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Abstract - In paper is adduced a graphical representation 

of the drift of restrictions and the point of extremum of 

objective function under the using of evolutionary theory of 

identification of mathematical models of corrosion 

destruction of structures under stress (ETCD) and practical 

recommendations on how to avoid a significant financial 

losses at the optimal designing of structures interacting with 

aggressive media. 

I. INTRODUCTION 

The evolutionary theory of identification of 

mathematical models of corrosive destruction, which  is 

presented in [1-7] and in two monographs [8] and [9], 

researches the solution of such narrow problem that none 

of the experts in the design and manufacturing of designs 

that interact with aggressive media, still was not able to 

not only study this theory, but even to notice. The author 

not know of anybody in the world who is engaged in this 

issue. Meanwhile, the correct use of this theory could 

bring significant economic benefit without investing of 

any additional financial resources.  

As follows from the above publications [1-7], the 

evolutionary theory of identification of mathematical 

models of corrosion damage (ETCD) can only be used at 

the optimal design of designs interacting with the 

aggressive environment. Typically, at the designing of 

such designs is applied the mathematical modeling of the 

process of corrosive destruction. Mathematical models, 

describing the process of corrosion damage, there are of 

two types: the models that do not take into account the 

effect of the stress-strain state (SSS) of designs and the 

models that take into account this state. The ETCD 

theory should be applied when using the models of the 

second type. It has long been observed that the rate of 

corrosion increases with the increasing of stresses and 

strains of designs. From here the term "stress corrosion". 

Among the models that take into account the impact of 

SSS on the corrosion rate are, the models of 

V.M.Dolinsky (1), I.G.Ovchinnikov (2) (MMSS), 

V.G.Karpunin (3) (MMS), and others: 

imvv  0 ,                        (1) 

  


 thrii
dt

d
                       (2) 




 i
dt

d
,                              (3) 

Where:  0v  and   − the rate of corrosion of 

unstressed metal; m  and   − coefficient taking into 

account the SSS impact on the rate of corrosion, i  − the 

intensity of the stresses; i  − the intensity of the strains; 

  the depth of corrosive damage; thr  − threshold 

stress. 

II. ABOUT THE DRIFT OF POINTS OF EXTREMAL 

VALUES OF OBJECTIVE FUNCTION 

At the optimal designing of structures the coefficients, 

that take into account the SSS impact on the rate of the 

corrosive process are variables values. This is because in 

the process of optimization takes place the evolution of 

construction from non-optimum state to optimal state. 

During this evolution the stress-strained state (SSS) is 

changed. The coefficient of the influence of SSS on the 

rate of corrosive process, as a function of SSS changes 

from step to step during of the search process. This was 

proved theoretically in [1] and by numerical experiment 

in [1-3] for four optimization objects and for two 

mathematical models. In the Theorem 1 [1] was found 

that the magnitude of the influence of the SSS rate on the 

corrosion is directly proportional to the stiffness of the 

optimized design. It was also found that the lowest value 

of the coefficient of the influence of SSS on the rate of 

corrosion is received in the case when the project reaches  

the optimal state. The coefficient of such value is called 

"optimal". From here follows  the corollary from the 

Theorem: If there is exist an "optimal" coefficient of the 

influence of SSS on the rate of corrosion, the optimum 

state of the design is reached from any point of the area 

of optimized parameters. In other words, before an 

optimization of structure, that interacts with aggressive 

environment, it is necessary to determine the minimum 

value of the coefficient of the influence of SSS on the 

rate of corrosion and then with this coefficient is 

necessary to optimize the design. The minimum value of 

the coefficient of the influence of SSS on the rate of 

corrosion can be received by "zero point" method, 

described in [3] or by the special analytical methods 

described in [5,6].  
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If you will not done it and will solve the task of 

optimization out of an arbitrary point with corresponding 

value of the coefficient of the SSS effect on the corrosion 

rate, you get the project on the (10-30)% worse, than the 

optimal project. Why so? Let us show this on a graphical 

example. 

Let’s consider the two-dimensional problem of 

nonlinear mathematical programming (Fig. 1). Vector of 

control variables ),( 21 xxX . 

 

 
Fig.1. Deformation of the area of permissible solutions and drift of the point of extremum of objective function 

The objective function: )(XfF  . Restrictions: 

ag )(1 X :  bg )(2 X ; cg )(3 X . The starting point 

of the search is point №1. The area of permissible 

parameters is allocated by shaded curves of restrictions. 

For point №1 we carry out the identification by the 

experimental data, we determine the coefficient of the 

influence of SSS on the rate of corrosion   and with this 

coefficient we carry out the optimization. The 

mathematical minimum of the objective function is in the 

point A. 

Let us choose as a starting point the next point №2 and 

will carry out the operations described above. At the 

point №2 is changing the stiffness of the optimized 

design, the coefficient of the influence of SSS on the rate 

of corrosion, the restrictions are changing the 

configuration, the area of  permissible parameters  is 

deformed and the mathematical extremum moves from 

point A to point B. 

Then we choose as a starting the point №3 and we 

repeat the operations described above. The area of 

permissible parameters deformed again. Mathematical 

minimum of objective function moves in point C. Thus, 

there is a drift of the minimum value of the objective 

function. This drift will cease when the objective 

function will reach its optimum value. This value of 

objective function will correspond to lowest ("optimal") 

value of the coefficient of the influence of SSS on the 

rate of corrosion.  

At this the area of permissible solutions can greatly 

deform or even move in space.Let us illustrate this 

hypothesis by the example of optimal designing of a 

compressed axially smooth cylindrical shell (Fig. 2).            

 

Fig.2. Estimated shell scheme 

The cylindrical shell  with the  wall thickness    and 

the with the radius of the middle surface R   is 

compressed by a longitudinal force N  (Fig.7.2) and is 

subjected to corrosion on the inner wall surface.  
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According to model MMSS the corrosion damage 

depth is determined by the expression (2) [2].  
Taking the corrosion rate of unstressed metal 0 , 

transform the expression (3) [2] to form: 

                 
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function of the stress-strain state (SSS) of the shell in 

accordance with the MMSS model.  

We form the functional: 
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Where e
j   experimental depth of corrosion 

damage. 

Experimental data are presented in Table 1 in [2]. In 

this article also is listed the procedure for the 

identification of the mathematical model on experimental 

data. At the first stage of research we choose a point №1 

(Fig.3) in a space of permissible parameters with 

coordinates:  04,00  m; 20 R m and we carry out an 

identification of model for this point using the procedure, 

described above. As a result we obtain the coefficient of 

SSS influence on the rate of corrosion process  

corresponding to this point  448707,0 . 

Further, from the point with coordinates:  

04,00  m; 20 R m and with the coefficient  

448707,0  we perform the optimization of shell. For 

the considered shell as the objective function is taken the 

cross-sectional area of the cylindrical part: 

 RA 2 .                             (6) 

The  restrictions are adduced: 
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The restriction (7) is a limitation to the critical 

buckling load for the ideal circular cylinder shell; the 

restriction (8

load of axis of the shell; restriction (9

restriction on  strength and the restriction (10) limits the 

sizes and thickness of the shell wall. 

Using the notations:    
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and substituting them in equations (6)−(10), we obtain the 

following nonlinear programming  

problem: to find a non-negative values 1x  and 2x  minimizing 

the function: 

          

  21xAxF X                                    (12) 

at the performance of restrictions: 
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The results of multiple identification of the 

mathematical model (2) and optimization of the shell on 

each step of the search are shown in Table 2 in [2].  

Out of Table 2 we'll choose the results listed in lines 

№1, №5 and №15 and the selected data we'll place in 

Table 1. 

Тable 1 

The results of multiply identification and the optimal design of compressive cylindrical shell. 

model MMSS 

 

№  

 

Starting points 

 

Extreme designs 

параметры оболочки и коэффициент влияния НДС, глубина 

коррозионного поражения 

 

A (cm
2
) 

 
 (cm) 

 

R (cm) 

 

  
оptA  (cm

2
) 

 

 (cm) 

 

R (cm) 

 
 (cm) 

 
1 5026,56 4,000 200,00 0,448707000 117,93 3,753 5,001 1,7877 

2 2307,91 2,396 153,31 0,094581950 81,851 2,605 5,000 0,6399 

3 269,54 0,703 61,057 0,001291586 62,149 1,838 5,383 0,0124 

The aim of this study is a graphical representation of 

mathematical programming problem, of the deformation 

of permissible area, of the displacement of restrictions 

and drift of extreme solutions at changing the coefficients 

of the influence of SSS on the rate of corrosion. Fig.3 

shows the area of permissible solutions, formed by 

restrictions )1(2 №g  и )1(3 №g . The extreme value of 

the objective function 93,117A  cm
2
 belongs to point A 

of permissible area. At the changing of the starting point 

№1 on starting point №2 by restrictions )2(2 №g  и 

)2(3 №g , a new permissible area with new coefficient 

  is formed, the value of objective function value gets 

equal  851,81A cm
2
 and the extremum moves in point 

B.  

At the next changing of starting point the extremum of 

the objective function is moved to the point C with even 

less of its value. 

In fact, at every step when changing the starting points 

the new task is solving: at the beginning is performed the 

identification of mathematical model on experimental 

data, is determined the coefficient   and then is solved 

the problem of optimal designing with this coefficient. 

This process of local solutions will continue until such 

time as the "optimal" coefficient of the influence of SSS 

on the rate of corrosion not would be found. After this we 

can find the optimum solution of whole task.   

 

 
Fig.3. A graphical representation of the drift extreme solutions to the problem of optimal design of the compressed shell at multiple identification 

of mathematical model of corrosive damage. 
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The difference of the magnitude between of extreme 

local solution in the first state of the shell and in the 

optimum state may be several tens of percent. Arbitrary 

choice of starting point can lead to serious inaccuracies 

of the final solution of the problem and the considerable 

material losses. 

It was noted in earlier [1] that the direct application of 

the method of multiple identification is very 

cumbersome. This method should be applied for research 

purposes or in cases when other methods do not work. To 

achieve the desired result we can solve the problem 

without the use of method of multiple identification. This 

can be done using, for example, the numerical empirical 

method "zero point", described in [3] or using analytical 

methods of the polynomial approximation [5,6].  

 

 

These methods are enable without significant time 

determine the value of the "optimal" coefficient of the 

influence of SSS on the rate of corrosion, which we can 

use to determine the optimum value of the objective 

function optimized object from any point of the area of 

permissible  parameters. 

7.2. The economical effectiveness of ETCD theory 

Let us estimate the cost-effectiveness of the 

application of evolutionary theory identification of 

mathematical models of corrosive destruction under 

stress. We'll do this on number of examples. 

Example 1. Assume that You, dear reader, are the 

businessman and You are producing the containers for 

pressurized the storage of aggressive substances (Fig.4). 

Such containers you can make in your company, for 

example, 500m per year or more.  The length of shell 

is equal 3L m. 

 

Fig.4 The thin-walled shell 

Manufacturing such tanks requires the use of special 

steel. Let the cost of one ton of such steel is equal to 

$1000S US. To save money at the production of these 

containers, You are going to use the modern technology, 

including the optimal designing of structures. Before You 

get down to business, You have acquainted with the  

methodology of the designing and You know that at the 

optimal designing  of structures interacting with 

aggressive media, use mathematical models of corrosive 

destruction. Such models before to optimize the 

containers must be identified from experimental data to 

make sure that your selected model has been adequate to 

corrosive process. In order to perform the identification 

of the model, you must have an object.  

 

Is best to have the optimal object, but You don’t have 

it yet. Therefore, You are choosing the object randomly 

from all possible. In applied mathematics such an object 

can be represented as a point in space of permissible 

parameters. By the permissible parameters of your object 

may be the thickness of the wall of the container    and 

the radius of the middle surface of the container wall R  . 

So you have chosen a point (object) and You have 

performed the identification of mathematical model. Let 

us  denote the chosen parameters of container as 

controlled coordinates of object of optimization. By 

identification you have found all coefficients of the 

model and the results you have recorded in Table 2. We 

use the already available results of such identification, set 

out in Table 2 of [1]. 

Тable 2 

The results of multiple identification at the optimal designing of the thin-wall shell by the using of MMSS model 

 № Starting point 

 

Extreme value 

параметры оболочки, коэффициент влияния НДС, глубина 

поражения 

 

A (cm
2
) 

 

 (cm) 

 

R (cm) 

 

  
оptA  (cm

2
) 

 

R (cm) 

 

 (cm) 

1,530 

1,476 

1,497 

1,409 

1,460 

1,447 

1,451 

1,445 

 (cm) 

 1 2310,60 3,645 100,89 0,2197 960,12 100 1,529 0,4464 

2 720,760 1,147 100,01 0,0218062 720,75 100 1,147 0,0645 
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Where: A  − the cross-sectional area of the shell;   − 

coefficient of the influence of SSS on the rate of corrosion and 

  − the depth of corrosive damage. 

With coefficient   that had been found in the process of 

identification of the mathematical model you perform the 

optimization of container with the involvement of non-linear 

programming methods, such as random search method and the 

results of calculations You  enter in the Table 2. 

You are analyzing the results and You see that the cross-

sectional area decreases to  12,960оpt A cm
2
, the wall 

thickness is reduced to 529,1 cm,  practically 

has not decreased the radius of the container 

100R cm, but it is because you yourself have 

established  the restriction on the size of radius of 

container  −  container radius must not be less than 

one meter. So everything like is OK and you are 

convinced that you have successfully completed the 

optimization and you may begin to manufacture the 

containers.  

Let us calculate how much will cost the metal 

needed to manufacture the container: 

8,3840845297,110014,32300529,110028,622 22
1  RLRV  cm

3. 

At the beginning, we calculate the volume of the 

container: 8,3840841 V cm
3
. Metal weight: 

015,31085,78,384084 6
11  VG ton. Metal cost 

is:  $3015015,3100011  GSC US. A bit costly, 

but in the end, You can save money on something else. 

And then suddenly you remember that as an object in 

the identification of the mathematical model you have is 

not the best object, but the arbitrary object. But how to 

find the best entity?  Guess is impossible, especially 

when there are a large number of control variables.  

 

Besides, it is possible to select a point in an 

unacceptable range of parameters, and this causes 

distortion constraints, such as the condition of the tank 

strength. How to be? 

Let's try to take advantage by the evolutionary theory 

of identification of mathematical models of corrosion 

damage (ETCD). This theory allows using the method of 

"zero point" in order to quickly determine the "optimum" 

coefficient of the influence of SSS on the rate of 

corrosion and use it to find the optimum design. Such a 

solution for our facility has already been found (Table 3 

[1]). Add this solution in Table 2 and count the cost of 

the optimal design. The volume of the metal of container:  

4,288126147,110014,32300147,110028,622 22
2  RLRV  cm

3
. 

Metal weight:  

262,21085,74,288126 6
22  VG  ton. 

Metal cost is: 

$2262262,2100022  GSC US. 

Let us write down the data in Table 7.3 and determine 

the economic efficiency of ETCD theory in  money and 

in percentages. 

The metal price difference in both projects were as 

follows: $7532262301521  CCC .  

As a percentage it is: 

%25%100
3015

753
%100

1





C

C
B . Annual efficiency 

of the use of the ETCD theory it would be 

$376500753500  CmB . I think it's not 

bad. 

Example 2. Consider the cost-effectiveness of ETCD 

theory at optimal designing of welded I-beam, that is 

subjected to influence of aggressive environment (Fig. 5). 

 
Fig. 5. The welded I-beam 

The side surfaces of the beam are painted and not 

exposed to corrosion. The beam flanges are subjected  

action of corrosion from outside. 

Initial data, setting the problem of identification of the 

mathematical model of corrosive destruction and the 

problem of optimal designing of the I-beam are given in 

[3]. 



 
International Journal of Emerging Technology and Advanced Engineering 

Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 6, Issue 10, October 2016) 

217 

 

Suppose that some businessman is going to produce 

these I-beams by length of  6l m each in the amount 

of 500m  pieces during the year. Let the cost of the 

metal for steel beams is $400S US for one ton. Let us 

study the dynamics of the economic efficiency of ETCD 

theory.  

To do this, we select the starting points  in such a way 

in order each next point was be closer to the optimum 

point. Initial data about these points are given in Table 

7.3. The corresponding extreme parameters of I-beams 

are given in Table 7.4. The numerical data for these 

Tables are taken from the Tables 2 and 3 in [3]. 

Тable 3 

The results of multiple identification and optimization of I-beam 

№ 

Starting points,  

parameters of beam and the coefficients of SSS influence  

A (cm
2
) 

410,0 

405,97 

303,41 

376,41 

358,15 

340,21 

324,23 

307,41 

291,13 

276,19 

260,94 

245,67 

230,93 

216,63 

203,35 

zJ (cm
4
) W (cm

3
) 

2,000 

1,996 

1,987 

1,981 

1,964 

1,936 

1,931 

1,879 

1,831 

1,808 

1,768 

1,728 

1,680 

1,635 

1,582 

d (cm) h (cm) a (cm) b  (cm)   

 (cм) 
1 410,00 567160,8 12465,37 2,000 85,000 3,000 40,000 0,1782815 

5 376,04 474755,7 10875,70 1,981 80,565 2,811 38,504 0,1315626 

10 291,13 285407,5 7281,81 1,831 72,700 2,470 31,996 0,0598440 

15 216,63 164002,3 4693,06 1,635 65,617 2,137 25,576 0,0251562 

20 162,18 181153,0 4401,99 0,910 77,227 2,539 18,097 0,0278127 

25 148,69 197794,4 4491,61 0,731 83,099 2,384 18,440 0,0312500 

30 141,90 196876,1 4343,37 0,681 84,988 2,829 14,843 0,0306252 

Таble 4 

The optimal parameters of I-beam 

№ 

Optimal parameters of I-beam, 

the coefficients of SSS influence and the depths of corrosive destruction  

  

 (cм) 

minA (cm
2
) 

410,0 
405,97 
303,41 
376,41 
358,15 
340,21 
324,23 
307,41 
291,13 
276,19 
260,94 
245,67 
230,93 
216,63 
203,35 

d (cm) h (cm) a (cm) b  (cm)  (cm) 

1 0,1782815 141,89 0,6812 84,988 2,829 14,843 0,4787 

5 0,1315626 138,58 0,6811 84,996 2,721 14,825 0,3679 

10 0,0598440 133,39 0,6827 84,916 2,398 15,728 0,1789 

15 0,0251562 129,95 0,6807 84,996 2,488 14,486 0,0788 

20 0,0278127 130,18 0,6808 84,995 2,494 14,499 0,0865 

25 0,0312500 130,47 0,6807 84,999 2,508 14,476 0,0968 

30 0,0306252 130,42 0,6808 84,994 2,503 14,496 0,0950 

Table 5 

The results of additional identifications and the optimal parameters of I-beam after the improving of the coefficients of SSS influence 

A  (cm
2
) d  

(cm) 

h  

(cm) 

a  

(cm) 

b  

(cm) 

  

129,8 0,680 84,99 2,480 14,52 0,024312 

In Table 5 are given the values of "optimal" соеfficient 

оf the influence of SSS on the rate of corrosion 

024312,0 , of the objective function and the of 

corresponding optimal parameters of the cross-section of 

the I-beam. 
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Table 6 

The data of economical effectiveness of the application the ETCD theory 

№ The cost of one I-beam  

 $US 

Economical effectiveness in  

$ US 

Economical 

effectiveness in % 

Annual  

effectiveness 

$US 
1 267,32 0 0  

5 261,08 6,24 2,33 6240 

10 251,31 16,01 6 16010 

15 244,83 22,49 8,41 22490 

20 245,26 22,06 8,25 22060 

25 245,81 21,51 8,05 21510 

30 245,71 21,61 8,09 21610 

Opt 244,54 22,78 8,52 22780 

Fig. 6 shows a plot of the relative efficacy of the 

theory ETCD from the proximity degree  of initial project 

to the optimum project in $ US and in%.  

Formally, the degree of such proximity is determined 

by the coefficient of the influence of SSS on the rate of 

corrosion  . The smaller this coefficient, the initial 

project closer to the optimum.   

 
Fig.6. A plot of the relative effectiveness of the application of  ETCD theory on the value of the coefficient of the influence of SSS on the rate of 

corrosion in $US and in  %  for one I-beam 

How this graph can be interpret ? If You unsuccessful 

have selected the initial I-beam project that subjected to 

optimization (the point in the area of permissible 

parameters) with oversized values of flanges and wall 

(coordinates), and therefore with a high coefficient of the 

influence of SSS on the rate of corrosion, then you will 

be able to correct his mistake, using the theory ETCD 

and avoid unnecessary pecuniary losses. The figures on 

the graph indicate as far as the pecuniary loss for one I-

beam in the $US and % for the selected by you project 

will be after optimization expensive than for the optimal 

I-beam.  

 

 

As noted above, the optimal design can be found using 

the method of "zero point" in the process of additional 

identifications of mathematical models of corrosion 

damage. The graph in Fig. 6 shows, that the optimal 

project as a starting point is the most effective: reducing 

the cost of the I-beam will 22.78$US or 8.52%. 
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