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Abstract

This paper is concerned with the construction and analysisiniversal estimator for the regression
problem in supervised learning. Universal means that ttimasor does not depend on any a priori
assumptions about the regression function to be estimatesluniversal estimator studied in this
paper consists of a least-square fitting procedure usiragwise constant functions on a partition
which depends adaptively on the data. The partition is gdedrby a splitting procedure which
differs from those used in CART algorithms. It is proven ttiég estimator performs at the optimal
convergence rate for a wide class of priors on the regredsiwtion. Namely, as will be made
precise in the text, if the regression function is in any of& certain class of approximation spaces
(or smoothness spaces of order not exceeding one — a liomtasulting because the estimator uses
piecewise constants) measured relative to the marginauneahen the estimator converges to the
regression function (in the least squares sense) with amalptate of convergence in terms of the
number of samples. The estimator is also numerically féasifd can be implemented on-line.

Keywords: distribution-free learning theory, nonparametric regi@s, universal algorithms,
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1. Introduction

This paper addresses the problem of using empirical samples to desbha&liistic or expectation
error estimates for the regression function of some unknown probabilitgunea on a product
spaceZ := X x Y. It will be assumed here thatis a bounded domain of RandY = R. Given the
dataz={z,...,zn} C Z of mindependent random observatians- (x;,y;), i =1,...,m, identically
distributed according tp, we are interested in estimating tregression function{x) defined as
the conditional expectation of the random variaph x:

f(x) == [ ydo(yx)
Y

with p(y|x) the conditional probability measure dhwith respect tox. In this paper, it is assumed
that this probability measure is supported on an intefrvd, M] :

ly| <M,

almost surely. It follows in particular thafy| < M almost everywhere with respectpq.
We denote byx the marginal probability measure dnhdefined by

px(S) = p(SxY).
We shall assume thailx is a Borel measure oXd. We have

dp(x,y) = dp(y|x)dpx (x).

It is easy to check théf, is the minimizer of the risk functional

£(f):= [(y—1(9)%dp, ®

Z

over f € Lo(X, px ) where this space consists of all functions frirto Y which are square integrable
with respect tgy. In fact one has

E(f) = E(fo) + |~ folI?,

where
- 1F= 1 o xpx)- )
Our objective is therefore to find astimator § for f, based orz such that the quantityf, — f,||
is small.
A common approach to this problem is to choose an hypothesimdde) class# and then to
definef,, in analogy to (1), as the minimizer of the empirical risk
l m

fo=1,4 = inE,(f), with E,(f):== (yi— f(x))% 3
v arf%gnf() with () mi;(y (%)) 3)

Typically, H = #, depends on a finite numblr= N(m) of parameters. In many cases, the number
N is chosen using an a priori assumptionfgnin other procedures, the numbéis adapted to the
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data and thereby avoids any a priori assumptions. We shall be interegstinmators of the latter
type.

The usual way of evaluating the performance of the estimigtsrby studying its convergence
either in probability or in expectation, i.e. the rate of decay of the quantities

Probf[|fo—f;|[>n}, n>0 or E(|[fo—f|? (4)

as the sample sizaincreases. Here both the expectation and the probability are taken widttesp
to the product measu@" defined orz™. An estimation of the above probability will automatically
give an estimate in expectation by integrating with respegj.tdstimates for the decay of the
quantities in (4) are usually obtained under certain assumptions (gaited) on f,.

It is important to note that the measyg which appears in the norm (2) is unknown and that
we want to avoid any assumption on this measure. This type of regressiolepris referred to as
distribution-free A recent survey on distribution free regression theory is provideddrbtok by
Gyorfy et al. (2002), which includes most existing approaches as welleaarthlysis of their rate
of convergence in the expectation sense.

Priors onf, are typically expressed by a condition of the typec © whereO® is a class of
functions that necessarily must be contained.ifX, px). If we wish the error, as measured in
(4), to tend to zero as the numbmrof samples tends to infinity then we necessarily need@at
is a compact subset ab(X,px). There are three common ways to measure the compactness of
a set®: (i) minimal coverings, (ii) smoothness conditions on the elemen®,d(ii) the rate of
approximation of the elements &f by a specific approximation process. In the learning problem,
each of these approaches has to deal with the facpthit unknown.

To describe approach (i), for a given Banach spAaghich containgd, we define the entropy
numberen(©,B), n=1,2... as the minimak such that® can be covered by at most Balls of
radiuse in B. The set® is compact inL2(X,px) if and only if €5(©,L2(X,px)) tends to zero as
n — oo, One can therefore quantify the level of compactned® bfy an assumption on the rate of
decay ofen(©,L2(X,px)). A typical prior condition would be to assume that the entropy numbers
satisfy

&n(@,B)<Cn", n=12--- (5)

for somer > 0.

Coverings and entropy numbers have a long history in statistics for dgiytimal bounds for
the rate of decay in statistical estimation (see e.g.8agd Massart, 2001). Several recent works
(Cucker and Smale, 2001; DeVore et al., 2004b; Konyagin and Temly2k®4b) have used this
technique to bound the error for the regression problem in learningslbben communicated to us
by Lucien Birge that one can derive from one of his forthcoming papers é3i2§04) that for any
classO satisfying (5) with®B = Ly(X, px ), there is an estimatd, satisfying

E(|fo—f,|2) <Cmrzit, m=12... (6)

wheneverf, € ©. Lower bounds which match (6) have been given by DeVore et al 4200sing
a slightly different type of entropy.

The estimators constructed using this approach are made theougfk and are more of theo-
retical interest (in giving the best possible bounds) but are not pahsiiccepy is unknown and
therefore these nets are also unknown. Another deficiency in this approach is that the &stima
typically requires the knowledge of the prior clad@s One would like to avoid knowledge @ in
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the construction of an estimator since we do not krfigvand hence would generally not have any
information abou®. One can also usenets to give bounds for Propf, — f,||). This is one of the
main points in the paper by Cucker and Smale (2001) and is carried furteevemal other papers
(see DeVore et al., 2004b; Konyagin and Temlyakov, 2004a,b).

One way to circumvent the problem of not knowing the margmals to use coverings in the
spaceC(X) of continuous functions equipped with the uniform ndfnfj., rather than iz (X, px),
since a good covering fd® in C(X) gives bounds for the covering (X, px) independently of
px. In this approach one would assume tBegatisfies (5) forB = C(X) and then build estimators
which satisfy (6) using nets forC(X). Again this does not lead to practical estimators. But the
main deficiency of this approach is that the assumption@hata compact subset @f(X) is too
severe and does not give a full spectrum of compact subsétgXfpx ).

Concerning (ii), it is well known that whepy is the Lebesgue measure, the unit ball of the
Sobolev spac®/(Lp) is a compact set df, under the condition thaj > % — % We recall that
whenr is an integerW' (L) consists of all, functions which distributional derivatives of order
la| <r are also irLp. It is a Banach space when equipped with the norm

[ llwr(Lp) == supl[D®flL,.
lal<r

Similar remarks hold for Sobolev spaces with non-integeais well as for the Besov spatﬁgs(Lp)
which offer a more refined description of the notiorr afifferentiability in L. We refer to DeVore
(1998) for the precise definition of such spaces.

However, there is no general approach to defining smoothness spitlceespect to general
Borel measurepx which precludes the direct use of classification according to (ii). Onetway
circumvent this is to define smoothnesd(X), that is systematically use the spa¥¢<L..), but
then this suffers from the same deficiency of not giving a full arrayoofigact subsets i (X, px ).

The classification of compactness according to approximation propertidse@ins with a spe-
cific method of approximation and then defines the claSsesterms of a rate of approximation by
the specified method. The simplest example is to take a seq(&r)a# linear spaces of dimension
n and define® as the class of all functionin L>(X, px) which satisfy

inf [|[f—g|| <Ca
in || —g| <Cap

whereC is a fixed constant an@y) is a sequence of positive real numbers tending to zero. Natural
choices for this sequence ang = n~", wherer > 0. Classes defined in such a way will not give
a full spectrum of compact subsetslin(X,px). But this deficiency can be removed by using
nonlinear spaceg,, in place of the linear space% (see the discussion in DeVore et al., 2004b).
An illustrative example is approximation by piecewise polynomials on partitionthelpartitions
are set in advance this corresponds to the linear space approximatian &baonlinear methods
the partitions are allowed to vary but their size is specified. We discuss thisra dedail later
in this paper. An in depth discussion of the approximation theory approduhilting estimators
for the regression problem in learning is given by DeVore et al. (2p@ad the follow up papers
(Konyagin and Temlyakov, 2004a,b).

We should mention that in classical settings, for example whers Lebesgue measure then
the three approaches to measuring compactness are closely related aadamasense equivalent.
This is the main chapter of approximation theory.
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Concrete algorithms have been constructed for the regression problerarining by using
approximation from specific linear spaces such as piecewise polynomialifmnm partitions, con-
volution kernels, and spline functions. The rate of convergence ofstiraaors built from such a
linear approximation process is related to the approximation rate of the ponagiag process on
the clas®.

A very useful method for bounding the performance of such estimatoreveded by the fol-
lowing result (see Girfy et al., 2002, Theorem 11.3): # is taken as a linear space of dimension
N and if the least-square estimator (3) is post-processed by application wiitloation operator

y = Tm(y) = sign(y) min{|y|,M}, then
Nlog(m) . 5
E(||f, — f,||?) <C——=—2 + inf ||f,— gl
(It = fIP) < C=== =+ inf || —g

Using this, one can derive specific rates of convergence in expectatibalancing both terms.
For example, if© is a ball of the Sobolev spad¥' (L.,) and # is taken as a space of piecewise
polynomial functions of degree no larger than 1 on uniform partitions oK, one derives

2r
E(|fp— fl) < Cliggr) = (7)
This estimate is optimal for this clags up to the logarithmic factor.

The deficiency in this approach is twofold. First, it usually chooses thethggis classes in
advance and typically assumes knowledge of the prior for this choiceon8brg it uses linear
methods of approximation and therefore misses our goal of giving an estimhich performs
optimally for the full range of smoothness spaceki(X, px).

The first deficiency motivates the notion aflaptiveor universalestimators: the estimation
algorithm should be able to exhibit the optimal rate without the knowledge ofxhet @mount of
smoothness in the regression functiof,. A classical way to reach this goal is to perform model
selection by adding a complexity regularization term in the empirical risk minimizatiooegs
(see Barron, 1991; Baraud, 2002; Birgnd Massart, 2001; DeVore et al., 2004b8y et al.,
2002, Chapter 12). In particular, one can construct one estimator winezlitaneously obtains the
optimal rate (7) for all finite balls in each of the clad$(L.), 0 < r < k wherek is arbitrary but
fixed, by the selection of an appropriate uniform partition.

Fixing the second deficiency means that in the case where the mapgimalLebesgue mea-
sure, the estimator would necessarily have to be optimal for all Sobolev esavElasses which
compactly embed intb, (X, px). These spaces correspond to smoothness spaces ofandeg
whenevers > %— % (see DeVore, 1998). This can be achieved by introducing spatiallytiedap
partitions. The selection of an appropriate adaptive partition in the complegtfarization frame-
work can be implemented by the CART algorithm (Breiman et al., 1984), which liretsearch
within a set of admissible partitions based on a tree structured splitting rule.

A practical limitation of the above described complexity regularization apprizathat it is not
generally compatible with the practical requiremenbafline computations, by which we mean
that the estimator for the sample simecan be derived by a simple update of the estimator for the
sample sizen— 1, since the minimization problem needs to be globally re-solved when adding a
new sample.

In two slightly different contexts, namely density estimation and denoising ored fesign,
estimation procedures basedwavelet thresholdingave been proposed as a natural alternative to
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model selection by complexity regularization (Donoho and Johnstone, 1998; Donoho et al.,
1996a,b). These procedures are particularly attractive since theyreoyiimal convergence rates
for the largest possible array of unknown priors together with simple astchfgorithms which are
on-line implementable. In the learning theory context, the wavelet threshdidimglso been used
by DeVore et al. (2004a) for estimation of a modification of the regressioation f,, namely,
for estimating(dpx/dx) fo, wherepy is assumed to be absolutely continuous with regard to the
Lebesgue measure. The main difficulty in generalizing such procedutthe tistribution-free
regression context is due to the presence of the marginal probailitythe L, (X, px) norm. This
typically leads to the need of using wavelet-type bases which are ortha@oréibrthogonal) with
respect to this inner product. Such bases might be not easy to handleicallpend cannot be
constructed exactly singe is unknown.

In this paper, we propose an approach which allows us to circumverd thitfisulties, while
staying in spirit close to the ideas of wavelet thresholding. In our approlae hypothesis classgs
are spaces of piecewise constant functions associated to adaptitienmf\. Our partitions have
the same tree structure as those used in the CART algorithm (Breiman et 4)., ¥&8he selection
of the appropriate partition is operated quite differently since it is not basean optimization
problem which would have to be re-solved when a new sample is addedadnste algorithm
selects the partition through a thresholding procedure applied to empiriaatitigs computed at
each node of the tree which play a role similar to wavelet coefficients. Whilmotigection between
CART and thresholding in one or several orthonormal bases is wellstowdel in the fixed design
denoising context (Donoho, 1997), this connection is not clear to usripresent context. As it
will be demonstrated, our estimation schemes enjoy the following properties:

(i) They rely on fast algorithms, which may be implemented by simple on-line upadten the
sample sizenis increased.

(i) The error estimates do not require any regularitydfX) but only in the natural space
L2(X,px)-

(i) The proven convergence rates are optimal in probability and expectatjpto logarithmic
factors) for the largest possible range of smoothness claste&X{npx ).

(iv) The scheme is universal in that it does not involve any a-prioawkedge concerning the
regularity of f,.

The present choice of piecewise constant functions limits the optimal geves rate to classes
of low or no pointwise regularity. While the practical extension of our methotigber order
piecewise polynomial approximations is almost straightforward, its analysissmtbre general
context becomes significantly more difficult and will be given in a forthconpager. This is
so far a weakness of our approach from the theoretical perspectiagpared to the complexity
regularization approach for which optimal convergence results coutibtzened in the piecewise
polynomial context (using for instance Gyy et al., 2002, Theorem 12.1).

Our paper is organized as follows. The learning algorithm as well as theergence results
are described in Section 2. The next two Sections 3 and 4 are devotedotmttie of the two main
results which deal respectively with the error estimates for non-adagtisieadaptive partitions.
Finally, in Section 3 we give results about the consistency of our estimator.
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2. TheBasic Strategy and the Main Results

In this section we start in §2.1 with some basic facts about adaptive apptoimdhen in we
continue in 82.2 with some results about least-squares fitting on fixed partifibe. universal
algorithm is described in 82.3 where the main results of this paper are forhul&te§82.4 we
discuss the on-line implementation of our algorithm.

2.1 Partitionsand Adaptive Approximation

A typical way of generating partition& of X is through a refinement strategy. We first describe
the prototypical example of dyadic partitions. For this, we assumeXhatf0,1]9 and denote by
Dj = D;j(X) the collection of dyadic subcubes ¥fof sidelength 2/ and D := UiLoDj. These
cubes are naturally aligned on a tr€e= 7 (). Each node of the tre€ is a cubd € D. If | € D;,
then its children are the®ayadic cubes of Dj,1 with J C 1. We denote the set of children bf
by C(I). We calll the parent of each such childand writel = ?(J). The cubes irD;(X) form a
uniform partition in which every cube has the same measui® 2

More general adaptive partitions are defined as foIIovpr@persubtreeT of 7 is a collection
of nodes of7 with the properties: (i) the root node= X is in 7, (ii) if 1 # X is in T then its
parent?(l) is also inT. Any finite proper subtred is associated to a unique partitidn= /\(‘I)
which consists of iteuter leavesby which we mean thoske 7 such thatl ¢ 7 but?(J) isin 7.
One way of generating adaptive partitions is through some refinemengstr&ee begins at the
root X and decides whether to refike(i.e. subdivideX) based on some refinement criteriaXlfs
subdivided then one examines each child and decides whether or nfihéosiech a child based on
the refinement strategy.

The results given in this paper can be described for more generameditt. We shall work in
the following setting. We assume that> 2 is a fixed integer. We assume thakifis to be refined
then its children consist @& subsets oK which are a partition oK. Similarly, for each such child
there is a rule which spells out how this child is refined. We assume that theighilsb refined
into a sets which form a partition of the child. Such a refinement strategy alstis@sa tree7’
(called themaster tre¢ and children, parents, proper trees and partitions are defined as favo
the special case of dyadic partitions. The refinement I¢wafla node is the smallest number of
refinements (starting at root) to create this node. We denofg bye proper subtree consisting of
all nodes with levek: j and we denote by\; the partition associated @, which coincides with
D;(X) in the above described dyadic partition case. Note that in contrast to tkisticea children
may not be similar in which case the partitioAg are not spatially uniform (we could also work
with even more generality and allow the number of children to depend on theoded refined,
while remaining globally bounded by some fixay It is important to note that the cardinalities of
a proper treeZ” and of its associated partitigk(‘Z") are equivalent. In fact one easily checks that

#N(T)) = (a— DH#(T)+1,

by remarking that each time a new node gets refined in the process of buifdaugptive partition,
#(T) is incremented by 1 and#) by a— 1.
Given a partitionA\, let us denote by the space of piecewise constant functions subordinate
to A. EachS e Sp can be written
S= Z\ath
I'e
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where forG C X we denote byXg the indicator function, i.eXg(X) = 1 for x € G andXg(x) =0
for x ¢ G. We shall consider approximation of a given functibr L2(X,px) by the elements of
Sh. The best approximation tbin this space is given by

Prf = X 1
A |eZ\CI [ (1)

wherec, = ¢ (f) is given by

C = %, with o ::/fdpx and p; == px(1). (2)
|
|

In the case wherp, = 0, both f, and its projection are undefined bnFor notational reasons, we
set in this case, :=0.

We shall be interested in two types of approximation corresponding to omifefinement and
adaptive refinement. We first discuss uniform refinement. Let

En(f):=|f—Pa,fl, n=0,1,...

which is the error for uniform refinement. The decay of this error to z®m@nnected with the
smoothness of as measured ihy(X, px). We shall denote byi® the approximation class consist-
ing of all functionsf € Lo(X,px) such that

En(f) <Mpa™, n=0,1,.... (3)

Notice that #/\n) = a" so that the decay in (3) is likd—* with N the number of elements in the
partition. The smallesvly for which (3) holds serves to define the semi-ndrfifys on 4. The
space4® can be viewed as a smoothness space of @deO with smoothness measured with
respect t@y.

For example, ipy is the Lebesgue measure and we use dyadic partitioningafién= B, (L>),
0 < s< 1, with equivalent norms. Hefg,(L») is the Besov space which can be described in terms
of differences as

1f(+h) = ()l <Mofh%, xheX.

Instead of working with a-priori fixed partitions there is a second kindppiraximation where
the partition is generated adaptively and will vary withAdaptive partitions are typically generated
by using some refinement criterion that determines whether or not to sudbdigiven cell. We shall
use a refinement criteria that is motivated by adaptive wavelet constrsistimh as those given by
Cohen et al. (2001) for image compression. The criteria we shall usectdedehen to refine is
analogous to thresholding wavelet coefficients. Indeed, it would betlgxais criteria if we were
to construct a wavelet (Haar like) bases g(X, px ).

For each cell in the master tred and anyf € Lo(X,px) we define

({fdpx)z <Iffdpx>2

2. B
g (f) = Je%(l) 5 o (4)
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which describes the amount bj(X, px) energy which is increased in the projectionfgfonto $a
when the elementis refined. It also accounts for the decreased projection error Wiserefined.
In fact, one easily verifies that

€| (f)z = ||f —C Hﬁz(hpx) - Z || f _CJHﬁz(J,px)'
JeC(l)

If we were in a classical situation of Lebesgue measure and dyadicmefiniethere ( f)2 would
be exactly the sum of squares of the Haar coefficientsadrresponding to.

We can use (f) to generate an adaptive partition. Given any 0, we letT(f,n) be the
smallest proper tree that containsla#t 7 for which g (f) > n. This tree can also be described as
the set of allJ € 7" such that there existsC J such thag, (f) > n. Note that sincd € L?(X,px)
the set of nodes such that f) > n is always finite and so i (f,n). Corresponding to this tree
we have the partitioi\(f,n) consisting of the outer leaves Gf(f,n). We shall define some new
smoothness spac&’ which measure the regularity of a given functiérby the size of the tree
T(f,n).

Givens > 0, we letB® be the collection of alf € Ly(X, px) such that the following is finite

|15 := supnP#(T(f,n)), wherep:=(s+1/2)~* (5)
n>0

We obtain the norm fo3° by adding|| f || to | f|3s. One can show that

L o
I —Paryll < ColFIETNZT < Gl f|4sN~S, N :=#(T(f,n)), (6)

where the constarils depends only os. For the proof of this fact we refer the reader to the paper
by Cohen et al. (2001) where a similar result is proven for dyadic paiititgort follows that every
function f € B° can be approximated to ord&N~°) by Px f for some partitiom\ with #(A) = N.
This should be contrasted wit® which has the same approximation order for the uniform partition.
It is easy to see thab® is larger than®. In classical settings, the clags is well understood. For
example, in the case of Lebesgue measure and dyadic partitions we krtosathaBesov space
BS(L:) with T > (s/d+1/2)~* and 0< q < o arbitrary, is contained irB%? (see Cohen et al.,
2001). This should be compared with tH& where we know thafz¥9 = BS (L) as we have noted
earlier.

The distinction between these two forms of approximation is that in the first, thiéqes are
fixed in advance regardless bbut in the second form the partition can adapf to

We have chosen here one particular refinement strategy (based aretbéesg( f)) in generating
our adaptive partitions. According to (6), it provides optimal convecgenates for the class®.
There is actually a slightly better strategy described in the paper by Binebeiate (2004) which
is guaranteed to give near optimal adaptive partitions (independent offthement strategy and
hence not necessarily of the above form) for each individualVe have chosen to stick with the
present refinement strategy since it extends easily to empirical data@ye8d it is much easier
to analyze the convergence properties of this empirical scheme.
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2.2 Least-Squares Fitting on Partitions

We now return to the problem of estimatirig from the given data. We shall use the functions in
S for this purpose. Let us first observe that

Pafp =argminE(f) = argmin/(y— f(x))dp.
fesn fesa 7

Indeed, for allf € Ly(X,px) we have
E(f) = E(fo)+ || f — fopl?

so that minimizingE( f) over Sy is the same as minimizingf, — f|| over f € Sn. Note thatP f,
is obtained by solving\ independent problems misk [ (f, — c)?dpyx for each elemeritc A.
|

As in (3) we define the estimatdg A of f, on S as the empirical counterpart B f, obtained
as the solution of the least-squares problem

m
f, A 1= argminE,(f) = argminE Z(yi —f(x))2
' fesa fesa mi:

We can view our data as a multivalued functiowith y(x;) = yi. Then in analogy t®x f,, we can
view f, A as an orthogonal projection gfonto Sy with respect to the empirical norm

HyHLgxéx' mzl‘yx' ;

and we can compute it by solving4) independent problems

m

min-= 3 (3 — 2K (x).

c|(Z)=p— where o, (z Zy.X| , pi(z le| X)X €1}. (7)

Thus, we can rewrite the estimator as

fon = Z ¢ (2)Xi- (8)
len

In the case wherkcontains no sampbe (which may happen even g > 0), we set; (z) := 0.
A natural way of assessing the erfl, — f, A|| is by splitting it into a bias and stochastic part :
sincef, — Pafj is orthogonal tc,,

Ifo = fanll? = [ fo— Pafoll >+ [Pafo — Tzl = e + 2.

Concerning the variance tereg, we shall establish the following probability estimate.
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Theorem 1 For any partition/A and anyn > 0,

mn?2
Prob{ |[Pafp— foal >N} < 4Ne*F, 9)
where N:= #(A\) and ¢ depends only on M.

As will be explained later in detail, the following estimate of the variance term ie@=gion is
obtained by integration of (9) ovey > O.

Corollary 1 If Ais any partition, the mean square error is bounded by

NlogN

E(HP/\fp— fmuz) <c—

(10)

where N:= #(A\) and the constant C depends only on M.

Let us consider now the case of uniform refinement. We can equilibratdabe¢erm with the
variance term described by Theorem 1 and Corollary 1 and obtain theviiofaesult.

Theorem 2 Assume thatfe 4° and define the estimatog = f, o, with j chosen as the smallest
integer such that 872 > _™__Then, given an > 0, there is a constari = &M, B,a) such that

logm
i logm =51 _
Prob{ 1t > (¢ folw) (P5yr) =} <cm . 1)
and ,
logmy 231
E(IIfo— f2l2) < (C+1flZ) (=) ™ (12)

where C depends only on a and M.

Remark 1 Itis also possible to prove Corollary 1 using the result by of Cucker andl& (2001,
Theorem C*). The expectation estimate (12) in Theorem 2 can also bieedtas a consequence
of Theorem 11.3 by Gyfy et al. (2002) quoted in our introduction. In order to prepare for the
subsequent developments direct proofs of these results are giveimlggr

Theorem 2 is satisfactory in the sense that it is obtained under no assuroptibe measure
px and the assumptiofy, € 4° is measuring smoothness (and hence compactnelsgXnpx), i.e.
the compactness assumption is donk4(px) rather than irL.. Moreover, the raté%q)‘ﬂsl is
known to be optimal (or minimax) over the clag§ save for the logarithmic factor. However, it
is unsatisfactory in the sense that the estimation procedure requires tiuei &dpowledge of the
smoothness parametewhich appears in the choice of the resolution lepeMoreover, as noted
before, the smoothness assumptigre A5 is too severe.

In the context of density estimation or denoising, it is well known that adayptigthods based
on wavelet thresholding (Donoho and Johnstone, 1998, 1995; Doeiadl., 1996a,b) allow one to
treat both defects. Our next goal is to define similar strategies in our lgazairtext, in which two
specific features have to be taken into account : the error is measurednarthL,(X, px) and the
marginal probability measuig is unknown.
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2.3 A Universal Algorithm Based on Adaptive Partitions

The main feature of our algorithm is to adaptively choose a partitier/\(z) depending on the data
z. It will not require a priori knowledge of the smoothnesdspbut rather will learn the smoothness
from the data. Thus, it will automatically choose the right size for the partition
Our starting point is the adaptive procedure introduced in §2.1 applied forcgon f,. We
use the notatios, := ¢ (f,) in this case. Then, by (4),
2= o3 G—'Z.
ey P P

The selection of the partitiof in our learning scheme will be based on the empirical coefficients

E|2(Z) — GE(Z) _ (Xlz(Z) )

/logm
Tm:=K %, (13)

where the constamt is absolute and will be fixed later in the proof of Theorem 3 stated below. Let
y > 0 be an arbitrary but fixed constant. We defjge= jo(m,y) as the largest integgrsuch that

al < TE}/V. We next consider the smallest proper tg, m) which contains the set

We define the threshold

Z(z,m):={l € Tj,; &(2) > tm}.

This tree can also be described as the set ol all7j, such that there existsC J such that
>(z,m). We then define the partitioh = A(z,m) associated to this tree and the corresponding
estimatorf, := f, . In summary, our algorithm consists in the following steps:

(i) Compute theg (z) for the nodes of generationj < jo.

(i) Threshold these quantities at lewig} to obtain the sek(z, m).
(i) CompleteX(z,m) to 7 (z,m) by adding the node3which contain anl € Z(z,m).
(iv) Compute the estimatad, by empirical risk minimization on the partitiofn(z, m).

Further comments on the implementation will be given in the next section. The nsailh oéthis
paper is the following theorem.

Theorem 3 Let,y > 0 be arbitrary. Then, there existg) = Ko(f3,y,M) such that ifk > Ko, then
whenever § € 2YN B° for some s> 0, the following concentration estimate holds

. /logmy =1 B
—f | >l == <
Prob{||fp fz||_c( = ) }_Cm : (14)
as well as the following expectation bound
logm\ 221
E(lfo— fal?) <o (220) 7, (15)

where the constantsand C are independent of m.
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Theorem 3 is more satisfactory than Theorem 2 in two respects: (i) the opamdf%“)ﬁsl iS now
obtained under weaker smoothness assumptions on the regressiomfumatiely,f, € B°in place

of f, € 4% with the extra assumption df, € AY smoothness witly > 0 arbitrarily small, (ii) the
algorithm is universal. Namely, the valuesdloes not enter the definition of the algorithm. Indeed,
the algorithm automatically exploits this unknown smoothness through the sampl&e note
however that the algorithm does require the knowledge of the paragnetdach can be arbitrarily
small. It is actually possible to build an algorithm without assuming knowledgeyof @ by using
the adaptive tree algorithm by Binev and DeVore (2004). However, thiemgmtation of such an
algorithm would involve complications we wish to avoid in this presentation.

2.4 Remarkson Algorithmic Aspects and On-Line Implementation

Our first remarks concern the construction of the adaptive partitignm) for a fixed m which
requires the computation of the numbergz) for | € Aj when j satisfiesal < /Y. This would
require the computation dd(minm) coefficients. One can actually save a substantial amount of
computation by remarking that by definition we always have

&(2)° < E(2)

with £ (z) :=|ly—¢ (z)”fz(,’ax) the least-square error dnlIn contrast tcg; (z), the quantityZ; (z)

is monotone with respect to inclusion:
JC | = E(z) <E(2).

This allows one to organize the search for thbsatisfyinge, (z) > 1, from coarse to fine elements.
In particular, one no longer has to check those descendants of an elefoewhich £ () is less
thantm.

Our next remarks concern the on-line implementation of the algorithm. Supipaisere have
computedp, (z), a;(z) and theg, (z) wherez containsm samples. If we now add a new sample
(Xm+1,Ym+1) to Z to obtainz™, the newp, anda; are

P(z") (Pr(2) +Xi (Xm1))

T m+1

and

a(zh) = %(m (2) + Yms1X1 (Xme1))-

In particular, we see that at each leyelonly onel is affected by the new sample. Therefore, if
we store the quantitigg (z) anda (z) in the current partition, then this new step requires at most
jo additional computations in the case whégges not increased. In the case whggds increased

to jo+ 1 (this may happen becausg is decreased), the computations of the quantjii€¢s) and

0, (z) need to be performed, of course, for all the elements in the newly addéd leve

3. Proof of the Resultson Non-Adaptive Partitions

We first give the proof of Theorem 1. LAtbe any partition. By (1) and (8), we can write

IPAfo—fazll?=S la—c(2)%pr.
o=l = 2
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According to their definitions (2), (7), both andc;(z) are bounded in modulus by. Therefore,

givenn > 0, if we define
2

_ n
= < =
A {IE/\ p|_8NM2}a
we clearly have
2
> la—c@Pp < %

leN~

We next consider the complement 86t= A\ A". In order to prove (9), it now suffices to establish
that for alll € AT

2 n2 —c@ﬁ
Prob? |ci(z) — ¢ ZWDI <de "N, (1)

To see this, we writ@, (z) = (1+ W )p; and remark that ifyy | < 1/2 we have

iz o :;M(z)—m —a

P2 P pi(1+m)
< 20 M (Jou (2) — oy + [ ]).

ci(z) — ¢l

It follows that|c; (z) — ¢| < —i— provided that we have jointly

V2Npy
nyvpi
o (2)—o| < —V———,
@SN

and (since = o, (pr (2) — p1)/P1)

1 npl?
Z)—pil <ming zp;, —————
P1(2) —pi] < {zpl 4\/m|0(||

and therefore

Prob{|c| (2)—¢q?> 22; } < Prob{\ou(z) —oy] > %}

1 r,“:)3/2
+ Probd|p(2)—p| >mind Zp, —12_ L
{lpl() pr| > {Zp' 4@%!}}

In order to estimate these probabilities, we shall use Bernstein’s inequalith whys that for
mindependent realizatiords of a random variablé such thatZ(z) — E(2)| < Mg and Vaf{) = ¢?,
one has forang > 0

Prob{

In our context, we apply this inequality fo= yX; (x) for whichE({) = a;, Mg < 2M anda? < M?py,
and tol = X, (x) for whichE(Z) = p;, Mg < 1, ando? < py.

534 -EQ)

2
_ me
2 S} S 2e 2(02+M0£/3) .
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We first obtain that

_ m?2p;
Prob{!ou (2)—oy| > VO } Do SNz 2w 12
T 4y/2N
B m?2py
< 2e 64N(M2p| +4M2p| /12)

2
_cm?
< 26,

with ¢ = [ZT%MZ]‘l, where we have used in the second inequality kkaf\* to bound the second
term in the denominator of the exponential by the first term in the denominatneit obtain in

3/2
the case whergp, < 4ﬁ\m|

1 o 3 mp
Prob{‘pl (Z) _ p|| 2 §p|} é 2e 8(p+p /6) — 2e_2_ é 2 —C N

with ¢ = [%"Mz]‘l where we have used in the last line that A*. Finally, in the case where

1o > 0"°_ e obtain
2P = 4 /N’

3/2 m?2p 2
Prob{m.(z)—p.r_ B } W

< 2e 64p (o 2(7p; /6) < 2e W
4v/2N|oy |

withc= [%‘8M2]*1 since|a;| < Mp,. Therefore, we obtain (1) with the smallest of the three values
of ¢, namelyc = [%%Mz]*l, which concludes the proof of Theorem 1.

Remark 2 The constant ¢ in the estimate behaves lik#? and therefore degenerates @oas

M — +o0. This is due to the fact that we are using Bernstein’s estimate as a contienireequality
since we are lacking any other information on the conditional fay|x). For more specific models
where we have more information on the conditional [g{x), one can avoid the limitatiofy| < M.

For instance, in the Gaussian regressmn problgra:yf, () + gi where g are i.i.d. Gaussian (and
therefore unbounded) variableg (0, 52), the probabilistic estimate (9) can be obtained by a direct
use of the concentration property of the Gaussian.

The proof of Corollary 1 follows by integration of (9) ovgr

+00
E(I1Paf — fnellZ ) = I MPrOB{IPATy — frllyery >N}

00 . m?2
< f nmln{1,4Ne*°T}dr]

2

whereng is such that Mle ® = = 1, or equivalently)2 = Rlog(4n)

. This proves the estimate (10).
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Finally, to prove the estimates in Theorem 2, we first note that, by assumptier#(Aj) <
_1
altl < a? (%n) *_ Further, from the definition afIS, we have

S
_i logm) =+
[1fo —Past, || < [folasa™® < [fp| as (T) '

Hence, using Theorem 1, we see that the probability on the left of (1buisded from above by

| ﬁsl 7cézlo m
Prob{HP/\ fo— fazl > c(%“) } < 4a2me =&

which does not excegdm P providedc®c > a?(1+ B). The proof of (12) follows in a similar way
from Corollary 1.

4. Proof of Theorem 3

This section is devoted to a proof of Theorem 3. We begin with our notatiecalRthat the tree
T (fo,n) is the smallest tree which contains hfior which g = g (fp) is larger tham. A(fp,n) is
the partition induced by the outer leaves®ff,,n). We usety, as defined in (13) angh = jo(m)
is the largest integer such thaip < Y. For any partitiom\ we write f,A = 3 Ci (2)X)-

If Ag and/\1 are two adaptive partitions respectively associated to tfgasd7Z; we denote by
No VA1 and/\g A A1 the partitions associated to the tregsJ 73 and‘Zp N 73, respectively. Given
anyn > 0, we define the partition&(n) := A(f,,n) AAj, andA(n,z) associated with the smallest
trees containing thosesuch that, > n andg(z) > n, respectively, and such that the refinement
level j of anyl in either one of these two partitions satisfies jo. In these terms our estimatéy
is given by

f,= fz7m = fz,A(Tm,Z)'

With this notation in hand, we begin now with the proof of the Theorem. Using thegie

inequality, we have
[fo—fzml <&1t+e&2+e3+6€4

with each term defined by

er = |[fo—Panzvabm folls

& = |[Pramz)vab) fo = PAtmaanmm) folls
e = [Paamzaacb) fo = fzaamzaacmmlls
€ = [[foaamzrn@m/b) — fzAam) |l

with b:=2v/a— 1> 1. This type of splitting is classically used in the analysis of wavelet threshold-
ing procedures, in order to deal with the fact that the partition built froreghsuch thag, (z) > tm
does not exactly coincides with the partition which would be chosen by atedrased on thode
such thag, > t,. This is accounted by the ternas ande, which correspond to thodesuch that
€1(2) is significantly larger or smaller thag) respectively, and which will be proved to be small
in probability. The remaining termsy andes respectively correspond to the bias and variance of
oracle estimators based on partitions obtained by thresholding the unkoefficientsg, .
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The first terme; is therefore treated by a deterministic estimate. Namely, siag,z) v
A(bty) is a finer partition thar\(bty,), we have with probability one

e | fo = Pncbrm) foll < [1fo = Pact,br) foll + [[PACE, brm) fo — Pacbrm) foll
| fo — Paty.brm) foll + 1/ fo — Pay, foll

Ca(bTm) %71 | s+ fol

Cs(btm) 271 Ty + @¥Trm fo 2.

Therefore we conclude that

INIAN A

IN

s logm\ =11
e < C((bi) &5 +-ali) ma fol s Tl (=0 ) ™, ®
wheneverf € B5N .4V.
The third termes is treated by the estimate (9) of Theorem 1:

2
Prob{es > n} < 4Ne W, )

with
N = #(A(tm, 2) AN(Tm/b)) <#N(Tm/b)) <#A(fp,Tm/b)).

Hence we infer from (5) that

m )251+1

_2 2
N < bPTP| folfps = DPTm ™ | fopf3s = pr_ﬁlm"gs(logm

3
where we have used thatp=1/2+s.

Concerning the two remaining ternes and e4, we shall prove that for a fixed but arbitrary
B> 0, we have

Prob{e; > 0} + Prob{e; > 0} <CmP, (4)
whenevek > Kg with Ko depending oif8, y, andM and withC depending only om.

Before proving this result, let us show that the combination (1), (2), K8) @) imply the
validity of the estimates (14) and (15) in Theorem 3. We fix the valugaid we fix any constant
k for which (4) holds. Let; := &%) =51 with & from (14) andn, = co(*%8™) =1 with ¢p =
CS(Kﬁl +aYk) max{|fp|av, | fp|zs}. From (1) it follows that folc™ co we have Prof|| fy — f;m|| >
N1} < Prob{e; + &3+ e > N1 — Ny} Hence, defining) = (&— co)('%™) "1, the probability on the
left side of (14) does not exceed

Prob{e; > 0} + Prob{e; > n} + Prob{e; > 0} < Prob{ez > n} +Cm P,

Moreover, on account of (2) and (3), we can estimate fepb n} by
1
( m )25+ll 7cm2b*pK_2éI‘fp‘;;S<|o%1>m

< -
Prob{es >n} < logm

= C( g )Klle_CDsz%q)
logm
1

- )P

< lechZ
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whereD? := (f_—cf’)zp. The concentration estimate (14) follows now by takingrge enough so
K21 PP|f [P

that 1— cD? 4B < 0.
For the expectation estimate (15), we recall that according to Corollarg hawe

1

We then remark that we always hase< 4M2, and therefore

2s
m >_2srl
)

E(e2) < 4M2Probe; > 0} < CmrP < c(logm

by choosing3 larger than 8/(2s+ 1), for example = 1. The same holds fa and therefore we
obtain (15).

It remains to prove (4). The main tool here is a probabilistic estimate of howrthérieal
coefficiente; (z) may differ frome; with respect to the threshold. This is expressed by the following
lemma.

Lemma4 For anyn > 0and any element¢ 7, one has
Prob{g (z) <n and g >bn} < Ce e’ (5)

and
Prob{e; <n and g (z) > bn} < Ce ™’ (6)

where the constant ¢ depends only on M and the constant C dependmanly

Before proving Lemma 4, let us show how this result implies (4). We firssiden the sec-
ond termey. Clearlye; = 0 if A(Tm,z) VA(bTm) = A(Tm, Z2) AA(Tm/b) or equivalentlyT (tm,z) U
T (btm) = T (tm,2) N7 (Tm/b). Now if the inclusionZ (1m,z) N T (Tm/b) C 7 (Tm,2) UT (bty) is
strict, then one either habs(tm,z) ¢ T (tm/b) or T (btm) Z 7 (1m,z). Thus, there either exists &n
such that botle, (z) < 1, andg; > bty or there exists ahsuch that botlg, (z) > 1, andg) < Tm/b.
It follows that

Prob{e; >0} < z Prob{e| (z2) <1 and g > by}
€T

0
€ < bt} + Prob{g (z) > 1m and g < 1y/b}. (7)
€7,

Using (5) withn = 1, yields

Yiem, Prob{g(z) <1m and g > bt} < #(‘Z‘jo)e‘c"“rzn
< #(Nj,)e M
< ajoefCKz logm
< .[r—nl/meCK2
< Cmb/Y-*,
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We can treat the second sum in (7) the same way and obtain the same bthmdrae fore, below.
By similar considerations, we obtain

Prob{eq > 0} < Z Prob{g | (z) > 1 and g < Tm/b},
€7

0
and we use (6) witlm = t,/b which yields Proke; > 0} < Cmt/Y-*/Y \We therefore obtain (4)
by choosing > Ko with ck3 = b2(B+1/y).

We are left with the proof of Lemma 4. As a first step, we show that the mabe reduced to the
particular cas@ = 2. To this end, we remark that the splittinglahto itsa children{J;,---,Ja} can

be decomposed inta— 1 steps consisting of splitting an element into a pair of elements: defining
Ih:=1\(JU---UJn) we start froml = lg and refine iteratively,_; into the two elementt, and

Jn, forn=1,---,a— 1. By orthogonality, we can write

o 322
8| = Z)(Eln> ;
n=

where£|2n is the amount of.>(X, px) energy which is increased in the projectionfpfwhenl, 1 is
refined intol, andJ,. In a similar way, we can write for the observed quantities

a—2

& (2) = ;Eln(z)z,

Now if € < n? andg (z)? > b?n? = 4(a— 1)n?, it follows that there exish € {0,---,a— 2} such
that(g,)? < n? andg,, (z)? > 4n°. Therefore,

a—2

Prob{g; <n and g (z) > bn} < Z Prob{e, <n andg,(z) > 2n},
n=0

and similarly

a—2

Prob{g;(z) <n andg >bn} < ZOProb{an(z) <n andg, >2n},
n=

so that the estimates (5) and (6) for- 2 follow from the same estimates establishedder 2 in
which caséb = 2.

In the case = 2, we denote by™ andl ~ the two children of. Note that ifp; =0 forJ=1" or
for J =17, there is nothing to prove, since in this case we find ¢hat € (z) = 0 with probability
one. We therefore assume tipgt> 0 for J = 1™ andl ~. We first rewriteg, as follows

2 2 2

2 i | O | 2 2

g€ = L4 L 5.2 +p-CC —pcC

| o ol o P1+C pPi-C pPIC
= pl+c|2++p|*CI2*_pl((pHCI*"‘pI*CI*)/pl)Z
= %(CH_CI*){
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and therefore, = |B;| with

Bii=/ pl;?‘ (C+ —C-).

In a similar way we obtaig, (z) = |B(z)| with

Bi(2) = | /%&(Z)(cﬁ(z) —q (2).

Introducing the quantitieg,+ = , /pﬂ)} anda- = , /pf"')i and their empirical counterpaat-(z)
anda,- (z) we can rewrite; andp, (z) as

B =a0n+ —a-a-

and
Bi(z2) =a-+(2)a)+(2) —a-(z2)a,-(2).

It follows that
ler —&1(2)] < la+0y+ —a+(2)a1+(2)| + |ay-a,- —a-(z)a-(2)].

We next introduce the numbeds defined by the relatiop;(z) = (1+8;)ps, ford=1",1"orl. It
is easily seen that iB;| <3< 1/4forJ=1",1" andl, one has

a+(2) = (14+1 )ay+

with |57| < 33. This follows indeed from the basic inequalities

(1-8) _ [(1+9)
1-35< \/<1+5)2 < \/<1_5)2 <1435

which hold for 0< & < 1/4. Therefore ifid;| <0< 1/4forJ=1%,I~ andl, we have

a+ ()| —ap ()] + o+ (& —a+(2)]
2ay+|a+ — o+ (z)| + 3day+ |0+ .

a0+ —q+(2)a1+(2)] <
<

By similar considerations, we obtain the estimate
la-a- —a-(2)a1-(2)| < 2a-|oy- — oy~ (2)| + 30y - |ay - |,

and therefore

ler—&(2)| < 2ak |0k — Ok (2)| + 3dax |0k |- (8)
K=T7,1-

We first turn to (5), which corresponds to the case wisgke 2n andg (z) < n. In this case, we
remark that we have ) )
2 _& _ pipi- (G- —C-) 2
<= <M 9
n“< o 7] <M, )
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forL=1",1— andl. Combining (8) and (9), we estimate the probability by

Probfe;(z) <n ande >2n} < % (pK+ > qK,J), (10)
K=IT,I- =11+
with 2
px = Prob{ax — ax (2)] > [8ac] ™ given pc > 11}
and

1 . 2
.o = Prob{[ps — ps(z)| = pamin{;,n[12acax [} } given py > 111
Using Bernstein’s inequality, we can estimateas follows

2 2
mn mn

2(64a2 M2py +8ag NM/3 2(64a2 M2py +8 M2/3 —cnm?

PK < Qe 2AbkgMip+8nM/3) < 2@ 2(64gMopk 8 PKkM/3) < 2@ ,

with ¢ = [(128+16/3)M?]~1, where we have useff < pxM? in the second inequality and the fact
thataZ pk < 1 in the third inequality.
In the case where B2 |ak| < 4n, we estimatel j by

__my 2
—Cl
OK.J < 2e 216+43) < 2¢ m ,

with ¢ = [(32+8/3)M?]~1, where we have usemp > n2/M?2.
In the opposite case &R|ak | > 4n, we estimatey j by

( PJ‘n ‘)2
12ay [ak
—Mm— e mpyn?

PN _
OkJ < 2e Z(WW) < 2e 3122 |y |2

where in the last inequality we use@dok| > n to bound the second term in the denominator.
Since|ak| < Mpk, we haveaz oz < M2(p;-p;+/p1) < M2min{p,-,p+} so thatp; > a0z /M2
Therefore, we obtain

Ok, < g om’

with ¢ = [312v2]~1,

Using these estimates fpk andgk j back in (10), we obtain (5).

We next turn to (6), which corresponds to the opposite case wdpeta) andg (z) > 2n. In
this case, we remark that we have

e(2) i+ (2p1-(2) (6+(2) —¢-(2))?
NP = P (zl) —— <MpL(2),

for L=1%,1- andl. In this case, we do not havi < M?p_, but we shall use the fact thgt <
2M?2p_ with high probability, by writing

Prob{e; <n and g (z) > 2n} < (pK P+ Y (Gkat m)), (11)
K=I+,11 J=I=,1+1

where now )

pk = Prob{|ok —ak(z)| > [8ak] 'n; given px > %}’
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and

1 . 2
Ok.3 := Prob{|p; —pi(2)| > p3 mln{z,n[12aK\aKH*1} given py > %

and the additional probability is given by
py := Prob{n? < M?p;(z) given n? > 2M?p;}.

Clearly, px andgk j are estimated as in the proof of (5). The additional probability is estimated by

fa < Prob{n®>M?p; and |p;— ps(2)| > (n/M)?}
4
2e 2y MmMZn/S)

IN

_ m*#
2e 212MZiM2nZ)3)

_cm?
2e ™M,

VANVAN

with ¢ = (8M2/3)~1. Using these estimates in (11), we obtain (6), which concludes the prttud of
lemma. O

5. Universal Consistency of the Estimator

In this last section, we discuss the consistency of our estimator when ndlsmes assumption is
made on the regression functidp € L2(X,px). Of course it is still assumed tha < M almost
surely, so that we also hayé,| < M. For an arbitrary suchy, we are interested in proving the
convergence property

Jim_E()lfo— fom|?) =0,

which in turn implies the convergence in probability: foralt 0,

mirrlm Prob{|| fo — fzm|| > €} =0.

For this purpose, we use the same estimation of the err@q bye, + e3 + €4 as in the proof of
Theorem 3.
We first remark that the proof of the estimate

E(e5) +E(ej) <Cm P,

remains unchanged under no smoothness assumption mdge on
Concerning the approximation terep, we have seen that

er < | fp— PA(f, btm) foll + 1| fo — P foll-

Under no smoothness assumptions, the convergence to 0 of these twottikousigs whenjg —

+o00 andty, — 0, and therefore am — +o0. This requires however that the union of the spaces
(Sh)j>0 is dense inL2(X,px). This is ensured by imposing natural restrictions on the splitting
procedure generating the partitions which should be such that

lim sup|l| =0,
I=teren;
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where|l| is the Lebesgue measure lof This is obviously true for dyadic partitions, and more
generally when the splitting rule is such that

S <l

JECU)

with v < 1 independent of € 7. Under this restriction, classical results of measure theory state
thatP, f converges td in L2(X,px) asj — +oo for all f € L?(px).

We are therefore ensured thgf, — Pa; fo|| tends to 0 asn — +o. For the first term| f, —
PA(fp.btm) foll, we remark that the convergenceRyf f to f also implies thaff can be written as the
sum of anL?(X, px)-orthogonal series

f=cxXx+ 5 wr, with == 5 cXg—aXi,
Y8 JECN)

We remark that|W, || = & (f). It follows that forn > 0

If =P flP= 5 a(f?< 3 a(f)?
1¢7(t,n) & (f)<n

Since by Parseval inequality,

S & ()2 =[] = lloxXx[? < +oo, 1)
leT

it follows that || f — Pa(¢ ) fol| tends to 0 as) — 0. Therefore|| fo — P+, br,,) foll tends to O as
m— +-o0.
It remains to study the variance teenfor which we have established

E(e%) gCNIOgN,

m

with
N = #(A(Tm,2) AN(Tm/b)) < #HA(Tm/b)).

Note that sincee, ), is a square summable sequence according to (1), we have
#{l €T ;& >n}<Cn?(n),

where¢(n) — 0 asn — 0. Therefore if #\(1n/b)) was simply controlled by # € 7 ; & > tm/b},
we would derive thaE(e%) would tend to 0 according to

<C
m m

(&) < T () Y2 (tm) _ sTPd(tmlogm _

However, #/\(tm/b) can be significantly larger due to the process of completing the set of thresh
olded coefficients into a proper tree. Since this process adds atjgredtnodes] for eachl such

thate; > t/b, we have the estimate

#(A(Tm/b)) < jo#{l € T ; & > Tm/b} < C1n%d () logm,
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whereC depends o andy. It follows that if the threshold, is modified into

o logm

Tm: m

we find thatE (€3) goes to 0 according to

E() < Crr;ZcIJ(Tm) logmlog(t-2¢(tm) logm) <6Tn_12¢(Tm) logm
< = < -

= C~3<1>(Tm)-

It is easily checked that this modification does not affect the other estimates,fe, and e,.
However it induces an additionglfogm factor in the rate of convergence which was obtained in
Theorem 3.

An alternate way of ensuring the convergence to zer& @) is by imposing thaty > 1/2,
since we obviously have

#A (/b)) < #(Aj,) = al° < Ctm”,

so thatNlogN/m tends to O if ¥y > 2. However this is a stronger restriction since the optimal
convergence rate of the algorithm is maintained only for regression funsctwich are at least in
the uniform approximation space®/2.
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