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The version number says all!

If you toss a coin you certainly would suspect (even be sure) that in the long run
the number of heads and tails will be the same. In same vain, if you pick numbers
randomly in the long run, rather exactly, half the numbers you pick will be even and
the other half odd. So there is a two-to-one chance that you pick an even number.
Analogously, there will be three-to-one chance that your number will be divisible by 3.
But what is the chance that you pick a prime number?

The prodigious youngster Gauss pondered over that question at the age about 15.
He made long list of primes and counted the number of primes in intervals of the shape
[x, x+1000], and then observed that contained about 1/ log x primes. He thus answered
your question: The answer depends on how big numbers you are allowed to pick, but if
you confined your picks to be from an interval of shape [x, x+ y] ,the chance is about
y/ log x. Of course the answer was conjectural, the computational capacity is limited
even for Gauss.

It is common usage to let ⇡(x) denote the prime counting function; that is ⇡(x) =
#{ p | p a prime, p  x }. It is step function that increase by one at each prime. For
example do we have ⇡(7) = ⇡(8) = ⇡(9) = ⇡(10) = 4 but ⇡(11) = 5. In our age
of computers the values of ⇡(x) has been computed for very large x, for example is
⇡(1022) = 201 467 286 689 315 906 290. One of the main objectives of analytic number
theory is to give approximations of ⇡(x) by functions easy to describe, like classical
elementary functions; and of course one wants the approximations to be as good as
possible.

The cumulative function of the prime distribution is thus ⇡(x), so if the distribution
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of primes goes like 1/ log x, one suspects that

⇡(x) ⇠
Z

x

2

dx

log x
. (7)

The integral on the right is often denoted by li x and is called the logarithmic integral ,
PNT

that is Z
x

2

dx

log x
= li x.

The sign ⇠ in 7 means that the two sides are asymptotical equal : Two functions f(x) and
g(x) are said to be asymptotical equal , symbolically written f ⇠ g, if lim

x!1 f(x)/g(x) =
1. For example are f(x) =

p
x2

+ a and g(x) = x asymptotical equal (to be precise, one
should say “when x ! 1”), and two polynomials are if they have the same dominating
term. It does not mean that their difference tends to zero, for example it holds true
that x3

+x2 ⇠ x3

+x, the difference however tends to infinity (it is asymptotic to x2!).
The statement in (7) had for many years the status as Gauss’ conjecture, but was

finally proven by Hadamar and de la Vallée Poussin, and is now called the Prime
Number Theorem, or PNT for short:

Theorem �.� (The Prime Number Theorem)

⇡(x) ⇠
Z

x

2

dx

log x
= li(x).

By performing a partial integration with dv = dx and u = 1/ log x, one finds
Z

x

2

dx

log x
=

x

log x
+

Z
x

2

dx

log

2 x
+ C

where C is the constant �2/ log 2. By splitting the interval of integration in the two
intervals [2,

p
x] and [

p
x, x] (see the figure below) one arrives at the estimate

����
Z

x

2

dx

log

2 x

���� <
4x

log

2 x
+

p
x

log

2

2

which shows that li x ⇠ x/ log x. Hence, the relation ⇠ being transitive, one has the
following alternative formulation of the prime number theorem, which may be more
speaking as the the function x/ log x is easier accessible than li x, (but it is less precise):

Theorem �.� (PNT, second version)

⇡(x) ⇠ x

log x

Our principal goal of the course is to give a proof of the PNT, but as well to get
some general understanding of the mathematical lore around the theorem.
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Problem �.�. Show that for any n one has

li x =

Z
x

2

dt

log t
=

x

log x
+

x

log

2 x
+ · · ·+ (n� 1)!x

log

n x
+ (n� 1)!

Z
x

2

dt

log

n+1 t
+ C.

Give an explicit expression for the constant C. X

Problem �.�. Show that
����
Z

x

2

dt

log

n t

���� 
2

nx

log

n x
+

p
x

log

n

2

+ C

X

log

�2
2

p
x

2

4 log

�2
x

x

log

�2
t

Estimating the logarithmic integral

R t
2 log

�2
t dt

Big O and small o We use the opportunity to introduce some more notation con-
stantly used in analytic number theory. If f(x) and g(x) are two functions, we say
that f is ‘‘big O” of g, in writing f(x) = O(g(x)) if there is a constant C such
that |f(x)|  C |g(x)|. We say that f is “small o” of g as x ! a of g—in writing
f(x) = o(g(x))—if f(x)/g(x) ! 0 as x ! a.

The Riemann ⇣-function

Taking the bull by the horns, we introduce immediately the may be most renown func-
tion in the whole of mathematics, the Riemann ⇣-function. Encoded in its analytic
properties lie many of the secrets of the prime numbers. The ⇣-function was first stu-
died by Euler in 1740, and some call it the Riemann-Euler function. Euler proved the
property that is the bridge between the Riemann ⇣ and the primes, the so called Euler
product. However most the fundamental properties was established by Riemann in his
paper xxx where he also states the famous hypothesis about the zeros.
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⇣(s) =
1X

n=1

1

ns

,

where s is a complex variable. It is the custom in this branch of mathematics to let
� = Re s an ⌧ = Im s, so that s = � + ⌧ i.

Proposition �.� The series defining the ⇣-function converges absolutely in the right
half plane where � = Re s > 1. The convergence is uniform in the half planes � > �

0

> 1

and ⇣(s) is an analytic function of s for � > 0.

Proof: Indeed, by the elementary theory of real infinite series one learns in school
(e.g., the integral criterion) one knows that

P
n�1

n�� converges for any real � > 1,
and one has |n�s| = n��.

As n�� is a decreasing function of �, it follows that
P

N

n=M

n� <
P

M

n=N

n��0 whe-
never � > �

0

> 1, and this shows that the convergence is uniform in half planes
� > �

0

> 1. The ⇣-function therefore is an analytic function. In the same vain, it
follows that |⇣(s)| < |⇣(�

0

)| when Re s > �
0

. o

The ⇣-function may be extended to a meromorphic function in the whole complex
plain with simple pole and residue 1 at s = 1 as the sole singularity. An argument using
partial integration extends it to the right half plane � > 0. Below we shall give this
extension which also as a nice introduction to the commonly used technic of partial
integration. The version we need is for Riemann-Stieltjes integrals, since step-functions
are involved, and is more subtle than the usual calculus version. But first we introduce
the Euler product:

The Euler product

As the name indicates, the Euler product was discovered by Euler. It connects the
Riemann ⇣-function with the prime numbers, and is in that respect really the hug of
the whole theory. One of Euler’s applications was to show there are infinitely many
primes, which might be shooting sparrows with canons, but as we shall later on shall
see, the idée has nice consequences.

EulerProduct
Proposition �.� (Euler product) One has for such s that Re s = � > 1 the following
equality

⇣(s) =
X

n

n�s

=

Y

p

(1� p�s

)

�1.

Proof: Summing the geometric series, one finds (1� p�s

)

�1

=

P
k�0

p�ks, hence

Y

px

(1� p�s

)

�1

=

Y

px

X

k�0

p�ks

=

X

p|n)px

n�s
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where we in the second equality uses Mertens theorem saying that the product of
finitely many absolutely convergent series equals their Cauchy-product. The Cauchy
product is just the series whose terms are products of one term from each of the series
involved. Clearly one has

������

X

n

n�s �
X

p|n)px

n�s

������


X

n�x

n��,

and the right side of the inequality can be made as small as we please the series
P

n

n��

being absolute convergent. o

Problem �.�. Use the Euler product to show there are infinitely many primes. Hint:
The harmonic series

P
n

n�1 diverges. X

From the proof one obtains the following estimate that will be useful later on:
Useful

Lemma �.� Y

px

(1� p�1

) < 1/ log x.

Proof: Putting s = 1 we arrive at

Y

px

(1� p�1

)

�1

=

X

p|n)px

n�1 �
X

nx

n�1 � log x.

o

The primes are of density zero As a teaser, we give the following result, certainly
very weak compared to the PNT. Anyhow, it tells us that the density of the primes is
zero; that is, the relative portion of primes less than x tends to zero when x grows.

Proposition �.�

lim

x!1
⇡(x)/x = 0.

Proof: Let q be a natural number to be chosen later. We divide [0, x] into intervals of
length q; that is, intervals of shape [(a� 1)q, aq] where the a’s are the natural numbers
with a  [x/q]. In each of those subintervals there are �(q) integers relatively prime
to q, hence at most �(q) primes not dividing q. If k is the number of different prime
factors in q, this gives

⇡(x)  �(q)x/q + k,

and hence
⇡(x)/x  �(q)/q + k/x.

— 5 —
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Now, if ✏ > 0 is given, let y be such that 1/ log y < ✏, then letting q =
Q

py

p, we have
after lemma �.�

�(q)/q =
Y

p|q

(1� p�1

)  1/ log y < ✏

and hence
⇡(x)/x < ✏+ ✏

for x > k✏�1. o

The behavior at s = 1

The Riemann ⇣-function has a simple pole at s = 1. For the moment the ⇣-function
is only defined for � > 1, so this is not a meaningful statement at this stage. The
following proposition is as close as we can come:

Proposition �.� For s > 1 real one has

⇣(s) =
1

s� 1

+ g(s),

where g(s) is a bounded function.

Proof: The most elementary way to see this is to compare the series
P

1nx

n�s with
the integral

R
x

1

t�s dt. The usual Riemann sum approximation (see the figure below)
gives: �����

X

1nx

n�s �
Z

x+1

1

t�s dt

����� < 1.

Hence letting x tend towards 1 and using that
R1
1

t�s dt = 1/(s� 1), one arrives at

|⇣(s)� 1/(s� 1)| < 1.

o

n

n+1

1

t

�s

The Riemann sum for t

�s
with n = [x].
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Extension to s > 0

There are several simple ways to extend ⇣(s) to the right half plan s > 0 which
go back to Riemann; we present two of then in this paragtaph. They use the partial
integration formula for Riemann-Stieltjes integrals that reads

Z
b

a

f(x) d↵(x) = f(x)↵(x)
��b
a

�
Z

b

a

f 0
(x)↵(x) dx,

where ↵ is a function of bounded variation. Typical for us ↵ will be a step function,
like any cumulative function ↵(x) =

P
nx

a
n

.
The first way We take ↵(x) = [x]. Recall that x = [x] + {x} where {x} denotes the
fractional part of x. It lies in the interval [0, 1). By partial integration we find

⇣(s) =

Z 1

1

x�s d[x] =

Z 1

1

x�s dx�
Z 1

1

x�s d{x} =

=

1

s� 1

�
�
x�s{x}

��1
1

+ s

Z 1

1

x�s�1{x} dx
�

=

1

s� 1

� s

Z 1

1

x�s�1{x} dx.

The partial integration appears at the second equality, and we use that x�s ! 0 as
x ! 1 as long as s > 0, and that {1} = 0. The point is now that the integral

Z 1

1

x�s�1{x} dx

converges absolutely for � = Re s > 0 and uniformly for � � �
0

> 0 since the sawtooth
function {x} is bounded. From general theory it follows that the integral is an analytic
function of the variable s. Hence we have

Proposition �.� For Re s = � > 0 the integral
Z 1

1

x�s�1{x} dx

converges absolutely and uniformly in the half planes � � �
0

> 0 and therefore is an
analytic function of s. Hence

1

s� 1

� s

Z 1

1

x�s�1{x} dx

is meromorphic with a simple pole and residue 1 at s = 1. It coincides with ⇣(s) when
� > 1 and hence is a meromorphic continuation of ⇣(s) to the right half plane � > 0.

— 7 —
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x

�2

{x}x�2

The function x

�s�1{x} for s = 2 over the interval [1, 6]

The second way The trick is to subtract twice the “even part” of ⇣(s) from ⇣(s). On
one hand we get:

X

n

n�s � 2

X

n even

n�s

=

X

n odd

n�s �
X

n even

n�s

=

X

n

(�1)

n�1n�s

on the other
2

X

n even

n�s

= 2

X

n

(2n)�s

= 2

�s+1⇣(s)

Hence
(1� 2

�(s�1)

)⇣(s) =
X

n

(�1)

n�1n�s

= �(s) (1.1)

What we have gained with this manipulation, is that the convergence of the series on
Zeta

the right is easier to handle. For real s it is an alternating series, and it is elementary
that it converges for s > 0. We shall soon see that it converges in the right half plane
� > 0. The convergence is uniform in the half planes � � �

0

> 0, so the series defines
an analytic function �(s). However, the convergence is not absolute in the vertical strip
0 < � < 1.

Before proceeding with extending the ⇣-function, we prefer to give a general con-
vergence result for a class of Dirichlet series in which our �(s) falls, namely the class of
Dirichlet series whose coefficients have a bounded cumulative function. Later on in the
course several other important Dirichlet series will belong to this class. The cumulative
function ↵(x) for the coefficients of �(s) is certainly bounded; it alternates between
the values 0 and 1. One has

Proposition �.� Let {a
n

} be a sequence as above i.e., whose cumulative function
↵(x) =

P
nx

a
n

is bounded. Then the Dirichlet series

L(↵, s) =
X

n

a
n

n�s

— 8 —
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converges for � > 0. The convergence is uniform in the half planes � > �
0

> 0, and
hence the function L(↵, s) is analytic for � > 0.

Proof: Pick a constant A such that
��P

nx

a
n

�� < A. The proof is an easy and nice
use of partial integration:

X

NnM

a
n

n�s

=

Z
M

N

t�s d↵(t) = t�s↵(t)
���
M

N

+ s

Z
M

N

t�s�1↵(t) dt (1.2)

= M�s↵(M)�N�s↵(N) + s

Z
M

N

t�s�1↵(t) dt (1.3)

Using that ↵(x) is a bounded function, we bound the integral
����
Z

M

N

t�s�1↵(t) dt

���� 
Z

M

N

��t�s�1

�� |↵(t)| dt  A

Z
M

N

t���1 dt  AM��.

All together we get
�����

X

NnM

a
n

n�s

�����  2M��A+M��A = 3AM��

which tends to zero when M tends to infinity as long as � > 0. This shows that the
Dirichlet series converges in the right half plane where � > 0, and in any domain where
� is bound away from zero, i.e., where � > �

0

, the convergence is uniform. o

We continue with the analytic continuation of the ⇣-function. By the proposition
we just established, the function �(s) is analytic for � > 0. The function 1� 2

�(s�1) is
analytic everywhere and has s = 1 as is sole and simple zero. We have established the
equality, valid for � > 1,

⇣(s) = (1� 2

�(s�1)

)

�1

�(s)

where the right side is defined and analytic for � > 0 except for a simple pole at s = 1.

Problem �.�. A bonus of the second way, is that it shows that ⇣(s) has no real zeros
between 0 and 1. Show that. Hint: �(s) = 1� 1

2

s +
1

3

s � 1

4

s +
1

5

s + . . . is positive X

The von Mangoldt function ⇤(n) and the logarithmic derivative

One of the arithmetic function that appears naturally in analytic number theory is
the so called von Mangoldt’s function. It was first used by the german mathematician
Hans Carl Friedrich von Mangoldt who lived from 1854 to 1925. He was a student of
Kummer and Weierstrass in Berlin, and became a professor at the polytechnic school
in Aachen. His function is defined in the following way:

⇤(n) =

(
log p if n = p⌫ is a power of a prime p

0 otherwise

— 9 —
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Problem �.�. Show that
P

d|n ⇤(d) = log n Hint: First show that ⇤(p⌫) = ⌫ log p
for primes p. X

The von Mangoldt function appears in the logarithmic derivative of ⇣(s); one has

Proposition �.�

⇣ 0(s)

⇣(s)
=

X

n

⇤(n)n�s

Proof: Taking the logarithm of both sides in the Euler product, we find

log ⇣(s) = �
X

p

log(1� p�s

)

Taking derivatives gives us

�⇣
0
(s)

⇣(s)
=

X

p

log p
p�s

1� p�s

=

X

p

log p
X

n�1

p�ns

=

X

n

⇤(n)n�s

o

This indicates that there is a coupling between the zeros of ⇣ — that is, the poles of
⇣ 0(s)/⇣(s) — and von Mangoldt’s function.

Chebychev’s two cumulative functions

Pafnuty Lvovich Chebyshev was born in the little Russian town Okatov south eats
of Moskow in 1821. He was a person with manifold interest, among other things he
made a series of mechanical inventions useful for steam engines that was high-tech at
that time, a mechanism called “Chebychev’s linkage” transferring rotations into linear
movements is still in use, but he is best known as a mathematician. He was a professor
in St Petersburg and gave great contributions to analytic number theory in particular
around the Prime Number Theorem. He died in 1894, two years before the Prime
Number Theorem was proved by Hadamar and de la Vallée-Poussin.

Chebychev introduced two functions, the  -function and the ✓-function. They are
cumulative functions defined as

 (x) =
X

nx

⇤(n) ✓(x) =
X

px

log p

Problem �.�. Determine  (8),  (9) and  (10). X

Problem �.�. Show that  (n) = log lcm({ d | d  n }). X

— 10 —



Number theory — Intro MAT4250 — Høst 2014

The introduction of the second Chebychev function  (x) can be motivated as
follows. The prime counting function ⇡(x) can be expresses as ⇡(x) =

P
px

1, so
each prime contributes a unit to the sum. If we in stead give the prime p the weight
log p, we arrive at the function  (x). According to the Prime Number Theorem, the
primes should appear with the density 1/ log x, so giving primes a logarithmic weight
should compensate for their logarithmically declining probability. This to say that it is
reasonable to belive that  (x) ⇠ x is equivalent to the Prime Number Theorem. And
indeed it is, as stated in the next proposition:

PsiAndThetaAndPI
Proposition �.� The following three statements are equivalent:

⇤  (x) ⇠ x

⇤ ✓(x) ⇠ x

⇤ ⇡(x) ⇠ x/ log x

The proof of this will done two stages. First we establish the equaivlanecs of the
two first statement, this is basically lemma �.� below. The equivalence between the
last and the two first statements hinges on the so called Chebychev’s estimates which
we shall prove in the next paragraph.

The two Chebychev functions  and ✓ are intimately related. The following relation
between them holds true:

 (x) =
X

p

⌫x

log p =

X

px

1/⌫

log p =

X

⌫

✓(x1/⌫

) =

= ✓(x) + ✓(
p
x) + ✓( 3

p
x) + . . .

The first sum is understood to be over all natural numbers ⌫ and all primes p satisfying
p⌫  x.

The last sum appears to be infinite, but is in fact finite since ✓(x1/⌫

) = 0 once
x1/⌫ < 2, that is ⌫ > log x/ log 2 = log

2

x. As
p
x is small compared to x when x is

big— already for x around a million,
p
x is just one per mille of

p
x—the terms ✓(x1/⌫

)

are small compared to ✓(x). This suggests that  (x) and ✓(x) have same behavior for
large x; and indeed, this is true as expressed in the following lemma. This also proves the
equivalence between the two first statements in proposition �.� since

p
x log2 x = o(x):

PsiOgTheta

Lemma �.�

 (x) = ✓(x) +O(

p
x log2 x)

— 11 —
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Proof: The proof consists of a few very crude estimates. The sum for ✓(y) has at most
y terms each being less than log y, so ✓(y)  y log y. This gives

0 <  (x)� ✓(x) =
X

2⌫log2 x

✓(x1/⌫

) <
X

2⌫log2 x

x1/⌫

log x1/⌫ <

< log

2

x
p
x log x =

p
x(log x)2/ log 2,

o

Proof of proposition �.�: We already remarked that the two first statements are
equivalent by lemma �.�. To prove the remaining equivalence we appeal again to partial
integration:

✓(x) =
X

px

log p =

Z
x

2

log t d⇡(t) = ⇡(x) log x�
Z

x

2

⇡(t)/t dt.

Assuming the Chebychev’s inequalities c0x/ log x < ⇡(x) < cx/ log x for appropriate
constants c of c0, valid for x > A, we obtain

c0
Z

x

A

1/ log t dt <

Z
x

A

⇡(t)/t dt < c

Z
x

A

1/ log t dt,

and since
R
x

2

1/ log t dt = O(x/ log x), we arrive at the equality

✓(x)/x = ⇡(x) log x/x+O(1/ log x),

and we are done. o

Chebychev’s bounds

Around 1850 Chebyshev gave his upper and lower bounds for the prime counting
function. These estimates were some kind of forerunners for the Prime Number Theo-
rem, but certainly much weaker, and they are possible to prove with entirely elementary
methods. Chebyshev result was

ChebychevBounds
Proposition �.� (Chebychev’s bounds) There are constants c and c0 and an A
such that for x � A one has

c0
x

log x
< ⇡(x) < c

x

log x
.

The depth and the difficulty of this statement depend on the constants. Chebychev
originals were c0 = 0.92 and c = 1.055. The PNT is equivalent to having Chebychev’s
estimates with c0 = 1 � ✏ and c = 1 + ✏ for any ✏ > 0, but admittedly, x must be
larger and larger the smaller ✏ is. Given the depth of the Prime Number Theorem, is
clear that the closer the c’s are to the optimal (but unattainable) value one, the more

— 12 —
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difficult the proposition becomes. We shall prove it for c0 = 1/2 and c = 2. The main
idea of the proof is to use the divisibility properties of some binomial coefficients. For
m + 1 < p  2m + 1 the prime p divides the binomial coefficient

�
2m+1

m

�
which is

equal to (2m+1)!/m!(m+1)!. Now
�
2m+1

m

�
appears twice in the binomial development

(1 + 1)

2m+1 and therefore satisfies
✓
2m+ 1

m

◆
< 2

2m

= 4

m.

This gives
Y

m+1<p2m+1

p <

✓
2m+ 1

m

◆
< 4

m. (1.4)

In a similar fashion one finds
ChebFundUlikhet

Y
m<p2m

p <

✓
2m

n

◆
< 4

m. (1.5)

DundUlikHetII

Problem �.�. Show that
Q

px

p < 4

x. Hint: Induction. X

ChebychevBound2
Proposition �.�� For x large (in fact for x � 65) the following inequalities hold

x

2 log x
< ⇡(x) < 2

x

log x
.

Proof: The prime counting function is insensitive to x being replaced by the integral
value [x], and the function on the right side is increasing. The function on the left is also
increasing, but increases by an amount less than one when the argument is increased
by one (Its derivative is 2

�1

(1/ log x � 1/ log2 x)). Hence we may safely assume that
x = n is an integer.

We start by the leftmost inequality. Let w
p

(k) denote the number of times p appears
as a factor in the binomial coefficient

�
n

k

�
. Then clearly

pwp(k) < n.

Hence
�
n

k

�
=

Q
pn

pwp(k) < n⇡(n), which further gives

2

n

=

X
0kn

✓
n

k

◆
< (n+ 1)n⇡(n).

Taking logarithms we arrive at

n log 2 < ⇡(n) log n+ log(n+ 1)

or
log 2

n

log n
� log(n+ 1)

log n
< ⇡(n),

and we are done since n log 2� log(n+ 1) > 1

2

n for n � 15.
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Problem �.�. Prove in detail that n log 2� log(n+ 1) > 1

2

n for n � 15. X

The graph of x log 2� log(x+ 1)� 1
2x

As to the rightmost inequality, we have from (1.5)

n⇡(2n)�⇡(n) < 2

2n,

and taking logarithms this leads to

⇡(2n)� ⇡(n) < 2n log 2/ log n.

The proof proceed by induction on n. If n is even, we obtain

⇡(2n) < 2n log 2/ log n+ ⇡(n) < 2n log 2/ log n+ 2n/ log n = (log 2 + 1)2n/ log n,

and we are saved by the inequality

(log 2 + 1)2n/ log n < 4n/ log 2n, (1.6)

valid for � 46.
LogUlikhet

Problem �.��. Prove the inequality (1.6). Hint: log x/ log 2x is increasing X

Now, if x = 2n+ 1 is an odd number, we find

⇡(2n+ 1)  1 + ⇡(2n)  1 + (log 2 + 1)2n/ log n.

To get ashore we need the inequality

1 + (log 2 + 1)2n/ log n < 2(2n+ 1)/ log (2n+ 1),

which is equivalent with

log 2 + 1 <
log n

log (2n+ 1)

2n+ 1

n
� log n

2n
.

The right side approaches 2 as n ! 1 (by l’Hôpital’s rule) so for n >> 0 the inequality
holds. A closer look shows that it in fact holds for n � 65. (The function on the right side
is increasing, and checking the inequality for n = 65 is just a matter of computation).

o

Korrektur lest hit

— 14 —


