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Abstract

This paper is concerned with the construction and analysis of a universal estimator for the regression
problem in supervised learning. Universal means that the estimator does not depend on any a priori
assumptions about the regression function to be estimated.The universal estimator studied in this
paper consists of a least-square fitting procedure using piecewise constant functions on a partition
which depends adaptively on the data. The partition is generated by a splitting procedure which
differs from those used in CART algorithms. It is proven thatthis estimator performs at the optimal
convergence rate for a wide class of priors on the regressionfunction. Namely, as will be made
precise in the text, if the regression function is in any one of a certain class of approximation spaces
(or smoothness spaces of order not exceeding one – a limitation resulting because the estimator uses
piecewise constants) measured relative to the marginal measure, then the estimator converges to the
regression function (in the least squares sense) with an optimal rate of convergence in terms of the
number of samples. The estimator is also numerically feasible and can be implemented on-line.
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1. Introduction

This paper addresses the problem of using empirical samples to derive probabilistic or expectation
error estimates for the regression function of some unknown probability measureρ on a product
spaceZ := X×Y. It will be assumed here thatX is a bounded domain of IRd andY = IR. Given the
dataz = {z1, . . . ,zm}⊂Z of m independent random observationszi = (xi ,yi), i = 1, . . . ,m, identically
distributed according toρ, we are interested in estimating theregression function fρ(x) defined as
the conditional expectation of the random variabley atx:

fρ(x) :=
Z

Y

ydρ(y|x)

with ρ(y|x) the conditional probability measure onY with respect tox. In this paper, it is assumed
that this probability measure is supported on an interval[−M,M] :

|y| ≤ M,

almost surely. It follows in particular that| fρ| ≤ M almost everywhere with respect toρX.
We denote byρX the marginal probability measure onX defined by

ρX(S) := ρ(S×Y).

We shall assume thatρX is a Borel measure onX. We have

dρ(x,y) = dρ(y|x)dρX(x).

It is easy to check thatfρ is the minimizer of the risk functional

E( f ) :=
Z

Z

(y− f (x))2dρ, (1)

over f ∈ L2(X,ρX) where this space consists of all functions fromX toY which are square integrable
with respect toρX. In fact one has

E( f ) = E( fρ)+‖ f − fρ‖2,

where
‖ · ‖ := ‖ · ‖L2(X,ρX). (2)

Our objective is therefore to find anestimator fz for fρ based onz such that the quantity‖ fz − fρ‖
is small.

A common approach to this problem is to choose an hypothesis (ormodel) classH and then to
define fz, in analogy to (1), as the minimizer of the empirical risk

fz = fz,H := argmin
f∈H

Ez( f ), with Ez( f ) :=
1
m

m

∑
i=1

(yi − f (xi))
2. (3)

Typically, H = Hm depends on a finite numberN = N(m) of parameters. In many cases, the number
N is chosen using an a priori assumption onfρ. In other procedures, the numberN is adapted to the
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data and thereby avoids any a priori assumptions. We shall be interested inestimators of the latter
type.

The usual way of evaluating the performance of the estimatorfz is by studying its convergence
either in probability or in expectation, i.e. the rate of decay of the quantities

Prob{‖ fρ − fz‖ ≥ η}, η > 0 or E(‖ fρ − fz‖2) (4)

as the sample sizem increases. Here both the expectation and the probability are taken with respect
to the product measureρm defined onZm. An estimation of the above probability will automatically
give an estimate in expectation by integrating with respect toη. Estimates for the decay of the
quantities in (4) are usually obtained under certain assumptions (calledpriors) on fρ.

It is important to note that the measureρX which appears in the norm (2) is unknown and that
we want to avoid any assumption on this measure. This type of regression problem is referred to as
distribution-free. A recent survey on distribution free regression theory is provided in the book by
Györfy et al. (2002), which includes most existing approaches as well as the analysis of their rate
of convergence in the expectation sense.

Priors on fρ are typically expressed by a condition of the typefρ ∈ Θ whereΘ is a class of
functions that necessarily must be contained inL2(X,ρX). If we wish the error, as measured in
(4), to tend to zero as the numberm of samples tends to infinity then we necessarily need thatΘ
is a compact subset ofL2(X,ρX). There are three common ways to measure the compactness of
a setΘ: (i) minimal coverings, (ii) smoothness conditions on the elements ofΘ, (iii) the rate of
approximation of the elements ofΘ by a specific approximation process. In the learning problem,
each of these approaches has to deal with the fact thatρX is unknown.

To describe approach (i), for a given Banach spaceB which containsΘ, we define the entropy
numberεn(Θ,B), n = 1,2. . . as the minimalε such thatΘ can be covered by at most 2n balls of
radiusε in B. The setΘ is compact inL2(X,ρX) if and only if εn(Θ,L2(X,ρX)) tends to zero as
n→ ∞. One can therefore quantify the level of compactness ofΘ by an assumption on the rate of
decay ofεn(Θ,L2(X,ρX)). A typical prior condition would be to assume that the entropy numbers
satisfy

εn(Θ,B) ≤Cn−r , n = 1,2, · · · (5)

for somer > 0.
Coverings and entropy numbers have a long history in statistics for deriving optimal bounds for

the rate of decay in statistical estimation (see e.g. Birgé and Massart, 2001). Several recent works
(Cucker and Smale, 2001; DeVore et al., 2004b; Konyagin and Temlyakov, 2004b) have used this
technique to bound the error for the regression problem in learning. It has been communicated to us
by Lucien Birǵe that one can derive from one of his forthcoming papers (Birgé, 2004) that for any
classΘ satisfying (5) withB = L2(X,ρX), there is an estimatorfz satisfying

E(‖ fρ − fz‖2) ≤Cm− 2r
2r+1 , m= 1,2, . . . (6)

wheneverfρ ∈ Θ. Lower bounds which match (6) have been given by DeVore et al. (2004b) using
a slightly different type of entropy.

The estimators constructed using this approach are made throughε nets and are more of theo-
retical interest (in giving the best possible bounds) but are not practical sinceρX is unknown and
therefore theseε nets are also unknown. Another deficiency in this approach is that the estimator
typically requires the knowledge of the prior classΘ. One would like to avoid knowledge ofΘ in
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the construction of an estimator since we do not knowfρ and hence would generally not have any
information aboutΘ. One can also useε nets to give bounds for Prob(‖ fρ − fz‖). This is one of the
main points in the paper by Cucker and Smale (2001) and is carried further inseveral other papers
(see DeVore et al., 2004b; Konyagin and Temlyakov, 2004a,b).

One way to circumvent the problem of not knowing the marginalρX is to use coverings in the
spaceC(X) of continuous functions equipped with the uniform norm‖·‖L∞ rather than inL2(X,ρX),
since a good covering forΘ in C(X) gives bounds for the covering inL2(X,ρX) independently of
ρX. In this approach one would assume thatΘ satisfies (5) forB = C(X) and then build estimators
which satisfy (6) usingε nets forC(X). Again this does not lead to practical estimators. But the
main deficiency of this approach is that the assumption thatΘ is a compact subset ofC(X) is too
severe and does not give a full spectrum of compact subsets ofL2(X,ρX).

Concerning (ii), it is well known that whenρX is the Lebesgue measure, the unit ball of the
Sobolev spaceWr(Lp) is a compact set ofL2 under the condition thatsd > 1

p − 1
2. We recall that

whenr is an integer,Wr(Lp) consists of allLp functions which distributional derivatives of order
|α| ≤ r are also inLp. It is a Banach space when equipped with the norm

‖ f‖Wr (Lp) := sup
|α|≤r

‖Dα f‖Lp.

Similar remarks hold for Sobolev spaces with non-integerr, as well as for the Besov spacesBr
q(Lp)

which offer a more refined description of the notion ofr-differentiability inLp. We refer to DeVore
(1998) for the precise definition of such spaces.

However, there is no general approach to defining smoothness spaceswith respect to general
Borel measuresρX which precludes the direct use of classification according to (ii). One wayto
circumvent this is to define smoothness inC(X), that is systematically use the spacesWr(L∞), but
then this suffers from the same deficiency of not giving a full array of compact subsets inL2(X,ρX).

The classification of compactness according to approximation properties (iii)begins with a spe-
cific method of approximation and then defines the classesΘ in terms of a rate of approximation by
the specified method. The simplest example is to take a sequence(Sn) of linear spaces of dimension
n and defineΘ as the class of all functionsf in L2(X,ρX) which satisfy

inf
g∈Sn

‖ f −g‖ ≤Cαn

whereC is a fixed constant and(αn) is a sequence of positive real numbers tending to zero. Natural
choices for this sequence areαn = n−r , wherer > 0. Classes defined in such a way will not give
a full spectrum of compact subsets inL2(X,ρX). But this deficiency can be removed by using
nonlinear spacesΣn in place of the linear spacesSn (see the discussion in DeVore et al., 2004b).
An illustrative example is approximation by piecewise polynomials on partitions. Ifthe partitions
are set in advance this corresponds to the linear space approximation above. In nonlinear methods
the partitions are allowed to vary but their size is specified. We discuss this in more detail later
in this paper. An in depth discussion of the approximation theory approach tobuilding estimators
for the regression problem in learning is given by DeVore et al. (2004b) and the follow up papers
(Konyagin and Temlyakov, 2004a,b).

We should mention that in classical settings, for example whenρX is Lebesgue measure then
the three approaches to measuring compactness are closely related and in acertain sense equivalent.
This is the main chapter of approximation theory.
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Concrete algorithms have been constructed for the regression problem inlearning by using
approximation from specific linear spaces such as piecewise polynomial onuniform partitions, con-
volution kernels, and spline functions. The rate of convergence of the estimators built from such a
linear approximation process is related to the approximation rate of the corresponding process on
the classΘ.

A very useful method for bounding the performance of such estimators is provided by the fol-
lowing result (see Gÿorfy et al., 2002, Theorem 11.3): ifH is taken as a linear space of dimension
N and if the least-square estimator (3) is post-processed by application of thetruncation operator
y 7→ TM(y) = sign(y)min{|y|,M}, then

E(‖ fρ − fz‖2) ≤C
N log(m)

m
+ inf

g∈H
‖ fρ −g‖2.

Using this, one can derive specific rates of convergence in expectationby balancing both terms.
For example, ifΘ is a ball of the Sobolev spaceWr(L∞) andH is taken as a space of piecewise
polynomial functions of degree no larger thanr −1 on uniform partitions ofX, one derives

E(‖ fρ − fz‖2) ≤C(
m

logm
)−

2r
d+2r . (7)

This estimate is optimal for this classΘ, up to the logarithmic factor.
The deficiency in this approach is twofold. First, it usually chooses the hypothesis classes in

advance and typically assumes knowledge of the prior for this choice. Secondly, it uses linear
methods of approximation and therefore misses our goal of giving an estimator which performs
optimally for the full range of smoothness spaces inL2(X,ρX).

The first deficiency motivates the notion ofadaptiveor universalestimators: the estimation
algorithm should be able to exhibit the optimal rate without the knowledge of the exact amount of
smoothnessr in the regression functionfρ. A classical way to reach this goal is to perform model
selection by adding a complexity regularization term in the empirical risk minimization process
(see Barron, 1991; Baraud, 2002; Birgé and Massart, 2001; DeVore et al., 2004b; Györfy et al.,
2002, Chapter 12). In particular, one can construct one estimator whichsimultaneously obtains the
optimal rate (7) for all finite balls in each of the classWr(L∞), 0 < r ≤ k wherek is arbitrary but
fixed, by the selection of an appropriate uniform partition.

Fixing the second deficiency means that in the case where the marginalρX is Lebesgue mea-
sure, the estimator would necessarily have to be optimal for all Sobolev and Besov classes which
compactly embed intoL2(X,ρX). These spaces correspond to smoothness spaces of orders in Lp

whenevers> d
p − d

2 (see DeVore, 1998). This can be achieved by introducing spatially adaptive
partitions. The selection of an appropriate adaptive partition in the complexity regularization frame-
work can be implemented by the CART algorithm (Breiman et al., 1984), which limits the search
within a set of admissible partitions based on a tree structured splitting rule.

A practical limitation of the above described complexity regularization approach is that it is not
generally compatible with the practical requirement ofon-line computations, by which we mean
that the estimator for the sample sizem can be derived by a simple update of the estimator for the
sample sizem−1, since the minimization problem needs to be globally re-solved when adding a
new sample.

In two slightly different contexts, namely density estimation and denoising on a fixed design,
estimation procedures based onwavelet thresholdinghave been proposed as a natural alternative to
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model selection by complexity regularization (Donoho and Johnstone, 1998, 1995; Donoho et al.,
1996a,b). These procedures are particularly attractive since they combine optimal convergence rates
for the largest possible array of unknown priors together with simple and fast algorithms which are
on-line implementable. In the learning theory context, the wavelet thresholdinghas also been used
by DeVore et al. (2004a) for estimation of a modification of the regression function fρ, namely,
for estimating(dρX/dx) fρ, whereρX is assumed to be absolutely continuous with regard to the
Lebesgue measure. The main difficulty in generalizing such procedures tothe distribution-free
regression context is due to the presence of the marginal probabilityρX in theL2(X,ρX) norm. This
typically leads to the need of using wavelet-type bases which are orthogonal(or biorthogonal) with
respect to this inner product. Such bases might be not easy to handle numerically and cannot be
constructed exactly sinceρX is unknown.

In this paper, we propose an approach which allows us to circumvent these difficulties, while
staying in spirit close to the ideas of wavelet thresholding. In our approach, the hypothesis classesH

are spaces of piecewise constant functions associated to adaptive partitions Λ. Our partitions have
the same tree structure as those used in the CART algorithm (Breiman et al., 1984), yet the selection
of the appropriate partition is operated quite differently since it is not basedon an optimization
problem which would have to be re-solved when a new sample is added: instead our algorithm
selects the partition through a thresholding procedure applied to empirical quantities computed at
each node of the tree which play a role similar to wavelet coefficients. While theconnection between
CART and thresholding in one or several orthonormal bases is well understood in the fixed design
denoising context (Donoho, 1997), this connection is not clear to us in our present context. As it
will be demonstrated, our estimation schemes enjoy the following properties:

(i) They rely on fast algorithms, which may be implemented by simple on-line updates when the
sample sizem is increased.

(ii) The error estimates do not require any regularity inC(X) but only in the natural space
L2(X,ρX).

(iii) The proven convergence rates are optimal in probability and expectation (up to logarithmic
factors) for the largest possible range of smoothness classes inL2(X,ρX).

(iv) The scheme is universal in that it does not involve any a-priori knowledge concerning the
regularity of fρ.

The present choice of piecewise constant functions limits the optimal convergence rate to classes
of low or no pointwise regularity. While the practical extension of our method tohigher order
piecewise polynomial approximations is almost straightforward, its analysis in this more general
context becomes significantly more difficult and will be given in a forthcomingpaper. This is
so far a weakness of our approach from the theoretical perspective, compared to the complexity
regularization approach for which optimal convergence results could beobtained in the piecewise
polynomial context (using for instance Györfy et al., 2002, Theorem 12.1).

Our paper is organized as follows. The learning algorithm as well as the convergence results
are described in Section 2. The next two Sections 3 and 4 are devoted to theproofs of the two main
results which deal respectively with the error estimates for non-adaptiveand adaptive partitions.
Finally, in Section 3 we give results about the consistency of our estimator.
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2. The Basic Strategy and the Main Results

In this section we start in §2.1 with some basic facts about adaptive approximation. Then in we
continue in §2.2 with some results about least-squares fitting on fixed partition.The universal
algorithm is described in §2.3 where the main results of this paper are formulated. In §2.4 we
discuss the on-line implementation of our algorithm.

2.1 Partitions and Adaptive Approximation

A typical way of generating partitionsΛ of X is through a refinement strategy. We first describe
the prototypical example of dyadic partitions. For this, we assume thatX = [0,1]d and denote by
D j = D j(X) the collection of dyadic subcubes ofX of sidelength 2− j andD := ∪∞

j=0D j . These
cubes are naturally aligned on a treeT = T (D). Each node of the treeT is a cubeI ∈ D. If I ∈ D j ,
then its children are the 2d dyadic cubes ofJ ⊂ D j+1 with J ⊂ I . We denote the set of children ofI
by C (I). We callI the parent of each such childJ and writeI = P (J). The cubes inD j(X) form a
uniform partition in which every cube has the same measure 2− jd.

More general adaptive partitions are defined as follow. ApropersubtreeT̃ of T is a collection
of nodes ofT with the properties: (i) the root nodeI = X is in T̃ , (ii) if I 6= X is in T̃ then its
parentP (I) is also inT̃ . Any finite proper subtreẽT is associated to a unique partitionΛ = Λ(T̃ )
which consists of itsouter leaves, by which we mean thoseJ ∈ T such thatJ /∈ T̃ butP (J) is in T̃ .
One way of generating adaptive partitions is through some refinement strategy. One begins at the
rootX and decides whether to refineX (i.e. subdivideX) based on some refinement criteria. IfX is
subdivided then one examines each child and decides whether or not to refine such a child based on
the refinement strategy.

The results given in this paper can be described for more general refinement. We shall work in
the following setting. We assume thata≥ 2 is a fixed integer. We assume that ifX is to be refined
then its children consist ofa subsets ofX which are a partition ofX. Similarly, for each such child
there is a rule which spells out how this child is refined. We assume that the childis also refined
into a sets which form a partition of the child. Such a refinement strategy also results in a treeT

(called themaster tree) and children, parents, proper trees and partitions are defined as above for
the special case of dyadic partitions. The refinement levelj of a node is the smallest number of
refinements (starting at root) to create this node. We denote byT j the proper subtree consisting of
all nodes with level< j and we denote byΛ j the partition associated toT j , which coincides with
D j(X) in the above described dyadic partition case. Note that in contrast to this case, thea children
may not be similar in which case the partitionsΛ j are not spatially uniform (we could also work
with even more generality and allow the number of children to depend on the cellto be refined,
while remaining globally bounded by some fixeda). It is important to note that the cardinalities of
a proper treẽT and of its associated partitionΛ(T̃ ) are equivalent. In fact one easily checks that

#(Λ(T̃ )) = (a−1)#(T̃ )+1,

by remarking that each time a new node gets refined in the process of building an adaptive partition,
#(T̃ ) is incremented by 1 and #(Λ) by a−1.

Given a partitionΛ, let us denote bySΛ the space of piecewise constant functions subordinate
to Λ. EachS∈ SΛ can be written

S= ∑
I∈Λ

aI χI ,
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where forG⊂ X we denote byχG the indicator function, i.e.χG(x) = 1 for x∈ G andχG(x) = 0
for x 6∈ G. We shall consider approximation of a given functionf ∈ L2(X,ρX) by the elements of
SΛ. The best approximation tof in this space is given by

PΛ f := ∑
I∈Λ

cI χI (1)

wherecI = cI ( f ) is given by

cI :=
αI

ρI
, with αI :=

Z

I

f dρX and ρI := ρX(I). (2)

In the case whereρI = 0, both fρ and its projection are undefined onI . For notational reasons, we
set in this casecI := 0.

We shall be interested in two types of approximation corresponding to uniform refinement and
adaptive refinement. We first discuss uniform refinement. Let

En( f ) := ‖ f −PΛn f‖, n = 0,1, . . .

which is the error for uniform refinement. The decay of this error to zerois connected with the
smoothness off as measured inL2(X,ρX). We shall denote byAs the approximation class consist-
ing of all functionsf ∈ L2(X,ρX) such that

En( f ) ≤ M0a−ns, n = 0,1, . . . . (3)

Notice that #(Λn) = an so that the decay in (3) is likeN−s with N the number of elements in the
partition. The smallestM0 for which (3) holds serves to define the semi-norm| f |As on As. The
spaceAs can be viewed as a smoothness space of orders > 0 with smoothness measured with
respect toρX.

For example, ifρX is the Lebesgue measure and we use dyadic partitioning thenAs/d = Bs
∞(L2),

0 < s≤ 1, with equivalent norms. HereBs
∞(L2) is the Besov space which can be described in terms

of differences as

|| f (·+h)− f (·)‖L2 ≤ M0|h|s, x,h∈ X.

Instead of working with a-priori fixed partitions there is a second kind of approximation where
the partition is generated adaptively and will vary withf . Adaptive partitions are typically generated
by using some refinement criterion that determines whether or not to subdivide a given cell. We shall
use a refinement criteria that is motivated by adaptive wavelet constructions such as those given by
Cohen et al. (2001) for image compression. The criteria we shall use to decide when to refine is
analogous to thresholding wavelet coefficients. Indeed, it would be exactly this criteria if we were
to construct a wavelet (Haar like) bases forL2(X,ρX).

For each cellI in the master treeT and anyf ∈ L2(X,ρX) we define

εI ( f )2 := ∑
J∈C (I)

(

R

J
f dρX

)2

ρJ
−

(

R

I
f dρX

)2

ρI
, (4)
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which describes the amount ofL2(X,ρX) energy which is increased in the projection offρ ontoSΛ
when the elementI is refined. It also accounts for the decreased projection error whenI is refined.
In fact, one easily verifies that

εI ( f )2 = ‖ f −cI‖2
L2(I ,ρX)− ∑

J∈C (I)

‖ f −cJ‖2
L2(J,ρX).

If we were in a classical situation of Lebesgue measure and dyadic refinement, thenεI ( f )2 would
be exactly the sum of squares of the Haar coefficients off corresponding toI .

We can useεI ( f ) to generate an adaptive partition. Given anyη > 0, we letT ( f ,η) be the
smallest proper tree that contains allI ∈ T for which εI ( f ) ≥ η. This tree can also be described as
the set of allJ ∈ T such that there existsI ⊂ J such thatεI ( f ) ≥ η. Note that sincef ∈ L2(X,ρX)
the set of nodes such thatεI ( f ) ≥ η is always finite and so isT ( f ,η). Corresponding to this tree
we have the partitionΛ( f ,η) consisting of the outer leaves ofT ( f ,η). We shall define some new
smoothness spacesBs which measure the regularity of a given functionf by the size of the tree
T ( f ,η).

Givens> 0, we letBs be the collection of allf ∈ L2(X,ρX) such that the following is finite

| f |pBs := sup
η>0

ηp#(T ( f ,η)), wherep := (s+1/2)−1 (5)

We obtain the norm forBs by adding‖ f‖ to | f |Bs. One can show that

‖ f −PΛ( f ,η)‖ ≤Cs| f |
1

2s+1
Bs η

2s
2s+1 ≤Cs| f |BsN−s, N := #(T ( f ,η)), (6)

where the constantCs depends only ons. For the proof of this fact we refer the reader to the paper
by Cohen et al. (2001) where a similar result is proven for dyadic partitioning. It follows that every
function f ∈ Bs can be approximated to orderO(N−s) by PΛ f for some partitionΛ with #(Λ) = N.
This should be contrasted withAs which has the same approximation order for the uniform partition.
It is easy to see thatBs is larger thanAs. In classical settings, the classBs is well understood. For
example, in the case of Lebesgue measure and dyadic partitions we know that each Besov space
Bs

q(Lτ) with τ > (s/d + 1/2)−1 and 0< q ≤ ∞ arbitrary, is contained inBs/d (see Cohen et al.,

2001). This should be compared with theAs where we know thatAs/d = Bs
∞(L2) as we have noted

earlier.

The distinction between these two forms of approximation is that in the first, the partitions are
fixed in advance regardless off but in the second form the partition can adapt tof .

We have chosen here one particular refinement strategy (based on the size ofεI ( f )) in generating
our adaptive partitions. According to (6), it provides optimal convergence rates for the classBs.
There is actually a slightly better strategy described in the paper by Binev andDeVore (2004) which
is guaranteed to give near optimal adaptive partitions (independent of therefinement strategy and
hence not necessarily of the above form) for each individualf . We have chosen to stick with the
present refinement strategy since it extends easily to empirical data (see §2.2) and it is much easier
to analyze the convergence properties of this empirical scheme.
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2.2 Least-Squares Fitting on Partitions

We now return to the problem of estimatingfρ from the given data. We shall use the functions in
SΛ for this purpose. Let us first observe that

PΛ fρ = argmin
f∈SΛ

E( f ) = argmin
f∈SΛ

Z

Z

(y− f (x))2dρ.

Indeed, for allf ∈ L2(X,ρX) we have

E( f ) = E( fρ)+‖ f − fρ‖2

so that minimizingE( f ) overSΛ is the same as minimizing‖ fρ − f‖ over f ∈ SΛ. Note thatPΛ fρ
is obtained by solvingN independent problems minc∈R

R

I
( fρ −c)2dρX for each elementI ∈ Λ.

As in (3) we define the estimatorfz,Λ of fρ on SΛ as the empirical counterpart ofPΛ fρ obtained
as the solution of the least-squares problem

fz,Λ := argmin
f∈SΛ

Ez( f ) = argmin
f∈SΛ

1
m

m

∑
i=1

(yi − f (xi))
2.

We can view our data as a multivalued functiony with y(xi) = yi . Then in analogy toPΛ fρ, we can
view fz,Λ as an orthogonal projection ofy ontoSΛ with respect to the empirical norm

‖y‖2
L2(X,δX ) :=

1
m

m

∑
i=1

|y(xi)|2,

and we can compute it by solving #(Λ) independent problems

min
c∈R

1
m

m

∑
i=1

(yi −c)2χI (xi),

for each elementI ∈ Λ. The minimizercI (z) is now given by the empirical average

cI (z) =
αI (z)
ρI (z)

, where αI (z) :=
1
m

m

∑
i=1

yiχI (xi), ρI (z) :=
1
m

m

∑
i=1

χI (xi).xi ∈ I}. (7)

Thus, we can rewrite the estimator as

fz,Λ = ∑
I∈Λ

cI (z)χI . (8)

In the case whereI contains no samplexi (which may happen even ifρI > 0), we setcI (z) := 0.
A natural way of assessing the error‖ fρ − fz,Λ‖ is by splitting it into a bias and stochastic part :

since fρ −PΛ fρ is orthogonal toSΛ,

‖ fρ − fz,Λ‖2 = ‖ fρ −PΛ fρ‖2 +‖PΛ fρ − fz,Λ‖2 =: e1 +e2.

Concerning the variance terme2, we shall establish the following probability estimate.
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Theorem 1 For any partitionΛ and anyη > 0,

Prob
{

‖PΛ fρ − fz,Λ‖ > η
}

≤ 4Ne−cmη2

N , (9)

where N:= #(Λ) and c depends only on M.

As will be explained later in detail, the following estimate of the variance term in expectation is
obtained by integration of (9) overη > 0.

Corollary 1 If Λ is any partition, the mean square error is bounded by

E
(

‖PΛ fρ − fz,Λ‖2
)

≤C
N logN

m
, (10)

where N:= #(Λ) and the constant C depends only on M.

Let us consider now the case of uniform refinement. We can equilibrate thebias term with the
variance term described by Theorem 1 and Corollary 1 and obtain the following result.

Theorem 2 Assume that fρ ∈ As and define the estimator fz := fz,Λ j with j chosen as the smallest

integer such that aj(1+2s) ≥ m
logm. Then, given anyβ > 0, there is a constant̃c= c̃(M,β,a) such that

Prob

{

‖ fρ − fz‖ > (c̃+ | fρ|As)
( logm

m

)
s

2s+1

}

≤Cm−β, (11)

and

E
(

‖ fρ − fz‖2
)

≤ (C+ | fρ|2As)
( logm

m

)
2s

2s+1
. (12)

where C depends only on a and M.

Remark 1 It is also possible to prove Corollary 1 using the result by of Cucker and Smale (2001,
Theorem C*). The expectation estimate (12) in Theorem 2 can also be obtained as a consequence
of Theorem 11.3 by Györfy et al. (2002) quoted in our introduction. In order to prepare for the
subsequent developments direct proofs of these results are given laterin §3.

Theorem 2 is satisfactory in the sense that it is obtained under no assumptionon the measure
ρX and the assumptionfρ ∈ As is measuring smoothness (and hence compactness) inL2(X,ρX), i.e.
the compactness assumption is done inL2(ρX) rather than inL∞. Moreover, the rate( m

logm)−
s

2s+1 is
known to be optimal (or minimax) over the classAs save for the logarithmic factor. However, it
is unsatisfactory in the sense that the estimation procedure requires the a-priori knowledge of the
smoothness parameters which appears in the choice of the resolution levelj. Moreover, as noted
before, the smoothness assumptionfρ ∈ As is too severe.

In the context of density estimation or denoising, it is well known that adaptive methods based
on wavelet thresholding (Donoho and Johnstone, 1998, 1995; Donoho et al., 1996a,b) allow one to
treat both defects. Our next goal is to define similar strategies in our learning context, in which two
specific features have to be taken into account : the error is measured in the normL2(X,ρX) and the
marginal probability measureρX is unknown.
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2.3 A Universal Algorithm Based on Adaptive Partitions

The main feature of our algorithm is to adaptively choose a partitionΛ = Λ(z) depending on the data
z. It will not require a priori knowledge of the smoothness offρ but rather will learn the smoothness
from the data. Thus, it will automatically choose the right size for the partitionΛ.

Our starting point is the adaptive procedure introduced in §2.1 applied to thefunction fρ. We
use the notationεI := εI ( fρ) in this case. Then, by (4),

ε2
I := ∑

J∈C (I)

α2
J

ρJ
− α2

I

ρI
.

The selection of the partitionΛ in our learning scheme will be based on the empirical coefficients

ε2
I (z) := ∑

J∈C (I)

α2
J(z)

ρJ(z)
− α2

I (z)
ρI (z)

.

We define the threshold

τm := κ
√

logm
m

, (13)

where the constantκ is absolute and will be fixed later in the proof of Theorem 3 stated below. Let
γ > 0 be an arbitrary but fixed constant. We definej0 = j0(m,γ) as the largest integerj such that

a j ≤ τ−1/γ
m . We next consider the smallest proper treeT (z,m) which contains the set

Σ(z,m) := {I ∈ T j0 ; εI (z) ≥ τm}.

This tree can also be described as the set of allJ ∈ T j0 such that there existsI ⊂ J such thatI ∈
Σ(z,m). We then define the partitionΛ = Λ(z,m) associated to this tree and the corresponding
estimatorfz := fz,Λ. In summary, our algorithm consists in the following steps:

(i) Compute theεI (z) for the nodesI of generationj < j0.

(ii) Threshold these quantities at levelτm to obtain the setΣ(z,m).

(iii) CompleteΣ(z,m) to T (z,m) by adding the nodesJ which contain anI ∈ Σ(z,m).

(iv) Compute the estimatorfz by empirical risk minimization on the partitionΛ(z,m).

Further comments on the implementation will be given in the next section. The main result of this
paper is the following theorem.

Theorem 3 Let β,γ > 0 be arbitrary. Then, there existsκ0 = κ0(β,γ,M) such that ifκ ≥ κ0, then
whenever fρ ∈ Aγ ∩Bs for some s> 0, the following concentration estimate holds

Prob

{

‖ fρ − fz‖ ≥ c̃
( logm

m

)
s

2s+1

}

≤Cm−β, (14)

as well as the following expectation bound

E(‖ fρ − fz‖2) ≤C
( logm

m

)
2s

2s+1
, (15)

where the constants̃c and C are independent of m.
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Theorem 3 is more satisfactory than Theorem 2 in two respects: (i) the optimalrate( logm
m )

s
2s+1 is now

obtained under weaker smoothness assumptions on the regression function, namely,fρ ∈Bs in place
of fρ ∈ As, with the extra assumption offρ ∈ Aγ smoothness withγ > 0 arbitrarily small, (ii) the
algorithm is universal. Namely, the value ofsdoes not enter the definition of the algorithm. Indeed,
the algorithm automatically exploits this unknown smoothness through the samplesz. We note
however that the algorithm does require the knowledge of the parameterγ which can be arbitrarily
small. It is actually possible to build an algorithm without assuming knowledge of aγ > 0 by using
the adaptive tree algorithm by Binev and DeVore (2004). However, the implementation of such an
algorithm would involve complications we wish to avoid in this presentation.

2.4 Remarks on Algorithmic Aspects and On-Line Implementation

Our first remarks concern the construction of the adaptive partitionΛ(z,m) for a fixedm which

requires the computation of the numbersεI (z) for I ∈ Λ j when j satisfiesa j ≤ τ−1/γ
m . This would

require the computation ofO(mlnm) coefficients. One can actually save a substantial amount of
computation by remarking that by definition we always have

εI (z)2 ≤ EI (z)

with EI (z) := ‖y−cI (z)‖2
L2(I ,δX ) the least-square error onI . In contrast toεI (z), the quantityEI (z)

is monotone with respect to inclusion:

J ⊂ I ⇒ EJ(z) ≤ EI (z).

This allows one to organize the search for thoseI satisfyingεI (z)≥ τm from coarse to fine elements.
In particular, one no longer has to check those descendants of an element I for which EI (z) is less
thanτm.

Our next remarks concern the on-line implementation of the algorithm. Supposethat we have
computedρI (z), αI (z) and theεI (z) wherez containsm samples. If we now add a new sample
(xm+1,ym+1) to z to obtainz+, the newρI andαI are

ρI (z+) =
m

m+1
(ρI (z)+χI (xm+1))

and
αI (z+) =

m
m+1

(αI (z)+ym+1χI (xm+1)).

In particular, we see that at each levelj, only oneI is affected by the new sample. Therefore, if
we store the quantitiesρI (z) andαI (z) in the current partition, then this new step requires at most
j0 additional computations in the case wherej0 is not increased. In the case wherej0 is increased
to j0 + 1 (this may happen becauseτm is decreased), the computations of the quantitiesρI (z) and
αI (z) need to be performed, of course, for all the elements in the newly added level.

3. Proof of the Results on Non-Adaptive Partitions

We first give the proof of Theorem 1. LetΛ be any partition. By (1) and (8), we can write

‖PΛ fρ − fΛ,z‖2 = ∑
I∈Λ

|cI −cI (z)|2ρI .
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According to their definitions (2), (7), bothcI andcI (z) are bounded in modulus byM. Therefore,
givenη > 0, if we define

Λ− := {I ∈ Λ : ρI ≤
η2

8NM2},

we clearly have

∑
I∈Λ−

|cI −cI (z)|2ρI ≤
η2

2
.

We next consider the complement setΛ+ = Λ\Λ−. In order to prove (9), it now suffices to establish
that for allI ∈ Λ+

Prob

{

|cI (z)−cI |2 ≥
η2

2NρI

}

≤ 4e−cmη2

N . (1)

To see this, we writeρI (z) = (1+µI )ρI and remark that if|µI | ≤ 1/2 we have

|cI (z)−cI | =

∣

∣

∣

∣

αI (z)
ρI (z)

− αI

ρI

∣

∣

∣

∣

=
1

ρI (1+µI )
|αI (z)−αI −µI αI |

≤ 2ρ−1
I (|αI (z)−αI |+ |αI µI |).

It follows that|cI (z)−cI | ≤ η√
2NρI

provided that we have jointly

|αI (z)−αI | ≤
η√ρI

4
√

2N
,

and (sinceαI µI = αI (ρI (z)−ρI )/ρI )

|ρI (z)−ρI | ≤ min

{

1
2

ρI ,
ηρ3/2

I

4
√

2N|αI |

}

and therefore

Prob

{

|cI (z)−cI |2 ≥
η2

2NρI

}

≤ Prob

{

|αI (z)−αI | ≥
η√ρI

4
√

2N

}

+ Prob

{

|ρI (z)−ρI | ≥ min

{

1
2

ρI ,
ηρ3/2

I

4
√

2N|αI |

}}

.

In order to estimate these probabilities, we shall use Bernstein’s inequality which says that for
m independent realizationsζi of a random variableζ such that|ζ(z)−E(ζ)| ≤ M0 and Var(ζ) = σ2,
one has for anyε > 0

Prob

{∣

∣

∣

∣

∣

1
m

m

∑
i=1

ζ(zi)−E(ζ)

∣

∣

∣

∣

∣

≥ ε

}

≤ 2e
− mε2

2(σ2+M0ε/3) .

In our context, we apply this inequality toζ = yχI (x) for whichE(ζ) = αI , M0 ≤ 2M andσ2 ≤M2ρI ,
and toζ = χI (x) for whichE(ζ) = ρI , M0 ≤ 1, andσ2 ≤ ρI .
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We first obtain that

Prob

{

|αI (z)−αI | ≥
η√ρI

4
√

2N

}

≤ 2e
− mη2ρI

64N(M2ρI +2Mη
√

ρI /2N/12)

≤ 2e
− mη2ρI

64N(M2ρI +4M2ρI /12)

≤ 2e−cmη2

N ,

with c = [256
3 M2]−1, where we have used in the second inequality thatI ∈ Λ+ to bound the second

term in the denominator of the exponential by the first term in the denominator. We next obtain in

the case where12ρI ≤ ηρ3/2
I

4
√

2N|αI |

Prob

{

|ρI (z)−ρI | ≥
1
2

ρI

}

≤ 2e−
mρ2

I
8(ρI +ρI /6) = 2e−

3
28mρI ≤ 2e−cmη2

N

with c = [224
3 M2]−1 where we have used in the last line thatI ∈ Λ+. Finally, in the case where

1
2ρI ≥ ηρ3/2

I

4
√

2N|αI |
, we obtain

Prob

{

|ρI (z)−ρI | ≥
ηρ3/2

I

4
√

2N|αI |

}

≤ 2e
− mη2ρ3

I
64NρI |αI |2(7ρI /6) ≤ 2e−cmη2

N

with c = [448
6 M2]−1 since|αI | ≤ MρI . Therefore, we obtain (1) with the smallest of the three values

of c, namelyc = [256
3 M2]−1, which concludes the proof of Theorem 1.

Remark 2 The constant c in the estimate behaves like1/M2 and therefore degenerates to0 as
M →+∞. This is due to the fact that we are using Bernstein’s estimate as a concentration inequality
since we are lacking any other information on the conditional lawρ(y|x). For more specific models
where we have more information on the conditional lawρ(y|x), one can avoid the limitation|y| ≤M.
For instance, in the Gaussian regression problem yi = fρ(xi)+gi where gi are i.i.d. Gaussian (and
therefore unbounded) variablesN (0,σ2), the probabilistic estimate (9) can be obtained by a direct
use of the concentration property of the Gaussian.

The proof of Corollary 1 follows by integration of (9) overη:

E
(

‖PΛ fρ − fΛ,z‖2
L2(X,ρX)

)

=
+∞
R

0
ηProb

{

‖PΛ fρ − fΛ,z‖L2(ρX) > η
}

dη

≤
+∞
R

0
ηmin{1,4Ne−cmη2

N }dη

=
η0
R

0
ηdη+

+∞
R

η0

4Nηe−cmη2

N dη

=
η2

0
2 + 2N2

cm e−c
mη2

0
N ,

whereη0 is such that 4Ne−c
mη2

0
N = 1, or equivalentlyη2

0 = N log(4N)
cm . This proves the estimate (10).
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Finally, to prove the estimates in Theorem 2, we first note that, by assumption,N = #(Λ j) ≤

a j+1 ≤ a2
(

m
logm

)
1

2s+1
. Further, from the definition ofAs, we have

‖ fρ −PΛ j fρ‖ ≤ | fρ|Asa− js ≤ | fρ|As

(

logm
m

)
s

2s+1

.

Hence, using Theorem 1, we see that the probability on the left of (11) is bounded from above by

Prob

{

‖PΛ fρ − fΛ,z‖ > c̃

(

logm
m

)
s

2s+1

}

≤ 4a2me−
cc̃2 logm

a2

which does not exceedCm−β providedc̃2c > a2(1+β). The proof of (12) follows in a similar way
from Corollary 1.

4. Proof of Theorem 3

This section is devoted to a proof of Theorem 3. We begin with our notation. Recall that the tree
T ( fρ,η) is the smallest tree which contains allI for which εI = εI ( fρ) is larger thanη. Λ( fρ,η) is
the partition induced by the outer leaves ofT ( fρ,η). We useτm as defined in (13) andj0 = j0(m)

is the largest integer such thata j0 ≤ τ−1/γ
m . For any partitionΛ we write fz,Λ = ∑I∈Λ cI (z)χI .

If Λ0 andΛ1 are two adaptive partitions respectively associated to treesT0 andT1 we denote by
Λ0∨Λ1 andΛ0∧Λ1 the partitions associated to the treesT0∪T1 andT0∩T1, respectively. Given
anyη > 0, we define the partitionsΛ(η) := Λ( fρ,η)∧Λ j0 andΛ(η,z) associated with the smallest
trees containing thoseI such thatεI ≥ η andεI (z) ≥ η, respectively, and such that the refinement
level j of any I in either one of these two partitions satisfiesj ≤ j0. In these terms our estimatorfz

is given by
fz = fz,m = fz,Λ(τm,z).

With this notation in hand, we begin now with the proof of the Theorem. Using the triangle
inequality, we have

‖ fρ − fz,m‖ ≤ e1 +e2 +e3 +e4

with each term defined by

e1 := ‖ fρ −PΛ(τm,z)∨Λ(bτm) fρ‖,
e2 := ‖PΛ(τm,z)∨Λ(bτm) fρ −PΛ(τm,z)∧Λ(τm/b) fρ‖,
e3 := ‖PΛ(τm,z)∧Λ(τm/b) fρ − fz,Λ(τm,z)∧Λ(τm/b)‖,
e4 := ‖ fz,Λ(τm,z)∧Λ(τm/b)− fz,Λ(τm,z)‖,

with b := 2
√

a−1> 1. This type of splitting is classically used in the analysis of wavelet threshold-
ing procedures, in order to deal with the fact that the partition built from thoseI such thatεI (z)≥ τm

does not exactly coincides with the partition which would be chosen by an oracle based on thoseI
such thatεI ≥ τm. This is accounted by the termse2 ande4 which correspond to thoseI such that
εI (z) is significantly larger or smaller thanεI respectively, and which will be proved to be small
in probability. The remaining termse1 ande3 respectively correspond to the bias and variance of
oracle estimators based on partitions obtained by thresholding the unknown coefficientsεI .
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The first terme1 is therefore treated by a deterministic estimate. Namely, sinceΛ(τm,z)∨
Λ(bτm) is a finer partition thanΛ(bτm), we have with probability one

e1 ≤ ‖ fρ −PΛ(bτm) fρ‖ ≤ ‖ fρ −PΛ( fρ,bτm) fρ‖+‖PΛ( fρ,bτm) fρ −PΛ(bτm) fρ‖
≤ ‖ fρ −PΛ( fρ,bτm) fρ‖+‖ fρ −PΛ j0

fρ‖

≤ Cs(bτm)
2s

2s+1 | fρ|Bs +a−γ j0| fρ|Aγ

≤ Cs(bτm)
2s

2s+1 | fρ|Bs +aγτm| fρ|Aγ .

Therefore we conclude that

e1 ≤Cs((bκ)
2s

2s+1 +aγκ)max{| fρ|Aγ , | fρ|Bs}
( logm

m

)
s

2s+1
, (1)

wheneverf ∈ Bs∩Aγ.
The third terme3 is treated by the estimate (9) of Theorem 1:

Prob{e3 > η} ≤ 4Ne−cmη2

N , (2)

with
N = #(Λ(τm,z)∧Λ(τm/b)) ≤ #(Λ(τm/b)) ≤ #(Λ( fρ,τm/b)).

Hence we infer from (5) that

N ≤ bpτ−p
m | fρ|pBs = bpτ−

2
2s+1

m | fρ|pBs = bpκ− 2
2s+1 | fρ|pBs

( m
logm

)
1

2s+1
, (3)

where we have used that 1/p = 1/2+s.
Concerning the two remaining termse2 and e4, we shall prove that for a fixed but arbitrary

β > 0, we have
Prob{e2 > 0}+Prob{e4 > 0} ≤Cm−β, (4)

wheneverκ ≥ κ0 with κ0 depending onβ, γ, andM and withC depending only ona.
Before proving this result, let us show that the combination (1), (2), (3) and (4) imply the

validity of the estimates (14) and (15) in Theorem 3. We fix the value ofβ and we fix any constant
κ for which (4) holds. Letη1 := c̃( logm

m )
s

2s+1 with c̃ from (14) andη2 := c0(
logm

m )
s

2s+1 with c0 :=

Cs(κ
2s

2s+1 +aγκ)max{| fρ|Aγ , | fρ|Bs}. From (1) it follows that for ˜c> c0 we have Prob{‖ fρ− fz,m‖>

η1} ≤ Prob{e2 +e3 +e4 > η1−η2}. Hence, definingη = (c̃−c0)(
logm

m )
s

2s+1 , the probability on the
left side of (14) does not exceed

Prob{e2 > 0}+Prob{e3 > η}+Prob{e4 > 0} ≤ Prob{e3 > η}+Cm−β,

Moreover, on account of (2) and (3), we can estimate Prob{e3 > η} by

Prob{e3 > η} ≤ C
( m

logm

)
1

2s+1
e
−cmη2b−pκ− 2

2s+1 | fρ|−p
Bs

(

logm
m

)
1

2s+1

= C
( m

logm

)
1

2s+1
e
−cD2m

(

logm
m

)

= C
( m

logm

)
1

2s+1
m−cD2

≤ Cm1−cD2
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whereD2 := (c̃−c0)
2

κ
2

2s+1 bp| f |p
Bs

. The concentration estimate (14) follows now by taking ˜c large enough so

that 1−cD2 +β ≤ 0.
For the expectation estimate (15), we recall that according to Corollary 1, we have

E(e2
3) ≤C

N logN
m

≤C

(

m
logm

)
1

2s+1
logm

m
= C

( logm
m

)
2s

1+2s
.

We then remark that we always havee2
2 ≤ 4M2, and therefore

E(e2
2) ≤ 4M2Prob{e2 > 0} ≤Cm−β ≤C

( m
logm

)− 2s
2s+1

,

by choosingβ larger than 2s/(2s+1), for exampleβ = 1. The same holds fore4 and therefore we
obtain (15).

It remains to prove (4). The main tool here is a probabilistic estimate of how the empirical
coefficientεI (z) may differ fromεI with respect to the threshold. This is expressed by the following
lemma.

Lemma 4 For anyη > 0 and any element I∈ T , one has

Prob{εI (z) ≤ η and εI ≥ bη} ≤Ce−cmη2
(5)

and
Prob{εI ≤ η and εI (z) ≥ bη} ≤Ce−cmη2

(6)

where the constant c depends only on M and the constant C depends onlyon a.

Before proving Lemma 4, let us show how this result implies (4). We first consider the sec-
ond terme2. Clearlye2 = 0 if Λ(τm,z)∨Λ(bτm) = Λ(τm,z)∧Λ(τm/b) or equivalentlyT (τm,z)∪
T (bτm) = T (τm,z)∩T (τm/b). Now if the inclusionT (τm,z)∩T (τm/b) ⊂ T (τm,z)∪T (bτm) is
strict, then one either hasT (τm,z) 6⊂ T (τm/b) or T (bτm) 6⊂ T (τm,z). Thus, there either exists anI
such that bothεI (z) < τm andεI ≥ bτm or there exists anI such that bothεI (z) ≥ τm andεI < τm/b.
It follows that

Prob{e2 > 0} ≤ ∑
I∈T j0

Prob{εI (z) ≤ τm and εI ≥ bτm}

εI ≤ bτm}. + ∑
I∈T j0

Prob{εI (z) ≥ τm and εI ≤ τm/b}. (7)

Using (5) withη = τm yields

∑I∈T j0
Prob{εI (z) ≤ τm and εI ≥ bτm} ≤ #(T j0)e

−cmτ2
m

≤ #(Λ j0)e
−cmτ2

m

≤ a j0e−cκ2 logm

≤ τ−1/γ
m m−cκ2

≤Cm1/γ−cκ2
.
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We can treat the second sum in (7) the same way and obtain the same bound asthe one fore4 below.
By similar considerations, we obtain

Prob{e4 > 0} ≤ ∑
I∈T j0

Prob{εI (z) ≥ τm and εI ≤ τm/b},

and we use (6) withη = τm/b which yields Prob{e4 > 0} ≤Cm1/γ−cκ2/b2
. We therefore obtain (4)

by choosingκ ≥ κ0 with cκ2
0 = b2(β+1/γ).

We are left with the proof of Lemma 4. As a first step, we show that the proofcan be reduced to the
particular casea= 2. To this end, we remark that the splitting ofI into itsa children{J1, · · · ,Ja} can
be decomposed intoa−1 steps consisting of splitting an element into a pair of elements: defining
In := I \ (J1∪ ·· · ∪ Jn) we start fromI = I0 and refine iterativelyIn−1 into the two elementsIn and
Jn, for n = 1, · · · ,a−1. By orthogonality, we can write

ε2
I :=

a−2

∑
n=0

(εIn)
2,

whereε2
In is the amount ofL2(X,ρX) energy which is increased in the projection offρ whenIn+1 is

refined intoIn andJn. In a similar way, we can write for the observed quantities

ε2
I (z) :=

a−2

∑
n=0

εIn(z)
2,

Now if ε2
I ≤ η2 andεI (z)2 ≥ b2η2 = 4(a−1)η2, it follows that there existn∈ {0, · · · ,a−2} such

that(εIn)
2 ≤ η2 andεIn(z)

2 ≥ 4η2. Therefore,

Prob{εI ≤ η and εI (z) ≥ bη} ≤
a−2

∑
n=0

Prob{εIn ≤ η and εIn(z) ≥ 2η},

and similarly

Prob{εI (z) ≤ η and εI ≥ bη} ≤
a−2

∑
n=0

Prob{εIn(z) ≤ η and εIn ≥ 2η},

so that the estimates (5) and (6) fora > 2 follow from the same estimates established fora = 2 in
which caseb = 2.

In the casea= 2, we denote byI+ andI− the two children ofI . Note that ifρJ = 0 for J = I+ or
for J = I−, there is nothing to prove, since in this case we find thatεI = εI (z) = 0 with probability
one. We therefore assume thatρJ > 0 for J = I+ andI−. We first rewriteεI as follows

ε2
I =

α2
I+

ρI+
+

α2
I−

ρI−
− α2

I

ρI
= ρI+c2

I+ +ρI−c2
I− −ρI c

2
I

= ρI+c2
I+ +ρI−c2

I− −ρI ((ρI+cI+ +ρI−cI−)/ρI )
2

=
ρI+ρI−

ρI
(cI+ −cI−)2,
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and thereforeεI = |βI | with

βI :=
√

ρI+ρI−

ρI
(cI+ −cI−).

In a similar way we obtainεI (z) = |βI (z)| with

βI (z) :=

√

ρI+(z)ρI−(z)
ρI (z)

(cI+(z)−cI−(z)).

Introducing the quantitiesaI+ =
√

ρI−
ρI ρI+

andaI− =
√

ρI+

ρI ρI−
and their empirical counterpartaI+(z)

andaI−(z) we can rewriteβI andβI (z) as

βI = aI+αI+ −aI−αI−

and
βI (z) = aI+(z)αI+(z)−aI−(z)αI−(z).

It follows that

|εI − εI (z)| ≤ |aI+αI+ −aI+(z)αI+(z)|+ |aI−αI− −aI−(z)αI−(z)|.

We next introduce the numbersδJ defined by the relationρJ(z) = (1+δJ)ρJ, for J = I+, I− or I . It
is easily seen that if|δJ| ≤ δ ≤ 1/4 for J = I+, I− andI , one has

aI+(z) = (1+µ+
I )aI+

with |µ+
I | ≤ 3δ. This follows indeed from the basic inequalities

1−3δ ≤
√

(1−δ)

(1+δ)2 ≤
√

(1+δ)

(1−δ)2 ≤ 1+3δ

which hold for 0≤ δ ≤ 1/4. Therefore if|δJ| ≤ δ ≤ 1/4 for J = I+, I− andI , we have

|aI+αI+ −aI+(z)αI+(z)| ≤ aI+(z)|αI+ −αI+(z)|+ |αI+(aI+ −aI+(z))|
≤ 2aI+ |αI+ −αI+(z)|+3δaI+ |αI+ |.

By similar considerations, we obtain the estimate

|aI−αI− −aI−(z)αI−(z)| ≤ 2aI− |αI− −αI−(z)|+3δaI− |αI− |,

and therefore
|εI − εI (z)| ≤ ∑

K=I+,I−
2aK |αK −αK(z)|+3δaK|αK |. (8)

We first turn to (5), which corresponds to the case whereεI ≥ 2η andεI (z)≤ η. In this case, we
remark that we have

η2 ≤ ε2
I

4
=

ρI+ρI−

ρI

(cI+ −cI−)2

4
≤ M2ρL, (9)
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for L = I+, I− andI . Combining (8) and (9), we estimate the probability by

Prob{εI (z) ≤ η and εI ≥ 2η} ≤ ∑
K=I+,I−

(

pK + ∑
J=I−,I+,I

qK,J

)

, (10)

with

pK := Prob{|αK −αK(z)| ≥ [8aK ]−1η given ρK ≥ η2

M2 },

and

qK,J := Prob{|ρJ −ρJ(z)| ≥ ρJ min{1
4
,η[12aK |αK |]−1} given ρJ ≥

η2

M2}.

Using Bernstein’s inequality, we can estimatepK as follows

pK ≤ 2e
− mη2

2(64a2
KM2ρK+8aK ηM/3) ≤ 2e

− mη2

2(64a2
KM2ρK+8aK

√ρKM2/3) ≤ 2e−cmη2
,

with c= [(128+16/3)M2]−1, where we have usedη2 ≤ ρKM2 in the second inequality and the fact
thata2

KρK ≤ 1 in the third inequality.
In the case where 12aK |αK | ≤ 4η, we estimateqK,J by

qK,J ≤ 2e−
mρJ

2(16+4/3) ≤ 2e−cmη2
,

with c = [(32+8/3)M2]−1, where we have usedρJ ≥ η2/M2.
In the opposite case 12aK |αK | ≥ 4η, we estimateqK,J by

qK,J ≤ 2e
−m

(

ρJη
12aK |αK |

)2

2

(

ρJ+
ρJη

36aK |αK |

)

≤ 2e
− mρJη2

312a2
K |αK |2

where in the last inequality we used 3aK |αK | ≥ η to bound the second term in the denominator.
Since|αK | ≤ MρK , we havea2

Kα2
K ≤ M2(ρI−ρI+/ρI ) ≤ M2 min{ρI− ,ρI+} so thatρJ ≥ a2

Kα2
K/M2.

Therefore, we obtain
qK,J ≤ e−cmη2

with c = [312M2]−1.
Using these estimates forpK andqK,J back in (10), we obtain (5).
We next turn to (6), which corresponds to the opposite case whereεI ≤ η andεI (z) ≥ 2η. In

this case, we remark that we have

η2 ≤ ε2
I (z)
4

=
ρI+(z)ρI−(z)

ρI (z)
(cI+(z)−cI−(z))2

4
≤ M2ρL(z),

for L = I+, I− andI . In this case, we do not haveη2 ≤ M2ρL, but we shall use the fact thatη2 ≤
2M2ρL with high probability, by writing

Prob{εI ≤ η and εI (z) ≥ 2η} ≤ ∑
K=I+,I1

(

pK + p̃K + ∑
J=I−,I+,I

(qK,J + p̃J)
)

, (11)

where now

pK := Prob{|αK −αK(z)| ≥ [8aK ]−1η; given ρK ≥ η2

2M2},
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and

qK,J := Prob{|ρJ −ρJ(z)| ≥ ρJ min{1
4
,η[12aK |αK |]−1} given ρJ ≥

η2

2M2}

and the additional probability is given by

p̃J := Prob{η2 ≤ M2ρJ(z) given η2 ≥ 2M2ρJ}.

Clearly,pK andqK,J are estimated as in the proof of (5). The additional probability is estimated by

p̃J ≤ Prob{η2 ≥ M2ρJ and |ρJ −ρJ(z)| ≥ (η/M)2}

≤ 2e
− mη4

2(ρJM4+M2η/3)

≤ 2e
− mη4

2(η2M2+M2η2/3)

≤ 2e−cmη2
,

with c= (8M2/3)−1. Using these estimates in (11), we obtain (6), which concludes the proof ofthe
lemma. �

5. Universal Consistency of the Estimator

In this last section, we discuss the consistency of our estimator when no smoothness assumption is
made on the regression functionfρ ∈ L2(X,ρX). Of course it is still assumed that|y| ≤ M almost
surely, so that we also have| fρ| ≤ M. For an arbitrary suchfρ, we are interested in proving the
convergence property

lim
m→+∞

E(‖ fρ − fz,m‖2) = 0,

which in turn implies the convergence in probability: for allε > 0,

lim
m→+∞

Prob{‖ fρ − fz,m‖ > ε} = 0.

For this purpose, we use the same estimation of the error bye1 + e2 + e3 + e4 as in the proof of
Theorem 3.

We first remark that the proof of the estimate

E(e2
2)+E(e2

4) ≤Cm−β,

remains unchanged under no smoothness assumption made onfρ.
Concerning the approximation terme1, we have seen that

e1 ≤ ‖ fρ −PΛ( fρ,bτm) fρ‖+‖ fρ −PΛ j0
fρ‖.

Under no smoothness assumptions, the convergence to 0 of these two terms still occurs whenj0 →
+∞ andτm → 0, and therefore asm→ +∞. This requires however that the union of the spaces
(SΛ j ) j≥0 is dense inL2(X,ρX). This is ensured by imposing natural restrictions on the splitting
procedure generating the partitions which should be such that

lim
j→+∞

sup
I∈Λ j

|I | = 0,
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where |I | is the Lebesgue measure ofI . This is obviously true for dyadic partitions, and more
generally when the splitting rule is such that

∑
J∈C (I)

|J| ≤ ν|I |,

with ν < 1 independent ofI ∈ T . Under this restriction, classical results of measure theory state
thatPΛ j f converges tof in L2(X,ρX) as j → +∞ for all f ∈ L2(ρX).

We are therefore ensured that‖ fρ −PΛ j0
fρ‖ tends to 0 asm→ +∞. For the first term‖ fρ −

PΛ( fρ,bτm) fρ‖, we remark that the convergence ofPΛ j f to f also implies thatf can be written as the
sum of anL2(X,ρX)-orthogonal series

f = cXχX + ∑
I∈T

ψI , with ψI := ∑
J∈C (I)

cJχJ −cI χI ,

We remark that‖ψI‖ = εI ( f ). It follows that forη > 0

‖ f −PΛ( f ,η) f‖2 = ∑
I /∈T ( f ,η)

εI ( f )2 ≤ ∑
εI ( f )≤η

εI ( f )2.

Since by Parseval inequality,

∑
I∈T

εI ( f )2 = ‖ f‖2−‖cXχX‖2 < +∞, (1)

it follows that ‖ f −PΛ( f ,η) fρ‖ tends to 0 asη → 0. Therefore‖ fρ −PΛ( fρ,bτm) fρ‖ tends to 0 as
m→ +∞.

It remains to study the variance terme3 for which we have established

E(e2
3) ≤C

N logN
m

,

with
N = #(Λ(τm,z)∧Λ(τm/b)) ≤ #(Λ(τm/b)).

Note that since(εI )I∈T is a square summable sequence according to (1), we have

#{I ∈ T ; εI > η} ≤Cη−2ϕ(η),

whereϕ(η)→ 0 asη→ 0. Therefore if #(Λ(τm/b)) was simply controlled by #{I ∈ T ; εI > τm/b},
we would derive thatE(e2

3) would tend to 0 according to

E(e2
3) ≤C

τ−2
m ϕ(τm) log(τ−2

m ϕ(τm))

m
≤ C̃

τ−2
m ϕ(τm) logm

m
= C̃ϕ(τm).

However, #(Λ(τm/b) can be significantly larger due to the process of completing the set of thresh-
olded coefficients into a proper tree. Since this process adds at mostj0−1 nodesJ for eachI such
thatεI > τm/b, we have the estimate

#(Λ(τm/b)) ≤ j0#{I ∈ T ; εI > τm/b} ≤Cτ−2
m ϕ(τm) logm,

1319



BINEV, COHEN, DAHMEN , DEVORE AND TEMLYAKOV

whereC depends ona andγ. It follows that if the thresholdτm is modified into

τm :=
logm√

m
,

we find thatE(e2
3) goes to 0 according to

E(e2
3) ≤C

τ−2
m ϕ(τm) logmlog(τ−2

m ϕ(τm) logm)

m
≤ C̃

τ−2
m ϕ(τm) logm

m
= C̃ϕ(τm).

It is easily checked that this modification does not affect the other estimates for e1, e2 and e4.
However it induces an additional

√
logm factor in the rate of convergence which was obtained in

Theorem 3.
An alternate way of ensuring the convergence to zero ofE(e2

3) is by imposing thatγ > 1/2,
since we obviously have

#(Λ(τm/b)) ≤ #(Λ j0) = a j0 ≤Cτ−1/γ
m ,

so thatN logN/m tends to 0 if 1/γ > 2. However this is a stronger restriction since the optimal
convergence rate of the algorithm is maintained only for regression functions which are at least in
the uniform approximation spaceA1/2.
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