made certain decisions. Good chrono-
logical records will make it easier to explain your decisions at a later date.

Many engineering students see themselves after graduation as practicing engineers
designing, developing, and analyzing products and processes and consider the need of
good communication skills, either oral or writing, as secondary. This is far from the
truth. Most practicing engineers spend a good deal of time communicating with others,
writing proposals and technical reports, and giving presentations and interacting with
engineering and nonengineering support personnel. You have the time now to sharpen
your communication skills. When given an assignment to write or make any presenta-
tion, technical or nontechnical, accept it enthusiastically, and work on improving your
communication skills. It will be time well spent to learn the skills now rather than on
the job.

When you are working on a design problem, it is important that you develop a
systematic approach. Careful attention to the following action steps will help you to
organize your solution processing technique.

* Understand the problem. Problem definition is probably the most significant step in the
engineering design process. Carefully read, understand, and refine the problem statement.

o Identify the known. From the refined problem statement, describe concisely what
information is known and relevant.

e Identify the unknown and formulate the solution strategy. State what must be deter-
mined, in what order, so as to arrive at a solution to the problem. Sketch the compo-
nent or system under investigation, identifying known and unknown parameters.
Create a flowchart of the steps necessary to reach the final solution. The steps may
require the use of free-body diagrams; material properties from tables; equations
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from first principles, textbooks, or handbooks relating the known and unknown
parameters; experimentally or numerically based charts; specific computational tools
as discussed in Sec. 1-4; etc.

State all assumptions and decisions. Real design problems generally do not have
unique, ideal, closed-form solutions. Selections, such as choice of materials, and heat
treatments, require decisions. Analyses require assumptions related to the modeling
of the real components or system. All assumptions and decisions should be identified
and recorded.

Analyze the problem. Using your solution strategy in conjunction with your decisions
and assumptions, execute the analysis of the problem. Reference the sources of all
equations, tables, charts, software results, etc. Check the credibility of your results.
Check the order of magnitude, dimensionality, trends, signs, etc.

Evaluate your solution. Evaluate each step in the solution, noting how changes in
strategy, decisions, assumptions, and execution might change the results, in positive
or negative ways. If possible, incorporate the positive changes in your final solution.

Present your solution. Here is where your communication skills are important. At
this point, you are selling yourself and your technical abilities. If you cannot skill-
fully explain what you have done, some or all of your work may be misunderstood
and unaccepted. Know your audience.

As stated earlier, all design processes are interactive and iterative. Thus, it may be nec-
essary to repeat some or all of the above steps more than once if less than satisfactory
results are obtained.

In order to be effective, all professionals must keep current in their fields of

endeavor. The design engineer can satisfy this in a number of ways by: being an active
member of a professional society such as the American Society of Mechanical
Engineers (ASME), the Society of Automotive Engineers (SAE), and the Society of
Manufacturing Engineers (SME); attending meetings, conferences, and seminars of
societies, manufacturers, universities, etc.; taking specific graduate courses or programs
at universities; regularly reading technical and professional journals; etc. An engineer’s
education does not end at graduation.

The design engineer’s professional obligations include conducting activities in an

ethical manner. Reproduced here is the Engineers’ Creed from the National Society of
Professional Engineers (NSPE)*:

As a Professional Engineer I dedicate my professional knowledge and skill to the
advancement and betterment of human welfare.
I pledge:
To give the utmost of performance;
To participate in none but honest enterprise;
To live and work according to the laws of man and the highest standards of pro-
fessional conduct;
To place service before profit, the honor and standing of the profession before
personal advantage, and the public welfare above all other considerations.
In humility and with need for Divine Guidance, I make this pledge.

*Adopted by the National Society of Professional Engineers, June 1954. “The Engineer’s Creed.” Reprinted
by permission of the National Society of Professional Engineers. This has been expanded and revised by
NSPE. For the current revision, January 2006, see the website www.nspe.org/ethics/ehl-code.asp, or the pdf
file, www.nspe.org/ethics/code-2006-Jan.pdf.
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1-6

Standards and Codes

A standard is a set of specifications for parts, materials, or processes intended to
achieve uniformity, efficiency, and a specified quality. One of the important purposes
of a standard is to place a limit on the number of items in the specifications so as to
provide a reasonable inventory of tooling, sizes, shapes, and varieties.

A code is a set of specifications for the analysis, design, manufacture, and con-
struction of something. The purpose of a code is to achieve a specified degree of safety,
efficiency, and performance or quality. It is important to observe that safety codes do
not imply absolute safety. In fact, absolute safety is impossible to obtain. Sometimes
the unexpected event really does happen. Designing a building to withstand a 120 mi/h
wind does not mean that the designers think a 140 mi/h wind is impossible; it simply
means that they think it is highly improbable.

All of the organizations and societies listed below have established specifications
for standards and safety or design codes. The name of the organization provides a clue
to the nature of the standard or code. Some of the standards and codes, as well as
addresses, can be obtained in most technical libraries. The organizations of interest to
mechanical engineers are:

Aluminum Association (AA)

American Gear Manufacturers Association (AGMA)
American Institute of Steel Construction (AISC)
American Iron and Steel Institute (AISI)

American National Standards Institute (ANSI)?

ASM International®

American Society of Mechanical Engineers (ASME)
American Society of Testing and Materials (ASTM)
American Welding Society (AWS)

American Bearing Manufacturers Association (ABMA)’
British Standards Institution (BSI)

Industrial Fasteners Institute (IFI)

Institution of Mechanical Engineers (I. Mech. E.)
International Bureau of Weights and Measures (BIPM)
International Standards Organization (ISO)

National Institute for Standards and Technology (NIST)®
Society of Automotive Engineers (SAE)

Economics

The consideration of cost plays such an important role in the design decision process that
we could easily spend as much time in studying the cost factor as in the study of the
entire subject of design. Here we introduce only a few general concepts and simple rules.

°In 1966 the American Standards Association (ASA) changed its name to the United States of America
Standards Institute (USAS). Then, in 1969, the name was again changed, to American National Standards
Institute, as shown above and as it is today. This means that you may occasionally find ANSI standards
designated as ASA or USAS.

®Formally American Society for Metals (ASM). Currently the acronym ASM is undefined.

"In 1993 the Anti-Friction Bearing Manufacturers Association (AFBMA) changed its name to the American
Bearing Manufacturers Association (ABMA).

8Former National Bureau of Standards (NBS).
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First, observe that nothing can be said in an absolute sense concerning costs.
Materials and labor usually show an increasing cost from year to year. But the costs
of processing the materials can be expected to exhibit a decreasing trend because of
the use of automated machine tools and robots. The cost of manufacturing a single
product will vary from city to city and from one plant to another because of over-
head, labor, taxes, and freight differentials and the inevitable slight manufacturing
variations.

Standard Sizes

The use of standard or stock sizes is a first principle of cost reduction. An engineer who
specifies an AISI 1020 bar of hot-rolled steel 53 mm square has added cost to the prod-
uct, provided that a bar 50 or 60 mm square, both of which are preferred sizes, would
do equally well. The 53-mm size can be obtained by special order or by rolling or
machining a 60-mm square, but these approaches add cost to the product. To ensure that
standard or preferred sizes are specified, designers must have access to stock lists of the
materials they employ.

A further word of caution regarding the selection of preferred sizes is necessary.
Although a great many sizes are usually listed in catalogs, they are not all readily avail-
able. Some sizes are used so infrequently that they are not stocked. A rush order for
such sizes may mean more on expense and delay. Thus you should also have access to
a list such as those in Table A—17 for preferred inch and millimeter sizes.

There are many purchased parts, such as motors, pumps, bearings, and fasteners,
that are specified by designers. In the case of these, too, you should make a special
effort to specify parts that are readily available. Parts that are made and sold in large
quantities usually cost somewhat less than the odd sizes. The cost of rolling bearings,
for example, depends more on the quantity of production by the bearing manufacturer
than on the size of the bearing.

Large Tolerances

Among the effects of design specifications on costs, tolerances are perhaps most sig-
nificant. Tolerances, manufacturing processes, and surface finish are interrelated and
influence the producibility of the end product in many ways. Close tolerances may
necessitate additional steps in processing and inspection or even render a part com-
pletely impractical to produce economically. Tolerances cover dimensional variation
and surface-roughness range and also the variation in mechanical properties resulting
from heat treatment and other processing operations.

Since parts having large tolerances can often be produced by machines with
higher production rates, costs will be significantly smaller. Also, fewer such parts will
be rejected in the inspection process, and they are usually easier to assemble. A plot
of cost versus tolerance/machining process is shown in Fig. 1-2, and illustrates the
drastic increase in manufacturing cost as tolerance diminishes with finer machining
processing.

Breakeven Points

Sometimes it happens that, when two or more design approaches are compared for cost,
the choice between the two depends on a set of conditions such as the quantity of pro-
duction, the speed of the assembly lines, or some other condition. There then occurs a
point corresponding to equal cost, which is called the breakeven point.
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Figure 1-2

Cost versus To\eronce/
machining process.

(From David G. Ullman, The
Mechanical Design Process,
3rd ed., McGraw-Hill, New
York, 2003.)

Figure 1-3

A breakeven point.
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Cost Estimates

There are many ways of obtaining relative cost figures so that two or more designs
can be roughly compared. A certain amount of judgment may be required in some
instances. For example, we can compare the relative value of two automobiles by
comparing the dollar cost per pound of weight. Another way to compare the cost of
one design with another is simply to count the number of parts. The design having
the smaller number of parts is likely to cost less. Many other cost estimators can be
used, depending upon the application, such as area, volume, horsepower, torque,
capacity, speed, and various performance ratios.’

Safety and Product Liability

The strict liability concept of product liability generally prevails in the United States.
This concept states that the manufacturer of an article is liable for any damage or harm
that results because of a defect. And it doesn’t matter whether the manufacturer knew
about the defect, or even could have known about it. For example, suppose an article
was manufactured, say, 10 years ago. And suppose at that time the article could not have
been considered defective on the basis of all technological knowledge then available.
Ten years later, according to the concept of strict liability, the manufacturer is still
liable. Thus, under this concept, the plaintiff needs only to prove that the article was
defective and that the defect caused some damage or harm. Negligence of the manu-
facturer need not be proved.

The best approaches to the prevention of product liability are good engineering in
analysis and design, quality control, and comprehensive testing procedures. Advertising
managers often make glowing promises in the warranties and sales literature for a prod-
uct. These statements should be reviewed carefully by the engineering staff to eliminate
excessive promises and to insert adequate warnings and instructions for use.

Stress and Strength

The survival of many products depends on how the designer adjusts the maximum
stresses in a component to be less than the component’s strength at specific locations of
interest. The designer must allow the maximum stress to be less than the strength by a
sufficient margin so that despite the uncertainties, failure is rare.

In focusing on the stress-strength comparison at a critical (controlling) location,
we often look for “strength in the geometry and condition of use.” Strengths are the
magnitudes of stresses at which something of interest occurs, such as the proportional
limit, 0.2 percent-offset yielding, or fracture. In many cases, such events represent the
stress level at which loss of function occurs.

Strength is a property of a material or of a mechanical element. The strength of an
element depends on the choice, the treatment, and the processing of the material.
Consider, for example, a shipment of springs. We can associate a strength with a spe-
cific spring. When this spring is incorporated into a machine, external forces are applied
that result in load-induced stresses in the spring, the magnitudes of which depend on its
geometry and are independent of the material and its processing. If the spring is
removed from the machine unharmed, the stress due to the external forces will return

°For an overview of estimating manufacturing costs, see Chap. 11, Karl T. Ulrich and Steven D. Eppinger,
Product Design and Development, 3rd ed., McGraw-Hill, New York, 2004.
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to zero. But the strength remains as one of the properties of the spring. Remember, then,
that strength is an inherent property of a part, a property built into the part because of
the use of a particular material and process.

Various metalworking and heat-treating processes, such as forging, rolling, and
cold forming, cause variations in the strength from point to point throughout a part. The
spring cited above is quite likely to have a strength on the outside of the coils different
from its strength on the inside because the spring has been formed by a cold winding
process, and the two sides may not have been deformed by the same amount.
Remember, too, therefore, that a strength value given for a part may apply to only a par-
ticular point or set of points on the part.

In this book we shall use the capital letter S to denote strength, with appropriate
subscripts to denote the type of strength. Thus, Ss is a shear strength, S, a yield
strength, and S, an ultimate strength.

In accordance with accepted engineering practice, we shall employ the Greek let-
ters o (sigma) and t(tau) to designate normal and shear stresses, respectively. Again,
various subscripts will indicate some special characteristic. For example, oy is a princi-
pal stress, o, a stress component in the y direction, and o, a stress component in the
radial direction.

Stress is a state property at a specific point within a body, which is a function of
load, geometry, temperature, and manufacturing processing. In an elementary course in
mechanics of materials, stress related to load and geometry is emphasized with some
discussion of thermal stresses. However, stresses due to heat treatments, molding,
assembly, etc. are also important and are sometimes neglected. A review of stress analy-
sis for basic load states and geometry is given in Chap. 3.

Uncertainty

Uncertainties in machinery design abound. Examples of uncertainties concerning stress
and strength include

* Composition of material and the effect of variation on properties.

e Variations in properties from place to place within a bar of stock.

 Effect of processing locally, or nearby, on properties.

» Effect of nearby assemblies such as weldments and shrink fits on stress conditions.
 Effect of thermomechanical treatment on properties.

¢ Intensity and distribution of loading.

e Validity of mathematical models used to represent reality.

¢ Intensity of stress concentrations.

* Influence of time on strength and geometry.

 Effect of corrosion.

» Effect of wear.

e Uncertainty as to the length of any list of uncertainties.

Engineers must accommodate uncertainty. Uncertainty always accompanies change.
Material properties, load variability, fabrication fidelity, and validity of mathematical
models are among concerns to designers.

There are mathematical methods to address uncertainties. The primary techniques
are the deterministic and stochastic methods. The deterministic method establishes a
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design factor based on the absolute uncertainties of a loss-of-function parameter and a
maximum allowable parameter. Here the parameter can be load, stress, deflection, etc.
Thus, the design factor n, is defined as

loss-of-function parameter

ng = . (1-1)
maximum allowable parameter

If the parameter is load, then the maximum allowable load can be found from

. loss-of-function load
Maximum allowable load = (1-2)
ng

Consider that the maximum load on a structure is known with an uncertainty of £20 per-
cent, and the load causing failure is known within =15 percent. If the load causing fail-
ure is nominally 2000 1bf, determine the design factor and the maximum allowable load
that will offset the absolute uncertainties.

To account for its uncertainty, the loss-of-function load must increase to 1/0.85, whereas
the maximum allowable load must decrease to 1/1.2. Thus to offset the absolute uncer-
tainties the design factor should be

_1/0.85

=2 4
=02

From Eq. (1-2), the maximum allowable load is found to be

Maximum allowable load = % = 1400 Ibf

Stochastic methods (see Chap. 20) are based on the statistical nature of the design
parameters and focus on the probability of survival of the design’s function (that is, on
reliability). Sections 5—13 and 6—17 demonstrate how this is accomplished.

Design Factor and Factor of Safety

A general approach to the allowable load versus loss-of-function load problem is the
deterministic design factor method, and sometimes called the classical method of
design. The fundamental equation is Eq. (1-1) where n, is called the design factor. All
loss-of-function modes must be analyzed, and the mode leading to the smallest design
factor governs. After the design is completed, the actual design factor may change as
a result of changes such as rounding up to a standard size for a cross section or using
off-the-shelf components with higher ratings instead of employing what is calculated
by using the design factor. The factor is then referred to as the factor of safety, n. The
factor of safety has the same definition as the design factor, but it generally differs
numerically.

Since stress may not vary linearly with load (see Sec. 3-19), using load as the
loss-of-function parameter may not be acceptable. It is more common then to express
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EXAMPLE 1-2

Solution

Answer

Answer

the design factor in terms of a stress and a relevant strength. Thus Eq. (1-1) can be
rewritten as

loss-of-function strength S (1-3)

n d = =
allowable stress o(ort)
The stress and strength terms in Eq. (1-3) must be of the same type and units. Also, the
stress and strength must apply to the same critical location in the part.

A rod with a cross-sectional area of A and loaded in tension with an axial force of P =
2000 Ibf undergoes a stress of o = P/A. Using a material strength of 24 kpsi and a
design factor of 3.0, determine the minimum diameter of a solid circular rod. Using
Table A—17, select a preferred fractional diameter and determine the rod’s factor of safety.

Since A = nd*/4, and 0 = §/ny, then
S 24000 P 2000

0= — = ——

ng 3 A wd¥4

or,

7S 7(24 000)

From Table A—17, the next higher preferred size is % in = 0.625 in. Thus, according to

the same equation developed earlier, the factor of safety n is

nSd> (24 000)0.625>
4P~ 4(2000)

4Png\'? (4200003 '/
d:( ”") =(¥> — 0.564 in

=3.68

n—

Thus rounding the diameter has increased the actual design factor.

Reliability
In these days of greatly increasing numbers of liability lawsuits and the need to conform to
regulations issued by governmental agencies such as EPA and OSHA, it is very important
for the designer and the manufacturer to know the reliability of their product. The reliabil-
ity method of design is one in which we obtain the distribution of stresses and the distribu-
tion of strengths and then relate these two in order to achieve an acceptable success rate.
The statistical measure of the probability that a mechanical element will not fail in
use is called the reliability of that element. The reliability R can be expressed by a num-
ber having the range 0 < R < 1. A reliability of R = 0.90 means that there is a 90 per-
cent chance that the part will perform its proper function without failure. The failure of
6 parts out of every 1000 manufactured might be considered an acceptable failure rate
for a certain class of products. This represents a reliability of

6
R=1———=0.9%
1000 %

or 99.4 percent.
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In the reliability method of design, the designer’s task is to make a judicious selec-
tion of materials, processes, and geometry (size) so as to achieve a specific reliability
goal. Thus, if the objective reliability is to be 99.4 percent, as above, what combination
of materials, processing, and dimensions is needed to meet this goal?

Analyses that lead to an assessment of reliability address uncertainties, or their
estimates, in parameters that describe the situation. Stochastic variables such as
stress, strength, load, or size are described in terms of their means, standard devia-
tions, and distributions. If bearing balls are produced by a manufacturing process in
which a diameter distribution is created, we can say upon choosing a ball that there
is uncertainty as to size. If we wish to consider weight or moment of inertia in rolling,
this size uncertainty can be considered to be propagated to our knowledge of weight
or inertia. There are ways of estimating the statistical parameters describing weight
and inertia from those describing size and density. These methods are variously called
propagation of error, propagation of uncertainty, or propagation of dispersion. These
methods are integral parts of analysis or synthesis tasks when probability of failure is
involved.

It is important to note that good statistical data and estimates are essential to per-
form an acceptable reliability analysis. This requires a good deal of testing and valida-
tion of the data. In many cases, this is not practical and a deterministic approach to the
design must be undertaken.

Dimensions and Tolerances

The following terms are used generally in dimensioning:

e Nominal size. The size we use in speaking of an element. For example, we may spec-
ify a 1%-in pipe or a %-in bolt. Either the theoretical size or the actual measured size
may be quite different. The theoretical size of a 1%-in pipe is 1.900 in for the outside

diameter. And the diameter of the %—in bolt, say, may actually measure 0.492 in.
e Limits. The stated maximum and minimum dimensions.
e Tolerance. The difference between the two limits.

e Bilateral tolerance. The variation in both directions from the basic dimension. That
is, the basic size is between the two limits, for example, 1.005 % 0.002 in. The two
parts of the tolerance need not be equal.

e Unilateral tolerance. The basic dimension is taken as one of the limits, and variation
is permitted in only one direction, for example,

1.005 5000 in
e Clearance. A general term that refers to the mating of cylindrical parts such as a bolt
and a hole. The word clearance is used only when the internal member is smaller than

the external member. The diametral clearance is the measured difference in the two
diameters. The radial clearance is the difference in the two radii.

 Interference. The opposite of clearance, for mating cylindrical parts in which the
internal member is larger than the external member.

e Allowance. The minimum stated clearance or the maximum stated interference for
mating parts.

When several parts are assembled, the gap (or interference) depends on the dimen-
sions and tolerances of the individual parts.
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EXAMPLE 1-3

Figure 1-4

An assembly of three
cylindrical sleeves of lengths
a, b, and ¢ on a shoulder bolt
shank of length a. The gap w
is of interest.

Solution

Answer

Answer

Answer

A shouldered screw contains three hollow right circular cylindrical parts on the screw
before a nut is tightened against the shoulder. To sustain the function, the gap w must
equal or exceed 0.003 in. The parts in the assembly depicted in Fig. 1-4 have dimen-
sions and tolerances as follows:

a =1.750 £ 0.003 in b =0.750 £ 0.001 in
¢ = 0.120 £ 0.005 in d = 0.875 £ 0.001 in

a

{ [] |

—

l«<——ph —> C d [— w

All parts except the part with the dimension d are supplied by vendors. The part con-
taining the dimension d is made in-house.

(a) Estimate the mean and tolerance on the gap w.

(b) What basic value of d will assure that w > 0.003 in?

(a) The mean value of w is given by

W=a—b—¢—d=1750-0.750 — 0.120 — 0.875 = 0.005 in
For equal bilateral tolerances, the tolerance of the gap is
ty = Y _t=0.003 4 0.001 + 0.005 + 0.001 = 0.010 in
all

Then, w = 0.005 £ 0.010, and

Wmax = W + £, = 0.005 4+ 0.010 = 0.015 in

Wiin = W — £, = 0.005 — 0.010 = —0.005 in
Thus, both clearance and interference are possible.

(b) If wpin 18 to be 0.003 in, then, W = Wy, + £, = 0.003 + 0.010 = 0.013 in. Thus,

d=a—b—¢—w=1750—-0.750 — 0.120 — 0.013 = 0.867 in

The previous example represented an absolute tolerance system. Statistically, gap
dimensions near the gap limits are rare events. Using a statistical tolerance system, the
probability that the gap falls within a given limit is determined.'® This probability deals
with the statistical distributions of the individual dimensions. For example, if the distri-
butions of the dimensions in the previous example were normal and the tolerances, 7, were

10See Chapter 20 for a description of the statistical terminology.
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given in terms of standard deviations of the dimension distribution, the standard devia-
tion of the gap w would be t,, = /Z 2. However, this assumes a normal distribution
all

for the individual dimensions, a rare occurrence. To find the distribution of w and/or the
probability of observing values of w within certain limits requires a computer simulation
in most cases. Monte Carlo computer simulations are used to determine the distribution
of w by the following approach:

1 Generate an instance for each dimension in the problem by selecting the value of
each dimension based on its probability distribution.

2 Calculate w using the values of the dimensions obtained in step 1.

3 Repeat steps 1 and 2 N times to generate the distribution of w. As the number of
trials increases, the reliability of the distribution increases.

Units

In the symbolic units equation for Newton’s second law, F = ma,

F=MLT - (1-4)
F stands for force, M for mass, L for length, and 7 for time. Units chosen for any three
of these quantities are called base units. The first three having been chosen, the fourth
unit is called a derived unit. When force, length, and time are chosen as base units, the
mass is the derived unit and the system that results is called a gravitational system of
units. When mass, length, and time are chosen as base units, force is the derived unit
and the system that results is called an absolute system of units.

In some English-speaking countries, the U.S. customary foot-pound-second system
(fps) and the inch-pound-second system (ips) are the two standard gravitational systems
most used by engineers. In the fps system the unit of mass is
FT? (pound-force)(second)2

L foot
Thus, length, time, and force are the three base units in the fps gravitational system.

The unit of force in the fps system is the pound, more properly the pound-force. We
shall often abbreviate this unit as 1bf; the abbreviation Ib is permissible however, since
we shall be dealing only with the U.S. customary gravitational system. In some branches
of engineering it is useful to represent 1000 Ibf as a kilopound and to abbreviate it as
kip. Note: In Eq. (1-5) the derived unit of mass in the fps gravitational system is the
Ibf - s?/ft and is called a slug; there is no abbreviation for slug.

The unit of mass in the ips gravitational system is
FT?  (pound-force)(second)®

L inch

The mass unit Ibf - s?/in has no official name.

The International System of Units (SI) is an absolute system. The base units are the
meter, the kilogram (for mass), and the second. The unit of force is derived by using
Newton’s second law and is called the newton. The units constituting the newton (N) are

_ ML  (kilogram)(meter)

T (second)?
The weight of an object is the force exerted upon it by gravity. Designating the weight
as W and the acceleration due to gravity as g, we have

W =mg (1-8)

M = = Ibf - s¥/ft = slug (1-5)

M= = Ibf - s%/in (1-6)

=kg-mi*=N (1-7)
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In the fps system, standard gravity is g = 32.1740 ft/s>. For most cases this is rounded
off to 32.2. Thus the weight of a mass of 1 slug in the fps system is

W =mg = (1 slug)(32.2 ft/s?) = 32.2 Ibf

In the ips system, standard gravity is 386.088 or about 386 in/s*. Thus, in this system,
a unit mass weighs

W = (1 1bf - s*/in)(386 in/s?) = 386 Ibf

With SI units, standard gravity is 9.806 or about 9.81 m/s. Thus, the weight of a 1-kg
mass is

W = (1kg)(9.81m/s?) =9.81N

A series of names and symbols to form multiples and submultiples of SI units has
been established to provide an alternative to the writing of powers of 10. Table A—1
includes these prefixes and symbols.

Numbers having four or more digits are placed in groups of three and separated by
a space instead of a comma. However, the space may be omitted for the special case of
numbers having four digits. A period is used as a decimal point. These recommenda-
tions avoid the confusion caused by certain European countries in which a comma
is used as a decimal point, and by the English use of a centered period. Examples of
correct and incorrect usage are as follows:

1924 or 1 924 but not 1,924
0.1924 or 0.192 4 but not 0.192,4
192 423.618 50 but not 192,423.61850

The decimal point should always be preceded by a zero for numbers less than unity.

Calculations and Significant Figures

The discussion in this section applies to real numbers, not integers. The accuracy of a real
number depends on the number of significant figures describing the number. Usually, but
not always, three or four significant figures are necessary for engineering accuracy. Unless
otherwise stated, no less than three significant figures should be used in your calculations.
The number of significant figures is usually inferred by the number of figures given
(except for leading zeros). For example, 706, 3.14, and 0.002 19 are assumed to be num-
bers with three significant figures. For trailing zeros, a little more clarification is neces-
sary. To display 706 to four significant figures insert a trailing zero and display either
706.0, 7.060 x 102, or 0.7060 x 103. Also, consider a number such as 91 600. Scientific
notation should be used to clarify the accuracy. For three significant figures express the
number as 91.6 x 10°. For four significant figures express it as 91.60 x 10>,

Computers and calculators display calculations to many significant figures. However,
you should never report a number of significant figures of a calculation any greater than
the smallest number of significant figures of the numbers used for the calculation. Of
course, you should use the greatest accuracy possible when performing a calculation. For
example, determine the circumference of a solid shaft with a diameter of d = 0.40 in. The
circumference is given by C = md. Since d is given with two significant figures, C should
be reported with only two significant figures. Now if we used only two significant figures
for v our calculator would give C = 3.1 (0.40) = 1.24 in. This rounds off to two signif-
icant figures as C = 1.2 in. However, using w = 3.141 592 654 as programmed in the
calculator, C = 3.141 592 654 (0.40) = 1.256 637 061 in. This rounds off to C = 1.3
in, which is 8.3 percent higher than the first calculation. Note, however, since d is given



Budynas-Nisbett: Shigley’s | |. Basics
Mechanical Engineering

Design, Eighth Edition

1. Introduction to © The McGraw-Hill ‘ e
Mechanical Engineering Companies, 2008
Design

Infroduction to Mechanical Engineering Design 23

with two significant figures, it is implied that the range of d is 0.40 £ 0.005. This means
that the calculation of C is only accurate to within +0.005/0.40 = £0.0125 = +1.25%.
The calculation could also be one in a series of calculations, and rounding each calcula-
tion separately may lead to an accumulation of greater inaccuracy. Thus, it is considered
good engineering practice to make all calculations to the greatest accuracy possible and
report the results within the accuracy of the given input.

Power Transmission Case Study Specifications

A case study incorporating the many facets of the design process for a power transmis-
sion speed reducer will be considered throughout this textbook. The problem will be
introduced here with the definition and specification for the product to be designed.
Further details and component analysis will be presented in subsequent chapters.
Chapter 18 provides an overview of the entire process, focusing on the design sequence,
the interaction between the component designs, and other details pertinent to transmis-
sion of power. It also contains a complete case study of the power transmission speed
reducer introduced here.

Many industrial applications require machinery to be powered by engines or elec-
tric motors. The power source usually runs most efficiently at a narrow range of rota-
tional speed. When the application requires power to be delivered at a slower speed than
supplied by the motor, a speed reducer is introduced. The speed reducer should transmit
the power from the motor to the application with as little energy loss as practical, while
reducing the speed and consequently increasing the torque. For example, assume that a
company wishes to provide off-the-shelf speed reducers in various capacities and speed
ratios to sell to a wide variety of target applications. The marketing team has determined
a need for one of these speed reducers to satisfy the following customer requirements.

Design Requirements

Power to be delivered: 20 hp

Input speed: 1750 rev/min

Output speed: 85 rev/min

Targeted for uniformly loaded applications, such as conveyor belts, blowers,
and generators

Output shaft and input shaft in-line

Base mounted with 4 bolts

Continuous operation

6-year life, with 8 hours/day, 5 days/wk

Low maintenance

Competitive cost

Nominal operating conditions of industrialized locations
Input and output shafts standard size for typical couplings

In reality, the company would likely design for a whole range of speed ratios for
each power capacity, obtainable by interchanging gear sizes within the same overall
design. For simplicity, in this case study only one speed ratio will be considered.

Notice that the list of customer requirements includes some numerical specifics, but
also includes some generalized requirements, e.g., low maintenance and competitive cost.
These general requirements give some guidance on what needs to be considered in the
design process, but are difficult to achieve with any certainty. In order to pin down these
nebulous requirements, it is best to further develop the customer requirements into a set of
product specifications that are measurable. This task is usually achieved through the work
of a team including engineering, marketing, management, and customers. Various tools
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1-1

may be used (see Footnote 1) to prioritize the requirements, determine suitable metrics to
be achieved, and to establish target values for each metric. The goal of this process is to
obtain a product specification that identifies precisely what the product must satisfy. The
following product specifications provide an appropriate framework for this design task.

Design Specifications
Power to be delivered: 20 hp
Power efficiency: >95%
Steady state input speed: 1750 rev/min
Maximum input speed: 2400 rev/min
Steady-state output speed: 82—-88 rev/min
Usually low shock levels, occasional moderate shock
Input and output shaft diameter tolerance: £0.001 in
Output shaft and input shaft in-line: concentricity £0.005 in, alignment
+0.001 rad
Maximum allowable loads on input shaft: axial, 50 Ibf; transverse, 100 Ibf
Maximum allowable loads on output shaft: axial, 50 1bf; transverse, 500 1bf
Base mounted with 4 bolts
Mounting orientation only with base on bottom
100% duty cycle
Maintenance schedule: lubrication check every 2000 hours; change of lubrica-
tion every 8000 hours of operation; gears and bearing life >12,000 hours;
infinite shaft life; gears, bearings, and shafts replaceable
Access to check, drain, and refill lubrication without disassembly or opening of
gasketed joints.
Manufacturing cost per unit: <$300
Production: 10,000 units per year
Operating temperature range: —10° to 120°F
Sealed against water and dust from typical weather
Noise: <85 dB from 1 meter

PROBLEMS

Select a mechanical component from Part 3 of this book (roller bearings, springs, etc.), go to your
university’s library or the appropriate internet website, and, using the Thomas Register of
American Manufacturers, report on the information obtained on five manufacturers or suppliers.

Select a mechanical component from Part 3 of this book (roller bearings, springs, etc.), go to the
Internet, and, using a search engine, report on the information obtained on five manufacturers or
suppliers.

Select an organization listed in Sec. 1-6, go to the Internet, and list what information is available
on the organization.

Go to the Internet and connect to the NSPE website (www.nspe.org). Read the full version of the
NSPE Code of Ethics for Engineers and briefly discuss your reading.

Highway tunnel traffic (two parallel lanes in the same direction) experience indicates the average

spacing between vehicles increases with speed. Data from a New York tunnel show that between

15 and 35 mi/h, the space x between vehicles (in miles) is x = 0.324/(42.1 — v) where v is the

vehicle’s speed in miles per hour.

(a) Ignoring the length of individual vehicles, what speed will give the tunnel the largest volume
in vehicles per hour?
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(a) A chainhoist bracket frame.

(b) Free body of pin.
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(b) Does including the length of the vehicles cut the tunnel capacity prediction significantly?
Assume the average vehicle length is 10 ft.
(c) For part (b), does the optimal speed change much?

The engineering designer must create (invent) the concept and connectivity of the elements that
constitute a design, and not lose sight of the need to develop ideas with optimality in mind. A use-
ful design attribute can be cost, which can be related to the amount of material used (volume or
weight). When you think about it, the weight is a function of the geometry and density. When the
design is solidified, finding the weight is a straightforward, sometimes tedious task. The figure
depicts a simple bracket frame that has supports that project from a wall column. The bracket sup-
ports a chain-fall hoist. Pinned joints are used to avoid bending. The cost of a link can be approx-
imated by $ = ¢Aly, where ¢ is the cost of the link per unit weight, A is the cross-sectional area
of the prismatic link, / is the pin-to-pin link length, and y is the specific weight of the material used.
To be sure, this is approximate because no decisions have been made concerning the geometric
form of the links or their fittings. By investigating cost now in this approximate way, one can detect
whether a particular set of proportions of the bracket (indexed by angle 0) is advantageous. Is there
a preferable angle 0?7 Show that the cost can be expressed as

_ yeWl 1 + cos?6
s sin 6 cos 0

$

where W is the weight of the hoist and load, and S is the allowable tensile or compressive stress
in the link material (assume S = |F;/A| and no column buckling action). What is the desirable
angle 6 corresponding to the minimal cost?

(a) (b)

When one knows the true values x; and x; and has approximations X; and X, at hand, one can
see where errors may arise. By viewing error as something to be added to an approximation to
attain a true value, it follows that the error ¢;, is related to X;, and x; as x; = X; + ¢;

(a) Show that the error in a sum X + X is

(x1+x2) — (X1 +X2) =€ +e2
(b) Show that the error in a difference X| — X» is
(x1—x)— (X1 —X2)=e1—e

(c) Show that the error in a product X X is
€l €2
x1x — X1 X2 = X1 X5 (* + 7)

(d) Show that in a quotient X/ X, the error is

xi X1 Xife e
©n X2 X \Xi X
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Use the true values x; = /5 and Xy = V6

(a) Demonstrate the correctness of the error equation from Prob. 1-7 for addition if three correct
digits are used for X; and X».

(b) Demonstrate the correctness of the error equation for addition using three-digit significant
numbers for X; and X5,.

Convert the following to appropriate SI units:
(a) A stress of 20 000 psi.

(b) A force of 350 Ibf.

(¢) A moment of 1200 Ibf - in.

(d) An area of 2.4 in.

(e) A second moment of area of 17.4 in*.
(f) An area of 3.6 mi%.

(g) A modulus of elasticity of 21 Mpsi.

(h) A speed of 45 mi/h.

(i) A volume of 60 in®.

Convert the following to appropriate ips units:
(a) A length of 1.5 m.

(b) A stress of 600 MPa.

(c) A pressure of 160 kPa.

(d) A section modulus of 1.84 (10°) mm°.
(e) A unit weight of 38.1 N/m.

(f) A deflection of 0.05 mm.

(g) A velocity of 6.12 m/s.

(h) A unit strain of 0.0021 m/m.

(i) A volume of 30 L.

Generally, final design results are rounded to or fixed to three digits because the given data can-

not justify a greater display. In addition, prefixes should be selected so as to limit number strings

to no more than four digits to the left of the decimal point. Using these rules, as well as those for

the choice of prefixes, solve the following relations:

(@) 0 = M/Z,where M =200 N - m and Z = 15.3 x 10°> mm’.

(b) 0 = F/A, where F = 42 kN and A = 600 mm?.

(¢) y=FI’/3EI, where F = 1200 N, [ = 800 mm, E = 207 GPa, and I = 64 x 10> mm®.

(d) 6 =TI/GJ, where J = wd*/32, T = 1100 N - m, [ =250 mm, G = 79.3 GPa, and d =
25 mm. Convert results to degrees of angle.

Repeat Prob. 1-11 for the following:

(a) 0 = F/wt, where FF = 600 N, w = 20 mm, and r = 6 mm.
(b) I =bh*/12, where b = 8 mm and h = 24 mm.

(¢) I =md*/64, where d = 32 mm.

(d) T = 16T /nd?, where T = 16 N - m and d = 25 mm.

Repeat Prob. 1-11 for:

(a) T =F/A, where A = nd2/4, F =120 kN, and d = 20 mm.

b) o0 =32 Fa/nd3, where FF = 800 N, a = 800 mm, and d = 32 mm.

(¢) Z = (w/32d)(d* — d;l) for d = 36 mm and d; = 26 mm.

(d) k= (d*G)/(8D?>N), where d = 1.6 mm, G =79.3 GPa, D =19.2 mm, and N =32 (a
dimensionless number).
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The selection of a material for a machine part or a structural member is one of the most
important decisions the designer is called on to make. The decision is usually made
before the dimensions of the part are established. After choosing the process of creat-
ing the desired geometry and the material (the two cannot be divorced), the designer can
proportion the member so that loss of function can be avoided or the chance of loss of
function can be held to an acceptable risk.

In Chaps. 3 and 4, methods for estimating stresses and deflections of machine
members are presented. These estimates are based on the properties of the material
from which the member will be made. For deflections and stability evaluations, for
example, the elastic (stiffness) properties of the material are required, and evaluations
of stress at a critical location in a machine member require a comparison with the
strength of the material at that location in the geometry and condition of use. This
strength is a material property found by testing and is adjusted to the geometry and con-
dition of use as necessary.

As important as stress and deflection are in the design of mechanical parts, the
selection of a material is not always based on these factors. Many parts carry no loads
on them whatever. Parts may be designed merely to fill up space or for aesthetic quali-
ties. Members must frequently be designed to also resist corrosion. Sometimes temper-
ature effects are more important in design than stress and strain. So many other factors
besides stress and strain may govern the design of parts that the designer must have the
versatility that comes only with a broad background in materials and processes.

Material Strength and Stiffness

The standard tensile test is used to obtain a variety of material characteristics and
strengths that are used in design. Figure 21 illustrates a typical tension-test specimen
and its characteristic dimensions.! The original diameter dy and the gauge length o,
used to measure the deflections, are recorded before the test is begun. The specimen is
then mounted in the test machine and slowly loaded in tension while the load P and
deflection are observed. The load is converted to stress by the calculation

P

- (2-1)

g

where Ag = }Tndg is the original area of the specimen.

Pmmm-y— - . hmm=» P

Figure 2-1

A typical tensionest specimen. Some of the standard
dimensions used for do are 2.5, 6.25, and 12.5 mm
and 0.505 in, but other sections and sizes are in use.
Common gauge lengths Iy used are 10, 25, and 50 mm
and 1 and 2 in.

!See ASTM standards E8 and E-8 m for standard dimensions.
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Figure 2-2

Stress-sfrain diagram obtained
from the standard tensile test
(a) Ductile material; (b) brittle
material.

pl marks the proportional limit;
el, the elastic limit; y, the
offsetyield strength as defined
by offset strain a; u, the
maximum or ultimate strength;
and f, the fracture strength.

2. Materials © The McGraw-Hill

Companies, 2008

29

Materials

The deflection, or extension of the gage length, is given by [ — [y where [ is the
gauge length corresponding to the load P. The normal strain is calculated from
=1
=

€

(2-2)

At the conclusion of, or during, the test, the results are plotted as a stress-strain dia-
gram. Figure 2-2 depicts typical stress-strain diagrams for ductile and brittle materials.
Ductile materials deform much more than brittle materials.

Point pl in Fig. 2-2a is called the proportional limit. This is the point at which the
curve first begins to deviate from a straight line. No permanent set will be observable
in the specimen if the load is removed at this point. In the linear range, the uniaxial
stress-strain relation is given by Hooke’s law as

o = Fe (2-3)

where the constant of proportionality E, the slope of the linear part of the stress-strain
curve, is called Young’s modulus or the modulus of elasticity. E is a measure of the
stiffness of a material, and since strain is dimensionless, the units of E are the same as
stress. Steel, for example, has a modulus of elasticity of about 30 Mpsi (207 GPa)
regardless of heat treatment, carbon content, or alloying. Stainless steel is about
27.5 Mpsi (190 GPa).

Point el in Fig. 2-2 is called the elastic limit. If the specimen is loaded beyond this
point, the deformation is said to be plastic and the material will take on a permanent set
when the load is removed. Between pl and el the diagram is not a perfectly straight line,
even though the specimen is elastic.

During the tension test, many materials reach a point at which the strain begins to
increase very rapidly without a corresponding increase in stress. This point is called the
vield point. Not all materials have an obvious yield point, especially for brittle
materials. For this reason, yield strength S, is often defined by an offset method as
shown in Fig. 2-2, where line ay is drawn at slope E. Point a corresponds to a definite
or stated amount of permanent set, usually 0.2 percent of the original gauge length
(e =0.002), although 0.01, 0.1, and 0.5 percent are sometimes used.

The ultimate, or tensile, strength S, or S,, corresponds to point u in Fig. 2-2 and
is the maximum stress reached on the stress-strain diagram.> As shown in Fig. 2-2a,

S, b |
u
S/_____ _______: __________ f Sut _______ u, f
== S, F———r
o5 /R I I y 7
I N Al | | /
~ plg /1! ! ! /
I Il | | /
S Il | | /
2 /A ! | /
g ;o | | /
2} [ | | /
/| | | /
/| | | !
/ | | | /
/ | | | /
] | | | //
a € € €
o y u f a
Strain € Strain €

(@) (b)

2Usage varies. For a long time engineers used the term ultimate strength, hence the subscript u in S, or Sy.
However, in material science and metallurgy the term tensile strength is used.
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Figure 2-3

Tension specimen affer
necking.

some materials exhibit a downward trend after the maximum stress is reached and frac-
ture at point f on the diagram. Others, such as some of the cast irons and high-strength
steels, fracture while the stress-strain trace is still rising, as shown in Fig. 2-2b, where
points u and f are identical.

As noted in Sec. 1-9, strength, as used in this book, is a built-in property of a mate-
rial, or of a mechanical element, because of the selection of a particular material or
process or both. The strength of a connecting rod at the critical location in the geome-
try and condition of use, for example, is the same no matter whether it is already an ele-
ment in an operating machine or whether it is lying on a workbench awaiting assembly
with other parts. On the other hand, stress is something that occurs in a part, usually as
a result of its being assembled into a machine and loaded. However, stresses may be
built into a part by processing or handling. For example, shot peening produces a com-
pressive stress in the outer surface of a part, and also improves the fatigue strength of
the part. Thus, in this book we will be very careful in distinguishing between strength,
designated by S, and stress, designated by o or 7.

The diagrams in Fig. 2-2 are called engineering stress-strain diagrams because the
stresses and strains calculated in Egs. (2-1) and (2-2) are not frue values. The stress
calculated in Eq. (2-1) is based on the original area before the load is applied. In real-
ity, as the load is applied the area reduces so that the actual or true stress is larger than
the engineering stress. To obtain the true stress for the diagram the load and the cross-
sectional area must be measured simultaneously during the test. Figure 2—2a represents
a ductile material where the stress appears to decrease from points u to f. Typically,
beyond point u the specimen begins to “neck” at a location of weakness where the area
reduces dramatically, as shown in Fig. 2-3. For this reason, the true stress is much high-
er than the engineering stress at the necked section.

The engineering strain given by Eq. (2-2) is based on net change in length from the
original length. In plotting the frue stress-strain diagram, it is customary to use a term
called true strain or, sometimes, logarithmic strain. True strain is the sum of the incre-
mental elongations divided by the current gauge length at load P, or

Ldi l
8=f — =In— (2-4)
6 L lo

where the symbol ¢ is used to represent true strain. The most important characteristic
of a true stress-strain diagram (Fig. 2—4) is that the true stress continually increases all
the way to fracture. Thus, as shown in Fig. 24, the true fracture stress o is greater than
the true ultimate stress o,,. Contrast this with Fig. 2-2a, where the engineering fracture
strength Sy is less than the engineering ultimate strength S,,.

Compression tests are more difficult to conduct, and the geometry of the test spec-
imens differs from the geometry of those used in tension tests. The reason for this is that
the specimen may buckle during testing or it may be difficult to distribute the stresses
evenly. Other difficulties occur because ductile materials will bulge after yielding.
However, the results can be plotted on a stress-strain diagram also, and the same
strength definitions can be applied as used in tensile testing. For most ductile materials
the compressive strengths are about the same as the tensile strengths. When substantial
differences occur between tensile and compressive strengths, however, as is the case with

 }
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the cast irons, the tensile and compressive strengths should be stated separately, S,;,
Suc, where S, is reported as a positive quantity.

Torsional strengths are found by twisting solid circular bars and recording the torque
and the twist angle. The results are then plotted as a torque-twist diagram. The shear
stresses in the specimen are linear with respect to radial location, being zero at the cen-
ter of the specimen and maximum at the outer radius r (see Chap. 3). The maximum shear
stress Tmay 1s related to the angle of twist 6 by

T =—0 (2-5)

where 6 is in radians, r is the radius of the specimen, /y is the gauge length, and G is
the material stiffness property called the shear modulus or the modulus of rigidity. The
maximum shear stress is also related to the applied torque T as
Tr
Tmax = 7 (2_6)
where J = %nr4 is the polar second moment of area of the cross section.

The torque-twist diagram will be similar to Fig. 2-2, and, using Egs. (2-5) and
(2-6), the modulus of rigidity can be found as well as the elastic limit and the torsional
vield strength S,,. The maximum point on a torque-twist diagram, corresponding to
point u on Fig. 2-2, is T,,. The equation

Seu = (2-7)

defines the modulus of rupture for the torsion test. Note that it is incorrect to call Sy,
the ultimate torsional strength, as the outermost region of the bar is in a plastic state at
the torque 7, and the stress distribution is no longer linear.

All of the stresses and strengths defined by the stress-strain diagram of Fig. 2-2 and
similar diagrams are specifically known as engineering stresses and strengths or nomi-
nal stresses and strengths. These are the values normally used in all engineering design
calculations. The adjectives engineering and nominal are used here to emphasize that
the stresses are computed by using the original or unstressed cross-sectional area of the
specimen. In this book we shall use these modifiers only when we specifically wish to
call attention to this distinction.
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2-2

Class Frequency f,I 2

The Statistical Significance of Material Properties

There is some subtlety in the ideas presented in the previous section that should be pon-
dered carefully before continuing. Figure 2-2 depicts the result of a single tension test
(one specimen, now fractured). It is common for engineers to consider these important
stress values (at points pl, el, y, u, and f) as properties and to denote them as strengths
with a special notation, uppercase S, in lieu of lowercase sigma o, with subscripts
added: Sy for proportional limit, S, for yield strength, S, for ultimate tensile strength
(Sy; or S, if tensile or compressive sense is important).

If there were 1000 nominally identical specimens, the values of strength obtained
would be distributed between some minimum and maximum values. It follows that the
description of strength, a material property, is distributional and thus is statistical in
nature. Chapter 20 provides more detail on statistical considerations in design. Here we
will simply describe the results of one example, Ex. 20-4. Consider the following table,
which is a histographic report containing the maximum stresses of 1000 tensile tests on
a 1020 steel from a single heat. Here we are seeking the ultimate tensile strength S,,.
The class frequency is the number of occurrences within a 1 kpsi range given by the
class midpoint. Thus, 18 maximum stress values occurred in the range of 57 to 58 kpsi.

23 31 83 109 138 151 139 130 82 49 28 11 4 2

Class Midpoint
X, kpsi

56.5 57.5 58.5 59.5 60.5 61.5 62.5 63.5 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5

The probability density is defined as the number of occurrences divided by the total
sample number. The bar chart in Fig. 2-5 depicts the histogram of the probability den-
sity. If the data is in the form of a Gaussian or normal distribution, the probability
density function determined in Ex. 20-4 is

fo= —L e _1()(—63.62)2
T 250427 P72\ 2504

where the mean stress is 63.62 kpsi and the standard deviation is 2.594 kpsi. A plot
of f(x) is included in Fig. 2-5. The description of the strength S,, is then expressed
in terms of its statistical parameters and its distribution type. In this case
Su = N(63.62, 2.594) kpsi.

Note that the test program has described 1020 property S,;, for only one heat of
one supplier. Testing is an involved and expensive process. Tables of properties are
often prepared to be helpful to other persons. A statistical quantity is described by its
mean, standard deviation, and distribution type. Many tables display a single number,
which is often the mean, minimum, or some percentile, such as the 99th percentile.
Always read the foonotes to the table. If no qualification is made in a single-entry table,
the table is subject to serious doubt.

Since it is no surprise that useful descriptions of a property are statistical in nature,
engineers, when ordering property tests, should couch the instructions so the data gen-
erated are enough for them to observe the statistical parameters and to identify the dis-
tributional characteristic. The tensile test program on 1000 specimens of 1020 steel is a
large one. If you were faced with putting something in a table of ultimate tensile
strengths and constrained to a single number, what would it be and just how would your
footnote read?
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Histogram for 1000 tensile
tests on a 1020 steel from a
single heat.
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Figure 2-6

(o) Stress-sfrain diagram
showing unloading and
reloading at point i in the
plastic region; (b] analogous
load-deformation diagram.
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Cold working is the process of plastic straining below the recrystallization temperature
in the plastic region of the stress-strain diagram. Materials can be deformed plastically
by the application of heat, as in blacksmithing or hot rolling, but the resulting mechan-
ical properties are quite different from those obtained by cold working. The purpose of
this section is to explain what happens to the significant mechanical properties of a

material when that material is cold-worked.

Nominal stress, o

Consider the stress-strain diagram of Fig. 2—-6a. Here a material has been stressed
beyond the yield strength at y to some point i, in the plastic region, and then the load
removed. At this point the material has a permanent plastic deformation €,. If the load
corresponding to point i is now reapplied, the material will be elastically deformed by

u
————————————— . . P,,—————————————
________ Pl
/

V| f /! /!
| [ |
I P S I
Fe——py I v Ay I
I a I I
| = [ |
/R : o |
I N I
I / I I
I / I I
I / I I
I / I I
I / I I
I / I I
I / I I
I / I I
1 ! 1 1
Unit strain, € Ay Al A; Af

(@)

Area deformation (reduction)
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the amount €,.. Thus at point i the total unit strain consists of the two components €, and
€, and is given by the equation

e=¢€,+e (a)

This material can be unloaded and reloaded any number of times from and to point i,
and it is found that the action always occurs along the straight line that is approximate-
ly parallel to the initial elastic line Oy. Thus

(b)

Gl
€, = 3
The material now has a higher yield point, is less ductile as a result of a reduction in
strain capacity, and is said to be strain-hardened. If the process is continued, increasing
€p, the material can become brittle and exhibit sudden fracture.

It is possible to construct a similar diagram, as in Fig. 2—-6b, where the abscissa is
the area deformation and the ordinate is the applied load. The reduction in area corre-
sponding to the load Py, at fracture, is defined as

_ A=A Ar
Ao Ao

R (2-8)

where Ay is the original area. The quantity R in Eq. (2-8) is usually expressed in per-
cent and tabulated in lists of mechanical properties as a measure of ductility. See
Appendix Table A-20, for example. Ductility is an important property because it mea-
sures the ability of a material to absorb overloads and to be cold-worked. Thus such
operations as bending, drawing, heading, and stretch forming are metal-processing
operations that require ductile materials.

Figure 2—6b can also be used to define the quantity of cold work. The cold-work
factor W is defined as

_Ag— A Ag— A

w
Ag Ao

(2-9)

where A} corresponds to the area after the load P; has been released. The approxima-
tion in Eq. (2-9) results because of the difficulty of measuring the small diametral
changes in the elastic region. If the amount of cold work is known, then Eq. (2-9) can
be solved for the area A}. The result is

Al =A)(1—W) (2-10)
Cold working a material produces a new set of values for the strengths, as can

be seen from stress-strain diagrams. Datsko® describes the plastic region of the true
stress—true strain diagram by the equation

o = ope™ (2-11)
3Joseph Datsko, “Solid Materials,” Chap. 32 in Joseph E. Shigley, Charles R. Mischke, and Thomas H.

Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004. See also
Joseph Datsko, “New Look at Material Strength,” Machine Design, vol. 58, no. 3, Feb. 6, 1986, pp. 81-85.
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where o = true stress
oo = a strength coefficient, or strain-strengthening coefficient
& = true plastic strain

m = strain-strengthening exponent

It can be shown” that
m=g, (2-12)

provided that the load-deformation curve exhibits a stationary point (a place of zero
slope).

Difficulties arise when using the gauge length to evaluate the true strain in the
plastic range, since necking causes the strain to be nonuniform. A more satisfactory
relation can be obtained by using the area at the neck. Assuming that the change in vol-
ume of the material is small, Al = Agly. Thus, I/ly = Ag/A, and the true strain is
given by

l A
e=In— =In>-2 (2-13)
Iy A

Returning to Fig. 2-6b, if point i is to the left of point u, that is, P; < P,, then the
new yield strength is
/ P; m

Sy = Y 00€; P, < P, (2-14)
1
Because of the reduced area, that is, because A < Ao, the ultimate strength also
changes, and is

PM
S; = A—I, ()
Since P, = S, Ao, we find, with Eq. (2-10), that
SMA Su
s 0 _ & < & (2-15)

T A0 —W)  1—-W

which is valid only when point i is to the left of point u.
For points to the right of u, the yield strength is approaching the ultimate strength,
and, with small loss in accuracy,

S = S; = ol g <&, (2-16)

A little thought will reveal that a bar will have the same ultimate load in tension after
being strain-strengthened in tension as it had before. The new strength is of interest to
us not because the static ultimate load increases, but—since fatigue strengths are cor-
related with the local ultimate strengths—because the fatigue strength improves. Also
the yield strength increases, giving a larger range of sustainable elastic loading.

4See Sec. 5-2, . E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed., McGraw-Hill,
New York, 2001.
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EXAMPLE 2-1

Solution

Answer

Answer

An annealed AISI 1018 steel (see Table A-22) has S, = 32.0 kpsi, S, =49.5 kpsi,
or =91.1 kpsi, og = 90 kpsi, m = 0.25, and &7 = 1.05 in/in. Find the new values of
the strengths if the material is given 15 percent cold work.

From Eq. (2-12), we find the true strain corresponding to the ultimate strength to be
en =m =0.25
The ratio Ag/A; is, from Eq. (2-9),

Ay 1

e — = 1.176
A 1-W 1-015

The true strain corresponding to 15 percent cold work is obtained from Eq. (2—13). Thus

A
g = 1nA—° =1n1.176 = 0.1625

Since &; < &,, Egs. (2-14) and (2-15) apply. Therefore,
Sy = ool = 90(0.1625)"* = 57.1 kpsi

¢ S« 495
“T1—Ww  1-0.15

= 58.2 kpsi

Hardness

The resistance of a material to penetration by a pointed tool is called hardness. Though
there are many hardness-measuring systems, we shall consider here only the two in
greatest use.

Rockwell hardness tests are described by ASTM standard hardness method E-18
and measurements are quickly and easily made, they have good reproducibility, and the
test machine for them is easy to use. In fact, the hardness number is read directly from
a dial. Rockwell hardness scales are designated as A, B, C, ..., etc. The indenters are
described as a diamond, a %-in—diameter ball, and a diamond for scales A, B, and C,
respectively, where the load applied is either 60, 100, or 150 kg. Thus the Rockwell B
scale, designated Rp, uses a 100-kg load and a No. 2 indenter, which is a ll—ﬁ—in—diameter
ball. The Rockwell C scale R uses a diamond cone, which is the No. 1 indenter, and
a load of 150 kg. Hardness numbers so obtained are relative. Therefore a hardness
R¢ = 50 has meaning only in relation to another hardness number using the same scale.

The Brinell hardness is another test in very general use. In testing, the indenting
tool through which force is applied is a ball and the hardness number Hp is found as
a number equal to the applied load divided by the spherical surface area of the inden-
tation. Thus the units of Hp are the same as those of stress, though they are seldom
used. Brinell hardness testing takes more time, since Hp must be computed from the
test data. The primary advantage of both methods is that they are nondestructive in
most cases. Both are empirically and directly related to the ultimate strength of the
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material tested. This means that the strength of parts could, if desired, be tested part
by part during manufacture.

For steels, the relationship between the minimum ultimate strength and the Brinell
hardness number for 200 < Hp < 450 is found to be

0.495H kpsi
uz{ s (2-17)

3.41Hy MPa

Similar relationships for cast iron can be derived from data supplied by Krause.’
Data from 72 tests of gray iron produced by one foundry and poured in two sizes of test
bars are reported in graph form. The minimum strength, as defined by the ASTM, is
found from these data to be

0.23Hp — 12.5 kpsi
= { ’ P (2-18)

1.58 Hg — 86 MPa

Walton® shows a chart from which the SAE minimum strength can be obtained. The
result is

S, = 0.2375Hp — 16 kpsi (2-19)

which is even more conservative than the values obtained from Eq. (2—18).

It is necessary to ensure that a certain part supplied by a foundry always meets or
exceeds ASTM No. 20 specifications for cast iron (see Table A—24). What hardness
should be specified?

From Eq. (2-18), with (S,)min = 20 kpsi, we have

S, +125 204125

= = =141
0.23 0.23

If the foundry can control the hardness within 20 points, routinely, then specify
145 < Hp < 165. This imposes no hardship on the foundry and assures the designer
that ASTM grade 20 will always be supplied at a predictable cost.

Impact Properties

An external force applied to a structure or part is called an impact load if the time of
application is less than one-third the lowest natural period of vibration of the part or
structure. Otherwise it is called simply a static load.

°D. E. Krause, “Gray Iron—A Unique Engineering Material,” ASTM Special Publication 455, 1969,
pp. 3-29, as reported in Charles F. Walton (ed.), Iron Castings Handbook, Iron Founders Society, Inc.,
Cleveland, 1971, pp. 204, 205.

‘Tbid.
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Figure 2-7

A mean frace shows the effect
of temperature on impact
values. The result of interest is
the britile-ductile transition
temperature, often defined as
the temperature at which the
mean frace passes through the
15 ft - Ibf level. The critical
temperature is dependent on
the geometry of the notch,
which is why the Charpy

V notch is closely defined.

Figure 2-8

Influence of strain rate on
fensile properties.
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The Charpy (commonly used) and Izod (rarely used) notched-bar tests utilize bars of
specified geometries to determine brittleness and impact strength. These tests are helpful
in comparing several materials and in the determination of low-temperature brittleness. In
both tests the specimen is struck by a pendulum released from a fixed height, and the
energy absorbed by the specimen, called the impact value, can be computed from the
height of swing after fracture, but is read from a dial that essentially “computes” the result.

The effect of temperature on impact values is shown in Fig. 2-7 for a material
showing a ductile-brittle transition. Not all materials show this transition. Notice the
narrow region of critical temperatures where the impact value increases very rapidly. In
the low-temperature region the fracture appears as a brittle, shattering type, whereas the
appearance is a tough, tearing type above the critical-temperature region. The critical
temperature seems to be dependent on both the material and the geometry of the notch.
For this reason designers should not rely too heavily on the results of notched-bar tests.

The average strain rate used in obtaining the stress-strain diagram is about
0.001 in/(in - s) or less. When the strain rate is increased, as it is under impact conditions,
the strengths increase, as shown in Fig. 2—8. In fact, at very high strain rates the yield
strength seems to approach the ultimate strength as a limit. But note that the curves show
little change in the elongation. This means that the ductility remains about the same.
Also, in view of the sharp increase in yield strength, a mild steel could be expected to
behave elastically throughout practically its entire strength range under impact conditions.
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A plot of the results of 145 fests
of 21 carbon and alloy steels
showing the effect of operating
femperature on the yield
strength S, and the ultimate
strength Syt The ordinafe is the
ratio of the strength at the
operafing femperature to the
strength at room femperature.
The standard deviations were
0.0442 < 65, < 0.152 for
Sy and 0.099 < 65,s <0.11
for St (Data source: E. A.
Brandes [ed.), Smithells Metal
Reference Book, 6th ed.,
Butterworth, london, 1983
pp. 22-128 o 22-131.)
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The Charpy and Izod tests really provide toughness data under dynamic, rather than
static, conditions. It may well be that impact data obtained from these tests are as depen-
dent on the notch geometry as they are on the strain rate. For these reasons it may be bet-
ter to use the concepts of notch sensitivity, fracture toughness, and fracture mechanics,
discussed in Chaps. 5 and 6, to assess the possibility of cracking or fracture.

Temperature Effects

Strength and ductility, or brittleness, are properties affected by the temperature of the
operating environment.

The effect of temperature on the static properties of steels is typified by the strength
versus temperature chart of Fig. 2-9. Note that the tensile strength changes only a small
amount until a certain temperature is reached. At that point it falls off rapidly. The yield
strength, however, decreases continuously as the environmental temperature is increased.
There is a substantial increase in ductility, as might be expected, at the higher temperatures.

Many tests have been made of ferrous metals subjected to constant loads for long
periods of time at elevated temperatures. The specimens were found to be permanently
deformed during the tests, even though at times the actual stresses were less than the
yield strength of the material obtained from short-time tests made at the same temper-
ature. This continuous deformation under load is called creep.

One of the most useful tests to have been devised is the long-time creep test under
constant load. Figure 2-10 illustrates a curve that is typical of this kind of test. The
curve is obtained at a constant stated temperature. A number of tests are usually run
simultaneously at different stress intensities. The curve exhibits three distinct regions.
In the first stage are included both the elastic and the plastic deformation. This stage shows
a decreasing creep rate, which is due to the strain hardening. The second stage shows
a constant minimum creep rate caused by the annealing effect. In the third stage the
specimen shows a considerable reduction in area, the true stress is increased, and a
higher creep eventually leads to fracture.

When the operating temperatures are lower than the transition temperature
(Fig. 2-7), the possibility arises that a part could fail by a brittle fracture. This subject
will be discussed in Chap. 5.

0.9
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Figure 2-10

Creeptime curve.
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Of course, heat treatment, as will be shown, is used to make substantial changes in
the mechanical properties of a material.

Heating due to electric and gas welding also changes the mechanical properties.
Such changes may be due to clamping during the welding process, as well as heating;
the resulting stresses then remain when the parts have cooled and the clamps have been
removed. Hardness tests can be used to learn whether the strength has been changed by
welding, but such tests will not reveal the presence of residual stresses.

Numbering Systems

The Society of Automotive Engineers (SAE) was the first to recognize the need, and to
adopt a system, for the numbering of steels. Later the American Iron and Steel Institute
(AISI) adopted a similar system. In 1975 the SAE published the Unified Numbering
System for Metals and Alloys (UNS); this system also contains cross-reference num-
bers for other material specifications.” The UNS uses a letter prefix to designate the
material, as, for example, G for the carbon and alloy steels, A for the aluminum alloys,
C for the copper-base alloys, and S for the stainless or corrosion-resistant steels. For
some materials, not enough agreement has as yet developed in the industry to warrant
the establishment of a designation.

For the steels, the first two numbers following the letter prefix indicate the compo-
sition, excluding the carbon content. The various compositions used are as follows:

Gl10 Plain carbon G46 Nickelmolybdenum
G11 Free-cutting carbon steel with G438 Nickel-molybdenum
more sulfur or phosphorus G50 Chromium
G13 Manganese G51 Chromium
G23 Nickel G52 Chromium
G25 Nickel Go61 Chromium-vanadium
G31 Nickel-chromium G86 Chromium-nickel-molybdenum
G33 Nickel-chromium G87 Chromium-nickel-molybdenum
G40 Molybdenum G92 Manganese-silicon
G4l Chromium-molybdenum G4 Nickel-chromium-molybdenum

G43 Nickel-chromium-molybdenum

"Many of the materials discussed in the balance of this chapter are listed in the Appendix tables. Be sure to

review these.
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Aluminum 99.00% pure and greater  Ax1xxx

Copper alloys Ax2xxx
Manganese alloys Ax3xxx
Silicon alloys Axdxxx
Magnesium alloys Ax5xxx
Magnesium-silicon alloys Axbxxx
Zinc alloys A7 xxx

The second number pair refers to the approximate carbon content. Thus, G10400 is a
plain carbon steel with a nominal carbon content of 0.40 percent (0.37 to 0.44 percent).
The fifth number following the prefix is used for special situations. For example, the old
designation AISI 52100 represents a chromium alloy with about 100 points of carbon.
The UNS designation is G52986.

The UNS designations for the stainless steels, prefix S, utilize the older AISI des-
ignations for the first three numbers following the prefix. The next two numbers are
reserved for special purposes. The first number of the group indicates the approximate
composition. Thus 2 is a chromium-nickel-manganese steel, 3 is a chromium-nickel
steel, and 4 is a chromium alloy steel. Sometimes stainless steels are referred to by their
alloy content. Thus S30200 is often called an 18-8 stainless steel, meaning 18 percent
chromium and 8 percent nickel.

The prefix for the aluminum group is the letter A. The first number following the
prefix indicates the processing. For example, A9 is a wrought aluminum, while A0 is
a casting alloy. The second number designates the main alloy group as shown in
Table 2—1. The third number in the group is used to modify the original alloy or to
designate the impurity limits. The last two numbers refer to other alloys used with the
basic group.

The American Society for Testing and Materials (ASTM) numbering system for
cast iron is in widespread use. This system is based on the tensile strength. Thus ASTM
A18 speaks of classes; e.g., 30 cast iron has a minimum tensile strength of 30 kpsi. Note
from Appendix A-24, however, that the typical tensile strength is 31 kpsi. You should
be careful to designate which of the two values is used in design and problem work
because of the significance of factor of safety.

Sand Casting

Sand casting is a basic low-cost process, and it lends itself to economical production
in large quantities with practically no limit to the size, shape, or complexity of the part
produced.

In sand casting, the casting is made by pouring molten metal into sand molds. A
pattern, constructed of metal or wood, is used to form the cavity into which the molten
metal is poured. Recesses or holes in the casting are produced by sand cores introduced
into the mold. The designer should make an effort to visualize the pattern and casting
in the mold. In this way the problems of core setting, pattern removal, draft, and solid-
ification can be studied. Castings to be used as test bars of cast iron are cast separately
and properties may vary.
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Steel castings are the most difficult of all to produce, because steel has the highest
melting temperature of all materials normally used for casting. This high temperature
aggravates all casting problems.

The following rules will be found quite useful in the design of any sand casting:

1  All sections should be designed with a uniform thickness.

2 The casting should be designed so as to produce a gradual change from section
to section where this is necessary.

3 Adjoining sections should be designed with generous fillets or radii.

4 A complicated part should be designed as two or more simple castings to be
assembled by fasteners or by welding.

Steel, gray iron, brass, bronze, and aluminum are most often used in castings. The
minimum wall thickness for any of these materials is about 5 mm, though with partic-
ular care, thinner sections can be obtained with some materials.

Shell Molding

The shell-molding process employs a heated metal pattern, usually made of cast iron,
aluminum, or brass, which is placed in a shell-molding machine containing a mixture
of dry sand and thermosetting resin. The hot pattern melts the plastic, which, together
with the sand, forms a shell about 5 to 10 mm thick around the pattern. The shell is then
baked at from 400 to 700°F for a short time while still on the pattern. It is then stripped
from the pattern and placed in storage for use in casting.

In the next step the shells are assembled by clamping, bolting, or pasting; they are
placed in a backup material, such as steel shot; and the molten metal is poured into the
cavity. The thin shell permits the heat to be conducted away so that solidification takes
place rapidly. As solidification takes place, the plastic bond is burned and the mold col-
lapses. The permeability of the backup material allows the gases to escape and the cast-
ing to air-cool. All this aids in obtaining a fine-grain, stress-free casting.

Shell-mold castings feature a smooth surface, a draft that is quite small, and close
tolerances. In general, the rules governing sand casting also apply to shell-mold casting.

Investment Casting

Investment casting uses a pattern that may be made from wax, plastic, or other material.
After the mold is made, the pattern is melted out. Thus a mechanized method of casting
a great many patterns is necessary. The mold material is dependent upon the melting
point of the cast metal. Thus a plaster mold can be used for some materials while
others would require a ceramic mold. After the pattern is melted out, the mold is baked
or fired; when firing is completed, the molten metal may be poured into the hot mold
and allowed to cool.

If a number of castings are to be made, then metal or permanent molds may be suit-
able. Such molds have the advantage that the surfaces are smooth, bright, and accurate,
so that little, if any, machining is required. Metal-mold castings are also known as die
castings and centrifugal castings.

Powder-Metallurgy Process

The powder-metallurgy process is a quantity-production process that uses powders
from a single metal, several metals, or a mixture of metals and nonmetals. It consists
essentially of mechanically mixing the powders, compacting them in dies at high pressures,
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and heating the compacted part at a temperature less than the melting point of the major
ingredient. The particles are united into a single strong part similar to what would be
obtained by melting the same ingredients together. The advantages are (1) the elimina-
tion of scrap or waste material, (2) the elimination of machining operations, (3) the low
unit cost when mass-produced, and (4) the exact control of composition. Some of the
disadvantages are (1) the high cost of dies, (2) the lower physical properties, (3) the
higher cost of materials, (4) the limitations on the design, and (5) the limited range of
materials that can be used. Parts commonly made by this process are oil-impregnated
bearings, incandescent lamp filaments, cemented-carbide tips for tools, and permanent
magnets. Some products can be made only by powder metallurgy: surgical implants, for
example. The structure is different from what can be obtained by melting the same
ingredients.

Hot-Working Processes

By hot working are meant such processes as rolling, forging, hot extrusion, and hot
pressing, in which the metal is heated above its recrystallation temperature.

Hot rolling is usually used to create a bar of material of a particular shape and
dimension. Figure 2—11 shows some of the various shapes that are commonly produced
by the hot-rolling process. All of them are available in many different sizes as well as
in different materials. The materials most available in the hot-rolled bar sizes are steel,
aluminum, magnesium, and copper alloys.

Tubing can be manufactured by hot-rolling strip or plate. The edges of the strip are
rolled together, creating seams that are either butt-welded or lap-welded. Seamless tub-
ing is manufactured by roll-piercing a solid heated rod with a piercing mandrel.

Extrusion is the process by which great pressure is applied to a heated metal billet
or blank, causing it to flow through a restricted orifice. This process is more common
with materials of low melting point, such as aluminum, copper, magnesium, lead, tin,
and zinc. Stainless steel extrusions are available on a more limited basis.

Forging is the hot working of metal by hammers, presses, or forging machines. In
common with other hot-working processes, forging produces a refined grain structure
that results in increased strength and ductility. Compared with castings, forgings have
greater strength for the same weight. In addition, drop forgings can be made smoother
and more accurate than sand castings, so that less machining is necessary. However, the
initial cost of the forging dies is usually greater than the cost of patterns for castings,
although the greater unit strength rather than the cost is usually the deciding factor
between these two processes.

O = = O
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Figure 2-12
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Cold-Working Processes

By cold working is meant the forming of the metal while at a low temperature (usually
room temperature). In contrast to parts produced by hot working, cold-worked parts
have a bright new finish, are more accurate, and require less machining.

Cold-finished bars and shafts are produced by rolling, drawing, turning, grinding,
and polishing. Of these methods, by far the largest percentage of products are made by
the cold-rolling and cold-drawing processes. Cold rolling is now used mostly for the
production of wide flats and sheets. Practically all cold-finished bars are made by cold
drawing but even so are sometimes mistakenly called “cold-rolled bars.” In the drawing
process, the hot-rolled bars are first cleaned of scale and then drawn by pulling them
through a die that reduces the size about 31—2 to % in. This process does not remove
material from the bar but reduces, or “draws” down, the size. Many different shapes of
hot-rolled bars may be used for cold drawing.

Cold rolling and cold drawing have the same effect upon the mechanical proper-
ties. The cold-working process does not change the grain size but merely distorts it.
Cold working results in a large increase in yield strength, an increase in ultimate
strength and hardness, and a decrease in ductility. In Fig. 2—12 the properties of a cold-
drawn bar are compared with those of a hot-rolled bar of the same material.

Heading is a cold-working process in which the metal is gathered, or upset. This
operation is commonly used to make screw and rivet heads and is capable of producing
a wide variety of shapes. Roll threading is the process of rolling threads by squeezing
and rolling a blank between two serrated dies. Spinning is the operation of working sheet
material around a rotating form into a circular shape. Stamping is the term used to
describe punch-press operations such as blanking, coining, forming, and shallow
drawing.

The Heat Treatment of Steel

Heat treatment of steel refers to time- and temperature-controlled processes that relieve
residual stresses and/or modifies material properties such as hardness (strength), duc-
tility, and toughness. Other mechanical or chemical operations are sometimes grouped
under the heading of heat treatment. The common heat-treating operations are anneal-
ing, quenching, tempering, and case hardening.
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Annealing

When a material is cold- or hot-worked, residual stresses are built in, and, in addition,
the material usually has a higher hardness as a result of these working operations. These
operations change the structure of the material so that it is no longer represented by the
equilibrium diagram. Full annealing and normalizing is a heating operation that permits
the material to transform according to the equilibrium diagram. The material to be
annealed is heated to a temperature that is approximately 100°F above the critical tem-
perature. It is held at this temperature for a time that is sufficient for the carbon to
become dissolved and diffused through the material. The object being treated is then
allowed to cool slowly, usually in the furnace in which it was treated. If the transfor-
mation is complete, then it is said to have a full anneal. Annealing is used to soften a
material and make it more ductile, to relieve residual stresses, and to refine the grain
structure.

The term annealing includes the process called normalizing. Parts to be normalized
may be heated to a slightly higher temperature than in full annealing. This produces a
coarser grain structure, which is more easily machined if the material is a low-carbon
steel. In the normalizing process the part is cooled in still air at room temperature. Since
this cooling is more rapid than the slow cooling used in full annealing, less time is avail-
able for equilibrium, and the material is harder than fully annealed steel. Normalizing
is often used as the final treating operation for steel. The cooling in still air amounts to
a slow quench.

Quenching

Eutectoid steel that is fully annealed consists entirely of pearlite, which is obtained
from austenite under conditions of equilibrium. A fully annealed hypoeutectoid steel
would consist of pearlite plus ferrite, while hypereutectoid steel in the fully annealed
condition would consist of pearlite plus cementite. The hardness of steel of a given
carbon content depends upon the structure that replaces the pearlite when full anneal-
ing is not carried out.

The absence of full annealing indicates a more rapid rate of cooling. The rate of
cooling is the factor that determines the hardness. A controlled cooling rate is called
quenching. A mild quench is obtained by cooling in still air, which, as we have seen, is
obtained by the normalizing process. The two most widely used media for quenching
are water and oil. The oil quench is quite slow but prevents quenching cracks caused by
rapid expansion of the object being treated. Quenching in water is used for carbon steels
and for medium-carbon, low-alloy steels.

The effectiveness of quenching depends upon the fact that when austenite is cooled
it does not transform into pearlite instantaneously but requires time to initiate and com-
plete the process. Since the transformation ceases at about 800°F, it can be prevented
by rapidly cooling the material to a lower temperature. When the material is cooled
rapidly to 400°F or less, the austenite is transformed into a structure called martensite.
Martensite is a supersaturated solid solution of carbon in ferrite and is the hardest and
strongest form of steel.

If steel is rapidly cooled to a temperature between 400 and 800°F and held there
for a sufficient length of time, the austenite is transformed into a material that is gener-
ally called bainite. Bainite is a structure intermediate between pearlite and martensite.
Although there are several structures that can be identified between the temperatures
given, depending upon the temperature used, they are collectively known as bainite. By
the choice of this transformation temperature, almost any variation of structure may be
obtained. These range all the way from coarse pearlite to fine martensite.
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Figure 2-13

The effect of thermal-
mechanical history on the
mechanical properties of AlS|
4340 steel. (Prepared by the
International Nickel Company.)

Tempering
When a steel specimen has been fully hardened, it is very hard and brittle and has high
residual stresses. The steel is unstable and tends to contract on aging. This tendency
is increased when the specimen is subjected to externally applied loads, because the
resultant stresses contribute still more to the instability. These internal stresses can
be relieved by a modest heating process called stress relieving, or a combination of
stress relieving and softening called tempering or drawing. After the specimen has been
fully hardened by being quenched from above the critical temperature, it is reheated to
some temperature below the critical temperature for a certain period of time and then
allowed to cool in still air. The temperature to which it is reheated depends upon the
composition and the degree of hardness or toughness desired.® This reheating operation
releases the carbon held in the martensite, forming carbide crystals. The structure
obtained is called tempered martensite. It is now essentially a superfine dispersion of
iron carbide(s) in fine-grained ferrite.

The effect of heat-treating operations upon the various mechanical properties of a
low alloy steel is shown graphically in Fig. 2—13.
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8For the quantitative aspects of tempering in plain carbon and low-alloy steels, see Charles R. Mischke,
“The Strength of Cold-Worked and Heat-Treated Steels,” Chap. 33 in Joseph E. Shigley, Charles R.
Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill,
New York, 2004.
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Case Hardening

The purpose of case hardening is to produce a hard outer surface on a specimen of low-
carbon steel while at the same time retaining the ductility and toughness in the core.
This is done by increasing the carbon content at the surface. Either solid, liquid, or
gaseous carburizing materials may be used. The process consists of introducing the part
to be carburized into the carburizing material for a stated time and at a stated tempera-
ture, depending upon the depth of case desired and the composition of the part. The part
may then be quenched directly from the carburization temperature and tempered, or in
some cases it must undergo a double heat treatment in order to ensure that both the core
and the case are in proper condition. Some of the more useful case-hardening processes
are pack carburizing, gas carburizing, nitriding, cyaniding, induction hardening, and
flame hardening. In the last two cases carbon is not added to the steel in question, gen-
erally a medium carbon steel, for example SAE/AISI 1144.

Quantitative Estimation of Properties of Heat-Treated Steels

Courses in metallurgy (or material science) for mechanical engineers usually present the
addition method of Crafts and Lamont for the prediction of heat-treated properties from the
Jominy test for plain carbon steels.” If this has not been in your prerequisite experience,
then refer to the Standard Handbook of Machine Design, where the addition method is cov-
ered with examples.lo If this book is a textbook for a machine elements course, it is a good
class project (many hands make light work) to study the method and report to the class.
For low-alloy steels, the multiplication method of Grossman'' and Field!? is
explained in the Standard Handbook of Machine Design (Secs. 29.6 and 33.6).
Modern Steels and Their Properties Handbook explains how to predict the Jominy
curve by the method of Grossman and Field from a ladle analysis and grain size.'?
Bethlehem Steel has developed a circular plastic slide rule that is convenient to the purpose.

Alloy Steels

Although a plain carbon steel is an alloy of iron and carbon with small amounts of
manganese, silicon, sulfur, and phosphorus, the term alloy steel is applied when one or
more elements other than carbon are introduced in sufficient quantities to modify its
properties substantially. The alloy steels not only possess more desirable physical
properties but also permit a greater latitude in the heat-treating process.

Chromium

The addition of chromium results in the formation of various carbides of chromium that
are very hard, yet the resulting steel is more ductile than a steel of the same hardness pro-
duced by a simple increase in carbon content. Chromium also refines the grain structure
so that these two combined effects result in both increased toughness and increased hard-
ness. The addition of chromium increases the critical range of temperatures and moves
the eutectoid point to the left. Chromium is thus a very useful alloying element.

9W. Crafts and J. L. Lamont, Hardenability and Steel Selection, Pitman and Sons, London, 1949.

10Charles R. Mischke, Chap. 33 in Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.),
Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004, p. 33.9.

"'M. A. Grossman, AIME, February 1942.

125 Field, Metals Progress, March 1943.

BModern Steels and Their Properties, 7th ed., Handbook 2757, Bethlehem Steel, 1972, pp. 46-50.
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Nickel

The addition of nickel to steel also causes the eutectoid point to move to the left and
increases the critical range of temperatures. Nickel is soluble in ferrite and does not
form carbides or oxides. This increases the strength without decreasing the ductility.
Case hardening of nickel steels results in a better core than can be obtained with plain
carbon steels. Chromium is frequently used in combination with nickel to obtain the
toughness and ductility provided by the nickel and the wear resistance and hardness
contributed by the chromium.

Manganese

Manganese is added to all steels as a deoxidizing and desulfurizing agent, but if the sul-
fur content is low and the manganese content is over 1 percent, the steel is classified as a
manganese alloy. Manganese dissolves in the ferrite and also forms carbides. It causes
the eutectoid point to move to the left and lowers the critical range of temperatures. It
increases the time required for transformation so that oil quenching becomes practicable.

Silicon

Silicon is added to all steels as a deoxidizing agent. When added to very-low-carbon
steels, it produces a brittle material with a low hysteresis loss and a high magnetic
permeability. The principal use of silicon is with other alloying elements, such as
manganese, chromium, and vanadium, to stabilize the carbides.

Molybdenum

While molybdenum is used alone in a few steels, it finds its greatest use when combined
with other alloying elements, such as nickel, chromium, or both. Molybdenum forms
carbides and also dissolves in ferrite to some extent, so that it adds both hardness and
toughness. Molybdenum increases the critical range of temperatures and substantially
lowers the transformation point. Because of this lowering of the transformation point,
molybdenum is most effective in producing desirable oil-hardening and air-hardening
properties. Except for carbon, it has the greatest hardening effect, and because it also
contributes to a fine grain size, this results in the retention of a great deal of toughness.

Vanadium

Vanadium has a very strong tendency to form carbides; hence it is used only in small
amounts. It is a strong deoxidizing agent and promotes a fine grain size. Since some vana-
dium is dissolved in the ferrite, it also toughens the steel. Vanadium gives a wide harden-
ing range to steel, and the alloy can be hardened from a higher temperature. It is very
difficult to soften vanadium steel by tempering; hence, it is widely used in tool steels.

Tungsten

Tungsten is widely used in tool steels because the tool will maintain its hardness even
at red heat. Tungsten produces a fine, dense structure and adds both toughness and hard-
ness. Its effect is similar to that of molybdenum, except that it must be added in greater
quantities.

Corrosion-Resistant Steels

Iron-base alloys containing at least 12 percent chromium are called stainless steels.
The most important characteristic of these steels is their resistance to many, but not all,
corrosive conditions. The four types available are the ferritic chromium steels, the
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austenitic chromium-nickel steels, and the martensitic and precipitation-hardenable
stainless steels.

The ferritic chromium steels have a chromium content ranging from 12 to 27 per-
cent. Their corrosion resistance is a function of the chromium content, so that alloys
containing less than 12 percent still exhibit some corrosion resistance, although they
may rust. The quench-hardenability of these steels is a function of both the chromium
and the carbon content. The very high carbon steels have good quench hardenability up
to about 18 percent chromium, while in the lower carbon ranges it ceases at about
13 percent. If a little nickel is added, these steels retain some degree of hardenability up
to 20 percent chromium. If the chromium content exceeds 18 percent, they become dif-
ficult to weld, and at the very high chromium levels the hardness becomes so great that
very careful attention must be paid to the service conditions. Since chromium is expen-
sive, the designer will choose the lowest chromium content consistent with the corro-
sive conditions.

The chromium-nickel stainless steels retain the austenitic structure at room tem-
perature; hence, they are not amenable to heat treatment. The strength of these steels
can be greatly improved by cold working. They are not magnetic unless cold-worked.
Their work hardenability properties also cause them to be difficult to machine. All
the chromium-nickel steels may be welded. They have greater corrosion-resistant prop-
erties than the plain chromium steels. When more chromium is added for greater cor-
rosion resistance, more nickel must also be added if the austenitic properties are to be
retained.

Casting Materials

Gray Cast Iron

Of all the cast materials, gray cast iron is the most widely used. This is because it has
a very low cost, is easily cast in large quantities, and is easy to machine. The principal
objections to the use of gray cast iron are that it is brittle and that it is weak in tension.
In addition to a high carbon content (over 1.7 percent and usually greater than 2 percent),
cast iron also has a high silicon content, with low percentages of sulfur, manganese,
and phosphorus. The resultant alloy is composed of pearlite, ferrite, and graphite, and
under certain conditions the pearlite may decompose into graphite and ferrite. The
resulting product then contains all ferrite and graphite. The graphite, in the form of
thin flakes distributed evenly throughout the structure, darkens it; hence, the name gray
cast iron.

Gray cast iron is not readily welded, because it may crack, but this tendency may
be reduced if the part is carefully preheated. Although the castings are generally used in
the as-cast condition, a mild anneal reduces cooling stresses and improves the machin-
ability. The tensile strength of gray cast iron varies from 100 to 400 MPa (15 to 60 kpsi),
and the compressive strengths are 3 to 4 times the tensile strengths. The modulus of
elasticity varies widely, with values extending all the way from 75 to 150 GPa (11 to
22 Mpsi).

Ductile and Nodular Cast Iron

Because of the lengthy heat treatment required to produce malleable cast iron, engineers
have long desired a cast iron that would combine the ductile properties of malleable
iron with the ease of casting and machining of gray iron and at the same time would
possess these properties in the as-cast conditions. A process for producing such a material
using magnesium-containing material seems to fulfill these requirements.
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Ductile cast iron, or nodular cast iron, as it is sometimes called, is essentially the
same as malleable cast iron, because both contain graphite in the form of spheroids.
However, ductile cast iron in the as-cast condition exhibits properties very close to
those of malleable iron, and if a simple 1-h anneal is given and is followed by a slow
cool, it exhibits even more ductility than the malleable product. Ductile iron is made by
adding MgFeSi to the melt; since magnesium boils at this temperature, it is necessary
to alloy it with other elements before it is introduced.

Ductile iron has a high modulus of elasticity (172 GPa or 25 Mpsi) as compared
with gray cast iron, and it is elastic in the sense that a portion of the stress-strain
curve is a straight line. Gray cast iron, on the other hand, does not obey Hooke’s law,
because the modulus of elasticity steadily decreases with increase in stress. Like
gray cast iron, however, nodular iron has a compressive strength that is higher than
the tensile strength, although the difference is not as great. In 40 years it has become
extensively used.

White Cast Iron

If all the carbon in cast iron is in the form of cementite and pearlite, with no graphite
present, the resulting structure is white and is known as white cast iron. This may be
produced in two ways. The composition may be adjusted by keeping the carbon and
silicon content low, or the gray-cast-iron composition may be cast against chills in order
to promote rapid cooling. By either method, a casting with large amounts of cementite
is produced, and as a result the product is very brittle and hard to machine but also very
resistant to wear. A chill is usually used in the production of gray-iron castings in order
to provide a very hard surface within a particular area of the casting, while at the same
time retaining the more desirable gray structure within the remaining portion. This pro-
duces a relatively tough casting with a wear-resistant area.

Malleable Cast Iron

If white cast iron within a certain composition range is annealed, a product called
malleable cast iron is formed. The annealing process frees the carbon so that it is pre-
sent as graphite, just as in gray cast iron but in a different form. In gray cast iron the
graphite is present in a thin flake form, while in malleable cast iron it has a nodular
form and is known as temper carbon. A good grade of malleable cast iron may have
a tensile strength of over 350 MPa (50 kpsi), with an elongation of as much as 18 per-
cent. The percentage elongation of a gray cast iron, on the other hand, is seldom over
1 percent. Because of the time required for annealing (up to 6 days for large and
heavy castings), malleable iron is necessarily somewhat more expensive than gray
cast iron.

Alloy Cast Irons

Nickel, chromium, and molybdenum are the most common alloying elements used in
cast iron. Nickel is a general-purpose alloying element, usually added in amounts up to
5 percent. Nickel increases the strength and density, improves the wearing qualities, and
raises the machinability. If the nickel content is raised to 10 to 18 percent, an austenitic
structure with valuable heat- and corrosion-resistant properties results. Chromium
increases the hardness and wear resistance and, when used with a chill, increases the
tendency to form white iron. When chromium and nickel are both added, the hardness
and strength are improved without a reduction in the machinability rating. Molybdenum
added in quantities up to 1.25 percent increases the stiffness, hardness, tensile strength,
and impact resistance. It is a widely used alloying element.
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Cast Steels

The advantage of the casting process is that parts having complex shapes can be man-
ufactured at costs less than fabrication by other means, such as welding. Thus the
choice of steel castings is logical when the part is complex and when it must also have
a high strength. The higher melting temperatures for steels do aggravate the casting
problems and require closer attention to such details as core design, section thicknesses,
fillets, and the progress of cooling. The same alloying elements used for the wrought
steels can be used for cast steels to improve the strength and other mechanical proper-
ties. Cast-steel parts can also be heat-treated to alter the mechanical properties, and,
unlike the cast irons, they can be welded.

Nonferrous Metals

Aluminum

The outstanding characteristics of aluminum and its alloys are their strength-weight
ratio, their resistance to corrosion, and their high thermal and electrical conductivity.
The density of aluminum is about 2770 kg/m? (0.10 1bf/in®), compared with 7750 kg/m?
(0.28 1Ibf/in®) for steel. Pure aluminum has a tensile strength of about 90 MPa (13 kpsi),
but this can be improved considerably by cold working and also by alloying with other
materials. The modulus of elasticity of aluminum, as well as of its alloys, is 71.7 GPa
(10.4 Mpsi), which means that it has about one-third the stiffness of steel.

Considering the cost and strength of aluminum and its alloys, they are among the
most versatile materials from the standpoint of fabrication. Aluminum can be processed
by sand casting, die casting, hot or cold working, or extruding. Its alloys can be machined,
press-worked, soldered, brazed, or welded. Pure aluminum melts at 660°C (1215°F),
which makes it very desirable for the production of either permanent or sand-mold
castings. It is commercially available in the form of plate, bar, sheet, foil, rod, and tube
and in structural and extruded shapes. Certain precautions must be taken in joining
aluminum by soldering, brazing, or welding; these joining methods are not recommended
for all alloys.

The corrosion resistance of the aluminum alloys depends upon the formation of a
thin oxide coating. This film forms spontaneously because aluminum is inherently very
reactive. Constant erosion or abrasion removes this film and allows corrosion to take
place. An extra-heavy oxide film may be produced by the process called anodizing. In
this process the specimen is made to become the anode in an electrolyte, which may be
chromic acid, oxalic acid, or sulfuric acid. It is possible in this process to control the
color of the resulting film very accurately.

The most useful alloying elements for aluminum are copper, silicon, manganese,
magnesium, and zinc. Aluminum alloys are classified as casting alloys or wrought
alloys. The casting alloys have greater percentages of alloying elements to facilitate
casting, but this makes cold working difficult. Many of the casting alloys, and some of
the wrought alloys, cannot be hardened by heat treatment. The alloys that are heat-
treatable use an alloying element that dissolves in the aluminum. The heat treatment
consists of heating the specimen to a temperature that permits the alloying element to
pass into solution, then quenching so rapidly that the alloying element is not precipi-
tated. The aging process may be accelerated by heating slightly, which results in even
greater hardness and strength. One of the better-known heat-treatable alloys is duralu-
minum, or 2017 (4 percent Cu, 0.5 percent Mg, 0.5 percent Mn). This alloy hardens in
4 days at room temperature. Because of this rapid aging, the alloy must be stored under
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refrigeration after quenching and before forming, or it must be formed immediately
after quenching. Other alloys (such as 5053) have been developed that age-harden much
more slowly, so that only mild refrigeration is required before forming. After forming,
they are artificially aged in a furnace and possess approximately the same strength and
hardness as the 2024 alloys. Those alloys of aluminum that cannot be heat-treated can
be hardened only by cold working. Both work hardening and the hardening produced
by heat treatment may be removed by an annealing process.

Magnesium

The density of magnesium is about 1800 kg/m? (0.065 1b/in’), which is two-thirds that
of aluminum and one-fourth that of steel. Since it is the lightest of all commercial met-
als, its greatest use is in the aircraft and automotive industries, but other uses are now
being found for it. Although the magnesium alloys do not have great strength, because
of their light weight the strength-weight ratio compares favorably with the stronger
aluminum and steel alloys. Even so, magnesium alloys find their greatest use in appli-
cations where strength is not an important consideration. Magnesium will not withstand
elevated temperatures; the yield point is definitely reduced when the temperature is
raised to that of boiling water.

Magnesium and its alloys have a modulus of elasticity of 45 GPa (6.5 Mpsi) in ten-
sion and in compression, although some alloys are not as strong in compression as in
tension. Curiously enough, cold working reduces the modulus of elasticity. A range of
cast magnesium alloys are also available.

Titanium

Titanium and its alloys are similar in strength to moderate-strength steel but weigh half
as much as steel. The material exhibits very good resistence to corrosion, has low ther-
mal conductivity, is nonmagnetic, and has high-temperature strength. Its modulus of
elasticity is between those of steel and aluminum at 16.5 Mpsi (114 GPa). Because of
its many advantages over steel and aluminum, applications include: aerospace and mil-
itary aircraft structures and components, marine hardware, chemical tanks and process-
ing equipment, fluid handling systems, and human internal replacement devices. The
disadvantages of titanium are its high cost compared to steel and aluminum and the dif-
ficulty of machining it.

Copper-Base Alloys

When copper is alloyed with zinc, it is usually called brass. If it is alloyed with another
element, it is often called bronze. Sometimes the other element is specified too, as, for ex-
ample, tin bronze or phosphor bronze. There are hundreds of variations in each category.

Brass with 5 to 15 Percent Zinc

The low-zinc brasses are easy to cold work, especially those with the higher zinc con-
tent. They are ductile but often hard to machine. The corrosion resistance is good. Alloys
included in this group are gilding brass (5 percent Zn), commercial bronze (10 percent Zn),
and red brass (15 percent Zn). Gilding brass is used mostly for jewelry and articles to
be gold-plated; it has the same ductility as copper but greater strength, accompanied by
poor machining characteristics. Commercial bronze is used for jewelry and for forgings
and stampings, because of its ductility. Its machining properties are poor, but it has
excellent cold-working properties. Red brass has good corrosion resistance as well as
high-temperature strength. Because of this it is used a great deal in the form of tubing or
piping to carry hot water in such applications as radiators or condensers.
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Brass with 20 to 36 Percent Zinc

Included in the intermediate-zinc group are low brass (20 percent Zn), cartridge brass
(30 percent Zn), and yellow brass (35 percent Zn). Since zinc is cheaper than copper,
these alloys cost less than those with more copper and less zinc. They also have better
machinability and slightly greater strength; this is offset, however, by poor corrosion
resistance and the possibility of cracking at points of residual stresses. Low brass is very
similar to red brass and is used for articles requiring deep-drawing operations. Of the
copper-zinc alloys, cartridge brass has the best combination of ductility and strength.
Cartridge cases were originally manufactured entirely by cold working; the process
consisted of a series of deep draws, each draw being followed by an anneal to place the
material in condition for the next draw, hence the name cartridge brass. Although the
hot-working ability of yellow brass is poor, it can be used in practically any other fab-
ricating process and is therefore employed in a large variety of products.

When small amounts of lead are added to the brasses, their machinability is greatly
improved and there is some improvement in their abilities to be hot-worked. The
addition of lead impairs both the cold-working and welding properties. In this group are
low-leaded brass (323 percent Zn, § percent Pb), high-leaded brass (34 percent Zn,
2 percent Pb), and free-cutting brass (35% percent Zn, 3 percent Pb). The low-leaded
brass is not only easy to machine but has good cold-working properties. It is used for
various screw-machine parts. High-leaded brass, sometimes called engraver’s brass, is
used for instrument, lock, and watch parts. Free-cutting brass is also used for screw-
machine parts and has good corrosion resistance with excellent mechanical properties.

Admiralty metal (28 percent Zn) contains 1 percent tin, which imparts excellent
corrosion resistance, especially to saltwater. It has good strength and ductility but only
fair machining and working characteristics. Because of its corrosion resistance it is used
in power-plant and chemical equipment. Aluminum brass (22 percent Zn) contains
2 percent aluminum and is used for the same purposes as admiralty metal, because it
has nearly the same properties and characteristics. In the form of tubing or piping, it is
favored over admiralty metal, because it has better resistance to erosion caused by high-
velocity water.

Brass with 36 to 40 Percent Zinc

Brasses with more than 38 percent zinc are less ductile than cartridge brass and cannot
be cold-worked as severely. They are frequently hot-worked and extruded. Muntz metal
(40 percent Zn) is low in cost and mildly corrosion-resistant. Naval brass has the same
composition as Muntz metal except for the addition of 0.75 percent tin, which con-
tributes to the corrosion resistance.

Bronze

Silicon bronze, containing 3 percent silicon and 1 percent manganese in addition to the
copper, has mechanical properties equal to those of mild steel, as well as good corro-
sion resistance. It can be hot- or cold-worked, machined, or welded. It is useful wher-
ever corrosion resistance combined with strength is required.

Phosphor bronze, made with up to 11 percent tin and containing small amounts of
phosphorus, is especially resistant to fatigue and corrosion. It has a high tensile strength
and a high capacity to absorb energy, and it is also resistant to wear. These properties
make it very useful as a spring material.

Aluminum bronze is a heat-treatable alloy containing up to 12 percent aluminum. This
alloy has strength and corrosion-resistance properties that are better than those of brass, and
in addition, its properties may be varied over a wide range by cold working, heat treating,
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or changing the composition. When iron is added in amounts up to 4 percent, the alloy has
a high endurance limit, a high shock resistance, and excellent wear resistance.

Beryllium bronze is another heat-treatable alloy, containing about 2 percent beryl-
lium. This alloy is very corrosion resistant and has high strength, hardness, and resis-
tance to wear. Although it is expensive, it is used for springs and other parts subjected
to fatigue loading where corrosion resistance is required.

With slight modification most copper-based alloys are available in cast form.

2-19 Plastics

The term thermoplastics is used to mean any plastic that flows or is moldable when heat
is applied to it; the term is sometimes applied to plastics moldable under pressure. Such
plastics can be remolded when heated.

A thermoset is a plastic for which the polymerization process is finished in a hot
molding press where the plastic is liquefied under pressure. Thermoset plastics cannot
be remolded.

Table 2-2 lists some of the most widely used thermoplastics, together with some
of their characteristics and the range of their properties. Table 2-3, listing some of the

Table 2-2

The Thermoplastics  Source: These data have been obtained from the Machine Design Materials Reference Issue,
published by Penton/IPC, Cleveland. These reference issues are published about every 2 years and constitute an
excellent source of data on a great variety of materials.

E, Hardness Elongation Dimensional Heat Chemical
Mpsi Rockwell % Stability Resistance Resistance Processing
ABS group 2-8  0.10-0.37 60-110R 3-50 Good * Fair EMST
Acetal group 8-10 0.41-0.52 80-94M 40-60 Excellent Good High M
Acrylic 5-10 0.20-0.47 92-110M 3-75 High * Fair EMS
Fluoroplastic ~ 0.50-7 e 50-80D 100-300  High Excellent Excellent MPRT
group
Nylon 8-14 0.18-0.45 112-120R 10-200  Poor Poor Good CEM
Phenylene 7-18 0.35-0.92 115R, 106l 5-60 Excellent Good Fair EFM
oxide
Polycarbonate 8-16 0.34-0.86 62-91M 10-125  Excellent Excellent Fair EMS
Polyester 8-18 0.28-1.6  65-90M 1-300  Excellent Poor Excellent CLMR
Polyimide 6-50 e 88-120M  Very low Excellent Excellent Excellent! CLMP
Polyphenylene ~ 14-19 0.11 122R 1.0 Good Excellent Excellent M
sulfide
Polystyrene 1.5-12  0.14-0.60 10-90M 0.5-60 e Poor Poor EM
group
Polysulfone 10 0.36 120R 50-100  Excellent Excellent Excellent! EFM
Polyvinyl 1.5-7.5 0.35-0.60 65-85D 40-450 e Poor Poor EFM
chloride

*Heat-resistant grades available.

TWith exceptions.
( Coatings L Laminates R Resins E Extrusions M Moldings S Sheet F Foams P Press and sinter methods T Tubing
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Table 2-3

The Thermosets  Source: These data have been obtained from the Machine Design Materials Reference Issue,
published by Penton/IPC, Cleveland. These reference issues are published about every 2 years and constitute
an excellent source of dafa on a great variety of materials.

]
Resistance Resistance Processing

Alkyd 3-9  0.05-0.30 QOM* e Excellent Good Fair M

Allylic 4-10 e 105-120M .- Excellent Excellent Excellent CM

Amino 5-8 0.13-0.24  110-120M  0.30-0.90  Good Excellent* Excellent* R
group

Epoxy 5-20 0.03-0.30*  80-120M 1-10 Excellent Excellent Excellent CMR

Phenolics 5-9  0.10-0.25 70-95E e Excellent Excellent Good EMR

Silicones 56 e 80-O0M e e Excellent Excellent CLMR

*With exceptions.
( Coatings L Lominates R Resins E Extrusions M Moldings S Sheet F Foams P Press and sinfer methods T Tubing

thermosets, is similar. These tables are presented for information only and should not
be used to make a final design decision. The range of properties and characteristics that
can be obtained with plastics is very great. The influence of many factors, such as cost,
moldability, coefficient of friction, weathering, impact strength, and the effect of fillers
and reinforcements, must be considered. Manufacturers’ catalogs will be found quite
helpful in making possible selections.

2-20 Composite Materials'4

Composite materials are formed from two or more dissimilar materials, each of which
contributes to the final properties. Unlike metallic alloys, the materials in a composite
remain distinct from each other at the macroscopic level.

Most engineering composites consist of two materials: a reinforcement called a
filler and a matrix. The filler provides stiffness and strength; the matrix holds the mate-
rial together and serves to transfer load among the discontinuous reinforcements. The
most common reinforcements, illustrated in Fig. 2—14, are continuous fibers, either
straight or woven, short chopped fibers, and particulates. The most common matrices
are various plastic resins although other materials including metals are used.

Metals and other traditional engineering materials are uniform, or isotropic, in
nature. This means that material properties, such as strength, stiffness, and thermal con-
ductivity, are independent of both position within the material and the choice of coor-
dinate system. The discontinuous nature of composite reinforcements, though, means
that material properties can vary with both position and direction. For example, an

4For references see I. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, Oxford
University Press, 1994, and ASM Engineered Materials Handbook: Composites, ASM International,
Materials Park, OH, 1988.
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Composites categorized by

type of reinforcement.
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epoxy resin reinforced with continuous graphite fibers will have very high strength and
stiffness in the direction of the fibers, but very low properties normal or transverse to
the fibers. For this reason, structures of composite materials are normally constructed
of multiple plies (laminates) where each ply is oriented to achieve optimal structural
stiffness and strength performance.

High strength-to-weight ratios, up to 5 times greater than those of high-strength
steels, can be achieved. High stiffness-to-weight ratios can also be obtained, as much as
8 times greater than those of structural metals. For this reason, composite materials are
becoming very popular in automotive, aircraft, and spacecraft applications where
weight is a premium.

The directionality of properties of composite materials increases the complexity of
structural analyses. Isotropic materials are fully defined by two engineering constants:
Young’s modulus £ and Poisson’s ratio v. A single ply of a composite material, how-
ever, requires four constants, defined with respect to the ply coordinate system. The
constants are two Young’s moduli (the longitudinal modulus in the direction of the
fibers, E1, and the transverse modulus normal to the fibers, E»), one Poisson’s ratio
(v12, called the major Poisson’s ratio), and one shear modulus (G,). A fifth constant,
the minor Poisson’s ratio, vy, is determined through the reciprocity relation,
v21/E> = vi2/E;. Combining this with multiple plies oriented at different angles makes
structural analysis of complex structures unapproachable by manual techniques. For
this reason, computer software is available to calculate the properties of a laminated
composite construction. !

Materials Selection

As stated earlier, the selection of a material for a machine part or structural member is
one of the most important decisions the designer is called on to make. Up to this point
in this chapter we have discussed many important material physical properties, various
characteristics of typical engineering materials, and various material production
processes. The actual selection of a material for a particular design application can be
an easy one, say, based on previous applications (1020 steel is always a good candi-
date because of its many positive attributes), or the selection process can be as
involved and daunting as any design problem with the evaluation of the many material
physical, economical, and processing parameters. There are systematic and optimizing
approaches to material selection. Here, for illustration, we will only look at how
to approach some material properties. One basic technique is to list all the important
material properties associated with the design, e.g., strength, stiffness, and cost. This
can be prioritized by using a weighting measure depending on what properties are more

15 About Composite Materials Software listing, http://composite.about.com/cs/software/index.htm.
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important than others. Next, for each property, list all available materials and rank
them in order beginning with the best material; e.g., for strength, high-strength steel
such as 4340 steel should be near the top of the list. For completeness of available
materials, this might require a large source of material data. Once the lists are formed,
select a manageable amount of materials from the top of each list. From each reduced
list select the materials that are contained within every list for further review. The
materials in the reduced lists can be graded within the list and then weighted accord-
ing to the importance of each property.

M. F. Ashby has developed a powerful systematic method using materials selec-
tion charts.'® This method has also been implemented in a software package called
CES Edupack.!” The charts display data of various properties for the families and
classes of materials listed in Table 2—4. For example, considering material stiffness
properties, a simple bar chart plotting Young’s modulus £ on the y axis is shown
in Fig. 2-15. Each vertical line represents the range of values of E for a particular
material. Only some of the materials are labeled. Now, more material information
can be displayed if the x axis represents another material property, say density.

O m o NQ NCAME
Metals Aluminum alloys Al alloys
(The‘meto.ls and alloys of Copper dlloys Cu alloys
engineering| lead alloys lead alloys

Magnesium alloys Mg alloys
Nickel alloys Ni alloys
Carbon steels Steels
Stainless steels Stainless steels
Tin alloys Tin alloys
Titanium alloys Ti alloys
Tungsten alloys W alloys
lead alloys Pb alloys
Zinc alloys Zn alloys
Ceramics Alumina Al, O3
Technical ceramics (fine Aluminum nitride AIN
moobed oo
Silicon carbide SiC
Silicon nitride SisNy
Tungsfen carbide wWC

Nontechnical ceramics Brick Brick

[porous ceramics of Concrefe Concrete

construction)

Stone Stone
[continued)

oM. F. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier Butterworth-Heinemann,

Oxford, 2005.

17Produced by Granta Design Limited. See www.grantadesign.com.
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| Table 2-4 (continued) Family

Glasses

Polymers
(the thermoplastics and
thermosets of engineering)

Elastomers
[engineering rubbers,
natural and synthetic)

Hybrids
Composites

Foams

Natural materials

Classes

Soda-lime glass
Borosilicate glass
Silica glass

Glass ceramic

Acrylonitrile butadiene styrene
Cellulose polymers
lonomers

Epoxies

Phenolics

Polyamides (nylons)
Polycarbonate

Polyesters
Polyetheretherkeytone
Polyethylene
Polyethylene terephalate
Polymethylmethacrylate
Polyoxymethylene(Acetal)
Polypropylene
Polystyrene
Polytetrafluorethylene

Polyvinylchloride

Butyl rubber

EVA

lsoprene

Natural rubber
Polychloroprene (Neoprene)
Polyurethane

Silicon elastomers

Carbon-fiber reinforced polymers
Classfiber reinforced polymers
SiC reinforced aluminum

Flexible polymer foams

Rigid polymer foams

Cork

Bamboo

Wood

© The McGraw-Hill
Companies, 2008

Short Name

Sodarlime glass
Borosilicate glass
Silica glass

Glass ceramic

ABS

CA
lonomers
Epoxy
Phenolics
PA

PC
Polyester
PEEK

PE

PET or PETE
PMMA
POM

PP

PS

PTFE

PVC

Butyl rubber
EVA

lsoprene
Natural rubber
Neoprene

PU

Silicones

CFRP

GFRP

Al-SiC

Flexible foams
Rigid foams
Cork

Bamboo
Wood

From M. F. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier Butterworth-Heinemann, Oxford, 2005. Table 41,

pp. 49-50.
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Figure 2-15

Young's modulus E for various materials. (Figure courtesy of Prof. Mike Ashby, Granta Design, Cambridge, U.K.)
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Soda-lime glass |

Wood, typical along grain — - Polyester

___— Wood, typical across grain

/

Acrylonitrile butadiene styrene (ABS)
Rigid polymer foam (MD)

/

Cork

Polyurethane —

/
Butyl rubber

Flexible polymer foam (VLD) -

Figure 2-16, called a “bubble” chart, represents Young’s modulus E plotted against density
p. The line ranges for each material property plotted two-dimensionally now form ellipses,
or bubbles. This plot is more useful than the two separate bar charts of each property. Now,
we also see how stiffness/weight for various materials relate. Figure 2—16 also shows
groups of bubbles outlined according to the material families of Table 2—4. In addition, dot-
ted lines in the lower right corner of the chart indicate ratios of £ p / p, which assist in mate-
rial selection for minimum mass design. Lines drawn parallel to these lines represent
different values for Ef / p. For example, several parallel dotted lines are shown in Fig. 2-16
that represent different values of E/p(f = 1). Since (E/ p)\? represents the speed of
sound in a material, each dotted line, E/p, represents a different speed as indicated.

To see how p fits into the mix, consider the following. The performance metric P
of a structural element depends on (1) the functional requirements, (2) the geometry,
and (3) the material properties of the structure. That is,

(functional ) (geometric ) (material )]
requirements F/)’\parameters G/’ \properties M

or, symbolically,

P = f(F,G, M) (2-20)
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Figure 2-16

Young's modulus E versus density p for various materials. (Figure courtesy of Prof. Mike Ashby, Granta Design, Cambridge, U.K.)
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If the function is separable, which it often is, we can write Eq. (2-20) as

P = fi(F)- f2(G) - f3(M) (2-21)

For optimum design, we desire to maximize or minimize P. With regards to material
properties alone, this is done by maximizing or minimizing f3(M), called the material
efficiency coefficient.

For illustration, say we want to design a light, stiff, end-loaded cantilever beam with
a circular cross section. For this we will use the mass m of the beam for the performance
metric to minimize. The stiffness of the beam is related to its material and geometry. The
stiffness of a beam is given by k = F/§, where F and § are the end load and deflection,
respectively (see Chap. 4). The end deflection of an end-loaded cantilever beam is given
in Table A-9, beam 1, as § = ymax = (Fl3)/(3EI), where E is Young’s modulus, I the
second moment of the area, and / the length of the beam. Thus, the stiffness is given by

F 3EI
k= — =~ (2-22)
8 3
From Table A-18, the second moment of the area of a circular cross section is
D*  A?
-7 (2-23)

T 64 4m
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A schematic E versus p chart
showing a grid of lines for
various values the material
index M =E"/2/p. (From M. F.
Ashby, Materials Selection in
Mechanical Design, 3rd ed.,
Elsevier Butterworth-
Heinemann, Oxford, 2005.)
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where D and A are the diameter and area of the cross section, respectively. Substituting
Eq. (2-23) in (2-22) and solving for A, we obtain

33 1/2
A= <4’3”fEl ) (2-24)

The mass of the beam is given by
m = Alp (2-25)
Substituting Eq. (2-24) into (2-25) and rearranging yields

—n [T 12y g5y (P _
m_2\/;(k )1 )(51/2) (2-26)

Equation (2-26) is of the form of Eq. (2-21). The term 2,/ /3 is simply a constant and
can be associated with any function, say f(F). Thus, f,(F) = 2/7/3(k'/?) is the
functional requirement, stiffness; f>(G) = (1°7%), the geometric parameter, length; and
the material efficiency coefficient

P

[ (M) = 7

(2-27)
is the material property in terms of density and Young’s modulus. To minimize m we
want to minimize f3(M), or maximize
EL2
M=— (2-28)
o
where M is called the material index, and B = % Returning to Fig. 2—-16, draw lines of
various values of E'/2/p as shown in Fig. 2-17. Lines of increasing M move up and to
the left as shown. Thus, we see that good candidates for a light, stiff, end-loaded can-
tilever beam with a circular cross section are certain woods, composites, and ceramics.
Other limits/constraints may warrant further investigation. Say, for further illustra-
tion, the design requirements indicate that we need a Young’s modulus greater than
50 GPa. Figure 2—-18 shows how this further restricts the search region. This eliminates
woods as a possible material.
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Figure 2-19

Strength S versus density p for various materials. For metals, S is the 0.2 percent offset yield strength. For polymers, S is the 1 percent yield
strength. For ceramics and glasses, S is the compressive crushing sfrength. For composites, S is the tensile sirength. For elastomers, S is the

tear strength. (Figure courtesy of Prof. Mike Ashby, Granta Design, Cambridge, U.K.)
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Certainly, in a given design exercise, there will be other considerations such as
strength, environment, and cost, and other charts may be necessary to investigate. For
example, Fig. 2-19 represents strength versus density for the material families. Also,
we have not brought in the material process selection part of the picture. If done prop-
erly, material selection can result in a good deal of bookkeeping. This is where software
packages such as CES Edupack become very effective.

PROBLEMS

Determine the minimum tensile and yield strengths for SAE 1020 cold-drawn steel.
Determine the minimum tensile and yield strengths for UNS G10500 hot-rolled steel.

For the materials in Probs. 2—-1 and 2-2, compare the following properties: minimum tensile and
yield strengths, ductility, and stiffness.

Assuming you were specifying an AISI 1040 steel for an application where you desired to max-
imize the yield strength, how would you specify it?

Assuming you were specifying an AISI 1040 steel for an application where you desired to max-
imize the ductility, how would you specify it?

Determine the yield strength-to-weight density ratios (called specific strength) in units of inches
for UNS G10350 hot-rolled steel, 2024-T4 aluminum, Ti-6A1-4V titanium alloy, and ASTM
No. 30 gray cast iron.

Determine the stiffness-to-weight density ratios (called specific modulus) in units of inches for
UNS G10350 hot-rolled steel, 2024-T4 aluminum, Ti-6A1-4V titanium alloy, and ASTM No. 30
gray cast iron.

Poisson’s ratio v is a material property and is the ratio of the lateral strain and the longitudinal
strain for a member in tension. For a homogeneous, isotropic material, the modulus of rigidity G
is related to Young’s modulus as
E
G=_———
2(1+v)

Using the tabulated values of G and E, determine Poisson’s ratio for steel, aluminum, beryllium
copper, and gray cast iron.

A specimen of medium-carbon steel having an initial diameter of 0.503 in was tested in tension
using a gauge length of 2 in. The following data were obtained for the elastic and plastic states:

Load P, Elongation, Load P, Area A;,
Ibf in Ibf in?
1 000 0.0004 8 800 0.1984
2 000 0.0006 9 200 0.1978
3000 0.0010 9100 0.1963
4000 0.0013 13 200 0.1924
7 000 0.0023 15 200 0.1875
8 400 0.0028 17 000 0.1563
8 800 0.0036 16 400 0.1307

9200 0.0089 14 800 0.1077
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2-10

2-11

2-12

Note that there is some overlap in the data. Plot the engineering or nominal stress-strain diagram
using two scales for the unit strain €, one from zero to about 0.02 in/in and the other from zero
to maximum strain. From this diagram find the modulus of elasticity, the 0.2 percent offset yield
strength, the ultimate strength, and the percent reduction in area.

Compute the true stress and the logarithmic strain using the data of Prob. 2-9 and plot the results on
log-log paper. Then find the plastic strength coefficient oy and the strain-strengthening exponent .
Find also the yield strength and the ultimate strength after the specimen has had 20 percent cold work.

The stress-strain data from a tensile test on a cast-iron specimen are

10 16 19 26 32 40 46 49 54

Engineering
stress, kpsi 5

Engineering strain, | 020 044 080 10 1.5 20 28 34 40 50
e-1073in/in

Plot the stress-strain locus and find the 0.1 percent offset yield strength, and the tangent modulus
of elasticity at zero stress and at 20 kpsi.

A straight bar of arbitrary cross section and thickness 4 is cold-formed to an inner radius R about
an anvil as shown in the figure. Some surface at distance N having an original length L5 will
remain unchanged in length after bending. This length is

7(R+ N)

Lap=Lap = )

The lengths of the outer and inner surfaces, after bending, are
Lo=2(R+h L=2R
o 2 [ 2

Using Eq. (2-4), we then find the true strains to be

R+h R
R+ N R+ N

&, =1In

Tests show that |&,| = |&;|. Show that
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and

W\ /2
s, =In{1+ —
. n< +R)

A hot-rolled AISI 1212 steel is given 20 percent cold work. Determine the new values of the yield
and ultimate strengths.

A steel member has a Brinell of Hz = 250. Estimate the ultimate strength of the steel in MPa.

Brinell hardness tests were made on a random sample of 10 steel parts during processing. The
results were Hpg values of 252 (2), 260, 254, 257 (2), 249 (3), and 251. Estimate the mean and
standard deviation of the ultimate strength in kpsi.

Repeat Prob. 2-15 assuming the material to be cast iron.

Toughness is a term that relates to both strength and ductility. The fracture toughness, for exam-
ple, is defined as the total area under the stress-strain curve to fracture, ur = foe 7 & de. This area,
called the modulus of toughness, is the strain energy per unit volume required to cause the
material to fracture. A similar term, but defined within the elastic limit of the material, is called
the modulus of resilience, ug = f 0€ " ode, where €, is the strain at yield. If the stress-strain is
linear to o = S|, then it can be shown that up = S§/2E.

For the material in Prob. 2-9: (a) Determine the modulus of resilience, and (b) Estimate the
modulus of toughness, assuming that the last data point corresponds to fracture.

What is the material composition of AISI 4340 steel?
Search the website noted in Sec. 2-20 and report your findings.

Research the material Inconel, briefly described in Table A—5. Compare it to various carbon and
alloy steels in stiffness, strength, ductility, and toughness. What makes this material so special?

Pick a specific material given in the tables (e.g., 2024-T4 aluminum, SAE 1040 steel), and con-
sult a local or regional distributor (consulting either the Yellow Pages or the Thomas Register) to
obtain as much information as you can about cost and availability of the material and in what
form (bar, plate, etc.).

Consider a tie rod transmitting a tensile force F. The corresponding tensile stress is given by
o = F /A, where A is the area of the cross section. The deflection of the rod is given by Eq. (4-3),
which is § = (FI)/(AE), where [ is the length of the rod. Using the Ashby charts of Figs. 2-16
and 2-19, explore what ductile materials are best suited for a light, stiff, and strong tie rod. Hints:
Consider stiffness and strength separately. For use of Fig. 2—16, prove that 8 = 1 . For use of Fig.
2-19, relate the applied tensile stress to the material strength.
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One of the main objectives of this book is to describe how specific machine components
function and how to design or specify them so that they function safely without failing
structurally. Although earlier discussion has described structural strength in terms of
load or stress versus strength, failure of function for structural reasons may arise from
other factors such as excessive deformations or deflections.

Here it is assumed that the reader has completed basic courses in statics of rigid
bodies and mechanics of materials and is quite familiar with the analysis of loads, and
the stresses and deformations associated with the basic load states of simple prismatic
elements. In this chapter and Chap. 4 we will review and extend these topics briefly.
Complete derivations will not be presented here, and the reader is urged to return to
basic textbooks and notes on these subjects.

This chapter begins with a review of equilibrium and free-body diagrams associated
with load-carrying components. One must understand the nature of forces before
attempting to perform an extensive stress or deflection analysis of a mechanical com-
ponent. An extremely useful tool in handling discontinuous loading of structures
employs Macaulay or singularity functions. Singularity functions are described in
Sec. 3-3 as applied to the shear forces and bending moments in beams. In Chap. 4, the
use of singularity functions will be expanded to show their real power in handling
deflections of complex geometry and statically indeterminate problems.

Machine components transmit forces and motion from one point to another. The
transmission of force can be envisioned as a flow or force distribution that can be fur-
ther visualized by isolating internal surfaces within the component. Force distributed
over a surface leads to the concept of stress, stress components, and stress transforma-
tions (Mohr’s circle) for all possible surfaces at a point.

The remainder of the chapter is devoted to the stresses associated with the basic
loading of prismatic elements, such as uniform loading, bending, and torsion, and topics
with major design ramifications such as stress concentrations, thin- and thick-walled
pressurized cylinders, rotating rings, press and shrink fits, thermal stresses, curved beams,
and contact stresses.

3-1 Equilibrium and Free-Body Diagrams
Equilibrium
The word system will be used to denote any isolated part or portion of a machine or
structure—including all of it if desired—that we wish to study. A system, under this
definition, may consist of a particle, several particles, a part of a rigid body, an entire
rigid body, or even several rigid bodies.

If we assume that the system to be studied is motionless or, at most, has constant
velocity, then the system has zero acceleration. Under this condition the system is said
to be in equilibrium. The phrase static equilibrium is also used to imply that the system
is at rest. For equilibrium, the forces and moments acting on the system balance such
that

Y F=0 (3-1)
> M=0 (3-2)

which states that the sum of all force and the sum of all moment vectors acting upon a
system in equilibrium is zero.
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Free-Body Diagrams

We can greatly simplify the analysis of a very complex structure or machine by successively
isolating each element and studying and analyzing it by the use of free-body diagrams.
When all the members have been treated in this manner, the knowledge can be assembled
to yield information concerning the behavior of the total system. Thus, free-body diagram-
ming is essentially a means of breaking a complicated problem into manageable segments,
analyzing these simple problems, and then, usually, putting the information together again.

Using free-body diagrams for force analysis serves the following important
purposes:

e The diagram establishes the directions of reference axes, provides a place to record
the dimensions of the subsystem and the magnitudes and directions of the known
forces, and helps in assuming the directions of unknown forces.

* The diagram simplifies your thinking because it provides a place to store one thought
while proceeding to the next.

e The diagram provides a means of communicating your thoughts clearly and unam-
biguously to other people.

» Careful and complete construction of the diagram clarifies fuzzy thinking by bringing
out various points that are not always apparent in the statement or in the geometry
of the total problem. Thus, the diagram aids in understanding all facets of the problem.

e The diagram helps in the planning of a logical attack on the problem and in setting
up the mathematical relations.

* The diagram helps in recording progress in the solution and in illustrating the
methods used.

e The diagram allows others to follow your reasoning, showing all forces.

Figure 3—1a shows a simplified rendition of a gear reducer where the input and output
shafts AB and C D are rotating at constant speeds w; and w,,, respectively. The input and
output torques (torsional moments) are 7; = 240 Ibf - in and 7, respectively. The shafts
are supported in the housing by bearings at A, B, C, and D. The pitch radii of gears G
and G, are r; = 0.75 in and r, = 1.5 in, respectively. Draw the free-body diagrams of
each member and determine the net reaction forces and moments at all points.

First, we will list all simplifying assumptions.

1 Gears G and G, are simple spur gears with a standard pressure angle ¢ = 20°
(see Sec. 13-5).

2 The bearings are self-aligning and the shafts can be considered to be simply
supported.

3 The weight of each member is negligible.

4  Friction is negligible.

5 The mounting bolts at E, F, H, and [ are the same size.

The separate free-body diagrams of the members are shown in Figs. 3—1b—d. Note that
Newton’s third law, called the law of action and reaction, is used extensively where
each member mates. The force transmitted between the spur gears is not tangential but
at the pressure angle ¢. Thus, N = F tan ¢.
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(a) Gear reducer (b) Gear box

(c) Input shaft (d) Output shaft

Figure 3-1

(a) Gear reducer; (b—d) free-body diagrams. Diagrams are not drawn to scale.

Summing moments about the x axis of shaft AB in Fig. 3—1d gives
> M, = F(0.75) — 240 = 0
F =320 Ibf

The normal force is N = 320 tan 20° = 116.5 Ibf.

Using the equilibrium equations for Figs. 3—1¢ and d, the reader should verify that:
Ray = 192 1bf, Ry, = 69.9 Ibf, Rp, = 128 Ibf, Rp, = 46.6 Ibf, Rcy = 192 Ibf, R, =
69.9 Ibf, Rp, = 128 Ibf, Rp, = 46.61bf, and 7, = 480 1bf - in. The direction of the output
torque 7, is opposite w, because it is the resistive load on the system opposing the motion @,

Note in Fig. 3—1b the net force from the bearing reactions is zero whereas the net
moment about the x axis is 2.25 (192) + 2.25 (128) = 720 1bf - in. This value is the same
as T;+ T, =240+ 480 = 720 1bf - in, as shown in Fig. 3—1a. The reaction forces
Rg, Rp, Ry, and R;, from the mounting bolts cannot be determined from the
equilibrium equations as there are too many unknowns. Only three equations are
available, >~ F, =Y F, = > M, = 0. In case you were wondering about assumption
5, here is where we will use it (see Sec. 8—12). The gear box tends to rotate about the
x axis because of a pure torsional moment of 720 Ibf - in. The bolt forces must provide
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Free-body diagram of simply-
supported beam with V and M
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Figure 3-3

Sign conventions for bending
and shear.

Figure 3-4

Distributed load on beam.
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an equal but opposite torsional moment. The center of rotation relative to the bolts lies at
the centroid of the bolt cross-sectional areas. Thus if the bolt areas are equal: the center
of rotation is at the center of the four bolts, a distance of 1/(4/2)2 + (5/2)? = 3.202 in
from each bolt; the bolt forces are equal (R = R = Ry = R; = R), and each bolt force
is perpendicular to the line from the bolt to the center of rotation. This gives a net torque
from the four bolts of 4R (3.202) = 720. Thus, R = Rr = Ry = R; = 56.22 1bf.

Shear Force and Bending Moments in Beams

Figure 3-2a shows a beam supported by reactions R; and R, and loaded by the con-
centrated forces Fi, F>, and F5. If the beam is cut at some section located at x = x; and
the left-hand portion is removed as a free body, an internal shear force V and bending
moment M must act on the cut surface to ensure equilibrium (see Fig. 3-2b). The shear
force is obtained by summing the forces on the isolated section. The bending moment is
the sum of the moments of the forces to the left of the section taken about an axis through
the isolated section. The sign conventions used for bending moment and shear force in this

book are shown in Fig. 3-3. Shear force and bending moment are related by the equation
Vo dm
dx

(3-3)

Sometimes the bending is caused by a distributed load g (x), as shown in Fig. 3—4;
q(x) is called the load intensity with units of force per unit length and is positive in the

Positive bending Negative bending
Positive shear Negative shear
q(x)
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positive y direction. It can be shown that differentiating Eq. (3-3) results in
v d*M
— == 34
dx dxz 1 (3-4]
Normally the applied distributed load is directed downward and labeled w (e.g., see
Fig. 3-6). In this case, w = —¢q.
Equations (3-3) and (3—4) reveal additional relations if they are integrated. Thus,
if we integrate between, say, x4 and xp, we obtain

VB XB
/ dV:/ qgdx =Vp—Vyu (3-5)
Va

XA
which states that the change in shear force from A to B is equal to the area of the load-

ing diagram between x4 and xp.
In a similar manner,

MB XB
/ dM:/ de:MB—MA (3—6)
MA XA

which states that the change in moment from A to B is equal to the area of the shear-
force diagram between x4 and xg.

Table 3-1 Function Graph of f, (x) Meaning
Singularity (Macaulay) Concenfrated  (xr—a? x—a)?=0 x#a
Functions moment

(x—o)’Q::I:oo X=a

(unit doublet]
f\ /(X—O)_QdX=(x—o)‘]
Y x
fConcentroted —a)! x—a)' =0 x#£a
orce o -
(unit impulse) T (x—a) =400 x=a
/(x— a)~dx=(x—a)°
! 0
Unit step b-a) (x—a)9 = { x<a
_r 1 x>a
i _/(X_modX:(X—OW
Romp (x—a)' (X—G)] :{O X<a

X—a x>a
1 (x—a)?
_/4/x /(X—G>]dX= 5

TW. H. Macaulay, “Note on the deflection of beams,” Messenger of Mathematics, vol. 48, pp. 129—130, 1919.
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Singularity Functions

The four singularity functions defined in Table 3—1 constitute a useful and easy means
of integrating across discontinuities. By their use, general expressions for shear force
and bending moment in beams can be written when the beam is loaded by concentrated
moments or forces. As shown in the table, the concentrated moment and force functions
are zero for all values of x not equal to a. The functions are undefined for values of
x = a. Note that the unit step and ramp functions are zero only for values of x that are
less than a. The integration properties shown in the table constitute a part of the math-
ematical definition too. The first two integrations of g(x) for V(x) and M (x) do not
require constants of integration provided all loads on the beam are accounted for in
q(x). The examples that follow show how these functions are used.

Derive expressions for the loading, shear-force, and bending-moment diagrams for the
beam of Fig. 3-5.

lFl )

4—(11—»‘

R, % R,

Using Table 3—1 and ¢ (x) for the loading function, we find

g=Rix)"'"—Fx—a)' —FBx-a) " +Rx-1)" (1)
Next, we use Eq. (3-5) to get the shear force.

V= / gdx = Ri(x)° — Fi{x —a)° — Fa{x — a2)" + Rp(x — 1)° (2)

Note that V =0 atx =0".
A second integration, in accordance with Eq. (3—6), yields

M =f Vdx =R (x)' = Fiix —a)! = B(x —a)' + Ry(x = I)! (3)

The reactions R; and R, can be found by taking a summation of moments and forces
as usual, or they can be found by noting that the shear force and bending moment must
be zero everywhere except in the region 0 < x < /. This means that Eq. (2) should give
V = 0 at x slightly larger than /. Thus

Ri—F—F,+R =0 (4)
Since the bending moment should also be zero in the same region, we have, from Eq. (3),
Ril = Fi(l —a1) — F>,(l —a) =0 (5)

Equations (4) and (5) can now be solved for the reactions R; and R;.
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EXAMPLE 3-3  Figure 3-6a shows the loading diagram for a beam cantilevered at A with a uniform
load of 20 Ibf/in acting on the portion 3 in < x < 7 in, and a concentrated counter-
clockwise moment of 240 1bf - in at x = 10 in. Derive the shear-force and bending-
moment relations, and the support reactions M; and R;.

Solution Following the procedure of Example 3-2, we find the load intensity function to be
g=—Mx)"2+ R (x)7! —20(x —3)° +20(x — 7)° —240(x — 10)72 (1)
Note that the 20(x — 7)° term was necessary to “turn off” the uniform load at C.
Integrating successively gives
Answers V=M {x)""+ R x)°=20(x —3)! +20(x —7)! —240(x — 10)~"  (2)
M= —M(x)° + R (x)! — 10{x — 3)% + 10{x — 7)> — 240(x — 10)° (3)

The reactions are found by making x slightly larger than 10 in, where both V and M are
zero in this region. Equation (2) will then give

—M;(0) + Ry (1) — 20(10 — 3) 4+ 20(10 — 7) — 240(0) = 0
Answer  which yields R; = 80 Ibf.
From Eq. (3) we get
—M; (1) + 80(10) — 10(10 — 3)> + 10(10 — 7)> — 240(1) = 0
Answer  which yields M; = 160 Ibf - in.

Figures 3—6b and ¢ show the shear-force and bending-moment diagrams. Note that
the impulse terms in Eq. (2), —M, (x)~! and —240(x — 10)~', are physically not forces

Figure 3-6 Y
(a) Loading diagram for a q 10in
beam cantilevered at A. 7 in
(b) Shearforce diagram. —3in—>  20Ibffin 240 Ibf-in
(c) Bending-moment diagram. i i i i i i D
—]— X
A B €
Ml
(@) R,
V (Ibf)
Step
80 Ramp
(b) o | x
M (1bf - in)
240 - Parabolic Step
80 ‘
[ X
A |
~160 ¥ Slope = 80 Ibf-in/in
(©) \
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Stress components on surface
normal to x direction.
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and are not shown in the V diagram. Also note that both the M; and 240 1bf - in
moments are counterclockwise and negative singularity functions; however, by the con-
vention shown in Fig. 3-2 the M, and 240 Ibf - in are negative and positive bending
moments, respectively, which is reflected in Fig. 3—6c.

Stress

When an internal surface is isolated as in Fig. 3-2b, the net force and moment acting on
the surface manifest themselves as force distributions across the entire area. The force
distribution acting at a point on the surface is unique and will have components in the
normal and tangential directions called normal stress and tangential shear stress,
respectively. Normal and shear stresses are labeled by the Greek symbols o and r,
respectively. If the direction of o is outward from the surface it is considered to be a fen-
sile stress and is a positive normal stress. If o is into the surface it is a compressive stress
and commonly considered to be a negative quantity. The units of stress in U.S.
Customary units are pounds per square inch (psi). For SI units, stress is in newtons per
square meter (N/m?); 1 N/m? = 1 pascal (Pa).

Cartesian Stress Components

The Cartesian stress components are established by defining three mutually orthogo-
nal surfaces at a point within the body. The normals to each surface will establish the
x, ¥, z Cartesian axes. In general, each surface will have a normal and shear stress.
The shear stress may have components along two Cartesian axes. For example, Fig.
3-7 shows an infinitesimal surface area isolation at a point Q within a body where
the surface normal is the x direction. The normal stress is labeled o,. The symbol o
indicates a normal stress and the subscript x indicates the direction of the surface
normal. The net shear stress acting on the surface is (7, )y Which can be resolved into
components in the y and z directions, labeled as 7,, and 7., respectively (see
Fig. 3-7). Note that double subscripts are necessary for the shear. The first subscript
indicates the direction of the surface normal whereas the second subscript is the
direction of the shear stress.

The state of stress at a point described by three mutually perpendicular surfaces is
shown in Fig. 3-8a. It can be shown through coordinate transformation that this is suf-
ficient to determine the state of stress on any surface intersecting the point. As the

o
net }\

I\
\

Tx:

-
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Figure 3-8 1 7

(a) General three-dimensional
stress. (b) Plane stress with
“cross-shears” equal.

(a) (b)

dimensions of the cube in Fig. 3—-8a approach zero, the stresses on the hidden faces
become equal and opposite to those on the opposing visible faces. Thus, in general, a
complete state of stress is defined by nine stress components, oy, 0y, 0, Tyy,
Tyezs Tyxs Tyzs Tz, and Tgy.

For equilibrium, in most cases, “cross-shears” are equal, hence

Tyx = Tyy Ty = Tyz Txz = Tox (3-7)

This reduces the number of stress components for most three-dimensional states of
stress from nine to six quantities, oy, 0y, 0, Txy, Tyz, and To.

A very common state of stress occurs when the stresses on one surface are zero.
When this occurs the state of stress is called plane stress. Figure 3—8b shows a state of
plane stress, arbitrarily assuming that the normal for the stress-free surface is the
z direction such that o, = 1,, = 7, = 0. It is important to note that the element in
Fig. 3-8b is still a three-dimensional cube. Also, here it is assumed that the cross-shears
are equal such that 7, = 7y, and 7, = 7;, = 7,; = 7, = 0.

3-6 Mohr’s Circle for Plane Stress

Suppose the dx dy dz element of Fig. 3-8b is cut by an oblique plane with a normal n at
an arbitrary angle ¢ counterclockwise from the x axis as shown in Fig. 3-9. This section
is concerned with the stresses o and t that act upon this oblique plane. By summing the
forces caused by all the stress components to zero, the stresses o and t are found to be

o= Jz“’y + 2 0052 + 1,y sin 29 (3-8)
oy — 0oy .
T = - sin2¢ + 1,y cos 2¢ (3-9)

Equations (3-8) and (3-9) are called the plane-stress transformation equations.
Differentiating Eq. (3—8) with respect to ¢ and setting the result equal to zero gives

27,
tan 2, = — (3-10)

o, — 0,
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¢
o [ A
dy ds
Tyy

Equation (3-10) defines two particular values for the angle 2¢,, one of which defines
the maximum normal stress o and the other, the minimum normal stress o,. These two
stresses are called the principal stresses, and their corresponding directions, the princi-
pal directions. The angle between the principal directions is 90°. It is important to note
that Eq. (3—10) can be written in the form

oy — 0oy

sin2¢, — Ty, cos2¢, =0 (a)

Comparing this with Eq. (3-9), we see that T = 0, meaning that the surfaces contain-
ing principal stresses have zero shear stresses.

In a similar manner, we differentiate Eq. (3-9), set the result equal to zero, and
obtain

oy — Oy
tan 2¢p; = —— 2

3-11
™ (3-11)
Equation (3—11) defines the two values of 2¢, at which the shear stress T reaches an
extreme value. The angle between the surfaces containing the maximum shear stresses
is 90°. Equation (3—11) can also be written as

oy — 0oy

2

co82¢, + Ty sin2¢, =0 (b)

Substituting this into Eq. (3-8) yields

o, + o,
= ! -12

Equation (3—12) tells us that the two surfaces containing the maximum shear stresses
also contain equal normal stresses of (o, + 0)/2.

Comparing Egs. (3-10) and (3—11), we see that tan 2¢; is the negative reciprocal
of tan 2¢,. This means that 2¢, and 2¢, are angles 90° apart, and thus the angles
between the surfaces containing the maximum shear stresses and the surfaces contain-
ing the principal stresses are +45°.

Formulas for the two principal stresses can be obtained by substituting the
angle 2¢), from Eq. (3—10) in Eq. (3—-8). The result is

o, +o Oy — O 2
oor= 2t 0y <x2 ) +22 (3-13)
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In a similar manner the two extreme-value shear stresses are found to be

2
T, T = i\/(%) + ‘L'xzy (3-14)

Your particular attention is called to the fact that an extreme value of the shear stress
may not be the same as the actual maximum value. See Sec. 3-7.

It is important to note that the equations given to this point are quite sufficient for
performing any plane stress transformation. However, extreme care must be exercised
when applying them. For example, say you are attempting to determine the principal
state of stress for a problem where o, = 14 MPa, 0, = —10 MPa, and 7,, = —16 MPa.
Equation (3-10) yields ¢, = —26.57° and 63.43° to locate the principal stress surfaces,
whereas, Eq. (3—13) gives o7 = 22 MPa and 0, = —18 MPa for the principal stresses.
If all we wanted was the principal stresses, we would be finished. However, what if
we wanted to draw the element containing the principal stresses properly oriented rel-
ative to the x, y axes? Well, we have two values of ¢, and two values for the princi-
pal stresses. How do we know which value of ¢, corresponds to which value of the
principal stress? To clear this up we would need to substitute one of the values of ¢,
into Eq. (3-8) to determine the normal stress corresponding to that angle.

A graphical method for expressing the relations developed in this section, called
Mohr’s circle diagram, is a very effective means of visualizing the stress state at a point
and keeping track of the directions of the various components associated with plane
stress. Equations (3—8) and (3-9) can be shown to be a set of parametric equations for
o and t, where the parameter is 2¢p. The relationship between o and 7 is that of a cir-
cle plotted in the o, T plane, where the center of the circle is located at C = (o0, 1) =
[(0x + 0y)/2,0] and has a radius of R = /[(0, — 0,)/2]*> 4+ 72,. A problem arises in
the sign of the shear stress. The transformation equations are based on a positive ¢
being counterclockwise, as shown in Fig. 3-9. If a positive T were plotted above the
o axis, points would rotate clockwise on the circle 2¢ in the opposite direction of
rotation on the element. It would be convenient if the rotations were in the same
direction. One could solve the problem easily by plotting positive T below the axis.
However, the classical approach to Mohr’s circle uses a different convention for the
shear stress.

Mohr’s Circle Shear Convention
This convention is followed in drawing Mohr’s circle:

* Shear stresses tending to rotate the element clockwise (cw) are plotted above the
o axis.

* Shear stresses tending to rotate the element counterclockwise (ccw) are plotted below
the o axis.

For example, consider the right face of the element in Fig. 3-8b. By Mohr’s circle con-
vention the shear stress shown is plotted below the o axis because it tends to rotate the
element counterclockwise. The shear stress on the top face of the element is plotted
above the o axis because it tends to rotate the element clockwise.

In Fig. 3-10 we create a coordinate system with normal stresses plotted along the
abscissa and shear stresses plotted as the ordinates. On the abscissa, tensile (positive)
normal stresses are plotted to the right of the origin O and compressive (negative) nor-
mal stresses to the left. On the ordinate, clockwise (cw) shear stresses are plotted up;
counterclockwise (ccw) shear stresses are plotted down.
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Using the stress state of Fig. 3-8b, we plot Mohr’s circle, Fig. 3—10, by first look-
ing at the right surface of the element containing o, to establish the sign of o, and the
cw or ccw direction of the shear stress. The right face is called the x face where
¢ = 0°. If o, is positive and the shear stress 7., is ccw as shown in Fig. 3-8b, we can
establish point A with coordinates (oy, 7{3") in Fig. 3-10. Next, we look at the top y
face, where ¢ = 90°, which contains o, and repeat the process to obtain point B with
coordinates (oy, T;y') as shown in Fig. 3-10. The two states of stress for the element
are A¢ = 90° from each other on the element so they will be 2A¢ = 180° from each
other on Mohr’s circle. Points A and B are the same vertical distance from the o axis.
Thus, A B must be on the diameter of the circle, and the center of the circle C is where
AB intersects the o axis. With points A and B on the circle, and center C, the complete
circle can then be drawn. Note that the extended ends of line AB are labeled x and y
as references to the normals to the surfaces for which points A and B represent the
stresses.

The entire Mohr’s circle represents the state of stress at a single point in a struc-
ture. Each point on the circle represents the stress state for a specific surface intersect-
ing the point in the structure. Each pair of points on the circle 180° apart represent the
state of stress on an element whose surfaces are 90° apart. Once the circle is drawn, the
states of stress can be visualized for various surfaces intersecting the point being ana-
lyzed. For example, the principal stresses o] and o, are points D and E, respectively,
and their values obviously agree with Eq. (3—13). We also see that the shear stresses
are zero on the surfaces containing o and 0,. The two extreme-value shear stresses, one
clockwise and one counterclockwise, occur at F' and G with magnitudes equal to the
radius of the circle. The surfaces at F and G each also contain normal stresses of
(ox +0y)/2 as noted earlier in Eq. (3-12). Finally, the state of stress on an arbitrary
surface located at an angle ¢ counterclockwise from the x face is point H.
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At one time, Mohr’s circle was used graphically where it was drawn to scale very
accurately and values were measured by using a scale and protractor. Here, we are strictly
using Mohr’s circle as a visualization aid and will use a semigraphical approach, calculat-
ing values from the properties of the circle. This is illustrated by the following example.

EXAMPLE 3-4 A stress element has o, = 80 MPa and 7, = 50 MPa cw, as shown in Fig. 3—11a.

(a) Using Mohr’s circle, find the principal stresses and directions, and show these
on a stress element correctly aligned with respect to the xy coordinates. Draw another
stress element to show t; and 1, find the corresponding normal stresses, and label the
drawing completely.

(b) Repeat part a using the transformation equations only.

Solution (a) In the semigraphical approach used here, we first make an approximate freehand
sketch of Mohr’s circle and then use the geometry of the figure to obtain the desired
information.

Draw the o and 7 axes first (Fig. 3—11b) and from the x face locate o, = 80 MPa
along the o axis. On the x face of the element, we see that the shear stress is 50 MPa in
the cw direction. Thus, for the x face, this establishes point A (80, 50°%) MPa.
Corresponding to the y face, the stress is 0 = 0 and T = 50 MPa in the ccw direction.
This locates point B (0, 50°“*) MPa. The line A B forms the diameter of the required cir-
cle, which can now be drawn. The intersection of the circle with the o axis defines o
and o, as shown. Now, noting the triangle AC D, indicate on the sketch the length of the
legs AD and CD as 50 and 40 MPa, respectively. The length of the hypotenuse AC is

Answer 71 = v/ (50)% + (40)%2 = 64.0 MPa

and this should be labeled on the sketch too. Since intersection C is 40 MPa from the
origin, the principal stresses are now found to be

Answer o1 = 40 + 64 = 104 MPa and 0y, =40 — 64 = —24 MPa
The angle 2¢ from the x axis cw to oy is
Answer 2¢, = tan™! % =51.3°

To draw the principal stress element (Fig. 3—11c¢), sketch the x and y axes parallel
to the original axes. The angle ¢, on the stress element must be measured in the same
direction as is the angle 2¢), on the Mohr circle. Thus, from x measure 25.7° (half of
51.3°) clockwise to locate the o; axis. The o, axis is 90° from the o axis and the stress
element can now be completed and labeled as shown. Note that there are no shear
stresses on this element.

The two maximum shear stresses occur at points E and F in Fig. 3—11b. The two
normal stresses corresponding to these shear stresses are each 40 MPa, as indicated.
Point E is 38.7° ccw from point A on Mohr’s circle. Therefore, in Fig. 3—11d, draw a
stress element oriented 19.3° (half of 38.7°) ccw from x. The element should then be
labeled with magnitudes and directions as shown.

In constructing these stress elements it is important to indicate the x and y direc-
tions of the original reference system. This completes the link between the original
machine element and the orientation of its principal stresses.
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Figure 3-11 7 » z
All stresses in MPa. (80, 50°™)
50 <€———
80
4_} i—V — X
—> 50 (<P}
(a) o

(0, 50¢<%)

(b)

Answer

(c) (d)

(b) The transformation equations are programmable. From Eq. (3—10),

#) = ~an~! [ 22 L a1 (2559 25.7°, 64.3°
= —tan —— )= —tan = —25.7°, 64.
) 5 — @iy 2 80

From Eq. (3-8), for the first angle ¢, = —25.7°,

80+0 80—-0
o=t

cos[2(=25.7)] + (—50) sin[2(—25.7)] = 104.03 MPa

The shear on this surface is obtained from Eq. (3-9) as

T=—

sin[2(—25.7)] 4 (—=50) cos[2(—25.7)] = 0 MPa

which confirms that 104.03 MPa is a principal stress. From Eq. (3-8), for ¢, = 64.3°,

80+0 80—-0
7= T

cos[2(64.3)] + (—50) sin[2(64.3)] = —24.03 MPa
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Answer  Substituting ¢, = 64.3° into Eq. (3-9) again yields T = 0, indicating that —24.03 MPa
is also a principal stress. Once the principal stresses are calculated they can be ordered
such that oy > 03. Thus, oy = 104.03 MPa and 0, = —24.03 MPa.

Since for o = 104.03 MPa, ¢, = —25.7°, and since ¢ is defined positive ccw in the
transformation equations, we rotate clockwise 25.7° for the surface containing o;. We
see in Fig. 3—11c that this totally agrees with the semigraphical method.

To determine t; and 7,, we first use Eq. (3—11) to calculate ¢y:

1 - 1 80
¢ = ~tan [T D) — “qan! (- = 19.3°,109.3°
3 2%, ) 2 2(=50)

For ¢y = 19.3°, Egs. (3-8) and (3-9) yield

80+0 80—-0
Answer oc=—-+

5 cos[2(19.3)] + (—50) sin[2(19.3)] = 40.0 MPa

sin[2(19.3)] 4 (—50) cos[2(19.3)] = —64.0 MPa

Remember that Eqs. (3-8) and (3-9) are coordinate transformation equations. Imagine
that we are rotating the x, y axes 19.3° counterclockwise and y will now point up and
to the left. So a negative shear stress on the rotated x face will point down and to the
right as shown in Fig. 3—11d. Thus again, results agree with the semigraphical method.

For ¢y = 109.3°, Egs. (3-8) and (3-9) give 0 = 40.0 MPa and t = +64.0 MPa.
Using the same logic for the coordinate transformation we find that results again agree
with Fig. 3-114.

3-/ General Three-Dimensional Stress

As in the case of plane stress, a particular orientation of a stress element occurs in space
for which all shear-stress components are zero. When an element has this particular ori-
entation, the normals to the faces are mutually orthogonal and correspond to the prin-
cipal directions, and the normal stresses associated with these faces are the principal
stresses. Since there are three faces, there are three principal directions and three prin-
cipal stresses o, 02, and o3. For plane stress, the stress-free surface contains the third
principal stress which is zero.

In our studies of plane stress we were able to specify any stress state oy, oy, and
7., and find the principal stresses and principal directions. But six components of
stress are required to specify a general state of stress in three dimensions, and the
problem of determining the principal stresses and directions is more difficult. In
design, three-dimensional transformations are rarely performed since most maxi-
mum stress states occur under plane stress conditions. One notable exception is con-
tact stress, which is not a case of plane stress, where the three principal stresses are
given in Sec. 3-19. In fact, all states of stress are truly three-dimensional, where
they might be described one- or two-dimensionally with respect to specific coordi-
nate axes. Here it is most important to understand the relationship amongst the three
principal stresses. The process in finding the three principal stresses from the six
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(@) (b)

stress components oy, 0y, 0;, Txy, Ty;, and 7., involves finding the roots of the cubic
equation’

3 2 2 2 2
0’ — (0 +0oy,+0,)0° + (oxa_\, +o.0; +o0y0; — T, — Ty — rzx)a

2 2 2
— (oxoyoz + 2Ty Ty Tox — 02Ty, — Oy T, — szxy) =0 (3-15)

In plotting Mohr’s circles for three-dimensional stress, the principal normal
stresses are ordered so that o1 > 0, > o3. Then the result appears as in Fig. 3—12a. The
stress coordinates o, T for any arbitrarily located plane will always lie on the bound-
aries or within the shaded area.

Figure 3—12a also shows the three principal shear stresses T, /3, and T /3.2
Each of these occurs on the two planes, one of which is shown in Fig. 3—12b. The fig-
ure shows that the principal shear stresses are given by the equations

01 — 03 0y — 03 01 — 03

= = 3-16
3 T2/3 > 71,3 5 ( )

T2 =
Of course, Tmax = 71,3 When the normal principal stresses are ordered (o1 > 05 > 03),
so always order your principal stresses. Do this in any computer code you generate and
you’ll always generate Tpyy.

Elastic Strain

Normal strain € is defined and discussed in Sec. 2-1 for the tensile specimen and is
given by Eq. (2-2) as € = §/1, where § is the total elongation of the bar within the
length I. Hooke’s law for the tensile specimen is given by Eq. (2-3) as

o =FEe (3-17)

where the constant E is called Young’s modulus or the modulus of elasticity.

'For development of this equation and further elaboration of three-dimensional stress transformations see:
Richard G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., McGraw-Hill, New York,
1999, pp. 46-78.

2Note the difference between this notation and that for a shear stress, say, Tyy. The use of the shilling mark is
not accepted practice, but it is used here to emphasize the distinction.
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When a material is placed in tension, there exists not only an axial strain, but also
negative strain (contraction) perpendicular to the axial strain. Assuming a linear,
homogeneous, isotropic material, this lateral strain is proportional to the axial strain. If
the axial direction is x, then the lateral strains are €, = €, = —ve,. The constant of pro-
portionality v is called Poisson’s ratio, which is about 0.3 for most structural metals.
See Table A-5 for values of v for common materials.

If the axial stress is in the x direction, then from Eq. (3—17)

€ = G—bf €y =€, = —va—g (3-18)

For a stress element undergoing o,, oy, and o, simultaneously, the normal strains

are given by

1
€=z [ox — v(oy +02)]

1
&= [0y — v(ox +02)] (3-19)
€ = é [az —v(ox + ay)]

Shear strain y is the change in a right angle of a stress element when subjected to
pure shear stress, and Hooke’s law for shear is given by

T =Gy (3-20)

where the constant G is the shear modulus of elasticity or modulus of rigidity.
It can be shown for a linear, isotropic, homogeneous material, the three elastic con-
stants are related to each other by

E=2G1+v) (3-21)

3-9  Uniformly Distributed Stresses

The assumption of a uniform distribution of stress is frequently made in design. The
result is then often called pure tension, pure compression, or pure shear, depending
upon how the external load is applied to the body under study. The word simple is some-
times used instead of pure to indicate that there are no other complicating effects.
The tension rod is typical. Here a tension load F is applied through pins at the ends of
the bar. The assumption of uniform stress means that if we cut the bar at a section
remote from the ends and remove one piece, we can replace its effect by applying a uni-
formly distributed force of magnitude oA to the cut end. So the stress o is said to be
uniformly distributed. It is calculated from the equation

o= (3-22)

This assumption of uniform stress distribution requires that:

* The bar be straight and of a homogeneous material
¢ The line of action of the force contains the centroid of the section

* The section be taken remote from the ends and from any discontinuity or abrupt
change in cross section
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For simple compression, Eq. (3-22) is applicable with F' normally being con-
sidered a negative quantity. Also, a slender bar in compression may fail by buckling,
and this possibility must be eliminated from consideration before Eq. (3-22) is
used.?

Use of the equation

r=2 (3-23)

for a body, say, a bolt, in shear assumes a uniform stress distribution too. It is very
difficult in practice to obtain a uniform distribution of shear stress. The equation is
included because occasions do arise in which this assumption is utilized.

Normal Stresses for Beams in Bending

The equations for the normal bending stresses in straight beams are based on the fol-
lowing assumptions:

1 The beam is subjected to pure bending. This means that the shear force is zero,
and that no torsion or axial loads are present.

2 The material is isotropic and homogeneous.

3 The material obeys Hooke’s law.

4 The beam is initially straight with a cross section that is constant throughout the
beam length.

5 The beam has an axis of symmetry in the plane of bending.

6  The proportions of the beam are such that it would fail by bending rather than by
crushing, wrinkling, or sidewise buckling.

7  Plane cross sections of the beam remain plane during bending.

In Fig. 3-13 we visualize a portion of a straight beam acted upon by a positive
bending moment M shown by the curved arrow showing the physical action of the
moment together with a straight arrow indicating the moment vector. The x axis is
coincident with the neutral axis of the section, and the xz plane, which contains the
neutral axes of all cross sections, is called the neutral plane. Elements of the beam
coincident with this plane have zero stress. The location of the neutral axis with
respect to the cross section is coincident with the centroidal axis of the cross
section.

3See Sec. 4-11.
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Figure 3-14 y Compression
/
Bending sfresses according to T
Eq' '3_24) ¥ ¢ Neutral axis, Centroidal axis
R L R
Tension

The bending stress varies linearly with the distance from the neutral axis, y, and is

given by
M
A (3-24)
1
where [ is the second moment of area about the z axis. That is
I = / yidA (3-25)

The stress distribution given by Eq. (3—24) is shown in Fig. 3—14. The maximum magni-
tude of the bending stress will occur where y has the greatest magnitude. Designating o,
as the maximum magnitude of the bending stress, and ¢ as the maximum magnitude of y

Mc
Omax = —— (3_260)

1
Equation (3-24) can still be used to ascertain as to whether oy, is tensile or compressive.
Equation (3-26a) is often written as

M

Omax = — (3-26b)

where Z = I/c is called the section modulus.

EXAMPLE 3-5 A beam having a T section with the dimensions shown in Fig. 3—15 is subjected to a
bending moment of 1600 N - m that causes tension at the top surface. Locate the neu-
tral axis and find the maximum tensile and compressive bending stresses.

Solution The area of the composite section is A = 1956 mm?. Now divide the T section into two
rectangles, numbered 1 and 2, and sum the moments of these areas about the top edge.
We then have

1956¢; = 12(75)(6) + 12(88)(56)

and hence ¢; = 32.99 mm. Therefore ¢, = 100 — 32.99 = 67.01 mm.
Next we calculate the second moment of area of each rectangle about its own cen-
troidal axis. Using Table A-18, we find for the top rectangle

1 1
I, = —bh® = —(75)12° = 1.080 x 10* mm*
12 12
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100

~f 12

For the bottom rectangle, we have
1 3 S 4
L = 5(12)88 = 6.815 x 10° mm
We now employ the parallel-axis theorem to obtain the second moment of area of the
composite figure about its own centroidal axis. This theorem states
I, = I, + Ad?

where /., is the second moment of area about its own centroidal axis and /. is the sec-
ond moment of area about any parallel axis a distance d removed. For the top rectan-
gle, the distance is

dy =32.99 — 6 =26.99 mm
and for the bottom rectangle,
dr, = 67.01 — 44 = 23.01 mm
Using the parallel-axis theorem for both rectangles, we now find that
I =[1.080 x 10* + 12(75)26.997] + [6.815 x 10° + 12(88)23.01°]
= 1.907 x 10° mm*

Finally, the maximum tensile stress, which occurs at the top surface, is found to be

Me,  1600(32.99)1073

= = 27.68(10°) Pa = 27.68 MPa
I 1.907(10-6)

o =

Similarly, the maximum compressive stress at the lower surface is found to be

Me;  1600(67.01)107

= = —56.22(10°) Pa = —56.22 MPa
I 1.907(10-6)

o=—
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Two-Plane Bending
Quite often, in mechanical design, bending occurs in both xy and xz planes. Considering
cross sections with one or two planes of symmetry only, the bending stresses are given by

M.y M,z

I, + I,

(3-27)

where the first term on the right side of the equation is identical to Eq. (3-24), M, is
the bending moment in the xz plane (moment vector in y direction), z is the distance
from the neutral y axis, and /, is the second area moment about the y axis.

For noncircular cross sections, Eq. (3-27) is the superposition of stresses caused
by the two bending moment components. The maximum tensile and compressive bend-
ing stresses occur where the summation gives the greatest positive and negative stress-
es, respectively. For solid circular cross sections, all lateral axes are the same and the
plane containing the moment corresponding to the vector sum of M, and M, contains
the maximum bending stresses. For a beam of diameter d the maximum distance from
the neutral axis is d/2, and from Table A—18, I = wd*/64. The maximum bending stress
for a solid circular cross section is then
Me _(Mj+MD'Pd/2) 32 M2 4+ M*)2 (3-28)

I md* /64 =z My M)

Om =

EXAMPLE 3-6  As shown in Fig. 3-16a, beam OC is loaded in the xy plane by a uniform load of 50
Ibf/in, and in the xz plane by a concentrated force of 100 1bf at end C. The beam is 8 in
long.

Figure 3-16 Y y

50 Ibf/in

1AAA2A2222222 257 SN
0 ©

1600 Ibf-in 1400 1bf

(a) Beam loaded in two
planes; (b) loading and

bending-moment diagrams

50 Ibf/in
in xy plane; (¢ loading and
M,
(Ibf-in)
1.5in 0

1 x
X /
100 Ibf
—1600 —

@ &

bending-moment diagrams z

in xz plane.

100 1bf
800 Ibf-in
—
B fe
% 100 Ibf
M,
(Ibf-in)

0

(c)

X



‘ Budynas-Nisbett: Shigley’s | |. Basics

Mechanical Engineering

Design, Eighth Edition

Solution

Answer

Answer

Answer

3. Load and Stress Analysis © The McGraw-Hill
Companies, 2008

load and Stress Analysis 89

(a) For the cross section shown determine the maximum tensile and compressive
bending stresses and where they act.

(b) If the cross section was a solid circular rod of diameter, d = 1.25 in, determine
the magnitude of the maximum bending stress.

(a) The reactions at O and the bending-moment diagrams in the xy and xz planes are
shown in Figs. 3—16b and c, respectively. The maximum moments in both planes occur
at O where

1
(Mo = —5(50)82 = —1600 Ibf-in (M,)o = 100(8) = 800 Ibf-in
The second moments of area in both planes are
1 3 . 4 1 3 . 4
/= 5(0.75)1.5 =0.21091n Iy = 5(1.5)0.75 = 0.05273in
The maximum tensile stress occurs at point A, shown in Fig. 3—16a, where the maxi-
mum tensile stress is due to both moments. At A, y4 = 0.75 in and z4 = 0.375 in. Thus,

from Eq. (3-27)

—1600(0.75) ~ 800(0.375)
0.2109 0.05273

(0x)a = — = 11380psi = 11.38kpsi

The maximum compressive bending stress occurs at point B where, yg = —0.75 in and
zg = —0.375 in. Thus

—1600(—0.75 800(—0.375
( ) ( ) = —11380psi = —11.38 kpsi
0.2109 0.05273

(GX)B = -

(b) For a solid circular cross section of diameter, d = 1.25 in, the maximum bending
stress at end O is given by Eq. (3-28) as

32

_ 2 /2 _ . .
O = s [800% 4 (—1600)%]"* = 9326 psi = 9.329kpsi

Beams with Asymmetrical Sections
The relations developed earlier in this section can also be applied to beams having
asymmetrical sections, provided that the plane of bending coincides with one of the two
principal axes of the section. We have found that the stress at a distance y from the neu-
tral axis is

My

o = —T (G)

Therefore, the force on the element of area d A in Fig. 3—17 is

M
dF:adA:—TydA
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Taking moments of this force about the y axis and integrating across the section gives

M
My=/zdF=/osz=—7/yZdA (b)

We recognize that the last integral in Eq. () is the product of inertia /.. If the bending
moment on the beam is in the plane of one of the principal axes, say the xy plane, then

Iyz=/ysz=O (c)

With this restriction, the relations developed in Sec. 3—10 hold for any cross-sectional
shape. Of course, this means that the designer has a special responsibility to ensure that
the bending loads do, in fact, come onto the beam in a principal plane!

3-11 Shear Stresses for Beams in Bending

Most beams have both shear forces and bending moments present. It is only occasion-
ally that we encounter beams subjected to pure bending, that is to say, beams having
zero shear force. The flexure formula is developed on the assumption of pure bending.
This is done, however, to eliminate the complicating effects of shear force in the devel-
opment. For engineering purposes, the flexure formula is valid no matter whether a
shear force is present or not. For this reason, we shall utilize the same normal bending-
stress distribution [Egs. (3—24) and (3-26)] when shear forces are also present.

In Fig. 3-18a we show a beam segment of constant cross section subjected to a
shear force V and a bending moment M at x. Because of external loading and V, the
shear force and bending moment change with respect to x. At x + dx the shear force
and bending moment are V + dV and M + d M, respectively. Considering forces in the
x direction only, Fig. 3-18b shows the stress distribution o, due to the bending
moments. If dM is positive, with the bending moment increasing, the stresses on the
right face, for a given value of y, are larger in magnitude than the stresses on the left
face. If we further isolate the element by making a slice at y = y; (see Fig. 3—-18b), the
net force in the x direction will be directed to the left with a value of

“(dM)y
1

dA

i

as shown in the rotated view of Fig. 3—18c. For equilibrium, a shear force on the bottom
face, directed to the right, is required. This shear force gives rise to a shear stress t,
where, if assumed uniform, the force is b dx. Thus

“dM)y

thdx = dA (a)

i
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Figure 3-18

Beam section isolation. Note:
Only forces shown in x
direction on dx element in (b).

EXAMPLE 3-7

)

The term dM/I can be removed from within the integral and b dx placed on the right
side of the equation; then, from Eq. (3-3) with V. = dM /dx, Eq. (a) becomes

Vv o[
T=— dA 3-29
), y (3-29)
In this equation, the integral is the first moment of the area A’ with respect to the neu-
tral axis (see Fig. 3—18c). This integral is usually designated as Q. Thus

0= / ydA =y'A’ (3-30)
Vi

where, for the isolated area y; to ¢, y’ is the distance in the y direction from the neutral
plane to the centroid of the area A’. With this, Eq. (3—29) can be written as

_ Ve

=7, (3-31)

In using this equation, note that b is the width of the section at y = y;. Also, [ is the
second moment of area of the entire section about the neutral axis.

Because cross shears are equal, and area A’ is finite, the shear stress t given by
Eq. (3-31) and shown on area A’ in Fig. 3-18c¢ occurs only at y = y;. The shear stress
on the lateral area varies with y (normally maximum at the neutral axis where y = 0,
and zero at the outer fibers of the beam where Q = A" = 0).

A beam 12 in long is to support a load of 488 Ibf acting 3 in from the left support, as
shown in Fig. 3—19a. Basing the design only on bending stress, a designer has selected
a 3-in aluminum channel with the cross-sectional dimensions shown. If the direct shear
is neglected, the stress in the beam may be actually higher than the designer thinks.
Determine the principal stresses considering bending and direct shear and compare
them with that considering bending only.
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| Figure 3-19 y
488 1bf

<—3in 9in 0.273 in
-t 3in < 0.170 in
4 A —] < 1.410in

R, =366 Ibf R, =122 Ibf I=1.66in* %: 1.10 in?
(a)
y dA dy

| i N

[ - x T a

T 1 1.227in y
366 Ibf 122 Ibf L i

366 Ibf

0
|

—122 Ibf |

1098 1bf - in ©
o

(b)

Solution The loading, shear-force, and bending-moment diagrams are shown in Fig. 3—19b. If
the direct shear force is included in the analysis, the maximum stresses at the top and
bottom of the beam will be the same as if only bending were considered. The maximum
bending stresses are

Mc 1098(1.5) .

=t+—=+——-=4992

7=F 1.66 Pl
However, the maximum stress due to the combined bending and direct shear
stresses may be maximum at the point (37, 1.227) that is just to the left of the applied
load, where the web joins the flange. To simplify the calculations we assume a cross
section with square corners (Fig. 3—19c¢). The normal stress at section ab, with x = 3

in, is

My  1098(1.227) ,
Ol LN T
i 1.66 pst

For the shear stress at section ab, considering the area above ab and using Eq. (3-30) gives

0.273
0=yA = (1.227 + T) (1.410)(0.273) = 0.525 in®
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Using Eq. (3-31) with V =366 Ibf, I = 1.66in*, Q = 0.525in?, and b = 0.170 in
yields

. VO | 3660525 _ o
YT T, T T 1.66(0.170) P

The negative sign comes from recognizing that the shear stress is down on an x face of
a dx dy element at the location being considered.

The principal stresses at the point can now be determined. Using Eq. (3—13), we
find that at x = 37 in, y = 1.227 in,

oy +o0o Ty = @ 2
— y 2 y 2
01,00 = 5 + ( 2 ) + 15,

—812+0 —812— 0>
= TJ“ 4 \/(T) + (—681)% = 387, —1200 psi

For a point at x = 37 in, y = —1.227 in, the principal stresses are oy, on = 1200,
—387 psi. Thus we see that the maximum principal stresses are +=1200 psi, 21 percent
higher than thought by the designer.

Shear Stresses in Standard-Section Beams

The shear stress distribution in a beam depends on how Q/b varies as a function of
vi1. Here we will show how to determine the shear stress distribution for a beam with
a rectangular cross section and provide results of maximum values of shear stress for
other standard cross sections. Figure 3-20 shows a portion of a beam with a rectan-
gular cross section, subjected to a shear force V and a bending moment M. As a
result of the bending moment, a normal stress o is developed on a cross section such
as A-A, which is in compression above the neutral axis and in tension below. To
investigate the shear stress at a distance y; above the neutral axis, we select an
element of area d A at a distance y above the neutral axis. Then, dA = bdy, and so
Eq. (3-30) becomes

c c b 2¢ b
0= [ yaa=b [ yay="] =2 () (a)
i yi Y
Substituting this value for Q into Eq. (3-31) gives
Vi 2
T = 37 (c — yl) (3-32)

This is the general equation for shear stress in a rectangular beam. To learn some-
thing about it, let us make some substitutions. From Table A—18, the second moment
of area for a rectangular section is I = bh’/12; substituting h =2¢ and A =
bh = 2bc gives

=22 (b)
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Figure 3-20 y y y
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(d)

If we now use this value of / for Eq. (3-32) and rearrange, we get

3V 2
r=0 <1 - i—;) (3-33)

We note that the maximum shear stress exists when y; = 0, which is at the bending neu-
tral axis. Thus

3V

max — S, 3-34
Tmax = o ( )

for a rectangular section. As we move away from the neutral axis, the shear stress
decreases parabolically until it is zero at the outer surfaces where y; = *c, as shown
in Fig. 3-20c. It is particularly interesting and significant here to observe that the
shear stress is maximum at the bending neutral axis, where the normal stress due to
bending is zero, and that the shear stress is zero at the outer surfaces, where the
bending stress is a maximum. Horizontal shear stress is always accompanied by
vertical shear stress of the same magnitude, and so the distribution can be dia-
grammed as shown in Fig. 3-20d. Figure 3-20c shows that the shear t on the verti-
cal surfaces varies with y. We are almost always interested in the horizontal shear, t
in Fig. 3-20d, which is nearly uniform with constant y. The maximum horizontal
shear occurs where the vertical shear is largest. This is usually at the neutral axis but
may not be if the width b is smaller somewhere else. Furthermore, if the section is
such that b can be minimized on a plane not horizontal, then the horizontal shear
stress occurs on an inclined plane. For example, with tubing, the horizontal shear
stress occurs on a radial plane and the corresponding “vertical shear” is not vertical,
but tangential.

Formulas for the maximum flexural shear stress for the most commonly used
shapes are listed in Table 3-2.
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Beam Shape Formula Beam Shape Formula
_3 2V
Tmax = ﬂ Tmax = T

Rectangular

Hollow, thin-walled round

4v 4

Tmax = ﬁ Tmax =
Web

>

web

Circular Structural | beam (thin-walled)

Torsion

Any moment vector that is collinear with an axis of a mechanical element is called a
torque vector, because the moment causes the element to be twisted about that axis. A
bar subjected to such a moment is also said to be in torsion.

As shown in Fig. 3-21, the torque T applied to a bar can be designated by drawing
arrows on the surface of the bar to indicate direction or by drawing torque-vector arrows
along the axes of twist of the bar. Torque vectors are the hollow arrows shown on the
x axis in Fig. 3-21. Note that they conform to the right-hand rule for vectors.

The angle of twist, in radians, for a solid round bar is

Tl
0=— 3-35
G (3-35)
where T = torque
| = length
G = modulus of rigidity

J = polar second moment of area
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Shear stresses develop throughout the cross section. For a round bar in torsion,
these stresses are proportional to the radius p and are given by

T
r=2F (3-36)
J
Designating r as the radius to the outer surface, we have
Tr
Tmax = —~ (3_37)
J

The assumptions used in the analysis are:
* The bar is acted upon by a pure torque, and the sections under consideration are
remote from the point of application of the load and from a change in diameter.

e Adjacent cross sections originally plane and parallel remain plane and parallel after
twisting, and any radial line remains straight.

* The material obeys Hooke’s law.

Equation (3-37) applies only to circular sections. For a solid round section,

ad*
J =" 3-38
3 ( )
where d is the diameter of the bar. For a hollow round section,
J=2(dt—d?) (3-39)

T3

where the subscripts o and i refer to the outside and inside diameters, respectively.

In using Eq. (3-37) it is often necessary to obtain the torque 7 from a considera-
tion of the power and speed of a rotating shaft. For convenience when U. S. Customary
units are used, three forms of this relation are

FV 2nTn Tn
H = - = (3-40)
33000 33000(12) 63025
where H = power, hp
T = torque, Ibf - in
n = shaft speed, rev/min
F = force, Ibf
V = velocity, ft/min
When SI units are used, the equation is
H=Tw (3-41)

where H = power, W
T

w

torque, N - m

angular velocity, rad/s
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The torque T corresponding to the power in watts is given approximately by

H
T =9.55— (3-42)
n

where 7 is in revolutions per minute.

There are some applications in machinery for noncircular-cross-section members
and shafts where a regular polygonal cross section is useful in transmitting torque to a
gear or pulley that can have an axial change in position. Because no key or keyway is
needed, the possibility of a lost key is avoided. Saint Venant (1855) showed that the

maximum shearing stress in a rectangular b x ¢ section bar occurs in the middle of the
longest side b and is of the magnitude

1.8
(+57)
b/c

T . T
abc? ~ be?
where b is the longer side, c¢ the shorter side, and « a factor that is a function of the ratio
b/c as shown in the following table.* The angle of twist is given by
. T
T Bbc3G

(3-43)

Tmax =

(3-44)

where f is a function of b/c, as shown in the table.

2.00 2.50 3.00 4.00 6.00 8.00 10

o0

0.208  0.231

0.239

0.246  0.258 0.267 0.282 0299 0307 0313 0.333

0.141 0.196

EXAMPLE 3-8

0.214

0.228 0.249 0.263 0.281 0.299 0.307 0313 0.333

In Egs. (3—43) and (3-44) b and c are the width (long side) and thickness (short side)
of the bar, respectively. They cannot be interchanged. Equation (3—43) is also approxi-
mately valid for equal-sided angles; these can be considered as two rectangles, each of
which is capable of carrying half the torque.’

4S. Timoshenko, Strength of Materials, Part 1, 3rd ed., D. Van Nostrand Company, New York, 1955, p. 290.

SFor other sections see W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7Tth ed.,
McGraw-Hill, New York, 2002.

Figure 3-22 shows a crank loaded by a force F' = 300 Ibf that causes twisting and
bending of a %—in—diameter shaft fixed to a support at the origin of the reference system.
In actuality, the support may be an inertia that we wish to rotate, but for the purposes
of a stress analysis we can consider this a statics problem.

(a) Draw separate free-body diagrams of the shaft AB and the arm BC, and com-
pute the values of all forces, moments, and torques that act. Label the directions of the
coordinate axes on these diagrams.

(b) Compute the maxima of the torsional stress and the bending stress in the arm
BC and indicate where these act.
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| Figure 3-22 y

(c) Locate a stress element on the top surface of the shaft at A, and calculate all the
stress components that act upon this element.
(d) Determine the maximum normal and shear stresses at A.

Solution (a) The two free-body diagrams are shown in Fig. 3-23. The results are

At end C of arm BC: F = —300j 1bf, T¢c = —450k Ibf - in

At end B of arm BC: F = 300j Ibf, My = 1200i Ibf - in, Ty = 450Kk Ibf - in

At end B of shaft AB: F = —300j Ibf, T, = —1200i 1bf - in, M = —450k 1bf - in
At end A of shaft AB: F = 300j Ibf, M4 = 1950k 1bf - in, T4 = 1200i Ibf - in

| Figure 3-23




‘ Budynas-Nisbett: Shigley’s | |. Basics

Mechanical Engineering

Design, Eighth Edition

Answer

Answer

Answer

Answer

Answer

Answer

3. Load and Stress Analysis © The McGraw-Hill
Companies, 2008

Lload and Stress Analysis | 99

(b) For arm BC, the bending moment will reach a maximum near the shaft at
B. If we assume this is 1200 Ibf - in, then the bending stress for a rectangular sec-
tion will be

M oM 6(1200)

=2 2P OV 18400 psi
T/c~ bh2 ~ 025(1.25)2 pst

Of course, this is not exactly correct, because at B the moment is actually being trans-
ferred into the shaft, probably through a weldment.
For the torsional stress, use Eq. (3—43). Thus

T 5 1.8 450 5 1.8 10,400 osi
T = — — | = = S1
T pe? b/c 1.25(0.252) 1.25/0.25 P

This stress occurs at the middle of the li-in side.
(c) For a stress element at A, the bending stress is tensile and is

M 32M  32(1950)
O‘x = 0 = =
I/c nd? 7(0.75)3

=47 100 psi
The torsional stress is

-T —16T —16(1200
TXZ:_ = = ( ) :-145001)81
J/c wd3 (0.75)3

where the reader should verify that the negative sign accounts for the direction of ..

(d) Point A is in a state of plane stress where the stresses are in the xz plane. Thus
the principal stresses are given by Eq. (3—13) with subscripts corresponding to the
X, Z axes.

The maximum normal stress is then given by

2
oy + 0 Ty = @
o1 =—— Z+\/< 0 Z) + 12,

47140 47.1 —0\>
_ 2+ +\/< > >+(—14.5)2=51.2kpsi

The maximum shear stress at A occurs on surfaces different than the surfaces contain-
ing the principal stresses or the surfaces containing the bending and torsional shear
stresses. The maximum shear stress is given by Eq. (3—14), again with modified sub-
scripts, and is given by

2 2
- 47.1-0 :
T = \/(%) + 12 = \/(T) + (—14.5)2 = 27.7 kpsi
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EXAMPLE 3-9  The 1.5-in-diameter solid steel shaft shown in Fig. 3-24a is simply supported at the ends.
Two pulleys are keyed to the shaft where pulley B is of diameter 4.0 in and pulley C is of
diameter 8.0 in. Considering bending and torsional stresses only, determine the locations
and magnitudes of the greatest tensile, compressive, and shear stresses in the shaft.

Solution Figure 3-24b shows the net forces, reactions, and torsional moments on the shaft.
Although this is a three-dimensional problem and vectors might seem appropriate, we
will look at the components of the moment vector by performing a two-plane analysis.
Figure 3—24c¢ shows the loading in the xy plane, as viewed down the z axis, where bend-
ing moments are actually vectors in the z direction. Thus we label the moment diagram
as M, versus x. For the xz plane, we look down the y axis, and the moment diagram is
M, versus x as shown in Fig. 3—24d.

The net moment on a section is the vector sum of the components. That is,

M = /M?+ M? (1)
Mg = /20002 + 8000% = 8246 Ibf - in
Mc = /40002 + 4000% = 5657 Ibf - in

Thus the maximum bending moment is 8246 1bf - in and the maximum bending stress
at pulley B is

At point B,

At point C,

Mdj2  32M  32(8246)
© = =] =]
wd*/64  nwd? 7(1.53%)

= 24 890 psi

The maximum torsional shear stress occurs between B and C and is

Td/2 16T  16(1600) ,
r= o = = T 0414 psi
nd*/32  wdd  w(1.5%)

The maximum bending and torsional shear stresses occur just to the right of pulley
B at points E and F as shown in Fig. 3-24e. At point E, the maximum tensile stress will
be o7 given by

2 2
24 890 24 890
Answer o) = % + <%> +12= 5 + \/< > ) + 24142 = 25 120 psi

At point F, the maximum compressive stress will be o, given by

2 2
- 24 890 24 890
—6> +12= - \/< ) + 24142 = —25 120 psi

Answer 0) = — — > 5 >

|
ol |
Q
N

The extreme shear stress also occurs at E and F and is

+o\° +24 890\ *
Answer T = \/<76> +12= \/<79) + 24142 = 12 680 psi
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(a)
y
800 Ibf -
> .
5= 10101600 1bf-in
200 Ibf
10 in i
1200 Ibf 1600 Ibf - in
D
\x
400 Ibf
(@]
7 1200 Ibf
lﬁOO Ibf s B c D
X
A B C D . T 1
T T 800 Ibf 400 1bf
200 Ibf 400 Ibf z
4000 EU00
M, m,
(Ibf - in) 2000 (Ibf - in) 4000
o X o
© @
Location: at B (x = 10*)
8000 b - in
8246 Ibf-in
F
" Max. compression
and shear
2000 Ibf-in
_ 1 8000
B = tan 2000 = 76

Max. tension
and shear

| Figure 3-24 ©
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Figure 3-25

The depicted cross section is
elliptical, but the secfion need
not be symmetrical nor of
constant thickness.

Closed Thin-Walled Tubes (t « r)®

In closed thin-walled tubes, it can be shown that the product of shear stress times thickness
of the wall t¢ is constant, meaning that the shear stress t is inversely proportional to the
wall thickness 7. The total torque 7 on a tube such as depicted in Fig. 3-25 is given by

T = frtr ds = (rt)/rds =1t(2A,) =2A,1T

where A, is the area enclosed by the section median line. Solving for t gives

T
T =
2A,t

(3-45)

For constant wall thickness ¢, the angular twist (radians) per unit of length of the tube
0; is given by
TL,

O = ——2
' acAY;

(3-46)

where L, is the perimeter of the section median line. These equations presume the
buckling of the tube is prevented by ribs, stiffeners, bulkheads, and so on, and that the
stresses are below the proportional limit.

See Sec. 3—13, F. P. Beer, E. R. Johnston, and J. T. De Wolf, Mechanics of Materials, 4th ed., McGraw-Hill,
New York, 2006.

EXAMPLE 3-10 A welded steel tube is 40 in long, has a %—in wall thickness, and a 2.5-in by 3.6-in
rectangular cross section as shown in Fig. 3-26. Assume an allowable shear stress of
11 500 psi and a shear modulus of 11.5(10°) psi.
(a) Estimate the allowable torque 7.
(b) Estimate the angle of twist due to the torque.

Solution (a) Within the section median line, the area enclosed is
Ap = (2.5 —0.125)(3.6 — 0.125) = 8.253 in’
and the length of the median perimeter is

Ly = 2[(2.5 — 0.125) + (3.6 — 0.125)] = 11.70 in
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A recfangular steel tube
produced by welding.
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40 in

2.5in

L«—3.6 in

From Eq. (3-45) the torque 7 is
T =2A,,tt = 2(8.253)0.125(11500) = 23730 Ibf - in
(b) The angle of twist 6 from Eq. (3-46) is

0 =0l L [ 23 730011.70) (40) = 0.0284 rad = 1.62°
= = = = V. rada = 1.
U= 46421 T 4115 x 109)(8.2532)(0.125)

Compare the shear stress on a circular cylindrical tube with an outside diameter of 1 in
and an inside diameter of 0.9 in, predicted by Eq. (3—37), to that estimated by
Eq. (3—45).
From Eq. (3-37),

Tr Tr T(0.5)

Tmax — —~ — =

J (r/32) (dj} — di“) (r/32)(1* — 0.9%)

From Eq. (3-45),

= 14.809T

T T
2Ant  2(0.952/4)0.05

Taking Eq. (3-37) as correct, the error in the thin-wall estimate is —4.7 percent.

= 14.108T

T =

Open Thin-Walled Sections
When the median wall line is not closed, it is said to be open. Figure 3-27 presents
some examples. Open sections in torsion, where the wall is thin, have relations derived
from the membrane analogy theory’ resulting in:

T

=GOic = — 3-47
T ¢ L2 ( )

See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970, Sec.109.
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Figure 3-27 > e

Some open thin-wall sections. T :__ —
L |
|
|

I L

where 7 is the shear stress, G is the shear modulus, 6; is the angle of twist per unit
length, T is torque, and L is the length of the median line. The wall thickness is
designated ¢ (rather than ) to remind you that you are in open sections. By study-
ing the table that follows Eq. (3—44) you will discover that membrane theory pre-
sumes b/c — oo. Note that open thin-walled sections in torsion should be avoided
in design. As indicated in Eq. (3—47), the shear stress and the angle of twist are
inversely proportional to ¢ and c¢?, respectively. Thus, for small wall thickness,
stress and twist can become quite large. For example, consider the thin round tube
with a slit in Fig. 3-27. For a ratio of wall thickness of outside diameter of
c/d, = 0.1, the open section has greater magnitudes of stress and angle of twist by
factors of 12.3 and 61.5, respectively, compared to a closed section of the same
dimensions.

EXAMPLE 3-12 A 12-in-long strip of steel is é in thick and 1 in wide, as shown in Fig. 3-28. If the
allowable shear stress is 11 500 psi and the shear modulus is 11.5(10°) psi, find the

torque corresponding to the allowable shear stress and the angle of twist, in degrees,
(a) using Eq. (3—47) and (b) using Eqgs. (3—43) and (3—44).

Solution (a) The length of the median line is 1 in. From Eq. (3—47),
Lct . (1)(1/8)*11 500

T= =59.90 Ibf - in
3 3
7l 11500(12)
0=0l=—=——""—"—=0.0960rad = 5.5°
S = Ge T 11.53109(1/8) ra
A torsional spring rate k, can be expressed as 7/9:
. TN k; = 59.90/0.0960 = 624 1bf - in/rad
N (b) From Eq. (3-43),
2 2
T — TmaxbC _ 11 500(1)(0.125) — 5572 1bf - in
== 3+ 1.8/(b/c) 3+1.8/(1/0.125)
> Fegin From Eq. (3-44), with b/c = 1/0.125 = 8,
Figure 3-28 0= _ 25.72(12) = 0.0970 rad = 5.6°
The cross-section of a thin sfrip © Bbc3G T 0.307(1)0.1253(11.5)106 rad=>.

of steel subjected fo a

forsional moment T. k, = 55.72/0.0970 = 574 Ibf - in/rad
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Stress Concentration

In the development of the basic stress equations for tension, compression, bending, and
torsion, it was assumed that no geometric irregularities occurred in the member under
consideration. But it is quite difficult to design a machine without permitting some
changes in the cross sections of the members. Rotating shafts must have shoulders
designed on them so that the bearings can be properly seated and so that they will take
thrust loads; and the shafts must have key slots machined into them for securing pul-
leys and gears. A bolt has a head on one end and screw threads on the other end, both
of which account for abrupt changes in the cross section. Other parts require holes, oil
grooves, and notches of various kinds. Any discontinuity in a machine part alters the
stress distribution in the neighborhood of the discontinuity so that the elementary stress
equations no longer describe the state of stress in the part at these locations. Such dis-
continuities are called stress raisers, and the regions in which they occur are called
areas of stress concentration.

The distribution of elastic stress across a section of a member may be uniform as
in a bar in tension, linear as a beam in bending, or even rapid and curvaceous as in a
sharply curved beam. Stress concentrations can arise from some irregularity not inher-
ent in the member, such as tool marks, holes, notches, grooves, or threads. The nomi-
nal stress is said to exist if the member is free of the stress raiser. This definition is not
always honored, so check the definition on the stress-concentration chart or table you
are using.

A theoretical, or geometric, stress-concentration factor K; or K is used to relate
the actual maximum stress at the discontinuity to the nominal stress. The factors are
defined by the equations

Oma Tins
K, == K, = == (3-48)
(o)) 70

where K, is used for normal stresses and K, for shear stresses. The nominal stress o or
79 is more difficult to define. Generally, it is the stress calculated by using the elemen-
tary stress equations and the net area, or net cross section. But sometimes the gross
cross section is used instead, and so it is always wise to double check your source of K;
or K;, before calculating the maximum stress.

The subscript ¢ in K, means that this stress-concentration factor depends for its
value only on the geometry of the part. That is, the particular material used has no effect
on the value of K;. This is why it is called a theoretical stress-concentration factor.

The analysis of geometric shapes to determine stress-concentration factors is a dif-
ficult problem, and not many solutions can be found. Most stress-concentration factors
are found by using experimental techniques.® Though the finite-element method has
been used, the fact that the elements are indeed finite prevents finding the true maxi-
mum stress. Experimental approaches generally used include photoelasticity, grid
methods, brittle-coating methods, and electrical strain-gauge methods. Of course, the
grid and strain-gauge methods both suffer from the same drawback as the finite-element
method.

Stress-concentration factors for a variety of geometries may be found in
Tables A—15 and A-16.

8The best source book is W. D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed., John Wiley &
Sons, New York, 1997.
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Figure 3-29

Thin plate in fension or simple
compression with a fransverse
central hole. The net fensile
force is F = owt, where tis
the thickness of the plate. The
nominal stress is given by

F w
Tlo=dit T w—d

00 o

EXAMPLE 3-13
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3.0

2.8

2.6

22

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
dlw

An example is shown in Fig. 3-29, that of a thin plate loaded in tension where the
plate contains a centrally located hole.

In static loading, stress-concentration factors are applied as follows. In ductile
(ey > 0.05) materials, the stress-concentration factor is not usually applied to predict the
critical stress, because plastic strain in the region of the stress is localized and
has a strengthening effect. In brittle materials (e; < 0.05), the geometric stress-
concentration factor K is applied to the nominal stress before comparing it with strength.
Gray cast iron has so many inherent stress raisers that the stress raisers introduced by the
designer have only a modest (but additive) effect.

Be Alert to Viewpoint

On a “spade” rod end (or lug) a load is transferred through a pin to a rectangular-cross-
section rod or strap. The theoretical or geometric stress-concentration factor for this
geometry is known as follows, on the basis of the net area A = (w — d)t as shown in
Fig. 3-30.

0.50

d/WIO.15 0.20 025 030 0.35 040 045

K I 74 54 406 3.7 3.2 2.8 2.6 2.45

As presented in the table, K; is a decreasing monotone. This rod end is similar to the
square-ended lug depicted in Fig. A—15-12 of appendix A.

Omax = K00 (a)
K, F F
Omax = =K b
max = — o (b)
It is insightful to base the stress concentration factor on the unnotched area, wt. Let
F
Omax = K, — (c)
wt

By equating Eqgs. (b) and (c) and solving for K; we obtain

K — wt F K;

T FEMw_dy  1—d/w (d)
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Figure 3-30

A round-ended lug end fo a
rectangular cross-section rod.
The maximum tensile stress in
the lug occurs at locations A
and B. The net area

A= (w—dtis used in the
definition of K, but there is an
advantage to using the fofal
ared wi.

Figure 3-31

A cylinder subjected to both
internal and external pressure.
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A power regression curve-fit for the data in the above table in the form K; = a(d/w)®
gives the result a = exp(0.204 521 2) = 1.227, b = —0.935, and r2 = 0.9947. Thus

4\ 0935
K, =1.227 <—> (e)
w
which is a decreasing monotone (and unexciting). However, from Eq. (d),
;1227 (d\T"® ()
T l—d/w \w

Form another table from Eq. (f):
d/wlO.]S 0.20 025 030 0.35 040 045 050 055 0.60

K; |8.507 6.907 5980 5403 5.038 4.817 4.707 4.692 4.769 4.946

which shows a stationary-point minimum for K. This can be found by differentiating
Eq. (f) with respect to d/w and setting it equal to zero:

dK; (1 —d/w)ab(d/w)’™" +a(d/w)’

= 0
d(d/w) [1 - (d/w)]?
where b = —0.935, from which
d b —0.935

= 0.483

w) “b—1_ —0935-1

) *
with a corresponding K of 4.687. Knowing the section w x ¢ lets the designer specify the
strongest lug immediately by specifying a pin diameter of 0.483w (or, as a rule of thumb,
of half the width). The theoretical K, data in the original form, or a plot based on the data
using net area, would not suggest this. The right viewpoint can suggest valuable insights.

(_

Stresses in Pressurized Cylinders

Cylindrical pressure vessels, hydraulic cylinders, gun barrels, and pipes carrying fluids
at high pressures develop both radial and tangential stresses with values that depend
upon the radius of the element under consideration. In determining the radial stress o,
and the tangential stress o,, we make use of the assumption that the longitudinal
elongation is constant around the circumference of the cylinder. In other words, a right
section of the cylinder remains plane after stressing.

Referring to Fig. 3-31, we designate the inside radius of the cylinder by #;, the out-
side radius by r,, the internal pressure by p;, and the external pressure by p,. Then it can

be shown that tangential and radial stresses exist whose magnitudes are’
o Pitt = porg —riri(po — pi)/1*
a r2 —r?
o l
2 2, 20 2 (3-49)
__ Dil'i — Poly, +ri ro(p() - pi)/r

r — 2
2
¥ r:

°See Richard G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., McGraw-Hill, New
York, 1999, pp. 348-352.
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Figure 3-32

Distribution of stresses in a
thickwalled cylinder subjected
to internal pressure.
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(b) Radial stress
distribution

(a) Tangential stress
distribution

As usual, positive values indicate tension and negative values, compression.
The special case of p, = 0 gives

}’32 i rg
oy = r21_l’r2 (1 + r—2>

’ . ’ . (3-50)
oy = i L <1 — r—”)
o2 —p? r2

The equations of set (3—50) are plotted in Fig. 3—32 to show the distribution of stresses
over the wall thickness. It should be realized that longitudinal stresses exist when the
end reactions to the internal pressure are taken by the pressure vessel itself. This stress
is found to be

2
pir;
2 _ 2

rU ri

o = (3-51)
We further note that Eqs. (3—49), (3-50), and (3-51) apply only to sections taken a sig-
nificant distance from the ends and away from any areas of stress concentration.

Thin-Walled Vessels

When the wall thickness of a cylindrical pressure vessel is about one-twentieth, or less,
of its radius, the radial stress that results from pressurizing the vessel is quite small
compared with the tangential stress. Under these conditions the tangential stress can be
obtained as follows: Let an internal pressure p be exerted on the wall of a cylinder of
thickness ¢ and inside diameter d;. The force tending to separate two halves of a unit
length of the cylinder is pd;. This force is resisted by the tangential stress, also called
the hoop stress, acting uniformly over the stressed area. We then have pd; = 2to;, or

pd;
2t

This equation gives the average tangential stress and is valid regardless of the wall thick-

ness. For a thin-walled vessel an approximation to the maximum tangential stress is

pld; +1)
2t

(3-52)

(01)ay =

(3-53)

(Ut)max =

where d; + t is the average diameter.
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In a closed cylinder, the longitudinal stress o; exists because of the pressure upon
the ends of the vessel. If we assume this stress is also distributed uniformly over the
wall thickness, we can easily find it to be

pd;

1 (3-54)

o] =

An aluminum-alloy pressure vessel is made of tubing having an outside diameter of 8 in
and a wall thickness of  in.

(a) What pressure can the cylinder carry if the permissible tangential stress is
12 kpsi and the theory for thin-walled vessels is assumed to apply?

(b) On the basis of the pressure found in part (a), compute all of the stress compo-
nents using the theory for thick-walled cylinders.

(a) Here d; =8 —2(0.25) =7.51in,r; =7.5/2 =3.75 in, and r, = 8/2 = 4 in. Then
t/r; = 0.25/3.75 = 0.067. Since this ratio is greater than 2'—0, the theory for thin-walled
vessels may not yield safe results.

We first solve Eq. (3—53) to obtain the allowable pressure. This gives

2t (0)max _ 2(0.25)(12)(10)° .
= = = 774 psi
di +1t 7.5+0.25

Then, from Eq. (3—54), we find the average longitudinal stress to be

pd;  T74(1.5)

o ) 5810 psi
4r ~ 4(0.25)

o) =

(b) The maximum tangential stress will occur at the inside radius, and so we use
r = r; in the first equation of Eq. (3—-50). This gives

(CT, )max =

2p, 2\ rR24r? #4375 |
i (1+ ﬁ) = p T 7742 T 15000 psi

2 Lo 2 2 __ 2
rZ —r; ; r: —r; 4 3.75

Similarly, the maximum radial stress is found, from the second equation of Eq. (3-50)
to be

o, = —pi = —7174 psi

Equation (3-51) gives the longitudinal stress as

2 2

Dit; 774(3.75) .

o = = = 5620 psi

r2—r} 42 -3752 P

These three stresses, oy, 0, and oy, are principal stresses, since there is no shear on

these surfaces. Note that there is no significant difference in the tangential stresses in
parts (a) and (b), and so the thin-wall theory can be considered satisfactory.
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3-15

Stresses in Rotating Rings

Many rotating elements, such as flywheels and blowers, can be simplified to a rotating
ring to determine the stresses. When this is done it is found that the same tangential and
radial stresses exist as in the theory for thick-walled cylinders except that they are
caused by inertial forces acting on all the particles of the ring. The tangential and radi-
al stresses so found are subject to the following restrictions:

* The outside radius of the ring, or disk, is large compared with the thickness r, > 10¢.
* The thickness of the ring or disk is constant.

» The stresses are constant over the thickness.

10

5 — oa? 3+ r2+r2+r’2r02—1+3vr2
P=p 8 i ¢ r2 340

3+v r2r?
arz,owz( 2 )<r3+r3——’r20 —r?

where r is the radius to the stress element under consideration, p is the mass density,
and w is the angular velocity of the ring in radians per second. For a rotating disk, use
r; = 0 in these equations.

The stresses are

(3-55)

Press and Shrink Fits

When two cylindrical parts are assembled by shrinking or press fitting one part upon
another, a contact pressure is created between the two parts. The stresses resulting from
this pressure may easily be determined with the equations of the preceding sections.

Figure 3-33 shows two cylindrical members that have been assembled with a shrink
fit. Prior to assembly, the outer radius of the inner member was larger than the inner radius
of the outer member by the radial interference §. After assembly, an interference contact
pressure p develops between the members at the nominal radius R, causing radial stress-
es 0, = — p in each member at the contacting surfaces. This pressure is given by'!

8
2| r3+R2+ L1 R +r}
— [ Z——+v — =5 -
E,\r2—R>  °)  E; \R?—r?
where the subscripts o and i on the material properties correspond to the outer and inner

members, respectively. If the two members are of the same material with
E,=FE; = E,v, = v;, the relation simplifies to

23 [(rs ~ R)(R? —r,-2>]

(3-5¢)

p:

P=r5m > (3-57)

2 _
Ty T

For Eqs. (3-56) or (3-57), diameters can be used in place of R, r;, and r,, provided § is
the diametral interference (twice the radial interference).

19]bid, pp. 348-357.
1bid, pp. 348-354.
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Figure 3-33

Notation for press and shrink
fits. (a) Unassembled parts;

(b) after assembly.
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1
\J

With p, Eq. (3—49) can be used to determine the radial and tangential stresses in
each member. For the inner member, p, = p and p; = 0, For the outer member, p, = 0
and p; = p. For example, the magnitudes of the tangential stresses at the transition
radius R are maximum for both members. For the inner member

(a)

R* +r}
(00)i = —PW (3-58)
r=R i
and, for the outer member
r? + R?
(0o =P 0% (3-59)
_Rr r2 — R?

Assumptions

It is assumed that both members have the same length. In the case of a hub that has been
press-fitted onto a shaft, this assumption would not be true, and there would be an increased
pressure at each end of the hub. It is customary to allow for this condition by employing a
stress-concentration factor. The value of this factor depends upon the contact pressure and
the design of the female member, but its theoretical value is seldom greater than 2.

Temperature Effects

When the temperature of an unrestrained body is uniformly increased, the body
expands, and the normal strain is

€ =€y, =€, = a(AT) (3-60)

where « is the coefficient of thermal expansion and AT is the temperature change, in
degrees. In this action the body experiences a simple volume increase with the compo-
nents of shear strain all zero.

If a straight bar is restrained at the ends so as to prevent lengthwise expansion and
then is subjected to a uniform increase in temperature, a compressive stress will develop
because of the axial constraint. The stress is

o0 =—¢cE=—a(AT)E (3-61)

In a similar manner, if a uniform flat plate is restrained at the edges and also subjected
to a uniform temperature rise, the compressive stress developed is given by the equation
a(ATE

oc=——" (3-62)
1—v
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Table 3-3 Material Celsius Scale (°C-')  Fahrenheit Scale (°F-)

Coefficients of Thermol Aluminum 2390101 13.3(10]

Expansion (Linear Mean . .

Coefficients for the Brass, cast 18.7(10)~ 10.4(10)~

Temperature Range 0-100°C) Carbon steel 10.8(1 O)fé 6.0(1 0)76
Cast iron 10.6(10)¢ 5.9(10)°
Magnesium 25.2(10)° 14.0(10)7¢
Nickel steel 13.1(10)°¢ 7.3(10)7°
Stainless steel 17.3[10)7° Q.6(10)7°
Tungsten 4.3(10)7° 2.4(10)°

Figure 3-34

Note that y is positive in the
direction toward the center of
curvature, point O.

The stresses expressed by Eqgs. (3—61) and (3-62) are called thermal stresses. They
arise because of a temperature change in a clamped or restrained member. Such stress-
es, for example, occur during welding, since parts to be welded must be clamped before
welding. Table 3-3 lists approximate values of the coefficients of thermal expansion.

Curved Beams in Bending

The distribution of stress in a curved flexural member is determined by using the
following assumptions:

* The cross section has an axis of symmetry in a plane along the length of the beam.
* Plane cross sections remain plane after bending.

* The modulus of elasticity is the same in tension as in compression.

We shall find that the neutral axis and the centroidal axis of a curved beam, unlike
the axes of a straight beam, are not coincident and also that the stress does not vary lin-
early from the neutral axis. The notation shown in Fig. 3-34 is defined as follows:

r, = radius of outer fiber

r; = radius of inner fiber

_ m Cel;ti?sidal
\

Neutral axis
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h = depth of section

¢, = distance from neutral axis to outer fiber

¢; = distance from neutral axis to inner fiber

r, = radius of neutral axis

r. = radius of centroidal axis

e = distance from centroidal axis to neutral axis

M = bending moment; positive M decreases curvature

Figure 3-34 shows that the neutral and centroidal axes are not coincident.!? It turns out
that the location of the neutral axis with respect to the center of curvature O is given by
the equation

A
T [dA

r

r (3-63)

The stress distribution can be found by balancing the external applied moment against
the internal resisting moment. The result is found to be

My
o= —"
Ae(rn _y)

where M is positive in the direction shown in Fig. 3-34. Equation (3—63) shows that the
stress distribution is hyperbolic. The critical stresses occur at the inner and outer sur-

(3-64)

faces where y = ¢; and y = —c,, respectively, and are
Mec; Mc
o; = d Op = —— (3-65)
Aer; Aer,

These equations are valid for pure bending. In the usual and more general case, such as
a crane hook, the U frame of a press, or the frame of a clamp, the bending moment is
due to forces acting to one side of the cross section under consideration. In this case the
bending moment is computed about the centroidal axis, not the neutral axis. Also, an
additional axial tensile or compressive stress must be added to the bending stresses
given by Egs. (3—-64) and (3—65) to obtain the resultant stresses acting on the section.

12For a complete development of the relations in this section, see Richard G. Budynas, Advanced Strength
and Applied Stress Analysis, 2nd ed., Mcgraw-Hill, New York, 1999, pp. 309-317.

Plot the distribution of stresses across section A-A of the crane hook shown in
Fig.3—-35a. The cross section is rectangular, with » = 0.75 in and 2 = 4 in, and the load
is F = 5000 1bf.

Since A = bh, we have dA = bdr and, from Eq. (3-63),
A bh h

d_A /r”’Zdr In 2

r r 7

(1)

I'n
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Figure 3-35

(a) Plan view of crane hook;
(b) cross section and notation;
(c) resulting stress distribufion.
There is no stress concentration.

From Fig. 3-35b, we see thatr; =2 in,r, =6 in,r, =4 in,and A = 3 in2. Thus, from
Eq. (1),
h 4

rn = =

In(r,/r;) In g

and so the eccentricity is e = r, —r, =4 — 3.641 = 0.359 in. The moment M is posi-

tive and is M = Fr. = 5000(4) = 20 000 1bf - in. Adding the axial component of stress
to Eq. (3—64) gives

F " My 5000 (20 000)(3.641 —r)

o = — =

A Ae(r,—Yy) 3 3(0.359)r

Substituting values of r from 2 to 6 in results in the stress distribution shown in

Fig. 3-35¢. The stresses at the inner and outer radii are found to be 16.9 and —5.63 kpsi,

respectively, as shown.

=3.641 in

(2)

£3/4 in
[

T Section A-A

r{‘
T, el
r y—
A l«— 2 in —>] 0.75 in
4 in
6 in
(a) (b)
o
16.9 kpsi

+

4 5 6

.

’ ’ \U\U\M
—5.63 kpsi

()

Note in the hook example, the symmetrical rectangular cross section causes the
maximum tensile stress to be 3 times greater than the maximum compressive stress. If
we wanted to design the hook to use material more effectively we would use more
material at the inner radius and less material at the outer radius. For this reason, trape-
zoidal, T, or unsymmetric I, cross sections are commonly used. Sections most fre-
quently encountered in the stress analysis of curved beams are shown in Table 3—4.
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Table 3-4
h
Formulas for Sections of T ¢ fe =Ti 5
Curved Beams h - ;
L ) j it " " (ro/r1)
i
~ b, _ 4 hbit2b
T ) =T34 b,
h : ¢ B A
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EXAMPLE 3-16

Solution

Answer

Answer

Alternative Calculations for e

Calculating r, and r. mathematically and subtracting the difference can lead to large
errors if not done carefully, since r,, and r. are typically large values compared to e.
Since e is in the denominator of Egs. (3—64) and (3-65), a large error in e can lead to
an inaccurate stress calculation. Furthermore, if you have a complex cross section that
the tables do not handle, alternative methods for determining e are needed. For a quick

and simple approximation of e, it can be shown that'3
1
e = (3-66)
r.A

This approximation is good for a large curvature where e is small with r, = 7.
Substituting Eq. (3-66) into Eq. (3—64), with r, — y = r, gives

AL (3-67)

I r

If r, = r., which it should be to use Eq. (3—-67), then it is only necessary to calculate 7.,
and to measure y from this axis. Determining r. for a complex cross section can be done
easily by most CAD programs or numerically as shown in the before mentioned refer-
ence. Observe that as the curvature increases, r — r., and Eq. (3—67) becomes the
straight-beam formulation, Eq. (3-24). Note that the negative sign is missing because y
in Fig. 3-34 is vertically downward, opposite that for the straight-beam equation.

BIbid., pp 317-321. Also presents a numerical method.

Consider the circular section in Table 3—4 with . = 3 in and R = 1 in. Determine e by
using the formula from the table and approximately by using Eq. (3—66). Compare the
results of the two solutions.

Using the formula from Table 3—4 gives

R? 12
ry = = =2.91421 in

2.~ E-F)  26-VE-D)

This gives an eccentricity of

e=r.—r, =3—291421 = 0.08579 in

The approximate method, using Eq. (3—66), yields

I TR*/4  R? 12 .
e= = = — __ =0.08333in
reA r(mRY  4r.  4(3)

This differs from the exact solution by —2.9 percent.
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Contact Stresses

When two bodies having curved surfaces are pressed together, point or line contact
changes to area contact, and the stresses developed in the two bodies are three-
dimensional. Contact-stress problems arise in the contact of a wheel and a rail,
in automotive valve cams and tappets, in mating gear teeth, and in the action of
rolling bearings. Typical failures are seen as cracks, pits, or flaking in the surface
material.

The most general case of contact stress occurs when each contacting body has a
double radius of curvature; that is, when the radius in the plane of rolling is different
from the radius in a perpendicular plane, both planes taken through the axis of the con-
tacting force. Here we shall consider only the two special cases of contacting spheres
and contacting cylinders.'* The results presented here are due to Hertz and so are fre-
quently known as Hertzian stresses.

Spherical Contact

When two solid spheres of diameters d; and d, are pressed together with a force
F, a circular area of contact of radius a is obtained. Specifying E;, v; and E,, v,
as the respective elastic constants of the two spheres, the radius a is given by the
equation

_S3F(1=v]) JEi+ (1 -v3) /E> (3-68)
TN 1/d, + 1/d

The pressure distribution within the contact area of each sphere is hemispherical, as shown
in Fig. 3-36b. The maximum pressure occurs at the center of the contact area and is

3F

= a (3-69)

Pmax
Equations (3—-68) and (3—69) are perfectly general and also apply to the contact of
a sphere and a plane surface or of a sphere and an internal spherical surface. For a plane
surface, use d = co. For an internal surface, the diameter is expressed as a negative
quantity.
The maximum stresses occur on the z axis, and these are principal stresses. Their
values are

z o1 1
0] =02 =0y =0y = — Pmax (1—‘5 tanlm>(1+v)——zz
2<1+—2>
a
(3-70)
03 = 0, = —Pm (3-71)
Z
1+a—2

“A more comprehensive presentation of contact stresses may be found in Arthur P. Boresi and Richard
J. Schmidt, Advanced Mechanics of Materials, 6th ed., Wiley, New York, 2003 pp. 589-623.
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Figure 3-36 F F

(a) Two spheres held in
contact by force F; (b) contact
stress has a hemispherical
distribution across contact
zone diameter 2a.

<

fl)
i

(a) (b)

These equations are valid for either sphere, but the value used for Poisson’s ratio
must correspond with the sphere under consideration. The equations are even more com-
plicated when stress states off the z axis are to be determined, because here the x and y
coordinates must also be included. But these are not required for design purposes,
because the maxima occur on the z axis.

Mohr’s circles for the stress state described by Egs. (3—70) and (3-71) are a point
and two coincident circles. Since o7 = 05, we have 71, = 0 and

01 — 03 0y — 03

2 2

Tmax = T1/3 = T2/3 = (3_72)
Figure 3-37 is a plot of Egs. (3—70), (3-71), and (3-72) for a distance to 3a below the
surface. Note that the shear stress reaches a maximum value slightly below the surface.
It is the opinion of many authorities that this maximum shear stress is responsible for
the surface fatigue failure of contacting elements. The explanation is that a crack orig-
inates at the point of maximum shear stress below the surface and progresses to the sur-
face and that the pressure of the lubricant wedges the chip loose.

Cylindrical Contact

Figure 3-38 illustrates a similar situation in which the contacting elements are two
cylinders of length / and diameters d; and d,. As shown in Fig. 3-38b, the area of con-
tact is a narrow rectangle of width 2b and length /, and the pressure distribution is
elliptical. The half-width b is given by the equation

y_ |2F (1=v}) JEi+(1—v3) /E; (3-73)
nl 1/d, + 1/d>
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Figure 3-37

Magnitude of the stress
components below the surface
as a function of the maximum
pressure of contacting spheres.
Note that the maximum shear
stress is slightly below the
surface at z= 0.48a and is
approximately O.3pmax. The
chart is based on a Poisson
ratio of 0.30. Note that the
normal stresses are all
compressive stresses.

Figure 3-38

(a) Two right circular cylinders
held in contact by forces F
uniformly distributed along
cylinder length /. (b) Contact
stress has an elliptical
distribufion across the

contact zone width 25b.

[Ratio of stress to p,,..|
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0 0.5a a 1.5a 2a 2.5a 3a

Distance from contact surface

(@) (b)

The maximum pressure is

_2F
pmax - ﬂbl

(3-74)
Equations (3-73) and (3—74) apply to a cylinder and a plane surface, such as a rail, by
making d = oo for the plane surface. The equations also apply to the contact of a cylin-
der and an internal cylindrical surface; in this case d is made negative for the internal

surface.
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The stress state along the z axis is given by the equations

R JisZ |2 (3-75)
X — pmax bz b
2
Z
1422
Gy = — P E 2|7 (3-76)
Z
1+ »”
oy =0, = _ " Pmax (3-77)

N

These three equations are plotted in Fig. 3-39 up to a distance of 3b below the surface.
For0 < z < 0.436b, 01 = 0, and T, = (07 — 03)/2 = (0 — 0,)/2. For z > 0.436b,
01 = 0y, and Tyax = (0 — ;) /2. A plot of Ty, is also included in Fig. 3-39, where the
greatest value occurs at z/b = 0.786 with a value of 0.300 ppax-

Hertz (1881) provided the preceding mathematical models of the stress field when
the contact zone is free of shear stress. Another important contact stress case is line of
contact with friction providing the shearing stress on the contact zone. Such shearing
stresses are small with cams and rollers, but in cams with flatfaced followers, wheel-rail
contact, and gear teeth, the stresses are elevated above the Hertzian field. Investigations
of the effect on the stress field due to normal and shear stresses in the contact zone were
begun theoretically by Lundberg (1939), and continued by Mindlin (1949), Smith-Liu
(1949), and Poritsky (1949) independently. For further detail, see the reference cited in
Footnote 14.

Figure 3-39 a7

Magnitude of the stress
components below the surface
as a function of the maximum
pressure for confacting
cylinders. The largest value of
Tmax OCCUrs at z/ b = 0.786.
lts maximum value is
0.30pPmax. The chart is based
on a Poisson ratio of 0.30.
Note that all normal stresses

[Ratio of stress t0 p,,|

are compressive stresses.

0 0.5b b 1.5b 2b 2.5b 3b

Distance from contact surface
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Summary

The ability to quantify the stress condition at a critical location in a machine element
is an important skill of the engineer. Why? Whether the member fails or not is
assessed by comparing the (damaging) stress at a critical location with the corre-
sponding material strength at this location. This chapter has addressed the description
of stress.

Stresses can be estimated with great precision where the geometry is sufficiently
simple that theory easily provides the necessary quantitative relationships. In other
cases, approximations are used. There are numerical approximations such as finite
element analysis (FEA, see Chap. 19), whose results tend to converge on the true val-
ues. There are experimental measurements, strain gauging, for example, allowing infer-
ence of stresses from the measured strain conditions. Whatever the method(s), the goal
is a robust description of the stress condition at a critical location.

The nature of research results and understanding in any field is that the longer
we work on it, the more involved things seem to be, and new approaches are sought
to help with the complications. As newer schemes are introduced, engineers, hungry
for the improvement the new approach promises, begin to use the approach.
Optimism usually recedes, as further experience adds concerns. Tasks that promised
to extend the capabilities of the nonexpert eventually show that expertise is not
optional.

In stress analysis, the computer can be helpful if the necessary equations are avail-
able. Spreadsheet analysis can quickly reduce complicated calculations for parametric
studies, easily handling “what if” questions relating trade-offs (e.g., less of a costly
material or more of a cheaper material). It can even give insight into optimization
opportunities.

When the necessary equations are not available, then methods such as FEA are
attractive, but cautions are in order. Even when you have access to a powerful FEA
code, you should be near an expert while you are learning. There are nagging questions
of convergence at discontinuities. Elastic analysis is much easier than elastic-plastic
analysis. The results are no better than the modeling of reality that was used to formu-
late the problem. Chapter 19 provides an idea of what finite-element analysis is and how
it can be used in design. The chapter is by no means comprehensive in finite-element
theory and the application of finite elements in practice. Both skill sets require much
exposure and experience to be adept.

PROBLEMS

The symbol W is used in the various figure parts to specify the weight of an element. If not
given, assume the parts are weightless. For each figure part, sketch a free-body diagram of each
element, including the frame. Try to get the forces in the proper directions, but do not compute
magnitudes.

Using the figure part selected by your instructor, sketch a free-body diagram of each element in
the figure. Compute the magnitude and direction of each force using an algebraic or vector
method, as specified.

Find the reactions at the supports and plot the shear-force and bending-moment diagrams for each
of the beams shown in the figure on page 123. Label the diagrams properly.
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/1 !
(@ ®) (©
Problem 3-1
2 2
1/
1
(d) () N
J y
0.15-m radius <— 0.4 m —>
B

Al 45°
\
Lo

V\()O" £ ‘ : F=800N
2 \ 2
e I
‘ \
\
\
(a) oy .
1
Problem 3-2
© @
3-4 Repeat Prob. 3-3 using singularity functions exclusively (for reactions as well).

3-5 Select a beam from Table A-9 and find general expressions for the loading, shear-force, bending-
moment, and support reactions. Use the method specified by your instructor.
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X
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1000 Ibf
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2000 Ibf
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(d)

— X
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‘ 40 Ibf/in
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C_D
— X
e,
\
\

5in

123

A beam carrying a uniform load is simply supported with the supports set back a distance a from

the ends as shown in the figure. The bending moment at x can be found from summing moments

to zero at section x:

1 1
ZM:M—I—Ew(a—f—x)z—Ewlx:O

or

M= %[lx — @+

where w is the loading intensity in 1bf/in. The designer wishes to minimize the necessary weight
of the supporting beam by choosing a setback resulting in the smallest possible maximum bend-

ing stress.

(a) If the beam is configured with a = 2.25 in, [ = 10 in, and w = 100 1bf/in, find the magnitude
of the severest bending moment in the beam.
(b) Since the configuration in part (a) is not optimal, find the optimal setback «a that will result in

the lightest-weight beam.

— X —>

w, 1bf/in

Problem 3-6
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3-7

Problem 3-7

3-8

3-9

3-11

3-12

An artist wishes to construct a mobile using pendants, string, and span wire with eyelets as shown
in the figure.

(a) At what positions w, x, y, and z should the suspension strings be attached to the span wires?
(b) Is the mobile stable? If so, justify; if not, suggest a remedy.

For each of the plane stress states listed below, draw a Mohr’s circle diagram properly labeled,
find the principal normal and shear stresses, and determine the angle from the x axis to o;. Draw
stress elements as in Fig. 3—11¢ and d and label all details.

(@) oy =12,0, =6,1,, =4 cw

(b) 0, =16,0,=9,7,, =5 ccw

(¢) op =10,0y =24, 7,y = 6 ccW

d)yo, =9,0,=19,7,, =8 cw

Repeat Prob. 3-8 for:

(@) on = —4,0y =12, 7,y =7 ccw
(b) Ox = 6’ G}' = _57 Txy = 8 ccw
(¢) 0p = =8, oy = 7, Tyy = 6 cw

d)yo, =9,0,=-6,7,, =3 cw

Repeat Prob. 3-8 for:

(a) 0, =20,0, =—10,7,, =8 cw
(b) or = 30,0, = —10, 7,y = 10 ccw
(¢) o =—10,0y, =18, 7,y =9 cw
d)o, =—12,0, =22, 7, =12 cW

For each of the stress states listed below, find all three principal normal and shear stresses. Draw
a complete Mohr’s three-circle diagram and label all points of interest.

(@) o, =10,0, = —4

(b) 0r =10, 7,y =4 ccw

(¢c)or =-2,0p=—-8, 1,y =4 cw

(d)o, =10,0, = =30, 7, = 10 ccw

Repeat Prob. 311 for:

(a) o, = —80,0, = —30,1,, =20 cw
(b) 0, =30,0, = —60, 7,, =30 cw
(¢) or =40, 0, = =30, 7y, = 20 ccw
(d)o, =50,0, =—20, 7,y =30 cw
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A %-in-diameter steel tension rod is 72 in long and carries a load of 2000 1bf. Find the tensile
stress, the total deformation, the unit strains, and the change in the rod diameter.

Twin diagonal aluminum alloy tension rods 15 mm in diameter are used in a rectangular frame
to prevent collapse. The rods can safely support a tensile stress of 135 MPa. If the rods are ini-
tially 3 m in length, how much must they be stretched to develop this stress?

Electrical strain gauges were applied to a notched specimen to determine the stresses in the notch.
The results were €, = 0.0021 and €, = —0.00067. Find o, and o, if the material is carbon steel.

An engineer wishes to determine the shearing strength of a certain epoxy cement. The problem
is to devise a test specimen such that the joint is subject to pure shear. The joint shown in the fig-
ure, in which two bars are offset at an angle 6 so as to keep the loading force F centroidal with
the straight shanks, seems to accomplish this purpose. Using the contact area A and designating
Sy as the ultimate shearing strength, the engineer obtains

F
S¢y = — cosb
A

The engineer’s supervisor, in reviewing the test results, says the expression should be

F | 1/2
Ssu = 1 (1 + Ztan2 9) cosf

Resolve the discrepancy. What is your position?

R %f._ﬂi._ﬂ

The state of stress at a pointis oy = -2, 0, =6, 0, = —4, 7, =3, 7,, =2, and 7,, = =5 kpsi.

Determine the principal stresses, draw a complete Mohr’s three-circle diagram, labeling all points
of interest, and report the maximum shear stress for this case.

Repeat Prob. 3-17 with o, = 10, 0, =0, 0, =10, 7,, =20, 7, = —104/2, and 7,r = 0 MPa.
Repeat Prob. 3-17 witho, = 1,0, =4,0, =4,1,, =2, 7,, = —4, and 7., = —2 kpsi.

The Roman method for addressing uncertainty in design was to build a copy of a design that was
satisfactory and had proven durable. Although the early Romans did not have the intellectual
tools to deal with scaling size up or down, you do. Consider a simply supported, rectangular-cross-
section beam with a concentrated load F, as depicted in the figure.
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(a) Show that the stress-to-load equation is

obh?l
6ac

F =

(b) Subscript every parameter with m (for model) and divide into the above equation. Introduce
a scale factor, s = a,,/a = b,, /b = ¢,, /¢ etc. Since the Roman method was to not “lean on”
the material any more than the proven design, set 0,, /o = 1. Express F,, in terms of the scale
factors and F, and comment on what you have learned.

3-21 Using our experience with concentrated loading on a simple beam, Prob. 3-20, consider a uni-
formly loaded simple beam (Table A—9-7).
(a) Show that the stress-to-load equation for a rectangular-cross-section beam is given by
4 obh?

W==
301

where W = wl.

(b) Subscript every parameter with m (for model) and divide the model equation into the proto-
type equation. Introduce the scale factor s as in Prob. 3-20, setting o,, /0 = 1. Express W,
and w,, in terms of the scale factor, and comment on what you have learned.

3-22 The Chicago North Shore & Milwaukee Railroad was an electric railway running between the
cities in its corporate title. It had passenger cars as shown in the figure, which weighed 104.4 kip,
had 32-ft, 8-in truck centers, 7-ft-wheelbase trucks, and a coupled length of 55 ft, 3% in. Consider
the case of a single car on a 100-ft-long, simply supported deck plate girder bridge.

(a) What was the largest bending moment in the bridge?
(b) Where on the bridge was the moment located?

(c) What was the position of the car on the bridge?

(d) Under which axle is the bending moment?

Q"] — = 43T it
| g IR T T e R A o,
[
[7‘,7 7 HICAGO NORTI SHORE & MILWAUKDE RAILBOAD
K AL D

Drawing: LF, RGD

Sicale in feet Coaches TO2-776

=) o 1m
A3 QRIGINALLY BUILT

Problem 3-22
Copyright 1963 by Central Electric Railfans Association, Bull. 107, p. 145, reproduced by permission.
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For each section illustrated, find the second moment of area, the location of the neutral axis, and
the distances from the neutral axis to the top and bottom surfaces. Suppose a positive bending
moment of 10 kip - in is applied; find the resulting stresses at the top and bottom surfaces and at
every abrupt change in cross section.

y

T | D
I

7.

s 1n .

8 Lin

(a)
y
1
I D
L
C
3in 41in
—> <— %in %in+ l<—
B 1.
A ?
E
‘4— 21in HLL
4 in 4in
(c) (d)
Y 1Lin Y

|
| T
| | JT ! Dlm
B
3in lm:ﬂ E:C1m
! 'R

1gm44 Fi 1*

(e) )

=

From basic mechanics of materials, in the derivation of the bending stresses, it is found that the
radius of curvature of the neutral axis, p, is given by p = EI/M. Find the x and y coordinates of
the center of curvature corresponding to the place where the beam is bent the most, for each beam
shown in the figure. The beams are both made of Douglas fir (see Table A-5) and have rectan-
gular sections.

For each beam illustrated in the figure, find the locations and magnitudes of the maximum ten-
sile bending stress and the maximum shear stress due to V.
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Problem 3-24

Problem 3-25

3-26

Problem 3-26
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HHHHHHHHHHH |] 122222222222 2222222222] i
05m_A_A 15 in B_A_Slnc :F 0 6in  _/\ A 12in B : :F

2in 2 in
(©) (d)

The figure illustrates a number of beam sections. Use an allowable bending stress of 1.2 kpsi for

wood and 12 kpsi for steel and find the maximum safe uniformly distributed load that each beam

can carry if the given lengths are between simple supports.

(a) Wood joist 11 by 91 in and 12 ft long

(b) Steel tube, 2 in OD by 3-in wall thickness, 48 in long

(c) Hollow steel tube 3 by 2 in, outside dimensions, formed from g-ln material and welded, 48 in
long

(d) Steel angles 3 x 3 x { in and 72 in long

(e) A 5.4-1b, 4-in steel channel, 72 in long

(f) A 4-in x 1-in steel bar, 72 in long

y y y
z + z @ z — + —
(a) (b) ()

y
y
z ;t%j_j z{ z +

(d) () N
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3-27 A pin in a knuckle joint carrying a tensile load F deflects somewhat on account of this loading,
making the distribution of reaction and load as shown in part b of the figure. The usual design-
er’s assumption of loading is shown in part ¢; others sometimes choose the loading shown in part
d.lfa=0.5in,b =0.751in,d = 0.5 in, and F = 1000 1bf, estimate the maximum bending stress
and the maximum shear stress due to V for each approximation.

}- vl
VNS &

rgjé
2
Problem 3-27 S }}

Lu u*l f<—b—>]
b X
b L—a+b*>T

3-28 The figure illustrates a pin tightly fitted into a hole of a substantial member. A usual analysis
is one that assumes concentrated reactions R and M at distance / from F. Suppose the reaction
is distributed linearly along distance a. Is the resulting moment reaction larger or smaller than
the concentrated reaction? What is the loading intensity ¢? What do you think of using the
usual assumption?

Problem 3-28 . g ’ . ] _

3-29 For the beam shown, determine (@) the maximum tensile and compressive bending stresses,
(b) the maximum shear stress due to V, and (¢) the maximum shear stress in the beam.

3000 Ibf 2in
600 1bf/ft ‘_‘ }_‘;
s sl e
Problem 3-29 mn
A 2in}
<5 fi>j< 15 ft ———] b

Cross section (enlarged)
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3-30 Consider a simply supported beam of rectangular cross section of constant width b and variable
depth A, so proportioned that the maximum stress o, at the outer surface due to bending is con-
stant, when subjected to a load F at a distance a from the left support and a distance ¢ from the
right support. Show that the depth / at location x is given by

6Fcx
h = O0<x<
\ 160 =r=e

3-31 In Prob. 3-30, h — 0 as x — 0, which cannot occur. If the maximum shear stress T,,,x due to

direct shear is to be constant in this region, show that the depth £ at location x is given by

h:§ Fc 0§x§§Fcamax
2 [bTmax 8 Ibt2.«
3-32 Consider a simply supported static beam of circular cross section of diameter d, so proportioned

by varying the diameter such that the maximum stress o, at the surface due to bending is con-
stant, when subjected to a steady load F located at a distance a from the left support and a dis-
tance b from the right support. Show that the diameter d at a location x is given by

32Fbx\ '
d = 0<x<a

T O max -

3-33 Two steel thin-wall tubes in torsion of equal length are to be compared. The first is of square cross
section, side length b, and wall thickness 7. The second is a round of diameter b and wall thick-
ness t. The largest allowable shear stress is 7,; and is to be the same in both cases. How does the
angle of twist per unit length compare in each case?

3-34 Begin with a 1-in-square thin-wall steel tube, wall thickness t = 0.05 in, length 40 in, then intro-
duce corner radii of inside radii r;, with allowable shear stress t,; of 11 500 psi, shear modulus
of 11.5(10°) psi; now form a table. Use a column of inside corner radii in the range 0 < r; < 0.45
in. Useful columns include median line radius r,,, periphery of the median line L,,, area enclosed
by median curve, torque 7, and the angular twist 6. The cross section will vary from square to
circular round. A computer program will reduce the calculation effort. Study the table. What have
you learned?

Problem 3-34

3-35 An unequal leg angle shown in the figure carries a torque 7. Show that

T:%ZL,‘C?

Tmax = G91 Cmax
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In Prob. 3-35 the angle has one leg thickness % in and the other é in, with both leg lengths % in.
The allowable shear stress is 7, = 12 000 psi for this steel angle.

(a) Find the torque carried by each leg, and the largest shear stress therein.

(b) Find the angle of twist per unit length of the section.

Two 12 in long thin rectangular steel strips are placed together as shown. Using a maximum
allowable shear stress of 12 000 psi, determine the maximum torque and angular twist, and the
torsional spring rate. Compare these with a single strip of cross section 1 in by é in.

Using a maximum allowable shear stress of 60 MPa, find the shaft diameter needed to transmit
35 kw when

(a) The shaft speed is 2000 rev/min.

(b) The shaft speed is 200 rev/min.

A 15-mm-diameter steel bar is to be used as a torsion spring. If the torsional stress in the bar is
not to exceed 110 MPa when one end is twisted through an angle of 30°, what must be the length
of the bar?

A 3-in-diameter solid steel shaft, used as a torque transmitter, is replaced with a 3-in hollow shaft
having a %-in wall thickness. If both materials have the same strength, what is the percentage
reduction in torque transmission? What is the percentage reduction in shaft weight?

A hollow steel shaft is to transmit 5400 N - m of torque and is to be sized so that the torsional

stress does not exceed 150 MPa.

(a) If the inside diameter is three-fourths of the outside diameter, what size shaft should be used?
Use preferred sizes.

(b) What is the stress on the inside of the shaft when full torque is applied?
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3-42 The figure shows an endless-belt conveyor drive roll. The roll has a diameter of 6 in and is driven
at 5 rev/min by a geared-motor source rated at 1 hp. Determine a suitable shaft diameter d¢ for
an allowable torsional stress of 14 kpsi.

(a) What would be the stress in the shaft you have sized if the motor starting torque is twice the
running torque?

(b) Is bending stress likely to be a problem? What is the effect of different roll lengths B on
bending?

Problem 3-42 (@)

y
dy | dy d, dc

1\? R

(b)

3-43 The conveyer drive roll in the figure for Prob. 342 is 150 mm in diameter and is driven at
8 rev/min by a geared-motor source rated at 1 kW. Find a suitable shaft diameter d¢ based on an
allowable torsional stress of 75 MPa.

3-44 For the same cross-sectional area A = s> = md” /4, for a square cross-sectional area shaft and a
circular cross-sectional area shaft, in torsion which has the higher maximum shear stress, and by
what multiple is it higher?

3-45 For the same cross-sectional area A = s> = wd? /4, for a square cross-sectional area shaft and a
circular cross-sectional area shaft, both of length /, in torsion which has the greater angular twist
0, and by what multiple is it greater?

3-46 In the figure, shaft AB is rotating at 1000 rev/min and transmits 10 hp to shaft CD through a
set of bevel gears contacting at point E. The contact force at E on the gear of shaft CD is
determined to be (Fg)cp = —92.81 — 362.8j + 808.0k Ibf. For shaft CD: (a) draw a free-body
diagram and determine the reactions at C and D assuming simple supports (assume also that
bearing C is a thrust bearing), (b) draw the shear-force and bending-moment diagrams, and
(c) assuming that the shaft diameter is 1.25 in, determine the maximum tensile and shear
stresses in the beam.
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Repeat the analysis of Prob. 3—46 for shaft AB. Let the diameter of the shaft be 1.0 in, and assume
that bearing A is a thrust bearing.

A torque of 7 = 1000 Ibf - in is applied to the shaft EFG, which is running at constant speed and con-
tains gear F. Gear F transmits torque to shaft ABCD through gear C, which drives the chain sprock-
et at B, transmitting a force P as shown. Sprocket B, gear C, and gear F have pitch diameters of 6, 10,
and 5 in, respectively. The contact force between the gears is transmitted through the pressure angle
¢ = 20°. Assuming no frictional losses and considering the bearings at A, D, E, and G to be simple
supports, locate the point on shaft ABCD that contains the maximum tensile bending and maximum
torsional shear stresses. From this, determine the maximum tensile and shear stresses in the shaft.

a -
E FfEH| ¢
[
y — 7= 1000 Ibt-in
B —
= | cF— D
==l
RN == | DU [ S — x
=t = f m—
i 1.25-in dia. —
- <
a
IP
3in > 10in Sin

If the tension-loaded plate of Fig. 3-29 is infinitely wide, then the stress state anywhere in the

plate can be described in polar coordinates as'’

! 1 @ +{1 @ 1 3 20
op==0|l—-—— - — — — ] cos
2 4r2 472 452

15 See R. G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed. McGraw-Hill, New York,
1999, pp. 235-238.
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! 1+ @ 1+ 3 & 260
oy = =0 — - — — | cos
T2 42 16 r4

1 1d? 3d%\ .
T = —EJ (l — Zr—z) (1 + Zﬁ) sin 26

for the radial, tangential, and shear components, respectively. Here r is the distance from the cen-

ter to the point of interest and 6 is measured positive counterclockwise from the horizontal axis.

(a) Find the stress components at the top and side of the hole for r = d/2.

(b) If d = 10 mm, plot a graph of the tangential stress distribution oy /o for & = 90° from r = 5mm
to 20 mm.

(c) Repeat part (b) for 6 = 0°

3-50 Considering the stress concentration at point A in the figure, determine the maximum normal and
shear stresses at A if F' = 200 1bf.

Problem 3-50

1-in dia.

3-51 Develop the formulas for the maximum radial and tangential stresses in a thick-walled cylinder
due to internal pressure only.

3-52 Repeat Prob. 3-51 where the cylinder is subject to external pressure only. At what radii do the
maximum stresses occur?

3-53 Develop the stress relations for a thin-walled spherical pressure vessel.

3-54 A pressure cylinder has a diameter of 150 mm and has a 6-mm wall thickness. What pressure can
this vessel carry if the maximum shear stress is not to exceed 25 Mpa?

3-55 A cylindrical pressure vessel has an outside diameter of 10 in and a wall thickness of % in. If the
internal pressure is 350 psi, what is the maximum shear stress in the vessel walls?
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An AISI 1020 cold-drawn steel tube has an ID of li in and an OD of 1% in. What maximum
external pressure can this tube take if the largest principal normal stress is not to exceed 80 per-
cent of the minimum yield strength of the material?

An AISI 1020 cold-drawn steel tube has an ID of 40 mm and an OD of 50 mm. What maximum
internal pressure can this tube take if the largest principal normal stress is not to exceed 80 per-
cent of the minimum yield strength of the material?

Find the maximum shear stress in a 10-in circular saw if it runs idle at 7200 rev/min. The saw is

3 _in arbor. The thickness is uniform. What is the maximum

14 gauge (0.0747 in) and is used on a 3

radial component of stress?

The maximum recommended speed for a 300-mm-diameter abrasive grinding wheel is 2069
rev/min. Assume that the material is isotropic; use a bore of 25 mm, v = 0.24, and a mass density
of 3320 kg/m?; and find the maximum tensile stress at this speed.

An abrasive cutoff wheel has a diameter of 6 in, is % in thick, and has a 1-in bore. It weighs 6
oz and is designed to run at 10 000 rev/min. If the material is isotropic and v = 0.20, find the
maximum shear stress at the design speed.

A rotary lawn-mower blade rotates at 3000 rev/min. The steel blade has a uniform cross section
1 1

8 2”7
Estimate the nominal tensile stress at the central section due to rotation.

in thick by li in wide, and has a ;-in-diameter hole in the center as shown in the figure.

‘<— 12 in‘>‘

[ ©

sinf

1 1t

! 24 in !

The table lists the maximum and minimum hole and shaft dimensions for a variety of standard
press and shrink fits. The materials are both hot-rolled steel. Find the maximum and minimum
values of the radial interference and the corresponding interface pressure. Use a collar diameter

of 80 mm for the metric sizes and 3 in for those in inch units.

Problem Fit

Number Designation*

3-62 40H7/p6 40 mm 40.025  40.000 40.042  40.026
3-63 (1.5in)H7/p6 1.51n 1.5010  1.5000 1.5016  1.5010
3-64 40H7/s6 40 mm 40.025  40.000 40.059  40.043
3-65 (1.5in)H7/s6 1.51in 1.5010  1.5000 1.5023  1.5017
3-66 40H7/uv6 40 mm 40.025  40.000 40.076  40.060
3-67 (1.5 in)H7/u6 1.51n 1.5010  1.5000 1.5030  1.5024

*Note: See Table 79 for description of fifs.

The table gives data concerning the shrink fit of two cylinders of differing materials and
dimensional specification in inches. Elastic constants for different materials may be found in
Table A-5. Identify the radial interference 8, then find the interference pressure p, and the
tangential normal stress on both sides of the fit surface. If dimensional tolerances are given at
fit surfaces, repeat the problem for the highest and lowest stress levels.
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3-68 Steel 0 1.002 Steel 1.000 2.00
3-69 Steel 0 1.002 Cast iron 1.000 2.00
3-70 Steel 0 1.002/1.003  Steel 1.000/1.001 2.00
3-71 Steel 0 2.005/2.003  Aluminum 2.000/2.002  4.00
3-72 Force fits of a shaft and gear are assembled in an air-operated arbor press. An estimate of assembly

force and torque capacity of the fit is needed. Assume the coefficient of friction is f, the fit interface
pressure is p, the nominal shaft or hole radius is R, and the axial length of the gear bore is /.

(a) Show that the estimate of the axial force is F,x = 27 f Rlp.

(b) Show the estimate of the torque capacity of the fit is 7 = 27 f R?Ip.

3-73 A utility hook was formed from a 1-in-diameter round rod into the geometry shown in the figure.
What are the stresses at the inner and outer surfaces at section A-A if the load F is 1000 1bf?

Problem 3-73

- e steel eyebolt shown in the figure is loaded with a force F o . The bolt is formed o

3-74 Th 1 eyebolt sh in the figure is loaded with a f F of 100 Ibf. The bolt is f d of
i—in—diameter wire to a %—in radius in the eye and at the shank. Estimate the stresses at the inner
and outer surfaces at sections A-A and B-B.

Problem 3-74

3-75 Shown in the figure is a 12-gauge (0.1094-in) by %-in latching spring that supports a load of
F = 3 Ibf. The inside radius of the bend is é in. Estimate the stresses at the inner and outer sur-
faces at the critical section.
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The cast-iron bell-crank lever depicted in the figure is acted upon by forces F; of 250 1bf and F>
of 333 Ibf. The section A-A at the central pivot has a curved inner surface with a radius of r; = 1
in. Estimate the stresses at the inner and outer surfaces of the curved portion of the lever.

The crane hook depicted in Fig. 3-35 has a 1-in-diameter hole in the center of the critical section.
For aload of 5 kip, estimate the bending stresses at the inner and outer surfaces at the critical section.

A 20-kip load is carried by the crane hook shown in the figure. The cross section of the hook uses
two concave flanks. The width of the cross section is given by b = 2/r,where r is the radius from
the center. The inside radius r; is 2 in, and the outside radius r, = 6 in. Find the stresses at the
inner and outer surfaces at the critical section.

~
5
—

%—in R. f— % in—-|

f—

Section A-A No. 12 gauge (0.1094 in)

Nylon bushing

35 m
lin / ¢
Ny m
Y

w

in

ool

Section A-A

4 in

2in
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3-79 An offset tensile link is shaped to clear an obstruction with a geometry as shown in the figure.
The cross section at the critical location is elliptical, with a major axis of 4 in and a minor axis
of 2 in. For a load of 20 kip, estimate the stresses at the inner and outer surfaces of the critical

section.
10-in R.
+
Problem 3-79 Il
- @ @ -
3-80 A cast-steel C frame as shown in the figure has a rectangular cross section of 1 in by 1.6 in, with

a 0.4-in-radius semicircular notch on both sides that forms midflank fluting as shown. Estimate A,
re, I'n, and e, and for a load of 3000 1bf, estimate the inner and outer surface stresses at the throat
C. Note: Table 3—4 can be used to determine r, for this section. From the table, the integral
[ dA/r can be evaluated for a rectangle and a circle by evaluating A/r, for each shape [see
Eq. (3-64)]. Subtracting A/r, of the circle from that of the rectangle yields [ dA/r for the C
frame, and r,, can then be evaluated.

0.4-in R.
A
Problem 3-80 3000 1bf I "
< 0.4in
3-81 Two carbon steel balls, each 25 mm in diameter, are pressed together by a force F. In terms of

the force F, find the maximum values of the principal stress, and the maximum shear stress, in
MPa.

3-82 One of the balls in Prob. 3-81 is replaced by a flat carbon steel plate. If F = 18 N, at what depth
does the maximum shear stress occur?

3-83 An aluminum alloy roller with diameter 1 in and length 2 in rolls on the inside of a cast-iron ring
having an inside radius of 4 in, which is 2 in thick. Find the maximum contact force F that can
be used if the shear stress is not to exceed 4000 psi.

3-84 The figure shows a hip prosthesis containing a stem that is cemented into a reamed cavity in the
femur. The cup is cemented and fastened to the hip with bone screws. Shown are porous layers
of titanium into which bone tissue will grow to form a longer-lasting bond than that afforded by
cement alone. The bearing surfaces are a plastic cup and a titanium femoral head. The lip shown
in the figures bears against the cutoff end of the femur to transfer the load to the leg from the hip.
Walking will induce several million stress fluctuations per year for an average person, so there is
danger that the prosthesis will loosen the cement bonds or that metal cracks may occur because
of the many repetitions of stress. Prostheses like this are made in many different sizes. Typical
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c
— Offset |

Neck length

Problem 3-84

Porous hip prosthesis. (Photograph
and drawing courtesy of Zimmer,
Inc., Warsaw, Indiana.)

Stem
length

A distal stem diameter M

(@) (b)

dimensions are ball diameter 50 mm, stem diameter 15 mm, stem length 155 mm, offset 38 mm,
and neck length 39 mm. Develop an outline to follow in making a complete stress analysis of this
prosthesis. Describe the material properties needed, the equations required, and how the loading
is to be defined.

3-85  Simplify Egs. (3-70), (3-71), and (3-72) by setting z =0 and finding o, /pmax, O/ Pmax»
0./ Pmax, and Ty;3/pmax and, for cast iron, check the ordinate intercepts of the four loci in
Fig. 3-37.

3-86 A 6-in-diameter cast-iron wheel, 2 in wide, rolls on a flat steel surface carrying an 800-1bf load.
(a) Find the Hertzian stresses o, 0y, 0;, and T/3.
(b) What happens to the stresses at a point A that is 0.010 in below the wheel rim surface during
a revolution?



Budynas-Nisbett: Shigley's
Mechanical Engineering
Design, Eighth Edition

4-1
4-2
4-3
4-4
4-5
4-6
a-7
4-8
4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

I. Basics

4. Deflection and Stiffness

Deflection and Stiffness

© The McGraw-Hill
Companies, 2008

Chapter Outline

Spring Rates 142

Tension, Compression, and Torsion 143
Deflection Due to Bending 144

Beam Deflection Methods 146

Beam Deflections by Superposition 147

Beam Deflections by Singularity Functions 150
Strain Energy 156

Casfigliano’s Theorem 158

Deflection of Curved Members 163

Statically Indeferminate Problems 168
Compression Members—General 173

Llong Columns with Central Lloading 173
Infermediate-length Columns with Central loading 176
Columns with Eccentric loading 176

Struts or Short Compression Members 180
Elostic Stability 182

Shock and Impact 183

Suddenly Applied loading 184

141



@ ‘ Budynas-Nisbett: Shigley’s | |. Basics 4. Deflection and Stiffness © The McGraw-Hill
Mechanical Engineering
Design, Eighth Edition

Companies, 2008

142 Mechanical Engineering Design

Figure 4-1

(a) A linear spring; (b) a
stiffening spring; (c) a
softening spring.

All real bodies deform under load, either elastically or plastically. A body can be suffi-
ciently insensitive to deformation that a presumption of rigidity does not affect an analy-
sis enough to warrant a nonrigid treatment. If the body deformation later proves to be not
negligible, then declaring rigidity was a poor decision, not a poor assumption. A wire
rope is flexible, but in tension it can be robustly rigid and it distorts enormously under
attempts at compressive loading. The same body can be both rigid and nonrigid.

Deflection analysis enters into design situations in many ways. A snap ring, or retain-
ing ring, must be flexible enough to be bent without permanent deformation and
assembled with other parts, and then it must be rigid enough to hold the assembled parts
together. In a transmission, the gears must be supported by a rigid shaft. If the shaft bends
too much, that is, if it is too flexible, the teeth will not mesh properly, and the result will
be excessive impact, noise, wear, and early failure. In rolling sheet or strip steel to pre-
scribed thicknesses, the rolls must be crowned, that is, curved, so that the finished product
will be of uniform thickness. Thus, to design the rolls it is necessary to know exactly how
much they will bend when a sheet of steel is rolled between them. Sometimes mechanical
elements must be designed to have a particular force-deflection characteristic. The
suspension system of an automobile, for example, must be designed within a very narrow
range to achieve an optimum vibration frequency for all conditions of vehicle loading,
because the human body is comfortable only within a limited range of frequencies.

The size of a load-bearing component is often determined on deflections, rather
than limits on stress.

This chapter considers distortion of single bodies due to geometry (shape) and
loading, then, briefly, the behavior of groups of bodies.

Spring Rates

Elasticity is that property of a material that enables it to regain its original configuration
after having been deformed. A spring is a mechanical element that exerts a force when
deformed. Figure 4—1a shows a straight beam of length / simply supported at the ends
and loaded by the transverse force F. The deflection y is linearly related to the force, as
long as the elastic limit of the material is not exceeded, as indicated by the graph. This
beam can be described as a linear spring.

In Fig. 4-1b a straight beam is supported on two cylinders such that the length
between supports decreases as the beam is deflected by the force F. A larger force is
required to deflect a short beam than a long one, and hence the more this beam is
deflected, the stiffer it becomes. Also, the force is not linearly related to the deflection,
and hence this beam can be described as a nonlinear stiffening spring.

(a) (b) (c)
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Figure 4-1c is an edge-view of a dish-shaped round disk. The force necessary to
flatten the disk increases at first and then decreases as the disk approaches a flat con-
figuration, as shown by the graph. Any mechanical element having such a characteristic
is called a nonlinear softening spring.

If we designate the general relationship between force and deflection by the equation

F=F() (a)

then spring rate is defined as

AF dF
k(y) = lim —

- = (4-1)
Ay—0 Ay dy

where y must be measured in the direction of F and at the point of application of F. Most
of the force-deflection problems encountered in this book are linear, as in Fig. 4—1a. For
these, k is a constant, also called the spring constant; consequently Eq. (4—1) is written

k=L (4-2)
y

We might note that Eqs. (4—1) and (4-2) are quite general and apply equally well for
torques and moments, provided angular measurements are used for y. For linear dis-
placements, the units of k are often pounds per inch or newtons per meter, and for
angular displacements, pound-inches per radian or newton-meters per radian.

Tension, Compression, and Torsion
The total extension or contraction of a uniform bar in pure tension or compression,
respectively, is given by

Fl

=7 (4-3)

This equation does not apply to a long bar loaded in compression if there is a possibil-
ity of buckling (see Secs. 4-11 to 4-15). Using Egs. (4-2) and (4-3), we see that the
spring constant of an axially loaded bar is

AE

The angular deflection of a uniform round bar subjected to a twisting moment 7
was given in Eq. (3-35), and is

Tl

- GJ

where 6 is in radians. If we multiply Eq. (4-5) by 180/7 and substitute J = wd*/32
for a solid round bar, we obtain

(4-5)

583.6T'1
0= —— 4-6
o (4-6)
where 0 is in degrees.
Equation (4-5) can be rearranged to give the torsional spring rate as
T GJ
k=—=— (4-7)

0 l
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4-3

Deflection Due to Bending

The problem of bending of beams probably occurs more often than any other loading
problem in mechanical design. Shafts, axles, cranks, levers, springs, brackets, and wheels,
as well as many other elements, must often be treated as beams in the design and analy-
sis of mechanical structures and systems. The subject of bending, however, is one that
you should have studied as preparation for reading this book. It is for this reason that
we include here only a brief review to establish the nomenclature and conventions to be
used throughout this book.
The curvature of a beam subjected to a bending moment M is given by

1 M

where p is the radius of curvature. From studies in mathematics we also learn that the
curvature of a plane curve is given by the equation
1 d*y/dx?

p = 1+ @y/dxy TP 14-9)

where the interpretation here is that y is the lateral deflection of the beam at any point
x along its length. The slope of the beam at any point x is

_dy

0=
dx

(a)

For many problems in bending, the slope is very small, and for these the denominator
of Eq. (4-9) can be taken as unity. Equation (4-8) can then be written

M_ay "
EI  dx?
Noting Egs. (3-3) and (3—4) and successively differentiating Eq. (b) yields
v _ &y "
EI  dx}
g _dYy (d)
El  dx*
It is convenient to display these relations in a group as follows:
g _d'y
_— = 4-1
EI  dx* (410
Vv d’y
= 4-11
El  dx3 ( )
M 4
Z 4 (4-12)
El  dx?
dy
0=— 4-13
I (4-13)
y=f) (4-14)
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[=201in
w
Nnnm . Loading. v
w = 80 Ibf/in
@ Ri= %l Ry= uj[
|V
i * Shear, V
x  Vy=+800 Ibf
_ V, =800 Ibf
v
(b) ”
+
© Mo M * [1\;: Teﬁ:%
EIo
+ | Elo,
X Slope, EI6
@ = et
Ely

Deflection, Ely
Yo=x=0

(e)

The nomenclature and conventions are illustrated by the beam of Fig. 4-2. Here, a beam
of length / = 20 in is loaded by the uniform load w = 80 1bf per inch of beam length.
The x axis is positive to the right, and the y axis positive upward. All quantities—
loading, shear, moment, slope, and deflection—have the same sense as y; they are pos-
itive if upward, negative if downward.

The reactions Ry = R, = +800 1lbf and the shear forces V, = +800 1bf and
Vi = —800 Ibf are easily computed by using the methods of Chap. 3. The bending
moment is zero at each end because the beam is simply supported. For a simply-
supported beam, the deflections are also zero at each end.

For the beam in Fig. 4-2, the bending moment equation, for 0 <x <, is

Using Eq. (4-12), determine the equations for the slope and deflection of the beam, the
slopes at the ends, and the maximum deflection.

Integrating Eq. (4—12) as an indefinite integral we have

dy wl , w4

El—=| Mdx = —x"— — C 1
dx / FEgT Tt T m
where C is a constant of integration that is evaluated from geometric boundary conditions.
We could impose that the slope is zero at the midspan of the beam, since the beam and
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loading are symmetric relative to the midspan. However, we will use the given bound-
ary conditions of the problem and verify that the slope is zero at the midspan. Integrating
Eq. (1) gives

EIy:/ de=5x3—;)—4x4+C1x+Cz (2)

The boundary conditions for the simply supported beam are y =0 at x=0 and [
Applying the first condition, y = 0 at x = 0, to Eq. (2) results in C; = 0. Applying the
second condition to Eq. (2) with C, =0,

wl o, w oy
EIy(l):El _ﬁl +Cil=0

Solving for C| yields C; = —wl?/24. Substituting the constants back into Eqs. (1) and
(2) and solving for the deflection and slope results in

wx

v= Qx> = x3 =1 (3)
dy w

= E = m(6l}€2 — 4)(3 — l3) (4)

Comparing Eq. (3) with that given in Table A—9, beam 7, we see complete agreement.
For the slope at the left end, substituting x = 0 into Eq. (4) yields

9| . w3
=0T 4R
and at x = [,
wl?
9|x:l =
24E1

At the midspan, substituting x = [/2 gives dy/dx = 0, as earlier suspected.
The maximum deflection occurs where dy/dx = 0. Substituting x = //2 into
Eq. (3) yields
Swi*
384E1

Ymax =

which again agrees with Table A—9-7.

The approach used in the example is fine for simple beams with continuous
loading. However, for beams with discontinuous loading and/or geometry such as a step
shaft with multiple gears, flywheels, pulleys, etc., the approach becomes unwieldy. The
following section discusses bending deflections in general and the techniques that are
provided in this chapter.

Beam Deflection Methods

Equations (4-10) through (4—14) are the basis for relating the intensity of loading ¢,
vertical shear V, bending moment M, slope of the neutral surface 6, and the trans-
verse deflection y. Beams have intensities of loading that range from g = constant
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(uniform loading), variable intensity g(x), to Dirac delta functions (concentrated
loads).

The intensity of loading usually consists of piecewise contiguous zones, the
expressions for which are integrated through Egs. (4-10) to (4-14) with varying
degrees of difficulty. Another approach is to represent the deflection y(x) as a Fourier
series, which is capable of representing single-valued functions with a finite number of
finite discontinuities, then differentiating through Eqgs. (4-14) to (4-10), and stopping
at some level where the Fourier coefficients can be evaluated. A complication is the
piecewise continuous nature of some beams (shafts) that are stepped-diameter bodies.

All of the above constitute, in one form or another, formal integration methods,
which, with properly selected problems, result in solutions for ¢, V, M, 6, and y. These
solutions may be

1 Closed-form, or

2 Represented by infinite series, which amount to closed form if the series are
rapidly convergent, or

3 Approximations obtained by evaluating the first or the first and second terms.

The series solutions can be made equivalent to the closed-form solution by the use of a
computer. Roark’s' formulas are committed to commercial software and can be used on
a personal computer.

There are many techniques employed to solve the integration problem for beam
deflection. Some of the popular methods include:

* Superposition (see Sec. 4-5)
* The moment-area method?
 Singularity functions (see Sec. 4-6)

+ Numerical integration®

The two methods described in this chapter are easy to implement and can handle a large
array of problems.

There are methods that do not deal with Egs. (4—10) to (4—14) directly. An energy
method, based on Castigliano’s theorem, is quite powerful for problems not suitable for
the methods mentioned earlier and is discussed in Secs. 4-7 to 4—10. Finite element
programs are also quite useful for determining beam deflections.

Beam Deflections by Superposition

The results of many simple load cases and boundary conditions have been solved
and are available. Table A-9 provides a limited number of cases. Roark’s™ provides
a much more comprehensive listing. Superposition resolves the effect of combined
loading on a structure by determining the effects of each load separately and adding

"Warren C. Young and Richard G. Budynas, Roark’s Formulas for Stress and Strain, Tth ed., McGraw-Hill,
New York, 2002.

2See Chap. 9, F. P. Beer, E. R. Johnston Jr., and J. T. DeWolf, Mechanics of Materials, 4th ed., McGraw-Hill,
New York, 2006.

3See Sec. 4-4,J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed., McGraw-Hill,
New York, 2001.

4Warren C. Young and Richard G. Budynas, Roark’s Formulas for Stress and Strain, Tth ed., McGraw-Hill,
New York, 2002.
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EXAMPLE 4-2

| Figure 4-3

Solution

Answer

Answer

Answer

Answer

the results algebraically. Superposition may be applied provided: (1) each effect is
linearly related to the load that produces it, (2) a load does not create a condition that
affects the result of another load, and (3) the deformations resulting from any spe-
cific load are not large enough to appreciably alter the geometric relations of the
parts of the structural system.

The following examples are illustrations of the use of superposition.

Consider the uniformly loaded beam with a concentrated force as shown in Fig. 4-3.
Using superposition, determine the reactions and the deflection as a function of x.

Considering each load state separately, we can superpose beams 6 and 7 of Table A-9.
For the reactions we find

R _Fb+wl
)
R _Fa+wl
T T

The loading of beam 6 is discontinuous and separate deflection equations are given
for regions AB and BC. Beam 7 loading is not discontinuous so there is only one equa-
tion. Superposition yields

Fbx D wx 2 3 A
= — b —1 —2Ux" —x" —1
YAB 6EIl(x + )+24EI( X —x )
Fa(l —x) , ” wx ) 3 3
=2 — 21 —Q2x* — x> =1
yoe = —epqr & Ha =0 F g Gt =Xt =)
7
i
F
l«e—a b
REEE R EEEE
L, 7 A

If we wanted to determine the maximum deflection in the previous example, we
would set dy/dx = 0 and solve for the value of x where the deflection is a maximum.
If a =1/2, the maximum deflection would obviously occur at x =//2 because of
symmetry. However, if a < //2, where would the maximum deflection be? It can be
shown that as the force F moves toward the left support, the maximum deflection moves
toward the left support also, but not as much as F (see Prob. 4-34). Thus, we would set
dypc/dx = 0 and solve for x.

Sometimes it may not be obvious that we can use superposition with the tables at
hand, as demonstrated in the next example.
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Consider the beam in Fig. 4—4a and determine the deflection equations using
superposition.

For region AB we can superpose beams 7 and 10 of Table A-9 to obtain

Fax
6EI1l

_ wx
T 24E1

VAB QIx>=x* =P+ (> = x%

For region BC, how do we represent the uniform load? Considering the uniform
load only, the beam deflects as shown in Fig. 4-4b. Region BC is straight since
there is no bending moment due to w. The slope of the beam at B is 6 and is

obtained by taking the derivative of y given in the table with respect to x and setting
x =[. Thus,

dy d [ wx 2 33 @ 2 343

— = — 2x" —x" =) | = ——(6lx" —4x” —
dx dx[24EI( o =D = g O A D)

Substituting x = [ gives

wl?

24E1

w
O = —— (611> —4I° — °) =
5= 2451 ° )

The deflection in region BC due to w is 6 (x — ), and adding this to the deflection due
to F, in BC, yields

w3 F(x—=1) 2
yBc—24EI(x—l)+6E—I[(x—l) —a@Bx —1)]
y
| e
|

T T 18—, } Yse= =D
B o x

C

(a) (b)

Figure 4-5a shows a cantilever beam with an end load. Normally we model this prob-
lem by considering the left support as rigid. After testing the rigidity of the wall it was
found that the translational stiffness of the wall was k, force per unit vertical deflection,
and the rotational stiffness was k, moment per unit angular (radian) deflection (see
Fig. 4-5b). Determine the deflection equation for the beam under the load F.
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| Figure 4-5

Solution

Answer

4-6

Here we will superpose the modes of deflection. They are: (1) translation due to the
compression of spring k;, (2) rotation of the spring k,, and (3) the elastic deformation
of the beam given by Table A—9-1. The force in spring k; is R} = F, giving a deflec-
tion from Eq. (4-2) of

F

5 (1)

Y =
The moment in spring k, is M| = FI. This gives a clockwise rotation of 6 = Fl/k,.
Considering this mode of deflection only, the beam rotates rigidly clockwise, leading to
a deflection equation of

Fl
N = _k_rx (2)
Finally, the elastic deformation of the beam from Table A—9-1 is
Fx?
= —(x -3l 3
Y= er7 (x ) (3)

Adding the deflections from each mode yields

x2( 30) F Fl
=—x-3)————x
Y= SEI S
i F

—_—
=

(@)

(b)

Beam Deflections by Singularity Functions

Introduced in Sec. 3-3, singularity functions are excellent for managing discontinuities, and
their application to beam deflection is a simple extension of what was presented in the ear-
lier section. They are easy to program, and as will be seen later, they can greatly simplify
the solution of statically indeterminate problems. The following examples illustrate the use
of singularity functions to evaluate deflections of statically determinate beam problems.
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Consider the beam of Table A—9-6, which is a simply supported beam having a con-
centrated load F not in the center. Develop the deflection equations using singularity
functions.

First, write the load intensity equation from the free-body diagram,
g=Rix)""—Flx—a)"'+ Ryx =) (1)
Integrating Eq. (1) twice results in
V=Rx)"—F(x—a)+ Ryx—1)° (2)
M =R (x)' — F(x —a)' + Ro(x — 1) (3)

Recall that as long as the g equation is complete, integration constants are unnecessary
for V and M; therefore, they are not included up to this point. From statics, setting
V =M = 0 for x slightly greater than / yields Ry = Fb/l and R, = Fa/l. Thus Eq. (3)
becomes

M= FTbm1 _Flx—a)t +%<x—l>‘

Integrating Eqgs. (4-12) and (4—13) as indefinite integrals gives

Er® Fb( )2 F( )2+Fa( H+cC
—_ = — (X — —(x —a —(x —
dx 21 2 21 !
Fb F Fa
Ely=—(x)°— —(x —a)’ + = _7\3
Y=g (x) 6<x a)” + o (x =1)’ +Cix +C

Note that the first singularity term in both equations always exists, so (x)> = x>
and (x)* = x>. Also, the last singularity term in both equations does not exist until

x = [, where it is zero, and since there is no beam for x > / we can drop the last term.
Thus

dy Fb , F )
EY 20 L c 4
- 2<X a) +C (4)
Fb F
E1y=§x3—g<X—a)3+Clx+C2 (5)

The constants of integration C; and C, are evaluated by using the two boundary con-
ditions y = 0 at x = 0 and y = 0 at x = [. The first condition, substituted into Eq. (5),
gives C, = 0 (recall that (0 — a)® = 0). The second condition, substituted into Eq. (5),
yields

Fb F Fbl®> Fb?
0=—D——(l—-aP+Cl= = L Cul
6l gl-a +a 6 g ¢
Solving for Cy,
Fb
C,=——@1*=b%

6/
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EXAMPLE 4-6

| Figure 4-6

Solution

Finally, substituting C; and C, in Eq. (5) and simplifying produces

y [bx(x* + b* — I*) — l{x —a)] (6)

" 6EIl
Comparing Eq. (6) with the two deflection equations in Table A—9-6, we note that the
use of singularity functions enables us to express the deflection equation with a single
equation.

Determine the deflection equation for the simply supported beam with the load distrib-
ution shown in Fig. 4-6.

This is a good beam to add to our table for later use with superposition. The load inten-
sity equation for the beam is

g=Ri(x)" —wx)+wix—a)’+Ry(x 1)~ (1)
where the w(x — a)° is necessary to “turn off” the uniform load at x = a.
From statics, the reactions are

wa2

wa
Ri=—Q2I - Ry = —
1 Zl( a) 2=~

(2)
For simplicity, we will retain the form of Eq. (1) for integration and substitute the values
of the reactions in later.

Two integrations of Eq. (1) reveal

V=Ri(x)° — wx) +wlx —a) + Ry(x —1)° (3)
M=R1(x>l—%(x)z-i-%(x—a)z-f-Rz(x—l)l (4)

As in the previous example, singularity functions of order zero or greater starting at
x =0 can be replaced by normal polynomial functions. Also, once the reactions are
determined, singularity functions starting at the extreme right end of the beam can be
omitted. Thus, Eq. (4) can be rewritten as

M = Rix — %xz—l—%(x—a)z (5)
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Integrating two more times for slope and deflection gives

dy R , w5 w 3

I—=—x"——x"+—{(x—a)’+C 6

P S +6<x a)” +C (6)
R

EIy:—1x3—ix4+ﬂ(x—a)4+clx+C2 (7)

6 24 24

The boundary conditions are y =0 at x =0 and y = 0 at x = /. Substituting the first
condition in Eq. (7) shows C, = 0. For the second condition
Ry

0="2tp Yy

w
= = @) l
6 2l Tpl-a G

Solving for C; and substituting into Eq. (7) yields

e By o

Ely = &x(xz -2
6 24 241 24

Finally, substitution of R; from Eq. (2) and simplifying results gives

w

T 24EIl Rax(2 —a)(x* — 1) —xI(x> =) —x( —a)* + I{x — a)*]

y

As stated earlier, singularity functions are relatively simple to program, as they are
omitted when their arguments are negative, and the () brackets are replaced with ( )
parentheses when the arguments are positive.

The steel step shaft shown in Fig. 4-7a is mounted in bearings at A and F. A pulley
is centered at C where a total radial force of 600 1bf is applied. Using singularity
functions evaluate the shaft displacements at %— in increments. Assume the shaft is
simply supported.

The reactions are found to be R; = 360 Ibf and R, = 240 Ibf. Ignoring R,, using
singularity functions, the moment equation is

M = 360x — 600(x — 8)! (1)

This is plotted in Fig. 4-7b.

For simplification, we will consider only the step at D. That is, we will assume sec-
tion AB has the same diameter as BC and section EF has the same diameter as DE.
Since these sections are short and at the supports, the size reduction will not add much
to the deformation. We will examine this simplification later. The second area moments
for BC and DE are

w . T .
Ipc = a1.54 =0.2485 in* Ipg = a1.754 = 0.4604 in*
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600 Ibf
1.750
1.000 1.500 1 D ' g 1.000
Al B Y ¢ F oy
el vz I N .
i o5 1 \ | A *
1
R 85 | R,
! 19.5 ‘
((l) r 20 1
M 2880 Ibf-in_ 2760 Ibf-in
(b)
MiI 4y
@
© d

A plot of M/I is shown in Fig. 4-7¢. The values at points b and c, and the step change are

M 2760 M 2760
= = 11 106.6 Ibf/in’ —) = = 5994.8 Ibf/in’
( I >,, 0.2485 /in ( I ) 0.4604 /in

A (T) =5994.8 — 11 106.6 = —5 111.8 Ibf/in’

The slopes for ab and cd, and the change are

360 — 600 —5994.8
Mgy = ————— = —965.8 Ibf/in*  m.y = ————— = —521.3 Ibf/in*
0.2485 11.5

Am = —521.3 — (—965.8) = 444.5 Ibf/in*

Dividing Eq. (1) by /¢ and, at x = 8.5 in, adding a step of —5 111.8 1bf/in’ and a ramp
of slope 444.5 Ibf/in*, gives

— = 1448.7x — 2414.5(x - 8)! —5111.8(x —8.5)° +444.5(x —8.5)'  (2)

Integrating twice gives
Ed—y = 724.35x% — 1207.3(x — 8)> — 5 111.8(x — 8.5)!
X
+222.3(x — 8.5)> + C; (3)

and

Ey = 241.5x% —402.4(x — 8)> —2555.9(x — 8.5)2 +74.08(x — 8.5)> + C1x + C,

(4)

Atx =0, y = 0. This gives C, = 0 (remember, singularity functions do not exist until
the argument is positive). At x = 20 in, y = 0, and

0 = 241.5(20)> — 402.4(20 — 8)> — 2 555.9(20 — 8.5)> + 74.08(20 — 8.5)> + C;(20)
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Solving, gives C; = —50 565 lbf/inz. Thus, Eq. (4) becomes, with £ = 30(10)° psi,

y (241.5x% — 402.4(x — 8)° — 2 555.9(x — 8.5)?

~ 30010
+74.08(x — 8.5)> — 50 565x) (5)

When using a spreadsheet, program the following equations:

_ 3 .
y = 30(106)(241.5x —50565x) 0<x <8in

_ 3 3 .
=) [241.5x — 402.4(x — 8)> — 50565x] 8 <x <85in

1

- 241.5x — 402.4 (x — 8)® — 2 555.9(x — 8.5)°

Y = 35005 2415 (x —8) (x —8.5)
+74.08 (x — 8.5)° — 50565x] 8.5 <x <20in

The following table results.

0
0.5
1

2.5

3.5
4

0.000000
—0.000842
-0.001677
—0.002501
—0.003307
—0.004088
—0.004839
—0.005554
—0.006227

4.5

5.5

6.5

7.5

8.5

—0.006851 Q —0.009335 13.5 —0.007001 18 -0.002377
—0.007421 Q.5 —0.009238 14 —0.006571 18.5 —0.001790
—0.007931 10 —0.009096 14.5 —0.006116 19 -0.001197
—0.008374 10.5 —0.008909 15 —0.005636 19.5 —0.000600
—0.008745 11 —0.008682 15.5 —0.005134 20 0.000000
—0.009037 11.5 —0.008415 16 —0.004613
—0.009245 12 —0.008112 16.5 —0.004075
—0.009362 12.5 —0.007773 17 —0.003521
—0.009385 13 —0.007403 17.5 —0.002954

where x and y are in inches. We see that the greatest deflection is at x = 8.5 in, where
y = —0.009385 in.

Substituting C; into Eq. (3) the slopes at the supports are found to be 64, = 1.686(1073)
rad = 0.09657 deg, and O = 1.198(1073) rad = 0.06864 deg. You might think these to
be insignificant deflections, but as you will see in Chap. 7, on shafts, they are not.

A finite-element analysis was performed for the same model and resulted in

Ylx =850 = —0.0093801in 04 = —0.09653° 0r = 0.06868°

Virtually the same answer save some round-off error in the equations.
If the steps of the bearings were incorporated into the model, more equations result,
but the process is the same. The solution to this model is

Vlx = 85in = —0.009387 in 04 = —0.09763° 0r = 0.06973°

The largest difference between the models is of the order of 1.5 percent. Thus the sim-
plification was justified.
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| Figure 4-8

4-7

In Sec. 4-9, we will demonstrate the usefulness of singularity functions in solving
statically indeterminate problems.

Strain Energy

The external work done on an elastic member in deforming it is transformed into strain,
or potential, energy. If the member is deformed a distance y, and if the force-deflection
relationship is linear, this energy is equal to the product of the average force and the
deflection, or
I F F?

27T % {a)
This equation is general in the sense that the force F' can also mean torque, or moment,
provided, of course, that consistent units are used for k. By substituting appropriate
expressions for k, strain-energy formulas for various simple loadings may be obtained.
For tension and compression and for torsion, for example, we employ Egs. (4—4) and
(4-7) and obtain

F?l
= tension and compression (4-15)
2AE
T2l .
U=—— torsion (4-16)
2GJ

To obtain an expression for the strain energy due to direct shear, consider the
element with one side fixed in Fig. 4-8a. The force F places the element in pure shear,
and the work done is U = F§/2. Since the shear strainis y =6/l =1t/G = F/AG,
we have

F?l

U= direct shear (4-17)
2AG

The strain energy stored in a beam or lever by bending may be obtained by refer-
ring to Fig. 4-8b. Here AB is a section of the elastic curve of length ds having a radius
of curvature p. The strain energy stored in this element of the beam is dU = (M /2)d6.
Since pdO = ds, we have

_Mds

du
2p

(b)

T
L mA
\ /b/

(a) Pure shear element (b) Beam bending element
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We can eliminate p by using Eq. (4-8). Thus

U_Mzds (o
= 2ET ¢

For small deflections, ds = dx. Then, for the entire beam

M?*d
U= 2E1x bending (4-18)

Equation (4—18) is exact only when a beam is subject to pure bending. Even when
shear is present, Eq. (4—18) continues to give quite good results, except for very short
beams. The strain energy due to shear loading of a beam is a complicated problem. An
approximate solution can be obtained by using Eq. (4-17) with a correction factor
whose value depends upon the shape of the cross section. If we use C for the correction
factor and V for the shear force, then the strain energy due to shear in bending is the
integral of Eq. (4-17), or

cv?d
U= / al bending shear (4-19)
2AG

Values of the factor C are listed in Table 4-1.

Beam Cross-Sectional Shape Factor C

Rectangular 1.2

Circular 1.1

Thin-walled tubular, round 2.00

Box sections! 1.00

Structural sections ! 1.00
TUse area of web only.

Find the strain energy due to shear in a rectangular cross-section beam, simply sup-
ported, and having a uniformly distributed load.

Using Appendix Table A—9—7, we find the shear force to be
V = 7 — WX
Substituting into Eq. (4-19), with C = 1.2, gives

U= 1.2 L rwl 2d _ w23
“246 o, \2 ™) YT 2046
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4-8

A cantilever has a concentrated load F at the end, as shown in Fig. 4-9. Find the strain
energy in the beam by neglecting shear.

At any point x along the beam, the moment is M = — Fx. Substituting this value of M
into Eq. (4-18), we find

U /1 F2x?dx _ F?
~Jo 2EI ~ 6EI

Castigliano’s Theorem

A most unusual, powerful, and often surprisingly simple approach to deflection analy-
sis is afforded by an energy method called Castigliano’s theorem. It is a unique way of
analyzing deflections and is even useful for finding the reactions of indeterminate struc-
tures. Castigliano’s theorem states that when forces act on elastic systems subject to
small displacements, the displacement corresponding to any force, in the direction of
the force, is equal to the partial derivative of the total strain energy with respect to that
force. The terms force and displacement in this statement are broadly interpreted to
apply equally to moments and angular displacements. Mathematically, the theorem of
Castigliano is

U

8= ——
IF;

(4-20)
where §; is the displacement of the point of application of the force F; in the direction
of F;. For rotational displacement Eq. (4-20) can be written as

0, = ﬂ (4-21)
oM;
where 6; is the rotational displacement, in radians, of the beam where the moment
M, exists and in the direction of M;.
As an example, apply Castigliano’s theorem using Eqgs. (4-15) and (4-16) to get
the axial and torsional deflections. The results are

9 (FA\ _FI
5= == (a)
oF \2AE) ~ AE

o (TN _ TI
0=_— = (b)
0T \2GJ) ~ GJ
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Compare Egs. (a) and (b) with Egs. (4-3) and (4-5). In Example 4-8, the bending strain
energy for a cantilever having a concentrated end load was found. According to
Castigliano’s theorem, the deflection at the end of the beam due to bending is

U D <F213) FI?

y ()

T 9F  9F \6EI)  3EI
which checks with Table A-9—-1.

Castigliano’s theorem can be used to find the deflection at a point even though no
force or moment acts there. The procedure is:

1 Set up the equation for the total strain energy U by including the energy due
to a fictitious force or moment Q; acting at the point whose deflection is to be
found.

2 Find an expression for the desired deflection §;, in the direction of Q;, by taking
the derivative of the total strain energy with respect to Q;.

3 Since Q; is a fictitious force, solve the expression obtained in step 2 by setting
Q; equal to zero. Thus,

oU

8 = — (4-22)
8Qi 0,=0

The cantilever of Ex. 4-9 is a carbon steel bar 10 in long with a 1-in diameter and is
loaded by a force F = 100 Ibf.

(a) Find the maximum deflection using Castigliano’s theorem, including that due to shear.
(b) What error is introduced if shear is neglected?

(a) From Eq. (4—-19) and Example 4-9 data, the total strain energy is

_ P N /’ CV?dx
0

U
6E1 2AG

(1)

For the cantilever, the shear force is constant with repect to x, V = F. Also, C = 1.11,
from Table 4-1. Performing the integration and substituting these values in Eq. (1)
gives, for the total strain energy,

F2*  1.11F%

- 2
6E1 + 2AG (2)
Then, according to Castigliano’s theorem, the deflection of the end is
_aU FI? +1.11Fl (3)
Y= 3F " 3EI ' AG
We also find that
d* n*
p =T TN G o401 in
64 64
zd*  w(1)?

A=" = = 0.7854 in®
4 4
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EXAMPLE 4-11

| Figure 4-10

Solution

Substituting these values, together with F = 100 Ibf, / = 10 in, E = 30 Mpsi, and
G = 11.5 Mpsi, in Eq. (3) gives

y =0.022 63 4+ 0.000 12 = 0.022 75 in

Note that the result is positive because it is in the same direction as the force F.
(b) The error in neglecting shear for this problem is found to be about 0.53 percent.

In performing any integrations, it is generally better to take the partial derivative
with respect to the load F; first. This is true especially if the force is a fictitious force
Q;, since it can be set to zero as soon as the derivative is taken. This is demonstrated in
the next example. The forms for deflection can then be rewritten. Here we will assume,
for axial and torsional loading, that material and cross section properties and loading
can vary along the length of the members. From Egs. (4-15), (4-16), and (4-18),

oU 1 oF
8 = / (F —) dx tension and compression (4-23)

~or ) AaE\" R
U 1 oT .
j=—= | — [ T— ) dx torsion (4-24)
oM, 7\ am,
U 1 oM
8= — = f — (M — ) dx bending (4-25)
oF EI\"3F,

Using Castigliano’s method, determine the deflections of points A and B due to the
force F applied at the end of the step shaft shown in Fig. 4-10. The second area
moments for sections AB and BC are I; and 2/}, respectively.

With cantilever beams we normally set up the coordinate system such that x starts at the
wall and is directed towards the free end. Here, for simplicity, we have reversed
that. With the coordinate system of Fig. 4-10 the bending moment expression is simpler
than with the usual coordinate system, and does not require the support reactions. For
0 < x <, the bending moment is

M = —Fx (1)

Since F'is at A and in the direction of the desired deflection, the deflection at A from
Eq. (4-25) is

2 i 12 |
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[ 5 (55) o

Substituting Eq. (1) into Eq. (2), noting that I = I; for 0 < x <1[/2, and I = 21, for
1/2 <x <1, we get

===

1

5 -
4 El

(Ma—M 2)

oF

1 w2 |
Sp = — / — (—Fx) (—x) dx —l—/ — (—Fx) (—x) dx]
“TE |: o n 12 21
_L[FP TFP] 3 FP
T E 241, 481, | 16 EL

which is positive, as it is in the direction of F.
For B, a fictitious force Q; is necessary at the point. Assuming Q; acts down at B,
and x is as before, the moment equation is

M = —Fx 0<x<l)2
l (3)
M=—Fx— Q; x—z /2 <x <l
For Eq. (4-25), we need M /0 Q;. From Eq. (3),
oM
— =0 0<x<l/)2
20,
oM l g
—=—x— = /2 <x<I
00; 2
Once the derivative is taken, Q; can be set to zero, so from Eq. (3), M = —Fx for
0 < x <, and Eq. (4-25) becomes
| oM
§p = — | M— ) dx
o EI1\" 90; i
1 12 / /
== (—=Fx)(0)dx + (=Fx) [— (x = —>i| dx
EL Jo EQL) Jip 2

Evaluating the last integral gives

7

_ 5 FP
T 2EIL

T 96 El

dp

x> Ix? :
(? a T)
12

which again is positive, in the direction of Q;.

For the wire form of diameter d shown in Fig. 4—11a, determine the deflection of point
B in the direction of the applied force F (neglect the effect of bending shear).

It is very important to include the loading effects on all parts of the structure. Coordinate
systems are not important, but loads must be consistent with the problem. Thus
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| Figure 4-11

a
\i\c/ b
\
y

(@)

(T)MG2 =Mp,=Fb

(b)

appropriate use of free-body diagrams is essential here. The reader should verify that the
reactions as functions of F in elements BC, C D, and G D are as shown in Fig. 4-11b.
The deflection of B in the direction of F is given by

U
.
B oF

so the partial derivatives in Eqgs. (4-23) to (4-25) will all be taken with respect to F.
Element BC is in bending only so from Eq. (4-25),>
aUpc
oF

3

F
/ (—Fy)(— y)dy—3E“I (1)

Element C D is in bending and in torsion. The torsion is constant so Eq. (4-24) can be

written as
W T8T l
aF, ~ \ 0F, ) GJ

St is very tempting to mix techniques and try to use superposition also, for example. However, some subtle
things can occur that you may visually miss. It is highly recommended that if you are using Castigliano’s
theorem on a problem, you use it for all parts of the problem.
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where /s the length of the member. So for the torsion in member CD, F; = F, T = Fa,
and [ = b. Thus,

oU b Fa*b
( CD) = (Fa)(a)— = — (2)
oF torsion GJ GJ

For the bending in CD,

U, 1 [P Fb3
( CD) L / =) Ay = 3)
8F bending EI 0 3EI

Member DG is axially loaded and is bending in two planes. The axial loading is
constant, so Eq. (4-23) can be written as

ou F oF l
aF, \ 0F, ) AE
where [ is the length of the member. Thus, for the axial loading of DG, F = F;, | = c,

and
oU F
Z=DG _rc (4)
oF axial AE

The bending moments in each plane of DG are constant along the length of M, = Fb
and M, = Fa. Considering each one separately in the form of Eq. (4-25) gives

(%)
oF bending

1 c 1 c
— Fb)(b) dz + — F d
EI/O< 10 z+EI/0(a)(a) :
(5)
_ Fe(@®+b?)
N EI
Adding Egs. (1) to (5), noting that I =nd*/64, J =2I, A =mnd?/4, and G =
E/[2(1 4+ v)], we find that the deflection of B in the direction of F is

4r 3,313 2., 12 2 2
Op)p = -——=—116(a” +b”) +48c(a”~ + b~) + 48(1 + v)a b + 3cd”]
3rEd*
Now that we have completed the solution, see if you can physically account for each
term in the result.

Deflection of Curved Members

Machine frames, springs, clips, fasteners, and the like frequently occur as curved
shapes. The determination of stresses in curved members has already been described in
Sec. 3—18. Castigliano’s theorem is particularly useful for the analysis of deflections in
curved parts too. Consider, for example, the curved frame of Fig. 4-12a. We are inter-
ested in finding the deflection of the frame due to F and in the direction of F. The total
strain energy consists of four terms, and we shall consider each separately. The first is
due to the bending moment and is®

6 See Richard G. Budynas, Advanced Strength and Applied Stress Analysis, 2nd ed., Sec. 6.7, McGraw-Hill,
New York, 1999.
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(a) (b)
Figure 4-12

(a) Curved bar loaded by force F. R = radius to centroidal axis of section;
h = secfion thickness. (b) Diagram showing forces acting on section taken at
angle 6. F, =V = shear component of F; Fy is component of F normal to
section; M is moment caused by force F.

M?do

U, =
: 2A¢E

(4-26)

In this equation, the eccentricity e is
e=R-—r, (4-27)

where r, is the radius of the neutral axis as defined in Sec. 3—18 and shown in Fig. 3-34.
An approximate result can be obtained by using the equation

M?Rdo R

U= —— —>10 (4-28)
2E1 h

which is obtained directly from Eq. (4—18). Note the limitation on the use of Eq. (4-28).

The strain energy component due to the normal force Fy consists of two parts, one

of which is axial and analogous to Eq. (4—15). This part is

F2R do
U, = / 0 (4-29)
2AE

The force Fy also produces a moment, which opposes the moment M in Fig. 4-12b. The
resulting strain energy will be subtractive and is
MF,db

Us = 4-30
3 15 ( )

The negative sign of Eq. (4-30) can be appreciated by referring to both parts of
Fig. 4-12. Note that the moment M tends to decrease the angle d6. On the other hand,
the moment due to Fy tends to increase d6. Thus Uj is negative. If Fy had been acting
in the opposite direction, then both M and F, would tend to decrease the angle d6.
The fourth and last term is the shear energy due to F,. Adapting Eq. (4-19) gives

CF2RdoO
Us= | ——= 4-31
\ / - (4-31)

where C is the correction factor of Table 4—1.
Combining the four terms gives the total strain energy

(4-32)

U M?do / FZRdf MF,do +f CF’Rdo
“ ] 24¢E 2AE AE 2AG
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Figure 4-13

Ring ABC in the xy plane
subject to force F parallel to
the z axis. Corresponding to

a ring segment CB at angle 6
from the point of application
of F, the moment axis is a line
BO and the forque axis is a
line in the xy plane tangent fo
the ring at B. Note the positive
directions of the T and M

axes.
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The deflection produced by the force F' can now be found. It is
oU = M [(OM T FyR [ OF,

5=_=/ —d9+/ (=L ) as
oF o AeE \OF o AE \OF

T 1 dME) ™ CF,R [ F,
— | — ——"=de do 4-
/0 AE OF +/0 AG <8F> (4-33)

Using Fig. 4-12b, we find

. oM .
M = FRsin6 —— = Rsin#
oF
oF,
Fy = Fsin6 % —ing
oF
OMF,
MF, = F2Rsin®0  —2FRsin0
oF
0F,
F, = Fcosf = cosf
oF

Substituting these into Eq. (4-33) and factoring yields

FR? [™ FR [~ 2FR [T
§= f sin29d6+—/ sin29d9——/ sin” 0 do
AeE 0 AE 0 AE 0

CFR (™
+—— | cos’0do
AG J,

_mFR* #FR _aFR 7CFR _aFR* 7FR 7CFR 5,

T 2A¢E + 2AE  AE + 2AG ~ 2A¢E 2AE + 2AG

Because the first term contains the square of the radius, the second two terms will be
small if the frame has a large radius. Also, if R/h > 10, Eq. (4-28) can be used. An
approximate result then turns out to be

. nFR}

(4-35)
2E1

The determination of the deflection of a curved member loaded by forces at right
angles to the plane of the member is more difficult, but the method is the same.” We
shall include here only one of the more useful solutions to such a problem, though the
methods for all are similar. Figure 4-13 shows a cantilevered ring segment having a
span angle ¢. Assuming R/h > 10, the strain energy neglecting direct shear, is
obtained from the equation

® M2R d6 ¢ T2RdO
U= / MRdY | / (4-36)
0 0

2E1 2GJ

"For more solutions than are included here, see Joseph E. Shigley, “Curved Beams and Rings,” Chap. 38 in
Joseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine
Design, 3rd ed., McGraw-Hill, New York, 2004.
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EXAMPLE 4-13

The moments and torques acting on a section at B, due to the force F, are
M = FRsinf T = FR(1 —cos6)
The deflection § of the ring segment at C and in the direction of F is then found to be
oU FR [« B
= — = — | — 4+ — 4-37
oF 2 (E 1 + GJ ) ( )

where the coefficients o« and 8 are dependent on the span angle ¢ and are defined as
follows:

a = ¢ — sin¢ cos ¢ (4-38)
B =3¢ — 4sin¢ + sin ¢ cos ¢ (4-38)

where ¢ is in radians.

Deflection in a Variable-Cross-Section Punch-Press Frame

The general result expressed in Eq. (4-34),

_nFR* nFR , TCFR
" 2A¢E  2AE = 2AG

is useful in sections that are uniform and in which the centroidal locus is circular. The
bending moment is largest where the material is farthest from the load axis.
Strengthening requires a larger second area moment /. A variable-depth cross section is
attractive, but it makes the integration to a closed form very difficult. However, if you
are seeking results, numerical integration with computer assistance is helpful.

Consider the steel C frame depicted in Fig. 4—14a in which the centroidal radius is
32 in, the cross section at the ends is 2 in x 2 in, and the depth varies sinusoidally with
an amplitude of 2 in. The load is 1000 Ibf. It follows that C = 1.2, G = 11.5(10°) psi,
E =30(10° psi. The outer and inner radii are

Roue = 33 + 2sin6 Rin =31 — 2sin6
The remaining geometrical terms are
h = Ryt — Rin = 2(1 + 28in0)
A =bh =4(1 +2sinf

B h B 2(1 4 25sin6)
~ In[(R+h/2)/(R—h/2)] In[(33+2sinf)/(31 — 2sin6)]

I'n

e=R—-—r,=32—r,
Note that
M = FRsin6 OM/OF = Rsin6
Fy = Fsinf 0Fy/0F = sinf
MF, = F*Rsin’ 60 OMF,;/dF = 2FRsin*6
F, = F cos6 oF,./0F = cos6
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(a) A steel punch press has a
C frame with a varying-depth
recfangular cross section
depicted. The cross section
varies sinusoidally from
2inx2inatd =0°to
2inx 6inatf® =90°, and
back to 2 in x 2 in af

6 = 180°. Of immediate
interest fo the designer is the
deflection in the load axis
direction under the load.

(b) Finite-element model.
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1000 Ibf

‘&\\:

(@) (b)

Substitution of the terms into Eq. (4-33) yields three inteqrals

S=L+L+1 (1)
where the integrals are
z in> 6 do
I, = 8.5333(10°%) / s (2)
0
. 2(1 + 2sin6)
(I+2sinf) |32 - (33 +2sin0
g 22 2smY
31 —2sinf
T )
6 do
L = —2.6667(10~) / S v9r (3)
o 1+2sinf
I = 8.3478(10~%) /n G Olf (4)
T o 1+2sin6

The integrals may be evaluated in a number of ways: by a program using Simpson’s
rule integration,® by a program using a spreadsheet, or by mathematics software. Using
MathCad and checking the results with Excel gives the integrals as I; = 0.076 615,
I, = —0.000 159, and I3 = 0.000 773. Substituting these into Eq. (1) gives

6 =0.077 23 in

Finite-element (FE) programs are also very accessible. Figure 4-14b shows a
simple half-model, using symmetry, of the press consisting of 216 plane-stress (2-D)
elements. Creating the model and analyzing it to obtain a solution took minutes.
Doubling the results from the FE analysis yielded § = 0.07790 in, a less than 1 percent
variation from the results of the numerical integration.

8See Case Study 4, p. 203, J. E. Shigley and C. R. Mischke, Mechanical Engineering Design, 6th ed.,
McGraw-Hill, New York, 2001.
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| Figure 4-15

4-10

Statically Indeterminate Problems

A system in which the laws of statics are not sufficient to determine all the unknown
forces or moments is said to be statically indeterminate. Problems of which this is true
are solved by writing the appropriate equations of static equilibrium and additional
equations pertaining to the deformation of the part. In all, the number of equations must
equal the number of unknowns.

A simple example of a statically indeterminate problem is furnished by the nested
helical springs in Fig. 4—15a. When this assembly is loaded by the compressive force
F, it deforms through the distance §. What is the compressive force in each spring?

Only one equation of static equilibrium can be written. It is

ZF:F—Fl—Fzzo (a)

which simply says that the total force F is resisted by a force F; in spring 1 plus the
force F, in spring 2. Since there are two unknowns and only one equation, the system
is statically indeterminate.

To write another equation, note the deformation relation in Fig. 4-15b. The two
springs have the same deformation. Thus, we obtain the second equation as

81 =6868=23 (b)
If we now substitute Eq. (4-2) in Eq. (b), we have
F R
— = (c)
ky k>
Now we solve Eq. (c¢) for F; and substitute the result in Eq. (a). This gives
k kyF
1 2 (d)

F——FK—-—FK=0 o F=
k t Tk +k

This completes the solution, because with F, known, F} can be found from Eq. (c).

(D)
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In the spring example, obtaining the necessary deformation equation was very
straightforward. However, for other situations, the deformation relations may not be as
easy. A more structured approach may be necessary. Here we will show two basic pro-
cedures for general statically indeterminate problems.

Procedure 1

1 Choose the redundant reaction(s). There may be alternative choices (See Example
4-14).

2 Write the equations of static equilibrium for the remaining reactions in terms of
the applied loads and the redundant reaction(s) of step 1.

3 Write the deflection equation(s) for the point(s) at the locations of the redundant
reaction(s) of step 1 in terms of the applied loads and the redundant reaction(s)
of step 1. Normally the deflection(s) is (are) zero. If a redundant reaction is a
moment, the corresponding deflection equation is a rotational deflection equation.

4  The equations from steps 2 and 3 can now be solved to determine the reactions.

In step 3 the deflection equations can be solved in any of the standard ways. Here we will
demonstrate the use of superposition and Castigliano’s theorem on a beam problem.

The indeterminate beam of Appendix Table A-9-11 is reproduced in Fig. 4-16.
Determine the reactions using procedure 1.

The reactions are shown in Fig. 4—16b. Without R, the beam is a statically determinate
cantilever beam. Without M, the beam is a statically determinate simply supported
beam. In either case, the beam has only one redundant support. We will first solve this
problem using superposition, choosing R, as the redundant reaction. For the second
solution, we will use Castigliano’s theorem with M, as the redundant reaction.

1 Choose R; at B to be the redundant reaction.
2 Using static equilibrium equations solve for R, and M in terms of F and R;.
This results in

Ri=F—-R, M1=7—Rzl (1)
3 Write the deflection equation for point B in terms of F and R,. Using
superposition of Table A—9-1 with F' = —R,, and Table A-9-2 witha =1/2,
the deflection of B, at x = [, is

Ry1? F(/2)? (1 Ry? S5FP
b= -2l gy g EUD (1) Rl SFE (2)
6E1 6E1 2 3EI 48E1
y y
/ ‘ F
F < lA B
l X
2 A B . To T
0 M, 1R, % R

(a) (b)
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4 Equation (2) can be solved for R, directly. This yields

SF
Answer Ry = — (3)
16
Next, substituting R, into Egs. (1) completes the solution, giving
11F 3FI
Al R =— M, =— 4
nswer 1 T 1 16 (4)
Note that the solution agrees with what is given in Table A—9-11.
Solution 2 1 Choose M, at O to be the redundant reaction.
2 Using static equilibrium equations solve for R; and R, in terms of F and M.
This results in
R=Li M gL M (5)
T2 T2
3 Since M, is the redundant reaction at O, write the equation for the angular
deflection at point O. From Castigliano’s theorem this is
oU
0p = — 6
0= Gt (¢

We can apply Eq. (4-25), using the variable x as shown in Fig. 4-16b. However, sim-
pler terms can be found by using a variable x that starts at B and is positive to the left.
With this and the expression for R, from Eq. (5) the moment equations are

o (E_M\, 0<A<l (7)
277 )" =72
F M [ l
M=(=-ZL)2—F(2-2 S <ic<l (8)
2 / 2 2
For both equations
oM X
- -2 ()
oM, /

Substituting Egs. (7) to (9) in Eq. (6), using the form of Eq. (4-25) where F; = M, gives
U 1 [ (1P (F M\, %\ ,. ['[(F M.
6o = = — ST (=3) ae+ LR
oM, EI| ), 2 l l 12 2 [
I A
CF(i-2)|((=2)ait=0
2 [

Canceling 1/El, and combining the first two integrals, simplifies this quite readily to

F M ! ! !
<———1)f ;ezd)e—F/ (f——)idﬁ:O
2 l 0 1/2 2
Integrating gives

(F-2)% 50 5]
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Dimensions in mm.
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which reduces to

3FI
M; = — 10
1= (10
4  Substituting Eq. (10) into (5) results in
11F 5F

Ri=— Ry=— 11
1= g 2= T¢ (11)

which again agrees with Table A—9-11.

For some problems even procedure 1 can be a task. Procedure 2 eliminates some
tricky geometric problems that would complicate procedure 1. We will describe the pro-
cedure for a beam problem.

Procedure 2

1  Write the equations of static equilibrium for the beam in terms of the applied
loads and unknown restraint reactions.

2 Write the deflection equation for the beam in terms of the applied loads and

unknown restraint reactions.

Apply boundary conditions consistent with the restraints.

4  Solve the equations from steps 1 and 3.

(]

The rods AD and C E shown in Fig. 4—17a each have a diameter of 10 mm. The second-
area moment of beam ABC is I = 62.5(10%) mm®*. The modulus of elasticity of the
material used for the rods and beam is E = 200 GPa. The threads at the ends of the rods
are single-threaded with a pitch of 1.5 mm. The nuts are first snugly fit with bar ABC
horizontal. Next the nut at A is tightened one full turn. Determine the resulting tension
in each rod and the deflections of points A and C.

There is a lot going on in this problem; a rod shortens, the rods stretch in tension, and
the beam bends. Let’s try the procedure!

1 The free-body diagram of the beam is shown in Fig. 4—17b. Summing forces,
and moments about B, gives

Fg —Fy,—Fc=0 (1)
4Fy, —3Fc =0 (2)
1 200 i 150 | F, 200 150 —> Fe
A = B réng A B c
T A g
L
600 o — Fy
E00 (b) Free-body diagram of beam ABC
D

(a)
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Answer

2 Using singularity functions, we find the moment equation for the beam is
M = —Fsx + Fg(x —0.2)!

where x is in meters. Integration yields

dy FA 2 FB 2
=2 =224 22 x— 02 +C
dx p ¥ T 0+ G
F F
EIy:—?Ax3+?B(x—0.2)3+C1x+C2 (3)

The term E1 = 200(10°) 62.5(10~%) = 1.25(10*) N - m?.

3 The upward deflection of point A is (FI/AE)sp — Np, where the first term
is the elastic stretch of AD, N is the number of turns of the nut, and p is the
pitch of the thread. Thus, the deflection of A is

FA(0.6)
G 0010A2 200)(10° - (OO0
7 (0.010)°(200)(10°) (4)
=3.8197(10°%) F, — 1.5(107%)
The upward deflection of point C is (FI/AE)cEg, or
Fc(0.8
¢ == 500 =5.093(107%) Fc (5)
Z(0.010)2(200)(109)

Equations (4) and (5) will now serve as the boundary conditions for Eq. (3). At
x =0, y = ys. Substituting Eq. (4) into (3) with x =0 and EI = 1.25(10%), noting
that the singularity function is zero for x = 0, gives

—4.7746(107") F4 + C, = —18.75 (6)
Atx =0.2m, y =0, and Eq. (3) yields
—1.3333(10%)F4 + 0.2C, + C, =0 (7)

At x =0.35m, y = yc. Substituting Eq. (5) into (3) with x =0.35m and EI =
1.25(10%) gives

—7.1458(107%) F4 + 5.625(107% F — 6.3662(10° ) Fc +0.35C; + C, =0 (8)

Equations (1), (2), (6), (7), and (8) are five equations in Fy, Fp, F¢, C;, and Cs.
Written in matrix form, they are

—1 1 —1 0 0 Fy 0
4 0 =3 0 0 Fp 0
—4.7746(10~%) 0 0 0 1 Fc ¢ =y —18.75
—1.3333(1073) 0 0 02 1 Ci 0
—7.1458(107%) 5.625(107%) —6.3662(107%) 0.35 1 C, 0
Solving these equations yields
Fa =2988N Fp =06971 N Fe =3983 N

C, = 106.54 N - m? C,=—17324N - m?
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Equation (3) can be reduced to
y = —(39.84x% — 92.95(x — 0.2)°> — 8.523x + 1.386)(107%)
Atx =0, y=ys =—1.386(1073) m = —1.386 mm.
Atx =0.35m, y = yc = —[39.84(0.35)% — 92.95(0.35 — 0.2)° — 8.523(0.35)
+1.386](107%) = 0.203(10~*) m = 0.203 mm

Note that we could have easily incorporated the stiffness of the support at B if we
were given a spring constant.

Compression Members—General

The analysis and design of compression members can differ significantly from that of
members loaded in tension or in torsion. If you were to take a long rod or pole, such as
a meterstick, and apply gradually increasing compressive forces at each end, nothing
would happen at first, but then the stick would bend (buckle), and finally bend so much
as to fracture. Try it. The other extreme would occur if you were to saw off, say, a 5-mm
length of the meterstick and perform the same experiment on the short piece. You would
then observe that the failure exhibits itself as a mashing of the specimen, that is, a
simple compressive failure. For these reasons it is convenient to classify compression
members according to their length and according to whether the loading is central or
eccentric. The term column is applied to all such members except those in which fail-
ure would be by simple or pure compression. Columns can be categorized then as:

1 Long columns with central loading

2 Intermediate-length columns with central loading
3 Columns with eccentric loading

4  Struts or short columns with eccentric loading

Classifying columns as above makes it possible to develop methods of analysis and
design specific to each category. Furthermore, these methods will also reveal whether or
not you have selected the category appropriate to your particular problem. The four
sections that follow correspond, respectively, to the four categories of columns listed above.

Long Columns with Central Loading

Figure 4-18 shows long columns with differing end (boundary) conditions. If the axial
force P shown acts along the centroidal axis of the column, simple compression of the
member occurs for low values of the force. However, under certain conditions, when P
reaches a specific value, the column becomes unstable and bending as shown in Fig.
4-18 develops rapidly. This force is determined by writing the bending deflection equa-
tion for the column, resulting in a differential equation where when the boundary con-
ditions are applied, results in the critical load for unstable bending.’ The critical force
for the pin-ended column of Fig. 4-18a is given by
n’El

Pcr = 1—2 (4_39)

9See F. P. Beer, E. R. Johnston, Jr., and J. T. DeWolf, Mechanics of Materials, 4th ed., McGraw-Hill,
New York, 2006, pp. 610-613.
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Figure 4-18

(a) Both ends rounded or
pivoted; (b) both ends fixed;
(c) one end free and one end
fixed: (d) one end rounded
and pivoted, and one end

fixed.

\.M\

b C=4 (c)C=% dyc=2

which is called the Euler column formula. Equation (4-39) can be extended to apply to
other end-conditions by writing

Cn’El
cr — 1—2 (4_40)
where the constant C depends on the end conditions as shown in Fig. 4—18.
Using the relation / = Ak?, where A is the area and k the radius of gyration,
enables us to rearrange Eq. (4—40) into the more convenient form
2
Po CE (4-41)
A (1/k)?
where [/k is called the slenderness ratio. This ratio, rather than the actual column
length, will be used in classifying columns according to length categories.

The quantity P, /A in Eq. (4—41) is the critical unit load. It is the load per unit area
necessary to place the column in a condition of unstable equilibrium. In this state any
small crookedness of the member, or slight movement of the support or load, will cause
the column to begin to collapse. The unit load has the same units as strength, but this is
the strength of a specific column, not of the column material. Doubling the length of a
member, for example, will have a drastic effect on the value of P./A but no effect at
all on, say, the yield strength S, of the column material itself.

Equation (4-41) shows that the critical unit load depends only upon the modulus
of elasticity and the slenderness ratio. Thus a column obeying the Euler formula made
of high-strength alloy steel is no stronger than one made of low-carbon steel, since E is
the same for both.

The factor C is called the end-condition constant, and it may have any one of the
theoretical values }1, 1, 2, and 4, depending upon the manner in which the load is
applied. In practice it is difficult, if not impossible, to fix the column ends so that the
factor C = 2 or C = 4 would apply. Even if the ends are welded, some deflection will
occur. Because of this, some designers never use a value of C greater than unity.
However, if liberal factors of safety are employed, and if the column load is accurately
known, then a value of C not exceeding 1.2 for both ends fixed, or for one end rounded
and one end fixed, is not unreasonable, since it supposes only partial fixation. Of course,
the value C = 1 must always be used for a column having one end fixed and one end

4
free. These recommendations are summarized in Table 4-2.
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End-Condition Constants
for Euler Columns [to Be

Used with Eq. (4-40)]

Figure 4-19

Euler curve plotted using

Eq. (4-40) with C = 1.
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End-Condition Constant C

Fixedree : 1 :
Rounded-rounded ] ] 1
Fixed-rounded 2 ] 1.2
Fixedixed 4 1 1.2

*To be used only with liberal factors of safety when the column load is accurately known.

Euler curve

S, 0
N
Sl ‘ = Parabolic “\
% curve N
= |
3 |
= |
|
|
|

b @

Slenderness ratio é

When Eq. (4-41) is solved for various values of the unit load P.,/A in terms of the
slenderness ratio //k, we obtain the curve PQOR shown in Fig. 4-19. Since the yield
strength of the material has the same units as the unit load, the horizontal line through
Sy and Q has been added to the figure. This would appear to make the figure cover the
entire range of compression problems from the shortest to the longest compression
member. Thus it would appear that any compression member having an //k value less
than (I/ k)¢ should be treated as a pure compression member while all others are to be
treated as Euler columns. Unfortunately, this is not true.

In the actual design of a member that functions as a column, the designer will be
aware of the end conditions shown in Fig. 4-18, and will endeavor to configure the ends,
using bolts, welds, or pins, for example, so as to achieve the required ideal end condi-
tions. In spite of these precautions, the result, following manufacture, is likely to contain
defects such as initial crookedness or load eccentricities. The existence of such defects
and the methods of accounting for them will usually involve a factor-of-safety approach
or a stochastic analysis. These methods work well for long columns and for simple
compression members. However, tests show numerous failures for columns with
slenderness ratios below and in the vicinity of point Q, as shown in the shaded area in
Fig. 4-19. These have been reported as occurring even when near-perfect geometric
specimens were used in the testing procedure.

A column failure is always sudden, total, unexpected, and hence dangerous. There
is no advance warning. A beam will bend and give visual warning that it is overloaded,
but not so for a column. For this reason neither simple compression methods nor the
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Euler column equation should be used when the slenderness ratio is near (// k). Then
what should we do? The usual approach is to choose some point 7 on the Euler curve
of Fig. 4-19. If the slenderness ratio is specified as (I/k); corresponding to point 7,
then use the Euler equation only when the actual slenderness ratio is greater than
(I/k),. Otherwise, use one of the methods in the sections that follow. See Examples
4-17 and 4-18.

Most designers select point 7" such that P;/A = S, /2. Using Eq. (4-40), we find
the corresponding value of (//k); to be

2 172
(1)~ (=)
1 y

Intermediate-Length Columns with Central Loading

Over the years there have been a number of column formulas proposed and used for the
range of // k values for which the Euler formula is not suitable. Many of these are based
on the use of a single material; others, on a so-called safe unit load rather than the crit-
ical value. Most of these formulas are based on the use of a linear relationship between
the slenderness ratio and the unit load. The parabolic or J. B. Johnson formula now
seems to be the preferred one among designers in the machine, automotive, aircraft, and
structural-steel construction fields.
The general form of the parabolic formula is

P 1\’
Tza—b(%> (G)

where a and b are constants that are evaluated by fitting a parabola to the Euler curve
of Fig. 4-19 as shown by the dashed line ending at 7. If the parabola is begun at S,
then a = S,. If point 7 is selected as previously noted, then Eq. (a) gives the value of
(I/ k), and the constant b is found to be

S\ 1
b==) = b
(27r> CE (bl
Upon substituting the known values of a and b into Eq. (a), we obtain, for the parabolic
equation,
Pu S, 1\ 1 I (1
—=85—|==-) = -<|- 4-43
A ’ <2rrk>CE k= \k/, (4-43]

Columns with Eccentric Loading

We have noted before that deviations from an ideal column, such as load eccentricities
or crookedness, are likely to occur during manufacture and assembly. Though these
deviations are often quite small, it is still convenient to have a method of dealing with
them. Frequently, too, problems occur in which load eccentricities are unavoidable.

Figure 4-20a shows a column in which the line of action of the column forces is
separated from the centroidal axis of the column by the eccentricity e. This problem is
developed by using Eq. (4-12) and the free-body diagram of Fig. 4-20b.
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Notation for an eccentrically
loaded column.
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The solution of Eq. (a), for the boundary conditions thaty = 0 atx = 0, [ is

= il L Yo (E0) o) - 1] o

By substituting x = [/2 in Eq. (b) and using a trigonometric identity, we obtain

P
= — ) - 4-44
° ”ec( EIZ) 1] -4
The maximum bending moment also occurs at midspan and is
[ | P
Mpax = —P(e + 8) = — Pesec N ET (4-45)

The magnitude of the maximum compressive stress at midspan is found by superposing
the axial component and the bending component. This gives

Oc=—F——F=———"5 (c)

Substituting My« from Eq. (4—45) yields

P ec [ P
c= 1 Eosee [ o 446
o A|: +kzsec(2k EA)] (4-46)

By imposing the compressive yield strength §,. as the maximum value of 0., we can
write Eq. (4-46) in the form
P Sye
— = > (4-47)
A 1+ (ec/k?)sec[(l/2k)/P/AE]
This is called the secant column formula. The term ec/k? is called the eccentricity
ratio. Figure 4-21 is a plot of Eq. (4-47) for a steel having a compressive (and tensile)
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Figure 4-21

Comparison of secant and
Euler equations for steel with

S, = 40 kpsi.

EXAMPLE 4-16

Solution

Answer

Answer

Euler's curve

Unit load P/A

0 50 100 150 200 250
Slenderness ratio //k

yield strength of 40 kpsi. Note how the P/A contours asymptotically approach the
Euler curve as //k increases.

Equation (4-47) cannot be solved explicitly for the load P. Design charts, in the
fashion of Fig. 4-21, can be prepared for a single material if much column design
is to be done. Otherwise, a root-finding technique using numerical methods must
be used.

Develop specific Euler equations for the sizes of columns having
(a) Round cross sections
(b) Rectangular cross sections

(a) Using A = wd?/4and k = /T/A = [(nd*/64)/(wd?/4)]"/* = d /4 with Eq. (4-41)

gives
64 P2\
d= (nSCE > (4-48)

(b) For the rectangular column, we specify a cross section h x b with the
restriction that 4 < b. If the end conditions are the same for buckling in both directions,
then buckling will occur in the direction of the least thickness. Therefore

bh? h?
I=— A=bh Kk =I/A=—
12 12

Substituting these in Eq. (4—41) gives

. 12 P12

= — 4-49
n2CER3 ( )

Note, however, that rectangular columns do not generally have the same end conditions
in both directions.
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Specify the diameter of a round column 1.5 m long that is to carry a maximum load
estimated to be 22 kN. Use a design factor ny; = 4 and consider the ends as pinned
(rounded). The column material selected has a minimum yield strength of 500 MPa and
a modulus of elasticity of 207 GPa.

We shall design the column for a critical load of
P =nyP =4(22) = 88 kN
Then, using Eq. (4—48) with C = 1 (see Table 4-2) gives

iy (64Pcrl2)]/4 [64(88)(1.5)2}1/4 (103

1/4
3y
73CE 73(1)(207) 1_09> (10°) = 37.48 mm

Table A—17 shows that the preferred size is 40 mm. The slenderness ratio for this size is

1.5(10%
I
kK~ d/4  40/4

To be sure that this is an Euler column, we use Eq. (5-48) and obtain
1\ _ (27°CE\"? _[2z2()@on "% [10°\'"? 004
k), \ Sy B 500 ) 77

which indicates that it is indeed an Euler column. So select

d =40 mm

Repeat Ex. 416 for J. B. Johnson columns.

(a) For round columns, Eq. (4-43) yields

Pe S\
d=2< T ) (4-50)
nS, nw-CE
(b) For a rectangular section with dimensions & < b, we find
P
b= < h<b (4-51)

328 -
hS, (1 — —2-
y( JTZCEh2>

Choose a set of dimensions for a rectangular link that is to carry a maximum compres-
sive load of 5000 Ibf. The material selected has a minimum yield strength of 75 kpsi
and a modulus of elasticity £ = 30 Mpsi. Use a design factor of 4 and an end condi-
tion constant C = 1 for buckling in the weakest direction, and design for (a) a length
of 15 in, and (b) a length of 8 in with a minimum thickness of % in.
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Solution

Table 4-3

Table Generated to
Solve Ex. 4-19, part (q)

Figure 4-22

Eccenfrically loaded strut.

(a) Using Eq. (4—41), we find the limiting slenderness ratio to be

1\ _ (27>CE\"? _ [272(1)(30)(10°) ‘/2_889
@), =550) =T ] =%

By using Py = ng P = 4(5000) = 20 000 1Ibf, Egs. (4—49) and (4-51) are solved, using
various values of #, to form Table 4-3. The table shows that a cross section of % by %
in, which is marginally suitable, gives the least area.

(b) An approach similar to that in part (a) is used with / = 8 in. All trial computa-
tions are found to be in the J. B. Johnson region of //k values. A minimum area occurs
when the section is a near square. Thus a cross section of % by % in is found to be suit-
able and safe.

I o - pe . IN

0.375 3.46 1.298 139 Euler [4-49)
0.500 1.46 0.730 104 Euler [4-49)
0.625 0.76 0.475 83  Johnson [4-5T)
0.5625 1.03 0.579 Q2 Euler [4-49)

Struts or Short Compression Members

A short bar loaded in pure compression by a force P acting along the centroidal axis
will shorten in accordance with Hooke’s law, until the stress reaches the elastic limit of
the material. At this point, permanent set is introduced and usefulness as a machine
member may be at an end. If the force P is increased still more, the material either
becomes “barrel-like” or fractures. When there is eccentricity in the loading, the elastic
limit is encountered at smaller loads.

A strut is a short compression member such as the one shown in Fig. 4-22. The
magnitude of the maximum compressive stress in the x direction at point B in an inter-
mediate section is the sum of a simple component P/A and a flexural component
Mc/I; that is,

c = — —_— -_— - 4_52
o, + A—i— A 1 +k2 ( )

P Mc P PecA P ) ec

1 -5(+5)
where k = (1/A)"/? and is the radius of gyration, c is the coordinate of point B, and e
is the eccentricity of loading.

Note that the length of the strut does not appear in Eq. (4-52). In order to use the
equation for design or analysis, we ought, therefore, to know the range of lengths for
which the equation is valid. In other words, how long is a short member?

The difference between the secant formula Eq. (4-47) and Eq. (4-52) is that the
secant equation, unlike Eq. (4-52), accounts for an increased bending moment due to
bending deflection. Thus the secant equation shows the eccentricity to be magnified by
the bending deflection. This difference between the two formulas suggests that one way
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Figure 4-23

A strut that is part of a
workpiece clamping assembly.
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of differentiating between a “secant column” and a strut, or short compression member,
is to say that in a strut, the effect of bending deflection must be limited to a certain small
percentage of the eccentricity. If we decide that the limiting percentage is to be 1 per-
cent of e, then, from Eq. (4—44), the limiting slenderness ratio turns out to be

l AE\'?
(1) =oaum(22) sy
2

This equation then gives the limiting slenderness ratio for using Eq. (4-52). If the actual
slenderness ratio is greater than (//k),, then use the secant formula; otherwise, use
Eq. (4-52).

Figure 4-23a shows a workpiece clamped to a milling machine table by a bolt tight-
ened to a tension of 2000 1bf. The clamp contact is offset from the centroidal axis of the
strut by a distance e = 0.10 in, as shown in part b of the figure. The strut, or block, is
steel, 1 in square and 4 in long, as shown. Determine the maximum compressive stress
in the block.

First we find A =bh = 1(1) =1 in?, I =bh*/12 =1(1)*/12 = 0.0833 in*, k?> =
I/A =0.0833/1 = 0.0833 in%, and I/k =4/(0.0833)!/2 = 13.9. Equation (4-53)
gives the limiting slenderness ratio as

! AE\'? 1(30)(106) 7"/
) —o0282(22) =028 2| —488

Thus the block could be as long as
[ = 48.8k = 48.8(0.0833)'/2 = 14.1 in

before it need be treated by using the secant formula. So Eq. (4-52) applies and the
maximum compressive stress is

P( ec> 1000[ 0.1(0.5)
1 = 1+

e=4\!Tg 1 0.0833

= 1600 psi
" :| psi

lP: 1000 1bf

<— 1-in square

—> <= 0.10in
P

(a) (b)
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4-16

L] ]
<

Figure 4-25

Finite-element representation of
flange buckling of a channel
in compression.

Elastic Stability

Section 4-12 presented the conditions for the unstable behavior of long, slender
columns. Elastic instability can also occur in structural members other than columns.
Compressive loads/stresses within any long, thin structure can cause structural insta-
bilities (buckling). The compressive stress may be elastic or inelastic and the instability
may be global or local. Global instabilities can cause catastrophic failure, whereas local
instabilities may cause permanent deformation and function failure but not a cata-
strophic failure. The buckling discussed in Sec. 4—12 was global instability. However,
consider a wide flange beam in bending. One flange will be in compression, and if thin
enough, can develop localized buckling in a region where the bending moment is a
maximum. Localized buckling can also occur in the web of the beam, where transverse
shear stresses are present at the beam centroid. Recall, for the case of pure shear stress
T, a stress transformation will show that at 45°, a compressive stress of ¢ = —1 exists.
If the web is sufficiently thin where the shear force V' is a maximum, localized buckling
of the web can occur. For this reason, additional support in the form of bracing is typi-
cally applied at locations of high shear forces.'?

Thin-walled beams in bending can buckle in a torsional mode as illustrated in
Fig. 4-24. Here a cantilever beam is loaded with a lateral force, F. As F is increases
from zero, the end of the beam will deflect in the negative y direction normally accord-
ing to the bending equation, y = —FL?/(3ET). However, if the beam is long enough
and the ratio of b/h is sufficiently small, there is a critical value of F for which the beam
will collapse in a twisting mode as shown. This is due to the compression in the bottom
fibers of the beam which cause the fibers to buckle sideways (z direction).

There are a great many other examples of unstable structural behavior, such as thin-
walled pressure vessels in compression or with outer pressure or inner vacuum, thin-walled
open or closed members in torsion, thin arches in compression, frames in compression,
and shear panels. Because of the vast array of applications and the complexity of their
analyses, further elaboration is beyond the scope of this book. The intent of this section
is to make the reader aware of the possibilities and potential safety issues. The key issue
is that the designer should be aware that if any unbraced part of a structural member is
thin, and/or long, and in compression (directly or indirectly), the possibility of buckling
should be investigated.'!

Figure 4-24 y

Torsional buckling of a
thin-walled beam in bending.

10See C. G. Salmon and J. E. Johnson, Steel Structures: Design and Behavior, 4th ed., Harper, Collins,
New York, 1996.

lSee S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York, 1961.
See also, Z. P. Bazant and L. Cedolin, Stability of Structures, Oxford University Press, New York, 1991.
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Two-degree-offreedom
mathematical model of an
automobile in collision with a
rigid obstruction.

| Figure 4-27
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For unique applications, the designer may need to revert to a numerical solution
such as using finite elements. Depending on the application and the finite-element code
available, an analysis can be performed to determine the critical loading (see Fig. 4-25).

Shock and Impact

Impact refers to the collision of two masses with initial relative velocity. In some cases
it is desirable to achieve a known impact in design; for example, this is the case in the
design of coining, stamping, and forming presses. In other cases, impact occurs because
of excessive deflections, or because of clearances between parts, and in these cases it is
desirable to minimize the effects. The rattling of mating gear teeth in their tooth spaces
is an impact problem caused by shaft deflection and the clearance between the teeth.
This impact causes gear noise and fatigue failure of the tooth surfaces. The clearance
space between a cam and follower or between a journal and its bearing may result in
crossover impact and also cause excessive noise and rapid fatigue failure.

Shock is a more general term that is used to describe any suddenly applied force or
disturbance. Thus the study of shock includes impact as a special case.

Figure 4-26 represents a highly simplified mathematical model of an automobile
in collision with a rigid obstruction. Here m is the lumped mass of the engine. The
displacement, velocity, and acceleration are described by the coordinate x; and its
time derivatives. The lumped mass of the vehicle less the engine is denoted by m,, and
its motion by the coordinate x, and its derivatives. Springs ki, k», and k3 represent the
linear and nonlinear stiffnesses of the various structural elements that compose
the vehicle. Friction and damping can and should be included, but is not shown in this
model. The determination of the spring rates for such a complex structure will almost
certainly have to be performed experimentally. Once these values—the k’s, m’s, damping
and frictional coefficients—are obtained, a set of nonlinear differential equations can be
written and a computer solution obtained for any impact velocity.

Figure 4-27 is another impact model. Here mass m has an initial velocity v and is
just coming into contact with spring k;. The part or structure to be analyzed is repre-
sented by mass m, and spring k,. The problem facing the designer is to find the
maximum deflection of m, and the maximum force exerted by k, against m,. In the
analysis it doesn’t matter whether & is fastened to m or to m,, since we are interested

x2<—‘
ky
VWML m = —

my

eI eI
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Figure 4-28

(a] A weight free 1o fall a
distance h to free end of @
beam. (b) Equivalent spring
model. (c) Free body of
weight during fall. (d) Free
body of weight during arrest.

only in a solution up to the point in time for which x, reaches a maximum. That is, the
solution for the rebound isn’t needed. The differential equations are not difficult to
derive. They are

mix; +ki(x; —x2) =0

. (4-54)
maXo + koxy — ki(xg —x2) =0

The analytical solution of Eq. pair (4-54) is harmonic and is studied in a course on
mechanical vibrations.!? If the values of the m’s and k’s are known, the solution can be
obtained easily using a program such as MATLAB.

Suddenly Applied Loading

A simple case of impact is illustrated in Fig. 4-28a. Here a weight W falls a distance &
and impacts a cantilever of stiffness EI and length /. We want to find the maximum
deflection and the maximum force exerted on the beam due to the impact.

Figure 4-28b shows an abstract model of the system. Using Table A-9-1, we find
the spring rate to be k = F/y = 3EI/I>. The beam mass and damping can be accounted
for, but for this example will be considered negligible. The origin of the coordinate y
corresponds to the point where the weight is released. Two free-body diagrams, shown
in Fig. 4-28¢ and d are necessary. The first corresponds to y < h, and the second when
y > h to account for the spring force.

For each of these free-body diagrams we can write Newton’s law by stating that the
inertia force (W/g)y is equal to the sum of the external forces acting on the weight. We
then have

y=Ww y=h
W (a)
?j}:—k(y—h)—}-W y>h

We must also include in the mathematical statement of the problem the knowledge that the
weight is released with zero initial velocity. Equation pair (a) constitutes a set of piecewise
differential equations. Each equation is linear, but each applies only for a certain range of y.

i i I T
w l

) (©y=h (d)y>nh

M-

2

(@)

—_
S

12See William T. Thomson and Marie Dillon Dahleh, Theory of Vibrations with Applications, Prentice Hall,
Stheed., 1998.
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The solution to the set is valid for all values of 7, but we are interested in values of y only
up until the time that the spring or structure reaches its maximum deflection.
The solution to the first equation in the set is

_ g’

> y=h (4-55)

and you can verify this by direct substitution. Equation (4-55) is no longer valid after

y = h; call this time #;. Then
nh=+2h/g (b)

Differentiating Eq. (4-55) to get the velocity gives
y=gt y=<h (c)

and so the velocity of the weight at = 7, is

yi=gh =gy2h/g =+/2gh (d)

Having moved from y = 0 to y = h, we then need to solve the second equation of
the set (a). It is convenient to define a new time ¢’ = ¢ — #;. Thus ' = 0 at the instant
the weight strikes the spring. Applying your knowledge of differential equations, you
should find the solution to be

w
y=Acoswt/+Bsina)t/+h+? y>h (e)
where
k
W= (4-56)
w

is the circular frequency of vibration. The initial conditions for the beam motion at
t'=0,arey = hand y = y; = +/2gh (neglecting the mass of the beam, the velocity is
the same as the weight at ¢ = 0). Substituting the initial conditions into Eq. (e) yields
A and B, and Eq. (e) becomes

w 2Wh w
y=—7coswt/+,/ . sinwt’~|—h+7 y>h (f

Let —W/k=Ccos¢ and /2Wh/k = Csin¢, where it can be shown that
C =[(W/k)> +2Wh/k]'/?. Substituting this into Eq. (f) and using a trigonometric
identity gives

w\?> 2wh1"? w
y= |: <7> + T] cos[wt’ — p] +h + e y>h (4-57)

The maximum deflection of the spring (beam) occurs when the cosine term in
Eq. (4-57) is unity. We designate this as § and, after rearranging, find it to be

wow 2nk\1"?
5:ymax_h=7+7|:l+(w>i| (4-58)

The maximum force acting on the beam is now found to be

2hk\ 72
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4-1

4-2

Problem 4-2

4-3

Problem 4-3

Note, in this equation, that if # = 0, then F = 2W. This says that when the weight is
released while in contact with the spring but is not exerting any force on the spring, the
largest force is double the weight.

Most systems are not as ideal as those explored here, so be wary about using these
relations for nonideal systems.

PROBLEMS

Structures can often be considered to be composed of a combination of tension and torsion
members and beams. Each of these members can be analyzed separately to determine its
force-deflection relationship and its spring rate. It is possible, then, to obtain the deflection of
a structure by considering it as an assembly of springs having various series and parallel rela-
tionships.

(a) What is the overall spring rate of three springs in series?

(b) What is the overall spring rate of three springs in parallel?

(c) What is the overall spring rate of a single spring in series with a pair of parallel springs?

The figure shows a torsion bar O A fixed at O, simply supported at A, and connected to a can-
tilever AB. The spring rate of the torsion bar is k7, in newton-meters per radian, and that of the
cantilever is k¢, in newtons per meter. What is the overall spring rate based on the deflection y at
point B?

A torsion-bar spring consists of a prismatic bar, usually of round cross section, that is twisted
at one end and held fast at the other to form a stiff spring. An engineer needs a stiffer one than
usual and so considers building in both ends and applying the torque somewhere in the cen-
tral portion of the span, as shown in the figure. If the bar is uniform in diameter, that is, if
d = d, = d,, investigate how the allowable angle of twist, the largest torque, and the spring
rate depend on the location x at which the torque is applied. Hint: Consider two springs in
parallel.
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4-7

4-8

4-10

4-11
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An engineer is forced by geometric considerations to apply the torque on the spring of Prob. 4-3
at the location x = 0.2/. For a uniform-diameter spring, this would cause the long leg of the span
to be underutilized when both legs have the same diameter. If the diameter of the long leg is
reduced sufficiently, the shear stress in the two legs can be made equal. How would this change
affect the allowable angle of twist, the largest torque, and the spring rate?

A bar in tension has a circular cross section and includes a conical portion of length [, as
shown. The task is to find the spring rate of the entire bar. Equation (4-4) is useful for the
outer portions of diameters d; and d,, but a new relation must be derived for the tapered sec-
tion. If « is the apex half-angle, as shown, show that the spring rate of the tapered portion of
the shaft is

l

EA 21
k= : (1+—tanzx>
d;

e —]

When a hoisting cable is long, the weight of the cable itself contributes to the elongation. If a
cable has a weight per unit length of w, a length of /, and a load P attached to the free end, show
that the cable elongation is

Pl wi?

S =
AE+2AE

Use integration to verify the deflection equation given for the uniformly loaded cantilever beam
of appendix Table A-9-3.

Use integration to verify the deflection equation given for the end moment loaded cantilever beam
of appendix Table A-9—4.

When an initially straight beam sags under transverse loading, the ends contract because the
neutral surface of zero strain neither extends nor contracts. The length of the deflected neu-
tral surface is the same as the original beam length /. Consider a segment of the initially
straight beam As. After bending, the x-direction component is shorter than As, namely, Ax.
The contraction is As — Ax, and these summed for the entire beam gives the end contraction A.

Show that
1 dy)?
a= / 22 ax
2 0 dx
Using the results of Prob. 4-9, determine the end contraction of the uniformly loaded cantilever
beam of appendix Table A—9-3.

Using the results of Prob. 4-9, determine the end contraction of the uniformly loaded simply-
supported beam of appendix Table A—9-7. Assume the left support cannot deflect in the x direction,
whereas the right support can.

The figure shows a cantilever consisting of steel angles size 4 x 4 x %

Using superposition, find the deflection at B and the maximum stress in the beam.

in mounted back to back.
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Problem 4-12

4-13

Problem 4-13

4-14

Problem 4-14

4-15

Problem 4-15

Dimensions in millimefers.

4-16

10 ft
600 Ibf

7 ft
50 Ibf/ft

Wb N
ogﬂwg

A simply supported beam loaded by two forces is shown in the figure. Select a pair of struc-
tural steel channels mounted back to back to support the loads in such a way that the deflec-
tion at midspan will not exceed % in and the maximum stress will not exceed 6 kpsi. Use
superposition.

800 Ibf 600 Ibf

3ft 2 ft 5 ft C
O /~— )
A B

Using superposition, find the deflection of the steel shaft at A in the figure. Find the deflection at
midspan. By what percentage do these two values differ?

1500 N

2 kN/m
S A
40 mm-dia. shaft

A rectangular steel bar supports the two overhanging loads shown in the figure. Using superposition,
find the deflection at the ends and at the center.

y
~—400 mm—»Fi 600 mm——>

250

—_

500 ‘
500 N 500 N

A B
O!TA— VANN YC
Bar,b=9,h =35

Using the formulas in Appendix Table A-9 and superposition, find the deflection of the cantilever
at Bif I = 13in* and E = 30 Mpsi.
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y
400 Ibf 400 Ibf
Problem 4-16
| 3t 31t
X
| 0 T — Y
B

4-17 The cantilever shown in the figure consists of two structural-steel channels size 3 in, 5.0 1bf/ft.
Using superposition, find the deflection at A.

48 in |

Problem 4-17 10 Tbfin 220 Ibf

4-18 Using superposition, determine the maximum deflection of the beam shown in the figure. The
material is carbon steel.

y
<10 in*FlO inﬁ*lo in*\*lo in

85 Ibf 120 Ibf | 85 Ibf
Problem 4-18

o

S— vy ¥y "

A/ B C
2-in-dia. shaft

4-19 Illustrated is a rectangular steel bar with simple supports at the ends and loaded by a force F at
the middle; the bar is to act as a spring. The ratio of the width to the thickness is to be about
b = 16h, and the desired spring scale is 2400 1bf/in.
(a) Find a set of cross-section dimensions, using preferred sizes.
(b) What deflection would cause a permanent set in the spring if this is estimated to occur at a
normal stress of 90 kpsi?

1F
A
<— b —
Problem 4-19 | j 1 | 1 i

i) !

I 4 ft 1 Section A-A

4-20 Ilustrated in the figure is a lé-in-diameter steel countershaft that supports two pulleys. Pulley A
delivers power to a machine causing a tension of 600 1bf in the tight side of the belt and 80 Ibf in
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the loose side, as indicated. Pulley B receives power from a motor. The belt tensions on pulley B
have the relation 77 = 0.1257;. Find the deflection of the shaft in the z direction at pulleys A and
B. Assume that the bearings constitute simple supports.

‘ 21 in

Problem 4-20

14 -in dia.

12-in dia.

4-21 The figure shows a steel countershaft that supports two pulleys. Pulley C receives power from a
motor producing the belt tensions shown. Pulley A transmits this power to another machine
through the belt tensions 7} and 75 such that 7} = 87,.

Problem 4-21

10-in dia.

400 Ibf

(a) Find the deflection of the overhanging end of the shaft, assuming simple supports at the
bearings.

(b) If roller bearings are used, the slope of the shaft at the bearings should not exceed 0.06° for
good bearing life. What shaft diameter is needed to conform to this requirement? Use %—in
increments in any iteration you may make. What is the deflection at pulley C now?

4-22 The structure of a diesel-electric locomotive is essentially a composite beam supporting a
deck. Above the deck are mounted the diesel prime mover, generator or alternator, radiators,
switch gear, and auxiliaries. Beneath the deck are found fuel and lubricant tanks, air reser-
voirs, and small auxiliaries. This assembly is supported at bolsters by the trucks that house the
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4-24

Problem 4-24

Dimensions in millimeters.

4-25
4-26
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traction motors and brakes. This equipment is distributed as uniformly as possible in the span
between the bolsters. In an approximate way, the loading can be viewed as uniform between
the bolsters and simply supported. Because the hoods that shield the equipment from the
weather have many rectangular access doors, which are mass-produced, it is important that
the hood structure be level and plumb and sit on a flat deck. Aesthetics plays a role too. The
center sill beam has a second moment of area of I = 5450 in®, the bolsters are 36 ft apart, and
the deck loading is 5000 Ibf/ft.

(a) What is the camber of the curve to which the deck will be built in order that the service-ready

locomotive will have a flat deck?
(b) What equation would you give to locate points on the curve of part (a)?

The designer of a shaft usually has a slope constraint imposed by the bearings used. This limit
will be denoted as &. If the shaft shown in the figure is to have a uniform diameter d except in
the locality of the bearing mounting, it can be approximated as a uniform beam with simple sup-
ports. Show that the minimum diameters to meet the slope constraints at the left and right bear-
ings are, respectively,

1/4 1/4
|32Fb@? - %) o 32Fa(l® — a?)
L 3nElE = 3wEIE
F
l«—a b |
y JT_F
1 |
y
Y \ F
/ |
. i x

A shaft is to be designed so that it is supported by roller bearings. The basic geometry is shown
in the figure. The allowable slope at the bearings is 0.001 mm/mm without bearing life penalty.
For a design factor of 1.28, what uniform-diameter shaft will support the 3.5-kN load 100 mm
from the left bearing without penalty? Use E = 207 GPa.

F=35kN
~<~—100 150
; \
B p———
L,
250

Determine the maximum deflection of the shaft of Prob. 4-24.

For the shaft shown in the figure, leta; = 4in, by = 12in,a, = 101in, F; = 100 Ibf, >, = 300 Ibf,
and £ = 30 Mpsi. The shaft is to be sized so that the maximum slope at either bearing A or bear-
ing B does not exceed 0.001 rad. Determine a suitable diameter d.
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Problem 4-26

4-27

4-28

4-29

Problem 4-29

4-30

Problem 4-30

4-31

If the diameter of the beam for Prob. 4-26 is 1.375 in, determine the deflection of the beam at
x = 8in.

See Prob. 4-26 and the accompanying figure. The loads and dimensions are F; = 3.5 kN,
F, =2.7kN, a; = 100 mm, by = 150 mm, and a; = 175 mm. Find the uniform shaft diameter
necessary to limit the slope at the bearings to 0.001 rad. Use a design factor of n;, = 1.5 and
E =207 Gpa.

Shown in the figure is a uniform-diameter shaft with bearing shoulders at the ends; the shaft is
subjected to a concentrated moment M = 1200 Ibf - in. The shaft is of carbon steel and hasa = 5
in and / = 9 in. The slope at the ends must be limited to 0.002 rad. Find a suitable diameter d.

The rectangular member O AB, shown in the figure, is held horizontal by the round hooked bar
AC. The modulus of elasticity of both parts is 10 Mpsi. Use superposition to find the deflection
at B due to a force F' = 80 Ibf.

n 12in 0 Linthick lF

6 in ! 12 in

The figure illustrates a torsion-bar spring O A having a diameter d = 12 mm. The actuating
cantilever AB also has d = 12 mm. Both parts are of carbon steel. Use superposition and find
the spring rate k corresponding to a force F acting at B.
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4-34

4-35
4-36
4-37
4-38

Problem 4-38

4-39

4-40
4-41

Problem 4-41
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Consider the simply supported beam with an intermediate load in Appendix A-9-6. Determine
the deflection equation if the stiffness of the left and right supports are k; and k,, respectively.

Consider the simply supported beam with a uniform load in Appendix A-9-7. Determine the
deflection equation if the stiffness of the left and right supports are k; and k,, respectively.

Prove that for a uniform-cross-section beam with simple supports at the ends loaded by a single
concentrated load, the location of the maximum deflection will never be outside the range of
0.423] < x < 0.5771 regardless of the location of the load along the beam. The importance of this
is that you can always get a quick estimate of ym,x by using x = //2.

Solve Prob. 4-12 using singularity functions. Use statics to determine the reactions.
Solve Prob. 4-13 using singularity functions. Use statics to determine the reactions.
Solve Prob. 4-14 using singularity functions. Use statics to determine the reactions.

Consider the uniformly loaded simply supported beam with an overhang as shown. Use singularity
functions to determine the deflection equation of the beam. Use statics to determine the reactions.

bbb b biby

l

| «—

vy

a*‘

|
T

>

Solve Prob. 4-15 using singularity functions. Since the beam is symmetric, only write the equa-
tion for half the beam and use the slope at the beam center as a boundary condition. Use statics
to determine the reactions.

Solve Prob. 4-30 using singularity functions. Use statics to determine the reactions.

Determine the deflection equation for the steel beam shown using singularity functions. Since the
beam is symmetric, write the equation for only half the beam and use the slope at the beam cen-
ter as a boundary condition. Use statics to determine the reactions.

w = 200 1bf/in

1.5-in diameter & & & & L i i ¢ 1.5-in diameter

2-in diameter

|<4in 12in 4 in >
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4-42

Problem 4-42

4-43

4-44

4-45

4-46

4-47
4-48
4-49

Determine the deflection equation for the cantilever beam shown using singularity functions.
Evaluate the deflections at B and C and compare your results with Example 4-11.

A 21, B I C

Examine the expression for the deflection of the cantilever beam, end-loaded, shown in
Appendix Table A-9-1 for some intermediate point, x = a, as

F1a2
6E1

y‘x:a = (a _31)

In Table A-9-2, for a cantilever with intermediate load, the deflection at the end is

dez

6E1

Vo=t = (a =3

These expressions are remarkably similar and become identical when F;, = F, = 1. In other
words, the deflection at x = a (station 1) due to a unit load at x = [ (station 2) is the same as the
deflection at station 2 due to a unit load at station 1. Prove that this is true generally for an elas-
tic body even when the lines of action of the loads are not parallel. This is known as a special
case of Maxwell’s reciprocal theorem. (Hint: Consider the potential energy of strain when the
body is loaded by two forces in either order of application.)

A steel shaft of uniform 2-in diameter has a bearing span / of 23 in and an overhang of 7 in on

which a coupling is to be mounted. A gear is to be attached 9 in to the right of the left bearing

and will carry a radial load of 400 lbf. We require an estimate of the bending deflection at the

coupling. Appendix Table A—9—6 is available, but we can’t be sure of how to expand the equation

to predict the deflection at the coupling.

(a) Show how Appendix Table A—9—10 and Maxwell’s theorem (see Prob. 4—43) can be used to
obtain the needed estimate.

(b) Check your work by finding the slope at the right bearing and extending it to the coupling
location.

Use Castigliano’s theorem to verify the maximum deflection for the uniformly loaded beam of
Appendix Table A-9-7. Neglect shear.

Solve Prob. 4-17 using Castigliano’s theorem. Hint: Write the moment equation using a position
variable positive to the left starting at the right end of the beam.

Solve Prob. 4-30 using Castigliano’s theorem.
Solve Prob. 4-31 using Castigliano’s theorem.

Determine the deflection at midspan for the beam of Prob. 4-41 using Castigliano’s theorem.
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4-50 Using Castigliano’s theorem, determine the deflection of point B in the direction of the force F'
for the bar shown. The solid bar has a uniform diameter, d. Neglect bending shear.

Problem 4-50

4-51 A cable is made using a 16-gauge (0.0625-in) steel wire and three strands of 12-gauge (0.0801-in)
copper wire. Find the stress in each wire if the cable is subjected to a tension of 250 1bf.

4-52 The figure shows a steel pressure cylinder of diameter 4 in which uses six SAE grade 5 steel bolts
having a grip of 12 in. These bolts have a proof strength (see Chap. 8) of 85 kpsi for this size of
bolt. Suppose the bolts are tightened to 90 percent of this strength in accordance with some
recommendations.

(a) Find the tensile stress in the bolts and the compressive stress in the cylinder walls.
(b) Repeat part (a), but assume now that a fluid under a pressure of 600 psi is introduced into the

cylinder.
Six %—in grade 5 bolts
| |1 :% in
Problem 4-52 )
[.=11in <— D =4in — I, =12in

el
“x‘{:nl ,
‘;\E\a'

4-53 A torsion bar of length L consists of a round core of stiffness (GJ). and a shell of stiffness
(GJ),. If atorque T is applied to this composite bar, what percentage of the total torque is car-
ried by the shell?

4-54 A rectangular aluminum bar 12 mm thick and 50 mm wide is welded to fixed supports at the ends,
and the bar supports a load W = 3.5 kN, acting through a pin as shown. Find the reactions at the
supports.
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Problem 4-54

4-55

Problem 4-55

4-56

4-57

Problem 4-57

4-58

4-59

[=)

3

=43

A

|

50 mm —>|

12 mm thick\
I
| 500 mm

e—

The steel shaft shown in the figure is subjected to a torque of 50 1bf-in applied at point A. Find
the torque reactions at O and B.

150 Ibfein 13 -in dia.

n !

0
L—4in 6in 1

Repeat Prob. 4-55 with the diameters of section OA being 1.5 in and section AB being 1.75 in.

In testing the wear life of gear teeth, the gears are assembled by using a pretorsion. In this way,
a large torque can exist even though the power input to the tester is small. The arrangement shown
in the figure uses this principle. Note the symbol used to indicate the location of the shaft bear-
ings used in the figure. Gears A, B, and C are assembled first, and then gear C is held fixed. Gear
D is assembled and meshed with gear C by twisting it through an angle of 4° to provide the pre-
torsion. Find the maximum shear stress in each shaft resulting from this preload.

I |
_ 4t | B, 6-in dia.
C, 6-in dia. 11 5in dia
1 .
AN
2 % r % in dia
N f
1. . 1. P
D, 27—m dia. A, 27—1n dia.

The figure shows a %— by lé—in rectangular steel bar welded to fixed supports at each end. The
bar is axially loaded by the forces F, = 10 kip and Fp =5 kip acting on pins at A and B.
Assuming that the bar will not buckle laterally, find the reactions at the fixed supports. Use pro-
cedure 1 from Sec. 4-10.

For the beam shown, determine the support reactions using superposition and procedure 1 from
Sec. 4-10.
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y

X 10 in i
<—20in *»‘<—>‘« 15 in —-
Problem 4-58 v \ A \ B c
13 in p—— b= Fy x
) 0
2 in thick
w
IRERREREERRRIAY
Problem 4-59 A OB C
——a —>
!

4-60 Solve Prob. 4-59 using Castigliano’s theorem and procedure 1 from Sec. 4-10.

4-61 The steel beam ABC D shown is simply supported at A and supported at B and D by steel cables,
each having an effective diameter of 12 mm. The second area moment of the beam is [ =
8(10°) mm*. A force of 20 kN is applied at point C. Using procedure 2 of Sec. 4-10 determine
the stresses in the cables and the deflections of B, C, and D. For steel, let E = 209 GPa.

)
(
)
(8

Problem 4-61 A B c D

5t

4-62 The steel beam ABC D shown is supported at C as shown and supported at B and D by steel bolts
each having a diameter of f—6 in. The lengths of BE and DF are 2 and 2.5 in, respectively. The
beam has a second area moment of 0.050 in*. Prior to loading, the nuts are just in contact with
the horizontal beam. A force of 500 Ibf is then applied at point A. Using procedure 2 of Sec. 4-10,
determine the stresses in the bolts and the deflections of points A, B, and D. For steel, let

E = 30 Mpsi.
500 Ibf E
A) B —Uc =D
Problem 4-62 I N I
F
—3in 3in 3in —>

4-63  The horizontal deflection of the right end of the curved bar of Fig. 4-12 is given by Eq. (4-35)
for R/h > 10. For the same conditions, determine the vertical deflection.
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4-64

Problem 4-64

4-65

Problem 4-65

4-66

Problem 4-66

4-67

A cast-iron piston ring has a mean diameter of 81 mm, a radial height # = 6 mm, and a thickness
b = 4 mm. The ring is assembled using an expansion tool that separates the split ends a distance
& by applying a force F' as shown. Use Castigliano’s theorem and determine the deflection § as a
function of F. Use £ = 131 GPa and assume Eq. (4-28) applies.

h=6 mm

+

For the wire form shown use Castigliano’s method to determine the vertical deflection of point A.
Consider bending only and assume Eq. (4-28) applies for the curved part.

—

For the wire form shown determine the vertical deflections of points A and B. Consider bending
only and assume Eq. (4-28) applies.

For the wire form shown, determine the deflection of point A in the y direction. Assume
R/h > 10 and consider the effects of bending and torsion only. The wire is steel with £ =
200 GPa, v = 0.29, and has a diameter of 5 mm. Before application of the 200-N force the wire
form is in the xz plane where the radius R is 100 mm.
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Problem 4-68

4-69
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4-71
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200 N

For the wire form shown, determine (a) the reactions at points A and B, (b) how the bending
moment varies along the wire, and (c¢) the deflection of the load F. Assume that the entire energy
is described by Eq. (4-28).

For the curved beam shown, F = 30 kN. The material is steel with £ = 207 GPa and G =
79 GPa. Determine the relative deflection of the applied forces.

80—
ROSSSSSY - 10

<~ 140

INNSSISSY “7 10

T

Section A-A

f«<—100 —>

(All dimensions in millimeters.)

Solve Prob. 4-63 using Eq. (4-32).

A thin ring is loaded by two equal and opposite forces F in part a of the figure. A free-body dia-
gram of one quadrant is shown in part b. This is a statically indeterminate problem, because the
moment M, cannot be found by statics. We wish to find the maximum bending moment in the ring
due to the forces F. Assume that the radius of the ring is large so that Eq. (4-28) can be used.
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Problem 4-71

4-72
4-73

4-74

4-75

Problem 4-75

4-76

(a) )

Find the increase in the diameter of the ring of Prob. 4-71 due to the forces F' and along the y axis.

A round tubular column has outside and inside diameters of D and d, respectively, and a diame-
tral ratio of K = d/D. Show that buckling will occur when the outside diameter is

64P., 12 1/4
D=|—"1"<<
[n3CE(1 —1<4)]

For the conditions of Prob. 4-73, show that buckling according to the parabolic formula will
occur when the outside diameter is

P S, 2
D:2 cr y
[ns,(l —K?) xCE(1+ K2)}

Link 2, shown in the figure, is 1 in wide, has %—in—diameter bearings at the ends, and is cut from
low-carbon steel bar stock having a minimum yield strength of 24 kpsi. The end-condition con-
stants are C = 1 and C = 1.2 for buckling in and out of the plane of the drawing, respectively.
(a) Using a design factor n; = 5, find a suitable thickness for the link.

(b) Are the bearing stresses at O and B of any significance?

7]
2 3

180 Ibf

Link 3, shown schematically in the figure, acts as a brace to support the 1.2-kN load. For buck-
ling in the plane of the figure, the link may be regarded as pinned at both ends. For out-of-plane
buckling, the ends are fixed. Select a suitable material and a method of manufacture, such as forg-
ing, casting, stamping, or machining, for casual applications of the brace in oil-field machinery.
Specify the dimensions of the cross section as well as the ends so as to obtain a strong, safe, well-
made, and economical brace.
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The hydraulic cylinder shown in the figure has a 3-in bore and is to operate at a pressure of 800 psi.
With the clevis mount shown, the piston rod should be sized as a column with both ends rounded for
any plane of buckling. The rod is to be made of forged AISI 1030 steel without further heat treatment.

(a) Use a design factor ny; = 3 and select a preferred size for the rod diameter if the column
length is 60 in.

(b) Repeat part (a) but for a column length of 18 in.

(c) What factor of safety actually results for each of the cases above?

The figure shows a schematic drawing of a vehicular jack that is to be designed to support a
maximum mass of 400 kg based on the use of a design factor n;, = 2.50. The opposite-handed
threads on the two ends of the screw are cut to allow the link angle 6 to vary from 15 to 70°. The
links are to be machined from AISI 1020 hot-rolled steel bars with a minimum yield strength of
380 MPa. Each of the four links is to consist of two bars, one on each side of the central bear-
ings. The bars are to be 300 mm long and have a bar width of 25 mm. The pinned ends are to be
designed to secure an end-condition constant of at least C = 1.4 for out-of-plane buckling. Find
a suitable preferred thickness and the resulting factor of safety for this thickness.

lW
o

s S

N —— - — T > Soec
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4-79  1If drawn, a figure for this problem would resemble that for Prob. 4-52. A strut that is a standard
hollow right circular cylinder has an outside diameter of 4 in and a wall thickness of % in and is
compressed between two circular end plates held by four bolts equally spaced on a bolt circle of
5.68-in diameter. All four bolts are hand-tightened, and then bolt A is tightened to a tension
of 2000 1bf and bolt C, diagonally opposite, is tightened to a tension of 10 000 1bf. The strut axis
of symmetry is coincident with the center of the bolt circles. Find the maximum compressive
load, the eccentricity of loading, and the largest compressive stress in the strut.

4-80 Design link CD of the hand-operated toggle press shown in the figure. Specify the cross-section
dimensions, the bearing size and rod-end dimensions, the material, and the method of processing.

Problem 4-80
L=12in, [=4in, O = 0°.

4-81 Find expressions for the maximum values of the spring force and deflection y of the impact sys-
tem shown in the figure. Can you think of a realistic application for this model?

1
<<t

>~

Problem 4-81

A

=

4-82 As shown in the figure, the weight W strikes W, from a height /. Find the maximum values of the
spring force and the deflection of W,. Name an actual system for which this model might be used.

Problem 4-82

}—’s/s/\/\/\ H H
e
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4-83 Part a of the figure shows a weight W mounted between two springs. If the free end of spring k;
is suddenly displaced through the distance x = a, as shown in part b, what would be the maxi-
mum displacement y of the weight?

kl T—> ' k2
HWW— W AN )
'

LXAML

Problem 4-83

t

(a) (b)
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Figure 5-1

(a) Failure of a truck drive-shaft
spline due to corrosion
fatigue. Note that it was
necessary fo use clear tape

to hold the pieces in place.

(b) Direct end view of failure.

In Chap. 1 we learned that strength is a property or characteristic of a mechanical
element. This property results from the material identity, the treatment and processing
incidental to creating its geometry, and the loading, and it is at the controlling or critical
location.

In addition to considering the strength of a single part, we must be cognizant
that the strengths of the mass-produced parts will all be somewhat different from the
others in the collection or ensemble because of variations in dimensions, machining,
forming, and composition. Descriptors of strength are necessarily statistical in
nature, involving parameters such as mean, standard deviations, and distributional
identification.

A static load is a stationary force or couple applied to a member. To be stationary,
the force or couple must be unchanging in magnitude, point or points of application,
and direction. A static load can produce axial tension or compression, a shear load, a
bending load, a torsional load, or any combination of these. To be considered static, the
load cannot change in any manner.

In this chapter we consider the relations between strength and static loading in order
to make the decisions concerning material and its treatment, fabrication, and geometry
for satisfying the requirements of functionality, safety, reliability, competitiveness,
usability, manufacturability, and marketability. How far we go down this list is related
to the scope of the examples.

“Failure” is the first word in the chapter title. Failure can mean a part has sepa-
rated into two or more pieces; has become permanently distorted, thus ruining its
geometry; has had its reliability downgraded; or has had its function compromised,
whatever the reason. A designer speaking of failure can mean any or all of these pos-
sibilities. In this chapter our attention is focused on the predictability of permanent
distortion or separation. In strength-sensitive situations the designer must separate
mean stress and mean strength at the critical location sufficiently to accomplish his
or her purposes.

Figures 5-1 to 5-5 are photographs of several failed parts. The photographs exem-
plify the need of the designer to be well-versed in failure prevention. Toward this end
we shall consider one-, two-, and three-dimensional stress states, with and without
stress concentrations, for both ductile and brittle materials.

(et} (f)
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Figure 5-2

Impact failure of a lawn-
mower blade driver hub. The
blade impacted a surveying
pipe marker.

Figure 5-3

Failure of an overhead-pulley
refaining bolt on @
weightlifting machine. A
manufacturing error caused a
gap that forced the bolt to

take the entire moment load.

5. Failures Resulting from
Static Loading

Failures Resulting from Static Loading

© The McGraw-Hill
Companies, 2008

(1)

Figure 5-4

Chain test fixture that failed in one cycle. To alleviate complaints of excessive wear, the manufacturer decided to
case-harden the material. (a) Two halves showing fracture; this is an excellent example of britile fracture initiated
by stress concentration. (b] Enlarged view of one portion to show cracks induced by stress concentration at the

supportpin holes.

207
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Figure 5-5

Valve-spring failure caused by
spring surge in an oversped
engine. The fractures exhibit
the classic 45° shear failure.

Static Strength

Ideally, in designing any machine element, the engineer should have available the results
of a great many strength tests of the particular material chosen. These tests should be
made on specimens having the same heat treatment, surface finish, and size as the ele-
ment the engineer proposes to design; and the tests should be made under exactly the
same loading conditions as the part will experience in service. This means that if the part
is to experience a bending load, it should be tested with a bending load. If it is to be
subjected to combined bending and torsion, it should be tested under combined bending
and torsion. If it is made of heat-treated AISI 1040 steel drawn at 500°C with a ground
finish, the specimens tested should be of the same material prepared in the same manner.
Such tests will provide very useful and precise information. Whenever such data are
available for design purposes, the engineer can be assured of doing the best possible job
of engineering.

The cost of gathering such extensive data prior to design is justified if failure of the
part may endanger human life or if the part is manufactured in sufficiently large quan-
tities. Refrigerators and other appliances, for example, have very good reliabilities
because the parts are made in such large quantities that they can be thoroughly tested
in advance of manufacture. The cost of making these tests is very low when it is divid-
ed by the total number of parts manufactured.

You can now appreciate the following four design categories:

1 Failure of the part would endanger human life, or the part is made in extremely
large quantities; consequently, an elaborate testing program is justified during
design.

2 The part is made in large enough quantities that a moderate series of tests is
feasible.

3 The part is made in such small quantities that testing is not justified at all; or the
design must be completed so rapidly that there is not enough time for testing.
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Figure 5-6

An idealized sfressstrain
curve. The dashed line depicis
a sfrain-sirengthening material.
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4 The part has already been designed, manufactured, and tested and found to be
unsatisfactory. Analysis is required to understand why the part is unsatisfactory
and what to do to improve it.

More often than not it is necessary to design using only published values of yield
strength, ultimate strength, percentage reduction in area, and percentage elongation,
such as those listed in Appendix A. How can one use such meager data to design against
both static and dynamic loads, two- and three-dimensional stress states, high and low
temperatures, and very large and very small parts? These and similar questions will be
addressed in this chapter and those to follow, but think how much better it would be to
have data available that duplicate the actual design situation.

Stress Concentration

Stress concentration (see Sec. 3—13) is a highly localized effect. In some instances it
may be due to a surface scratch. If the material is ductile and the load static, the design
load may cause yielding in the critical location in the notch. This yielding can involve
strain strengthening of the material and an increase in yield strength at the small criti-
cal notch location. Since the loads are static and the material is ductile, that part can
carry the loads satisfactorily with no general yielding. In these cases the designer sets
the geometric (theoretical) stress concentration factor K, to unity.

The rationale can be expressed as follows. The worst-case scenario is that of an
idealized non—strain-strengthening material shown in Fig. 5-6. The stress-strain curve
rises linearly to the yield strength §,, then proceeds at constant stress, which is equal to
Sy. Consider a filleted rectangular bar as depicted in Fig. A—15-5, where the cross-
section area of the small shank is 1 in®. If the material is ductile, with a yield point of
40 kpsi, and the theoretical stress-concentration factor (SCF) K is 2,

* A load of 20 kip induces a tensile stress of 20 kpsi in the shank as depicted at point A
in Fig. 5-6. At the critical location in the fillet the stress is 40 kpsi, and the SCF is
K = Omax/Onom = 40/20 = 2.

50 [—
T
7 S o=
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Tensile strain, €
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* A load of 30 kip induces a tensile stress of 30 kpsi in the shank at point B. The fillet
stress is still 40 kpsi (point D), and the SCF K = 0pax/0nom = Sy/0 = 40/30 = 1.33.

* At a load of 40 kip the induced tensile stress (point C) is 40 kpsi in the shank.
At the critical location in the fillet, the stress (at point E) is 40 kpsi. The SCF
K = 0max/0nom = Sy/o =40/40 = 1.

For materials that strain-strengthen, the critical location in the notch has a higher S,.
The shank area is at a stress level a little below 40 kpsi, is carrying load, and is very
near its failure-by-general-yielding condition. This is the reason designers do not apply
K, in static loading of a ductile material loaded elastically, instead setting K, = 1.

When using this rule for ductile materials with static loads, be careful to assure
yourself that the material is not susceptible to brittle fracture (see Sec. 5-12) in the
environment of use. The usual definition of geometric (theoretical) stress-concentration
factor for normal stress K; and shear stress K, is

Omax = K;0nom (a)
Tmax = K15 Thom (b)

Since your attention is on the stress-concentration factor, and the definition of oy, or
Thom 1S given in the graph caption or from a computer program, be sure the value of
nominal stress is appropriate for the section carrying the load.

Brittle materials do not exhibit a plastic range. A brittle material “feels” the stress
concentration factor K, or K,,, which is applied by using Eq. (a) or (b).

An exception to this rule is a brittle material that inherently contains microdiscon-
tinuity stress concentration, worse than the macrodiscontinuity that the designer has in
mind. Sand molding introduces sand particles, air, and water vapor bubbles. The grain
structure of cast iron contains graphite flakes (with little strength), which are literally
cracks introduced during the solidification process. When a tensile test on a cast iron is
performed, the strength reported in the literature includes this stress concentration. In
such cases K, or K;; need not be applied.

An important source of stress-concentration factors is R. E. Peterson, who com-
piled them from his own work and that of others.! Peterson developed the style of pre-
sentation in which the stress-concentration factor K, is multiplied by the nominal stress
Onom to estimate the magnitude of the largest stress in the locality. His approximations
were based on photoelastic studies of two-dimensional strips (Hartman and Levan,
1951; Wilson and White, 1973), with some limited data from three-dimensional
photoelastic tests of Hartman and Levan. A contoured graph was included in the pre-
sentation of each case. Filleted shafts in tension were based on two-dimensional strips.
Table A—-15 provides many charts for the theoretical stress-concentration factors for
several fundamental load conditions and geometry. Additional charts are also available
from Peterson.”

Finite element analysis (FEA) can also be applied to obtain stress-concentration
factors. Improvements on K, and K, for filleted shafts were reported by Tipton, Sorem,
and Rolovic.?

IR. E. Peterson, “Design Factors for Stress Concentration,” Machine Design, vol. 23, no. 2, February 1951;
no. 3, March 1951; no. 5, May 1951; no. 6, June 1951; no. 7, July 1951.

>Walter D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed, John Wiley & Sons, New York, 1997.

3S. M. Tipton, J. R. Sorem Jr., and R. D. Rolovic, “Updated Stress-Concentration Factors for Filleted Shafts in
Bending and Tension,” Trans. ASME, Journal of Mechanical Design, vol. 118, September 1996, pp. 321-327.
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Failure Theories

Section 5-1 illustrated some ways that loss of function is manifested. Events such as
distortion, permanent set, cracking, and rupturing are among the ways that a machine
element fails. Testing machines appeared in the 1700s, and specimens were pulled, bent,
and twisted in simple loading processes.

If the failure mechanism is simple, then simple tests can give clues. Just what is
simple? The tension test is uniaxial (that’s simple) and elongations are largest in the axial
direction, so strains can be measured and stresses inferred up to “failure.” Just what is
important: a critical stress, a critical strain, a critical energy? In the next several sections,
we shall show failure theories that have helped answer some of these questions.

Unfortunately, there is no universal theory of failure for the general case of mate-
rial properties and stress state. Instead, over the years several hypotheses have been
formulated and tested, leading to today’s accepted practices. Being accepted, we will
characterize these “practices” as theories as most designers do.

Structural metal behavior is typically classified as being ductile or brittle, although
under special situations, a material normally considered ductile can fail in a brittle
manner (see Sec. 5-12). Ductile materials are normally classified such that & > 0.05
and have an identifiable yield strength that is often the same in compression as in ten-
sion (Sy; = S, = §,). Brittle materials, e < 0.05, do not exhibit an identifiable yield
strength, and are typically classified by ultimate tensile and compressive strengths, S,
and S, respectively (where S, is given as a positive quantity). The generally accepted
theories are:

Ductile materials (yield criteria)

e Maximum shear stress (MSS), Sec. 54
 Distortion energy (DE), Sec. 5-5
¢ Ductile Coulomb-Mohr (DCM), Sec. 5-6

Brittle materials (fracture criteria)

e Maximum normal stress (MNS), Sec. 5-8
¢ Brittle Coulomb-Mohr (BCM), Sec. 5-9
¢ Modified Mohr (MM), Sec. 5-9

It would be inviting if we had one universally accepted theory for each material
type, but for one reason or another, they are all used. Later, we will provide rationales
for selecting a particular theory. First, we will describe the bases of these theories and
apply them to some examples.

Maximum-Shear-Stress Theory
for Ductile Materials

The maximum-shear-stress theory predicts that yielding begins whenever the maximum
shear stress in any element equals or exceeds the maximum shear stress in a tension-
test specimen of the same material when that specimen begins to yield. The MSS theory
is also referred to as the Tresca or Guest theory.

Many theories are postulated on the basis of the consequences seen from tensile
tests. As a strip of a ductile material is subjected to tension, slip lines (called Liider
lines) form at approximately 45° with the axis of the strip. These slip lines are the
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beginning of yield, and when loaded to fracture, fracture lines are also seen at angles
approximately 45° with the axis of tension. Since the shear stress is maximum at 45°
from the axis of tension, it makes sense to think that this is the mechanism of failure. It
will be shown in the next section, that there is a little more going on than this. However,
it turns out the MSS theory is an acceptable but conservative predictor of failure; and
since engineers are conservative by nature, it is quite often used.

Recall that for simple tensile stress, 0 = P/A, and the maximum shear stress
occurs on a surface 45° from the tensile surface with a magnitude of 7,,,x = 0/2. So the
maximum shear stress at yield is Tm.x = S, /2. For a general state of stress, three prin-
cipal stresses can be determined and ordered such that oy > 0, > 3. The maximum
shear stress is then 7,,x = (0] — 03)/2 (see Fig. 3—12). Thus, for a general state of
stress, the maximum-shear-stress theory predicts yielding when

— S
Tmax:¥23y or o —o03>8, (5-1)

Note that this implies that the yield strength in shear is given by
Ssy = 0.55, (5-2)

which, as we will see later is about 15 percent low (conservative).
For design purposes, Eq. (5-1) can be modified to incorporate a factor of safety, n.
Thus,

Sy S
- or ol —03 =~ (5-3)
2n n

Tmax =

Plane stress problems are very common where one of the principal stresses is zero,

and the other two, o4 and o, are determined from Eq. (3—13). Assuming that o4 > o3,
there are three cases to consider in using Eq. (5-1) for plane stress:

Case 1: o4 > op > 0. For this case, 01 = 04 and o3 = 0. Equation (5-1)
reduces to a yield condition of

ox =S, (5-4)
Case 2: 04 > 0 > op. Here, 01 = 04 and 03 = 03, and Eq. (5-1) becomes
o4 —0p > S, (5-5)
Case 3: 0> o4 > op. For this case, o0y = 0 and 03 = 0, and Eq. (5-1) gives
op < =S8, (5-6)

Equations (5-4) to (5-6) are represented in Fig. 5-7 by the three lines indicated in the
o4, op plane. The remaining unmarked lines are cases for op > 04, which are not nor-
mally used. Equations (5—4) to (5—6) can also be converted to design equations by sub-
stituting equality for the equal to or greater sign and dividing S, by n.

Note that the first part of Eq. (5-3), Tmax = S,/2n, is sufficient for design purposes
provided the designer is careful in determining tn.x. For plane stress, Eq. (3—14) does
not always predict Ty.x. However, consider the special case when one normal stress is
zero in the plane, say o, and 7,, have values and o, = 0. It can be easily shown that this
is a Case 2 problem, and the shear stress determined by Eq. (3—14) is tax. Shaft design
problems typically fall into this category where a normal stress exists from bending
and/or axial loading, and a shear stress arises from torsion.
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The maximum-shear-stress
[MSS) theory for plane stress,
where o4 and op are the two
nonzero principal sfresses.

5-5
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Distortion-Energy Theory for Ductile Materials

The distortion-energy theory predicts that yielding occurs when the distortion strain
energy per unit volume reaches or exceeds the distortion strain energy per unit volume
for yield in simple tension or compression of the same material.

The distortion-energy (DE) theory originated from the observation that ductile
materials stressed hydrostatically exhibited yield strengths greatly in excess of the val-
ues given by the simple tension test. Therefore it was postulated that yielding was not
a simple tensile or compressive phenomenon at all, but, rather, that it was related some-
how to the angular distortion of the stressed element. To develop the theory, note, in Fig.
5-8a, the unit volume subjected to any three-dimensional stress state designated by the
stresses oy, 07, and o3. The stress state shown in Fig. 5-8b is one of hydrostatic tension
due to the stresses o,y acting in each of the same principal directions as in Fig. 5-8a.
The formula for o, is simply

oy +oy+03
Oy = — (a)
3
Thus the element in Fig. 5-8b undergoes pure volume change, that is, no angular dis-
tortion. If we regard o,, as a component of o}, 0,, and o3, then this component can be

Ty

/

o ; 03— 0,
3 0, >0,> 0y av 37 Oy
(a) Triaxial stresses (b) Hydrostatic component (c) Distortional component
o
Figure 5-8

(a) Element with triaxial stresses; this element undergoes both volume
change and angular distortion. (b) Element under hydrostatic tension
undergoes only volume change. (c) Element has angular distortion
without volume change.
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subtracted from them, resulting in the stress state shown in Fig. 5-8c. This element is
subjected to pure angular distortion, that is, no volume change.

The strain energy per unit volume for simple tension is u = %EO’. For the element
of Fig. 5-8a the strain energy per unit volume is u = %[610'1 + €05 + €303].
Substituting Eq. (3—19) for the principal strains gives

1
u= ﬁ[of + 0} + 07 — 2v(0102 + 0203 + 0301) | (b)

The strain energy for producing only volume change u, can be obtained by substitut-
ing o,y for oy, 02, and o3 in Eq. (b). The result is
(1 ) (@
v =75 (1—2v

u °E c
If we now substitute the square of Eq. (a) in Eq. (¢) and simplify the expression, we get
1—2v

Uy =

6E

(012 + 022 + 032 + 201072 + 20203 + 20301) (5-7)

Then the distortion energy is obtained by subtracting Eq. (5-7) from Eq. (). This
gives

(5-8)

1+ v [ (01 — 02)* + (02 — 03)> + (03 — 01)?
Ug = U — Uy =
3E 2

Note that the distortion energy is zero if o1 = 0, = 03.
For the simple tensile test, at yield, o1 = §, and 0, = 03 = 0, and from Eq. (5-8)
the distortion energy is
I+v ,
Ug = 3_ESV (5_9)
So for the general state of stress given by Eq. (5-8), yield is predicted if Eq. (5-8)
equals or exceeds Eq. (5-9). This gives

[(01 —02)* + (02 — 03)* + (03 — 01)2]1/2

> > S, (5-10)
If we had a simple case of tension o, then yield would occur when o > S,. Thus, the
left of Eq. (5-10) can be thought of as a single, equivalent, or effective stress for the
entire general state of stress given by oy, 02, and 3. This effective stress is usually
called the von Mises stress, o', named after Dr. R. von Mises, who contributed to the
theory. Thus Eq. (5-10), for yield, can be written as

o' =S, (5-11)

where the von Mises stress is

oo [(0’1 02’ + (02~ 09 + (0 —01)2]1/ ’ (5-12)

2

For plane stress, let 04 and o be the two nonzero principal stresses. Then from
Eq. (5-12), we get

O'/Z(O'i—O’AUB—I-UB%)l/z (5—]3)
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T

‘Pure shear load line (o, = —0p =7)

——DE
-—- MsS

Equation (5-13) is a rotated ellipse in the o4, op plane, as shown in Fig. 5-9 with
o’ = §,. The dotted lines in the figure represent the MSS theory, which can be seen to
be more restrictive, hence, more conservative.*

Using xyz components of three-dimensional stress, the von Mises stress can be
written as

, 1 1/2

o = ﬁ [(O'X - (fy)2 + (o, — 0.)> + (0, —0)> + 6(rx2y + tyzz + rfx)] (5-14)

and for plane stress,

172

o' = (axz — 0,0y + o}? + 3szy) (5-15)

The distortion-energy theory is also called:

* The von Mises or von Mises—Hencky theory
* The shear-energy theory
* The octahedral-shear-stress theory

Understanding octahedral shear stress will shed some light on why the MSS is conser-
vative. Consider an isolated element in which the normal stresses on each surface are
equal to the hydrostatic stress o,. There are eight surfaces symmetric to the principal
directions that contain this stress. This forms an octahedron as shown in Fig. 5-10. The
shear stresses on these surfaces are equal and are called the octahedral shear stresses
(Fig. 5-10 has only one of the octahedral surfaces labeled). Through coordinate trans-
formations the octahedral shear stress is given by’

[(01 — 02)> + (02 — 03)” + (03 — 01)*]'° (5-16)

[SSHI

Toct =

“The three-dimensional equations for DE and MSS can be plotted relative to three-dimensional o7y, 02, 03,
coordinate axes. The failure surface for DE is a circular cylinder with an axis inclined at 45° from each
principal stress axis, whereas the surface for MSS is a hexagon inscribed within the cylinder. See Arthur P.
Boresi and Richard J. Schmidt, Advanced Mechanics of Materials, 6th ed., John Wiley & Sons, New York,
2003, Sec. 4.4.

SFor a derivation, see Arthur P. Boresi, op. cit., pp. 36-37.
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Figure 5-10

Octahedral surfaces.

b

av

—> 0

Under the name of the octahedral-shear-stress theory, failure is assumed to occur when-
ever the octahedral shear stress for any stress state equals or exceeds the octahedral
shear stress for the simple tension-test specimen at failure.

As before, on the basis of the tensile test results, yield occurs when o1 = S, and
o0y = 03 = 0. From Eq. (5-16) the octahedral shear stress under this condition is

V2
Toct = —5— 35 (5-17)
3

When, for the general stress case, Eq. (5-16) is equal or greater than Eq. (5-17), yield
is predicted. This reduces to

12
(01 — 02)* + (02 — 03)* + (03 — 07)* /
. > S,

(5-18)

which is identical to Eq. (5-10), verifying that the maximum-octahedral-shear-stress
theory is equivalent to the distortion-energy theory.

The model for the MSS theory ignores the contribution of the normal stresses on
the 45° surfaces of the tensile specimen. However, these stresses are P/2A, and not the
hydrostatic stresses which are P/3A. Herein lies the difference between the MSS and
DE theories.

The mathematical manipulation involved in describing the DE theory might tend
to obscure the real value and usefulness of the result. The equations given allow the
most complicated stress situation to be represented by a single quantity, the von Mises
stress, which then can be compared against the yield strength of the material through
Eq. (5-11). This equation can be expressed as a design equation by

S
o'== (5-19)

The distortion-energy theory predicts no failure under hydrostatic stress and
agrees well with all data for ductile behavior. Hence, it is the most widely used the-
ory for ductile materials and is recommended for design problems unless otherwise
specified.

One final note concerns the shear yield strength. Consider a case of pure shear 7,
where for plane stress o, = o, = 0. For yield, Eq. (5-11) with Eq. (5-15) gives

S
(3.[3)])]/2 — Sy or ‘[Xy = 7% = 0577Sy (5_20)
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Thus, the shear yield strength predicted by the distortion-energy theory is
Ssy = 0.5778, (5-21)

which as stated earlier, is about 15 percent greater than the 0.5 S, predicted by the MSS
theory. For pure shear, t, the principal stresses from Eq. (3-13) are 04 = —op = Tay.
The load line for this case is in the third quadrant at an angle of 45° from the o4, op
axes shown in Fig. 5-9.

A hot-rolled steel has a yield strength of S,; = Sy = 100 kpsi and a true strain at
fracture of ¢, = 0.55. Estimate the factor of safety for the following principal stress
states:

(a) 70, 70, O kpsi.

(b) 30, 70, O kpsi.

(c) 0, 70, —30 kpsi.

(d) 0, =30, =70 kpsi.

(e) 30, 30, 30 kpsi.

Since &7 > 0.05 and S, and Sy, are equal, the material is ductile and the distortion-
energy (DE) theory applies. The maximum-shear-stress (MSS) theory will also be
applied and compared to the DE results. Note that cases a to d are plane stress
states.

(a) The ordered principal stresses are o4 = 07 = 70, o5 = 0, = 70, 03 = 0 kpsi.

DE From Eq. (5-13),
o’ = [70*> — 70(70) + 70°]"/* = 70 kpsi

1
o’ 70

MSS Case 1, using Eq. (5-4) with a factor of safety,

1
n=2 04
oA 70

(b) The ordered principal stresses are o4 = o1 = 70, o = 07 = 30, 03 = 0 kpsi.

DE o' = [70%> — 70(30) + 30°]"/? = 60.8 kpsi
o' 60.8

MSS  Case 1, using Eq. (5-4),
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(c) The ordered principal stresses are o4 = 01 = 70, 0, = 0, 05 = 03 = —30 kpsi.
DE o’ = [70* — 70(—30) + (—30)%]"/% = 88.9 kpsi
S 100
n=—-2=_—=1.13
o’ 889

MSS  Case 2, using Eq. (5-5),

S, 100

" oa—os 70— (=30)

(d) The ordered principal stresses are o7 = 0, 04 = 0p = —30, 0 = 03 = —70 kpsi.
DE o' = [(=70)* — (=70)(—30) + (—30)*]"/? = 60.8 kpsi

S 100

n=—=2—_——164

o’ 60.8
MSS  Case 3, using Eq. (5-6),

Sy 100

n=———=——=143
op —70

(e) The ordered principal stresses are o7 = 30, on = 30, 03 = 30 kpsi

DE From Eq. (5-12),

_20)2 _20)2 _ 2172
o [(30 30)2 + (30 230) + (30 — 30) ] o ks
S, 100
n=—-=— > 00
o' 0
MSS  From Eq. (5-3),
S, 100

n = (0.¢]

= —
01 — 03 30 — 30

A tabular summary of the factors of safety is included for comparisons.

(a) (b) (c) (d) (e)
DE 1.43 1.64 1.3 1.64 0
MSS  1.43 1.43 1.00 143 o

Since the MSS theory is on or within the boundary of the DE theory, it will always pre-
dict a factor of safety equal to or less than the DE theory, as can be seen in the table.
For each case, except case (e), the coordinates and load lines in the o4, op plane are
shown in Fig. 5-11. Case (e) is not plane stress. Note that the load line for case (a) is



Budynas-Nisbett: Shigley’s | II. Failure Prevention 5. Failures Resulting from © The McGraw-Hill ‘ @

Mechanical Engineering
Design, Eighth Edition

Figure 5-11

Load lines for Example 5-1.

Static Loading Companies, 2008

Failures Resulting from Static Loading 219

— DE
) ——— MSS
K -— - Load lines

/
(d)

the only plane stress case given in which the two theories agree, thus giving the same
factor of safety.

Coulomb-Mohr Theory for Ductile Materials

Not all materials have compressive strengths equal to their corresponding tensile
values. For example, the yield strength of magnesium alloys in compression may be as
little as 50 percent of their yield strength in tension. The ultimate strength of gray cast
irons in compression varies from 3 to 4 times greater than the ultimate tensile strength.
So, in this section, we are primarily interested in those theories that can be used to pre-
dict failure for materials whose strengths in tension and compression are not equal.

Historically, the Mohr theory of failure dates to 1900, a date that is relevant to its
presentation. There were no computers, just slide rules, compasses, and French curves.
Graphical procedures, common then, are still useful today for visualization. The idea of Mohr
is based on three “simple” tests: tension, compression, and shear, to yielding if the material
can yield, or to rupture. It is easier to define shear yield strength as Sy, than it is to test for it.

The practical difficulties aside, Mohr’s hypothesis was to use the results of tensile,
compressive, and torsional shear tests to construct the three circles of Fig. 5-12 defining
a failure envelope, depicted as line ABCDE in the figure, above the o axis. The failure
envelope need not be straight. The argument amounted to the three Mohr circles
describing the stress state in a body (see Fig. 3—12) growing during loading until one of
them became tangent to the failure envelope, thereby defining failure. Was the form of
the failure envelope straight, circular, or quadratic? A compass or a French curve
defined the failure envelope.

A variation of Mohr’s theory, called the Coulomb-Mohr theory or the internal-friction
theory, assumes that the boundary BCD in Fig. 5-12 is straight. With this assumption only
the tensile and compressive strengths are necessary. Consider the conventional ordering of
the principal stresses such that oy > 0, > 03. The largest circle connects | and o3, as
shown in Fig. 5-13. The centers of the circles in Fig. 5-13 are C,, C,, and Cj. Triangles
OB.C,; are similar, therefore

B,C, — BiC; _ B3C3 — BiC,
0C, — 0C;, 0C;— 0C
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Figure 5-12 H

Three Mohr circles, one for the
uniaxial compression fest, one D P

for the test in pure shear, and

one for the uniaxial fension test, m

are used fo define failure by the =S, s, 7
Mohr hypothesis. The sirengths %

Sc and S are the compressive

and tensile strengths,
respectively; they can be used
for yield or ultimate strength.

Figure 5-13 Coulomb-Mohr

failure line

T

Mohr's largest circle for a
general state of stress.

or

o] — 03 S[ SC St
2

2 2_2 2
S _ote - S S
2 2 2 2
Cross-multiplying and simplifying reduces this equation to
a_%_y
S S

where either yield strength or ultimate strength can be used.

© The McGraw-Hill
Companies, 2008

(5-22)

For plane stress, when the two nonzero principal stresses are o4 > o, we have
a situation similar to the three cases given for the MSS theory, Eqgs. (5—4) to (5-6).

That is,

Case 1: o4 > op > 0. For this case, 0] = o4 and o3 = 0. Equation (5-22)

reduces to a failure condition of

o =S

(5-23)

Case 2: o4 > 0> op. Here, 0y = 04 and 03 = o, and Eq. (5-22) becomes

(5-24)

Case 3: 0 > 04 > op. For this case, 0 = 0 and 03 = 0, and Eq. (5-22) gives

op < =S

(5-25)
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T

T

A plot of these cases, together with the normally unused cases corresponding to
op > 04, is shown in Fig. 5-14.
For design equations, incorporating the factor of safety n, divide all strengths by n.
For example, Eq. (5-22) as a design equation can be written as
1
a_B_ - (5-26)
S, Se n
Since for the Coulomb-Mohr theory we do not need the torsional shear strength
circle we can deduce it from Eq. (5-22). For pure shear 7, 0 = —o3 = t. The torsional
yield strength occurs when T, = Ss,. Substituting o1 = —03 = S;, into Eq. (5-22)
and simplifying gives
Sy Sye

Sgy = —————— 5-27
= (5-27)

A 25-mm-diameter shaft is statically torqued to 230 N - m. It is made of cast 195-T6
aluminum, with a yield strength in tension of 160 MPa and a yield strength in com-
pression of 170 MPa. It is machined to final diameter. Estimate the factor of safety of
the shaft.

The maximum shear stress is given by
_ler 16(230)
md® 7 [25(10-3)]

The two nonzero principal stresses are 75 and —75 MPa, making the ordered principal
stresses 01 = 75, 0p = 0, and 03 = —75 MPa. From Eq. (5-26), for yield,

=75 (10°) N/m* = 75MPa

1 1
T 01/Sy —03/Sye  75/160 — (—75)/170

Alternatively, from Eq. (5-27),

S8 160(170
Sy = =22 = 170 _ 5 4 MPa
Sy + Sy 160 + 170

=1.10
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Figure 5-15

Experimental data superposed
on failure theories. (From Fig.
711, p. 257, Mechanical
Behavior of Materials, 2nd
ed., N. E. Dowling, Prentice
Hall, Englewood Cliffs, N.J.,
1999. Modified to show only
ductile failures.)

and Ty = 75 MPa. Thus,

Sy 8244
Tmax 75

Failure of Ductile Materials Summary

Having studied some of the various theories of failure, we shall now evaluate them and
show how they are applied in design and analysis. In this section we limit our studies to
materials and parts that are known to fail in a ductile manner. Materials that fail in a brit-
tle manner will be considered separately because these require different failure theories.

To help decide on appropriate and workable theories of failure, Marin® collected
data from many sources. Some of the data points used to select failure theories for duc-
tile materials are shown in Fig. 5-15.” Mann also collected many data for copper and
nickel alloys; if shown, the data points for these would be mingled with those already
diagrammed. Figure 5-15 shows that either the maximum-shear-stress theory or the
distortion-energy theory is acceptable for design and analysis of materials that would

/ Oct. shear Yielding (S, = S,)

O Ni-Cr-Mo steel
e AISI 1023 steel
O 2024-T4 Al

B 3S-HAI

®Joseph Marin was one of the pioneers in the collection, development, and dissemination of material on the
failure of engineering elements. He has published many books and papers on the subject. Here the
reference used is Joseph Marin, Engineering Materials, Prentice-Hall, Englewood Cliffs, N.J., 1952.

(See pp. 156 and 157 for some data points used here.)

"Note that some data in Fig. 5-15 are displayed along the top horizontal boundary where o3 > 4. This is
often done with failure data to thin out congested data points by plotting on the mirror image of the line
o = 04A.
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fail in a ductile manner. You may wish to plot other theories using a red or blue pencil
on Fig. 5-15 to show why they are not acceptable or are not used.

The selection of one or the other of these two theories is something that you, the
engineer, must decide. For design purposes the maximum-shear-stress theory is easy,
quick to use, and conservative. If the problem is to learn why a part failed, then the
distortion-energy theory may be the best to use; Fig. 5—15 shows that the plot of the
distortion-energy theory passes closer to the central area of the data points, and thus is
generally a better predictor of failure.

For ductile materials with unequal yield strengths, S,; in tension and S, in com-
pression, the Mohr theory is the best available. However, the theory requires the results
from three separate modes of tests, graphical construction of the failure locus, and fit-
ting the largest Mohr’s circle to the failure locus. The alternative to this is to use the
Coulomb-Mohr theory, which requires only the tensile and compressive yield strengths
and is easily dealt with in equation form.

This example illustrates the use of a failure theory to determine the strength of a mechan-
ical element or component. The example may also clear up any confusion existing
between the phrases strength of a machine part, strength of a material, and strength of
a part at a point.

A certain force F applied at D near the end of the 15-in lever shown in Fig. 5-16,
which is quite similar to a socket wrench, results in certain stresses in the cantilevered
bar OABC. This bar (OABC) is of AISI 1035 steel, forged and heat-treated so that it has
a minimum (ASTM) yield strength of 81 kpsi. We presume that this component would
be of no value after yielding. Thus the force F required to initiate yielding can be
regarded as the strength of the component part. Find this force.
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We will assume that lever DC is strong enough and hence not a part of the problem. A 1035
steel, heat-treated, will have a reduction in area of 50 percent or more and hence is a duc-
tile material at normal temperatures. This also means that stress concentration at shoulder
A need not be considered. A stress element at A on the top surface will be subjected to a
tensile bending stress and a torsional stress. This point, on the 1-in-diameter section, is the
weakest section, and governs the strength of the assembly. The two stresses are

M 32M  32(14F)
I/c md3> w13
Tr 16T _ 16(15F)
J  wnd® w(13)

= 142.6F

Tox = =76.4F
Employing the distortion-energy theory, we find, from Eq. (5-15), that

1/2 1/2

o' = (0} +372) " =[(142.6F)* + 3(76.4F)*] '~ = 194.5F

Equating the von Mises stress to S, we solve for F and get

1945~ 194.5

In this example the strength of the material at point A is S, = 81 kpsi. The strength of
the assembly or component is F = 416 1bf.

Let us see how to apply the MSS theory. For a point undergoing plane stress with
only one non-zero normal stress and one shear stress, the two nonzero principal stresses
o4 and op will have opposite signs and hence fit case 2 for the MSS theory. From
Eq. (3-13),

; 1
Sy _ 81000 =416 Ibf

2 1/2
Ox 1/2
-on=2(5) +a] = ra)’

For case 2 of the MSS theory, Eq. (5-5) applies and hence

(02 +412)" =5,

[(142.6F)* + 4(76.4F)*1'/?> = 209.0F = 81000
F = 388 Ibf

which is about 7 percent less than found for the DE theory. As stated earlier, the MSS
theory is more conservative than the DE theory.

The cantilevered tube shown in Fig. 5-17 is to be made of 2014 aluminum alloy treated
to obtain a specified minimum yield strength of 276 MPa. We wish to select a stock-size
tube from Table A—8 using a design factor n; = 4. The bending load is F = 1.75 kN,
the axial tension is P = 9.0 kN, and the torsion is 7 = 72 N - m. What is the realized
factor of safety?
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~<

Since the maximum bending moment is M = 120F, the normal stress, for an element
on the top surface of the tube at the origin, is

_P+Mc
T A I A I A I

9, 1200175)y/2) _ 9 , 1054, i

Ox
where, if millimeters are used for the area properties, the stress is in gigapascals.
The torsional stress at the same point is

Tr  72(d,/2) _ 36d,
J 7 T

Tox = (2)
For accuracy, we choose the distortion-energy theory as the design basis. The von Mises
stress, as in the previous example, is

1/2

o' = (0} +312,) 3)
On the basis of the given design factor, the goal for o is
Sy 0.276
o< 2= —;— = 0.0690 GPa (4)
d

where we have used gigapascals in this relation to agree with Eqs. (1) and (2).

Programming Egs. (1) to (3) on a spreadsheet and entering metric sizes from
Table A—8 reveals that a 42- x 5-mm tube is satisfactory. The von Mises stress is found
to be o’ = 0.06043 GPa for this size. Thus the realized factor of safety is

S, 0276

o’ 0.06043

For the next size smaller, a 42- x 4-mm tube, o’ = 0.07105 GPa giving a factor of
safety of

S, 0276

o’ 007105

3.88
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Figure 5-18

(a) Graph of maximum-normal-
stress (MINS) theory of failure
for plane stress states. Stress
states that plot inside the
failure locus are safe.

(b) Load line plot.

© The McGraw-Hill
Companies, 2008

5. Failures Resulting from
Static Loading

Mechanical Engineering Design

Maximum-Normal-Stress Theory
for Brittle Materials

The maximum-normal-stress (MNS) theory states that failure occurs whenever one of
the three principal stresses equals or exceeds the strength. Again we arrange the prin-
cipal stresses for a general stress state in the ordered form o7 > 0, > o3. This theory
then predicts that failure occurs whenever

o1 > Sus or 03 < —Suc (5-28)

where S,; and S, are the ultimate tensile and compressive strengths, respectively, given
as positive quantities.

For plane stress, with the principal stresses given by Eq. (3—13), with o4 > op,
Eq. (5-28) can be written as

o4 > Su or  op < —Su (5-29)

which is plotted in Fig. 5-18a. As before, the failure criteria equations can be converted to
design equations. We can consider two sets of equations for load lines where o4 > o as

Jp
Sllf
Sy St g
7SU(‘
(a)
Jp
:_ ----------------------- . Load line 1
I .
! e
l ol
! 5.
= S
1 , \
! \
: ,/ \ N Load line 2
! \
| // \
I
i ; \
I
! , \
L // \\
, -S,.
Load line 4 " Load line 3

(b)
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A\ .
oy = 2 s >0>0 Loadline 1
n
SMC .
o4 >0>o0p and I8 < — Loadline 2 (5-30q)
0A ut
Suc SMC .
op = ——— opa>0>o0p and I8 > — Load line 3
n oA ut
0>04 >o0p Load line 4 (5-30b)

where the load lines are shown in Fig. 5-18b.
Before we comment any further on the MNS theory we will explore some modifi-
cations to the Mohr theory for brittle materials.

5-9  Modifications of the Mohr Theory
for Brittle Materials

We will discuss two modifications of the Mohr theory for brittle materials: the Brittle-
Coulomb-Mohr (BCM) theory and the modified Mohr (MM) theory. The equations
provided for the theories will be restricted to plane stress and be of the design type
incorporating the factor of safety.

The Coulomb-Mohr theory was discussed earlier in Sec. 5-6 with Egs. (5-23) to
(5-25). Written as design equations for a brittle material, they are:

Brittle-Coulomb-Mohr

Su
o‘Az—t op>0>0 (5-31q)

n

(o) [op;] 1

—_———=- >0> 5-31b

Su  Sw n AEOE a1
SMC

op = —— 0>o04 >o0p (5-31¢)
n

On the basis of observed data for the fourth quadrant, the modified Mohr theory
expands the fourth quadrant as shown in Fig. 5-19.

Modified Mohr
Sut
oy = — op>0p>0
n (5-32q)
04>0>0p and |—|<1
04
Suc - Su 1
( t)UA_O_BZ_ o4>0>0p and |—|>1 (5-32b)
SucSuz SMC n oA
SMC
op — —— 0 Z OA 2 op (5_32C)
n

Data are still outside this extended region. The straight line introduced by the modified
Mohr theory, foros > 0 > op and |op /04| > 1, can be replaced by a parabolic relation
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Figure 5-19

Biaxial fracture data of gray
cast iron compared with
various failure criteria.
(Dowling, N. E., Mechanical
Behavior of Materials, 2/e,
1999, p. 261. Reprinted by
permission of Pearson
Education, Inc., Upper Saddle
River, New Jersey.)

EXAMPLE 5-5

Solution

oy, MPa
300 [~
max. normal St
Femmmmmmmmm———— —
1 . P
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| s | | | | | | ut o, MPa
-700 -300 0 h 300
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- ]
1
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/P &,
-300~ 1 ! »
! @ !
1 1
- 1/ !
O Gray cast-iron data II :
! 1
—1 % 1
/ 1
/° 1
1
[ [ 1
_SMC
=700 [—

which can more closely represent some of the data.® However, this introduces a nonlin-
ear equation for the sake of a minor correction, and will not be presented here.

8See J. E. Shigley, C. R. Mischke, R. G. Budynas, Mechanical Engineering Design, Tth ed., McGraw-Hill,
New York, 2004, p. 275.

Consider the wrench in Ex. 5-3, Fig. 5-16, as made of cast iron, machined to dimen-
sion. The force F required to fracture this part can be regarded as the strength of the
component part. If the material is ASTM grade 30 cast iron, find the force F' with

(a) Coulomb-Mohr failure model.

(b) Modified Mohr failure model.

We assume that the lever DC is strong enough, and not part of the problem. Since grade
30 cast iron is a brittle material and cast iron, the stress-concentration factors K, and K/
are set to unity. From Table A—24, the tensile ultimate strength is 31 kpsi and the com-
pressive ultimate strength is 109 kpsi. The stress element at A on the top surface will be
subjected to a tensile bending stress and a torsional stress. This location, on the 1-in-
diameter section fillet, is the weakest location, and it governs the strength of the assem-
bly. The normal stress o and the shear stress at A are given by

M M 32(14F)

o, = K,— =K, o — 142.6F
I/c nd3 m(1)3
Tr 16T 16(15F)

Ty = KtsT = Ktsﬁ = (1)W =764F

From Eq. (3—13) the nonzero principal stresses o4 and op are

1426F +0 \/(142.6F —0
2 2

2
0p,Op = ) + (76.4F)2 = 175.8F, —33.2F
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Figure 5-20

A plot of experimental data
points obtained from tests on
cast iron. Shown also are the
graphs of three failure theories
of possible usefulness for britile
materials. Nofe points A, B,
C, and D. To avoid
congestion in the first
quadrant, points have been
plotted for o4 > o as well as
for the opposite sense. (Source
of data: Charles F. Walion
led.), Iron Castings
Handbook, Iron Founders’
Society, 1971, pp. 215,
216, Cleveland, Ohio.)
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This puts us in the fourth-quadrant of the o4, o plane.
(a) For BCM, Eq. (5-31b) applies with n = 1 for failure.

ox op 1758F (=332F) _
Sy S.e  31(10%)  109(103)
Solving for F yields
F = 167 Ibf

(b) For MM, the slope of the load line is |op/o4| =33.2/175.8 =0.189 < 1.
Obviously, Eq. (5—-32a) applies.

ox _ 1758F

S 313103

F =176 Ibf

As one would expect from inspection of Fig. 5-19, Coulomb-Mohr is more conservative.

Failure of Brittle Materials Summary

We have identified failure or strength of brittle materials that conform to the usual
meaning of the word brittle, relating to those materials whose true strain at fracture
is 0.05 or less. We also have to be aware of normally ductile materials that for some
reason may develop a brittle fracture or crack if used below the transition tempera-
ture. Figure 5-20 shows data for a nominal grade 30 cast iron taken under biaxial

Modified Mohr

’Sur
1
-
’f
\ ”,’//‘:/
. |
/’// |
! ~=T ! I
-120 |-S,.-90 -60 -30

ASTM No. 30 C.I.
S,; = 31 kpsi, S,,. = 109 kpsi

Coulomb-Mohr —_| / %
0P/ /B
(o]
/ 96
/i
Maximum-normal-stress /// @
=90 /1
/
§/// 6
B T =S,
6 -120+
A

op ~150
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Figure 5-21

Failure theory selection
flowchart.

stress conditions, with several brittle failure hypotheses shown, superposed. We note
the following:

 In the first quadrant the data appear on both sides and along the failure curves of
maximum-normal-stress, Coulomb-Mohr, and modified Mohr. All failure curves are
the same, and data fit well.

* In the fourth quadrant the modified Mohr theory represents the data best.

e In the third quadrant the points A, B, C, and D are too few to make any suggestion
concerning a fracture locus.

Selection of Failure Criteria

For ductile behavior the preferred criterion is the distortion-energy theory, although
some designers also apply the maximum-shear-stress theory because of its simplicity
and conservative nature. In the rare case when S,; # S, the ductile Coulomb-Mohr
method is employed.

For brittle behavior, the original Mohr hypothesis, constructed with tensile, com-
pression, and torsion tests, with a curved failure locus is the best hypothesis we have.
However, the difficulty of applying it without a computer leads engineers to choose
modifications, namely, Coulomb Mohr, or modified Mohr. Figure 5-21 provides a sum-
mary flowchart for the selection of an effective procedure for analyzing or predicting
failures from static loading for brittle or ductile behavior.

~— Brittle behavior Ductile behavior

Conservative?

Mod. Mohr Brittle Coulomb-Mohr Ductile Coulomb-Mohr

(MM) (BCM) (DCM)
Eq. (5-32) Eq. (5-31) Eq. (5-26) Conservative?
Distortion-energy Maximum shear stress
(DE) (MSS)
Eqgs. (5-15) Eq. (5-3)

and (5-19)
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Introduction to Fracture Mechanics

The idea that cracks exist in parts even before service begins, and that cracks can grow
during service, has led to the descriptive phrase “damage-tolerant design.” The focus of
this philosophy is on crack growth until it becomes critical, and the part is removed
from service. The analysis tool is linear elastic fracture mechanics (LEFM). Inspection
and maintenance are essential in the decision to retire parts before cracks reach cata-
strophic size. Where human safety is concerned, periodic inspections for cracks are
mandated by codes and government ordinance.

We shall now briefly examine some of the basic ideas and vocabulary needed for
the potential of the approach to be appreciated. The intent here is to make the reader
aware of the dangers associated with the sudden brittle fracture of so-called ductile
materials. The topic is much too extensive to include in detail here and the reader is
urged to read further on this complex subject.’

The use of elastic stress-concentration factors provides an indication of the average
load required on a part for the onset of plastic deformation, or yielding; these factors
are also useful for analysis of the loads on a part that will cause fatigue fracture.
However, stress-concentration factors are limited to structures for which all dimensions
are precisely known, particularly the radius of curvature in regions of high stress con-
centration. When there exists a crack, flaw, inclusion, or defect of unknown small radius
in a part, the elastic stress-concentration factor approaches infinity as the root radius
approaches zero, thus rendering the stress-concentration factor approach useless.
Furthermore, even if the radius of curvature of the flaw tip is known, the high local
stresses there will lead to local plastic deformation surrounded by a region of elastic
deformation. Elastic stress-concentration factors are no longer valid for this situation,
so analysis from the point of view of stress-concentration factors does not lead to cri-
teria useful for design when very sharp cracks are present.

By combining analysis of the gross elastic changes in a structure or part that occur
as a sharp brittle crack grows with measurements of the energy required to produce new
fracture surfaces, it is possible to calculate the average stress (if no crack were present)
that will cause crack growth in a part. Such calculation is possible only for parts with
cracks for which the elastic analysis has been completed, and for materials that crack in a
relatively brittle manner and for which the fracture energy has been carefully measured.
The term relatively brittle is rigorously defined in the test procedures,'® but it means,
roughly, fracture without yielding occurring throughout the fractured cross section.

Thus glass, hard steels, strong aluminum alloys, and even low-carbon steel below
the ductile-to-brittle transition temperature can be analyzed in this way. Fortunately,
ductile materials blunt sharp cracks, as we have previously discovered, so that fracture
occurs at average stresses of the order of the yield strength, and the designer is prepared

“References on brittle fracture include:

H. Tada and P. C. Paris, The Stress Analysis of Cracks Handbook, 2nd ed., Paris Productions,
St. Louis, 1985.

D. Broek, Elementary Engineering Fracture Mechanics, 4th ed., Martinus Nijhoff, London, 1985.

D. Broek, The Practical Use of Fracture Mechanics, Kluwar Academic Pub., London, 1988.

David K. Felbeck and Anthony G. Atkins, Strength and Fracture of Engineering Solids, Prentice-Hall,
Englewood Cliffs, N.J., 1984.

Kare Hellan, Introduction to Fracture Mechanics, McGraw-Hill, New York, 1984.

1°BS 5447:1977 and ASTM E399-78.
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| Figure 5-22

for this condition. The middle ground of materials that lie between “relatively brittle”
and “ductile” is now being actively analyzed, but exact design criteria for these materi-
als are not yet available.

Quasi-Static Fracture

Many of us have had the experience of observing brittle fracture, whether it is the break-
ing of a cast-iron specimen in a tensile test or the twist fracture of a piece of blackboard
chalk. It happens so rapidly that we think of it as instantaneous, that is, the cross section
simply parting. Fewer of us have skated on a frozen pond in the spring, with no one near
us, heard a cracking noise, and stopped to observe. The noise is due to cracking. The
cracks move slowly enough for us to see them run. The phenomenon is not instantaneous,
since some time is necessary to feed the crack energy from the stress field to the crack for
propagation. Quantifying these things is important to understanding the phenomenon “in
the small.” In the large, a static crack may be stable and will not propagate. Some level of
loading can render the crack unstable, and the crack propagates to fracture.

The foundation of fracture mechanics was first established by Griffith in 1921
using the stress field calculations for an elliptical flaw in a plate developed by Inglis in
1913. For the infinite plate loaded by an applied uniaxial stress o in Fig. 5-22, the max-
imum stress occurs at (a, 0) and is given by

(0 )max = <1 n 2%)0 (5-33)

Note that when a = b, the ellipse becomes a circle and Eq. (5-33) gives a stress con-
centration factor of 3. This agrees with the well-known result for an infinite plate with
a circular hole (see Table A—15-1). For a fine crack, b/a — 0, and Eq. (5-34) predicts
that (0})max — 00. However, on a microscopic level, an infinitely sharp crack is a
hypothetical abstraction that is physically impossible, and when plastic deformation
occurs, the stress will be finite at the crack tip.

Griffith showed that the crack growth occurs when the energy release rate from
applied loading is greater than the rate of energy for crack growth. Crack growth can be
stable or unstable. Unstable crack growth occurs when the rate of change of the energy
release rate relative to the crack length is equal to or greater than the rate of change of
the crack growth rate of energy. Griffith’s experimental work was restricted to brittle
materials, namely glass, which pretty much confirmed his surface energy hypothesis.
However, for ductile materials, the energy needed to perform plastic work at the crack
tip is found to be much more crucial than surface energy.
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Figure 5-23

Crack propagation modes. \

1 N

Mode I Mode II Mode III

Crack Modes and the Stress Intensity Factor

Three distinct modes of crack propagation exist, as shown in Fig. 5-23. A tensile stress
field gives rise to mode I, the opening crack propagation mode, as shown in Fig. 5-23a.
This mode is the most common in practice. Mode II is the sliding mode, is due to
in-plane shear, and can be seen in Fig. 5-23b. Mode III is the fearing mode, which
arises from out-of-plane shear, as shown in Fig. 5-23c. Combinations of these modes
can also occur. Since mode I is the most common and important mode, the remainder
of this section will consider only this mode.

Consider a mode I crack of length 2a in the infinite plate of Fig. 5-24. By using
complex stress functions, it has been shown that the stress field on a dx dy element in
the vicinity of the crack tip is given by

I N S 5340

Oy =0 2r COS2 SlIlell'l 2 a
6 6 30

o /Za—rcos§<1+sin§sin 7) (5-34b)

Uy =
a . 0 0 30
Ty =0 % sin 3 cos 3 cos > (5-34c¢)
r
_]0 (for plane stress) .
Oz = { v(o, + oy) (for plane strain) (5-34d)
Figure 5-24 Y
Mode | crack model.
dx
dy
A6
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The stress o, near the tip, with 6 =0, is

a
Uy|0:0=0,/5 (a)

As with the elliptical crack, we see that oy |g—o — 00 as r — 0, and again the concept
of an infinite stress concentration at the crack tip is inappropriate. The quantity
oy |e=o@ = o4/a, however, does remain constant as » — 0. It is common practice to
define a factor K called the stress intensity factor given by

K = o+/ma (b)

where the units are MPa./m or kpsi~/in. Since we are dealing with a mode I crack, Eq.
(b) is written as

K, =o0+rma (5-35)

The stress intensity factor is not to be confused with the static stress concentration
factors K, and K,, defined in Secs. 3—-13 and 5-2.
Thus Eqs. (5-34) can be rewritten as

K; 0 ! .6 . 30 (5-360)
oy = cos — | 1 — sin — sin — -
T w2 27 :
K 0 % 36
oy = L cos - (1 + sin = sin —) (5-36b)
2mr 2 2 2
K, .6 0 0
Ty = Sin — COS — COS — 5-36¢
Y 2 2 ( )

B { 0 (for plane stress) (5-36d)

v(o, +0oy) (for plane strain)

The stress intensity factor is a function of geometry, size and shape of the crack,
and the type of loading. For various load and geometric configurations, Eq. (5-35) can
be written as

K] = ﬁa«/ﬁ (5—37)

where S is the stress intensity modification factor. Tables for § are available in the lit-
erature for basic configurations.'! Figures 5-25 to 5-30 present a few examples of 3 for
mode I crack propagation.

Fracture Toughness

When the magnitude of the mode I stress intensity factor reaches a critical value,
K. crack propagation initiates. The critical stress intensity factor K. is a material prop-
erty that depends on the material, crack mode, processing of the material, temperature,

"See, for example:
H. Tada and P. C. Paris, The Stress Analysis of Cracks Handbook, 2nd ed., Paris Productions, St. Louis, 1985.
G. C. Sib, Handbook of Stress Intensity Factors for Researchers and Engineers, Institute of Fracture and
Solid Mechanics, Lehigh University, Bethlehem, Pa., 1973.
Y. Murakami, ed., Stress Intensity Factors Handbook, Pergamon Press, Oxford, U.K., 1987.
W. D. Pilkey, Formulas for Stress, Strain, and Structural Matrices, 2nd ed. John Wiley& Sons,
New York, 2005.
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Figure 5-25

Off-center crack in a plate in
longitudinal tension; solid
curves are for the crack tip af
A: dashed curves are for the
tip at B.

Figure 5-26

Plate loaded in longitudinal
tension with a crack af the
edge; for the solid curve there
are no constraints fo bending;
the dashed curve was
obtained with bending
constraints added.
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Figure 5-27

Beams of rectangular cross
section having an edge crack.

0 0.2 0.4 0.6 0.8
a/h ratio

Figure 5-28 3

Plafe in tension containing a
circular hole with two cracks.

A1

0.4
a/b ratio

loading rate, and the state of stress at the crack site (such as plane stress versus plane
strain). The critical stress intensity factor K. is also called the fracture toughness of
the material. The fracture toughness for plane strain is normally lower than that for
plane stress. For this reason, the term K, is typically defined as the mode I, plane strain
fracture toughness. Fracture toughness K. for engineering metals lies in the range
20 < K;. <200 MPa - /m; for engineering polymers and ceramics, 1 < K;. <
5 MPa - \/m. For a 4340 steel, where the yield strength due to heat treatment ranges

© The McGraw-Hill
Companies, 2008

from 800 to 1600 MPa, K. decreases from 190 to 40 MPa - \/m.
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Figure 5-29 40
I Mo
A cylinder loading in axial <
tension having a radial crack
of depth a extending a ~a
3.0
completely around the
circumference of the cylinder.
g >
MAANAAL
2.0
1.0
0 0.2 0.4 0.6 0.8
a/(r,—r;) ratio
Figure 5-30 34

Cylinder subjected fo infernal
pressure p, having a radial
crack in the longitudinal
direction of depth a. Use

Eq. (4-51] for the tangential
stress at r =rg.

0.2 0.4 0.6 0.8
a/(r,—r;) ratio

Table 5-1 gives some approximate typical room-temperature values of K;. for
several materials. As previously noted, the fracture toughness depends on many factors
and the table is meant only to convey some typical magnitudes of K;.. For an actual
application, it is recommended that the material specified for the application be certi-
fied using standard test procedures [see the American Society for Testing and Materials
(ASTM) standard E399].
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Table 5-1

Values of K_for Some
Engineering Materials
at Room Temperature

EXAMPLE 5-6

Solution

Material K., MPa,/m S,, MPa
Aluminum
2024 26 455
7075 24 495
7178 33 490
Titanium
Ti-OAL-4V 115 Q10
Ti-OAL-4V 55 1035
Steel
4340 Q9 860
4340 60 1515
52100 14 2070

One of the first problems facing the designer is that of deciding whether the condi-
tions exist, or not, for a brittle fracture. Low-temperature operation, that is, operation
below room temperature, is a key indicator that brittle fracture is a possible failure
mode. Tables of transition temperatures for various materials have not been published,
possibly because of the wide variation in values, even for a single material. Thus, in
many situations, laboratory testing may give the only clue to the possibility of a brittle
fracture. Another key indicator of the possibility of fracture is the ratio of the yield
strength to the ultimate strength. A high ratio of S,/S, indicates there is only a small
ability to absorb energy in the plastic region and hence there is a likelihood of brittle
fracture.

The strength-to-stress ratio K;./K; can be used as a factor of safety as

_ KIL‘

X, (5-38)

n

A steel ship deck plate is 30 mm thick and 12 m wide. It is loaded with a nominal uni-
axial tensile stress of 50 MPa. It is operated below its ductile-to-brittle transition tem-
perature with K;. equal to 28.3 MPa. If a 65-mm-long central transverse crack is
present, estimate the tensile stress at which catastrophic failure will occur. Compare this
stress with the yield strength of 240 MPa for this steel.

For Fig. 5-25, with d = b, 2a = 65 mm and 2b = 12 m, so that d/b =1 and a/d =
65/12(10%) = 0.00542. Since a/d is so small, B = 1, so that

K; = o/ma = 50/7(32.5 x 10-3) = 16.0 MPa +/m

From Eq. (5-38),

K;. 283
=— =177
K, 16.0
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The stress at which catastrophic failure occurs is

K. 283
0, = 5 = 22 (50) = 88.4 MPa
K, 16.0

The yield strength is 240 MPa, and catastrophic failure occurs at 88.4/240 = 0.37, or
at 37 percent of yield. The factor of safety in this circumstance is K;./K; =
28.3/16 = 1.77 and not 240/50 = 4.8.

A plate of width 1.4 m and length 2.8 m is required to support a tensile force in the
2.8-m direction of 4.0 MN. Inspection procedures will detect only through-thickness
edge cracks larger than 2.7 mm. The two Ti-6AL-4V alloys in Table 5-1 are being con-
sidered for this application, for which the safety factor must be 1.3 and minimum
weight is important. Which alloy should be used?

(a) We elect first to estimate the thickness required to resist yielding. Since o = P /wt,
we have t = P/wo. For the weaker alloy, we have, from Table 5-1, S, = 910 MPa.
Thus,

S, 910
Oy = — = — = 700 MPa
n 1.3

Thus

P 4.0(10)°

= —— = ———— = 4.08 mm or greater
WO 1.4(700)

For the stronger alloy, we have, from Table 5-1,

1035
O3 = 1—3 = 796 MPa

and so the thickness is

P 4.0(10)°

= = ——
WO, 14(796)

= 3.59 mm or greater

(b) Now let us find the thickness required to prevent crack growth. Using Fig. 5-26, we
have

h 28/2 a 27

b 14 b 1.4(10%)

=0.001 93

Corresponding to these ratios we find from Fig. 5-26that 8 = 1.1, and K; = 1.1lo/7a.
K[C 115+ 103 KIC

T K; lloJmwa 7= 1.1n/ma
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