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Preface to the First English Edition

This textbook is the translation of the fourth edition of Strömungslehre, Ein-
führung in die Theorie der Strömungen. The German edition has met with
a favorable reception in German-speaking countries, showing that there was
a demand for a book that emphazises the fundamentals. In the English lit-
erature there are books of the same nature, some excellent, and these have
indeed influenced me to write this book. However, they cover different ground
and are not aimed primarily at mechanical engineering students, which this
book is. I have kept the original concept throughout all editions and there is
little to say that has not been said in the preface to the first German edition.
There is now a companion volume Solved Problems in Fluid Mechanics, which
alleviates the drawback of the first German edition, namely the absence of
problem exercises.

The book has been translated by Katherine Mayes during her stay in
Darmstadt, and I had the opportunity to work with her daily. It is for this
reason that I am solely responsible for this edition, too. My thanks also go
to Prof. L. Crane from Trinity College in Dublin for his assistance with this
book. Many people have helped, all of whom I cannot name, but I would
like to express my sincere thanks to Ralf Münzing, whose dependable and
unselfish attitude has been a constant encouragement during this work.

Darmstadt, January 1997 J. H. Spurk

Preface to the Second English Edition

The first English edition was the translation of the fourth German edition. In
the meantime the textbook has undergone several additions, mostly stimu-
lated by consulting activities of the first author. Since the textbook continues
to receive favourable reception in German speaking countries and has been
translated in other languages as well, the publisher suggested a second English
edition. The additions were translated for the most part by Prof. L. Crane
from Trinity College in Dublin, who has accompanied this textbook from
the very beginning. Since the retirement of the first author, Prof. N. Aksel
from the University of Bayreuth, Germany, the second author, was actively
engaged in the sixth and the seventh edition. The additions were written by
the first author who accepts the responsibility for any mistakes or omissions
in this book.
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1 The Concept of the Continuum
and Kinematics

1.1 Properties of Fluids, Continuum Hypothesis

Fluid mechanics is concerned with the behavior of materials which deform
without limit under the influence of shearing forces. Even a very small shear-
ing force will deform a fluid body, but the velocity of the deformation will be
correspondingly small. This property serves as the definition of a fluid: the
shearing forces necessary to deform a fluid body go to zero as the velocity
of deformation tends to zero. On the contrary, the behavior of a solid body
is such that the deformation itself, not the velocity of deformation, goes to
zero when the forces necessary to deform it tend to zero. To illustrate this
contrasting behavior, consider a material between two parallel plates and
adhering to them acted on by a shearing force F (Fig. 1.1).

If the extent of the material in the direction normal to the plane of Fig. 1.1
and in the x-direction is much larger than that in the y-direction, experience
shows that for many solids (Hooke’s solids), the force per unit area τ =
F/A is proportional to the displacement a and inversely proportional to the
distance between the plates h. At least one dimensional quantity typical for
the material must enter this relation, and here this is the shear modulus G.
The relationship

τ = Gγ (γ � 1) (1.1)

between the shearing angle γ = a/h and τ satisfies the definition of a solid:
the force per unit area τ tends to zero only when the deformation γ itself

Fig. 1.1. Shearing between two parallel plates
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goes to zero. Often the relation for a solid body is of a more general form,
e. g. τ = f(γ), with f(0) = 0.

If the material is a fluid, the displacement of the plate increases continually
with time under a constant shearing force. This means there is no relationship
between the displacement, or deformation, and the force. Experience shows
here that with many fluids the force is proportional to the rate of change of
the displacement, that is, to the velocity of the deformation. Again the force
is inversely proportional to the distance between the plates. (We assume
that the plate is being dragged at constant speed, so that the inertia of the
material does not come into play.) The dimensional quantity required is the
shear viscosity η, and the relationship with U = da/dt now reads:

τ = η
U

h
= η γ̇ , (1.2)

or, if the shear rate γ̇ is set equal to du/dy,

τ(y) = η
du
dy

. (1.3)

τ(y) is the shear stress on a surface element parallel to the plates at point y.
In so-called simple shearing flow (rectilinear shearing flow) only the x-
component of the velocity is nonzero, and is a linear function of y.

The above relationship was known to Newton, and it is sometimes in-
correctly used as the definition of a Newtonian fluid : there are also non-
Newtonian fluids which show a linear relationship between the shear stress τ
and the shear rate γ̇ in this simple state of stress. In general, the relationship
for a fluid reads τ = f(γ̇), with f(0) = 0.

While there are many substances for which this classification criterion suf-
fices, there are some which show dual character. These include the glasslike
materials which do not have a crystal structure and are structurally liquids.
Under prolonged loads these substances begin to flow, that is to deform with-
out limit. Under short-term loads, they exhibit the behavior of a solid body.
Asphalt is an oftquoted example: you can walk on asphalt without leaving
footprints (short-term load), but if you remain standing on it for a long time,
you will finally sink in. Under very short-term loads, e. g. a blow with a ham-
mer, asphalt splinters, revealing its structural relationship to glass. Other
materials behave like solids even in the long-term, provided they are kept
below a certain shear stress, and then above this stress they will behave like
liquids. A typical example of these substances (Bingham materials) is paint:
it is this behavior which enables a coat of paint to stick to surfaces parallel
to the force of gravity.

The above definition of a fluid comprises both liquids and gases, since nei-
ther show any resistance to change of shape when the velocity of this change
tends to zero. Now liquids develop a free surface through condensation, and
in general do not fill up the whole space they have available to them, say
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a vessel, whereas gases completely fill the space available. Nevertheless, the
behavior of liquids and gases is dynamically the same as long as their volume
does not change during the course of the flow.

The essential difference between them lies in the greater compressibility
of gases. When heated over the critical temperature Tc, liquid loses its ability
to condense and it is then in the same thermodynamical state as a gas com-
pressed to the same density. In this state even gas can no longer be “easily”
compressed. The feature we have to take note of for the dynamic behavior,
therefore, is not the state of the fluid (gaseous or liquid) but the resistance
it shows to change in volume. Insight into the expected volume or tempera-
ture changes for a given change in pressure can be obtained from a graphical
representation of the equation of state for a pure substance F (p, T, v) = 0
in the wellknown form of a p-v-diagram with T as the parameter (Fig. 1.2).

This graph shows that during dynamic processes where large changes of
pressure and temperature occur, the change of volume has to be taken into
account. The branch of fluid mechanics which evolved from the necessity to
take the volume changes into account is called gas dynamics . It describes the
dynamics of flows with large pressure changes as a result of large changes in
velocity. There are also other branches of fluid mechanics where the change
in volume may not be ignored, among these meteorology; there the density
changes as a result of the pressure change in the atmosphere due to the force
of gravity.

The behavior of solids, liquids and gases described up to now can be
explained by the molecular structure, by the thermal motion of the molecules,
and by the interactions between the molecules. Microscopically the main

Fig. 1.2. p-v-diagram
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difference between gases on the one hand, and liquids and solids on the other
is the mean distance between the molecules.

With gases, the spacing at standard temperature and pressure (273.2 K;
1.013 bar) is about ten effective molecular diameters. Apart from occasional
collisions, the molecules move along a straight path. Only during the collision
of, as a rule, two molecules, does an interaction take place. The molecules first
attract each other weakly, and then as the interval between them becomes
noticeably smaller than the effective diameter, they repel strongly. The mean
free path is in general larger than the mean distance, and can occasionally be
considerably larger.

With liquids and solids the mean distance is about one effective molecular
diameter. In this case there is always an interaction between the molecules.
The large resistance which liquids and solids show to volume changes is ex-
plained by the repulsive force between molecules when the spacing becomes
noticeably smaller than their effective diameter. Even gases have a resis-
tance to change in volume, although at standard temperature and pressure
it is much smaller and is proportional to the kinetic energy of the molecules.
When the gas is compressed so far that the spacing is comparable to that in
a liquid, the resistance to volume change becomes large, for the same reason
as referred to above.

Real solids show a crystal structure: the molecules are arranged in a lattice
and vibrate about their equilibrium position. Above the melting point, this
lattice disintegrates and the material becomes liquid. Now the molecules are
still more or less ordered, and continue to carry out their oscillatory motions
although they often exchange places. The high mobility of the molecules
explains why it is easy to deform liquids with shearing forces.

It would appear obvious to describe the motion of the material by inte-
grating the equations of motion for the molecules of which it consists: for
computational reasons this procedure is impossible since in general the num-
ber of molecules in the material is very large. But it is impossible in principle
anyway, since the position and momentum of a molecule cannot be simul-
taneously known (Heisenberg’s Uncertainty Principle) and thus the initial
conditions for the integration do not exist. In addition, detailed information
about the molecular motion is not readily usable and therefore it would be
necessary to average the molecular properties of the motion in some suitable
way. It is therefore far more appropriate to consider the average properties
of a cluster of molecules right from the start. For example the macroscopic,
or continuum, velocity

�u =
1
n

n∑

1

�ci , (1.4)

where �ci are the velocities of the molecules and n is the number of molecules
in the cluster. This cluster will be the smallest part of the material that
we will consider, and we call it a fluid particle. To justify this name, the
volume which this cluster of molecules occupies must be small compared to
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the volume occupied by the whole part of the fluid under consideration. On
the other hand, the number of molecules in the cluster must be large enough
so that the averaging makes sense, i. e. so that it becomes independent of
the number of molecules. Considering that the number of molecules in one
cubic centimeter of gas at standard temperature and pressure is 2.7 × 1019

(Loschmidt’s number), it is obvious that this condition is satisfied in most
cases.

Now we can introduce the most important property of a continuum, its
mass density ρ. This is defined as the ratio of the sum of the molecular
masses in the cluster to the occupied volume, with the understanding that
the volume, or its linear measure, must be large enough for the density of
the fluid particle to be independent of its volume. In other words, the mass
of a fluid particle is a smooth function of the volume.

On the other hand the linear measure of the volume must be small com-
pared to the macroscopic length of interest. It is appropriate to assume that
the volume of the fluid particle is infinitely small compared to the whole
volume occupied by the fluid. This assumption forms the basis of the con-
tinuum hypothesis. Under this hypothesis we consider the fluid particle to be
a material point and the density (or other properties) of the fluid to be con-
tinuous functions of place and time. Occasionally we will have to relax this
assumption on certain curves or surfaces, since discontinuities in the density
or temperature, say, may occur in the context of some idealizations. The
part of the fluid under observation consists then of infinitely many material
points, and we expect that the motion of this continuum will be described
by partial differential equations. However the assumptions which have led us
from the material to the idealized model of the continuum are not always
fulfilled. One example is the flow past a space craft at very high altitudes,
where the air density is very low. The number of molecules required to do
any useful averaging then takes up such a large volume that it is comparable
to the volume of the craft itself.

Continuum theory is also inadequate to describe the structure of a shock
(see Chap. 9), a frequent occurrence in compressible flow. Shocks have thick-
nesses of the same order of magnitude as the mean free path, so that the
linear measures of the volumes required for averaging are comparable to the
thickness of the shock.

We have not yet considered the role the thermal motion of molecules plays
in the continuum model. This thermal motion is reflected in the macroscopic
properties of the material and is the single source of viscosity in gases. Even
if the macroscopic velocity given by (1.4) is zero, the molecular velocities �ci
are clearly not necessarily zero. The consequence of this is that the molecules
migrate out of the fluid particle and are replaced by molecules drifting in.
This exchange process gives rise to the macroscopic fluid properties called
transport properties . Obviously, molecules with other molecular properties
(e. g. mass) are brought into the fluid particle. Take as an example a gas
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which consists of two types of molecule, say O2 and N2. Let the number of
O2 molecules per unit volume in the fluid particle be larger than that of
the surroundings. The number of O2 molecules which migrate out is pro-
portional to the number density inside the fluid particle, while the number
which drift in is proportional to that of the surroundings. The net effect is
that more O2 molecules drift in than drift out and so the O2 number density
adjusts itself to the surroundings. From the standpoint of continuum theory
the process described above represents the diffusion.

If the continuum velocity �u in the fluid particle as given by (1.4) is larger
than that of the surroundings, the molecules which drift out bring their mo-
lecular velocities which give rise to �u with them. Their replacements have
molecular velocities with a smaller part of the continuum velocity �u. This re-
sults in momentum exchange through the surface of the fluid particle which
manifests itself as a force on this surface. In the simple shearing flow (Fig. 1.1)
the force per unit area on a surface element parallel to the plates is given by
(1.3). The sign of this shear stress is such as to even out the velocity. How-
ever nonuniformity of the velocity is maintained by the force on the upper
plate, and thus the momentum transport is also maintained. From the point
of view of continuum theory, this momentum transport is the source of the
internal friction, i. e. the viscosity. The molecular transport of momentum
accounts for internal friction only in the case of gases. In liquids, where the
molecules are packed as closely together as the repulsive forces will allow,
each molecule is in the range of attraction of several others. The exchange of
sites among molecules, responsible for the deformability, is impeded by the
force of attraction from neighboring molecules. The contribution from these
intermolecular forces to the force on surface elements of fluid particles hav-
ing different macroscopic velocities is greater than the contribution from the
molecular momentum transfer. Therefore the viscosity of liquids decreases
with increasing temperature, since change of place among molecules is fa-
vored by more vigorous molecular motion. Yet the viscosity of gases, where
the momentum transfer is basically its only source, increases with tempera-
ture, since increasing the temperature increases the thermal velocity of the
molecules, and thus the momentum exchange is favored.

The above exchange model for diffusion and viscosity can also explain the
third transport process: conduction. In gases, the molecules which drift out of
the fluid particle bring with them their kinetic energy, and exchange it with
the surrounding molecules through collisions. The molecules which migrate
into the particle exchange their kinetic energy through collisions with the
molecules in the fluid particle, thus equalizing the average kinetic energy
(i. e. the temperature) in the fluid.

Thus, as well as the already mentioned differential equations for describing
the motion of the continuum, the relationships which describe the exchange
of mass (diffusion), of momentum (viscosity) and of kinetic energy (conduc-
tion) must be known. In the most general sense, these relationships establish
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the connection between concentration and diffusion flux, between forces and
motion, and between temperature and heat flux. However these relations only
reflect the primary reasons for “cause” and “effect”. We know from the kinetic
theory of gases, that an effect can have several causes. Thus, for example,
the diffusion flux (effect) depends on the inhomogeneity of the concentra-
tion, the temperature and the pressure field (causes), as well as on other
external forces. The above relationships must therefore occasionally permit
the dependency of the effect on several causes. Relationships describing the
connections between the causes and effects in a body are called constitutive
relations . They reflect macroscopically the behavior of matter that is deter-
mined microscopically through the molecular properties. Continuum theory
is however of a phenomenological nature: in order to look at the macroscopic
behavior of the material, mathematical and therefore idealized models are
developed. Yet this is necessary, since the real properties of matter can never
be described exactly. But even if this possibility did exist, it would be waste-
ful to include all the material properties not relevant in a given technical
problem. Thus the continuum theory works not with real materials, but with
models which describe the behavior for the given application sufficiently ac-
curately. The model of an ideal gas, for example, is evidently useful for many
applications, although ideal gas is never encountered in reality.

In principle, models could be constructed solely from experiments and
experiences, without consideration for the molecular structure. Yet consider-
ation of the microscopic structure gives us insight into the formulation and
limitations of the constitutive equations.

1.2 Kinematics

1.2.1 Material and Spatial Descriptions

Kinematics is the study of the motion of a fluid, without considering the
forces which cause this motion, that is without considering the equations
of motion. It is natural to try to carry over the kinematics of a mass-point
directly to the kinematics of a fluid particle. Its motion is given by the time
dependent position vector �x(t) relative to a chosen origin.

In general we are interested in the motion of a finitely large part of the
fluid (or the whole fluid) and this is made up of infinitely many fluid par-
ticles. Thus the single particles must remain identifiable. The shape of the
particle is no use as an identification, since, because of its ability to deform
without limit, it continually changes during the course of the motion. Natu-
rally the linear measure must remain small in spite of the deformation during
the motion, something that we guarantee by idealizing the fluid particle as
a material point.
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For identification, we associate with each material point a characteristic
vector �ξ. The position vector �x at a certain time t0 could be chosen, giving
�x(t0) = �ξ. The motion of the whole fluid can then be described by

�x = �x(�ξ, t) or xi = xi(ξj , t) (1.5)

(We use the same symbol for the vector function on the right side as we use
for its value on the left.) For a fixed �ξ, (1.5) gives the path in space of the
material point labeled by �ξ (Fig. 1.3). For a different �ξ, (1.5) is the equation
of the pathline of a different particle.

While �ξ is only the particle’s label we shall often speak simply of the “�ξth”
particle. The velocity

�u = d�x/dt

and the acceleration
�a = d2�x/dt2

of a point in the material �ξ can also be written in the form

�u(�ξ, t) =
[
∂�x

∂t

]

�ξ

or ui(ξj , t) =
[
∂xi

∂t

]

ξj

, (1.6)

�a(�ξ, t) =
[
∂�u

∂t

]

�ξ

or ai(ξj , t) =
[
∂ui

∂t

]

ξj

, (1.7)

where “differentiation at fixed �ξ ” indicates that the derivative should be taken
for the “�ξth” point in the material. Confusion relating to differentiation with
respect to t does not arise since �ξ does not change with time. Mathemati-
cally, (1.5) describes a mapping from the reference configuration to the actual
configuration.

For reasons of tradition we call the use of the independent variables �ξ
and t the material or Lagrangian description, but the above interpretation
of (1.5) suggests a more accurate name is referential description. �ξ is called
the material coordinate.

Fig. 1.3. Material description
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Although the choice of �ξ and t as independent variables is obvious and is
used in many branches of continuum mechanics; the material description is
impractical in fluid mechanics (apart from a few exceptions). In most prob-
lems attention is focused on what happens at a specific place or in a specific
region of space as time passes. The independent variables are then the place
�x and the time t. Solving Eq. (1.5) for �ξ we get

�ξ = �ξ(�x, t) (1.8)

This is the label of the material point which is at the place �x at time t. Using
(1.8) �ξ can be eliminated from (1.6):

�u(�ξ, t) = �u
[
�ξ(�x, t), t

]
= �u(�x, t) . (1.9)

For a given �x, (1.9) expresses the velocity at the place �x as a function of
time. For a given t (1.9) gives the velocity field at time t. �x is called the field
coordinate, and the use of the independent variables �x and t is called the
spatial or Eulerian description.

With the help of (1.8) every quantity expressed in material coordinates
can be expressed in field coordinates. Using (1.5) all quantities given in field
coordinates can be converted into material coordinates. This conversion must
be well defined, since there is only one material point �ξ at place �x at time t.
The mapping (1.5) and the inverse mapping (1.8) must be uniquely reversible,
and this is of course true if the Jacobian J = det(∂xi/∂ξj) does not vanish.

If the velocity is given in field coordinates, the integration of the differ-
ential equations

d�x
dt

= �u(�x, t) or
dxi

dt
= ui(xj , t) (1.10)

(with initial conditions �x(t0) = �ξ) leads to the pathlines �x = �x(�ξ, t).
If the velocity field and all other dependent quantities (e. g. the density

or the temperature) are independent of time, the motion is called steady,
otherwise it is called unsteady.

The Eulerian description is preferable because the simpler kinematics are
better adapted to the problems of fluid mechanics. Consider a wind tunnel
experiment to investigate the flow past a body. Here one deals almost always
with steady flow. The paths of the fluid particles (where the particle has
come from and where it is going to) are of secondary importance. In addition
the experimental determination of the velocity as a function of the mate-
rial coordinates (1.6) would be very difficult. But there are no difficulties in
measuring the direction and magnitude of the velocity at any place, say, and
by doing this the velocity field �u = �u(�x) or the pressure field p = p(�x) can
be experimentally determined. In particular the pressure distribution on the
body can be found.
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1.2.2 Pathlines, Streamlines, Streaklines

The differential Eq. (1.10) shows that the path of a point in the material
is always tangential to its velocity. In this interpretation the pathline is the
tangent curve to the velocities of the same material point at different times.
Time is the curve parameter, and the material coordinate �ξ is the family
parameter.

Just as the pathline is natural to the material description, so the stream-
line is natural to the Eulerian description. The velocity field assigns a velocity
vector to every place �x at time t and the streamlines are the curves whose
tangent directions are the same as the directions of the velocity vectors. The
streamlines provide a vivid description of the flow at time t.

If we interpret the streamlines as the tangent curves to the velocity vectors
of different particles in the material at the same instant in time we see that
there is no connection between pathlines and streamlines, apart from the fact
that they may sometimes lie on the same curve.

By the definition of streamlines, the unit vector �u/|�u| is equal to the unit
tangent vector of the streamline �τ = d�x/|d�x| = d�x/ds where d�x is a vector
element of the streamline in the direction of the velocity. The differential
equation of the streamline then reads

d�x
ds

=
�u(�x, t)
|�u| , (t = const) (1.11a)

or in index notation

dxi

ds
=
ui(xj , t)√
ukuk

, (t = const) . (1.11b)

Integration of these equations with the “initial condition” that the streamline
emanates from a point in space �x0 (�x(s = 0) = �x0) leads to the parametric
representation of the streamline �x = �x(s, �x0). The curve parameter here is
the arc length s measured from �x0, and the family parameter is �x0.

The pathline of a material point �ξ is tangent to the streamline at the place
�x, where the material point is situated at time t. This is shown in Fig. 1.4.
By definition the velocity vector is tangential to the streamline at time t and
to its pathline. At another time the streamline will in general be a different
curve.

In steady flow, where the velocity field is time-independent (�u = �u(�x)),
the streamlines are always the same curves as the pathlines. The differential
equations for the pathlines are now given by d�x/dt = �u(�x), where time de-
pendence is no longer explicit as in (1.10). The element of the arc length along
the pathline is dσ = |�u|dt, and the differential equations for the pathlines are
the same as for streamlines

d�x
dσ

=
�u(�x)
|�u| , (1.12)
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Fig. 1.4. Streamlines and pathlines

because how the curve parameter is named is irrelevant. Interpreting the
integral curves of (1.12) as streamlines means they are still the tangent curves
of the velocity vectors of different material particles at the same time t. Since
the particles passing through the point in space �x all have the same velocity
there at all times, the tangent curves remain unchanged. Interpreting the
integral curves of (1.12) as pathlines means that a material particle must
move along the streamline as time passes, since it does not encounter velocity
components normal to this curve.

What has been said for steady velocity fields holds equally well for un-
steady fields where the direction of the velocity vector is time independent,
that is for velocity fields of the form

�u(�x, t) = f(�x, t) �u0(�x) . (1.13)

The streakline is also important, especially in experimental fluid mechanics.
At a given time t a streakline joins all material points which have passed
through (or will pass through) a given place �y at any time t′. Filaments of
color are often used to make flow visible. Colored fluid introduced into the
stream at place �y forms such a filament and a snapshot of this filament is
a streakline. Other examples of streaklines are smoke trails from chimneys or
moving jets of water.

Let the field �u = �u(�x, t) be given, and calculate the pathlines from (1.10),
solving it for �ξ. Setting �x = �y and t = t′ in (1.8) identifies the material points
�ξ which were at place �y at time t′.

The path coordinates of these particles are found by introducing the label
�ξ into the path equations, thus giving

�x = �x
[
�ξ(�y, t′), t

]
. (1.14)

At a given time t, t′ is the curve parameter of a curve in space which goes
through the given point �y, and thus this curve in space is a streakline. In
steady flows, streaklines, streamlines and pathlines all lie on the same curve.
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Fig. 1.5. Streaklines and pathlines

Surfaces can be associated with the lines introduced so far, formed by all
the lines passing through some given curve C. If this curve C is closed, the
lines form a tube (Fig. 1.6).

Streamtubes formed in this way are of particular technical importance.
Since the velocity vector is by definition tangential to the wall of a streamtube,
no fluid can pass through the wall. This means that pipes with solid walls
are streamtubes.

Often the behavior of the whole flow can be described by the behavior
of some “average” representative streamline. If the properties of the flow are

Fig. 1.6. Streamsheet and streamtube
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approximately constant over the cross-section of the streamtube at the lo-
cation where they are to be determined, we are led to a simple method of
calculation: so-called stream filament theory. Since the streamtubes do not
change with time when solid walls are present, the flow fields are, almost
trivially, those where the direction of the velocity vector does not change.
Consequently these flows may be calculated with relative ease.

Flows are often met in applications where the whole region of interest can
be thought of as one streamtube. Examples are flows in tubes of changing
cross-section, like in nozzles, in diffusers, and also in open channels. The space
that the fluid occupies in turbomachines can often be taken as a streamtube,
and even the flow between the blades of turbines and compressors can be
treated approximately in this manner (Fig. 1.7).

The use of this “quasi-one-dimensional” view of the whole flow means that
sometimes corrections for the higher dimensional character of the flow have
to be introduced.

Steady flows have the advantage over unsteady flows that their streamlines
are fixed in space, and the obvious convenience that the number of indepen-
dent variables is reduced, which greatly simplifies the theoretical treatment.
Therefore whenever possible we choose a reference system where the flow is
steady. For example, consider a body moved through a fluid which is at rest
at infinity. The flow in a reference frame fixed in space is unsteady, whereas
it is steady in a reference frame moving with the body. Fig. 1.8 demonstrates
this fact in the example of a (frictionless) flow caused by moving a cylinder
right to left. The upper half of the figure shows the unsteady flow relative
to an observer at rest at time t = t0 when the cylinder passes through the
origin. The lower half shows the same flow relative to an observer who moves
with the cylinder. In this system the flow is towards the cylinder from the left

Fig. 1.7. Examples of streamtubes
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Fig. 1.8. Unsteady flow for a motionless observer; steady flow for an observer
moving with the body

and it is steady. A good example of the first reference system is the everyday
experience of standing on a street and feeling the unsteady flow when a vehicle
passes. The second reference system is experienced by an observer inside the
vehicle who feels a steady flow when he holds his hand out of the window.

1.2.3 Differentiation with Respect to Time

In the Eulerian description our attention is directed towards events at the
place �x at time t. However the rate of change of the velocity �u at �x is not
generally the acceleration which the point in the material passing through �x
at time t experiences. This is obvious in the case of steady flows where the rate
of change at a given place is zero. Yet a material point experiences a change
in velocity (an acceleration) when it moves from �x to �x+ d�x. Here d�x is the
vector element of the pathline. The changes felt by a point of the material or
by some larger part of the fluid and not the time changes at a given place or
region of space are of fundamental importance in the dynamics. If the velocity
(or some other quantity) is given in material coordinates, then the material
or substantial derivative is provided by (1.6). But if the velocity is given in
field coordinates, the place �x in �u(�x, t) is replaced by the path coordinates
of the particle that occupies �x at time t, and the derivative with respect to
time at fixed �ξ can be formed from

d�u
dt

=

⎧
⎨

⎩
∂�u
{
�x(�ξ, t), t

}

∂t

⎫
⎬

⎭
�ξ

, (1.15a)
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or
dui

dt
=
{
∂ui {xj(ξk, t), t}

∂t

}

ξk

. (1.15b)

The material derivative in field coordinates can also be found without direct
reference to the material coordinates. Take the temperature field T (�x, t) as
an example: we take the total differential to be the expression

dT =
∂T

∂t
dt+

∂T

∂x1
dx1 +

∂T

∂x2
dx2 +

∂T

∂x3
dx3 . (1.16)

The first term on the right-hand side is the rate of change of the temperature
at a fixed place: the local change. The other three terms give the change in
temperature by advancing from �x to �x+d�x. This is the convective change. The
last three terms can be combined to give d�x ·∇T or equivalently dxi ∂T/∂xi.
If d�x is the vector element of the fluid particle’s path at �x, then (1.10) holds
and the rate of change of the temperature of the particle passing �x (the
material change of the temperature) is

dT
dt

=
∂T

∂t
+ �u · ∇T (1.17a)

or
dT
dt

=
∂T

∂t
+ ui

∂T

∂xi
=
∂T

∂t
+ u1

∂T

∂x1
+ u2

∂T

∂x2
+ u3

∂T

∂x3
. (1.17b)

This is quite a complicated expression for the material change in field co-
ordinates, which leads to difficulties in the mathematical treatment. This is
made clearer when we likewise write down the acceleration of the particle
(the material change of its velocity):

d�u
dt

=
∂�u

∂t
+ (�u · ∇) �u =

∂�u

∂t
+ (�u · grad) �u , (1.18a)

or
dui

dt
=
∂ui

∂t
+ uj

∂ui

∂xj
. (1.18b)

(Although the operator d/dt = ∂/∂t + (�u · ∇) is written in vector nota-
tion, it is here only explained in Cartesian coordinates. Now by appropriate
definition of the Nabla operator, the operator d/dt is also valid for curvilin-
ear coordinate systems, its application to vectors is difficult since the basis
vectors can change. Later we will see a form for the material derivative of
velocity which is more useful for orthogonal curvilinear coordinates since,
apart from partial differentiation with respect to time, it is only composed
of known quantities like the rotation of the velocity field and the gradient of
the kinetic energy.)

It is easy to convince yourself that the material derivative (1.18) results
from differentiating (1.15) with the chain rule and using (1.6).

The last three terms in the ith component of (1.18b) are nonlinear (quasi-
linear), since the products of the function uj(�x, t) with its first derivatives
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∂ui(�x, t)/∂xj appear. Because of these terms, the equations of motion in field
coordinates are nonlinear, making the mathematical treatment difficult. (The
equations of motion in material coordinates are also nonlinear, but we will
not go into details now.)

The view which has led us to (1.17) also gives rise to the general time
derivative. Consider the rate of change of the temperature felt by a swimmer
moving at velocity �w relative to a fluid velocity of �u, i. e. at velocity �u + �w
relative to a fixed reference frame. The vector element d�x of his path is
d�x = (�u+ �w) dt and the rate of change of the temperature felt by the swimmer
is

dT
dt

=
∂T

∂t
+ (�u+ �w) · ∇T , (1.19)

where the operator ∂/∂t+(�u+ �w)·∇ or ∂/∂t+(ui+wi) ∂/∂xi, applied to other
field quantities gives the rate of change of these quantities as experienced by
the swimmer.

To distinguish between the general time derivative (1.19) and the material
derivative we introduce the following symbol

D
Dt

=
∂

∂t
+ ui

∂

∂xi
=

∂

∂t
+ (�u · ∇) (1.20)

for the material derivative. (Mathematically, of course there is no difference
between d/dt and D/Dt.)

Using the unit tangent vector to the pathline

�t =
d�x
|d�x| =

d�x
dσ

(1.21)

the convective part of the operator D/Dt can also be written:

�u · ∇ = |�u|�t · ∇ = |�u| ∂
∂σ

, (1.22)

so that the derivative ∂/∂σ is in the direction of �t and that the expression

D
Dt

=
∂

∂t
+ |�u| ∂

∂σ
(1.23)

holds. This form is used to state the acceleration vector in natural coordi-
nates, that is in the coordinate system where the unit vectors of the accom-
panying triad of the pathline are used as basis vectors. σ is the coordinate in
the direction of �t, n is the coordinate in the direction of the principal normal
vector �nσ = R d�t/dσ, and b the coordinate in the direction of the binormal
vector �bσ = �t× �nσ. R is the radius of curvature of the pathline in the oscu-
lating plane spanned by the vectors �t and �nσ. Denoting the component of �u
in the �t-direction as u, (u = |�u|), (1.23) then leads to the expression

D
Dt

(u�t ) =
[
∂u

∂t
+ u

∂u

∂σ

]
�t+

u2

R
�nσ . (1.24)
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Resolving along the triad (�τ , �ns, �bs) of the streamline at time t, the convective
acceleration is the same as in expression (1.24), since at the place �x the
streamline is tangent to the pathline of the particle found there. However
the local change contains terms normal to the streamline, and although the
components of the velocity ub and un are zero here, their local changes do
not vanish:

∂�u

∂t
=
∂u

∂t
�τ +

∂un

∂t
�ns +

∂ub

∂t
�bs . (1.25)

Resolving the acceleration vector into the natural directions of the streamline
then gives us:

D�u
Dt

=
[
∂u

∂t
+ u

∂u

∂s

]
�τ +

[
∂un

∂t
+
u2

R

]
�ns +

∂ub

∂t
�bs . (1.26)

When the streamline is fixed in space, (1.26) reduces to (1.24).

1.2.4 State of Motion, Rate of Change of Line, Surface
and Volume Elements

Knowing the velocity at the place �x we can use the Taylor expansion to find
the velocity at a neighboring place �x+ d�x:

ui(�x+ d�x, t) = ui(�x, t) +
∂ui

∂xj
dxj . (1.27a)

For each of the three velocity components ui there are three derivatives in the
Cartesian coordinate system, so that the velocity field in the neighborhood
of �x is fully defined by these nine spatial derivatives. Together they form
a second order tensor, the velocity gradient ∂ui/∂xj . The symbols ∇�u or
grad�u (defined by (A.40) in Appendix A) are used, and (1.27a) can also be
written in the form

�u(�x+ d�x, t) = �u(�x, t) + d�x · ∇�u . (1.27b)

Using the identity

∂ui

∂xj
=

1
2

{
∂ui

∂xj
+
∂uj

∂xi

}
+

1
2

{
∂ui

∂xj
− ∂uj

∂xi

}
(1.28)

we expand the tensor ∂ui/∂xj into a symmetric tensor

eij =
1
2

{
∂ui

∂xj
+
∂uj

∂xi

}
, (1.29a)
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where this can be symbolically written, using (A.40), as

E = eij �ei �ej =
1
2
[
(∇�u) + (∇�u)T

]
, (1.29b)

and an antisymmetric tensor

Ωij =
1
2

{
∂ui

∂xj
− ∂uj

∂xi

}
, (1.30a)

where this is symbolically (see A.40)

Ω = Ωji�ei�ej =
1
2
[
(∇�u) − (∇�u)T

]
. (1.30b)

Doing this we get from (1.27)

ui(�x + d�x, t) = ui(�x, t) + eijdxj +Ωijdxj , (1.31a)

or
�u(�x+ d�x, t) = �u(�x, t) + d�x ·E + d�x · Ω . (1.31b)

The first term in (1.31) arises from the translation of the fluid at place �x
with velocity ui. The second represents the velocity with which the fluid in
the neighborhood of �x is deformed, while the third can be interpreted as an
instantaneous local rigid body rotation. There is a very important meaning
attached to the tensors eij and Ωij , which each describe entirely different
contributions to the state of the motion. By definition the frictional stresses
in the fluid make their appearance in the presence of deformation velocities,
so that they cannot be dependent on the tensor Ωij which describes a local
rigid body rotation. To interpret the tensors eij and Ωij we calculate the
rate of change of a material line element dxi. This is a vector element which
always consists of a line distribution of the same material points. The material
change is found, using

D
Dt

(d�x) = d
[
D�x
Dt

]
= d�u , (1.32)

as the velocity difference between the endpoints of the element. The vector
component d�uE in the direction of the element is obviously the velocity with
which the element is lengthened or shortened during the motion (Fig. 1.9).
With the unit vector d�x/ds in the direction of the element, the magnitude of
this component is

d�u · d�x
ds

= dui
dxi

ds
= (eij +Ωij)dxj

dxi

ds
, (1.33)

and since Ωijdxjdxi is equal to zero (easily seen by expanding and interchang-
ing the dummy indices), the extension of the element can only be caused by
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Fig. 1.9. The physical significance of the diagonal components of the deformation
tensor

the symmetric tensor eij . eij is called the rate of deformation tensor . Other
names are: stretching, rate of strain, or velocity strain tensor . We note that
the stretching, for example, at place �x is the stretching that the particle expe-
riences which occupies the place �x. For the rate of extension per instantaneous
length ds we have from (1.33):

dui

ds
dxi

ds
= ds−1 D(dxi)

Dt
dxi

ds
=

1
2
ds−2 D(ds2)

Dt
(1.34)

and using (1.33), we get

dui

ds
dxi

ds
= ds−1 D(ds)

Dt
= eij

dxi

ds
dxj

ds
. (1.35)

Since dxi/ds = li is the ith component and dxj/ds = lj is the jth component
of the unit vector in the direction of the element, we finally arrive at the
following expression for the rate of extension or the stretching of the material
element:

ds−1 D(ds)
Dt

= eij lilj . (1.36)

(1.36) gives the physical interpretation of the diagonal elements of the tensor
eij . Instead of the general orientation, let the material element d�x be viewed
when orientated parallel to the x1-axis, so that the unit vector in the direction
of the element has the components (1,0,0) and, of the nine terms in (1.36),
only one is nonzero. In this case, with ds = dx1, (1.36) reads:

dx−1
1

D(dx1)
Dt

= e11 . (1.37)

The diagonal terms are now identified as the stretching of the material el-
ement parallel to the axes. In order to understand the significance of the
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remaining elements of the rate of deformation tensor, we imagine two per-
pendicular material line elements of the material d�x and d�x′ (Fig. 1.10). The
magnitude of the component d�uR perpendicular to d�x (thus in the direction
of the unit vector �l′ = d�x′/ds′ and in the plane spanned by d�x and d�x′) is
d�u · d�x′/ds′. After division by ds we get the angular velocity with which the
material line element rotates in the mathematically positive sense:

Dϕ
Dt

= −d�u
ds

· d�x′

ds′
= −dui

ds
dx′i
ds′

. (1.38)

Similarly we get the angular velocity with which d�x′ rotates:

Dϕ′

Dt
= −d�u′

ds′
·
(
−d�x

ds

)
=

du′i
ds′

dxi

ds
. (1.39)

The difference between these gives the rate of change of the angle between
the material elements d�x and d�x′ (currently ninety degrees), and it gives
a measure of the shear rate. Since

dui

ds
=

∂ui

∂xj

dxj

ds
and

du′i
ds′

=
∂ui

∂xj

dx′j
ds′

(1.40)

we get, for the difference between the angular velocities

D(ϕ− ϕ′)
Dt

= −
{
∂ui

∂xj
+
∂uj

∂xi

}
dxi

ds
dx′j
ds′

= −2eijlil
′
j . (1.41)

To do this, the dummy indices were relabeled twice. Choosing d�x parallel to
the x2-axis, d�x′ parallel to the x1-axis, so that �l = (0, 1, 0) and �l′ = (1, 0, 0),
and denoting the enclosed angle by α12, (1.41) gives the element e12 as half
of the velocity with which α12 changes in time:

Dα12

Dt
= −2e12 . (1.42)

Fig. 1.10. The physical significance of the nondiagonal elements of the rate of
deformation tensor
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The physical interpretation of all the other nondiagonal elements of eij is
now obvious. The average of the angular velocities of the two material line
elements gives the angular velocity with which the plane spanned by them
rotates:

1
2

D
Dt

(ϕ+ ϕ′) = −1
2

{
∂ui

∂xj
− ∂uj

∂xi

}
dxj

ds
dx′i
ds′

= Ωjil
′
ilj . (1.43)

Here again the dummy index has been relabeled twice and the property of
the antisymmetric tensor Ωij = −Ωji has been used. The Eq. (1.43) also
yields the modulus of the component of the angular velocity �ω perpendicular
to the plane spanned by d�x and d�x′. The unit vector perpendicular to this
plane

d�x′

ds′
× d�x

ds
= �l′ ×�l (1.44)

can be written in index notation with the help of the epsilon tensor as l′iljεijk,
so that the right-hand side of (1.43) can be rewritten as follows:

Ωjil
′
ilj = ωk l

′
i lj εijk . (1.45)

This equation assigns a vector to the antisymmetric tensor Ωij :

ωkεijk = Ωji . (1.46)

Equation (1.46) expresses the well known fact that an antisymmetric tensor
can be represented by an axial vector. Thus the contribution Ωijdxj to the
velocity field about the place �x is the same as the ith component εkjiωkdxj

of the circumferential velocity �ω × d�x produced at the vector radius d�x by
a rigid body at �x rotating at angular velocity �ω. For example, the tensor ele-
ment Ω12 is then numerically equal to the component of the angular velocity
perpendicular to the x1-x2-plane in the negative x3-direction. Ωij is called
the spin tensor . From (1.46) we can get the explicit representation of the
vector component of �ω, using the identity

εijkεijn = 2 δkn (1.47)

(where δkn is the Kronecker delta) and multiplying by εijn to get

ωkεijkεijn = 2ωn = Ωjiεijn . (1.48)

Since eij is a symmetric tensor, then εijneij = 0, and in general the following
holds:

ωn =
1
2
∂uj

∂xi
εijn . (1.49a)
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The corresponding expression in vector notation

�ω =
1
2
∇× �u =

1
2
curl�u (1.2)

introduces the vorticity vector curl �u, which is equal to twice the angular
velocity �ω. If this vorticity vector vanishes in the whole flow field in which we
are interested, we speak of an irrotational flow field. The absence of vorticity
in a field simplifies the mathematics greatly because we can now introduce
a velocity potential Φ. The generally unknown functions ui result then from
the gradient of only one unknown scalar function Φ:

ui =
∂Φ

∂xi
or �u = ∇Φ . (1.50)

This is the reason why irrotational flows are also called potential flows . The
three component equations obtained from (1.50) are equivalent to the exis-
tence of a total differential

dΦ =
∂Φ

∂xi
dxi = uidxi . (1.51)

The necessary and sufficient conditions for its existence are that the following
equations for the mixed derivatives should hold throughout the field:

∂u1

∂x2
=
∂u2

∂x1
,

∂u2

∂x3
=
∂u3

∂x2
,

∂u3

∂x1
=
∂u1

∂x3
. (1.52)

Because of (1.50) these relationships are equivalent to the vanishing of the
vorticity vector curl�u.

As with streamlines, in rotational flow vortex-lines are introduced as tan-
gent curves to the vorticity vector field, and similarly these can form vortex-
sheets and vortex-tubes.

As is well known, symmetric matrices can be diagonalized. The same
can be said for symmetric tensors, since tensors and matrices only differ in
the ways that their measures transform, but otherwise they follow the same
calculation rules. The reduction of a symmetric tensor eij to diagonal form
is physically equivalent to finding a coordinate system where there is no
shearing, only stretching. This is a so-called principal axis system. Since eij

is a tensor field, the principal axis system is in general dependent on the
place �x. If �l (or li) is the unit vector relative to a given coordinate system
in which eij is nondiagonal, the above problem amounts to determining this
vector so that it is proportional to that part of the change in velocity given
by eij , namely eijdxj . We divide these changes by ds and since

dui

ds
= eij

dxj

ds
= eij lj (1.53)
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we are led to the eigenvalue problem

eij lj = e li. (1.54)

A solution of (1.54) only exists when the arbitrary constant of proportionality
e takes on specific values, called the eigenvalues of the tensor eij . Using the
Kronecker Delta symbol we can write the right-hand side of (1.54) as e lj δij

and we are led to the homogeneous system of equations

(eij − e δij)lj = 0 . (1.55)

This has nontrivial solutions for the unit vector we are searching for only
when the determinant of the matrix of coefficients vanishes:

det(eij − e δij) = 0 . (1.56)

This is an equation of the third degree, and is called the characteristic equa-
tion. It can be written as

−e3 + I1ee
2 − I2e e+ I3e = 0 , (1.57)

where I1e, I2e, I3e are the first, second and third invariants of the rate of
deformation tensor, given by the following formulae:

I1e = eii, I2e =
1
2
(eiiejj − eijeij), I3e = det(eij) . (1.58)

These quantities are invariants because they do not change their numerical
values under change of coordinate system. They are called the basic invariants
of the tensor eij . The roots of (1.57) do not change, and so neither do the
eigenvalues of the tensor eij . The eigenvalues of a symmetric matrix are all
real, and if they are all distinct, (1.54) gives three systems of equations,
one for each of the components of the vector �l. With the condition that �l
is to be a unit vector, the solution of the homogeneous system of equations
is unique. The three unit vectors of a real symmetric matrix are mutually
orthogonal, and they form the principal axis system in which eij is diagonal.
The statement of Eq. (1.31) in words is thus:

“The instantaneous velocity field about a place �x is caused by the su-
perposition of the translational velocity of the fluid there with stretch-
ing in the directions of the principal axes and a rigid rotation of these
axes.” (fundamental theorem of kinematics)

By expanding the first invariant I1e, and using equation (1.37) and corre-
sponding expressions, we arrive at the equation

eii = dx−1
1

D(dx1)
Dt

+ dx−1
2

D(dx2)
Dt

+ dx−1
3

D(dx3)
Dt

. (1.59)
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On the right is the rate of change of the material volume dV , divided by dV :
it is the material change of this infinitesimal volume of the fluid particle. We
can also write (1.59) in the form

eii = ∇ · �u = dV −1 D(dV )
Dt

. (1.60)

Now, in flows where D(dV )/Dt is zero, the volume of a fluid particle does not
change, although its shape can. Such flows are called volume preserving, and
the velocity fields of such flows are called divergence free or source free. The
divergence ∇·�u and the curl∇×�u are quantities of fundamental importance,
since they can tell us a lot about the velocity field. If they are known in
a simply connected space (where all closed curves may be shrunk to a single
point), and if the normal component of �u is given on the bounding surface,
then, by a well known principle of vector analysis, the vector �u(�x) is uniquely
defined at all �x. We also note the rate of change of a directional material
surface element, nidS, which always consists of a surface distribution of the
same fluid particles. With dV = nidSdxi we get from (1.60)

D
Dt

(nidSdxi) = nidSdxiejj , (1.61)

or
D
Dt

(nidS)dxi + duinidS = nidSdxiejj (1.62)

finally leading to

D
Dt

(nidS) =
∂uj

∂xj
nidS − ∂uj

∂xi
njdS . (1.63)

After multiplying by ni and noting that D(nini)/Dt = 0 we obtain the
specific rate of extension of the material surface element dS

1
dS

D(dS)
Dt

=
∂uj

∂xj
− eijninj . (1.64)

Divided by the Euclidean norm of the rate of deformation tensor (elk elk)1/2,
this can be used as a local measure for the “mixing”:

D(lndS)
Dt

/(elk elk)1/2 =
[
∂uj

∂xj
− eijninj

]
/(elk elk)1/2 . (1.65)

The higher material derivatives also play a role in the theory of the constitu-
tive equations of non-Newtonian fluids. They lead to kinematic tensors which
can be easily represented using our earlier results. From (1.35) we can read
off the material derivative of the square of the line element ds as

D(ds2)
Dt

= 2eijdxidxj (1.66)
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and by further material differentiation this leads to the expression

D2(ds2)
Dt2

=
{

D(2eij)
Dt

+ 2ekj
∂uk

∂xi
+ 2eik

∂uk

∂xj

}
dxidxj . (1.67)

Denoting the tensor in the brackets as A(2)ij and 2eij as A(1)ij , (symbolically
A(2) and A(1)), we find the operational rule for higher differentiation:

Dn(ds2)
Dtn

= A(n)ijdxidxj , (1.68)

where
A(n)ij =

DA(n−1)ij

Dt
+A(n−1)kj

∂uk

∂xi
+A(n−1)ik

∂uk

∂xj
(1.69)

gives the rule by which the tensor A(n) can be found from the tensor A(n−1)

(Oldroyd’s derivative). The importance of the tensors A(n), also called the
Rivlin-Ericksen tensors , lies in the fact that in very general non-Newtonian
fluids, as long as the deformation history is smooth enough, the friction stress
can only depend on these tensors. The occurrence of the above higher time
derivatives can be disturbing, since in practice it is not known if the required
derivatives actually exist. For kinematically simple flows, so called viscometric
flows (the shearing flow in Fig. 1.1 is an example of these), the tensors A(n)

vanish in steady flows for n > 2. In many technically relevant cases, non-
Newtonian flows can be directly treated as viscometric flows, or at least as
related flows.

We will now calculate the kinematic quantities discussed up to now with
an example of simple shearing flow (Fig. 1.11), whose velocity field is given
by

u1 = γ̇ x2 ,
u2 = 0 ,
u3 = 0 .

(1.70)

The material line element d�x is rotated about dϕ = −(du1/ dx2)dt in time
dt, giving Dϕ/Dt = −γ̇.

The material line element d�x′ remains parallel to the x1-axis. The rate of
change of the angle originally at ninety degrees is thus −γ̇. The agreement

Fig. 1.11. Kinematics of simple shear flow
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with (1.41) can be seen immediately since e12 = e21 = γ̇/2. Of the compo-
nents of the tensor eij , these are the only ones which are nonzero. The average
of the angular velocities of both material lines is −γ̇/2, in agreement with
(1.43). In order to work out the rotation of the element due to the shearing,
we subtract the rigid body rotation −γ̇/2 dt from the entire rotation calcu-
lated above (−γ̇ dt and 0), and thus obtain −γ̇/2 dt for the rotation of the
element d�x arising from shearing, and similarly +γ̇/2 dt for the rotation of
the element d�x′ due to shearing.

Now we can fully describe this flow: it consists of a translation of the
point in common to both material lines along the distance u1 dt, a rigid body
rotation of both line elements about an angle −γ̇/2 dt and a shearing which
rotates the element d�x′ about the angle +γ̇/2 dt (so that its total rotation is
zero) and the element d�x about the angle −γ̇/2 dt (so that its total rotation
is −γ̇ dt). Since A(1)ij = 2eij , the first Rivlin-Ericksen tensor has only two
nonzero components: A(1)12 = A(1)21 = γ̇. The matrix representation for
A(1)ij thus reads:

[
A(1)

]
=

⎡

⎣
0 γ̇ 0
γ̇ 0 0
0 0 0

⎤

⎦ . (1.71)

Putting the components of A(1)ij in (1.71) we find there is only one nonva-
nishing component of the second Rivlin-Ericksen tensor (A(2)22 = 2γ̇2), so
that it can be expressed in matrix form as

[
A(2)

]
=

⎡

⎣
0 0 0
0 2γ̇2 0
0 0 0

⎤

⎦ . (1.72)

All higher Rivlin-Ericksen tensors vanish.
An element d�x whose unit tangent vector d�x/ds has the components

(cosϑ, sinϑ, 0), thus making an angle ϑ with the x1-axis (l3 = 0), experi-
ences, by (1.36), the stretching:

1
ds

D(ds)
Dt

= eij lilj = e11l1l1 + 2e12l1l2 + e22l2l2 . (1.73)

Since e11 = e22 = 0 the final expression for the stretching is:

1
ds

D(ds)
Dt

= 2
γ̇

2
cosϑ sinϑ =

γ̇

2
sin 2ϑ . (1.74)

The stretching reaches a maximum at ϑ = 45◦ , 225◦ and a minimum at
ϑ = 135◦ , 315◦. These directions correspond with the positive and negative
directions of the principal axes in the x1-x2-plane.

The eigenvalues of the tensor eij can be calculated using (1.57), where
the basic invariants are given by I1e = 0, I2e = −γ̇2/4 and I3e = 0. Since
I1e = eii = div �u = 0 we see that this is a volume preserving flow. (The
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vanishing of the invariants I1e and I3e of the tensor eij is a necessary condi-
tion for viscometric flows, that is for flows which are locally simple shearing
flows.) The characteristic Eq. (1.55) then reads e(e2 − γ̇2/4) = 0 and it has
roots e(1) = −e(3) = γ̇/2, e(2) = 0. The eigenvectors belonging to these
roots, �n(1) = (1/

√
2, 1/

√
2, 0), �n(2) = (0, 0, 1) and �n(3) = (1/

√
2, −1/

√
2, 0),

give the principal rate of strain directions, up to the sign. (The otherwise
arbitrary indexing of the eigenvalues is chosen so that e(1) > e(2) > e(3).)
The second principal rate of strain direction is the direction of the x3 axis,
and the principal rate of strain e(2) is zero, since the velocity field is two-
dimensional. The distortion and extension of a square shaped fluid particle
is sketched in Fig. 1.12. In this special case the eigenvalues and eigenvectors
are independent of place �x. The principal axis system is the same for all fluid
particles, and as such Fig. 1.12 also holds for a larger square shaped part of
the fluid.

We return now to the representation of the acceleration (1.18) as the
sum of the local and convective accelerations. Transforming (1.20) into index
notation and using the identity

Dui

Dt
=
∂ui

∂t
+ uj

∂ui

∂xj
=
∂ui

∂t
+ uj

{
∂ui

∂xj
− ∂uj

∂xi

}
+ uj

∂uj

∂xi
, (1.75)

and the definition (1.30), we are led to

Dui

Dt
=
∂ui

∂t
+ 2Ωijuj +

∂

∂xi

{uj uj

2

}
. (1.76)

With (1.46), we finally obtain

Dui

Dt
=
∂ui

∂t
− 2εijkωkuj +

∂

∂xi

{uj uj

2

}
, (1.77)

Fig. 1.12. Deformation of a square of fluid in simple shearing flow
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which written symbolically using (1.2), is

D�u
Dt

=
∂�u

∂t
− �u× (∇× �u) + ∇

[
�u · �u

2

]
. (1.78)

This form shows explicitly the contribution of the rotation ∇×�u to the accel-
eration field. In steady irrotational flow, the acceleration can be represented
as the gradient of the kinetic energy (per unit mass).

We will often also use orthogonal curvilinear coordinate systems (e. g.
cylindrical and spherical coordinates). In these cases the material derivative
of the velocity in the form (1.78) is more useful than in (1.18), since the
components of the acceleration in these coordinate systems are readily ob-
tainable through the definition of the Nabla operator and by using the rules
for calculation of the scalar and vector product. From (1.78) we can also get
a dimensionless measure for the contribution of the rotation to the accelera-
tion:

WD =
|�u× (∇× �u)|∣∣∣∣
∂�u

∂t
+ ∇

[
�u · �u

2

]∣∣∣∣
. (1.79)

The ratio is called the dynamic vortex number . In general, it is zero for
irrotational flows, while for nonaccelerating steady flows it takes the value 1.
We can get a measure called the kinematic vortex number by dividing the
Euclidean norm (the magnitude) of the rotation |∇ × �u | by the Euclidean
norm of the rate of deformation tensor:

WK =
|∇ × �u |√
eij eij

. (1.80)

The kinematic vortex number is zero for irrotational flows and infinite for
a rigid body rotation if we exclude the pure translation for which indeed
both norms are zero.

Let us also compare the local acceleration with the convective acceleration
using the relationship

S =

∣∣∣∣
∂�u

∂t

∣∣∣∣
∣∣∣−�u× (∇× �u) + ∇

[
�u · �u

2

]∣∣∣
. (1.81)

For steady flows we have S = 0, unless the convective acceleration is also
equal to zero. S = ∞ is an important special case in unsteady flows, because
the convective acceleration is then zero. This condition is the fundamental
simplification used in acoustics and it is also used in the treatment of unsteady
shearing flows.
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1.2.5 Rate of Change of Material Integrals

From now on we shall always consider the same piece of fluid which is sep-
arated from the rest of the fluid by a closed surface. The enclosed part of
the fluid is called a “body” and always consists of the same fluid particles
(material points); its volume is therefore a material volume, and its surface
is a material surface. During the motion, the shape of the material volume
changes and successively takes up new regions in space. We will denote by
(V (t)) the region which is occupied by our part of the fluid at time t. The
mass m of the bounded piece of fluid is the sum of the mass elements dm
over the set (M) of the material points of the body:

m =
∫

(M)

dm . (1.82)

Since in continuum theory, we consider the density to be a continuous function
of position, we can also write the mass as the integral of the density over the
region in space (V (t)) occupied by the body:

m =
∫

(M)

dm =
∫∫∫

(V (t))

ρ(�x, t) dV . (1.83)

Equivalently, the same holds for any continuous function ϕ, whether it is
a scalar or a tensor function of any order:

∫

(M)

ϕdm =
∫∫∫

(V (t))

ϕρ dV . (1.84)

In the left integral we can think of ϕ as a function of the material coordinates �ξ
and t, and on the right we can think of it as a function of the field coordinates
�x and t. (Note that ϕ is not a property of the label �ξ, but a property of the
material point labeled �ξ.) We are most interested in the rate of change of
these material integrals and are led to a particularly simple derivation of the
correct expression if we use the law of conservation of mass at this stage: the
mass of the bounded part of the fluid must remain constant in time:

Dm
Dt

= 0 . (1.85)

This conservation law must also hold for the mass of the material point:

D
Dt

(dm) = 0 , (1.86)

since by (1.82) the mass is additive and the part of the fluid we are looking
at must always consist of the same material points. Now taking the rate of
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change of the integral on the left side of (1.84) the region of integration is
constant, and we have to differentiate the integral by the parameter t. Since
ϕ and Dϕ/Dt are continuous, the differentiation can be executed “under” the
integral sign (Leibniz’s rule), so that the equation now becomes:

D
Dt

∫

(M)

ϕdm =
∫

(M)

Dϕ
Dt

dm . (1.87)

The right-hand side can be expressed by an integration over the region in
space (V (t)) and we get using (1.84):

D
Dt

∫

(M)

ϕdm =
D
Dt

∫∫∫

(V (t))

ϕρ dV =
∫∫∫

(V (t))

Dϕ
Dt

ρ dV . (1.88)

The result of the integration in the last integral does not change when, in-
stead of a region varying in time (V (t)), we choose a fixed region (V ), which
coincides with the varying region at time t. We are really replacing the rate of
change of the integral of ϕ over a deforming and moving body by the integral
over a fixed region.

Although we got this result by the explicit use of the conservation of
mass, the reduction of the material derivative of a volume integral to a fixed
volume integral is purely kinematical. We recognize this when we apply the
conservation of mass again and construct a formula equivalent to (1.88) where
the density ρ does not appear. To this end we will consider the rate of change
of a material integral over a fluid property related to volume, which we again
call ϕ:

D
Dt

∫∫∫

(V (t))

ϕdV =
D
Dt

∫

(M)

ϕv dm =
∫

(M)

D
Dt

(ϕv) dm . (1.89)

Here v = 1/ρ is the specific volume. Carrying out the differentiation in the
integrand, and replacing Dv/Dt dm by D(dV )/Dt (as follows from (1.86)) we
get the equation

D
Dt

∫∫∫

(V (t))

ϕdV =
∫∫∫

(V )

Dϕ
Dt

dV +
∫∫∫

(V )

ϕ
D(dV )

Dt
. (1.90)

Without loss of generality we have replaced the time varying region on the
right-hand side (V (t)) with a fixed region (V ) which coincides with it at
time t. This formula shows that the derivative of material integrals can be
calculated by interchanging the order of integration and differentiation. From
this general rule, Eq. (1.88) emerges immediately taking into account that,
by (1.86), D(ρ dV )/Dt = 0 holds.

Another approach to (1.90), which also makes its pure kinematic nature
clear is gained by using (1.5) and thereby introducing the new integration
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variables ξi instead of xi. This corresponds to a mapping of the current
domain of integration (V (t)) to the region (V0) occupied by the fluid at the
reference time t0. Using the Jacobian J of the mapping (1.5) we have

dV = J dV0 ,

and obtain
D(dV )

Dt
=

DJ
Dt

dV0 (1.91a)

since V0 is independent of time, from which follows, using (1.60), the material
derivative of the Jacobian:

DJ
Dt

= eiiJ =
∂ui

∂xi
J , (1.91b)

a formula known as Euler’s expansion formula. From the last two equations
we then have

D
Dt

∫∫∫

(V (t))

ϕdV =
∫∫∫

(V0)

D
Dt

(ϕJ) dV0 =
∫∫∫

(V0)

[
Dϕ
Dt

J + ϕ
DJ
Dt

]
dV0 ,

which under the inverse mapping leads directly to (1.90). Using (1.91b) and
the inverse mapping the forms

D
Dt

∫∫∫

(V (t))

ϕdV =
∫∫∫

(V )

[
Dϕ
Dt

+ ϕ
∂ui

∂xi

]
dV (1.92)

and
D
Dt

∫∫∫

(V (t))

ϕdV =
∫∫∫

(V )

[
∂ϕ

∂t
+

∂

∂xi
(ϕui)

]
dV (1.93)

follow. If ϕ is a tensor field of any degree, which together with its partial
derivatives is continuous in (V ), then Gauss’ theorem holds:

∫∫∫

(V )

∂ϕ

∂xi
dV =

∫∫

(S)

ϕni dS . (1.94)

S is the directional surface bounding V , and the normal vector ni is out-
wardly positive. Gauss’ theorem relates a volume integral to the integral over
a bounded, directional surface, provided that the integrand can be written as
the “divergence” (in the most general sense) of the field ϕ. We will often make
use of this important law. It is a generalization of the well known relationship

b∫

a

df(x)
dx

dx = f(b) − f(a) . (1.95)



32 1 The Concept of the Continuum and Kinematics

The application of Gauss’ law to the last integral in (1.93) furnishes a rela-
tionship known as Reynolds’ transport theorem:

D
Dt

∫∫∫

(V (t))

ϕdV =
∫∫∫

(V )

∂ϕ

∂t
dV +

∫∫

(S)

ϕuini dS . (1.96)

This relates the rate of change of the material volume integral to the rate of
change of the quantity ϕ integrated over a fixed region (V ), which coincides
with the varying region (V (t)) at time t, and to the flux of the quantity ϕ
through the bounding surfaces.

We note here that Leibniz’s rule holds for a domain fixed in space: this
means that differentiation can take place “under” the integral sign:

∂

∂t

∫∫∫

(V )

ϕdV =
∫∫∫

(V )

∂ϕ

∂t
dV . (1.97)

To calculate the expression for the rate of change of a directional material
surface integral we change the order of integration and differentiation. If
(S(t)) is a time varying surface region which is occupied by the material
surface during the motion, in analogy to (1.90) we can write

D
Dt

∫∫

(S(t))

ϕni dS =
∫∫

(S)

Dϕ
Dt

ni dS +
∫∫

(S)

ϕ
D
Dt

(ni dS) . (1.98)

For the integrals on the right-hand side, we can think of the region of integra-
tion (S(t)) as replaced by a fixed region (S) which coincides with the varying
region at time t. After transforming the last integral with the help of (1.63)
we get the formula

D
Dt

∫∫

(S(t))

ϕni dS =
∫∫

(S)

Dϕ
Dt

ni dS +
∫∫

(S)

∂uj

∂xj
niϕdS −

∫∫

(S)

∂uj

∂xi
njϕdS .

(1.99)
Let (C(t)) be a time varying one-dimensional region which is occupied by
a material curve during the motion, and let ϕ be a (tensorial) field quantity.
The rate of change of the material curve integral of ϕ can then be written as

D
Dt

∫

(C(t))

ϕdxi =
∫

(C)

Dϕ
Dt

dxi +
∫

(C)

ϕd
[
Dxi

Dt

]
(1.100)

from which we get using (1.10):

D
Dt

∫

(C(t))

ϕdxi =
∫

(C)

Dϕ
Dt

dxi +
∫

(C)

ϕdui . (1.101)
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This formula has important applications when ϕ = ui; in this case then

ϕdui = ui dui = d
[ui ui

2

]
(1.102)

is a total differential, and the last curve integral on the right-hand side of
(1.101) is independent of the “path”: it is only determined by the initial point
I and the endpoint E. This obviously also holds for the first curve integral on
the right-hand side, when the acceleration Dϕ/Dt = Dui/Dt can be written
as the gradient of a scalar function:

Dui

Dt
=

∂I

∂xi
. (1.103)

Then (and only then) is the first curve integral path independent:

∫

(C)

Dϕ
Dt

dxi =
∫

(C)

∂I

∂xi
dxi =

∫

(C)

dI = IE − II . (1.104)

The curve integral of ui round a closed material curve (in the mathematically
positive sense of direction)

Γ =
∮
ui dxi (1.105)

is called the circulation. Later we will discuss the conditions under which
the acceleration may be written as the gradient of a scalar function, but now
we will infer from (1.101) that then the rate of change of the circulation is
zero. This follows directly from the fact that the initial and final points of
a closed curve coincide and from our implicit assumption that I and ui are
continuous functions. The fact that the circulation is a conserved quantity, so
that its rate of change is zero, often leads to an explanation for the strange
and unexpected behavior of vortices and vortex motion.
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2.1 Conservation of Mass, Equation of Continuity

Conservation of mass has already been postulated in the last chapter, and
now we will make use of our earlier results and employ (1.83) and (1.93) to
change the conservation law (1.85) to the form

D
Dt

∫∫∫

(V (t))

� dV =
∫∫∫

(V )

[
∂�

∂t
+

∂

∂xi
(� ui)

]
dV = 0 . (2.1)

This equation holds for every volume that could be occupied by the fluid,
that is, for arbitrary choice of the integration region (V ). We could therefore
shrink the integration region to a point, and we conclude that the continuous
integrand must itself vanish at every �x. Thus we are led to the local or
differential form of the law of conservation of mass:

∂�

∂t
+

∂

∂xi
(� ui) = 0 . (2.2)

This is the continuity equation. If we use the material derivative (1.20) we
obtain

D�
Dt

+ �
∂ui

∂xi
= 0 , (2.3a)

or written symbolically
D�
Dt

+ �∇ · �u = 0 . (2.3b)

This also follows directly by using (1.86) together with (1.60). If

D�
Dt

=
∂�

∂t
+ ui

∂�

∂xi
= 0 (2.4)

holds, then the density of a single material particle does not vary during its
motion. By (2.3a), (2.4) is equivalent to

div �u = ∇ · �u =
∂ui

∂xi
= 0 , (2.5)
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i. e., the flow is volume preserving. This is also often called incompressible
flow , by which is meant that the fluid, whether it is gas or liquid, can be
viewed as incompressible. If (2.4) is satisfied, the continuity equation takes
on the simpler form (2.5) where no derivative with respect to time appears,
but which nevertheless holds for unsteady flows.

The conditions under which the assumption D�/Dt = 0 is justified can
only be properly discussed in the fourth chapter; it is enough to say here
that in many technically important cases even gas flows may be regarded as
incompressible.

As a rule the condition D�/Dt = 0 is satisfied by liquids, but there are
flows where even the change in volume in liquids is significant. This is the
case in the unsteady flows which occur when valves on conduits are quickly
opened or closed, or in supply pipes of hydraulic turbines when the gate
settings are suddenly changed, but also in fuel injection systems when the
injectors are opened or closed.

Incompressible flow does not mean that the density is the same for every
particle. Consider the flow in the ocean which is incompressible (D�/Dt = 0
holds), but where the density of particles differ from one to another as a result
of different salt concentrations.

If the density is spatially constant, so ∇� = 0, we talk of a homogeneous
density field. In incompressible flow, not only do the four terms in (2.4) sum
to zero, but each term itself is now identically equal to zero.

Transforming the conservation of mass (1.85) with the help of Reynolds’
transport theorem, we arrive at the integral form of the continuity equation:

Dm
Dt

=
D
Dt

∫∫∫

(V (t))

� dV =
∫∫∫

(V )

∂�

∂t
dV +

∫∫

(S)

� ui ni dS = 0 (2.6)

or ∫∫∫

(V )

∂�

∂t
dV =

∂

∂t

∫∫∫

(V )

� dV = −
∫∫

(S)

� ui nidS . (2.7)

In this equation we consider a fixed domain of integration, a so-called con-
trol volume, and we interpret this equation as follows: the rate of change of
the mass in the control volume is equal to the difference between the mass
entering and the mass leaving through the surface of the control volume per
unit time. This very obvious interpretation often serves as a starting point
for the elucidation of the mass conservation. In steady flow, ∂�/∂t = 0, and
the integral form of the continuity equation reads:

∫∫

(S)

� ui ni dS = 0 , (2.8)

i. e. , just as much mass enters as leaves the control volume per unit time.
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2.2 Balance of Momentum

As the first law (axiom) of classical mechanics, accepted to be true without
proof but embracing our experience, we state the momentum balance: in an
inertial frame the rate of change of the momentum of a body is balanced by
the force applied on this body:

D�P

Dt
= �F . (2.9)

What follows now only amounts to rearranging this axiom explicitly. The
body is still a part of the fluid which always consists of the same material
points. Analogous to (1.83), we calculate the momentum of the body as the
integral over the region occupied by the body:

�P =
∫∫∫

(V (t))

� �udV . (2.10)

The forces affecting the body basically fall into two classes, body forces , and
surface or contact forces . Body forces are forces with a long range of influence
which act on all the material particles in the body and which, as a rule, have
their source in fields of force. The most important example we come across
is the earth’s gravity field.The gravitational field strength �g acts on every
molecule in the fluid particle, and the sum of all the forces acting on the
particle represents the actual gravitational force:

Δ�F = �g
∑

i

mi = �gΔm . (2.11)

The force of gravity is therefore proportional to the mass of the fluid particle.
As before, in the framework of the continuum hypothesis, we consider the
body force as a continuous function of mass or volume and call

�k = lim
Δm→0

Δ�F

Δm
(2.12)

the mass body force; in the special case of the earth’s gravitational field
�k = �g, we call it the gravitational force. The volume body force is the force
referred to the volume, thus

�f = lim
ΔV →0

Δ�F

ΔV
, (2.13)

(cf. Fig. 2.1), and in the special case of the gravitational force we get:

�f = lim
ΔV →0

�g
Δm

ΔV
= �g� . (2.14)
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Other technically important body forces appear because of electromagnetic
fields, or are so-called apparent forces (like the centrifugal force), when the
motion is referred to an accelerating reference frame.

The contact or surface forces are exerted from the surrounding fluid or
more generally from other bodies on the surface of the fluid body under
observation. If Δ�F is an element of the surface force, and ΔS is the surface
element at �x where the force is acting, we call the quantity

�t = lim
ΔS→0

Δ�F

ΔS
(2.15)

the stress or traction vector at �x (cf. Fig. 2.1). The stress vector is not only
dependent on �x and the time t, but also on the orientation of the surface
element at �x, that is on the surface element’s normal vector �n, and it is in
general not directed parallel to the normal vector. More often we call the
projection of �t in the direction parallel to the normal the normal stress and
the projection in the plane perpendicular to �n the tangential stress.

We assume that the applied force is the sum of the two kinds of force and
work out the whole force acting on the part of the fluid under observation by
integration over the volume occupied by the fluid and over its surface to get

�F =
∫∫∫

(V (t))

��k dV +
∫∫

(S(t))

�t dS , (2.16)

so that the balance of momentum takes the form
D
Dt

∫∫∫

(V (t))

��udV =
∫∫∫

(V )

��k dV +
∫∫

(S)

�t dS . (2.17)

As before, without loss of generality, we can replace the time varying domains
of integration on the right with fixed domains. Then applying (1.88) to the
left-hand side leads us to the form

∫∫∫

(V )

D�u
Dt

� dV =
∫∫∫

(V )

�k� dV +
∫∫

(S)

�t dS , (2.18)

Fig. 2.1. Depiction of the volume and surface forces
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from which we reach an important conclusion: if we divide this equation by
l2, where l is a typical dimension of the domain of integration, say l ∼ V 1/3,
and take the limit l → 0, the volume integrals vanish and we are left with

lim
l→0

⎡

⎢⎣l−2

∫∫

(S)

�t dS

⎤

⎥⎦ = 0 . (2.19)

Equation (2.19) means that the surface forces are locally balanced. Obviously
(2.19) holds for nonvanishing �t, because �t does not represent a field in the
usual sense, but one which is dependent on �n as well as �x. We will use this
result to show the way that the stress vector is dependent on the normal
vector �n at the fixed place �x. Looking at the tetrahedron of Fig. 2.2, the
normal vector to the inclined surface is �n, and the other surfaces are parallel
to the coordinate planes; their normal vectors are then −�e1, −�e2 and −�e3.
If ΔS is the area of the inclined surface, then the other surface areas are
ΔS n1, ΔS n2 and ΔS n3, respectively. For the stress vector belonging to
the inclined surface we will write �t (�n), and for the others �t (−�e1), �t (−�e2) and
�t (−�e3). Applying the local stress equilibrium (2.19) we arrive at:

lim
l→0

⎡

⎢⎣l−2

∫∫

(S)

�t dS

⎤

⎥⎦=lim
l→0

{
ΔS

l2

[
�t (−�e1)n1+�t (−�e2)n2+�t (−�e3)n3+�t (�n)

]}
= 0 ,

(2.20)
or

�t (�n) = −�t (−�e1)n1 − �t (−�e2)n2 − �t (−�e3)n3 , (2.21)

since ΔS vanishes as l2. In (2.21) all the stress vectors are to be taken at the
same point, namely the origin of the coordinate system of Fig. 2.2. If we put
�n = �e1 we have n1 = 1, n2 = n3 = 0, and (2.21) leads to

�t (�e1) = −�t (−�e1) , (2.22)

or more generally
�t (�n) = −�t (−�n) . (2.23)

This means that the stress vectors on the opposite sides of the same surface
elements have the same magnitudes and opposite signs. Then instead of (2.21)
we write

�t (�n) = �t (�e1)n1 + �t (�e2)n2 + �t (�e3)n3 . (2.24)

Therefore, the stress vector is a linear function of the normal vector. The
stress vector belonging to the surface with normal vector �e1 can now be
resolved into its components

�t (�e1) = τ11�e1 + τ12�e2 + τ13�e3, (2.25)
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Fig. 2.2. The relationship between the normal vector and the stress vector

and we designate the first index as giving the direction of the normal vector,
and the second as fixing the direction of the component. Similarly we can
resolve the stress vectors of the other coordinate planes and of the inclined
surfaces into their components, and insert them into equation (2.24). From
the resulting equation

�t (�n) =
t1�e1 + n1(τ11�e1 + τ12�e2 + τ13�e3)+
t2�e2 + = n2(τ21�e1 + τ22�e2 + τ23�e3)+
t3�e3 n3(τ31�e1 + τ32�e2 + τ33�e3)

(2.26)

we can read off the component equation in the first direction:

t1 = τ11n1 + τ21n2 + τ31n3 , (2.27)

where the superscript �n has been and will continue to be dropped. The result
for the ith direction is

ti = τ1in1 + τ2in2 + τ3in3 . (2.28)

We can shorten Eq. (2.28) using Einstein’s summation convention:

ti(�x, �n, t) = τji(�x, t)nj (i, j = 1, 2, 3) ; (2.29a)

here we have indicated the dependency of �t on �x, �n and t explicitly. The nine
quantities necessary to specify the stress vector on a surface element with
some normal vector �n at �x form a second order tensor. The physical meaning
of the general component τji is given by (2.26): τji is the magnitude of the
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ith component of the stress vector at the element of the coordinate plane
with normal vector in the jth direction.

Although ti is not a vector field in the usual sense, since it is linearly
dependent on the vector �n at �x, τji(�x, t) is a field, or to be more precise,
a tensor field. Expressed mathematically, (2.29a) is a linear homogeneous
mapping of the normal vector �n onto the vector �t. Symbolically we can write
(2.29a) as

�t = �n · T , (2.29b)

where the matrix representation of the stress tensor T is given below:

[T] =

⎡

⎣
τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33

⎤

⎦ . (2.30)

The main diagonal elements are the normal stresses and the nondiagonal
elements are the shearing stresses. We will show later that the stress tensor
is a symmetric tensor of the second order and it is therefore diagonalizable.
At every �x we can specify three mutually orthogonal surface elements on
which only normal stresses act. These surface elements are parallel to the
coordinate surfaces of the principal axis system. Just as we did in connection
with the rate of deformation tensor, we find the normal vectors to these
surface elements by looking for vectors which are parallel to the stress vectors,
that is, those which satisfy the equation:

ti = τjinj = σ ni = σ njδji . (2.31)

The characteristic equation of this homogeneous system of equations is

−σ3 + I1τσ
2 − I2τσ + I3τ = 0 , (2.32)

where the invariants can be calculated in the same way as in (1.58). If this
characteristic equation has three distinct roots (eigenvalues), there is only
one principal axis system. In a fluid at rest, all the friction stresses vanish, by
definition, and all three eigenvalues are equal: σ(1) = σ(2) = σ(3) = −p. Now
every orthogonal system of axes is a principal axis system and (2.31) holds
for any �n. The state of stress is now spherical, i. e.,

τji = −p δji (2.33)

and is called hydrostatic. The stress vector is, from (2.31)

ti = τjinj = −p δjinj = −p ni , (2.34a)

or, written symbolically
�t = −p�n . (2.34b)
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The magnitude of this stress vector is the pressure p, which is a scalar quan-
tity, independent of �n. Occasionally, although it is always possible, an arbi-
trary state of stress is decomposed as

τij = −p δij + Pij , (2.35)

and Pij is called the friction stress tensor. It has the same principal axes as
the tensor τij . The mean normal stress p is defined by

p =
1
3
τii , (2.36)

which in general is not equal to the negative pressure. However if this is the
case, then Pij is a deviator.

If we put the expression (2.29) for the stress vector into the momentum
law (2.18), and transform the surface integral into a volume integral using
Gauss’ theorem, we get

∫∫∫

(V )

(
�

Dui

Dt
− � ki − ∂τji

∂xj

)
dV = 0 . (2.37)

Because of the assumed continuity of the integrand and the arbitrary domain
of integration (V ), (2.37) is equivalent to the differential form of the balance
of momentum:

�
Dui

Dt
= � ki +

∂τji

∂xj
, (2.38a)

or written symbolically:

�
D�u
Dt

= ��k + ∇ · T . (2.38b)

This relationship is known as Cauchy’s first law of motion. We can reach an-
other form of it when we transform the left-hand side of (2.17) using Reynolds’
transport theorem (1.93), and then conclude that

∂

∂t
(� ui) +

∂

∂xj
(� uiuj) = � ki +

∂

∂xj
(τji) . (2.39)

Cauchy’s law of motion holds for every continuum, so it holds for every fluid,
whatever its particular material properties are. It is the starting point for the
calculation of fluid mechanical problems. Using the constitutive equation,
that is, the relationship between the stress tensor and the motion (for exam-
ple, the rate of deformation tensor), Cauchy’s equation of motion is changed
to a specific equation of motion for the material under observation.

If we are able to write the integrals as surface integrals, the integral form
of the balance of momentum attains a considerable importance in technical
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applications. In order to do this, we first transform the balance of momentum
(2.17) with Reynolds’ transport theorem in the form of (1.96), and we obtain

∫∫∫

(V )

∂(� �u)
∂t

dV +
∫∫

(S)

� �u(�u · �n) dS =
∫∫∫

(V )

��k dV +
∫∫

(S)

�t dS . (2.40)

The first integral on the left-hand side cannot be transformed into a surface
integral. Therefore the balance of momentum in its integral form attains the
afore mentioned importance only if this integral vanishes. This is the case
in steady flows, or in unsteady flows whose time averaged values are steady,
as happens in turbulent steady flows. (In steady turbulent flows, the time
averaged momentum flux, which is different from the momentum flux formed
with the average velocity, must be used in (2.40). We refer in this connection
to Chap. 7.)

The first integral on the right-hand side can be written as a surface integral
when the volume body force can be calculated as the gradient of a scalar
function, that is, when the volume body force has a potential. We will write
the potential of the volume body force as Ω (�f = ��k = −∇Ω), and the
potential of the mass body force as ψ (�k = −∇ψ). (To illustrate this, think of
the most important potential: the gravitational potential (Ω = −� gixi , ψ =
−gixi)). Analogous to our remarks about the velocity potential, ∇×(��k) = 0
is a necessary and sufficient condition for the existence of the potential of
the volume body force. The most important case here is the one where ρ is
constant and the mass body force �k has a potential. Then the volume integral
can be written as a surface integral:

∫∫∫

(V )

��k dV = −
∫∫∫

(V )

∇Ω dV = −
∫∫

(S)

Ω�ndS , (2.41)

and the balance of momentum (2.40) now reads
∫∫

(S)

� �u(�u · �n) dS = −
∫∫

(S)

Ω�ndS +
∫∫

(S)

�t dS . (2.42)

We can get insight into the meaning of the balance of momentum when we
consider that by knowing the momentum flux and the potential Ω we know
the force on the surface of the control volume. Often we will only want to
know the force which comes from the momentum flux. Then we take the
balance of momentum in its most frequently used form:

∫∫

(S)

� �u(�u · �n) dS =
∫∫

(S)

�tdS . (2.43)
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Conversely, the momentum flux is known from (2.43) if the force has been
given. The often unknown, and sometimes incalculable, events right inside
the control volume do not appear in the balance of momentum (2.43), and
only the quantities on the surface are of importance. Since we can choose the
control volume whatever way we want, we usually fix the surface so that the
integrals are as easy as possible to evaluate. Often we can fix the surface so
that the stress vector takes the same form as that in a fluid at rest, that is,
�t = −p�n. Then it is possible to draw conclusions from (2.43) without having
to refer to a particular constitutive law.

2.3 Balance of Angular Momentum

As the second general axiom of classical mechanics we shall discuss the an-
gular momentum balance. This is independent of the balance of linear mo-
mentum. In an inertial frame, the rate of change of the angular momentum
is equal to the moment of the external forces acting on the body:

D
Dt

(�L) = �M . (2.44)

We calculate the angular momentum �L as the integral over the region occu-
pied by the fluid body

�L =
∫∫∫

(V (t))

�x× (� �u) dV . (2.45)

The angular momentum in (2.45) is taken about the origin such that the
position vector is �x, and so we must use the same reference point to calculate
the moment of the applied forces

�M =
∫∫∫

(V (t))

�x× (��k) dV +
∫∫

(S(t))

�x× �t dS , (2.46)

recalling, however, that the choice of reference point is up to us. Therefore
the law of angular momentum takes the form

D
Dt

∫∫∫

(V (t))

�x× (� �u) dV =
∫∫∫

(V )

�x× (��k) dV +
∫∫

(S)

�x× �tdS (2.47)

where, for the same reasons as before, we have replaced the time varying
domain of integration on the right with a fixed domain. Now we wish to show
that the differential form of the balance of angular momentum implies the
symmetry of the stress tensor. We introduce the expression (2.29) into the
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surface integral, which can then be written as a volume integral. In index
notation this becomes

∫∫

(S)

εijkxjτlknl dS =
∫∫∫

(V )

εijk
∂

∂xl
(xjτlk) dV , (2.48)

and after applying (1.88) to the left-hand side of (2.47) we get first
∫∫∫

(V )

εijk

(
�

D
Dt

(xjuk) − ∂

∂xl
(xjτlk) − xj� kk

)
dV = 0 , (2.49)

and after differentiation and combining terms
∫∫∫

(V )

[
εijkxj

(
�

Duk

Dt
− ∂τlk

∂xl
− � kk

)
+ � εijkujuk − εijkτjk

]
dV = 0 .

(2.50)

If the balance of momentum (2.38) is satisfied, the expression in the middle
brackets vanishes, thus eliminating position vector, xj which then shows that
the balance of angular momentum is indeed invariant with respect to reference
point. The outer product εijkujuk vanishes also, since �u is naturally parallel
to itself, so the balance of angular momentum is reduced to

∫∫∫

(V )

εijkτjk dV = 0 . (2.51)

Since the tensor field τjk is continuous, (2.51) is equivalent to

εijkτjk = 0 , (2.52)

proving that τjk is a symmetric tensor:

τjk = τkj . (2.53)

Just as in the case of the integral form of the balance of momentum, so the in-
tegral form of the balance of angular momentum achieves special significance
in technical applications. We are only interested in the moment which is due
to the angular momentum flux through the control surface, and we restrict
ourselves to steady flows, or unsteady flows which are steady in the manner
discussed earlier. Using Reynolds’ transport theorem (1.96), (2.47) yields the
balance of angular momentum in a form where only surface integrals appear:

∫∫

(S)

εijkxjuk� ulnl dS =
∫∫

(S)

εijkxjtk dS , (2.54a)
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or symbolically ∫∫

(S)

�x× �u � �u · �n dS =
∫∫

(S)

�x× �t dS . (2.54b)

There is a particular form of the balance of angular momentum (2.54) called
Euler’s turbine equation (see Sect. 2.5) which forms the most important law
in the theory of turbomachines.

2.4 Momentum and Angular Momentum
in an Accelerating Frame

The balance of momentum and angular momentum that we have discussed
so far are only valid in inertial reference frames. An inertial reference frame
in classical mechanics could be a Cartesian coordinate system whose axes
are fixed in space (relative, for example, to the fixed stars), and which uses
the average solar day as a unit of time, the basis of all our chronology. All
reference frames which move uniformly, i. e. not accelerating in this system,
are equivalent and thus are inertial frames.

The above balances do not hold in frames which are accelerating relative
to an inertial frame. But the forces of inertia which arise from nonuniform
motion of the frame are often so small that reference frames can by regarded
as being approximately inertial frames. On the other hand, we often have to
use reference frames where such forces of inertia cannot be neglected.

To illustrate this we will look at a horizontal table which is rotating with
angular velocity Ω. On the table and rotating with it is an observer, who
is holding a string at the end of which is a stone, lying a distance R from
the fulcrum of the table. The observer experiences a force (the centrifugal
force) in the string. Since the stone is at rest in his frame, and therefore the
acceleration in his reference frame is zero, the rate of change of momentum
must also be zero, and thus, by the balance of momentum (2.9), the force
in the string should vanish. The observer then correctly concludes that the
balance of momentum does not hold in his reference frame. The rotating table
must be treated as an noninertial reference frame. The source of the force in
the string is obvious to an observer who is standing beside the rotating table.
He sees that the stone is moving on a circular path and so it experiences
an acceleration toward the center of the circle, and that according to the
balance of momentum, there must be an external force acting on the stone.
The acceleration is the centripetal acceleration, which is given here by Ω2R.
The force acting inwards is the centripetal force which is exactly the same
size as the centrifugal force experienced by the rotating observer.

In this example the reference frame of the observer at rest, that is the
earth, can be taken as an inertial reference frame. Yet in other cases deviations
from what is expected from the balance of momentum appear. This is because
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the earth is rotating and therefore the balance of momentum strictly does
not hold in a reference frame moving with the earth. With respect to a frame
fixed relative to the earth we observe, for example, the deflection of a free
falling body to the east, or the way that the plane of oscillation of Foucault’s
pendulum rotates. These examples, and many others, are not compatible with
the validity of the balance of momentum in the reference frame chosen to be
the earth. For most terrestrial events, however, a coordinate system whose
origin is at the center of the earth, and whose axes are directed towards
the fixed stars, is valid as an inertial reference frame. The easterly deflection
mentioned above can then be explained by the fact that the body, in its
initial position, has a somewhat higher circumferential speed because of the
rotation of the earth than at the impact point nearer the center of the earth.
To explain Foucault’s pendulum, we notice that, in agreement with (2.9),
the pendulum maintains its plane of oscillation relative to the inertial frame.
The reference frame attached to the earth rotates about this plane, and an
observer in the laboratory experiences a rotation of the plane of oscillation
relative to his system with a period of twenty-four hours.

The description of the motion in the inertial reference frame is of little
interest for the observer; it is far more important for him to be able to describe
the motion in his own reference frame, since this is the only system where
he can make measurements. In many applications the use of an accelerating
reference frame is unavoidable, for example in meteorology we always want
to know the motion of the wind relative to the earth, that is, in a rotating
reference frame. It is often useful, and sometimes essential for the solution of
technical problems, to use an accelerating frame.

If we want to calculate the motion of a spinning top, the earth is a good
enough inertial reference frame. But in this system the tensor of the moments
of inertia is time dependent, so it is better to choose a reference frame at-
tached to the top, where, even though this is an accelerating reference frame,
this tensor is constant in time. In problems in fluid mechanics it is a good
idea to use an accelerating reference frame if the boundary of the flow region
is at rest relative to this frame. Consider for example, the flow in the passages
of a turbomachine. In a frame fixed to the rotor, and therefore rotating, not
only are the blades forming the passages at rest, but the flow itself is more
or less steady, making the analytical treatment of the problem much easier.

In what follows we shall formulate the balances for momentum and angu-
lar momentum so that they only contain quantities which can be determined
in an accelerating system. We shall use the basic assumption that forces and
moments are the same for all observers, whether they are in accelerating or
inertial reference frames. The rate of change of the momentum or angular
momentum, or the rate of change of the velocity is dependent on the refer-
ence frame, as is the change of any vector (with an exception, as we shall
see).
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First we shall turn towards the differential form of the balances of mo-
mentum and angular momentum in an accelerating system. Let us look at
a system fixed in space (inertial reference frame) and a system accelerating
with respect to it, which is carrying out a translation with velocity �v(t) and
a rotation with angular velocity �Ω(t) (Fig. 2.3). We shall denote the rate of
change of the position vector �x of a material particle in the moving reference
frame with [

D�x
Dt

]

A

= �w (2.55)

and we shall call �w the relative velocity.
In the inertial reference frame the position vector of the particle under

observation is �x+ �r and its rate of change is called the absolute velocity:

[
D
Dt

(�x+ �r)
]

I

= �c . (2.56)

Following the usual notation used in turbomachinery we shall denote the
absolute velocity with �c. The absolute velocity results from the vector sum
of the relative velocity �w, the velocity of the origin of the moving frame

�v =
[
D�r
Dt

]

I

(2.57)

and the circumferential velocity �Ω×�x arising from the rotation of the moving
frame at the position �x, to give:

�c = �w + �Ω × �x+ �v . (2.58)

Fig. 2.3. Moving reference frame
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From (2.55) to (2.58) we get the basic formula for the rate of change of the
vector �x in the two reference frames:

[
D�x
Dt

]

I

=
[
D�x
Dt

]

A

+ �Ω × �x . (2.59)

Obviously this formula does not only hold for the vector �x, but it holds in
general. Consider the general vector �b which has relative to the accelerating
reference frame the Cartesian resolution:

�b = b1�e1 + b2�e2 + b3�e3 = bi�ei . (2.60)

Its observed change in the inertial reference frame is
[

D�b
Dt

]

I

=
Dbi
Dt

�ei + bi
D�ei

Dt
. (2.61)

The first three terms represent the change of the vector �b in the moving
reference frame. In this system the basis vectors �ei are fixed. Yet in the
inertial reference frame these unit vectors are translated parallel, which does
not change them, but they are also rotated. For the time being we interpret
D�ei/Dt as the velocity of a material particle with position vector �ei. But since
�ei is a unit vector its velocity can only be the circumferential velocity �Ω×�ei,
so that we extract the equation:

D�ei

Dt
= �Ω × �ei. (2.62)

Using this we get from (2.61) the Eq. (2.59)
[

D�b
Dt

]

I

=

[
D�b
Dt

]

A

+ �Ω ×�b . (2.63)

If �b = �Ω the changes in the inertial reference frame and in the frame moving
relative to it are equal:

[
D �Ω

Dt

]

I

=

[
D �Ω

Dt

]

A

=
d �Ω
dt

. (2.64)

This obviously holds only for the angular velocity �Ω or for vectors which are
always parallel to �Ω.

We will need the rate of change of the absolute velocity [D�c/Dt]I in
Cauchy’s equation (2.38). As we have already noted, the right-hand side is
frame invariant. If we use (2.58) we are led to the equation

[
D�c
Dt

]

I

=
[
D�w

Dt

]

I

+

[
D( �Ω × �x)

Dt

]

I

+
[
D�v
Dt

]

I

, (2.65)
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to which we apply (2.63) and (2.64) to get

[
D�c
Dt

]

I

=
[
D�w

Dt

]

A

+ �Ω× �w+ �Ω×
([

D�x
Dt

]

A

+ �Ω × �x

)
+

[
D �Ω

Dt

]

A

×�x+
[
D�v
Dt

]

I

.

(2.66)
If we write (D�v/Dt)I = �a for the translational acceleration of the frame and
replace (D�x/Dt)B by �w using (2.55), the acceleration in the inertial reference
frame can be expressed in quantities of the accelerating frame:

[
D�c
Dt

]

I

=
[
D�w

Dt

]

A

+ 2 �Ω × �w + �Ω × ( �Ω × �x) +
d �Ω
dt

× �x+ �a . (2.67)

Only the acceleration as seen from the inertial frame can enter Cauchy’s equa-
tion, since it is only valid in this frame. But by using (2.67) this acceleration
can be expressed in quantities seen from the accelerating system, so that we
finally reach the equation

�

[
D�w

Dt

]

A

= ��k + ∇ · T−
(
��a+ 2� �Ω × �w + � �Ω × ( �Ω × �x) + �

d �Ω
dt

× �x

)
.

(2.68)
(Note here that (2.68) is a vector equation where �k and ∇·T have meanings in-
dependent of frame, i. e. they are the same arrows in all frames. Where written
as a matrix equation or in index notation the components must transform into
the moving coordinate system, using the relationships in Appendix A.) Apart
from the terms in the curved brackets, equation (2.68) has the same form as
Cauchy’s equation in the inertial reference frame. In the moving reference
frame, these terms act as additional volume forces, which are added to the
external forces. They are pure inertial forces which stem from the motion
of the system relative to the inertial reference frame, and are therefore only
“apparent” external forces hence their name apparent or fictitious forces.

The term −��a is the apparent force due to the translational acceleration
(per unit volume) and it vanishes when the origin of the relative system
is at rest or is moving with constant velocity. The term −2� �Ω × �w is the
Coriolis force, and it vanishes when the material point is at rest in the moving
reference frame. The centrifugal force is represented by the term −� �Ω ×
( �Ω × �x), and is also present when the material point is at rest in the moving
reference frame. The fourth expression has no special name.

Equation (2.68) furnishes the differential form of the balance of momen-
tum in a moving reference frame. If this law is satisfied, no rate of change
of velocity appears in the differential form of the balance of angular momen-
tum (cf. (2.50)), and this law remains valid in all reference frames, something
that is expressed by the symmetry of the stress tensor in all reference frames.
Thus the apparent forces appear only in the differential form of the balance
of momentum and not in that of angular momentum.
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The apparent forces that arise from the rotation of the earth can only
influence events if the spatial extent of the motion under consideration is
the order of the earth’s radius, or if its duration is the order of hours. That
means that their influence is barely noticed in rapid flow events of small
extent, and can, in general, be ignored. However their influence is noticeable
in the motion of the sea, and it is even larger in atmospheric flows. The
earth rotates about 2π in one sidereal day (which with 86164 s is somewhat
shorter than a solar day of 86400 s), so it moves with an angular velocity of
Ω = 2π/86164 ≈ 7.29 · 10−5s−1. Since the angular velocity is constant, the
last term of (2.68) vanishes. In addition, the effect of the rotation about the
sun can be ignored, so that only the Coriolis and centrifugal forces act as
apparent forces. The centrifugal force at the equator amounts to 0.3% of the
earth’s attraction. In measurements it is hardly possible to separate the two
forces and it is actually the resultant of both forces that we call the gravity
force �g. The vector �g is normal to the geoid, and is not directed exactly at
the center of the earth.

Now let us consider an air particle which moves in a north-south direction
(Fig. 2.4). In the northern hemisphere the vector �Ω points out of the earth.
The Coriolis force −2� �Ω × �w is perpendicular to �Ω and to �w, and forces
the particle in the direction of its motion to the right. The same holds for
a particle which is moving in a south-north direction: it is forced to the
right seen in the direction of motion. As a rule, irrespective of the velocity
direction, particles in the northern hemisphere are forced to the right and
those in the southern hemisphere are forced to the left. Without allowing for
the Coriolis force in Cauchy’s equation, we would conclude that the air flows

Fig. 2.4. The influence of the Coriolis force on the particle path
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in the direction of the pressure gradient, and therefore normal to the isobars.
If we ignore the friction, we get from (2.35)

τij = −p δij . (2.69)

If in addition, we only consider motion parallel to the geoid, so that the force
of gravity ��g has no component in the direction of motion, (2.68) reads in
index notation

�
Dwi

Dt
=
∂(−p δij)
∂xj

= − ∂p

∂xi
, (2.70)

which means that the air is only accelerated in the direction of the pressure
gradient, and so it flows radially into a low. Yet because of the Coriolis force,
the air in the northern hemisphere is turned to the right, and it flows anti-
clockwise, almost tangential to the isobars, into the low (Fig. 2.5). Since the
acceleration in the relative system is small compared to the Coriolis accel-
eration, the pressure gradient and the Coriolis force almost balance (Buys-
Ballot’s rule). A consequence of the Coriolis force is the slightly higher water
level in the right bank of rivers in the northern hemisphere and a tendency
to deviate to the right. This phenomenon, called Baer’s law , can also be ob-
served in lakes into and out of which rivers flow. Definite erosion can even
be seen on the right bank of some rivers. However, other influences, like the
mutable resistance of the river bed, are morphologically more important.

Although on the earth the Coriolis force is very small, these examples
show that is cannot always be ignored. Even with velocities of u = 1000
m/s, typical of artillery shells, the maximum Coriolis acceleration is only

Fig. 2.5. Low in the northern hemisphere
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2Ω u ≈ 2 · (7.29 · 10−5 s) · (1000 ms−2) ≈ 0.015 g. In spite of this its influence
on the trajectory is quite noticeable.

In technical applications, the balances of momentum and of angular mo-
mentum in their integral form must often be used in reference frames attached
to rotating machine parts. As already noted, the flow is then almost always
steady. A starting point is the balance of momentum (2.17). The velocity
appearing here is of course the absolute velocity �c :

D
Dt

⎡

⎢⎣
∫∫∫

(V (t))

��cdV

⎤

⎥⎦

I

=
∫∫∫

(V )

��k dV +
∫∫

(S)

�tdS . (2.71)

We will apply the basic formula (2.63) to the rate of change of momentum
in order to express this in quantities relative to the rotating reference frame.
This leads to

D
Dt

⎡

⎢⎣
∫∫∫

(V (t))

��cdV

⎤

⎥⎦

A

+ �Ω ×
∫∫∫

(V )

��cdV =
∫∫∫

(V )

��k dV +
∫∫

(S)

�t dS , (2.72)

where, in the second integral on the left-hand side, we have replaced a time
dependent domain with a fixed integration domain. Immediately we can apply
Reynolds’ transport theorem to the first term, since this theorem is purely
kinematical, and therefore holds in all reference frames. Equation (2.72) now
takes the form

∂

∂t

⎡

⎢⎣
∫∫∫

(V )

��c dV

⎤

⎥⎦

A

+
∫∫

(S)

��c (�w · �n) dS+ �Ω×
∫∫∫

(V )

��cdV =
∫∫∫

(V )

��k dV +
∫∫

(S)

�t dS .

(2.73)
In this equation, both the absolute velocity �c and the relative velocity �w
enter. The latter appears because the momentum in the relative system is
transported through the surface of the control volume with the relative veloc-
ity �w. As mentioned, in applications the flow in the relative system is often
steady, and the rotational velocity �Ω is constant, so that in many technically
important cases the first term on the left-hand side drops out. If we restrict
ourselves to the statement of the balance of momentum without volume body
forces, we get from (2.73)

∫∫

(S)

��c (�w · �n) dS +
∫∫∫

(V )

� �Ω × �c dV =
∫∫

(S)

�t dS , (2.74)

where we have brought the constant vector �Ω into the volume integral. For
incompressible flow, the volume integral can be transformed into a surface
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integral. We shall not do this because in applications we are often only inter-
ested in the component of the momentum in the �Ω direction. If we take the
inner product with the unit vector �eΩ = �Ω/| �Ω| the volume integral vanishes,
since �Ω×�c is always perpendicular to �eΩ. Therefore the component equation
in the �Ω direction reads:

∫∫

(S)

��eΩ · �c (�w · �n) dS =
∫∫

(S)

�eΩ · �t dS . (2.75)

We note the appearance of both the relative and the absolute velocities. In
applications this does not cause confusion and we refrain from replacing �c
using (2.58).

Now we shall apply the same considerations to the balance of angular
momentum: using the formula (2.63) the rate of change in the inertial refer-
ence frame is expressed through the change in the relative system, and then
Reynolds’ transport theorem is applied to this. Let the flow in the relative
system be steady. Neglecting the moment of the volume forces, the integral
form of the balance of angular momentum then becomes
∫∫

(S)

�(�x× �c )(�w · �n) dS + �Ω ×
∫∫∫

(V )

�(�x× �c) dV =
∫∫

(S)

�x× �t dS . (2.76)

The middle term contains a volume integral, but it is zero if the angular
momentum vector �L has the same direction as �Ω. Turbomachines are designed
so that this is the case. Only in very extreme operating conditions, near shut-
off, is it possible that the flow is no longer rotationally symmetric to the axis
of rotation. Then the angular momentum �L is no longer in the direction of
�Ω. This corresponds to a dynamic imbalance of the rotor. If we consider only
the component equation of angular momentum in the direction of �Ω (from
which the torque on the rotor can be calculated) we always get an equation
where the volume integral no longer appears:

�eΩ ·
∫∫

(S)

�(�x × �c )(�w · �n) dS = �eΩ ·
∫∫

(S)

�x× �t dS . (2.77)

Here too both the absolute velocity �c and the relative velocity �w appear.

2.5 Applications to Turbomachines

Typical applications of the balances of momentum and of angular momentum
can be found in the theory of turbomachines. The essential element present
in all turbomachines is a rotor equipped with blades surrounding it, either in
the axial or radial direction.
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When the fluid exerts a force on the moving blades, the fluid does work.
In this case we can also speak of turbo force machines (turbines, wind wheels,
etc.). If the moving blades exert a force on the fluid, and thus do work on it,
increasing its energy, we speak of turbo work machines (fans, compressors,
pumps, propellers).

Often the rotor has an outer casing, called stator, which itself is lined with
blades. Since these blades are fixed, no work is done on them. Their task is
to direct the flow either towards or away from the moving blades attached to
the rotor. These blades are called guide blades or guide vanes. A row of fixed
blades together with a row of moving blades is called a stage. A turbomachine
can be constructed with one or more of these stages. If the cylindrical surface
of Fig. 2.6 at radius r through the stage is cut and straightened, the contours
of the blade sections originally on the cylindrical surface form two straight
cascades . The set up shown consists of a turbine stage where the fixed cascade
is placed before the moving cascade seen in the direction of the flow.

Fig. 2.6. Axial turbine stage
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Obviously the cascades are used to turn the flow. If the turning is such that
the magnitude of the velocity is not changed, the cascade is a pure turning or
constant pressure cascade, since then no change of pressure occurs through
the cascade (only in the case of frictionless flow). In general the magnitude
of the velocity changes with the turning and therefore also the pressure. If
the magnitude of the velocity is increased we have an acceleration cascade,
typically found in turbines, and if it is decreased we have a deceleration
cascade, typically found in compressors. We shall consider the cascade to be
a strictly periodic ordering of blades, that is, an infinitely long row of blades
with exactly the same spacing s between blades along the cascade. Because
of this the flow is also strictly periodic.

In the following the object is to calculate the force acting on the cascade
or on a single blade for a given flow deflection and pressure drop through
the cascade. We shall assume that the flow is a plane two-dimensional flow,
that is, that the same flow is found in all sections parallel to the plane of
Fig. 2.6. In reality the flow passages between blades become wider in the
radial direction, so that the assumption of plane cascade flow represents the
limit r → ∞ with constant blade height. For the moving blades this also
means that for a given constant circumferential velocity of | �Ω × �x| = Ωr,
the angular velocity tends to zero as r tends to infinity. Then the centrifugal
acceleration | �Ω× ( �Ω×�x)| = Ω2r and the Coriolis acceleration | �2Ω× �w| both
tend to zero with Ω.

The assumption of a plane twodimensional flow therefore means that the
moving cascade is an inertial reference frame. This is also evident from the
fact that in this approximation every point of the moving cascade moves with
the same constant velocity. The balance of momentum in an inertial referen-
ce frame can therefore be applied both to the stationary and the moving
cascade.

In dealing with the moving cascade, we observe that the approach flow to
the moving cascade is not equal to the flow leaving the stationary cascade. If
the moving cascade in Fig. 2.6 has a circumferential velocity of �Ω × �x down-
wards, an observer in the reference frame of the moving cascade experiences
an air-stream of the same magnitude blowing upwards − �Ω×�x. This velocity
is to be added to the velocity of the flow leaving the stationary cascade, that
is, we have to subtract �Ω×�x to calculate the velocity of the flow towards the
moving cascade. Similarly in order to calculate the flow leaving the moving
blade relative to a system fixed in space, we have to add �Ω × �x to the exit
velocity in the relative system.

The resulting velocity triangles are shown in Fig. 2.7. Here we have used
the notation often used in turbomachinery, and denoted the circumferential
velocity �Ω × �x by �u. (Apart from this section about turbomachines we shall
continue to use the notation �Ω × �x for the circumferential velocity. If there
is no need to differentiate between the absolute and relative velocities, then
�u is the general velocity vector.) In accordance with (2.58), in all velocity
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Fig. 2.7. Velocity triangle

triangles, the velocity vectors �c, �w and �u satisfy the equation

�c = �w + �u . (2.78)

This allows the construction of the velocity triangle without having to con-
sciously change reference frames.

Now we shall consider a single cascade at rest Fig. 2.8. The equations
which follow also hold for a rotating cascade in an axial turbomachine, since

Fig. 2.8. Control volume for applying the momentum balance
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by the earlier arguments, every straight cascade of blades represents an in-
ertial system. (The absolute velocity �c is then only to be replaced by the
relative velocity �w measured in the moving reference frame.) At a large dis-
tance from the cascade the inlet velocity �ci and the outlet velocity �co are
constant in space, that is, homogeneous. Homogeneous conditions, especially
behind the cascade, are strictly only true at infinite distances away from the
cascade, although for practical purposes the flow evens out only a short dis-
tance away. To apply the momentum balance in the form (2.43) we use the
control volume shown in Fig. 2.8. Inlet and outlet surface areas (per unit
length of the cascade) Ai and Ao correspond to the spacing s. As the upper
and lower boundaries we choose streamlines. The blade profile is excluded
from the control volume by using a narrow, but otherwise arbitrary, slit. In-
stead of using streamlines as the upper and lower boundaries to the control
volume we could have used any other lines such that the upper boundary is
mapped onto the lower by a translation through the spacing s. Since the flow
is periodic, we can be sure that at corresponding points on the upper and
lower boundaries exactly the same flow conditions prevail. Since the normal
vectors at these corresponding points are directed opposite to each other, and
the same holds for the stress vectors (cf. Eq. (2.23)), all integrals along the
upper and lower boundaries cancel each other out. Exactly the same holds for
the slit, where both the normal and the stress vectors on the upper side are
opposite to the corresponding vectors on the lower bank. Since both sides are
located infinitely close together, all integrals here also cancel out. Therefore
we only need to integrate along the inlet and outlet surfaces (Ai, Ao) as well
as over the part of the control surface enclosing the blade (Af ). Putting into
(2.43) our notation for the absolute velocity, we get

∫∫

(Ai)

��c (�c · �n) dS +
∫∫

(Ao)

��c (�c · �n) dS +
∫∫

(Af )

��c (�c · �n) dS (2.79)

=
∫∫

(Ai)

�t dS +
∫∫

(Ao)

�t dS +
∫∫

(Af )

�t dS .

This equation is further simplified because �c·�n at the entrance surface is given
by −c1i and by +c1o at the exit surface. At the blade itself, �c·�n vanishes. Since
there is no flow through the blade, the normal component of the velocity is
in any case zero. By assumption, the flow at the inlet and outlet surfaces is
homogeneous, and in Newtonian fluids with which we are often concerned
(like water and gases) this means that the friction stresses vanish. This is
also the case for general constitutive relations, when the flow is homogeneous
over a larger area. Then the stress vector can be written as �t = −p�n. Finally,
the last integral represents the force which the blade exerts on the flow (or
the negative of the force applied to the blade by the flow). If we solve for
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the force (per unit height of the cascade), noting that the flow properties are
constant over Ai and Ao, we get first

�F = −�ci�ic1is+ �co�oc1os+ pi �nis+ po �nos . (2.80)

Resolving to get the components in the �e1 and �e2 directions, with �ni = −�e1,
�no = �e1 we extract the equations:

�F · �e1 = F1 = −�ic
2
1is+ �oc

2
1os− pis+ pos , (2.81)

�F · �e2 = F2 = −�ic1ic2is+ �oc1oc2os . (2.82)

The continuity equation for steady flow in integral form (2.8) leads to

∫∫

(Ai)

��c · �n dS +
∫∫

(Ao)

��c · �n dS = 0 , (2.83)

or, using the concept of mass flux , to

ṁ =
∫∫

(Ao)

��c · �n dS = −
∫∫

(Ai)

��c · �n dS . (2.84)

The notation ṁ used in the literature is not very well chosen: it has nothing
to do with the rate of change of the mass, which is of course zero, but with
the flux of the mass through a surface, according to the definition in (2.84).
An expression for the mass flux per unit height of the cascade follows from
this definition:

ṁ = �ic1is = �oc1os . (2.85)

In incompressible flow, and with the assumed homogeneity of the approach
flow, the density is always constant (�i = �o = �), and from (2.85), with
V̇ = ṁ/�,

V̇ = c1is = c1os . (2.86)

V̇ is the volume flux (per unit height of the cascade), and this is often used
instead of the mass flux in incompressible flow. Finally, we get the expression
below for the force components

F1 = ṁ(c1o − c1i) + s(po − pi) , (2.87)
F2 = ṁ(c2o − c2i) , (2.88)

where, for our assumed incompressible flow, the first term on the right-hand
side of (2.87) drops out.
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If the integration path along the blade is omitted in Fig. 2.8, the control
surface is again a closed line, which surrounds the blade profile, so that we
can form the curve integral

Γ =
∮
�c · d�x , (2.89)

which has mathematically positive sense. We have already met this integral
in (1.105). Even when this curve is fixed in space, and so is not a material
curve, we call this curve integral the circulation, and again use the symbol
Γ for it. To evaluate this integral, we note that at corresponding points on
the upper and lower boundaries in Fig. 2.8, �c has the same value, while the
line element of the curve d�x has opposite signs at corresponding points. Thus
the contribution from the upper and lower boundaries to the curve integral
cancels out. The straight sections yield the values −c2is and c2os, so we get

Γ = (c2o − c2i) s , (2.90)

and therefore the following holds:

F2 = �ic1iΓ = �oc1oΓ . (2.91)

Clearly one wishes to design cascades so that losses are as small as possible.
Since losses originate through the friction stresses (ignoring the losses from
heat conduction), one tries to build cascades so that they are as close as
possible to being theoretically frictionless. Assuming frictionless flow, and
to go only a small step further, potential flow, the component F1 of the
force can also be expressed by the circulation. We then arrive at the result
that the whole force is proportional to the circulation. We shall not use this
assumption here, because here we stress the general validity of the expressions
for the momentum balance ((2.87) and (2.91)). Yet we point to the important
fact that if the cascade spacing is given, the action of losses are restricted to
the component F1 of the force.

As a second example, consider the calculation of the torque about the
radial cascade of a single stage radial machine, using the balance of angular
momentum in its integral form. Both force and work turbomachines have
a similar design to that shown in Fig. 2.9. The flow in radial force turboma-
chines (Francis turbines, exhaust driven turbines) is predominantly radial and
as a rule inward, i. e. towards the axis of rotation, whereas in work machines
(pumps, compressors) it is always outward. Therefore, in work machines, the
stationary cascade is placed behind the moving cascade in the direction of
the flow. The sketched radial cascade is the cascade of a work machine. The
cascade is fixed, and the reference system is an inertial reference frame, so
that the balance of angular momentum can be used in the form (2.54). The
control volume is chosen as shown in Fig. 2.9: it starts at the outlet surface
Ao, goes along the side of a narrow slit to a vane, and around the other side
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Fig. 2.9. Radial machine with control volume in the guiding cascade flow

and back along the side of the slit to the outlet surface, and then on to the
next vane. The outlet surface is connected to the inlet surface via the lateral
surfaces of the guide vane ring, and so the control volume is closed. The wet-
ted surfaces (vane and sides of the ring) are denoted as Aw. Because of the
reasons given when we applied the balance of momentum earlier, integrating
around the sides of the slit gives no contribution, and, replacing �u with �c we
extract from (2.54)

∫∫

(Ai,Ao,Aw)

� (�x× �c )(�c · �n) dS =
∫∫

(Ai,Ao,Aw)

�x× �t dS . (2.92)

On the left there is no contribution to the integral from Aw, since there is no
flow through the wetted surfaces. At the inlet and outlet surfaces, the velocity
is homogeneous, so that the stress vector is given by �t = −p�n. However,
this is not exactly true for radial cascades, because, among other things,
the flow area increases with increasing r. The integration over the inlet and
outlet surfaces on the right-hand side do not provide any contribution to the
moment, since on these surfaces �n is always parallel to �x. This can be directly
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understood: the stress vector −p�n on these surfaces is directed towards the
center of the cascade, so that there is no torque about the center. The term
remaining on the right-hand side is the torque �T , which the wetted surface
exerts on the flow. Therefore −�T is the torque which the fluid exerts on the
cascade. Thus we are led to:

∫∫

(Ai,Ao)

� (�x× �c )(�c · �n) dS = �T , (2.93)

and we note that the vector �x×�c is constant over the inlet and outlet surfaces,
and thus can be brought in front of the integral. Using the continuity equation
in the form (2.84), we obtain the torque in the form of the famous Euler’s
turbine equation:

�T = ṁ(�xo × �co − �xi × �ci) . (2.94)

In this rotationally symmetric problem, Euler’s turbine equation has only
one component in the direction of the axis of symmetry. After scalar multi-
plication of (2.94) with the unit vector �eΩ in this direction, we obtain the
component form usually given in the literature:

T = ṁ(rocuo − ricui) , (2.95)

in which the torque T that the vane ring exerts on the fluid, as well as the
tangential velocity components cuo and cui are to be taken as positive in
an agreed sense. The surprisingly simple Eq. (2.95) will also be found for
the axial component of the torque on a rotor. It is the core of the theory of
turbomachinery. If the fluid experiences no torque (for example, if there are
no vanes on the ring, and the friction moment can be ignored on the lateral
surfaces of the vane ring), then

rocuo − ricui = 0 , (2.96)

or
rcu = const . (2.97)

As a consequence of the balance of angular momentum, this means that in
a rotating fluid on which no external moments are acting, the tangential
velocity component falls off as 1/r.

In order to calculate the torque on the rotor, we use the balance of angular
momentum relative to a rotating reference frame. In this system the flow is
steady. We assume that at the inlet and outlet surfaces, and only there, the
friction stresses can be ignored, for the reasons explained earlier. From (2.77)
we obtain the component of the torque in the direction of the axis of rotation,
as

∫∫

(Ai,Ao)

� �eΩ · (�x × �c) (�w · �n) dS +
∫∫

(Ai,Ao)

p �eΩ · (�x× �n) dS = T . (2.98)
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T is the torque exerted on the fluid by the rotor; −T is the torque exerted on
the rotor by the fluid. The inlet and outlet surfaces are surfaces of rotation
(Fig. 2.10), so that the vector �x× �n is perpendicular to �eΩ, and the pressure
integrals, clearly, do not contribute to the torque. To continue we resolve
the position vector and the velocity vector into components along the radial,
circumferential and axis of rotation directions, thus

�x = r �er + xΩ �eΩ , (2.99)

�c = cr �er + cu �eϕ + cΩ �eΩ , (2.100)

and so the cross product �x× �c becomes

�x× �c = −xΩcu�er − (rcΩ − xΩcr)�eϕ + rcu�eΩ, (2.101)

from which the following expression for the component in the direction of the
axis of rotation results

�eΩ · (�x × �c) = rcu, (2.102)

since the unit vectors �er, �eϕ and �eΩ are orthogonal. Therefore (2.98) simplifies
to ∫∫

(Ai,Ao)

� rcu (�w · �n) dS = T . (2.103)

If rcu at Ai and Ao are constant, or if their variations are so small that they
can be ignored, then, using the continuity equation in the reference frame
fixed to the rotor

ṁ =
∫∫

(Ao)

� �w · �n dS = −
∫∫

(Ai)

� �w · �n dS (2.104)

Fig. 2.10. Half axial rotor
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we write the torque in the direction of the axis of rotation in the form of
Euler’s turbine equation:

T = ṁ(rocuo − ricui) . (2.105)

The mass flux through the rotor is to be calculated using the component
of the relative velocity normal to the surface through which the fluid flows
�w · �n. Often the normal components of the relative and absolute velocities
are equal. For example, this occurs if the surfaces as in the above case are
surfaces of rotation. The second term on the right-hand side of

�c · �n = �w · �n+ �u · �n (2.106)

is then zero, because the circumferential velocity is orthogonal to �n. We
interpret the component of the torque along the axis of rotation as the work
per unit angle of rotation. The work done by the torque is therefore the
moment times the angle of rotation, and the power P is this moment times
the angular velocity. If we take into account the vectorial character of these
quantities, we write the power as

P = �T · �Ω = Ω ṁ(rocuo − ricui) . (2.107)

If the vectors of the torque and of the angular velocity form an acute angle,
the power of the rotor is delivered on the fluid and we have a work machine.
Finally we calculate the force in the axial direction which is transferred to
the fluid from the rotor, or to the rotor from the fluid. This force is usually
supported by special thrust bearings. It is desirable to keep this axial force
as small as possible. For this reason the sides of the rotor are often fully or
partially acted on by the fluid. By properly choosing these wetted areas the
axial force can be influenced as desired.

The control volume is then so shaped that these surfaces become com-
ponents of the control surface. We shall take the control volume down along
the rotor sides to some desired radius, and, forming a slit, back up to either
the inlet or outlet surface (Fig. 2.11). Then, in an already familiar way the
control volume is formed so that the wetted surfaces (blades and casings)
are parts of the control surface. Starting from the momentum balance in the
accelerating reference frame, we need to integrate the left-hand side of this
equation only over the inlet and outlet surfaces, since there is no flow through
the wetted surfaces including the wetted side surfaces and the surfaces As

opposite to these. Assuming that the friction stresses can be ignored on Ai,
Ao and As, we reach

∫∫

(Ai,Ao)

� �eΩ · �c (�w · �n) dS = −
∫∫

(Ai,Ao,As)

p �eΩ · �n dS + Fa , (2.108)

where Fa is the axial force exerted on the fluid by the rotor. Further simpli-
fications are possible when the integrand is constant over the given surfaces,
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Fig. 2.11. Control volume for calculating the axial thrust

and often because in practical cases the momentum flux through the surfaces
Ai and Ao is much smaller than the pressure forces.

2.6 Balance of Energy

The fact that mechanical energy can be changed into heat and heat can be
changed into mechanical energy shows that the balance laws of mechanics we
have discussed up to now are not enough for a complete description of the
motion of a fluid. As well as the two laws we have already treated, therefore
a third basic empirical law, the balance of energy, appears:

“The rate of change of the total energy of a body is equal to the power
of the external forces plus the rate at which heat is transferred to the
body.”

This law can be “deduced” from the well known first law of thermodynamics
together with a mechanical energy equation which follows from Cauchy’s
equation (2.38). However here we prefer to postulate the balance of the total
energy, and to infer from it the more restrictive statement of the first law of
thermodynamics.

We shall assume the fundamentals of classical thermodynamics as known.
Thermodynamics is concerned with processes where the material is at rest
and where all quantities appearing are independent of position (homoge-
neous), and therefore are only dependent on time. An important step to the
thermodynamics of irreversible processes as they appear in the motion of
fluids, consists of simply applying the classical laws to a material particle. If
e is the internal energy per unit mass, then the internal energy of a mate-
rial particle is given by e dm, and we can calculate the internal energy E of
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a body, that is, the energy of a bounded part of the fluid, as the integral over
the region occupied by the body:

E =
∫∫∫

(V (t))

e �dV . (2.109)

In order to obtain the total energy of the fluid body under consideration, the
kinetic energy which does not appear in the classical theory must be added
to (2.109). The kinetic energy of the material particle is (u2/2) dm, and the
kinetic energy K of the body is correspondingly

K =
∫∫∫

(V (t))

ui ui

2
�dV . (2.110)

The applied forces which appear are the surface and body forces which were
discussed in the context of the balance of momentum. The power of the
surface force �tdS is �u · �t dS, while that of the body force ��k dV is �u · �k� dV .
The power of the applied forces is then:

P =
∫∫∫

(V (t))

� ui ki dV +
∫∫

(S(t))

ui ti dS . (2.111)

In analogy to the volume flow �u · �n dS through an element of the surface, we
introduce the heat flux through an element of the surface with −�q ·�n dS and
denote �q as the heat flux vector . The minus sign is chosen so that inflowing
energy (�q and �n forming an obtuse angle) is counted as positive. From now
we shall limit ourselves to the transfer of heat by conduction, although �q
can also contain other kinds of heat transfer, for example, heat transfer by
radiation, via Poynting’s vector .

The relationship between the heat flux vector �q and the temperature field
(or other quantities) depends on the material under consideration. Therefore
it is a constitutive relation, which we leave open to be specified later. Using
the amount of heat flowing into the body per unit time

Q̇ = −
∫∫

(S(t))

qi ni dS, (2.112)

we can write for the energy balance

D
Dt

(K + E) = P + Q̇ , (2.113)
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or, more explicitly

D
Dt

∫∫∫

(V (t))

[uiui

2
+ e
]
�dV =

∫∫∫

(V )

ui ki � dV +
∫∫

(S)

ui ti dS −
∫∫

(S)

qi ni dS .

(2.114)
On the right-hand side, we have already replaced the time varying domains
with the fixed domains V and S. By applying (1.88), this is also possible on
the left. If we express the stress vector in the first surface integral using the
stress tensor, both surface integral can be transformed into volume integrals
using Gauss’ theorem. Thus equation (2.114) becomes

∫∫∫

(V )

{
�

D
Dt

[uiui

2
+ e
]
− � kiui − ∂

∂xj
(τjiui) +

∂qi

∂xi

}
dV = 0. (2.115)

Since the integrand is assumed to be continuous, and the domain of inte-
gration is arbitrary, the integrand must vanish, and, after differentiating, we
obtain the differential form of the energy balance

� ui
Dui

Dt
+ �

De
Dt

= � kiui + ui
∂τji

∂xj
+ τji

∂ui

∂xj
− ∂qi

∂xi
. (2.116)

Using the expansion of the stress tensor (2.35), the definition of enthalpy

h = e+
p

�
(2.117)

and the continuity equation (2.3), the energy equation can be recast in the
often used form:

�
D
Dt

[uiui

2
+ h
]

=
∂p

∂t
+ � kiui +

∂

∂xj
(Pjiui) − ∂qi

∂xi
. (2.118)

If Eq. (2.38) is satisfied, the terms in (2.116) which are multiplied with ui

drop out, and we are led to the following equation for the rate of change of
the internal energy of a material particle

De
Dt

=
τji

�

∂ui

∂xj
− 1
�

∂qi

∂xi
, (2.119)

which is the continuum mechanical analogue to the first law of classical ther-
modynamics. In the first law,

de = δw + δq, (2.120)

de is the change in the internal energy in the time dt, δw is the work done
in this time, and δq is the gain of heat in this time (each per unit mass). In
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applying the classical law to a material particle, we replace the operator “d”
by “D/Dt”, and therefore we must replace δw on the right-hand side with the
work done per unit time, which we shall denote by δẇ. Similarly we replace
δq with δq̇, so that the first law of thermodynamics must be written in the
form

De
Dt

= δẇ + δq̇ . (2.121)

Just like (2.120), this equation holds without restrictions both for reversible
and irreversible processes. In particular, for reversible processes we have the
classical thermodynamic relations

δw = −pdv (2.122)

and
δq = Tds , (2.123)

or
δẇ = −pDv

Dt
, (2.124)

δq̇ = T
Ds
Dt

. (2.125)

Here, v = 1/� is the specific volume, and s is the specific entropy. By compar-
ing (2.121) with (2.119), we can extract two formulas which are valid without
restriction to calculate the work done

δẇ =
τji

�

∂ui

∂xj
(2.126)

and the heat added
δq̇ = −1

�

∂qi

∂xi
, (2.127)

where each are per unit time and mass. The work per unit time and mass can
be split up into the reversible work as in (2.124), and the irreversible work.
The latter contribution is irreversibly changed into heat by the action of the
friction stresses. Replacing the stress tensor by its decomposition according
to (2.35), we extract the following

δẇ = −p

�

∂ui

∂xi
+

1
�
Pijeij , (2.128)

where the last term results from Pji∂ui/∂xj , because the friction stress tensor
Pij is, like τij , a symmetric tensor. This term represents the deformation work
converted irreversibly into heat. In general, the deformation work per unit
time and volume Pijeij is written as a dissipation function Φ, where

Φ = Pijeij . (2.129)
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The dissipation function depends on the relationship between the friction
stresses and the motion, that is, on the constitutive relation, and therefore
we defer calculating this explicitly until we know the constitutive relation.
However this term is zero for frictionless flow, or for fluids at rest. We identify
the first term, using the continuity equation (2.3), as the reversible contribu-
tion to the work, known from (2.124):

−p

�

∂ui

∂xi
=

p

�2

D�
Dt

= −pDv
Dt

, (2.130)

so that we finally attain the expression for the work per unit time and mass

δẇ = −pDv
Dt

+
Φ

�
. (2.131)

2.7 Balance of Entropy

We begin with the equation

Tds = de+ pdv , (2.132)

which is known as Gibbs’ relation. It is given here for the special case of
single component material, in which there is no phase change and where no
chemical reactions take place. It is to this that we wish to restrict our dis-
cussion. Apart from this, this equation holds without restriction for both
reversible and irreversible processes. Its validity for reversible processes can
be found from the first law of thermodynamics, in connection with (2.122)
and (2.123). Its acceptance for irreversible processes is the fundamental as-
sumption for the thermodynamics of these processes. We shall not justify
this assumption further, except to say that its consequences agree with our
experience. Gibbs’ relation can also be obtained from kinetic theory, where
the results of the kinetic theory of gases remain restricted to small deviations
from thermodynamic equilibrium, and to a monatomic dilute gas. Therefore
these results can neither be used as a “proof” of Gibbs’ relation, nor do they
have the general validity in which we shall apply this relation. Gibbs’ relation
for a material particle leads to the equation

T
Ds
Dt

=
De
Dt

+ p
Dv
Dt

, (2.133)

in which we replace the material change of the internal energy using the en-
ergy equation (2.121), and (2.127) and (2.131), so that the following equation
emerges:

�
Ds
Dt

=
Φ

T
− 1
T

∂qi

∂xi
. (2.134)

Transforming the last term on the right-hand side using the identity

∂

∂xi

[qi

T

]
=

1
T

∂qi

∂xi
− qi

T 2

∂T

∂xi
(2.135)
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furnishes the balance of entropy

�
Ds
Dt

=
Φ

T
− qi

T 2

∂T

∂xi
− ∂

∂xi

[qi

T

]
. (2.136)

In this equation the rate of change of the entropy of a material particle is
split up into two contributions: A rate of entropy production with the value

�
D
Dt

s(irr) =
Φ

T
− qi

T 2

∂T

∂xi
, (2.137)

which is always greater or equal to zero, and a divergence of an entropy flux
vector qi/T , which can be greater than, equal to, or less than zero:

�
D
Dt

s(rev) = − ∂

∂xi

[qi

T

]
. (2.138)

The first part arises via the irreversible actions of friction and heat conduction
in the fluid particle. Sufficient for the inequality

D
Dt

s(irr) ≥ 0 (2.139)

are the conditions
Φ ≥ 0 (2.140)

and
qi
∂T

∂xi
≤ 0 . (2.141)

The first inequality expresses the experience that during deformation me-
chanical energy is dissipated into heat by the action of friction, but that heat
cannot be changed into mechanical energy by the action of friction during
deformation. The second inequality states that the heat flux vector must form
an obtuse angle with the temperature gradient, and reflects the fact that heat
flows in the direction of falling temperature. Equation (2.138) represents the
change in entropy which the particle experiences from its neighborhood, since
the divergence of the entropy flux is the difference between the inflowing and
outflowing entropy flux. This difference can clearly be positive, negative or
zero.

Elimination of Φ/T between Eqs. (2.137) and (2.134) leads to a form of
(2.139) known as Clausius-Duhem’s inequality:

ρ
Dsirr

Dt
= ρ

Ds
Dt

+
1
T

∂qi

∂xi
− qi

T 2

∂T

∂xi
≥ 0 .

We can obtain the change of entropy of a bounded part of the fluid by
integrating (2.136) over the domain occupied by the fluid. We shall apply
Reynolds’ transport theorem to the left-hand side, and transform the inte-
gral on the right-hand side using Gauss’ theorem. Doing this, we extract the
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following equation for the balance of entropy of the fluid body

D
Dt

∫∫∫

(V (t))

s �dV =
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Dt

=
∫∫∫

(V )

[
Φ

T
− qi

T 2
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∂xi

]
dV −

∫∫

(S)

qini

T
dS . (2.142)

As stated, the volume integral on the right-hand side is never negative, and
therefore we can read off the second law of thermodynamics

DS
Dt

≥ −
∫∫

(S)

qini

T
dS . (2.143)

The equality sign only holds when the process in the body is reversible.
However all real processes in nature are irreversible, so the inequality sign
must hold for these. If heat is neither added to nor taken away from the body,
the surface integral on the right-hand side vanishes. The process taking place
in the body is then adiabatic, and Eq. (2.142) expresses the following fact:

“The entropy cannot decrease in an adiabatic process.”

The second law of thermodynamics is of course, like the first law, a law of
experience. In our discussion, the second law arises as a consequence of the
assumptions in (2.140) and (2.141), which are based on experience. Had we
postulated the second law we would have had to conclude that the integrand
of the volume integral on the right-hand side of (2.142) is never negative. The
Eqs. (2.140) and (2.141) are sufficient for this.

2.8 Thermodynamic Equations of State

The principles we have discussed so far in Chap. 2 form the basis of contin-
uum mechanics. These principles represent a summary of our experience of
the behavior common to all bodies. All solids and fluids, whether Newtonian
or non-Newtonian fluids, are subject to these universal laws. The distinguish-
ing properties of solids and fluids are determined by the materials from which
they consist. These properties are abstracted by constitutive relations. They
define ideal materials, and therefore are models of the material’s real behav-
ior. Besides these constitutive relations in a narrow sense, i. e. those which
establish the relationship between stress state and motion, or between heat
flux vector and temperature, there are also the thermodynamic equations of
state. We shall introduce the constitutive relations in the next chapter, but
here we discuss how the equations of state known from classical thermody-
namics are carried over to the moving continuum, and their application to
determining the thermodynamic state of a material particle.

It is a fact of experience of classical thermodynamics that a thermody-
namic state is uniquely defined by a certain number of independent variables
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of state. For the single component material to which we shall restrict our-
selves, two independent variables of state are required. These two independent
variables, which otherwise are of arbitrary choice, fix the value of every other
variable of state. An equation of state, which can also be given in the form
of a diagram or graph, is a relationship by which two variables of state, as
independent variables, determine a third as a dependent variable. For a small
class of materials, in particular for gases, equations of state can be found on
the basis of specific molecular models from statistical mechanics and quan-
tum mechanics. Here, however, we do not wish to go into the origin of the
equations of state, and we shall consider them as given.

We call an equation of state between p, � and T a thermal equation of
state, and so we have

p = p (�, T ) . (2.144)

The equation of state
p = �RT (2.145)

defines, for example, the thermally perfect gas . If the so-called caloric vari-
ables of state, such as internal energy e, enthalpy h or entropy s, appear as
dependent variable, we denote equations like, for example

e = e(�, T ) (2.146)

as caloric equations of state. For a thermally perfect gas, the caloric equation
of state takes the simple form

e = e(T ) (2.147)

or
h = h(T ) . (2.148)

The equation of state e = cvT (or h = cpT ) with constant specific heat cv
(or cp) therefore also defines the calorically perfect gas .

In general, however, one equation of state does not necessarily determine
the other. There exist “reciprocity relations” between the thermal and caloric
equations of state. Yet these are relations between partial differentials, so
that the determination of the other equation of state requires an integration,
where unknown functions appear as “constants” of integration. An equation
of state, from which the other can be found by the processes differentiation
and elimination alone, is called a canonical or fundamental equation of state.
If we compare the differential of the canonical equation of state e = e(s, v)

de =
[
∂e

∂s

]

v

ds+
[
∂e

∂v

]

s

dv (2.149)

with Gibbs’ relation (2.132), we read off

T =
[
∂e

∂s

]

v

, (2.150)
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and
p = −

[
∂e

∂v

]

s

. (2.151)

The right-hand sides of (2.150) and (2.151) are functions of s and v. If we
consider both relationships to be solved for s, the equations s = s(v, T ) and
s = s(p, v) arise. Elimination of s gives a relation between T , p and v, and
thus the thermal equation of state.

The Mollier diagram known from applications is the graphical represen-
tation of the canonical equation of state h = h(s, p), where h is plotted as
a function of s, with p as family parameter. Specific volume and tempera-
ture may then be ascertained by comparing the differential of the canonical
equation of state h = h(s, p)

dh =
[
∂h

∂s

]

p

ds+
[
∂h

∂p

]

s

dp (2.152)

with Gibbs’ relation in the form

Tds = dh− vdp , (2.153)

which yields

v =
[
∂h

∂p

]

s

(2.154)

and
T =

[
∂h

∂s

]

p

. (2.155)

Now to obtain v, for example, note the values of h and p along an isentrope
s = const, and numerically or graphically determine the slope of h = h(p).
For thermally and calorically perfect gas the canonical form of the enthalpy
is easily explicitly given:

h = const · cp exp (s/cp) p(R/cp). (2.156)

The essential step which leads from the classical thermodynamics of reversible
homogeneous processes to the thermodynamics of irreversible processes of
continuum mechanics is the assumption that exactly the same equations of
state as hold for the material at rest also hold for a moving material point
of the continuum. This means, for example, that the internal energy e of
a material particle can be calculated from the values of s and v, irrespective
of where the particle is or what its motion is. This assumption is equivalent
to the assumption that Gibbs’ relation is valid for irreversible processes. For
from the material derivative of the relation e = e(s, v) we have

De
Dt

=
[
∂e

∂s

]

v
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Dt

+
[
∂e

∂v

]

s

Dv
Dt

. (2.157)
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If this relationship always holds, and if we regard (2.150) and (2.151) as
definitions of temperature and pressure, Gibbs’ relation (2.133) follows im-
mediately. This means then too, that the internal energy is given at every
place and time if s and v are known at this place and time. Although the
thermodynamic state changes from place to place, it is not dependent on the
gradients of the variables of state.



3 Constitutive Relations for Fluids

As already explained in the previous chapter on the fundamental laws of
continuum mechanics, bodies behave in such a way that the universal bal-
ances of mass, momentum, energy and entropy are satisfied. Yet only in very
few cases, like, for example, the idealizations of a point mass or of a rigid
body without heat conduction, are these laws enough to describe a body’s
behavior. In these special cases, the characteristics of “mass” and “mass dis-
tribution” belonging to each body are the only important features. In order
to describe a deformable medium, the material from which it is made must
be characterized, because clearly, the deformation or the rate of deformation
under a given load is dependent on the material. Because the balance laws
yield more unknowns than independent equations, we can already conclude
that a specification of the material through relationships describing the way
in which the stress and heat flux vectors depend on the other field quanti-
ties is generally required. Thus the balance laws yield more unknowns than
independent equations. The summarizing list of the balance laws of mass

∂�

∂t
+

∂

∂xi
(� ui) = 0 ,

of momentum (2.38)

�
Dui

Dt
= � ki +

∂τji

∂xj
,

of angular momentum (2.53)
τij = τji

and of energy (2.119)

�
De
Dt

= τij
∂ui

∂xj
− ∂qi

∂xi

yield 17 unknown functions (�, ui, τij , qi, e) in only eight independently
available equations. Instead of the energy balance, we could also use the
entropy balance (2.134) here, which would introduce the unknown function
s instead of e, but by doing this the number of equations and unknown
functions would not change. Of course we could solve this system of equations
by specifying nine of the unknown functions arbitrarily, but the solution found
is then not a solution to a particular technical problem.
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It may happen that the “mechanical” balance laws for mass, momentum
and angular momentum are decoupled from the energy equation. Then six
constitutive relations are enough to complete the reduced system for �, ui and
τij . If the internal energy field is not required, it can be assumed arbitrarily
without changing, for example, the velocity field. In these cases the internal
energy is not counted as an unknown function, and the energy equation is
superfluous.

Even if no proof for the uniqueness of the solution is available, we still
expect that the solution of a physical problem is unique if the number of
unknown functions is the same as the number of equations and the properly
posed initial and boundary values are present. Further, we take as self ev-
ident that all equations are given by the problem itself, and that therefore
only constitutive relations as they arise from the specification of the flowing
material, appear along with the universal balance laws.

In principle, constitutive relations could be gotten from the molecular the-
ory of gases and liquids. For structurally simple molecules, and in particular
for gases, this theory provides constitutive relations which agree very well
with experimental results. This has not been successful to the same extent
for Newtonian liquids; even less so for non-Newtonian fluids. Yet the results
found from the molecular theory do not contradict the phenomenological
model of continuum theory. In fact, they show that this model provides a suit-
able framework for describing the material behavior of even non-Newtonian
fluids. Indeed continuum theory has become for the most part a theory of the
constitutive relations. It develops mathematical models from specific experi-
mental observations which idealize the behavior of the actual material but
which in more general circumstances do describe it as accurately as possible.

Let us adopt the viewpoint of an engineer who forecasts the flow of a given
fluid from the balance laws on the basis of the constitutive relations. As with
the thermodynamic constitutive relations (equations of state), we shall not
go any further into the derivations, but will only note that certain axioms
are of fundamental importance for the formulation of the constitutive rela-
tions. Some of these axioms have arisen during more recent developments of
continuum mechanics, and are not satisfied by older constitutive relations,
which were proposed to explain particular features of the behavior of ma-
terials. Constitutive relations which these axioms satisfy must, among other
things

a) be consistent with the balance laws and with the second law of
thermodynamics (but they are not consequences of these laws),
b) be valid in all coordinate systems (thus they must be formulated
as tensor equations),
c) be deterministic (the history of the motion and of the temperature
of the body up to time t determines, for example, the stresses on the
material particle at time t),
d) hold locally (thus, for example, the stress at a material particle
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depends only on the motion of material particles in its immediate
neighborhood),
e) reflect the symmetry properties of the material, and
f) be valid in all reference frames, i. e. be objective or frame inde-
pendent.

The final condition is here of particular importance, since, as we know from
Sect. 2.4, the equations of motion (momentum balance) are not frame inde-
pendent in this sense. In accelerating reference frames, the apparent forces
are introduced, and only the axiom of objectivity ensures that this remains
the only difference for the transition from an inertial system to a relative sys-
tem. However, it is clear that an observer in an accelerating reference frame
detects the same material properties as an observer in an inertial system. To
illustrate this, for a given deflection of a massless spring, an observer in a ro-
tating reference frame would detect exactly the same force as in an inertial
frame.

In so-called simple fluids , the stress on a material point at time t is deter-
mined by the history of the deformation involving only gradients of the first
order or more exactly, by the relative deformation tensor (relative Cauchy-
Green-tensor) as every fluid is isotropic. Essentially all non-Newtonian fluids
belong to this group.

The most simple constitutive relation for the stress tensor of a viscous fluid
is a linear relationship between the components of the stress tensor τij and
those of the rate of deformation tensor eij . Almost trivially, this constitutive
relation satisfies all the above axioms. The material theory shows that the
most general linear relationship of this kind must be of the form

τij = −p δij + λ∗ekk δij + 2η eij , (3.1a)

or, using the unit tensor I

T = (−p+ λ∗∇ · �u) I + 2ηE (3.1b)

(Cauchy-Poisson law), so that noting the decomposition (2.35), the tensor of
the friction stresses is given by

Pij = λ∗ekk δij + 2η eij , (3.2a)

or
P = λ∗∇ · �u I + 2ηE . (3.2b)

We next note that the friction stresses at the position �x are given by the
rate of deformation tensor eij at �x, and are not explicitly dependent on �x
itself. Since the friction stress tensor Pij at �x determines the stress acting on
the material particle at �x, we conclude that the stress on the particle only
depends on the instantaneous value of the rate of deformation tensor and is
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not influenced by the history of the deformation. We remind ourselves that
for a fluid at rest or for a fluid undergoing rigid body motion, eij = 0, and
(3.1a) reduces to (2.33). The quantities λ∗ and η are scalar functions of the
thermodynamic state, typical to the material. Thus (3.1) is the generalization
of τ = η γ̇, which we have already met in connection with simple shearing
flow and defines the Newtonian fluid.

The extraordinary importance of the linear relationship (3.1) lies in the
fact that it describes the actual material behavior of most technically impor-
tant fluids very well. This includes practically all gases, in particular air and
steam, gas mixtures and all liquids of low molecular weight, like water, and
also all mineral oils.

As already noted, eij = 0 describes the stress state of a fluid at rest or in
rigid body motion. The pressure p of compressible fluids is then determined
by the thermal equation of state p = p(�, T ). The same equation of state also
holds for the moving material particle, thus the pressure is fixed for every
position of the particle and for every instant by � and T . In incompressible
fluids, the pressure is not a function of the thermodynamic state, but is a fun-
damentally dependent variable. As is already clear from Cauchy’s equation
(2.38) in connection with (3.1), and as we shall show explicitly later, only
the gradient of the pressure appears in Cauchy’s equation. In incompressible
flow, an arbitrary constant may be added to the pressure without affecting
the equations of motion. If the pressure is not fixed by a boundary condition
it can only be determined up to this additive constant. Expressed otherwise,
only pressure differences can be calculated from the theory of incompressible
flow.

Using (2.36) and (3.1a), we extract the following equation for the sum of
the mean normal stress and the pressure:

p+ p =
1
3
τii + p = eii (λ∗ +

2
3
η) . (3.3)

By (2.5), eii = 0 holds for incompressible flow, thus the mean normal stress
is equal to the negative pressure. This only holds in compressible flow if the
bulk viscosity

ηB = λ∗ +
2
3
η (3.4)

vanishes. Kinetic gas theory shows that the bulk viscosity arises because
the kinetic energy of the molecules is transferred to the internal degrees of
freedom. Therefore, the bulk viscosity of monatomic gases, which have no
internal degrees of freedom, is zero. The bulk viscosity is proportional to the
characteristic time in which the transfer of energy takes place. This effect
can be important for the structure of shock waves, but is otherwise of lesser
importance, and therefore, even for polyatomic gases, use is most often made
of Stokes’ hypothesis

ηB = 0 . (3.5)
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The assumption of the constitutive relation now also allows the explicit cal-
culation of the dissipation function Φ. Following (2.129) we obtain

Φ = Pij eij = λ∗ekk eii + 2η eij eij , (3.6a)

or, written symbolically

Φ = λ∗(spE)2 + 2η spE2 , (3.6b)

and we see, by expansion and relabelling the dummy indices, that the in-
equality (2.140) is satisfied, if the inequalities

η ≥ 0 , ηB ≥ 0 (3.7)

hold for the shear viscosity η and the bulk viscosity ηB .
As already noted, the viscosity depends on the thermodynamic state, so

η = η(p, T ), where the dependency on pressure is small. The kinetic gas the-
ory states that for dilute gases the only dependency is on the temperature: for
the model of hard sphere molecules we have η ∼ √

T . In the phenomenological
model, the dependency on p and T remains free and must be determined by
experiment. The shear viscosity η often appears in the combination η/� = ν,
which is known as the kinematic viscosity, and clearly depends strongly on
the density or the pressure.

From kinetic gas theory, the viscosity η can be predicted quantita-
tively very well if a realistic molecular potential is used. The less devel-
oped kinetic theory for liquids can not yet furnish comparable viscosity
data. In this case the temperature dependency of the viscosity is given by
η ∼ exp(const/T ), that is, it decreases exponentially with temperature. This
behavior has been experimentally confirmed qualitatively for most liquids,
and so we see that liquids show a contrasting viscosity behavior to gases.
The reason for this lies in the differing molecular structure, and has already
been discussed in Sect. 1.1.

With the linear constitutive equation (3.1) for the stress goes a linear
constitutive relation for the heat flux vector. This linear relationship is known
as Fourier’s law , and for isotropic materials reads

qi = −λ ∂T
∂xi

or �q = −λ∇T . (3.8)

Here λ is a positive function of the thermodynamic state, and is called the
thermal conductivity. The minus sign here is in agreement with the inequality
(2.141). Experiments show that this linear law describes the actual behavior
of materials very well. The dependency of the thermal conductivity on p and
T remains open in (3.8), and has to be determined experimentally. For gases
the kinetic theory leads to the result λ ∼ η, so that the thermal conductivity
shows the same temperature dependence as the shear viscosity. (For liquids,
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one discovers theoretically that the thermal conductivity is proportional to
the velocity of sound in the fluid.)

In the limiting case η, λ∗ = 0, we extract from the Cauchy-Poisson law
the constitutive relation for inviscid fluids

τij = −p δij . (3.9)

Thus, as with a fluid at rest, the stress tensor is only determined by the
pressure p. As far as the stress state is concerned, the limiting case η, λ∗ = 0
leads to the same result as eij = 0. Also consistent with η, λ∗ = 0 is the case
λ = 0; ignoring the friction stresses implies that we should in general also
ignore the heat conduction.

It would now appear that there is no technical importance attached to
the condition η, λ∗, λ = 0. Yet the opposite is actually the case. Many tech-
nically important, real flows are described very well using this assumption.
This has already been stressed in connection with the flow through turboma-
chines. Indeed the flow past a flying object can often be predicted using the
assumption of inviscid flow. The reason for this can be clearly seen when we
note that fluids which occur in applications (mostly air or water) only have
“small” viscosities. However, the viscosity is a dimensional quantity, and the
expression “small viscosity” is vague, since the numerical value of the physical
quantity “viscosity” may be arbitrarily changed by suitable choice of the units
in the dimensional formula. The question of whether the viscosity is small or
not can only be settled in connection with the specific problem, however this
is already possible using simple dimensional arguments. For incompressible
fluids, or by using Stokes’ relation (3.5), only the shear viscosity appears in
the constitutive relation (3.1). If, in addition, the temperature field is homo-
geneous, no thermodynamic quantities enter the problem, and the incident
flow is determined by the velocity U , the density � and the shear viscosity η.
We characterize the body past which the fluid flows by its typical length L,
and we form the dimensionless quantity

Re =
U L�

η
=
U L

ν
(3.10)

which is called the Reynolds’ number . This is the most important dimension-
less group of fluid mechanics, and is a suitable measure for the action of the
viscosity. If η tends to zero, then the Reynolds’ number becomes infinite. The
assumption of inviscid flow is thus only justified if the Reynolds’ number is
very large. If we have, for example, a cascade flow in a water turbine with the
blade chord L = 1 m, inflow velocity U = 10 m/s, and kinematic viscosity of
water of ν = 10−6 m2/s, the Reynolds’ number is already Re = 107, and so
is indeed very large. It therefore can make sense to perform the calculation
on the basis of an inviscid flow.

A further fact, which is important in connection with viscous flow, follows
from simple dimensional analysis: let us consider, for example, the drag D on
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a body in a flow field. This drag may be made dimensionless using the data
of the above problem, forming the drag coefficient

cD =
D

�

2
U2 L2

. (3.11)

The drag coefficient as a dimensionless number can only be dependent on
other dimensionless variables, and the only one which can be formed using
the above data is the Reynolds’ number. Thus we are led inevitably to the
relation

cD = cD(Re). (3.12)
This relation has been confirmed in countless experiments. It represents per-
haps the most convincing argument for the applicability of the constitutive
relation (3.1) to pure, low molecular fluids.

The constitutive relations for the linear viscous fluid (3.1) and for the
inviscid fluid (3.9) apply to most technical applications. In what follows, we
shall deal almost exclusively with the flows of these fluids. Yet there is a se-
ries of technical applications where non-Newtonian fluids play a role, among
these the manufacture of plastics, lubrication technology, food processing and
paint production. Typical representatives of non-Newtonian fluids are liquids
which are formed either partly or wholly of macromolecules (polymers), and
two phase materials like, for example, high concentration suspensions of solid
particles in a liquid carrier solution. For most of these fluids, the shear vis-
cosity decreases with increasing shearrate, and we call them shear-thinning
fluids. Here the shear viscosity can decrease by many orders of magnitude.
This is a phenomenon which is very important in the plastics industry, since
the aim is to process plastics at high shearrates in order to keep the dissipated
energy small. If the shear viscosity increases with increasing shearrate, we
speak of shear-thickening fluids. Note that this notation is not unique, and
shear-thinning fluids are often called “pseudoplastic”, and shear-thickening
fluids are called “dilatant”.

In the simple shearing flow of incompressible fluids (Fig. 1.1), which con-
forms with the linear law (3.1), the normal stresses (terms on the main diag-
onal of the matrix representation of the tensor T) are all equal. Expansion
of the equation (3.1) leads to

τ11 = −p+ 2 η ∂u1/∂x1 ,

τ22 = −p+ 2 η ∂u2/∂x2 ,

τ33 = −p+ 2 η ∂u3/∂x3 .

Since the velocity field is u1 = γ̇ x2 , u2 = u3 = 0,

τ11 = τ22 = τ33 = −p
follows. Obviously this also holds for more general flows with u1 = u1(x2),
u2 = u3 = 0. Indeed, the normal stress differences vanish in all steady unidi-
rectional flows which follow the linear law (3.1).
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In general this is not the case in non-Newtonian flows. They show normal
stress effects, of which the best known is the Weissenberg effect . Contrary to
what a Newtonian fluid does, some non-Newtonian fluids climb up a rotating
rod which is inserted perpendicular to the free surface. This effect, which
only takes place with a small enough rod radius, can be seen by stirring paint
or cream. It is caused by the nonvanishing difference between the normal
stresses. Another normal stress effect is the extrudate swell : as the liquid
emerges from a capillary tube the diameter increases. This phenomenon is
important in the extrusion of melted plastics, because, depending on the
extrusion pressure, the diameter can be more than twice the diameter of
the tube. (At smaller Reynolds’ numbers, we see, even for Newtonian fluids,
a small jet swell which has its origin in the rearrangement of the velocity
profile at the exit.) The normal stress effects are an expression of a “fluid
elasticity”, which manifests itself in an elastic recovery when the load on the
liquid is suddenly removed. These phenomena can be qualitatively explained
by the structure of the polymeric fluid. Polymers are macromolecules
consisting of long chains, whose single members have arisen from monomers
and still show a similar structure. Silicon oil (polydimethylsiloxane), for
example, consists of chain molecules of the form

Si

CH3

CH3

O Si

CH3

CH3

O Si

CH3

CH3

O ,

which arise, through polymerization, from monomers with the formula

OH Si

CH3

CH3

OH .

These long chains can, in some cases, contain many thousand molecules, so
that the molecular weight, that is, the weight of 6.0222 × 1023 molecules
(Avogadro’s number) is correspondingly large, and reaches values of up to
106 g/mol. Typical non-Newtonian effects are seen at molecular weights of
over 103 g/mol. Polymeric fluids can have quite different physical properties
from those of the corresponding monomeric fluid. This also comes from the
fact that the chains themselves (which indeed are not all the same length) can
easily become tangled. Because of the thermal motion, they continually undo
and reform new tangles. Under shearing loads, the chains are straightened
out, and this can serve as a rough model to explain the decreasing viscos-
ity with increasing shearrate. The remaining viscosity when the shearrate
vanishes is the so-called null viscosity, which is almost proportional to the
molecular weight of the fluid. The aligned molecules try to retangle them-
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selves and if this is hindered additional normal stresses arise. In the extrusion
process the molecules in the tube are aligned. Following this highly ordered
state, the molecules retangle themselves after exiting the tube, and thus cause
an increase of the extrudate diameter. In accordance with the second law of
thermodynamics, they try to reach a state of maximum disorder, that is,
of maximum entropy. The elastic recovery mentioned above can be viewed
similarly. We stress that this form of elasticity has a completely different
character from the elasticity of a solid. By stretching a solid, the atoms are
pulled away from each other. The work done by stretching is then retained by
the solid as potential energy. On release, the solid immediately springs back
into shape, if we ignore the inertia of the material. The elasticity of a poly-
mer fluid is a consequence of the thermal motion (retangling) and therefore
it needs a certain time, which is the reason why the extrudate swell does not
necessarily begin directly after the material exits the tube.

As well as the phenomena we have already mentioned, non-Newtonian
fluids exhibit a number of further, sometimes very surprising, effects, and
therefore we do not expect that a single constitutive relation is enough to
describe all these different phenomena. From a technical standpoint, shear-
thinning is particularly important, because many flows in applications are
shear flows, or closely related flows. Thus the strong dependency of the vis-
cosity on the shearrate can have a great influence. For example, this is the case
in hydrodynamic lubrication flows and pipe flow of non-Newtonian fluids, as
well as in the processing of plastics.

We have already described the constitutive relation τ = τ(γ̇) for the
simple shearing flow of non-Newtonian fluids, and we shall write this as

τ = η(γ̇) γ̇ . (3.13)

We obtain an extension of this relation for the general stress state if we
allow a dependency of the shear viscosity on the rate of deformation tensor
in (3.1). Since η is a scalar, it can only be dependent on the invariants of
this tensor. For incompressible flow, the first invariant (cf. (1.58)) I1e = eii is
zero, the third invariant I3e = det(eij) vanishes for simple shearing flow, and
for incompressible flow, the second invariant becomes 2 I2e = −eij eij . Using
these we introduce a generalized shearrate

γ̇ =
√
−4 I2e , (3.14)

so that, in agreement with (1.3), we have for simple shearing flow

γ̇ = du/dy . (3.15)

The constitutive relation of the generalized Newtonian fluid then follows from
the Cauchy-Poisson law (3.1):

τij = −p δij + 2 η(γ̇) eij . (3.16)

In the literature, we find numerous empirical or semi-empirical models for
the function η(γ̇), of which we shall only mention the often used power law

η(γ̇) = m |γ̇|n−1 , (3.17)



84 3 Constitutive Relations for Fluids

(where the parameters m and n are determined experimentally), because
in simple cases, this allows closed form solutions. Obviously m is a param-
eter whose dimension depends on the dimensionless parameter n. For n > 1
shear-thickening behavior is described, and for n < 1 we have shear-thinning
behavior. For γ̇ → 0, the yield function in the first case tends to zero, and in
the second case it becomes infinite, so that then (3.17) is of no use if γ̇ = 0 is
reached in the flow field. This difficulty can be overcome with a modification
of the model (3.17) with three free parameters:

η =
{
η0 for γ̇ ≤ γ̇0

η0 |γ̇/γ̇0|n−1 for γ̇ > γ̇0
. (3.18)

Here γ̇0 is the shearrate up to which Newtonian behavior with the null vis-
cosity η0 is found. The generalized Newtonian fluid shows no normal stress
effects. These are only found in a more comprehensive model for steady shear-
ing flow, which we shall not go into now, but which contains the generalized
Newtonian fluid as a special case.

For unsteady flows, where fluid elasticity is particularly noticeable, linear
viscoelastic models, whose origin goes back to Maxwell, are often used. The
mechanical analogue to the linear viscoelastic model is the series arrangement
of a spring and a damper (Fig. 3.1). We identify the deflection of the spring
with the shearing γS , that of the damper with γD, and the force with τ21,
and so we obtain from the balance of forces

τ21 = GγS = η γ̇D . (3.19)

Fig. 3.1. Maxwell’s model of a linear elastic fluid
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We write the complete deflection γS + γD as γ, so that, from (3.19), the
equation

τ21 = η γ̇ − η

G
τ̇21 (3.20)

arises. Using η/G = λ0, γ̇ = du/dy = 2 e12 for the simple shearing flow,
(3.20) can also be written in the form

τ21 + λ0 τ̇21 = 2 η e12 . (3.21)

The tensorial generalization of this equation is the constitutive relation of
the linear viscoelastic fluid:

Pij + λ0
∂Pij

∂t
= 2η eij . (3.22)

We can call the characteristic time λ0 the “memory span” of the fluid. As
λ0 → 0, we obtain from (3.22) the constitutive relation valid for Newtonian
fluids (3.2), if we set there ekk = 0 (incompressible flow).

In this sense the Newtonian fluid is a fluid without memory. But equa-
tion (3.22) is neither frame independent, nor describes the phenomena of
shear-thinning or shear-thickening. However, the constitutive relation can
be brought to a frame independent form if the partial time derivative is re-
placed by an objective time derivative, like that given by Oldroyd’s derivative
in (1.69), or by Jaumann’s derivative, of which (2.63) is a special case, and
in general it then describes also shear-thinning behavior.

This is so, because constitutive relations describe properties of the ma-
terial point, and therefore should be formulated in a reference frame which
moves and rotates with the material particle (or deforms with it). By doing
this we ensure that the material behavior is independent of the rotation and
translation of the particle, which indeed represent local rigid body motion.

If the stress on the material particle only depends on the instantaneous
value of the rate of deformation tensor, as is the case, for example, in
Cauchy-Poisson’s law, then an observer-fixed reference frame, for the time
being considered as fixed in space, is adequate. Because then the constitutive
relation takes exactly the same form as in the frame co-rotating with the par-
ticle. We can immediately convince ourselves of this if we transform from one
system into the other by the rules of Appendix A. If the deformation history
enters the stress state, for example if the constitutive relations take the form
of differential equations, then the frame fixed in space is not allowed, since
the rates of change of tensors do not in general comply with the transforma-
tion rules in Appendix A: they are thus not frame independent or objective
tensors. This is the name for tensors which comply with usual transforma-
tion rules even when the transformation matrix is time dependent. This is of
course necessary for the constitutive relations to have the same form in all
systems. Thus a constitutive relation of the form (3.22) only holds in systems
which rotate and translate with the particle, where the translation is taken
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into account if the partial derivative in (3.22) is the material derivative. It
would appear obvious at first to transform the equations of motion into the
reference frame rotating with the material particle. There are many reasons
why this is not practicable: apart from the fact that in general the angular
velocities of different material particles are different, and the boundary con-
ditions of a given problem would continually have to be transformed, it is
also almost impossible to make measurements in the different rotating sys-
tems. As a rule, measurements and calculations are performed in a frame
fixed in space, in which as a rule the boundary of the flow field is at rest. In
fact it is this point which decides which reference frame we use. Therefore
we attempt to express the constitutive relations which are only valid in the
system rotating and translating with the material particle through quantities
referred to the fixed frame. To do this, it is enough to interpret the partial
time derivative in (3.22) as a material derivative of the components in the ro-
tating system, and to represent this derivative in quantities and components
of the frame fixed in space, since the other tensors are already in the fixed
frame. We reach the required formula for the derivative if, starting with the
transformation (A.29)

Pij = aikajlP
′
kl , (3.23)

where the P ′
kl are the components in the rotating system, we form the material

derivative

DPij

Dt
=
(

Daik

Dt
ajl + aik

Dajl

Dt

)
P ′

kl + aikajl
DP ′

kl

Dt
. (3.24)

It is the expression in parantheses which prevents the objectivity of the rate
of change of the tensor. The time derivative of the orthogonal transformation
matrix aij = �ei · �ej

′(t) is found from (2.62), in which the angular velocity �Ω
is now to be replaced by the angular velocity �ω of the particle, leading to

Daij

Dt
= �ei · (�ω × �ej

′) = �ei · (�ω × �em)amj , (3.25)

where the final expression follows from (A.23) and contains only terms in the
system fixed in space. Writing the scalar triple product in index notation

�ei · (�ω × �em) = (�ei)kεklnωl(�em)n , (3.26)

and noting that the kth component �ei · �ek = (�ei)k of the ith basis vector is
the Kronecker-Delta, we extract from (1.46) the expression

Daij

Dt
= εilmωlamj = −Ωmiamj , (3.27)

which brings (3.24) to the form

aikajl
DP ′

kl

Dt
=

DPij

Dt
+ PmjΩmi + PimΩmj . (3.28)
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The right-hand side of (3.28) already is the required rate of change of the
tensor P ′

kl in the system rotating with the material particle, given in com-
ponents of the system fixed in space. This derivative, Jaumann’s derivative
mentioned above, will be denoted with the symbol D/Dt:

DPij

Dt =
DPij

Dt
+ PmjΩmi + PimΩmj . (3.29)

Jaumann’s derivative of an objective tensor is another objective tensor, as
can be read from (3.28) noting that the spin tensor vanishes in the co-rotating
frame. Thus the reference frame which was denoted as fixed in space above
can also be a relative system. The rate of change (DP/Dt)A in the relative
system is the same as in the inertial system (DP/Dt)I , while the components
transform according to (A.28). Constitutive relations in which only objective
tensors appear are then valid in all reference frames, and satisfy the axiom
of frame independence. They have the same form in relative and inertial sys-
tems. Closely related to Jaumann’s derivative is Oldroyd’s derivative (1.67),
which, when applied to the friction stress tensor, leads to the expression

δPij

δt
=

DPij

Dt
+ Pmj

∂um

∂xi
+ Pim

∂um

∂xj
. (3.30)

This is also found when the objective symmetric tensor Pmjemi + Pimemj

is added to the right-hand side of Eq. (3.29). Then, besides the spin tensor,
the rate of deformation tensor also appears. Indeed, Oldroyd’s derivative
represents the rate of change of a tensor in the “body fixed” frame, thus in
a reference frame which translates, rotates and deforms with the particle,
again decomposed into components of the frame fixed in space. Oldroyd’s
derivative of an objective tensor is also objective, and therefore the Rivlin-
Ericksen tensors known from Sect. 1.2.4 are objective tensors. A relation
between the stress tensor and the Rivlin-Ericksen tensors always expresses
an objective constitutive relation.

The value of these objective derivatives (and indeed others) lies in the
fact that they generalize material behavior measured in the frame fixed
in space to arbitrarily large deformations. For sufficiently small deforma-
tion velocities, which in general also means small rotational velocities,
(3.29) and (3.30) reduce back to the partial time derivatives, and therefore
Eq. (3.22) serves to describe oscillatory fluid motions of small amplitude very
well.

Both of the models discussed are examples from the many non-Newtoni-
an fluid models, which are, as a rule, all of empirical nature. On the basis of
a simple fluid, a number of these constitutive relations can be systematically
ordered. We refer here to the more advanced literature, but shall mention two
more models which have found numerous technological applications, because
the general functional dependency of the friction stress tensor on the history
of the relative deformation gradient has an explicit form in these cases. The
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viscous stress tensor is a tensor valued function of this history, with nine
(or in the case of symmetry, six) components. The history is a function of
the time t′, which describes the course of the relative deformation gradient
tensor. t′ can lie between −∞ and the current time t. The tensor of the
friction stresses is therefore a tensor valued function, whose arguments are
also tensor valued functions. We speak of a function of a function, or of
a functional . The relative deformation gradient tensor Cij(�x, t, t′) describes
the deformation which the particle situated at �x at time t has experienced at
time t′. Consider the fluid motion �x = �x(�ξ, t) and the position of the material
point �ξ at time t′ < t, i.e. �x′ = �x(�ξ, t′). If we replace �ξ here by �ξ = �ξ(�x, t) to
obtain

�x′ = �x(�x, t, t′)

we are actually using the current configuration as the reference configuration.
For fixed current time t and the new parameter t− t′ ≥ 0, the relative motion
is the history of the motion. The symmetric tensor

∂x′l
∂xi

∂x′l
∂xj

formed with the relative deformation gradient

∂x′l
∂xi

is the above relative deformation gradient tensor, also called the relative right
Cauchy-Green tensor (see also equation (3.45)).

We are considering the case in which the history Cij(�x, t, t′) can be ex-
panded into a Taylor series. The coefficients of the series are Rivlin-Ericksen
tensors defined by (1.68), so that the following holds for the expansion:

Cij(�x, t, t′) = δij + (t′ − t)A(1)ij +
1
2
(t′ − t)2A(2)ij + . . . (3.31)

(To see the equivalence

A(n)ij =
[
DCij

Dt′n

]

t′=t

we differentiate the square of the line element ds′ with respect to t′:

Dnds′2

Dt′n
=

Dn

Dt′n

(
∂x′l
∂xi

∂x′l
∂xj

)
dxidxj =

DnCij

Dt′n
∂xi

∂x′k

∂xj

∂x′m
dx′kdx′m .

On the other hand by (1.68)

Dnds′2

Dt′n
= A(n)ijdx′idx

′
j .
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For t′ = t therefore
[
DnCij

Dt′n

]

t′=t

δikδjmdx′kdx′m = A(n)ijdx′idx
′
j ,

hence the above equivalence.)
If we truncate the series at the nth term (either because the higher Rivlin-

Ericksen tensors become very small, as according to (1.68) is the case if the
change of the material line element occurs at a low enough rate, or if the
kinematics is so restricted that the higher tensors vanish identically, as is the
case in steady unidirectional or viscometric flow for n > 2), then the friction
stress tensor is no longer a function of a function, but is a function of n
Rivlin-Ericksen tensors. Then the constitutive relation reads

τij = −p δij + ϕij{A(1)kl, . . . , A(n)kl} , (3.32a)

or, symbolically
T = −p I + ϕ{A(1), . . . , A(n) } , (3.32b)

where ϕ is a tensor valued function of the n tensor variables A(1) to A(n).
For unidirectional flows in particular, the transition from the functional leads
to the equation

T = −p I + ϕ{A(1), A(2) } . (3.33)

By unidirectional flows we understand flows in which in a certain (not neces-
sarily Cartesian) coordinate system, only one velocity component is nonzero,
and this varies only perpendicular to the direction of flow. Because of the par-
ticularly simple kinematics, this class of flows often leads to closed solutions,
and will be treated further in Chap. 6.

If we denote the flow direction with the unit vector �e1, the direction of
velocity change with �e2 and the direction orthogonal to these by �e3, the first
and second Rivlin-Ericksen tensors take on the form known from Sect. 1.2 of
the simple shearing flow (1.71) and (1.72). Since the components of A(1) and
A(2) are only functions of γ̇, we extract from (3.33) the equation

τij = −p δij + ϕij(γ̇) . (3.34)

The stresses τ13 = τ31 and τ23 = τ32 are zero in all unidirectional flows, and
the matrix representation of (3.34) reads

[
T
]

=

⎡

⎣
ϕ11(γ̇) − p ϕ12(γ̇) 0
ϕ12(γ̇) ϕ22(γ̇) − p 0

0 0 ϕ33(γ̇) − p

⎤

⎦ . (3.35)

In order to eliminate the undefined pressure in incompressible flow, we form
the differences of the normal stresses:

τ11 − τ22 = N1(γ̇)
τ22 − τ33 = N2(γ̇) , (3.36)
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which, together with the shear stress

τ12 = τ(γ̇) (3.37)

fully determine the behavior of the simple fluid in steady unidirectional flows.
N1(γ̇) is called the primary normal stress function, N2(γ̇) the secondary
normal stress function and τ(γ̇) the shear stress function. N1 and N2 are
even functions of γ̇, and τ is an odd function of γ̇. Of course all of these
functions depend on the material. However, two different fluids with the same
normal and shearing stress functions can show completely different behavior
in flows which are not unidirectional.

We consider now the case where the change of ds2 in (1.68) is sufficiently
slow. This occurs in slow and slowly varying motions, and we shall say that
A(1) is of the first order and A(2) is of the second order:

A(n) ∼ O(εn) . (3.38)

If we restrict ourselves to terms of the first order in ε, (3.32) can be written
in the form

T = −p I + ηA(1) , (3.39a)

or
τij = −p δij + η A(1)ij . (3.39b)

Since A(1)ij = 2eij, we recognize the Cauchy-Poisson law (3.1) for incom-
pressible Newtonian fluids, which we have reached here for the limiting case
of very slow or slowly varying motions. However, “slow variations” implies
a variation with a typical time scale large in comparison to the memory time
of the fluid. As we already found in connection with (3.22), the Newtonian
fluid has no memory, so that the time scale can be arbitrarily small in the
sense of the approximation (3.39).

If we consider terms up to the second order in ε, (3.32b) furnishes the
definition of a second order fluid:

T = −p I + ηA(1) + βA2
(1) + γA(2) . (3.40)

The coefficients η, β and γ here are material dependent constants (where,
from measurements, γ turns out to be negative and should not be confused
with the shear angle). The validity of this constitutive relation is not kine-
matically restricted, and it can be used in general also for unsteady, three-
dimensional flows. The restriction is the necessary “slowness” of the flow un-
der consideration, where the meaning of “slow” is to be clarified in the given
problem.

The second order fluid is the simplest model which shows two different
normal stress functions in simple shearing flow, which increase with γ̇2 as
they should. But the shear-thinning always seen in experiments on polymeric
fluids is not described. In spite of this, this model is used in many appli-
cations, and it also predicts most non-Newtonian effects qualitatively, if not
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always quantitatively. Finally, this constitutive relation, which satisfies all the
axioms stated at the beginning of this chapter, can be seen, separate from its
derivation, as an admissible fluid model, whose agreement with actual ma-
terial behavior is in any case to be checked experimentally (as is also done
with the Cauchy-Poisson law).

The materials mentioned until now have been pure fluids, that is materials
where the shearing forces vanish when the rate of deformation vanishes. As
already said, we often have to deal with substances which have a dual charac-
ter. Of these substances, we shall mention here the Bingham material , which
can serve as a model for the material behavior of paint, or more generally, for
high concentration suspensions of solid particles in Newtonian fluids. If the
solid particles and the fluid are dielectrics, that is do not conduct electrically,
then these dispersions can take on Bingham character under a strong electric
field, even if they show only pure fluid behavior without electric field. These
electrorheological fluids , whose material behavior can be changed very quickly
and without much effort, can find applications, for example, in the damping
of unwanted oscillations. Through appropriate measures the material can be
made to self-adjust to changing requirements and may be formed into “intel-
ligent” materials, which are found increasingly interesting. Even the behavior
of grease used as a means of lubricating ball bearings, can be described with
the Bingham model.

We can gain considerable insight into the behavior of Bingham materials
behavior looking at the simple shearing flow: if the material flows, we have
for the shear stress

τ = η1γ̇ + ϑ ; τ ≥ ϑ . (3.41)

Otherwise the material behaves like an elastic solid, i.e. the shear stress is

τ = Gγ ; τ < ϑ, (3.42)

where ϑ is the yield stress and G is the shear modulus. In a general stress
state, the yield stress becomes tensorial, and in place of ϑ, ϑij appears, so
that the criterion for flow is not immediately obvious. In what follows, we
introduce the generalized Bingham constitutive relation, and first describe
the elastic behavior. Our starting point is equations (1.5) and (1.8), where

Fig. 3.2. Behavior of Bingham materials
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we now consider �ξ as the particle position in a stress free state, and �x as the
position of the same particle in the deformed state. An undeformed material
vector element has the following relation with the deformed element d�x:

dxi =
∂xi

∂ξj
dξj , (3.43)

which follows directly from (1.5) and where ∂xi/∂ξj is the deformation gra-
dient . Thus we write for the square of the element of length |d�x|

dxidxi =
∂xi

∂ξj

∂xi

∂ξk
dξjdξk (3.44)

as well as for the difference

|d�x|2 − |d�ξ|2 =
(
∂xi

∂ξj

∂xi

∂ξk
− δjk

)
dξjdξk (3.45)

and we shall denote the half of the expression in parantheses as Lagrangian
strain tensor Ejk. The obviously symmetric tensor (∂xi/∂ξj)(∂xi/∂ξk) in
(3.44) is called Green’s deformation tensor or the right Cauchy-Green tensor .
Using the intermediate step

|d�x|2 − |d�ξ|2 =
(
∂xi

∂ξj

∂xi

∂ξk
− δjk

)
∂ξj
∂xl

dxl
∂ξk
∂xm

dxm (3.46)

equation (1.5) allows the representation of (3.45) in field coordinates:

|d�x|2 − |d�ξ|2 =
(
δlm − ∂ξk

∂xl

∂ξk
∂xm

)
dxldxm. (3.47)

We call the half of the expression in parantheses in (3.47) Eulerian strain ten-
sor εlm; this is also known as Almansi’s strain tensor . The symmetric tensor
(∂ξk/∂xl)(∂ξk/∂xm) is Cauchy’s deformation tensor , and it is the Eulerian
counterpart to Green’s deformation tensor. We also express the deformation
tensors using the displacement vector

�y = �x− �ξ (3.48)

and extract, with Green’s deformation tensor

∂xi

∂ξj

∂xi

∂ξk
=
∂yi

∂ξj

∂yi

∂ξk
+
∂yk

∂ξj
+
∂yj

∂ξk
+ δkj (3.49)

the following expression for the Lagrangian strain tensor

Ejk =
1
2

(
∂yi

∂ξj

∂yi

∂ξk
+
∂yj

∂ξk
+
∂yk

∂ξj

)
, (3.50)
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which, for small enough deformations (ignoring the quadratic terms), simpli-
fies to

Ejk =
1
2

(
∂yj

∂ξk
+
∂yk

∂ξj

)
. (3.51)

From (3.48) follows
∂yj

∂xk
= δkj − ∂ξj

∂xk
(3.52a)

and for small deformations, i.e. ∂yj/∂xk � ∂ξj/∂xk, we find

∂ξj
∂xk

≈ δkj . (3.52b)

Comparison of (3.46) and (3.47) furnishes

Ejk
∂ξj
∂xl

∂ξk
∂xm

= εlm (3.53)

and we are led to
Elm ≈ εlm . (3.54)

In this case the difference between Lagrangian and Eulerian strain tensor
vanishes. In what follows we shall restrict ourselves to small deformations,
and we find from the substantial derivative of the deformation tensor εlm =
1/2(∂yl/∂xm + ∂ym/∂xl) again the rate of deformation tensor (1.29a)

Dεlm
Dt

=
1
2

(
∂ul

∂xm
+
∂um

∂xl

)
= elm . (3.55)

In rheology it is usual to denote the negative mean normal stress as the
pressure, and we shall follow this usage here, noting however that the mean
normal stress in general includes isotropic terms which are dependent on
the motion. (See Eq. (3.3) for the case of Newtonian fluid.) However, for
incompressible materials, to which we shall restrict ourselves, the pressure
is an unknown function which follows from the solution of the equations of
motion only to within an additive constant, and the absolute value of the
pressure is not important. Therefore, for the constitutive relation we shall
write

τij = −p δij + τ ′ij , p = −1
3
τkk . (3.56)

The tensor τ ′ij is, as above, a deviator, that is the trace of the tensor vanishes.
If e′ij and ε′ij are the deviators of the rate of deformation and the strain
tensors, the following holds at the yield point:

e′ij = 0 and τ ′ij = 2Gε′ij = ϑij . (3.57)
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We shall assume that yield occurs according to the von Mises’ hypothesis ,
that is when the energy stored in the material as a result of the deviatoric
stresses reaches a given value

1
2
ε′ijτ

′
ij = const . (3.58)

By (3.57), the potential energy at the yield point is then

1
4G

ϑijϑij = const =
1

2G
ϑ2 , (3.59)

so that we obtain the constitutive relation of the Bingham material in the
form

τ ′ij = 2ηe′ij if
1
2
τ ′ijτ

′
ij ≥ ϑ2, (3.60)

and
τ ′ij = 2Gε′ij if

1
2
τ ′ijτ

′
ij ≤ ϑ2, (3.61)

where
η = η1 + ϑ/(2e′ije

′
ij)

1/2 . (3.62)
The incompressible Bingham material is determined by the three material
constants G, ϑ and η1. Wherever it flows it behaves as a fluid with variable
viscosity η, which depends on the second invariant of the rate of deformation
deviator I ′2e. Therefore here it behaves as a generalized Newtonian fluid. The
yield criterion in (3.60) and (3.63) contains only the second invariant I ′2e of
the stress deviator, so this is coordinate invariant. For simple shearing flow
we have τ ′ijτ ′ij = 2τ2

xy, and Eqs. (3.60) and (3.61) reduce to Eqs. (3.41) and
(3.42), since by (3.62) e′xy = 1

2du/dy. Often, instead of the elastic solid body
behavior in the region where 1

2τ
′
ijτ

′
ij < ϑ2, rigid body behavior is assumed.

Then the constitutive relation takes on the form

τ ′ij = 2ηe′ij if
1
2
τ ′ijτ

′
ij ≥ ϑ2, (3.63)

and
ε′ij = 0 if

1
2
τ ′ijτ

′
ij ≤ ϑ2. (3.64)

In numerical calculations, the Bingham constitutive relation is also approxi-
mated with a two-viscosity model , which is more easily dealt with numerically,
and which also offers advantages in localizing the yield surfaces. In this model
the rigid body character (3.64) is replaced by a Newtonian flow behavior with
very high viscosity η0 (η0 � η1). Then instead of (3.64) we have the law

τ ′ij = 2η0e
′
ij if

1
2
τ ′ijτ

′
ij ≤ ϑ2 , (3.65)

which, for η0 → ∞, i.e. e′ij → 0 becomes (3.64).
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We shall now specialize the universally valid equations, namely Cauchy’s
equation (2.38) and the energy equation (2.119) to the two most technically
important cases: Newtonian fluids and inviscid fluids. The continuity equa-
tion (2.2) (mass balance) and the symmetry of the stress tensor (2.53) (angu-
lar momentum balance) remain unaffected by the choice of the constitutive
relation.

4.1 Newtonian Fluids

4.1.1 The Navier-Stokes Equations

We start with a Newtonian fluid which is defined by the constitutive relation
(3.1) and, by setting (3.1) and (1.29) into (2.38), we obtain the Navier-Stokes
equations :

�
Dui

Dt
= � ki +

∂

∂xi

{
−p+ λ∗

∂uk

∂xk

}
+

∂

∂xj

{
η
[ ∂ui

∂xj
+
∂uj

∂xi

]}
, (4.1)

where we have used the exchange property of the Kronecker delta δij .
With the linear law for the friction stresses (3.2) and the linear law for

the heat flux vector (3.8), we specialize the energy equation to the case of
Newtonian fluids:

�
De
Dt

− p

�

D�
Dt

= Φ+
∂

∂xi

[
λ
∂T

∂xi

]
, (4.2)

where the dissipation function Φ is given by (3.6). In the same way we deal
with the forms (2.116) and (2.118) of the energy equation, which are often
more appropriate. Another useful form of the energy equation arises by in-
serting the enthalpy h = e+ p/� into (4.2). Because of

�
Dh
Dt

= �
De
Dt

− p

�

D�
Dt

+
Dp
Dt

(4.3)

(4.2) can also be written as

�
Dh
Dt

− Dp
Dt

= Φ+
∂

∂xi

[
λ
∂T

∂xi

]
. (4.4)
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As a consequence of Gibbs’ relation (2.133), the entropy equation for New-
tonian fluids can also appear in place of (4.2)

� T
Ds
Dt

= Φ+
∂

∂xi

[
λ
∂T

∂xi

]
. (4.5)

If we choose the energy equation (4.2), together with the continuity equa-
tion and the Navier-Stokes equations we have five partial differential equa-
tions with seven unknown functions. But both the thermal equation of state
p = p(�, T ) and the caloric equation of state e = e(�, T ) appear also. This
set of equations forms the starting point for the calculation of frictional com-
pressible flow.

By (4.1) the Navier-Stokes equations are given in Cartesian coordinates.
However in many technical applications the geometry of the flow boundary
suggests a curvilinear coordinate system (If we consider, for example, the
unidirectional flow between rotating cylinders (Fig. 6.5), there is only one
nonzero velocity component to consider in cylindrical coordinates, while in
Cartesian coordinates there would be two components). It is then advisable to
use the symbolic notation valid in all coordinate systems. In order to do this,
we introduce the constitutive relation (3.1b) into Cauchy’s equation (2.38b):

�
D�u
Dt

= ��k −∇ p+ ∇(λ∗∇ · �u) + ∇ · (2 ηE) , (4.6)

where now the use of the material derivative (1.78) is more expedient. In
Eqs. (4.2) to (4.5), the operator ∂/∂xi is to be replaced by the Nabla oper-
ator ∇, and the dissipation function is to be inserted in symbolic notation
(3.6b). The most important curvilinear coordinate systems are orthogonal,
and knowing the appropriate definition of the Nabla operator we can directly
calculate the component equations of (4.6) in the chosen coordinate system.
The method of calculation is explained in Appendix B, where the component
forms of the Navier-Stokes equations (for incompressible flow) in the most
often used coordinate systems can be found.

For isothermal fields, or by ignoring the temperature dependence of η and
λ∗, the final term on the right-hand side of (4.1) can be put in a different
form. In Cartesian index notation we have then

∂

∂xj

{
η
[ ∂ui

∂xj
+
∂uj

∂xi

]}
= η

{
∂2ui

∂xj∂xj
+

∂

∂xi

[∂uk

∂xk

]}
, (4.7)

where we have interchanged the order of differentiation in an intermediate
step, so that from (4.1) the form cited by Navier and Stokes is obtained:

�
Dui

Dt
= � ki − ∂p

∂xi
+ (λ∗ + η)

∂

∂xi

[∂uk

∂xk

]
+ η
[ ∂2ui

∂xj∂xj

]
. (4.8a)
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In symbolic notation, this equation reads

�
D�u
Dt

= ��k −∇p+ (λ∗ + η)∇(∇ · �u) + η Δ�u . (4.8b)

In this Δ = ∇ · ∇ is the Laplace operator , whose explicit form in various
coordinate systems may be found in Appendix B. In incompressible flow
(∂uk/∂xk = ∇ · �u = 0) (4.8) is reduced to

�
Dui

Dt
= � ki − ∂p

∂xi
+ η

∂2ui

∂xk∂xk
, (4.9a)

or
�

D�u
Dt

= ��k −∇p+ η Δ�u . (4.9b)

Often the density distribution � is homogeneous when the incompressible fluid
is set in motion. Because D�/Dt = 0, this homogeneity remains for all time,
so that the condition “incompressible flow” can be replaced by the condition
“constant density”. In what follows, we shall always assume this unless the
opposite is explicitly stated (see also the discussion in Sect. 2.1). With (4.9)
and the continuity equation (∂ui/∂xi = 0), we have four differential equations
for the four unknown functions ui and p, where p is now a dependent variable
of the problem.

We interpret Eq. (4.9) as follows: on the left is the product of the mass of
the material particle (per unit volume) and its acceleration; on the right is
the sum of the volume body force ��k, the net pressure force per unit volume
−∇p (the difference between the pressure forces on the material particle, i.e.
the divergence of the pressure stress tensor −∇ · (p I)), and the net viscous
force per unit volume ηΔ�u (the difference between the viscous forces on the
particle, i.e. the divergence of the viscous stress tensor in incompressible flow
2η∇ ·E).

We next use the vector identity

Δ�u = ∇(∇ · �u) −∇× (∇× �u) , (4.10)

which is easily verified in index notation, and which reduces the application
of the Laplace operator to operations with ∇ even in curvilinear coordinates.
Because ∇ · �u = 0, we then have

η Δ�u = −2 η∇× �ω . (4.11)

This equation makes it clear that in incompressible and irrotational flow
(∇ × �u = 2 �ω = 0), the divergence of the viscous stress tensor vanishes.
The viscous stresses themselves are not zero, it is only that they provide
no contribution to the acceleration of the particle. From the fact that the
angular velocity appears on the right-hand side, we may not conclude that
the viscous stresses depend on �ω (which is of course impossible), but that Δ�u
can be expressed by −2∇× �ω in incompressible flow.
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4.1.2 Vorticity Equation

Since a viscous incompressible fluid behaves like an inviscid fluid in regions
where �ω = 0, the question arises of what the differential equation for the
distribution of �ω is. Of course this question does not arise if we consider the
velocity field as given, because then �ω can be calculated directly from the
velocity field using Eq. (1.49). To obtain the desired relation, we take the
curl of the Eq. (4.9b). For reasons of clarity, we shall use symbolic notation
here. We assume further that �k has a potential (�k = −∇ψ), and use the
identity (4.11) in Eq. (4.9b). In addition, we make use of (1.78) to obtain the
Navier-Stokes equations in the form

1
2
∂�u

∂t
− �u× �ω = −1

2
∇
[
ψ +

p

�
+
�u · �u

2

]
− ν∇× �ω . (4.12)

The operation ∇× applied to (4.12), along with the identity (easily verified
in index notation)

∇× (�u× �ω) = �ω · ∇�u− �u · ∇�ω − �ω∇ · �u+ �u∇ · �ω (4.13)

furnishes the new left-hand side ∂�ω/∂t − �ω ·∇�u + �u ·∇ �ω, where we have al-
ready noted that the flow is incompressible (∇·�u = 0) and that the divergence
of the curl always vanishes:

2∇ · �ω = ∇ · (∇× �u) = 0 . (4.14)

This can be shown in index notation or simply explained by the fact that the
symbolic vector ∇ is orthogonal to ∇×�u. On the right-hand side of (4.12), the
term in parantheses vanishes, since the symbolic vector ∇ is parallel to the
gradient. The remaining term on the right-hand side −ν∇×(∇×�ω) is recast
using the identity (4.10), and because ∇ · �ω = 0 from (4.14) we extract the
new right-hand side ν Δ�ω. In this manner we arrive at the vorticity equation:

∂�ω

∂t
+ �u · ∇�ω = �ω · ∇�u+ ν Δ�ω . (4.15)

Because ∂/∂t+ �u · ∇ = D/Dt we can shorten this to

D�ω
Dt

= �ω · ∇�u+ ν Δ�ω . (4.16)

This equation takes the place of the Navier-Stokes equation, and is often
used as a starting point for, in particular, numerical calculations. Because
2 �ω = curl�u, (4.16) represents a differential equation only in �u; the pressure
term contained in (4.12) no longer appears. In two-dimensional flow �ω · ∇�u
is zero, so that (4.16) can be written as

D�ω
Dt

= ν Δ�ω . (4.17)
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For the time being we shall only treat the case of the inviscid fluid (ν = 0),
for which (4.16) takes the form

D�ω
Dt

= �ω · ∇�u (4.18a)

or in index notation
Dωi

Dt
= ωk

∂ui

∂xk
. (4.18b)

After expanding the material derivative, we can consider (4.18) as a differ-
ential equation for the field �ω(�x, t), but also immediately as a differential
equation for the angular velocity �ω(�ξ, t) of the material particle �ξ. If we view
(4.18) in this way it has a simple solution: instead of the unknown vector
�ω(�ξ, t), we introduce with (1.5) (xi = xi(ξj , t)) the unknown vector �c(�ξ, t)
with the mapping

ωi = cj
∂xi

∂ξj
. (4.19)

The tensor ∂xi/∂ξj is known from (3.43), where it provided the relation

dxi =
∂xi

∂ξj
dξj (4.20)

between the deformed element d�x and d�ξ. This tensor is nonsingular since
the Jacobian J = det(∂xi/∂ξj) is not equal to zero, a fact which was used
in Sect. 1.2 and in the discussion of the Bingham material in Chap. 3. The
material derivative of (4.19) leads to the relation

Dωi

Dt
=

Dcj
Dt

∂xi

∂ξj
+ cj

D
Dt

[∂xi

∂ξj

]
, (4.21)

whose final term we transform by interchanging the order of differentiation:

cj
D
Dt

[∂xi

∂ξj

]
= cj

∂ui

∂ξj
. (4.22)

Here ∂ui/∂ξj is the velocity gradient in the material description �u =
�u(�ξ, t). We take the velocity in material coordinates as given by (1.9),
thus �u = �u{ �x(�ξ, t), t}, so that after using the chain rule on (4.22), we obtain
the equation

cj
D
Dt

[∂xi

∂ξj

]
= cj

∂ui

∂xk

∂xk

∂ξj
, (4.23)

or, with (4.19) also

cj
D
Dt

[∂xi

∂ξj

]
= ωk

∂ui

∂xk
. (4.24)
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Then by (4.21), instead of (4.18) we can finally write

Dcj
Dt

= 0 , or cj = cj(�ξ) . (4.25)

This means that for a material particle (�ξ = const) the vector cj does not
change. We fix this still unknown vector from the initial condition for �ω:

ωi(t = 0) = ω0i = cj
∂xi

∂ξj

∣∣∣∣∣
t=0

= cj δij = ci (4.26)

since �xi(t = 0) = �ξi and thus also obtain from (4.19) the desired solution

ωi = ωoj
∂xi

∂ξj
, (4.27)

which, compared to (4.20), shows us that the vector �ω obeys the same
mapping as d�x. If we choose the vector d�ξ to be tangential to �ω, so that
d�ξ is simultaneously a vector element on the vorticity line, this compari-
son shows that the same material elements at the time t, denoted d�x, are
still tangential to the vector of the angular velocity �ω, and thus vorticity
lines are material lines. Since the vector of the angular velocity �ω changes
in exactly the same manner as the material line element d�x, the magni-
tude of the angular velocity must get larger when |d�x| increases, i.e. when
the material line element is stretched. Thus we deduce the following conclu-
sion which is also important for the behavior of turbulent flows:

“The angular velocity of a vortex filament increases when it is
stretched and decreases when it is compressed.”

We shall go into this aspect of inviscid flow in more detail in connection with
Helmholtz’s vortex theorems, and shall infer from (4.27) the important fact
that the angular velocity of a material particle remains zero for all times if
it is zero at time t = 0. An inviscid flow thus remains (if �k has a potential)
irrotational for all times if it is irrotational at the reference time. We could
also reach this conclusion from (4.18) together with the initial condition,
but (4.27) shows us clearly that the deformation gradient ∂xi/∂ξj also must
remain finite. A flow which develops discontinuities is in general no longer
irrotational.

4.1.3 Effect of Reynolds’ Number

In viscous flow, the term, ν Δ�ω represents the change in the angular velocity
of a material particle which is due to its neighboring particles. Clearly, the
particle is set into rotation by its neighbors via viscous torques, and it itself
exerts torques on other neighboring particles, thus setting these into rotation.
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The particle only passes on the vector of angular velocity �ω on to the next
one, just as temperature is passed on by heat conduction, or concentration by
diffusion. Thus we speak of the “diffusion” of the angular velocity vector �ω or
of the vorticity vector curl�u = ∇× �u = 2�ω. From what we have said before,
we conclude that angular velocity cannot be produced within the interior of
an incompressible fluid, but gets there by diffusion from the boundaries of
the fluid region. Flow regions where the diffusion of the vorticity vector is
negligible can be treated according to the rules of inviscid and irrotational
fluids.

As we know, equations which express physical relationships and which are
dimensionally homogeneous (only these are of interest in engineering) must
be reducible to relations between dimensionless quantities. Using the typical
velocity U of the problem, the typical length L and the density �, constant
in incompressible flow, we introduce the dimensionless dependent variables

u+
i =

ui

U
(4.28)

p+ =
p

�U2
(4.29)

and the independent variables

x+
i =

xi

L
(4.30)

t+ = t
U

L
(4.31)

into the Navier-Stokes equations, and obtain (neglecting body forces)

∂u+
i

∂t+
+ u+

j

∂u+
i

∂x+
j

= − ∂p+

∂x+
i

+Re−1 ∂2u+
i

∂x+
j ∂x

+
j

, (4.32)

where Re is the already known Reynolds’ number

Re =
U L

ν
.

Together with the dimensionless form of the continuity equation for incom-
pressible flow

∂u+
i

∂x+
i

= 0 (4.33)

and the dimensionless quantities which determine the shape of the flow
boundary (for example, an airfoil), the problem is formulated in a mathe-
matically proper way. The solutions found, the dimensionless velocity field
u+

i and the dimensionless pressure field p+ say, will then not be changed when
the body exposed to the stream is enlarged in a geometrically similar manner,
and the kinematic viscosity ν or the velocity U are simultaneously changed so
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that the Reynolds’ number stays the same. As long as the Reynolds’ number
remains constant, nothing changes in the mathematical formulation. Thus
the quantities calculated from the solution (for example the dimensionless
drag cD), do not change either. The coefficient of drag only changes if the
Reynolds’ number is changed in accordance with the law (3.12) obtained by
dimensional considerations alone.

An important and largely unsolved problem of fluid mechanics is the
dependency of the solution of the Navier-Stokes equations (4.32) and the
continuity equation (4.33) on the Reynolds’ number which only appears as
a parameter. This difficulty is already evident in such simple flows as uni-
directional flows to be discussed in Chap. 6. The laminar flows given there
are only realized below a certain critical Reynolds’ number . If this Reynolds’
number is exceeded, for example by decreasing the viscosity, a completely
different flow ensues. This flow is always unsteady, three-dimensional and ro-
tational. If we measure the velocity at a fixed position, we observe that it
varies irregularly about an average value: velocity and pressure are random
quantities. We refer to such flows as turbulent . The calculation of turbu-
lent flows has until now only been achieved using numerical integration of
geometrically simple flows. The results of these numerical simulations allow
important insights into the structure of turbulence. However for flows ap-
pearing in applications, the methods are computationally too difficult, and
because of this we shall remain dependent on semi-empirical approximation
methods for the conceivable future. These furnish only average flow quantities
though these are the ones which are technically important.

We have introduced the Reynolds’ number by way of dimensional con-
sideration. But it can also be interpreted as the ratio of the typical inertial
force to the typical viscous force. The typical inertial force is the (nega-
tive) product of the mass (per unit volume) and the acceleration, and so is
the first term in the Navier-Stokes equation (4.1). The typical inertial term
� u1 ∂u1/∂x1 is of the order of magnitude of �U2/L; the characteristic vis-
cosity term η ∂2u1/∂x

2
1 has the order of magnitude of η U/L2. The ratio of

the two orders of magnitude is the Reynolds’ number:

(�U2/L) / (η U/L2) = �U L/η = U L/ν = Re . (4.34)

The Reynolds’ number may also be interpreted as the ratio of the charac-
teristic length L to the viscous length ν/U ; this is an interpretation which
is particularly useful if the inertia forces vanish identically, as is the case in
steady unidirectional flow.

If the Reynolds’ number tends to infinity or to zero, simplifications arise
in the Navier-Stokes equations, and these are often the only way to make the
solution of a problem possible. However these limiting cases are never reached
in reality but lead to approximate solutions which are better the larger (or
smaller) the Reynolds’ number becomes (asymptotic solutions).
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First we shall discuss the limiting case Re → 0, which is realized

a) if U is very small,
b) if � is very small (for example, flow of gases in evacuated tubes),
c) if η is very large (thus generally in flows of very viscous fluids), or
d) if the typical length is very small (flow past very small bodies, for
example dust or fog particles. Such flows appear also in two phase
flows if one phase is gaseous, and the other liquid or solid, but also
if small solid particles are suspended in liquid. Flows through porous
media, for example ground water flows, also fall into this category.)

From (4.34), Re → 0 characterizes the dominance of the viscous forces over
the inertial forces. The limit Re→ 0 in (4.32) shows this formally: the whole
left-hand side of this equation can be ignored compared to the term Re−1Δ�u.
The pressure gradient ∇p may not be neglected in general, because along
with the velocity vector �u, it is the other variable present in the differential
equations (4.32) and (4.33). Only the solution for given boundary conditions
resolves the relative role of the pressure, or more exactly the pressure differ-
ence because the pressure is determined by (4.32) and (4.33) only up to an
additive constant. We also see directly from (4.29) that the pressure gradient
tends to infinity as Re−1, if the limit Re→ 0 is realized by �→ 0.

Ignoring the inertia terms leads to an enormous simplification in the math-
ematical treatment, since these are the nonlinear terms in the equations. The
equation arising from taking the limit in (4.32) is therefore linear, and reads
in dimensional form

∂p

∂xi
= η

∂2ui

∂xj∂xj
. (4.35)

For the second limiting case Re → ∞, the viscous terms in (4.32) vanish. The
resulting equation is known as Euler’s equation, and it describes the inviscid
flow. Later we shall discuss this equation in more detail (Sect. 4.2.1). If it
were not for the experimental fact that a Newtonian fluid adheres to a wall,
inviscid flow and flow at large Reynolds’ numbers would be identical. If we
assume at the outset that the flow be inviscid (ν = 0), then in general the
flow will be different from a viscous flow in the limit ν → 0. The reason
for this singular behavior is that, mathematically, the highest derivative in
Eq. (4.32) is lost for ν = 0. We shall not go into the pure mathematical
side of this problem here, but look at this condition through the following
example. In simple shearing flow (or another steady unidirectional flow), the
velocity field shown in Fig. 1.11 is entirely independent of the Reynolds’
number (assuming we hold U constant, and the laminar flow does not change
into turbulent flow). Theoretically this velocity distribution is maintained for
Re → ∞. Had we set ν = 0, the shearing stress on the upper wall would
be zero, and the flow could not be set into motion at all, i.e. the velocity
of the fluid would be identically zero. Thus it remains to be clarified under
which conditions a flow with large Reynolds’ number corresponds to the flow
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calculated under the assumption of a completely inviscid fluid. The answer
to this question depends on the given problem, and a generally valid answer
cannot be given.

The influence of viscosity at large Reynolds’ numbers is made clear by
another simple example: a very thin plate coinciding with the positive x1

axis is exposed to a steady uniform stream in the x1 direction with velocity
U . The material particles in the incident flow are taken as being irrotational,
so that they remain so in inviscid flow (cf. (4.27)). Under the condition of
zero viscosity, the plate does not impede the flow, although it does in viscous
flow. The no-slip boundary condition leads to large velocity gradients near
the wall and we expect the material particles to be set into rotation even
if the viscosity is very small. From the discussion of the vorticity transport
equation (4.16), we know that in viscous flow this can occur only through
diffusion of the angular velocity �ω from the wall. The order of magnitude of
the typical time τ for the diffusion of the angular velocity from the surface
of the plate to a point at distance δ(x1) can be estimated from (4.17):

ω

τ
∼ ν

ω

δ2(x1)
,

or, solving for τ :

τ ∼ δ2(x1)
ν

. (4.36)

A particle not yet affected by the diffusion process that arrives exactly at the
position δ(x1) after this time, has covered the distance U τ = x1 (Fig. 4.1).

We extract the order of magnitude of the distance to which the diffusion
can advance for a given x1 from the equation

x1 = U τ ∼ U
δ2(x1)
ν

, (4.37)

or solving for δ(x1)/x1:

δ(x1)/x1 ∼
√
ν/(U x1) =

√
1/Re . (4.38)

Fig. 4.1. Explanation of the boundary layer thickness
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Thus the effect of diffusion remains limited to a region whose extent grows
as

√
x1, but which becomes very narrow for large Reynolds’ numbers. Apart

from within this boundary layer , 2�ω = curl �u is zero, and thus by (4.11), the
viscous forces make no contribution to the acceleration, so that we might
as well assume the flow to be inviscid potential flow. If we calculate the
external flow under this assumption (leading us here to the trivial result
u(x1, x2) = U = const), we incur a small error which vanishes with increasing
Reynolds’ number, because in reality the flow does not “feel” an infinitesimally
thin plate but senses the boundary layer as a very slender obstacle by which
it is somewhat deflected. In order to calculate the flow inside this boundary
layer the viscosity certainly has to be taken into account.

It is of course possible that the outer flow may already be rotational for
another reason, for example if the fluid particles in hypersonic flow are set
into rotation by passing through a “curved shock”. Also if the fluid has been
set into rotation before reaching the body, the assumption of inviscid flow
can often be made, but the flow is no longer a potential flow.

The statements made for the example of the flow over a plane plate hold
qualitatively for the flow past general bodies (and also in compressible flow),
although here only under the assumption that the flow does not become
separated from the body. If separation occurs, the effect of the viscosity does
not in general remain limited to a thin boundary layer. With separation an
increase in the drag, along with its associated losses ensues. One therefore
strives to avoid separation by suitable profiling. As already mentioned in
Sect. 2.5, if this is properly done we may calculate the viscous flow at large
Reynolds’ numbers by assuming inviscid flow, in particular inviscid potential
flow.

We are now in a position to give a more exact explanation of why with
simple shearing flow (Fig. 1.11), even in the limiting case Re → ∞, inviscid
flow is not realized: at a distance x2 from the lower plate the angular velocity
of all the particles is the same, since the field only depends on x2. The particle
at the position (x1, x2) at the given instant in time thus carries as much
angular velocity with it downstream as the particle which replaces it at this
position has. The vorticity diffusing from the upper moving plate to the line
x2 is thus not carried (convected) downstream as in the case of the boundary
layer flow, but permeates cross-stream to the lower wall, so that the flow in
the whole gap is to be treated as a viscous flow, even for Re→ ∞.

Besides unidirectional flow, we could bring up many other examples which
all would show that inviscid flow does not always correspond with viscous
flow at large Reynolds’ numbers. In every situation it is therefore necessary
to check carefully whether a flow calculated under the assumption of zero
viscosity is actually realized. On the other hand, the discussion here has
shown that the assumption of inviscid flow often allows a realistic description
of the flow field around a body.
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4.2 Inviscid Fluids

4.2.1 Euler’s Equations

As we have already seen in Sect. 4.1.3, Euler’s equation emerges from the
Navier-Stokes equation (4.8) for Re = ∞. However Euler’s equation is also
a special case of Cauchy’s equation (2.38) if we use the particular constitutive
relation for inviscid fluids (3.9). Euler’s equation then reads

�
Dui

Dt
= � ki +

∂

∂xj
(−p δij) (4.39)

or
�
Dui

Dt
= � ki − ∂p

∂xi
, (4.40a)

and it holds without restriction for all inviscid flows. In symbolic notation we
write

�
D�u
Dt

= ��k −∇ p . (4.40b)

We derive Euler’s equations in natural coordinates from (4.40b) by inserting
the acceleration in the form (1.24). Relative to the basis vectors �t in the
direction of the pathline, �nσ in the principle normal direction and �bσ in the
binormal direction, the vectors ∇ p and �k are

∇ p =
∂p

∂σ
�t+

∂p

∂n
�nσ +

∂p

∂b
�bσ , (4.41)

�k = kσ �t+ kn �nσ + kb
�bσ , (4.42)

and the component form of Euler’s equation in natural coordinates, with
u = |�u|, becomes

∂u

∂t
+ u

∂u

∂σ
= kσ − 1

�

∂p

∂σ
, (4.43)

u2

R
= kn − 1

�

∂p

∂n
(4.44)

0 = kb − 1
�

∂p

∂b
. (4.45)

As already noted, ignoring the viscosity is physically akin to ignoring the
heat conduction, so that we write the constitutive relation for the heat flux
vector in the form

qi = 0 . (4.46)

By doing this we obtain from the energy equation (2.118) the energy equation
of inviscid flow:

�
D
Dt

[
1
2
ui ui + h

]
=
∂p

∂t
+ � ki ui . (4.47)
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If, instead of the energy equation, the entropy equation (2.134) is used, this
now reads

Ds
Dt

= 0 . (4.48)

That is, the entropy of a material particle does not change in inviscid flow
without heat conduction. (Here, as before, we have excluded other nonequi-
librium processes which might arise through excitation of internal degrees of
freedom of the fluid molecules or through chemical reactions.) The Eq. (4.48)
characterizes an isentropic flow . If the entropy is homogeneous:

∇ s = 0 , (4.49)

we speak of homentropic flow . For the calorically perfect gas, (4.48) is re-
placed by

D
Dt

(p �−γ) = 0 (4.50)

and (4.49) by
∇ (p �−γ) = 0 . (4.51)

4.2.2 Bernoulli’s Equation

Under mildly restricting assumptions it is possible to find so-called first inte-
grals of Euler’s equations, which then represent conservation laws. The most
important first integral of Euler’s equations is Bernoulli’s equation. We as-
sume that the mass body force has a potential (�k = −∇ψ), i.e. ψ = −gi xi

for the gravitational force. We multiply Euler’s equation (4.40a) by ui, thus
forming the inner product with �u, and obtain the relation

ui
∂ui

∂t
+ ui uj

∂ui

∂xj
= −1

�
ui

∂p

∂xi
− ui

∂ψ

∂xi
. (4.52)

After transforming the second term on the left-hand side and relabelling the
dummy indices, this becomes

uj
∂uj

∂t
+ uj

∂

∂xj

[ui ui

2

]
= −1

�
uj

∂p

∂xj
− uj

∂ψ

∂xj
. (4.53)

We could, in principle, integrate this equation along an arbitrary smooth
curve, but we arrive at a particularly simple and important result if we inte-
grate along a streamline. With u = |�u|, from the differential equation for the
streamline (1.11), we have

uj = u dxj/ds , (4.54)

so that
uj

∂

∂xj
= u

dxj

ds
∂

∂xj
= u

d
ds

(4.55)
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holds, and because uj ∂uj/∂t = u ∂u/∂t we can write for (4.53)

∂u

∂t
+

d
ds

[
u2

2

]
= −1

�

dp
ds

− dψ
ds

. (4.56)

Integration along the arc length of the streamline leads us to Bernoulli’s
equation in the form

∫
∂u

∂t
ds+

u2

2
+
∫

dp
�

+ ψ = C , (4.57)

or integrating from the initial point A to the final point B we get the definite
integral

B∫

A

∂u

∂t
ds+

1
2
u2

B +

B∫

A

1
�

dp
ds

ds+ ψB =
1
2
u2

A + ψA . (4.58)

In order to evaluate the integrals, the integrands must in general appear as
functions of the arc length s unless the integrand is a total differential. How-
ever, the first integral cannot be written as the integral of a total differential.
Obviously, in incompressible flow of homogeneous density, dp/� is a total
differential. But this is also the case in barotropic flow , where the density is
only a function of the pressure:

� = �(p) . (4.59)

Then dP = dp/�(p) is a total differential, and the pressure function

P (p) =
∫

dp
�(p)

(4.60)

can be calculated once and for all (if necessary, numerically). Clearly
barotropic flows occur if the equation of state is given in the form � = �(p, T )
and the temperature field is homogeneous, or if we have the technically im-
portant case where the equation of state � = �(p, s) is given and the flow is
homentropic.

If gravity is the only mass body force appearing, Bernoulli’s equation for
incompressible flow of homogeneous density reads

�

∫
∂u

∂t
ds+ �

u2

2
+ p+ � g x3 = C , (4.61)

where we have assumed that the x3 direction is antiparallel to the gravity
vector �g. For steady, incompressible flow Bernoulli’s equation reduces to

�
u2

2
+ p+ � g x3 = C . (4.62)
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Since for steady flows, streamlines and pathlines coincide, � is constant along
the streamline, even for inhomogeneous density fields (∇ � �= 0); this is be-
cause D�/Dt = 0. Equation (4.62) therefore also holds for steady, incom-
pressible flows when the density is inhomogeneous.

In compressible flows, the velocities are in general so large that the po-
tential of the gravity force ψ = g x3 only has to be taken into account if very
large differences in altitude appear in the flow (meteorology). In technical
applications, ψ in (4.57) can normally be neglected, and for barotropic flow
this equation takes the form

∫
∂u

∂t
ds+

u2

2
+ P = C . (4.63)

If, in addition, the flow is steady, (4.63) can be simplified further to

u2

2
+ P = C . (4.64)

In general, the constant of integration C differs from streamline to stream-
line. Therefore Bernoulli’s equation only represents a relation between the
flow quantities at position B on the streamline, and at position A on the
same streamline. In order to apply Bernoulli’s equation the streamline ac-
tually has to be known. Its calculation requires in general the knowledge of
the velocity field, and this problem must be solved before Bernoulli’s equa-
tion can be applied. Of course this restricts the application of Bernoulli’s
equation drastically. However this restriction vanishes in two technically very
important cases:

The first case is the application of Bernoulli’s equation to stream filament
theory (see discussion in connection with Fig. 1.7). In this theory, the “repre-
sentative” streamline is fixed by the shape of the streamtube which does not
change in time. Therefore the streamline is known, and will be fixed in space
even for unsteady flow (cf. (1.13)).

The second case is the application of Bernoulli’s equation to potential flow .
From the discussion in connection with the vorticity equation we have seen
that in many practically important problems, inviscid flow is also irrotational.
However in inviscid potential flows Bernoulli’s constant has the same value
on all streamlines: Bernoulli’s equation (4.57) therefore holds between two
arbitrary points A and B in the flow field. For the irrotational field we have

curl �u = 2 �ω = 0 , (4.65)

or because of (1.46)

Ωij =
1
2

[ ∂ui

∂xj
− ∂uj

∂xi

]
= 0 , (4.66)

and so
∂ui

∂xj
=
∂uj

∂xi
; (4.67)
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it follows that Euler’s equation (4.40a) becomes

∂ui

∂t
+

∂

∂xi

[uj uj

2

]
+

1
�

∂p

∂xi
+

∂ψ

∂xi
= 0 . (4.68)

After introducing the velocity potential Φ according to (1.50)

ui =
∂Φ

∂xi
,

Eq. (4.68) yields

∂2Φ

∂xi∂t
+

∂

∂xi

[1
2
∂Φ

∂xj

∂Φ

∂xj

]
+

1
�

∂p

∂xi
+

∂ψ

∂xi
= 0 . (4.69)

In barotropic flow, the whole left-hand side of this equation can be represented
as the gradient of a scalar function

∂

∂xi

[
∂Φ

∂t
+

1
2
∂Φ

∂xj

∂Φ

∂xj
+ P + ψ

]
=

∂f

∂xi
, (4.70)

and the expression

df =
∂f

∂xi
dxi (4.71)

is a total differential. Therefore the line integral
∫

∂

∂xi

[
∂Φ

∂t
+

1
2
∂Φ

∂xj

∂Φ

∂xj
+ P + ψ

]
dxi =

∫
df (4.72)

is path independent, and we immediately obtain Bernoulli’s equation for po-
tential flow

∂Φ

∂t
+

1
2
∂Φ

∂xi

∂Φ

∂xi
+ P + ψ = C(t) . (4.73)

Bernoulli’s “constant” can, as pointed out, be a function of time. However
this is unimportant since without loss of generality it can be incorporated
into the potential:

Φ∗ = Φ−
t∫

0

C(t′) dt′ . (4.74)

Then ui = ∂Φ∗/∂xi holds and from (4.73) we obtain

∂Φ∗

∂t
+

1
2
∂Φ∗

∂xi

∂Φ∗

∂xi
+ P + ψ = 0 . (4.75)

Incidentally the Eq. (4.73) (or (4.75)) is also a first integral in viscous in-
compressible potential flow, since then, because of (4.12), the equation to be
integrated corresponds with (4.68).

The progress achieved with Eq. (4.73) cannot be emphasized highly
enough. In the theory of potential flow Bernoulli’s equation takes the place of



4.2 Inviscid Fluids 111

Euler’s three nonlinear equations. Moreover in steady flow this even gives rise
to a pure algebraic relationship between the velocity, the potential of the mass
body force and the pressure function (in incompressible flow, the pressure).
In order to apply Bernoulli’s equation in potential theory, the streamlines do
not need to be known. The simplifications thus found in the mathematical
treatment and the practical significance of potential flows have made this an
important area in fluid mechanics.

We have already seen that in technical applications, in particular in turbo-
machinery, reference frames rotating uniformly with �Ω are often introduced.
We reach Euler’s equation for these reference frames by inserting the con-
stitutive relation for inviscid fluids (3.9) into Cauchy’s equation (2.68), and
expressing the relative acceleration using (1.78):
{
∂ �w

∂t
−�w×(∇×�w)+∇

[ �w · �w
2

]}
= −

[∇ p

�
−�k+2 �Ω×�w+ �Ω×( �Ω×�x)

]
. (4.76)

Instead of following the derivation of Bernoulli’s equation as in (4.52), we
immediately form the line integral along a streamline. If d�x is a vectorial line
element along the streamline, {�w×(∇× �w)}·d�x = 0 holds, and {2 �Ω× �w}·d�x =
0, since �w × (∇ × �w) and �Ω × �w are orthogonal to �w and thus orthogonal
to d�x. Therefore, the Coriolis force in particular has no component in the
direction of the streamline. Using the relation

�Ω × ( �Ω × �x) = −∇
[1
2

( �Ω × �x)2
]
, (4.77)

(which may be proved using index notation), the centrifugal force can be
written as the gradient of the scalar function 1

2 ( �Ω × �x)2 and thus has a po-
tential. If we assume, as before, barotropy and a potential for the mass body
force, the line integral of Euler’s equation then reads
∫

∂ �w

∂t
· d�x+

∫ {
∇
[ �w · �w

2
− 1

2
( �Ω × �x)2 + ψ

]
+

∇ p

�

}
· d�x = 0 . (4.78)

With |d�x| = ds and |�w| = w we obtain Bernoulli’s equation for a uniformly
rotating reference frame:

∫
∂w

∂t
ds+

w2

2
+ ψ + P − 1

2
( �Ω × �x)2 = C . (4.79)

A special form of this equation for incompressible flow arises if the mass
body force is the gravitational force, the unit vector �e3 is in the x3 direction
antiparallel to �g, and the reference frame rotates about the x3 axis with
Ω = const (Fig. 4.2). With r2 = x2

1 + x2
2, the square of the cross product

then reads
( �Ω × �x)2 = (Ω x1 �e2 −Ω x2 �e1)2 = Ω2 r2 , (4.80)
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Fig. 4.2. Bernoulli’s equation in a rotating reference frame

and (4.79) reduces to

∫
∂w

∂t
ds+

w2

2
+
p

�
+ g x3 − 1

2
Ω2 r2 = C . (4.81)

Additionally, we note that a flow which is a potential flow in the inertial refer-
ence frame is no longer a potential flow in the rotating frame. The advantages
connected with treating the flow using potential theory may outweigh those
connected with choosing a rotating reference frame, and it can sometimes be
more useful to retain the inertial frame.

4.2.3 Vortex Theorems

We shall now consider the circulation of a closed material line as it was
introduced by (1.105):

Γ =
∮

(C(t))

�u · d�x .

Its rate of change is calculated using (1.101) to give

DΓ
Dt

=
D
Dt

∮

(C(t))

�u · d�x =
∮

(C)

D�u
Dt

· d�x+
∮

(C)

�u · d�u . (4.82)

The last closed integral vanishes, since �u ·d�u = d(�u ·�u/2) is a total differential
of a single valued function, and the starting point of integration coincides with
the end point.

We now follow on with the discussion in connection with Eq. (1.102), and
seek the conditions for the time derivative of the circulation to vanish. It
has already been shown that in these circumstances the acceleration D�u/Dt
must have a potential I, but this is not the central point of our current
discussion.
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Using Euler’s equation (4.40) we acquire the rate of change of the line
integral over the velocity vector in the form

DΓ
Dt

=
∮

(C)

�k · d�x−
∮

(C)

∇ p

�
· d�x (4.83)

and conclude from this that DΓ/Dt vanishes if �k · d�x and ∇ p/� · d�x can be
written as total differentials. If the mass body force �k has a potential the first
closed integral is zero because

�k · d�x = −∇ψ · d�x = −dψ . (4.84)

In a homogeneous density field or in barotropic flow, because of

∇ p

�
· d�x =

dp
�(p)

= dP (4.85)

the second integral also vanishes. The last three equations form the content
of Thomson’s vortex theorem or Kelvin’s circulation theorem:

DΓ
Dt

= 0 . (4.86)

In words:

“In an inviscid and barotropic fluid, the circulation of a closed ma-
terial line remains constant for all times if the mass body force has
a potential.”

We use this theorem as a starting point for the explanation of the famous
Helmholtz’s vortex theorems which allow a vivid interpretation of vortex mo-
tions and in addition are of fundamental importance in aerodynamics.

Before we do this, we shall consider the origin of the circulation about an
airfoil in two-dimensional inviscid potential flow, because Kelvin’s circulation
theorem seems to contradict the formation of this circulation.

In connection with Eq. (2.91) we have already referred to the fact that
the force on an airfoil in two-dimensional potential flow is proportional to the
circulation. We gain an insight into the relation between circulation and lift
(force perpendicular to the undisturbed incident flow direction) by comparing
a symmetric airfoil with an asymmetric airfoil (or a symmetric airfoil at an
angle of attack) in plane two-dimensional flow. In the first case the flow is
likewise symmetric, and for this reason we expect no force perpendicular to
the incident flow direction. The contribution of the line integral about the
upper half of the airfoil to the circulation has exactly the same size as the
contribution about the lower half, but with opposite sign, that is, the total
circulation about the symmetric airfoil is zero.

For the asymmetric airfoil shown in Fig. 4.3 the flow is likewise asymmet-
ric, the contribution of the line integral about the upper half has an absolute



114 4 Equations of Motion for Particular Fluids

Fig. 4.3. Explanation of the circulation about an airfoil

value larger than that of the contribution about the lower half and therefore
the circulation is nonzero. The velocity along a streamline which runs along
the upper side of the airfoil is then larger on the whole than the velocity on
the lower side. According to Bernoulli’s equation (4.62), the pressure on the
upper side is on the whole smaller than on the lower side (the term � g x3

is of no importance for the dynamic lift), so that in total a force upwards
results.

If we first consider an airfoil in a fluid at rest, the circulation of a closed
curve about the airfoil is clearly zero because the velocity is zero.

The circulation of this curve, which always consists of the same material
particles, must remain zero by Kelvin’s circulation theorem, even if the in-
viscid fluid is set into motion. Experience has shown us, however, that a lift
acts on the airfoil. How can the airfoil acquire lift without Kelvin’s law being
contradicted? To answer this question, consider the airfoil in Fig. 4.4, a series
of closed curves layed down in the fluid which is at rest.

Fig. 4.4. Material curves for an airfoil at rest
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Fig. 4.5. Material curves after setting the airfoil into motion

The circulation is zero for all curves, and also for the surrounding line. We
set the fluid into motion and, since all the curves are material lines, we obtain
the configuration shown in Fig. 4.5. The airfoil “cuts through” the flow, and
a dividing surface forms from the trailing edge as the fluid from the upper
and lower sides flow together. For asymmetric airfoils the velocity above and
below this dividing surface is different. A discontinuity appears, as sketched
in Fig. 4.6.

The discontinuity surface is only possible in the limiting case of vanishing
viscosity (η = 0). Even if there is only a small amount of viscosity, this dis-
continuity becomes evened out. In this region the rotation is nonzero. This
does not contradict Kelvin’s circulation theorem since the discontinuity sur-
face or the wake are not part of the closed material curves. The discontinuity
surface is in principle unstable: it rolls up into a vortex which keeps getting
larger until the velocities at the trailing edge are equal; then the process of
start-up is finished.

The formation of the discontinuity surface hinders the flow around the
sharp edge which in real inviscid flow (η = 0) would produce infinitely large
velocities.

In the first instant of start-up, the flow a round the trailing edge is indeed
at very high velocities, but it becomes separated from the upper side. Later

Fig. 4.6. Separation surfaces behind the airfoil
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we shall see that this is caused by the very large deceleration of the flow from
the trailing edge (high velocity) to the stagnation point (zero velocity) which
will be formed on the upper surface in the as yet circulation free flow. This
flow separates from the upper surface even with very little viscosity (η → 0)
and forms the wake, which becomes the discontinuity surface in the limiting
case η = 0. Apart from inside this wake, the flow is irrotational. Fig. 4.7
shows the different phases of start-up.

A closed curve which surrounds the airfoil and vortex (Fig. 4.8) still has,
by Kelvin’s circulation theorem, a circulation of zero. A closed line which only
surrounds the vortex has a certain circulation and must necessarily cross the
discontinuity surface.

Therefore Kelvin’s circulation theorem does not hold for this line. A curve
which only surrounds the airfoil has the same circulation as the vortex, only
with opposite sign, and therefore the airfoil experiences a lift. The vortex is
called the starting vortex , and we associate the circulation about the airfoil
with a vortex lying inside the airfoil, and call this vortex the bound vortex .
(The seat of the circulation is actually the boundary layer but in the limit
η → 0 the thickness tends to zero while the vorticity in the layer tends to
infinity.)

In addition we note that with every change in velocity the lift changes
likewise, and consequentially a free vortex must form. (In a fluid with vis-
cosity, circulation and vortices can arise in many ways, for example through
boundary layer separation, without a sharp edge being necessary.)

Incidentally in the above discussion we have also used the obvious law
that the circulation of a closed line is equal to the sum of the circulation of

Fig. 4.7. Start-up
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Fig. 4.8. The circulation of the starting vortex and the bound vortex are of equal
magnitude

Fig. 4.9. Circulation of a meshed network

the meshed network bounded by the curve (Fig. 4.9):

Γclosed =
∑

Γi, (4.87)

or else
Γ =

∫
dΓ . (4.88)

In order to discuss Helmholtz’s vortex theorems, we need to make use of
Stokes’ integral theorem. Let S be a simply connected surface which is other-
wise of arbitrary shape (i.e. any arbitrary closed curve on the surface can be
shrunk to a single point), whose boundary is C, and let �u be any arbitrary
vector.

Stokes’ theorem then reads:
The line integral

∫
�u · d�x about the closed curve C is equal to the surface

integral
∫∫

(∇×�u) ·�n dS over any surface of arbitrary shape which has C as
its boundary, therefore

∮

(C)

�u · d�x =
∫∫

(S)

(curl �u) · �ndS . (4.89)

Stokes’ theorem allows a line integral to be changed into a surface integral.
The direction of integration is positive anticlockwise as seen from the positive
side of the surface (Fig. 4.10).
Helmholtz’s first vortex theorem reads:

“The circulation of a vortex-tube is constant along this tube.”
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Fig. 4.10. Assigning the direction of integration in Stokes’ integral theorem

Fig. 4.11. Vortex-tube

In complete analogy to streamtubes, we shall form vortex-tubes from
vortex-lines, which are tangential lines to the vorticity vector field curl �u
(or �ω) (Fig. 4.11). The vortex-lines which pass through a closed curve form
a vortex-tube. According to Stokes’ theorem, the line integral over the closed
curve in Fig. 4.12 vanishes, because the integrand on the right-hand side of
(4.89) is zero, since curl�u is by definition perpendicular to �n.

The contributions to the integral from the infinitely close pieces C3 and
C4 of the curve cancel each other and we are led to the equation

∫

C1

�u · d�x+
∫

C2

�u · d�x = 0 . (4.90)

Because of the infinitesimally small distance between the curves C3 and C4,
we can consider C1 and C2 to be closed curves. If we change the direction of
integration over C2, thus changing the sign of the second integral, we obtain
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Fig. 4.12. Proof of Helmholtz’s first vortex theorem

Helmholtz’s first vortex theorem:
∮

C1

�u · d�x =
∮

C2

�u · d�x . (4.91)

From this derivation the kinematic nature of this theorem is obvious. An-
other approach to this important theorem starts from equation (4.14) which
shows that the divergence of the vorticity vector vanishes. We can therefore
consider the vorticity vector field curl �u as the velocity field of a new incom-
pressible flow, i.e. the vortex-tube becomes the streamtube of the new field.
We apply the equation of continuity in its integral form (2.8) to a part of
this streamtube, and at the same time replace �u by curl�u. Since the flow is
incompressible, quite generally

∫∫

(S)

(curl �u) · �n dS = 0 , (4.92)

i.e. for every closed surface S, the flux of the vorticity vector is zero. We
apply (4.92) to a part of the vortex-tube whose closed surface consists of the
surface of the tube and two arbitrarily orientated cross-sections A1 and A2,
and find ∫∫

(A1)

(curl �u) · �n dS +
∫∫

(A2)

(curl �u) · �ndS = 0 , (4.93)

since the integral over the tube surface vanishes. The integral
∫∫

(curl �u)·�n dS
is often called the vortex strength. It is clearly identical to the circulation,
and in words the Eq. (4.93) reads:

“The vortex strength of a vortex-tube is constant”.
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Noting the sense of integration of the line integral, Stokes’ theorem transforms
equation (4.93) into Helmholtz’s first theorem (4.91). We conclude from this
representation that just like the streamtube, the vortex tube cannot come to
an end within the fluid, since the amount of fluid which flows through the
tube in unit time cannot simply vanish at the end of the tube. Either the
tube must reach out to infinity, or end at the boundaries of the fluid, or else
close around into itself and, in the case of a vortex-tube, form a vortex ring.

Vortex filaments are of particular importance in aerodynamics. By a vor-
tex filament we understand a very thin vortex-tube. For a vortex filament
the integrand of the surface integral in Stokes’ theorem (4.89)

∮

C

�u · d�x =
∫∫

ΔS

(curl�u) · �n dS = Γ (4.94)

can be taken in front of the integral and we get

(curl �u) · �nΔS = Γ (4.95)

or
2 �ω · �nΔS = 2ωΔS = const , (4.96)

from which we conclude that the angular velocity increases with decreasing
cross-section of the vortex filament.

We shall see later from Helmholtz’s second vortex theorem that vortex-
tubes are material tubes. If we make use of this fact, then (4.96) leads to the
same statement as (4.27): if the vortex filament is stretched, its cross-section
becomes smaller and the angular velocity increases. The expression (4.27)
was according to its derivation restricted to incompressible flow, while the
conclusion we have drawn here (by using Helmholtz’s second vortex theorem)
holds in general for barotropic flow.

A frequently used idealized picture of a vortex filament is a vortex-
tube with infinitesimally small cross-section, whose angular velocity then,
by (4.96), becomes infinitely large:

ωΔS = const (4.97)

for ΔS → 0 and ω → ∞ .

Outside the vortex filament, the field is irrotational. Therefore if the position
of a vortex filament and its strength Γ are known, the spatial distribution
of curl �u is fixed. In addition, if div �u is given (e.g. div �u = 0 in incompress-
ible flow), according to the already mentioned fundamental theorem of vector
analysis, the velocity field �u (which may extend to infinity) is uniquely de-
termined if we further require that the normal component of the velocity
vanishes asymptotically sufficiently fast at infinity and no internal bound-
aries exist. (On internal boundaries conditions have to be satisfied, and we
will wait to Sect. 4.3 to introduce these.)
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Fig. 4.13. Vortex filament

The assertion of the fundamental theorem of vector analysis is also purely
kinematic in nature, and is therefore not restricted to inviscid fluids.

We split the vector �u up into two parts:

�u = �uD + �uR , (4.98)

of which the first is an irrotational field, i.e.

curl�uD = ∇× �uD = 0 , (4.99)

and the second is a solenoidal field, thus

div �uR = ∇ · �uR = 0 . (4.100)

The combined field is therefore in general neither irrotational nor solenoidal.
The field �uD is a potential flow, and thus by (1.50) we have �uD = ∇Φ. We
form the divergence of �u and consider it to be a given function q(�x). Because
of (4.100), we obtain

div �u = ∇ · �uD = q(�x) (4.101)

or else

∇ · ∇Φ =
∂2Φ

∂xi∂xi
= q(�x) . (4.102)

(4.102) is an inhomogeneous Laplace’s equation also called Poisson’s equa-
tion. The theory of both these partial differential equations is the subject
of potential theory which is as important in many branches of physics as in
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fluid mechanics. If we refer back to the results of this theory, the solution of
(4.102) is given by

Φ(�x) = − 1
4π

∫∫∫

(∞)

q(�x′)
|�x− �x′| dV ′ , (4.103)

where �x is the place where the potential Φ is calculated, and �x′ is the abbre-
viation for the integration variables x′1, x′2 and x′3 (dV ′ = dx′1 dx′2 dx′3). The
domain (∞) implies that the integration is to be carried out over all space.
We shall briefly sketch the manner of solution at the end of our consideration,
but here we shall take the solution as given.

In order to calculate �uR we note that (4.100) is certainly satisfied if we
represent �uR as the curl of a new, yet unknown, vector field �a:

�uR = curl�a = ∇× �a , (4.104)

because, from Eq. (4.14), we have

∇ · (∇× �a) = ∇ · �uR = 0 . (4.105)

We form the curl of �u and, from (4.99), extract the equation

∇× �u = ∇× (∇× �a) , (4.106)

which by (4.10) is rewritten as

∇× �u = ∇ (∇ · �a) −Δ�a . (4.107)

Up to now we have only required that the vector �a satisfy (4.104). However
this does not uniquely determine this vector, because we could always add
the gradient of some other function f to �a without changing (4.104) (since
∇ × ∇ f ≡ 0). If, in addition, we require that the divergence of �a vanishes
(∇ · �a = 0), we obtain from (4.107) the simpler equation

∇× �u = −Δ�a . (4.108)

In (4.108) we consider ∇ × �u as a given vector function �b(�x), which is de-
termined by the choice of the vortex filament and its strength (circulation).
Thus the Cartesian component form of the vector equation (4.108) leads to
three Poisson’s equations, namely:

Δai = −bi . (4.109)
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For each of the component equations, we can apply the solution (4.103) of
Poisson’s equation. We combine the results again vectorially, and write the
solution from (4.108) in short form as

�a = +
1
4π

∫∫∫

(∞)

�b(�x′)
|�x− �x′| dV ′ . (4.110)

By doing this, the calculation of the velocity field �u(�x) for a given distribution
q(�x) = div �u and �b(�x) = curl�u is reduced to integration processes, which may
have to be done numerically:

�u(�x) = −∇

⎧
⎪⎨

⎪⎩
1
4π

∫∫∫

(∞)

div �u(�x′)
|�x− �x′| dV ′

⎫
⎪⎬

⎪⎭
+ ∇×

⎧
⎪⎨

⎪⎩
1
4π

∫∫∫

(∞)

curl�u(�x′)
|�x− �x′| dV ′

⎫
⎪⎬

⎪⎭
.

(4.111)

For completeness, we shall sketch the path of solution for equation (4.103).
Starting from Gauss’ theorem (1.94)

∫∫∫

(V )

∂ϕ

∂xi
dV =

∫∫

(S)

ϕni dS (4.112)

we write, for the general function ϕ

ϕ = U
∂V

∂xi
− V

∂U

∂xi
, (4.113)

where U and V are arbitrary functions which we only assume to be continuous
to the degree which is necessary for the application of Gauss’ theorem. Gauss’
theorem then leads to the relation known as Green’s second formula:
∫∫

(S)

[
U
∂V

∂xi
− V

∂U

∂xi

]
ni dS =

∫∫∫

(V )

[
U

∂2V

∂xi∂xi
− V

∂2U

∂xi∂xi

]
dV . (4.114)

For U we now choose the potential function Φ, and for V

V =
1

|�x− �x′| =
1
r
. (4.115)

The function 1/r is a fundamental solution of Laplace’s equation. It is so
called because, as already shown by (4.103), with its help we can form gen-
eral solutions through integration processes. The fundamental solution is also
known as the singular solution, since it satisfies Laplace’s equation every-
where except at a singularity, here for example at r = 0, where 1/r is discon-
tinuous. Later we shall give the function 1/r an obvious meaning, and shall
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proceed to show by formal calculation that Laplace’s equation is satisfied ev-
erywhere except at �x = �x′, (r = 0). Because 1/r is not continuous for r = 0,
we have to exclude this point from the domain (V ), as Gauss’ theorem is only
valid for continuous integrands.

As shown in Fig. 4.14, we surround the singular point with a small sphere
(radius a) so that the surface domain of integration (S) consists of a very
large sphere (radius → ∞) and a very small sphere which surrounds the
singularity. Now the integrand on the right-hand side of (4.114) is regular, and
the first term vanishes everywhere in the domain of integration, since V = 1/r
satisfies Laplace’s equation. In the second term, we replace ΔU = ΔΦ by q(�x)
(because of (4.102)), so that the right-hand side now consists of the integral

−
∫∫∫

(∞)

q(�x)
|�x− �x′| dV .

On the left-hand side we shall first perform the integration over the large
sphere and note that (∂V/∂xi)ni is the derivative of V in the direction of
the normal vector ni of the sphere. Therefore we have

[
∂V

∂xi
ni

]

r→∞
=
[
∂V

∂r

]

∞
=
[
∂

∂r
(r−1)

]

∞
=
[
− r−2

]

∞
, (4.116)

and this vanishes as 1/r2. However the surface of integration increases as r2,
so that the dependency on r drops out. By assumption, U = Φ vanishes at
infinity, and therefore there is no contribution from the first term on the left-
hand side. The second term vanishes too because (∂Φ/∂xi)ni (the component
of the vector �u normal to the surface) die away fast enough for the second
term to vanishes also. Therefore all that remains is the integral over the small
sphere. However the normal vector of the small sphere points in the negative
radial direction, giving us

[
∂V

∂xi
ni

]

r=a

=
[
− ∂V

∂r

]

a

= +a−2, (4.117)

Fig. 4.14. Domain of integration
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and [
∂Φ

∂xi
ni

]

r=a

=
[
− ∂Φ

∂r

]

a

. (4.118)

We write a2 dΩ for the surface element, where dΩ is the surface element of
the unit sphere. Then the left-hand side of (4.114) is

∫∫

(sphere)

Φa−2 a2 dΩ +
∫∫

(sphere)

a−1 ∂Φ

∂r
a2 dΩ . (4.119)

The second integral vanishes for a → 0, the first yields 4π Φ(�x′), and then
from (4.114), we extract

Φ(�x′) = − 1
4π

∫∫∫

(V )

q(�x)
|�x− �x′| dV . (4.120)

If we further replace �x by �x′ which does not change the function

G(�x, �x′) = − 1
4π

1
|�x− �x′| , (4.121)

we obtain the solution (4.103). We call G(�x, �x′) the Green’s function, which
appears here in the special form for infinite, unbounded space. In two-
dimensional problems, the free space Green’s function reads

G(�x, �x′) =
1
2π

ln |�x− �x′| . (4.122)

We now return to Eq. (4.111), and calculate the solenoidal term of the velocity
�uR. This is the only term in incompressible flow without internal bound-
aries. Since we are considering a field which is irrotational outside the vortex
filament (Fig. 4.15), the velocity field outside the filament is given by

�uR(�x) = ∇×

⎡

⎢⎣
1
4π

∫∫∫

(filament)

curl�u(�x′)
|�x− �x′| dV ′

⎤

⎥⎦ . (4.123)

By assumption, the integration is only carried out over the volume of the
vortex filament, whose volume element is

dV ′ = dS �n · d�x′ , (4.124)

with d�x′ = �nds′ as the vectorial element of the vortex filament.
By simple manipulation and using

�n = curl�u/|curl�u|
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Fig. 4.15. Vortex filament

we obtain
dV ′ = dS

curl �u
|curl �u| · �n ds′ , (4.125)

therefore also
dV ′ = (curl�u) · �n dS

ds′

|curl�u| (4.126)

and this leads to the expression for (4.123):

�uR(�x) = ∇×

⎡

⎢⎣
1
4π

∫∫∫

(filament)

(curl �u) · �ndS
|�x− �x′| d�x′

⎤

⎥⎦ . (4.127)

Here we have set
curl�u ds′

|curl�u| = �nds′ = d�x′ . (4.128)

First we integrate over the small cross-sectional surface ΔS and, for ΔS → 0,
ignore the change of the vector �x′ over this surface thus taking 1/|�x− �x′| in
front of the surface integral to obtain

�uR(�x) = ∇×
{

1
4π

∫
1

|�x− �x′|
[∫∫

(curl�u) · �n dS
]

d�x′
}
. (4.129)

From Stokes’ theorem, the surface integral is equal to the circulation Γ ,
and from Helmholtz’s first vortex theorem this is constant along the vortex
filament, and is therefore independent of �x′. From (4.129) we then find

�uR(�x) =
Γ

4π
∇×

∫
d�x′

|�x− �x′| . (4.130)

The following calculation is more simply done in index notation, in which the
right-hand side of (4.130) is written as

Γ

4π
εijk

∂

∂xj

∫
1
r

dx′k.
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We now see directly that the operator εijk∂/∂xj can be taken into the inte-
gral.

The term ∂(r−1)/∂xj (with ri = xi − x′i and r = |�r|) becomes

∂(r−1)
∂xj

= − 1
r2

∂r

∂xj
= − 1

r2
(xj − x′j)

1
r

= −rjr
−3 . (4.131)

If we replace (4.131) by the above expression in vector form, (4.130) finally
leads to the famous Biot-Savart law :

�uR(�x) =
Γ

4π

∫

(filament)

d�x′ × �r

r3
, (4.132)

with �r = �x− �x′, which finds applications particularly in aerodynamics.
The Biot-Savart law is a pure kinematic law, which was originally dis-

covered through experiments in electrodynamics. The vortex filament corre-
sponds there to a conducting wire, the vortex strength to the current, and the
velocity field to the magnetic field. The origin of this law also explains the ter-
minology used in aerodynamics, that the vortex filament “induces” a velocity
�u. As an illustration, we shall calculate the induced velocity from a straight
infinitely long vortex filament, at a distance a from the vortex filament. The
velocity �uR is always orthogonal to the plane spanned by d�x′ and �r, and is
therefore tangential to the circle with radius a in the plane orthogonal to the
vortex filament. The magnitude of the induced velocity is found from (4.132),
using the notation in Fig. 4.16 as being

|�uR| =
Γ

4π

+∞∫

−∞

sinϕ
r2

ds′ . (4.133)

From Fig. 4.16 we deduce the relation

s′ = −a cotϕ , (4.134)

so that s′ = −∞ correspond to ϕ = 0 and s′ = +∞ to ϕ = π, and ds′

becomes
ds′ = +

a

sin2 ϕ
dϕ . (4.135)

With r = a/ sinϕ follows

|�uR| =
Γ

4πa

π∫

0

sinϕdϕ = − Γ

4πa
cosϕ

∣∣∣∣
π

0

=
Γ

2πa
. (4.136)

This result holds in all planes perpendicular to the vortex filament. The two-
dimensional flow with this velocity field is called a potential vortex , and we
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Fig. 4.16. Velocity induced by a straight vortex filament

shall discuss this more fully later. Clearly (4.136) corresponds with (2.97)
which is a consequence of the angular momentum balance. We could have
found the same result using the plausible assumption of constant velocity at
radius a, and by calculating the circulation:

Γ =
∮

a

�uR · d�x = �u · �eϕ a

2π∫

0

dϕ = |�uR| a 2π . (4.137)

We shall now calculate the contribution of a straight vortex filament of finite
length to the induced velocity at the point P whose position is determined
by the displacement a and the angles ϕ1 and ϕ2 (Fig. 4.17). After integrating
from ϕ1 to ϕ2 we find from (4.136)

|�uR| =
Γ

4πa
(cosϕ1 − cosϕ2) . (4.138)

For ϕ1 = 0 and ϕ2 = π/2 (semi-infinite vortex filament) the induced velocity
in the orthogonal plane is given by

|�uR| =
Γ

4πa
, (4.139)

and it amounts to precisely half of the value for the infinitely long vortex
filament, as we would expect for reasons of symmetry.

Such finite or semi-infinitely long pieces of a vortex filament cannot, by
Helmholtz’s first vortex theorem, exist alone, but must be parts of a vortex
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Fig. 4.17. Vortex filament of finite length

filament which is closed into itself, or which reaches to infinity on both sides.
We saw in the discussion of Fig. 4.8 that the circulation about an airfoil
in two-dimensional flow can be represented by using a bound vortex. We
can imagine these bound vortices as straight, infinitely-long vortex filaments
(potential vortices). As far as the lift is concerned we can think of the whole
airfoil as being replaced by the straight vortex filament. The velocity field
close to the airfoil is of course different from the field about a vortex filament
in cross flow, but both fields become more similar the larger the distance
from the airfoil.

In the same way, the starting vortex can be idealized as a straight vortex
filament which is attached to the bound vortex at plus and minus infinity. The
circulation of the vortex determines the lift, and the lift formula which gives
the relation between circulation and lift per unit width in inviscid potential
flow is the Kutta-Joukowski theorem

A = −�Γ U∞ , (4.140)

where U∞ is the so-called “undisturbed” approach velocity, i.e. the velocity
which would appear if the body were removed. (By width or span of a wing
we mean the extension normal to the plane drawn in Fig. 4.3, while the
depth of the wing section is the chord of the wing section. The negative sign
in all lift formulae arises since circulation is here defined as positive as in
the mathematical sense.) The Kutta-Joukowski theorem can be derived from
the momentum balance and Bernoulli’s equation, in the same manner as was
used to calculate the force on a blade in a cascade. Here we refrain from doing
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Fig. 4.18. Simplified vortex system of a finite airfoil

this since we wish to derive the Kutta-Joukowski formula by different means
later.

In this connection we expressly mention that the force on a single wing
section in inviscid potential flow is perpendicular to the direction of the undis-
turbed stream and thus the airfoil experiences only lift and no drag. This
result is of course contrary to our experience, and is due to ignoring the vis-
cosity. The Kutta-Joukowski theorem in the form (4.140) with constant Γ
only holds for wing sections in two-dimensional plane flow. All real wings
are of finite span, but as long as the span is much larger than the chord of
the wing section, the lift can be estimated using the assumption of constant
circulation along the span. Approximately the lift of the whole wing with
width b is given by

A = −�Γ U∞ b . (4.141)

In reality however there is flow past the tips of the wing, because the pressure
on the lower side of the wing is larger than that on the upper side, so that by
Euler’s equation the fluid flows under the influence of the pressure gradient
from the lower to the upper side to even out the pressure difference. In this
way the value of the circulation on the wing tips tends to zero, the circulation
therefore varies over the span of the wing, and the lift is calculated by

A = −�U∞

+b/2∫

−b/2

Γ (x) dx , (4.142)

if the origin is in the middle of the wing and x is measured along the span. Yet
even when we assume that Γ is constant over the span of the wing, difficulties
soon arise, because as far as the lift is concerned a wing cannot be replaced
by a finite piece of a vortex filament.

According to Helmholtz’s first vortex theorem, which being purely kine-
matic and therefore also holding for the bound vortex, isolated pieces of
a vortex filament cannot exist. Neither can it be continued straight along
into infinity, where the wing has not cut through the fluid and thus no dis-
continuity surface has been generated as is necessary for the formation of
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circulation. Therefore free vortices which are carried away by the flow must
be attached at the wing tips. Together with the bound vortex and the starting
vortex, these free vortices form a closed vortex ring which frame the fluid
region cut by the wing. If a long time has passed since start-up, the starting
vortex is at infinity, and the bound vortex and the tip vortices together form
a horseshoe vortex , which, although it only represents a very rough model of
a finite wing, can already provide a qualitative explanation for how a wing
experiences a drag in inviscid flow, as already mentioned. The velocity w
(induced downwash) induced in the middle of the wing by the two tip vortices
amounts to double the velocity induced by a semi-infinite vortex filament at
distance b/2. Therefore by (4.139) we have

w = 2
Γ

4π (b/2)
=

1
b

Γ

π
(4.143)

and w is directed downwards. Thus the middle of the wing “experiences”
not only the undisturbed velocity U∞, but a velocity which arises from the
superposition U∞ and w (Fig. 4.19). In inviscid flow, the force vector is
perpendicular to the actual approach direction of the stream, and therefore
has a component parallel to the undisturbed flow, which manifests itself as
the induced drag Dind:

Dind = A
w

U∞
. (4.144)

But (4.144) only holds if the induced downwash from both vortices is constant
over the span of the wing. However the downwash does change, because, at
a distance x from the wing center, one vortex induces a downwash

Γ

4π (b/2 + x)
,

the other
Γ

4π (b/2 − x)
,

Fig. 4.19. Explanation of induced drag
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and together

w =
Γ

4π
b

(b/2)2 − x2
,

from which we conclude that the downwash is smallest in the center of the
wing (so we underestimate the drag with (4.144)) and tends to infinity at the
wing tips. The unrealistic value there does not appear if the circulation dis-
tribution decreases towards the ends, as indeed it has to. For a semi-elliptical
circulation distribution over the span of the wing, one finds a constant down-
wash distribution, and (4.144) is applicable. Helmholtz’s first vortex theorem
further demands that, for an infinitesimal change in the circulation in the x
direction

dΓ =
dΓ
dx

dx ,

a free vortex of the same infinitesimal strength must leave the trailing edge.
In this way we are led to the improved vortex system of Fig. 4.20. The free
vortices form a discontinuity surface in the velocity components parallel to
the trailing edge, which rolls them into the vortices sketched in Fig. 4.21.

These vortices must be continually renewed as the wing moves forward, so
that the kinetic energy in the vortices continually has to be newly delivered
to them. The power needed to do this is the work done per unit time by the
induced drag.

We can often see manifestations of Helmholtz’s first vortex theorem in
daily life. Recall the dimples seen on the free surface of coffee when the coffee
spoon is suddenly moved forwards and then taken out (Fig. 4.22).
As the fluid flows together from the front and back, a surface of discontinuity
forms along the rim of the spoon. The discontinuity surface rolls itself into
a bow shaped vortex whose endpoints form the dimples on the free surface.
Since the flow outside the vortex filament is a potential flow, Bernoulli’s
equation holds (4.62)

1
2
� u2 + p+ � g x3 = C .

Fig. 4.20. Simplified vortex system of an airfoil
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Fig. 4.21. The discontinuity surface rolls itself into vortices

Fig. 4.22. Vortex on a coffee spoon

This is valid not just along a streamline, but between any two points in
the field. Everywhere on the free surface the pressure is equal to the ambient
pressure p0. At some distance from the vortex the velocity is zero and the free
surface is not yet depressed and corresponds to x3 = 0, say. Then Bernoulli’s
constant is equal to the ambient pressure (C = p0), and we obtain

1
2
� u2 + � g x3 = 0 .

Near the endpoints of the vortex the velocity increases by the formula (4.139),
and therefore x3 must become negative, i.e. a depression of the free surface.
The cross-sectional surface of the vortex filament is in reality not infinites-
imally small, so that we cannot take the limit a → 0 in (4.139), for which
the velocity becomes infinite. However the induced velocity from the vortex
filament is so large that it leads to the noticeable formation of dimples.

In this connection we note that an infinitesimally thin vortex filament can-
not appear in actual flow because the velocity gradient of the potential vortex
tends to infinity for a → 0, so that the viscous stresses cannot be ignored
any longer, even for very small viscosity. As we know from (4.11), viscous
stresses make no contribution to particle acceleration in incompressible po-
tential flow, but they do deformation work and thus provide a contribution to
the dissipation. The energy dissipated in heat stems from the kinetic energy



134 4 Equations of Motion for Particular Fluids

of the vortex. The idealization of a real vortex filament as a filament with an
infinitesimally small cross-section is of course still useful.

We shall now consider Helmholtz’s second vortex theorem:

“A vortex-tube is always made up of the same fluid particles.”

A vortex-tube is therefore a material tube. This has already been proved
for material coordinates by equation (4.27), but here we wish to represent it
as a direct consequence of Kelvin’s circulation theorem. We consider a vortex-
tube and an arbitrary closed curve on its surface at time t0 (Fig. 4.23). By
Stokes’ integral theorem, the circulation of the closed curve is zero. The cir-
culation of the curve, which is made up of the same material particles, still
has the same value of zero at a later instant in time, by Kelvin’s circula-
tion theorem (DΓ/Dt = 0). By inverting the above reasoning it follows from
Stokes’ theorem that these material particles must be on the outer surface of
the vortex-tube.

If we consider smoke rings, the fact that vortex-tubes are material tubes
becomes obvious: the smoke clearly remains in the vortex ring and is trans-
ported with it, so that it is the smoke itself which carries the vorticity. This
statement only holds under the restrictions of barotropy and zero viscosity.
The slow disintegration seen in smoke rings is due to friction and diffusion.
A vortex ring which consists of an infinitesimally thin vortex filament induces
an infinitely large velocity on itself (similar to the horseshoe vortex already
seen), so that the ring would move forward with infinitely large velocity. The
induced velocity in the center of the ring remains finite (just as with the
horseshoe vortex), and it is found from the Biotx-Savart law (4.132) as

|�u| =
Γ

4π

2π∫

0

a2 dϕ
a3

=
Γ

2a
.

Fig. 4.23. Helmholtz’s second vortex theorem
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It is the assumption of an infinitesimally small cross-section that leads to
the unrealistic infinitely large velocity on the vortex. If we assume a finite
cross-section, then the velocity induced on itself, i.e. the velocity with which
the ring moves forwards, remains finite. However the actual cross-section of
the ring is not known, and probably depends on how the ring was formed.
In practice we notice that the ring moves forward with a velocity which is
slower than the induced velocity in the center. It is well known that two
rings moving in the same direction continually overtake each other whereby
one slips through the one in front. This behavior, sketched in Fig. 4.24, is
explained by the mutually induced velocities on the rings and the formula
given above for the velocity in the center of the ring.

In the same manner it can be explained why a vortex ring moving towards
a wall gets larger in diameter and at the same time reduces its velocity, while
one moving away from the wall contracts and increases its velocity (Fig. 4.25).

The motion cannot be worked out without knowing the vortex cross-
section, and the calculation for infinitesimally thin rings fails, because rings,
like all curved vortex filaments, induce infinitely large velocities on them-
selves. For straight vortex filaments, i.e. for two-dimensional flow, a sim-
ple description of the “vortex dynamics” for infinitesimally thin filaments is
possible, since here the self induced translation velocity vanishes. Because
vortex filaments are material lines, it is sufficient to calculate the paths of
the fluid particles which carry the rotation in the x-y-plane perpendicular
to the filaments using (1.10); that is, to determine the paths of the vortex
centers.

The magnitude of the velocity which a straight vortex filament at position
�x(i) induces at position �x is known from (4.136). As explained there, the
induced velocity is perpendicular to the vector �a(i) = �x− �x(i), and therefore

Fig. 4.24. Two vortex rings passing through one another
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Fig. 4.25. Vortex ring at a wall

has the direction �ez × �a(i)/|�a(i)|, so that the vectorial form of (4.136) reads:

�uR =
Γ

2 π
�ez × �x− �x(i)

|�x− �x(i)|2 .

For �x → �x(i) the velocity tends to infinity, but for reasons of symmetry the
vortex cannot be moved by its own velocity field; the induced translational
velocity is, as mentioned, zero. The induced velocity of n vortices with the
circulation Γ(i) (i = 1 . . . n) is

�uR =
1

2 π

∑

i

Γ(i) �ez × �x− �x(i)

|�x− �x(i)|2 .

If there are no internal boundaries, or if the boundary conditions are satisfied
by reflection, as in Fig. 4.25, the last equation describes the entire velocity
field, and using (1.10), the “equation of motion” of the kth vortex reads:

d�x(k)

dt
=

1
2 π

∑

i
i �= k

Γ(i) �ez × �x(k) − �x(i)

|�x(k) − �x(i)|2 . (4.145)

For the reasons given above, the vortex i = k is excluded from the summation.
With (4.145) the 2n equations for the path coordinates are given.

The dynamics of the vortex motion has invariants which are analogous
to the invariants of a point mass system on which no external forces act. To
start with, the conservation of the strengths of the vortices by Helmholtz’s
laws (

∑
Γ(k) = const) corresponds to the conservation of the total mass of
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the point mass system. If we multiply the equation of motion (4.145) by Γ(k),
sum over k and expand, we obtain

∑

k

Γ(k)

d�x(k)

dt
= Γ(1)

d�x(1)

dt
+ Γ(2)

d�x(2)

dt
+ Γ(3)

d�x(3)

dt
+ . . . =

�ez× 1
2 π

{
Γ(1) Γ(2)

�x(1) − �x(2)

|�x(1) − �x(2)|2 + Γ(1) Γ(3)

�x(1) − �x(3)

|�x(1) − �x(3)|2 + . . .+

+Γ(2) Γ(1)

�x(2) − �x(1)

|�x(2) − �x(1)|2 + Γ(2) Γ(3)

�x(2) − �x(3)

|�x(2) − �x(3)|2 + . . .+

+Γ(3) Γ(1)

�x(3) − �x(1)

|�x(3) − �x(1)|2 + Γ(3) Γ(2)

�x(3) − �x(2)

|�x(3) − �x(2)|2 + . . .

}
.

We can see directly that the terms on the right-hand side cancel out in pairs,
so that the equation

∑

k

Γ(k)

d�x(k)

dt
= 0

remains, which, when integrated, leads to
∑

k

Γ(k) �x(k) = �xg

∑

k

Γ(k) . (4.146)

For dimensional reasons, we have written the integration constants like a “cen-
ter of gravity coordinate” �xg . We interpret this result as

“The center of gravity of the strengths of the vortices is conserved. ”

The corresponding law (conservation of momentum) for a system of mass
points leads to the statement that the velocity of the center of gravity is a con-
served quantity in the absence of external forces. For

∑
Γ(k) = 0 the center

of gravity lies at infinity, so that, for example, two vortices with Γ(1) = −Γ(2)

must move along straight parallel paths (i.e. they turn about an infinitely
distant point). If Γ(1) + Γ(2) �= 0, the vortices turn about a center of gravity
which is at a finite distance (Fig. 4.26).

Here the overtaking process of two straight vortex pairs is similar to the
overtaking process of two vortex rings explained in Fig. 4.24. The paths of
the vortex pairs are determined by numerical integration of (4.145) and are
shown in Fig. 4.27.
The analogy of (4.146) is continued in the “balance of angular momentum of
vortex systems” and can be carried over to a continuous vortex distribution.
However we do not wish to go into this, but shall note the difference from the
mechanics of mass points: (1.10) is the equation for the motion of a vortex
under the influence of the remaining vortices of the system. The motion of
a mass point under the influence of the rest of the system, that is, under the
influence of the internal forces, is instead described by Newton’s second law.
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Fig. 4.26. Possible pathlines of a pair of straight vortices

Fig. 4.27. Pathlines of two straight vortex pairs

Helmholtz’s third vortex theorem reads:

“The circulation of a vortex-tube remains constant in time.”

This follows immediately from Helmholtz’s second law together with Kelvin’s
circulation theorem: a closed line generating the vortex-tube (Fig. 4.11) is,
by Helmholtz’s second law, a material line whose circulation, by Kelvin’s law,
remains constant.

Helmholtz’s second and third laws hold only for barotropic and inviscid
fluids. The statements of these laws are also in Eq. (4.27), but there under
the more restricting assumption of incompressible flow.

4.2.4 Integration of the Energy Equation

In steady and inviscid flow, when heat conduction can be ignored, an integral
of the energy equation which is very useful may be found. We assume that ki
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has a time independent potential, for example the mass body force of gravity.
Then, since

Dψ
Dt

= ui
∂ψ

∂xi
= −ui ki (4.147)

the work of the mass body force (per unit time) can also be written as the
material derivative of the potential and, using u = |�u|, we obtain the energy
equation (4.47) in the form

�
D
Dt

[
u2

2
+ h+ ψ

]
= 0 . (4.148)

From this we conclude that the sum of the terms in brackets is a conserved
quantity for a material particle, and therefore

u2

2
+ h+ ψ = C (4.149)

along a pathline. Because of our restriction to steady flows this also holds
along a streamline. The constant of integration which appears differs in gen-
eral from streamline to streamline. The value of this constant depends on
how this flow arose, and is clearly the same for all streamlines if the energy is
homogeneous at infinity. In most technically interesting flows this constant is
equal for all streamlines, and these flows are thus called homenergic. In par-
ticular, homenergic flows do not have to be irrotational, and therefore they
are kinematically not as restricted. On the other hand, as already mentioned,
Bernoulli’s constant is the same on every streamline only in irrotational fields
(and also in fields where �ω×�u = 0, but these do not have the same technical
importance as irrotational flows).

Equation (4.149) is mainly used in gas dynamics where the potential of
the mass body force can often be ignored, and the energy equation assumes
the form

u2

2
+ h = ht . (4.150)

This establishes an algebraic relation between velocity and enthalpy which
always, independent of the specific problem, holds in steady and inviscid flow,
and therefore in flows with chemical reactions where we have Ds/Dt �= 0. If
the enthalpy field is known the magnitude of the velocity in the field follows
directly, and vice versa.

To find another form of the energy equation in which the dependency of
the enthalpy does not expressly appear, the assumption of isentropic flow
must be made explicitly. From Gibbs’ relation (2.133) we find

De
Dt

− p

�2

D�
Dt

= 0 (4.151)

or, using (4.3), also
Dh
Dt

− 1
�

Dp
Dt

= 0 . (4.152)
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Equations (4.152) and (4.148) then yield the energy equation in the form

D
Dt

[
u2

2
+ ψ

]
+

1
�

Dp
Dt

= 0 . (4.153)

In steady flow, we can replace the operator D/Dt by |�u| ∂/∂σ or |�u| ∂/∂s
(because of (1.23)). Integrating (4.153) along the pathline or streamline leads
us again to Bernoulli’s equation (4.57) in the form valid for steady flow

u2

2
+ ψ +

∫
dp
�

= C . (4.154)

In doing this we see that Bernoulli’s equation is an energy equation. Indeed in
the derivation of Bernoulli’s equation (4.57) the inner product of the veloci-
ty �u with the equation of motion was formed, thus making it a “mechanical
energy equation”. (The integral is to be taken along the streamline or pathline;
if it is path independent (4.154) is called the “strong form” of Bernoulli’s
equation.) Incidentally, using the same assumptions, the “entropy equations”
(4.151) and (4.152) are often used instead of the energy equation, although
the kinetic energy does not appear explicitly in these formulae.

In order to clarify the relation between homenergic and irrotational flow
mentioned above we shall need to use Crocco’s relation, which only holds in
steady flow. We can reach it by forming from the canonical equation of state
h = h(s, p) the gradient

∂h

∂xi
=
[
∂h

∂s

]

p

∂s

∂xi
+
[
∂h

∂p

]

s

∂p

∂xi
, (4.155)

and using Eqs. (2.154) and (2.155) to get

−1
�

∂p

∂xi
= T

∂s

∂xi
− ∂h

∂xi
. (4.156)

We introduce the formula into Euler’s equation (4.40a), express the acceler-
ation term there by (1.77), and extract the equation for steady flow known
as Crocco’s relation

−2 εijk uj ωk +
∂

∂xi

[uj uj

2
+ h+ ψ

]
= T

∂s

∂xi
. (4.157)

Here we have assumed that the mass body force has a potential. In home-
nergic flow the constant of integration C appearing in (4.149) has the same
value on all streamlines, thus the gradient of C vanishes, and for this class of
flows the following holds:

∂C

∂xi
=

∂

∂xi

[
u2

2
+ h+ ψ

]
= 0 . (4.158)
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Fig. 4.28. Curved shock

Then for these flows it follows from Crocco’s relation that irrotational flows
must be homentropic. On the other hand we see that flows which are not
homentropic but are homenergic must be rotational.
This case has already been discussed in 4.1.3 (curved shock) and is interesting
because vorticity arises inside the flow field and not, as in incompressible flow,
by diffusion from the boundaries inwards. By passing through a curved shock
(Fig. 4.28), as in hypersonic flow , the entropy increases by a different amount
on different streamlines. Therefore behind the shock surface the entropy is no
longer homogeneous, and because of Crocco’s relation, the flow can no longer
be irrotational.

We also conclude from Crocco’s relation that a two-dimensional hom-
entropic (and homenergic) flow must necessarily be irrotational, because in
two-dimensional flow �ω is always perpendicular to �u. Then the first term in
(4.157) cannot vanish as it would if �ω and �u were parallel vectors.

4.3 Initial and Boundary Conditions

Up until now in Chap. 4 we have made general statements as they apply
for every flow problem of Newtonian or inviscid fluids. Further progress in
a given problem now demands that we make assertions about the shape of the
flow boundary and about the conditions which the flow must satisfy at this
boundary. Mathematically we shall deal here with the boundary conditions .
In addition in unsteady flow problems the initial conditions are needed, i.e.
the field quantities at the start of the time period of interest.

We shall first consider flow boundaries for the case of the impermeable
wall (which we can generalize if necessary to permeable walls) and for the
case of the free surface. Boundaries which are surfaces of discontinuity are
also important. The best known example for this are shock surfaces, which we
can only go into fully when the concept of a “shock” has itself been clarified.
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We know from experience that Newtonian fluids adhere to walls. For an
impermeable wall this means that both the tangential and the normal veloc-
ities of the fluid and of the wall must correspond at every point on the wall.
The velocity vector �u of the fluid at the wall must be equal to the vector of
the wall velocity �uw:

�u = �uw (at the wall) . (4.159)

The boundary condition when the wall is at rest (�uw = 0) is

�u = 0 (4.160)

at the wall, or alternatively
un = ut = 0 (4.161)

at the wall. Here the index n denotes the normal component and the index t
denotes the tangential components of the velocity.

In inviscid flow it is in general no longer possible to prescribe both the
normal and the tangential velocity at the wall. Since at an impermeable wall
the normal component of wall and fluid velocities must always correspond
(otherwise the wall would be permeable), we retain this boundary condition
and have then for inviscid flow

�u · �n = �uw · �n (4.162a)

at the wall, or
(�u− �uw) · �n = 0 , (4.162b)

in index notation
(ui − ui(w))ni = 0 (4.162c)

at the wall. We call this condition the kinematic boundary condition, while
(4.159) is called the dynamic or physical boundary condition. In inviscid flow
we relax the dynamic boundary condition, since the derivatives in Euler’s
equation are of a lower order than in the Navier-Stokes equations. In Euler’s
equation the second order terms (η Δ�u in the incompressible case) are missing.
It is known from the theory of ordinary differential equations that the order of
the differential equation determines the number of boundary conditions which
can be satisfied. In exactly the same way the order of a partial differential
equation fixes how many functions can be satisfied on the boundary. Since
only the boundary condition of the normal component of the velocity can be
assigned in inviscid flow, in general different tangential components of the
wall and fluid velocities arise: the dynamic boundary condition is therefore
violated. Now we also understand why the viscous flow for ν → 0 does not
turn into the solution with ν ≡ 0: both flows satisfy different boundary
conditions in which the viscosity ν does not appear explicitly and therefore
are not affected by taking the limit ν → 0. In this connection we mention
again that even in cases where the inviscid solution is a good approximation
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for the viscous flow at large Reynolds’ numbers, this solution breaks down
right next to the wall (in the boundary layer).

If the flow field around a finite sized body extends to infinity, the distur-
bances which originate from the body must die away at infinity. The degree
to which the disturbances vanish depends on the given problem, and will be
discussed only in connection with the specific problem (see Sect. 10.3).

The normal component of the wall velocity is required in the kinematic
boundary condition. To find it consider the surface of the body given in
implicit form by

F (�x, t) = 0 , (4.163)

where �x is the position vector of a general point of the surface. The normal
vector to the surface is (up to the sign)

�n =
∇F
|∇F | , (4.164)

so that we can write the kinematic boundary condition in the form

�u · ∇F = �uw · ∇F (at F (�x, t) = 0) . (4.165)

By definition a point on the surface with position vector �x satisfies the
Eq. (4.163) for all times. For an observer on the surface whose position vector
is �x (4.163) does not change, so it follows that

dF
dt

= 0 . (4.166)

This time derivative is the general time derivative introduced with equation
(1.19), since the observer on the surface moves with velocity �uw which is not
equal to the velocity of a material particle at the same place. By (4.162a)
only the normal components are equal. From

dF
dt

=
∂F

∂t
+ �uw · ∇F = 0 (4.167)

we first extract, by division with |∇F |, a convenient formula for the calcula-
tion of the normal velocity of a body:

�uw · ∇F
|∇F | = �uw · �n = − 1

|∇F |
∂F

∂t
. (4.168a)

In index notation this is

ui(w)ni =
−∂F/∂t

(∂F/∂xj ∂F/∂xj)
1/2

. (4.168b)

We are led to a particularly revealing form of the kinematic boundary con-
dition if we insert (4.167) into (4.165):

�u · ∇F = −∂F

∂t
(at F (�x, t) = 0) . (4.169)
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Fig. 4.29. Stress vector at an interface

Using the definition of the material derivative (1.20) we then obtain

∂F

∂t
+ �u · ∇F =

DF
Dt

= 0 (at F (�x, t) = 0) . (4.170)

This final equation yields the following interpretation: the position vector �x
of a fluid particle on the surface of a body satisfies the Eq. (4.163) for the
surface at all times, thus the material particle always remains on the surface.

This is Lagrange’s theorem:

“The surface is always made up of the same fluid particles.”

This at first surprising statement is the logical consequence of the condition
that the normal components of the surface velocity and the fluid velocity at
the surface be the same.

The kinematic boundary condition also holds at the free surface and at
interfaces between two fluids or more generally on material discontinuity
surfaces.

Since the shape of the free surface is unknown beforehand, problems with
free surfaces are mostly difficult to solve. Apart from the kinematic boundary
condition, a dynamic boundary condition which expresses the continuity of
the stress vector must be satisfied.
The stress vectors �t(1) and �t(2) at the same point of the interface with the
normals �n(1) = �n in fluid (1) and �n(2) = −�n in fluid (2) must satisfy (2.23):

�t
(�n)

(1) = −�t (−�n)
(2) . (4.171)

Because of �n(1) = �n = −�n(2) and using (2.29b) we also have

�n · T(1) = �n · T(2) (at F (�x, t) = 0) . (4.172)

In inviscid fluid (T = −p I) we extract from (4.172) a condition for the
pressure on the interface:

p(1) = p(2) (at F (�x, t) = 0) . (4.173)

Since we cannot fix a boundary condition for the tangential component of
the velocity in inviscid flow, a jump in the tangential velocity generally arises
at an interface and we speak of a “tangential discontinuity surface”. The dis-
continuity surface behind an airfoil which we discussed earlier is of this kind.
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4.4 Simplification of the Equations of Motion

Previously in this chapter we have stated the equations and boundary condi-
tions with which the flow of a Newtonian fluid can, in principle, be calculated
for general geometries of the flow boundary. The Eqs. (4.1), (4.2) and (2.3)
represent a system of coupled partial differential equations whose solution in
general turns out to be a very difficult problem. The difficulties in the integra-
tion are based, firstly, on the fact that these equations, unlike most partial
differential equations in physics, are nonlinear. This means that solutions
which have been found cannot be “superimposed” to form a new solution, as
is possible with linear systems and as we have already seen in the example of
Poisson’s equation. Secondly the system is of a very high order, arising from
the coupling of the equations and from the high derivatives which appear in
the viscous terms. Therefore it is desirable to simplify a given problem so
that a solution is possible and at the same time so that the essential aspect
of the problem is preserved. This is possible to a greater or lesser extent in
most technical fluid mechanics problems. If, for example, the assumption of
incompressible and isothermal flow is approximately justified, the coupling
of the Navier-Stokes equations and the energy equation is lifted. In this case
(equation system (4.9) and (2.5)) a class of exact solutions is known, and
some of these are of fundamental importance in technical applications. Exact
solutions arise either if the nonlinear terms identically vanish for kinematic
reasons, as happens in unidirectional flow or if because of symmetry in the
problem, the independent variables always appear in one combination which
can then be written as a new independent variable, allowing the system of
partial differential equations to become a system of ordinary differential equa-
tions (similarity solution). However the number of exact solutions is small,
and we should not anticipate that future developments will increase the num-
ber of exact solutions significantly.

An essentially different situation appears when we consider numerical
methods. Here we can expect that through the rapidly progressive develop-
ments very efficient methods of solution will appear, often making restric-
tive simplifications of the problem unnecessary. Indeed this development also
justifies the detailed account of the general principles in the previous chap-
ters.

We do not wish to go any further into numerical methods but shall note
that the numerical solution of these equations also gives rise to substantial
difficulties and certainly does not represent a “solved problem”, even if all
the complications involved with turbulent flows are excluded. Even if stable
algorithms for numerical calculations do exist, for time and financial reasons
all the simplifications which the problem allows should be exploited. Finally,
the processes of simplification, abstraction and concentration on essential
aspects of a problem are prerequisites for the understanding of every physical
process.
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In the following chapters flows will be considered which have all been ide-
alized or specialized in certain ways, and we shall only consider the most im-
portant aspects of the flow in the given circumstances. The idealizations arise
from the simplifying assumptions from the equations (4.1), (4.2) and (2.3)
for Newtonian fluids, or also from the more general Eqs. (2.38), (2.119), (2.3)
and the corresponding constitutive relations in the case of non-Newtonian
fluids.

The “theories” of fluid mechanics emerge from such simplifying assump-
tions. In this way, ignoring the viscosity and the heat conduction leads to the
“theory of inviscid flows” which is described by Euler’s equations (Sect. 4.2).
Further simplifications divide this theory into incompressible and compress-
ible inviscid flows. Finally, depending on the ratio of the typical flow velocity
U to the speed of sound a, flows can be classified as subsonic, transonic and
supersonic flows.

It is desirable to fit possible simplifications into some order, which both
allows a classification of the given problem as well as giving an indication of
the allowable and suitable simplifications for the problem. Such a scheme can
follow from simplifications in

a) the constitutive relation,
b) the dynamics, or
c) the kinematics.

Included in class a) is ignoring the viscosity and the heat conduction as
discussed already, as well as the assumptions of incompressible flow (which
obeys the particular equations of state D�/Dt = 0), barotropy and isentropy.

To b) belong the simplifications which arise from the assumption of steady
flow and the limiting cases of Re → ∞ or Re → 0. In addition the assump-
tions leading to subsonic, transonic, supersonic and hypersonic flows all fit
in here.

In c) we have, for example, irrotationality curl�u = 0. Additional kinematic
simplifications arise from symmetry properties: in rotational symmetry the
number of necessary spatial coordinates can be reduced using the cylindrical
coordinate system to two (r = (x2

1 + x2
2)

1/2, x3), so that it can be treated
as a two-dimensional problem. Steady spherically symmetric problems are
one-dimensional, since in a spherical coordinate system we only have one
independent coordinate (r = (xj xj)1/2).

Flows which are independent of one coordinate in a Cartesian coordinate
system and whose velocity component in this direction vanishes are particu-
larly important in applications. In the above sense they are two-dimensional
flows but they are additionally plane flows . In a suitable coordinate system
the same flow quantities are met in all planes, say x3 = const. Although two-
dimensional flows never appear in nature, they are often good approximations
to physical problems.

Belonging to c) are also the simplifying assumptions of stream filament
theory, which leads to a quasi-one-dimensional description, as well as the
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theory of thin bodies , in which the ratio of typical lengths (for example, the
thickness ratio D/L of a body, or the inclination α of the streamlines) is
very small. Of course combinations of these various criteria also appear: the
Mach number M = U/a > 1 characterizes for example a supersonic flow,
D/L � 1 a thin body, and M D/L � 1 a linear supersonic flow . The lim-
iting value αRe→ 0 denotes the simplification which leads to hydrodynamic
lubrication theory.

Now this is not a comprehensive list of examples, nor is the classification
into these three groups unique. For instance the case of incompressible flow
with the equation of state D�/Dt = 0 can be classified under a), but because
of the kinematic restrictions given by div �u = 0, also under c). In the same
manner the incompressibility can be grouped under b), because the limiting
case U/a → 0 in steady flow corresponds with, as we shall see, the case of
incompressible flow.

Many of the possible simplifications are immediately obvious, while oth-
ers, for example the assumption of inviscid fluid, need careful justification.
Apart from the assumption that the flow be inviscid the most incisive simpli-
fication is the assumption of incompressibility, because even for liquids, this
assumption is not justified in certain circumstances; the examples in connec-
tion with equation (2.5) show this. We are lead to criteria for the admissibility
of this simplification if we first form from the equation of state p = p(�, s)
the expression

Dp
Dt

= a2 D�
Dt

+
[
∂p

∂s

]

�

Ds
Dt

, (4.174)

where it is known from thermodynamics that the state variable (∂p/∂�)s is
equal to the square of the speed of sound a:

[
∂p

∂�

]

s

= a2 . (4.175)

We bring (4.174) to a dimensionless form by multiplying with the typical
convection time L/U and then dividing by � to get

1
�

L

U

D�
Dt

=
L

U

1
� a2

Dp
Dt

− L

U

1
� a2

[
∂p

∂s

]

�

Ds
Dt

. (4.176)

We see that the relative change in the density of a fluid particle can be ignored
if the right-hand side vanishes. Unless by some chance both terms cancel out,
in general each term on the right-hand side must vanish by itself. First we
note that in the case of strong external heating, the internal irreversible
production of entropy according to (2.137) is unimportant, and the change
in entropy here is given by (2.138). This term alone is then so large that the
relative change in density can not be ignored.



148 4 Equations of Motion for Particular Fluids

If the heating is by dissipation the irreversible production of entropy
(2.137) becomes significant, and we estimate the final term in (4.176) us-
ing the assumption of the calorically perfect gas. By simple calculation, the
relation [

∂p

∂s

]

�

=
R

cv
T � (4.177)

follows. For gases the dimensionless number

Pr =
cp η

λ
(4.178)

(the Prandtl number) is approximately equal to one. For Pr ≈ 1 the terms
Φ/T and T−2 qi ∂T/∂xi in (2.137) are of the same order of magnitude, and
we look at the term Φ/T . (In liquids which are not liquid metals Pr � 1, and
the second term on the right-hand side of (2.137) is correspondingly small
compared to the first one.) Using (4.177) we extract the equation

L

U

1
� a2

[
∂p

∂s

]

�

Ds
Dt

=
L

U

R

cv

Φ

� a2
. (4.179)

If L is the characteristic length of the problem then from O(Φ) = O(η U2/L2)
we estimate

L

U

R

cv

Φ

� a2
∼ L

U

ν U2

L2 a2
=
M2

Re
, (4.180)

where M is the Mach number M = U/a formed with the typical flow velocity
and the speed of sound. In real flows M2/Re is usually very small, and this
term can be neglected. (If the typical length in the dissipation function Φ is
the boundary layer thickness δ, the term in question in this equation is of the
order M2, as shall be shown later in Chap. 12.)

Since Dp/Dt is the change in pressure experienced by the material particle,
the remaining term on the right-hand side can in general only vanish if a2

becomes suitably large. To estimate this term qualitatively, we do not need
to take the viscosity into account. We then assume irrotational flow and
calculate �−1 Dp/Dt = DP/Dt from Bernoulli’s equation in the form (4.75).
First the term Dψ/Dt arises, which we estimate for the most important case
of the mass body force of gravity. The change in the quantity ψ = −gi xi

experienced by a material particle only originates from the convection of the
particle, since the gravity field is time independent. Therefore the typical time
of the change is the convection time L/U . Accounting for the factor L/U in
Eq. (4.176) we are led to the following relation between orders of magnitude

L

U

1
a2

Dψ
Dt

∼ L

U

U

L

g L

a2
=
g L

a2
. (4.181)
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Therefore a necessary condition for this contribution to vanish is

g L

a2
� 1 . (4.182)

This condition is satisfied if the typical length L in the problem is much
smaller than a2/g. For air under standard atmospheric conditions we have
a2/g = 11500 m, and (4.182) is satisfied for all flows in technical applications,
but not for problems which might arise in meteorology.

The next contribution to �−1 Dp/Dt from Bernoulli’s equation is the term

1
2

D
Dt

[
∂Φ∗

∂xi

]2
=

1
2

Du2

Dt
.

In steady flow the typical time of the change is again the convection time
L/U , so that we estimate the contribution of this term to the first term on
the right-hand side of (4.176) as having the order of magnitude

L

U

1
a2

1
2

D(u2)
Dt

∼ L

U

1
a2

U

L
U2 =

U2

a2
. (4.183)

From this the second necessary condition for ignoring compressibility follows:

U2

a2
= M2 � 1 . (4.184)

In unsteady flow, besides the convection time L/U a further typical time
generally appears as a measure of the rate of change, for example f−1 if f
is the typical frequency of the motion. The restrictions arising from this are
dealt with by the third contribution to �−1 Dp/Dt from Bernoulli’s equation,
that is D(∂Φ∗/∂t)/Dt. From

Φ∗ =
∫

∇Φ∗ · d�x =
∫
�u · d�x (4.185)

Φ∗ has an order of magnitude U L, and if the typical time is given by the
convection time L/U , using the estimation

L

U

1
a2

D(∂Φ∗/∂t)
Dt

∼ L

U

U2

L2

U L

a2
∼ U2

a2
, (4.186)

the same restrictions arise as from (4.184). However if the typical time is f−1,
using

L

U

1
a2

D(∂Φ∗/∂t)
Dt

∼ L

U
f2 U L

a2
∼ L2 f2

a2
(4.187)

a third necessary condition arises:

L2 f2

a2
� 1 . (4.188)
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In general all three necessary conditions must be satisfied if the assumption
of incompressible flow is to be justified. Most important is the condition
(4.184), which for steady flows, encountered in technical applications, is also
sufficient. After this the Mach number of the flow must be small enough so
that the compressibility effects can be ignored. We note that the condition
(4.188) is not satisfied in acoustics. In sound waves the typical length L is
equal to the wave length λ and we have

λ f

a
= 1 . (4.189)

Therefore acoustics belongs to the area of compressible flow.



5 Hydrostatics

5.1 Hydrostatic Pressure Distribution

Hydrostatics is concerned with the behavior of fluids at rest. The state of rest
is kinematically the most restricted state and problems in hydrostatics are
among the simplest in fluid mechanics. We can obtain the laws of hydrostatics
by setting

�u ≡ 0 (5.1)

into the balance laws. From mass conservation it then follows directly that

∂�

∂t
= 0 , (5.2)

that is, the density must be constant in time, as is made particularly clear if
we consider the integral form of mass conservation (2.7). Instead of using the
balance laws we could go directly to the first integrals of Chap. 4. The velocity
field in hydrostatics in trivially irrotational, so that Bernoulli’s constant has
the same value everywhere in the field, and directly from (4.79) we infer the
fundamental general relation between pressure function and potential of the
mass body force in a rotating reference frame in which the fluid is at rest:

ψ + P − 1
2

( �Ω × �x)2 = C . (5.3)

This relation can easily be generalized for the case in which the origin of the
reference frame moves with acceleration �a. To do this consider the potential
�a · �x of the mass body force −�a (an apparent force which has a potential
because curl�a = 0) added to ψ. We note that (5.3) is only valid under the as-
sumptions which also led to (4.79): the total mass body force has a potential,
and the pressure p is a unique function of the density p = p(�) (barotropy).
This means that lines of equal pressure are also lines of constant density,
or expressed differently, that pressure and density gradients are parallel. As
a consequence of the thermal equation of state (e.g. p = �RT for a thermally
perfect gas), lines of equal pressure are then also lines of equal temperature.
It is only under these conditions that hydrostatic equilibrium can exist. If
these conditions are not satisfied then the fluid is necessarily set in motion.

We deduce this important statement from the corresponding differential
form of (5.3), which results from Cauchy’s equation (2.38) together with the
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spherically symmetric stress state (2.33), or straight from the Navier-Stokes
equations (4.1) or Euler’s equations (4.40) when we set �u ≡ 0:

∇p = ��k . (5.4)

If we take the curl of (5.4) the left-hand side vanishes and we are led to the
condition

∇× (��k) = ∇�× �k + �∇× �k = 0 . (5.5)

As noted in connection with (2.42), this is a necessary and sufficient condition
for the existence of a potential Ω of the volume body force (�f = ��k = −∇Ω).
Clearly (5.5) is satisfied if the mass body force �k has a potential (�k = −∇ψ)
and if ∇� is parallel to �k (or is zero). Because of (5.4) ∇� is then parallel to
∇p and we have again reached the above statement.

An example of this is the natural convection from a radiator. The air
close to the vertical surface of the radiator is warmed by heat conduction.
Temperature and density gradients are then perpendicular to the radiator
surface, and therefore perpendicular to the force of gravity. The hydrostatic
equilibrium condition is then violated, and the air is set into motion. (The
motion of the air improves heat transfer, and it is only because of this that
rooms can be heated at all in this manner.)

In applying Eq. (5.3) to the pressure distribution in the atmosphere, we
first note that the centrifugal force is already included in the gravity force
(cf. Sect. 2.4). We choose a Cartesian coordinate system (thus ignoring the
curvature of the earth) whose x3-axis is directed away from the surface of
the earth. We shall often denote the Cartesian coordinates xi (i = 1, 2, 3) as
x, y and z, so that the potential of the force of gravity is ψ = g z. Equation
(5.3) then reads

z2 − z1 = −1
g

p2∫

p1

dp
�

. (5.6)

Let us consider the case where the barotropy is a consequence of a homoge-
neous temperature distribution, so for thermally perfect gases we have

z2 − z1 =
RT

g

p1∫

p2

dp
p

=
RT

g
ln
p1

p2
, (5.7)

or
p2 = p1 exp

[
− 1
RT

h g

]
, (5.8)

where the altitude difference z2−z1 is denoted by h. Equation (5.8) is known
as the barometric altitude formula. If the barotropy is a consequence of the
homentropy (4.49), then since

p1

p
=
[
�1

�

]γ

(5.9)



5.1 Hydrostatic Pressure Distribution 153

the formula corresponding to (5.7) reads

z2 − z1 =
RT1

g
p
−(γ−1

γ )
1

p1∫

p2

p−1/γ dp (5.10)

or

z2 − z1 =
γ

γ − 1
RT1

g

⎧
⎨

⎩1 −
[
p2

p1

](γ−1
γ )
⎫
⎬

⎭ , (5.11)

where we have also made use of the thermal equation of state. With

[
p2

p1

](γ−1
γ )

=
T2

T1
(5.12)

we can also express (5.11) with the temperature difference made explicit:

z2 − z1 = − γ

γ − 1
R

g
(T2 − T1) . (5.13)

Not all density distributions in the atmosphere which are statically possible
are also stable. A necessary condition for stability is that the density decrease
with increasing height. However this condition is not sufficient: the density
must also decrease at least as strongly as in homentropic density stratifica-
tion. This constitutes a neutral stratification: if, by some disturbance, a parcel
of air is raised (friction and heat conduction being negligible), this air expands
to the new pressure, its density decreases at constant entropy just so that the
density and the temperature correspond to the new ambient pressure. If the
density in the new position is lower, then the air parcel moves up further and
the stratification is unstable. If, however, the density is higher the air parcel
sinks down again and the stratification is stable. From (5.13) we calculate
the temperature gradient of the neutral stratification to be

dT
dz

= −γ − 1
γ

g

R
= −9.95 · 10−3 K/m (5.14)

(for air with R ≈ 287 J/(kgK), γ ≈ 1.4), that is, the temperature decreases
about 1 K per 100 m. The stratification is unstable if the temperature de-
creases faster and is stable if it decreases slower. If the temperature increases
with increasing height, as happens for example if a warm mass of air moves
over colder ground air, we have inversion. This represents a particularly
stable atmospheric stratification and has the consequence that polluted air
remains close to the ground.

In what follows we restrict ourselves to homogeneous density fields and in
particular to liquids. In the coordinate system of Fig. 4.2 Bernoulli’s equation
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is applicable in the form (4.81), from which we conclude that for w = 0 the
hydrostatic pressure distribution in a fluid of homogeneous density is

p

�
+ g z − 1

2
Ω2 r2 = C . (5.15)

In the inertial system here (Ω = 0) the pressure distribution therefore reads

p = p0 − � g z , (5.16)

where p0 is the pressure at height z = 0. We see that the pressure linearly
increases with increasing depth (z < 0).

At points of equal height the pressure is the same. From this follows the
law of communicating tubes: in communicating tubes (Fig. 5.1) the level of
the fluid is the same everywhere because the pressure is equal to the ambient
pressure p0 everywhere on the surface of the fluid.

Pascal’s paradox is a further consequence of (5.16). The bases of the ves-
sels shown in Fig. 5.2 are at equal pressure. If the bases are of equal size, then
so are the forces, independent of the total weight of the fluid in the vessels.
Equation (5.16) also explains how the often used U-tube manometer works
(Fig. 5.3). The pressure pC in the container is found by first determining the
intermediate pressure pZ in the manometer fluid at depth Δh from p0:

pZ = p0 + �M g Δh . (5.17)

Then the pressure directly under the left-hand level is also known, because
the pressure in the same fluid at the same heights is equal. From here on the
pressure in the fluid decreases to the pressure pC , giving us

pC = pZ − �C g H . (5.18)

Fig. 5.1. Communicating tubes
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Fig. 5.2. Pascal’s paradox

Fig. 5.3. U-tube manometer

By (5.17) the pressure can be calculated from the lengths Δh and H as

pC = p0 + �M g Δh

[
1 − �C

�M

H

Δh

]
. (5.19)

Often the density of the manometer fluid �M (e.g. mercury) is much larger
than the density of the fluid in the container �C (e.g. air). If H is then not
much larger than Δh, we ignore the second term in the brackets in (5.19),
and read the pressure difference directly from the deflection of the manom-
eter Δh:

pC − p0 = �M g Δh . (5.20)

This also explains why millimeters of water (1 mm H2O = 9.81 Pa =
9.81 N/m2) or millimeters of mercury (1 mm Hg = 1 Torr = 133.3 Pa) are
often used as units of pressure.

We shall now consider the pressure distribution relative to a reference
frame rotating about the z-axis (e.g. the container in Fig. 5.4 which rotates
about the z-axis but which does not have to be rotationally symmetrical).

Equation (5.15) shows that at constant distance from the axis of rotation,
the pressure increases linearly with depth, and that at constant height it
increases quadratically with increasing radius r. We dispose of the constant
of integration in (5.15), by putting the pressure p = p0 at z = 0, r = 0, and
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Fig. 5.4. Free surface on a rotating container

then write
p = p0 − � g z +

1
2
�Ω2 r2 . (5.21)

The surfaces of constant pressure (p = C) are paraboloids of rotation:

z =
1
� g

(p0 − C +
1
2
�Ω2 r2) , (5.22)

and since they are always surfaces of equal pressure, the free surface also
forms a paraboloid of revolution where C = p0:

z =
1

2 g
Ω2 r2 . (5.23)

5.2 Hydrostatic Lift, Force on Walls

In liquids, in particular in water, the density is so high that the loads on
container walls, dams, etc. from the hydrostatic pressure distribution become
important. Using the pressure distribution (5.15), the force on a surface S
can be calculated from

�F = −
∫∫

(S)

p�ndS , (5.24)

if necessary numerically, by adding the vectors −p�ndS until the whole sur-
face is exhausted. However using Gauss’ theorem, the calculation of forces
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on surfaces (particularly on curved surfaces) can be reduced to finding the
buoyancy force, which is given by Archimedes principle:

“A body in a fluid experiences an apparent reduction in weight (lift)
equal to the weight of the displaced fluid.”

This important law follows directly from Gauss’ theorem and the Eq. (5.4): if
the body is fully immersed then S is a closed surface and the total hydrostatic
force is given by (5.24). Instead of calculating the surface integral directly,
we transform it to a volume integral using Gauss’ theorem. Now we consider
the immersed body to be replaced by fluid which is of course in balance with
its surroundings. Then, using (5.4) we replace the pressure gradients in the
volume integral by the volume body force of gravity, and extract

�F = −
∫∫

(S)

p�ndS = −
∫∫∫

(V )

∇p dV = −
∫∫∫

(V )

��g dV = −��g V . (5.25)

The term on the far right is the weight of the displaced fluid. The minus sign
shows that this force is directed upwardly and is therefore a lift force. Since
the weight acts through the center of gravity, the buoyancy force also acts
through the center of gravity of the displaced fluid.

If the surface S on which the force is to be calculated is not the entire
surface of the body, this surface can be made part of the surface of a replace-
ment body by using other, arbitrary, surfaces. From knowing the lift of this
replacement body and the forces on the supplementary surfaces, the force on
the surface S can be calculated. We choose flat surfaces as supplementary
surfaces and calculate the forces on the flat surfaces before beginning the
general problem.

To do this we consider an arbitrarily bounded and arbitrarily orientated
plane surface A which is fully wetted (Fig. 5.5). We choose a coordinate
system x′, y′, z′ originating at the centroid of the surface, whose z′ axis is
normal to the surface, whose y′ axis lying in the surface runs parallel to

Fig. 5.5. The force on a plane surface
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the free surface (and is therefore perpendicular to the mass body force), and
whose x′ axis is chosen so that x′, y′ and z′ form a right-handed coordinate
system. In this primed coordinate system the potential of the mass body force
reads:

ψ = −�g · �x = −(g′x x
′ + g′z z

′) , (5.26)

since �g has no component in the y′ direction. As earlier, we obtain the hydro-
static pressure distribution from Bernoulli’s equation where we set the veloc-
ity to zero. Beginning from (4.57), for an incompressible fluid, we obtain

p+ �ψ = C , (5.27)

or
p− � (g′x x

′ + g′z z
′) = pCG , (5.28)

where pCG is the pressure at the centroid of the plane (x′ = y′ = z′ = 0),
which, by (5.16) is

pCG = p0 + � g hCG . (5.29)

The component of �g in the x′ direction is g′x = g sinϕ and the pressure on
the plane A (z′ = 0) is then

p = pCG − � g sinϕ x′ ; (5.30)

therefore the force is

�F = −
∫∫

(S)

p�n dS = −�n
∫∫

(A)

(pCG − � g sinϕ x′) dA (5.31)

or

�F = −�n
[
pCGA− � g sinϕ

∫∫

(A)

x′ dA

]
. (5.32)

Since the origin of the coordinate system lies on the centroid of the plane
surface (x′CG = y′CG = 0) and the centroid coordinates are, by definition,
given by

Ax′CG =
∫∫

(A)

x′ dA , (5.33)

Ay′CG =
∫∫

(A)

y′ dA , (5.34)
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the integral in (5.32) vanishes and for the force we extract

�F = −�n pCGA , i.e. (5.35)

“The magnitude of force on a plane surface is the product of the
pressure at the centroid of the surface and its area.”

We shall also calculate the moment of the pressure distribution relative to an
arbitrary point P (�x′p = x′p �ex

′ + y′p �ey
′) on the surface A:

�Mp = −
∫∫

(A)

(�x′ − �x′p) × �n p dA . (5.36)

Evaluating the cross product and with �n = �ez
′ we obtain

�Mp =
∫∫

(A)

[
(x′ − x′p)�ey

′ − (y′ − y′p)�ex
′] p(x′) dA . (5.37)

Introducing the pressure distribution from (5.30), and noting the definitions
of the centroid (5.33), (5.34) and x′CG = y′CG = 0 furnishes the equation

�Mp =

[
� g sinϕ

∫∫

(A)

x′ y′ dA+ y′p pCGA

]
�ex

′ +

−
[
� g sinϕ

∫∫

(A)

x′2 dA+ x′p pCGA

]
�ey

′ . (5.38)

The area moments of the second order appearing in (5.38) are
(i) the area moment of inertia relative to the y′ axis

Iy′ =
∫∫

(A)

x′2 dA ; (5.39)

(ii) the mixed moment of inertia

Ix′y′ =
∫∫

(A)

x′ y′ dA . (5.40)

These correspond to the quantities known as polar moment of inertia and
product of inertia from the theory of bending and torsion. Using these defi-
nitions we also write (5.38) as

�Mp = (� g sinϕ Ix′y′ + y′p pCG A)�ex
′ − (� g sinϕ Iy′ + x′p pCGA)�ey

′ . (5.41)



160 5 Hydrostatics

Fig. 5.6. Centroid and pressure point

The moment �Mp vanishes relative to a particular point called the pressure
point CP (Fig. 5.6), which is the point through which the force F acts. By
setting the moment to zero we calculate the pressure point’s coordinates as

x′CP = −� g sinϕ Iy′

pCGA
(5.42a)

and
y′CP = −� g sinϕ Ix′y′

pCGA
. (5.42b)

In order to now calculate the force on a general curved surface S, we complete
S to a closed surface, by dropping perpendicular lines from every point on
the boundary C of S to the fluid surface (Fig. 5.7). We now use the result
(5.25); there S corresponds to the entire surface which here is made up of the

Fig. 5.7. The force on a curved surface
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general curved surface and the supplementary surfaces M and Az . M is the
surface generated by dropping the perpendicular, and Az on the free surface
closes the replacement volume. From (5.25) we have then

−
∫∫

(S+M+Az)

p�n dS = −
∫∫

(S)

p�ndS −
∫∫

(Az)

p�n dA−
∫∫

(M)

p�ndS = −��g V .

(5.43)
From (5.43) we obtain the component of the force on S in the positive z
direction as

Fz = −
∫∫

(S)

p�n · �ez dS =
∫∫

(Az)

p�n·�ez dA+
∫∫

(M)

p�n · �ez dS−��g·�ez V . (5.44)

On Az , �n = �ez and p = p0; on M , �n · �ez = 0 , since �n is perpendicular to �ez.
We also have −�g · �ez = g, and are led directly to the component of the force
in the z direction:

Fz = p0Az + � g V . (5.45)

For the component of the force in the x-direction we obtain

Fx = −
∫∫

(S)

p�n · �ex dS = −sgn (�n · �ex)
∫∫

(Ax)

p dA , (5.46)

where Ax is the projection of the surface S in the x-direction and the signum
function determines the sign of the force. (If the sign of �ex · �n changes on
the surface, the surface is to be cut along the line �ex · �n = 0 in two surfaces,
which are treated separately.)

But the problem to calculate the force on a plane surface has already been
done through Eqs. (5.35) and (5.42). Analogously the component of the force
in the y direction follows:

Fy = −
∫∫

(S)

p�n · �ey dS = −sgn (�n · �ey)
∫∫

(Ay)

p dA . (5.47)

The force components Fx and Fy do not appear in the second law of equilib-
rium (that the sum of the moments is zero) on the replacement body, since
they are balanced by the corresponding force components on the surface M .
The weight � g V , the force p0Az and Fz all lie in a vertical plane since they
must balance separately.

The line of action of the buoyancy force (through the center of grav-
ity of the displaced fluid) and the force p0Az (through the centroid of the
surface Az) determines this plane. Taking moments, for example about the
center of gravity, we obtain the line of action of Fz. The lines of action of the
two horizontal components Fx and Fy are to be calculated using the corre-
sponding projections Ax and Ay from (5.42). These three lines of action do
not in general meet at the same point.
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5.3 Free Surfaces

Liquids form free surfaces, and these exhibit the phenomenon of surface or
capillary tension. This surface tension can be important in technical problems
under circumstances to be described presently.

From a microscopic standpoint this phenomenon is due to the fact that
molecules on the free surface, or on an interface between two different fluids
are in a different environment than those molecules within a fluid. The forces
between the molecules are attractive forces at the average distances we are
dealing with (cf. Sect. 1.1), (but can in certain circumstances be repulsive).
A molecule within the fluid experiences the same attraction on all sides from
its neighboring molecules. On the free surface, a molecule is pulled inwards in
the same manner by its neighbors because the forces of attraction on the free
side are missing, or at least are different. Therefore there are only as many
molecules on the free surface as are absolutely necessary for its formation,
and the free surface is always trying to contract.

Macroscopically, this manifests itself as if a tension were acting in the free
surface, very much like the stress in a soap bubble. The capillary force on
a line element is

Δ�F = �σ Δl , (5.48)

where �σ is the stress vector of the surface tension, defined by

�σ = lim
Δl→0

Δ�F

Δl
=

d�F
dl

. (5.49)

In general, the stress vector lying in the surface has components both normal
and tangential to the line element (Fig. 5.8). If the fluid particles which form
the free surface are at rest, the tangential component vanishes and we have

�σ = C �m , (5.50)

where �m is the vector normal to the line element dl lying in the free surface.
The magnitude of the surface tension vector, the capillary constant C is
independent of �m, but dependent on the pairing liquid-gas, or in the case of
an interface, liquid-liquid.

Fig. 5.8. Explanation of surface tension
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The best known manifestation of surface tension is the spherical shape of
small drops. If we consider the surface of the drop to be a soap bubble under
internal pressure pi, then on one hand we have the force due to the pressure
difference pi − p0 acting on one half of the surface and on the other hand the
force due to the surface tension acting on the circumferential cut (Fig. 5.9).
The force due to the surface tension is 2π r C �m and the equilibrium condition
furnishes

2π r C �m−
∫∫

(S)

(p0 − pi)�n dS = 0 . (5.51)

If we form the component equation in the direction of �m (for symmetry
reasons this is the only nonzero component), with �m ·�n dS = −dA we obtain

2π r C + (p0 − pi)π r2 = 0 (5.52)

or
Δp = pi − p0 = 2C/r . (5.53)

For very small drops the pressure drop over the surface can be quite con-
siderable. For a general surface it is readily shown that the pressure drop is
given by

Δp = C

[
1
R1

+
1
R2

]
, (5.54)

where R1 and R2 are the principal radii of curvature, i.e. the extrema of
the radii curvature at a point on the surface. The quantity (1/R1 + 1/R2)
is called the mean curvature and is a scalar, contrary to the curvature itself.
For a plane surface, (R1 = R2 → ∞) the pressure drop vanishes. Therefore
capillarity effects appear only if the surfaces are curved.

Curvature of the free surface often appears on boundaries if three different
fluids meet, or if two fluids and a solid wall meet, as in Fig. 5.10, where the
interface between fluids (1) and (2) touches a wall. We write

z = z(x, y) (5.55)

Fig. 5.9. Balance on the free surface of a drop
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Fig. 5.10. Surface of a heavy fluid

for the explicit representation of the interface, and for the pressure drop
across the surface we obtain

p2 − p1 = (�1 − �2) g z(x, y) . (5.56)

Using (5.54) we also write this as

C

[
1
R1

+
1
R2

]
= (�1 − �2) g z(x, y) . (5.57)

We shall restrict ourselves to the plane case, that is z = z(y) , R1 → ∞ ,
R2 = R and we further assume that fluid (2) is a gas, i.e. � = �1 � �2. Then
(5.57) simplifies to

C/R = � g z(y) . (5.58)

From this equation we extract a quantity a with the dimension of length:

a =

√
C

� g
. (5.59)

Therefore we can expect that the capillarity effects are particularly noticeable
when the typical size of the flow region is of the order of this length. The
quantity a, called Laplace’s length, has a value for water of about 0.3 cm.
This explains why water flows straight out of a garden hose held high, while
it cannot flow freely under the influence of gravity if the diameter of the hose
is comparable to Laplace’s length. The water then remains in the tube in the
form of plugs. With the known expression

R−1 = (z′2 + 1)−3/2 z′′ , (5.60)

for the curvature R−1 of a curve z(y), where the dash above z means the
derivative with respect to y, we obtain from (5.58) an ordinary differential
equation of the second order for the unknown shape z(y) of the surface:

(z′2 + 1)−3/2 z′′ − a−2 z = 0 . (5.61)
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The particular integral of this equation requires two boundary conditions.
Integrating once brings us to the equation

(z′2 + 1)−1/2 +
1
2
a−2 z2 = 1 , (5.62)

where we have set the constant of integration on the right-hand side to 1 using
the boundary condition z(∞) = 0. Integrating again requires knowledge of
the angle of contact α as the boundary condition. This is determined from
the equilibrium of the capillary stresses on the boundary. As well as the
surface tension of the liquid-gas pair C12, two further surface tensions appear
due to the pairing liquid-wall (C13) and gas-wall (C23). Equilibrium normal
to the wall is not of interest since the wall can take up arbitrary stresses.
Equilibrium in the direction of the wall (cf. Fig. 5.11) leads to

C23 = C13 + C12 cosα (5.63a)

or
cosα =

C23 − C13

C12
. (5.63b)

The fluid climbs or slides down the wall until the condition (5.63a) is satisfied.
However if C23 −C13 is larger than C12, equilibrium cannot be satisfied, and
the fluid coats the whole wall (e.g. petrol in metal containers). With the
boundary condition z′(y = 0) = − cotα the solution of (5.62) then reads in
implicit form

y/a = arccosh (2a/z)−arccosh(2a/h)+
√

4 − (h/a)2−
√

4 − (z/a)2 , (5.64)

where the square of the height climbed h = z(y = 0) is to be taken from
(5.62) as h2 = 2a2 (1 − sinα).

Another phenomenon often seen is the capillary rise in small tubes
(Fig. 5.12). Obviously the pressure drop Δp over the surface must be equal

Fig. 5.11. Angle of contact
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Fig. 5.12. Capillary rise in a small tube

to � g h. If we take the shape of the surface to be spherical, because of
R1 = R2 = R we have from (5.54)

2
C

R
= � g h . (5.65)

For a known angle of contact α, the radius of curvature R can be replaced
by r/ cosα, so that for the height climbed we obtain

h =
2C cosα
r � g

. (5.66)

For very small r the height climbed can become very large and this explains
why moisture rises so high in a porous wall. If we have α > π/2, the capillary
rise becomes negative, so that the fluid slides downwards. The best known
example of this action is mercury.
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Quite important simplifications in the equations of motion arise for the class
of unidirectional flows and these allow closed form solutions even for non-
Newtonian fluids. As has already been discussed in Sect. 4.4, this solvability
rests on the particularly simple kinematics of these flows.

Here we shall restrict ourselves to incompressible flows for which only
pressure differences can be calculated unless there is a boundary condition
on the pressure, e.g. the presence of a free surface. On a free surface the abso-
lute value of the pressure enters the problem through the boundary condition
(4.171) for the stress vector. Without free surfaces the influence of the mass
body force can be removed from the problem if we limit ourselves to calcu-
lating pressure differences relative to the hydrostatic pressure distribution.
We shall demonstrate this by way of the Navier-Stokes equations, and shall
set the pressure as

p = pst + pdyn , (6.1)

where the hydrostatic pressure pst satisfies the hydrostatic relation (5.4). By
(4.9b) we then have

�
D�u
Dt

= ��k −∇pst −∇pdyn + η Δ�u , (6.2)

which, because of (5.4), becomes

�
D�u
Dt

= −∇pdyn + η Δ�u . (6.3)

The mass body force no longer appears in this equation. pdyn is the pressure
difference p − pst and originates only from the motion of the fluid. From
here on we shall write p in place of pdyn, and shall understand that in all
problems without free surfaces, p means the pressure difference p − pst . If
the problem being dealt with does contain free surfaces, we shall, without
further explanation, make use of the equations of motion in which the mass
body force, if present, appears explicitly.
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6.1 Steady Unidirectional Flow

6.1.1 Couette Flow

Simple shearing flow or Couette flow is a two-dimensional flow whose velocity
field has already been commented on several times. The velocity components
u, v, w in a Cartesian coordinate system with axes x, y, z read (cf. Fig. 6.1a)

u =
U

h
y , v = 0 , w = 0 . (6.4)

Therefore the flow field is identical in all planes (z = const). The property
common to all unidirectional flows, that the only nonvanishing velocity com-
ponent (in this case u) only varies perpendicular to the flow direction, is
a consequence of the continuity equation (2.5)

∇ · �u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (6.5)

From this, because v = w = 0, we obtain

∂u

∂x
= 0 or u = f(y) , (6.6)

of which (6.4) is a special case. The x component of the Navier-Stokes equa-
tions reads

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

�

∂p

∂x
+ ν

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
. (6.7)

Because of (6.4), all the convective (nonlinear) terms on the left-hand side
vanish. This is the case in all unidirectional flows. Of course since we are
dealing with a two-dimensional flow we could have set all derivatives with
respect to z equal to zero, and indeed we shall want to do this in the future.

Fig. 6.1. Plane unidirectional flow
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Since in this special case of Couette flow u is a linear function of y, all
the terms in the brackets on the right-hand side of (6.7) vanish and we are
led to the equation

∂p

∂x
= 0 or p = f(y) . (6.8)

The component of the Navier-Stokes equations in the y direction

u
∂v

∂x
+ v

∂v

∂y
= −1

�

∂p

∂y
+ ν

[
∂2v

∂x2
+
∂2v

∂y2

]
(6.9)

directly leads us to
∂p

∂y
= 0 , (6.10)

which, together with (6.8), furnishes the final result

p = const . (6.11)

The field (6.4) satisfies the boundary condition (4.159), and therefore we
have found the most simple nontrivial exact solution of the Navier-Stokes
equations.

6.1.2 Couette-Poiseuille Flow

A generalization of simple shearing flow is suggested by (6.6): we consider
the velocity field

u = f(y) , v = w = 0 . (6.12)

The x component of the Navier-Stokes equations then reduces to

∂p

∂x
= η

∂2u

∂y2
, (6.13)

and the y component reads

0 = −1
�

∂p

∂y
. (6.14)

A consequence of the last equation is that p can only be a function of x.
However since by assumption the right-hand side of (6.13) is not a function
of x, neither is the left-hand side, i.e. ∂p/∂x is not a function of x. Therefore
∂p/∂x is a constant which we shall call −K. From (6.13) we then extract
a differential equation of the second order for the desired function u(y):

η
d2u

dy2
= −K . (6.15)



170 6 Laminar Unidirectional Flows

Integrating (6.15) twice leads us to the general solution

u(y) = − K

2 η
y2 + C1 y + C2 . (6.16)

We specialize the general solution to flow through a plane channel whose
upper wall moves with velocity U in the positive x–direction. The function
we are looking for, u(y), must by (4.159), satisfy the two boundary conditions

u(0) = 0 , (6.17a)

and
u(h) = U , (6.17b)

so that we determine the constants of integration as

C1 =
U

h
+

K

2 η
h , C2 = 0 . (6.18)

Thus the solution of the boundary value problem is

u(y)
U

=
y

h
+
K h2

2 η U

[
1 − y

h

] y
h
. (6.19)

For K = 0 we get the simple shearing flow again; for U = 0 and K �= 0 we
obtain a parabolic velocity distribution (two-dimensional Poiseuille flow); the
general case (U �= 0 , K �= 0) yields the Couette-Poiseuille flow (Fig. 6.1).

As is directly obvious from (6.19), the general case is a superposition of
Couette flow and Poiseuille flow. Since the unidirectional flows are described
by linear differential equations, the superposition of other unidirectional flows
is also possible.

The volume flux per unit depth is

V̇ =

h∫

0

u(y) dy , (6.20)

so that the average velocity defined by the equation

U =
V̇

h
(6.21)

for the Couette-Poiseuille flow is

U =
U

2
+
K h2

12 η
. (6.22)
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The maximum velocity for pure pressure driven flow is calculated from (6.19)
as:

Umax =
K h2

8η
=

3
2
U.

Since these flows extend to infinity in the x direction and are two-dimen-
sional, they are never actually realized in applications, but they can often be
used as good approximations. Thus we encounter simple shearing flow in the
flow between two “infinitely” long cylinders as we take the limit h/R → 0.
Although the flow in Fig. 6.2 may be determined without taking the limit
h/R → 0 since it is also a unidirectional flow, the shearing flow is consid-
erably easier to calculate. Incidentally this flow is approximately realized in
journal bearings where the condition h/R → 0 is well satisfied. The friction
torque and the friction power per unit bearing depth can then be immediately
estimated:

Tfriction ≈ 2π R2 η
du
dy

= 2π R2 η
U

h
= 2πR3 η

Ω

h
, (6.23)

Pfriction ≈ 2π R3 η Ω2/h . (6.24)

However Fig. 6.2 is not the correct depiction of a bearing. Since the journal
here rotates concentrically, for symmetry reasons it can support no load.
Equation (6.8) states that the pressure in the x direction (circumferential
direction) is constant, and so no net force can act on the journal. Under
a load the journal takes on an eccentric position in the bush (Fig. 6.3). The
flow in the “lubricant film” is locally a Couette-Poiseuille flow, as we shall
show in Chap. 8. The pressure distribution in this case gives rise to a net
force which is in balance with the load on the bearing.

6.1.3 Flow Down an Inclined Plane

Closely related to Couette-Poiseuille flow is flow down an inclined plane,
although in this case we deal with a free surface (Fig. 6.4). Here the volume

Fig. 6.2. Concentrically rotating journal
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Fig. 6.3. Eccentrically rotating journal

Fig. 6.4. Flow down an inclined plane

body force plays the same role as the pressure gradient ∂p/∂x in Couette-
Poiseuille flow, which as we shall see is here zero. The flow is not driven by the
pressure gradient but by the volume body force of gravity, whose components
are

fx = � kx = � g sinβ , (6.25a)

fy = � ky = −� g cosβ . (6.25b)

Because of (6.6) and v = 0 the Navier-Stokes equations (4.9b) are simplified
to

∂p

∂x
− � g sinβ = η

∂2u

∂y2
(6.26)

and
∂p

∂y
= −� g cosβ . (6.27)

Therefore we obtain two differential equations for the unknown functions u
and p . The no slip condition

u(0) = 0 (6.28)
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is to be satisfied at the wall (y = 0), while the condition (4.172) is to be
satisfied at the free surface, which we write in index notation as

njτji(1) = njτji(2) . (6.29)

From (3.1) with nj = (0 , 1 , 0) the boundary condition follows in the form
[
− p δ2i + 2η e2i

]

(1)
=
[
− p δ2i + 2η e2i

]

(2)
, (6.30)

where the index (2) stands for the fluid and the index (1) for the air. The
component of the Navier-Stokes equations in the y direction leads us to the
boundary condition

p(1) = p(2) = p0 , (6.31)

and the component equation in the x direction furnishes
[
η
∂u

∂y

]

(1)

=
[
η
∂u

∂y

]

(2)

. (6.32)

If we ignore the effect of the friction in the air, the left-hand side of (6.32)
vanishes and this boundary condition reads

0 = η
∂u

∂y

∣∣∣∣
y=h

. (6.33)

From integrating (6.27) we obtain

p = −� g y cosβ + C(x) , (6.34)

and with the boundary condition (6.31) p(2) = p(y = h) = p0 also

p = p0 + � g cosβ (h− y) . (6.35)

Therefore p is not a function of x, and equation (6.26) simplifies to

−� g sinβ = η
∂2u

∂y2
. (6.36)

This is the same differential equation as (6.13), if we replace ∂p/∂x by
−� g sinβ. Therefore we read the general solution off from (6.16) (with
K = � g sinβ):

u = −� g sinβ
2 η

y2 + C1 y + C2 (6.37)

and determine the constants from the boundary conditions (6.28) and (6.33)
as

C2 = 0 , C1 =
� g sinβ

η
h . (6.38)

The solution of the boundary value problem is therefore

u(y) =
� g sinβ

2 η
h2
[
2 − y

h

] y
h
. (6.39)
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6.1.4 Flow Between Rotating Concentric Cylinders

A cylindrical coordinate system r, ϕ, z with the velocity components ur,
uϕ, uz is most suitable for this flow because the boundaries of the flow field
are then given by the coordinate surfaces r = RI and r = RO. In the axial
direction the flow extends to infinity. Changes in flow quantities in the axial
direction must therefore vanish or be periodic so that these quantities do not
take on infinite values at infinity. We shall exclude the case of periodicity
here, and shall set ∂/∂z = 0 and uz = 0 . At all planes z = const the flow
is identical. Since the normal component of the velocity (i.e. ur at r = RI

and r = RO) must vanish because of the kinematic boundary condition, we
set ur ≡ 0 everywhere. Also the change in the circumferential direction must
either vanish or be periodic: again we shall restrict ourselves to the first case.
Because of ∂/∂z = ∂/∂ϕ = 0 and ur = uz = 0 we obtain from the Navier-
Stokes equations in cylindrical coordinates (see Appendix B) the following
for the r component

�
u2

ϕ

r
=
∂p

∂r
, (6.40)

and for the ϕ component

0 = η

[
∂2uϕ

∂r2
+

1
r

∂uϕ

∂r
− uϕ

r2

]
, (6.41)

while the z component vanishes identically. The term u2
ϕ/r in (6.40) arises

from the material change of the component uϕ and corresponds to the cen-
tripetal acceleration. Clearly the pressure distribution p(r) develops so that
the centripetal force is balanced. Equation (6.40) is coupled with (6.41): if
the velocity distribution is given by (6.41), then the pressure distribution
corresponding to it follows from (6.40). Equation (6.41) is a linear ordinary
differential equation with variable coefficients of the Eulerian type. It is solved
by the substitution

uϕ = rn .

From (6.41) we then have n = ±1, so that the general solution reads

uϕ = C1 r +
C2

r
. (6.42)

The inner cylinder rotates with angular velocity ΩI , the outer with ΩO

(Fig. 6.5). Then, from the no slip condition

uϕ(RI) = ΩI RI , uϕ(RO) = ΩO RO (6.43)

the constants are determined as

C1 =
ΩO R2

O −ΩI R
2
I

R2
O −R2

I

, C2 =
(ΩI −ΩO)R2

I R
2
O

R2
O −R2

I

. (6.44)
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Fig. 6.5. Flow between rotating concentric cylinders

For the special case C1 = 0 , i.e.

ΩO/ΩI = (RI/RO)2, (6.45)

the velocity distribution from (6.42) is that of a potential vortex. Thus the
angular velocities of the inner and outer cylinders must have a particular
relation to one another in order that the flow in the gap be irrotational.

Another important special case for applications, namely the problem of
the rotating cylinder with infinite gap height, arises if we allow RO to go to
infinity in (6.45); ΩO then tends to zero. In these cases the potential vortex
satisfies not only the Navier-Stokes equations (this is so for all incompressible
potential flows), but also the no slip condition at the wall. Therefore we are
dealing with an exact solution of the flow problem: boundary layers where
the velocity distribution differs from the value given by potential theory do
not arise. For ΩI = 0 , r = RI + y and y/RI → 0 we obtain, from (6.42) and
(6.44) the Couette flow (6.4).

6.1.5 Hagen-Poiseuille Flow

The flow through a straight circular pipe or Hagen-Poiseuille flow is the
most important of all unidirectional flows and it is the rotationally symmetric
counterpart to channel flow. Again cylindrical coordinates are suited to this
problem where they describe the wall of the circular pipe by the coordinate
surface r = R (Fig. 6.6). At the wall ur = uϕ = 0 , and we set ur and uϕ

identically to zero in the whole flow field; moreover the flow is rotationally
symmetric (∂/∂ϕ = 0). The continuity equation in cylindrical coordinates
(see Appendix B) then gives

∂uz

∂z
= 0 or uz = uz(r) . (6.46)
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Fig. 6.6. Flow in a straight circular pipe

The r component of the Navier-Stokes equations leads us to

0 =
∂p

∂r
or p = p(z) . (6.47)

All terms of the Navier-Stokes equation in the ϕ direction vanish identically,
while the z component equation becomes

0 = −∂p

∂z
+ η

[
∂2uz

∂r2
+

1
r

∂uz

∂r

]
. (6.48)

We see directly from (6.48) that ∂p/∂z does not depend on z and therefore
the pressure p is a linear function of z. As before we set ∂p/∂z = −K and
write (6.48) in the form

−K

η
=

1
r

d
dr

[
r

duz

dr

]
, (6.49)

which, integrated twice, gives

uz(r) = −K r2

4 η
+ C1 ln r + C2 . (6.50)

Since uz(0) is finite, C1 = 0 immediately follows. The no slip condition implies

uz(R) = 0 , (6.51)

thus

C2 =
KR2

4 η
. (6.52)

Dropping the index z, the solution reads

u(r) =
K

4 η
(R2 − r2) . (6.53)
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The maximum velocity is reached at r = 0, and therefore we write

u(r) = Umax {1 − (r/R)2} . (6.54)

With the volume flux V̇ through the pipe we introduce the average velocity
through the pipe

U =
V̇

A
=

V̇

π R2
, (6.55)

and because

V̇ =

2π∫

0

R∫

0

u(r) r dr dϕ = 2π Umax
R2

4
(6.56)

we also find that
U =

1
2
Umax , (6.57)

i.e.

U =
K R2

8 η
. (6.58)

Since the pressure gradient is constant, we may write

K =
Δp

l
=
p1 − p2

l
(6.59)

and mean by Δp the pressure drop in the pipe over the length l . The pressure
drop is positive if the pressure gradient ∂p/∂z is negative. It is appropriate
to represent this pressure drop in a dimensionless form:

ζ =
Δp
�

2
U

2
. (6.60)

Using (6.58), the so-called loss factor ζ, can also be written in the form

ζ =
16 l η
R2 �U

= 64
l

d

η

� dU
, (6.61)

where d = 2R and we have set the dimensional quantities into two dimen-
sionless groups l/d and � dU/η = Re . In particular, in pipe flows the friction
factor is often introduced

λ = ζ
d

l
,

so that the dimensionless form of the resistance law of a straight circular pipe
arises:

ζ =
l

d

64
Re

or λ =
64
Re

. (6.62)
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The Hagen-Poiseuille equation follows from (6.55), (6.58) and (6.59):

V̇ =
π R4

8 η
Δp

l
. (6.63)

The proportionality of the volume flux to the fourth power of the radius has
been experimentally confirmed to a high degree of accuracy which serves as
a confirmation of the no slip condition (4.160). The Hagen-Poiseuille equation
(6.63) is also the basis for measuring the shear viscosity η .

We are led to a generalized Hagen-Poiseuille flow if we subject the general
solution (6.50) to the boundary conditions (Fig. 6.7)

u(RO) = 0 , (6.64a)

and
u(RI) = U . (6.64b)

The resulting flow is clearly the Couette-Poiseuille flow in a ring gap, and is
given by

u(r) =
K

4 η

{
R2

O − r2 −
[
R2

O −R2
I − 4 η U

K

]
ln(r/RO)

ln(RI/RO)

}
. (6.65)

This can be superimposed with the velocity field (6.42) and then describes
the case in which the cylinder is also rotating.

We could convince ourselves that with RO − RI = h and RO − r = y
and in the limit h/RO → 0, two-dimensional Couette-Poiseuille flow (6.19)
results. For pure pressure driven flow (U = 0), by (6.55) we find the average
velocity

U =
K

8 η

[
R2

O +R2
I + (R2

O −R2
I)

1
ln(RI/RO)

]
, (6.66)

which, for RI → 0 agrees with the known result (6.58).

Fig. 6.7. Generalized Hagen-Poiseuille flow
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For conduits which do not have a circular cross-section, we introduce the
equivalent or hydraulic diameter dh,

dh =
4A
s

, (6.67)

where A is the cross-sectional area and s is the wetted circumference of the
cross-section. dh = d for the circular cross-section, and for the ring cross-
section we have

dh =
4π (R2

O −R2
I)

2π (RO +RI)
= dO − dI . (6.68)

We first write the loss factor ζ in the form

ζ =
Δp (dO − dI)2

�

2
U

2
d2

h

, (6.69)

into which we replace one U by (6.66) (from (6.59)) and extract

ζ =
64
�U

η

dh

l

dh

[
1 − dI

dO

]2
ln
[
dI

dO

]

1 −
[
dI

dO

]2
+ ln

[
dI

dO

] {
1 +

[
dI

dO

]2} . (6.70)

Using the Reynolds’ number Re = �U dh/η this becomes

ζ =
64
Re

l

dh
fn(dI/dO) . (6.71)

The dimensionless factor fn(dI/dO) is a measure of the deviation of the loss
factor of a noncircular conduit from the friction factor of the circular pipe,
if the hydraulic diameter is used as the reference length. For dI/dO = 0 we
have fn(dI/dO) = 1 , and for dI/dO = 1 , corresponding to channel flow,
we extract fn(dI/dO) = 1.5 after repeated application of l’Hôpital’s rule.
This result can be easily confirmed if, starting with (6.22) we construct the
formula (6.71).

As can be seen, the pressure drop for the circular tube is very different
from the pressure drop for the ring gap, even when the hydraulic diameter
is used as the reference length. This is not the case for turbulent flows: the
loss factor of the ring gap is practically identical to that of the circular pipe.
This also holds for conduits with rectangular cross-sections and for most
other technically interesting cross-sectional shapes, such as triangular cross-
sections, if the angles are not too small.
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6.1.6 Flow Through Noncircular Conduits

In the treatment of laminar flows in infinitely long straight conduits with
noncircular cross-sections, the same kinematic simplifications as in Hagen-
Poiseuille flows arise. The only nonvanishing velocity component is the one
in the axial direction. This component is independent of the coordinate in this
direction, so that the nonlinear terms drop out in the equations of motion.
Since a locally valid coordinate system where the stress tensor has the form
(3.35) can be given for every point in the cross-section, we find ourselves
dealing with a unidirectional flow. In a coordinate system whose z axis runs
parallel to the axis of the conduit, Poisson’s equation

Δu = −K

η
, (6.72)

follows from (6.3) for the only nonvanishing velocity component (which we
shall denote by u) in steady flow. Since K = −∂p/∂z = const, the inhomoge-
neous term here is again a constant. This form of Poisson’s equation appears
in many technical problems, among these in the torsion of straight rods and in
loaded membranes. Thus we can directly transfer results known from the the-
ory of elasticity. Solutions of this equation in the form of polynomials describe,
among others the torsion of rods with triangular cross-sections, and these cor-
respond therefore to flows through pipes with triangular cross-sections. Using
elementary integration methods, cross-sections whose boundaries are coordi-
nate surfaces can be dealt with if Poisson’s equation is separable in these
coordinate systems.

As a typical example, we shall sketch the path of a solution for the techni-
cally important case of a conduit with a rectangular cross-section (Fig. 6.8).
With uz(x, y) = u(x, y) we get from (6.72) the differential equation

∂2u

∂x2
+
∂2u

∂y2
= −K

η
, (6.73)

Fig. 6.8. Channels with rectangular and triangular cross-section
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with the boundary conditions

u(± b

2
, y) = 0 , (6.74a)

and
u(x, ± c

2
) = 0 . (6.74b)

To solve the linear equation (6.73) we set

u = uP + uH , (6.75)

where uH satisfies the homogeneous equation and uP is a particular solution.
If we set, for example u = uP (y) , the solution follows directly from (6.73)

uP = − K

2 η
y2 + C1 y + C2 , (6.76)

into which we introduce the boundary condition (6.74b), so that

uP =
K

2 η

[
1
4
c2 − y2

]
(6.77)

arises. Using a separation of variables solution of the form

uH = X(x)Y (y) (6.78)

yields the solution

uH = Dn (emx + e−mx) cos(my) = 2Dn cosh(mx) cos(my) , (6.79)

with
m =

π

c
(2n− 1) , (6.80)

where the symmetry properties of the problem have been exploited and which
satisfies the boundary condition (6.74b) for n = 1, 2, 3, . . . . Because (6.73) is
linear, the general solution is

u =
∞∑

n=1

2Dn cosh(mx) cos(my) + uP (y) . (6.81)

The boundary conditions (6.74a) lead to the equation

∞∑

n=1

2Dn cosh(mb/2) cos(my) + uP (y) = 0 . (6.82)
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In order to determine the coefficients Dn, uP must also be represented as
a Fourier series, whose coefficients are given by

an =
2
c

c/2∫

−c/2

K

2 η

[
1
4
c2 − y2

]
cos(my) dy . (6.83)

Integrating leads to the Fourier expansion

uP = −2K
η c

∞∑

n=1

[
c

m2
cos(mc/2) − 2

m3
sin(mc/2)

]
cos(my) . (6.84)

Because
mc

2
= (2n− 1)

π

2
, (6.85)

the first term in brackets in (6.84) vanishes, and the second reads

−2m−3 sin(mc/2) = 2m−3 (−1)n . (6.86)

A comparison between (6.84) and (6.82) furnishes

Dn =
2K
η

(−1)n

cm3 cosh(mb/2)
, (6.87)

and therefore the solution is

u =
K

2 η

{
c2

4
− y2 +

8
c

∞∑

n=1

(−1)n

m3

cosh(mx)
cosh(mb/2)

cos(my)

}
, (6.88)

from which we find the average velocity, according to (6.55), as

U =
K c2

4 η

{
1
3
− c

b

64
π5

∞∑

n=1

tanh(mb/2)
(2n− 1)5

}
. (6.89)

The loss factor based on the hydraulic diameter

dh =
2 b c
b+ c

(6.90)

is
ζ =

64
Re

l

dh
f(c/b) , (6.91)

with

f(c/b) =

{
2
[
c

b
+ 1
]2 [1

3
− c

b

64
π5

∞∑

n=1

tanh(mb/2)
(2n− 1)5

]}−1

. (6.92)
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Two-dimensional channel flow corresponds to c/b = 0, and we have
f(c/b) = 3/2. For c/b = 1 we obtain f(c/b) = 0.89.

For an equilateral triangle of height h (Fig. 6.8), the velocity distribu-
tion is

u =
K

η

1
4 h

(y − h) (3x2 − y2) (6.93)

and the average velocity

U =
1
60

K h2

η
. (6.94)

Using the hydraulic diameter

dh =
2
3
h (6.95)

we obtain the loss factor
ζ =

64
Re

l

dh

5
6
. (6.96)

The velocity distribution in an elliptic pipe whose cross-section is given by
the equation of the ellipse

[x
a

]2
+
[y
b

]2
= 1 (6.97)

reads

u =
K

2 η
a2 b2

a2 + b2

[
1 − x2

a2
− y2

b2

]
. (6.98)

From this equation we can see directly that the no slip condition is satisfied
at the wall. The average velocity here is

U =
K

4 η
a2 b2

a2 + b2
. (6.99)

Since the perimeter of the ellipse cannot be represented in a closed form
(elliptic integral) we do not introduce the hydraulic diameter. Instead it is
recommended that the pressure drop be calculated directly from (6.99).

6.2 Unsteady Unidirectional Flows

6.2.1 Flow Due to a Wall Which Oscillates in its Own Plane

The solutions so far can be extended to the unsteady case. First of all we
shall consider harmonic time functions. From these we can build general
time functions using a Fourier representation. The simple shear flow then
corresponds to the flow between two plane infinitely extending plates (with
separation distance h), one of which (the lower) is set into oscillation in its
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plane. The wall velocity is given by

uw = U(t) = Û cos(ωt) . (6.100)

Using complex notation the wall velocity reads

uw = U(t) = Û eiωt , (6.101)

where only the real part �(eiωt) has physical meaning. Instead of (6.12) we
now have

u = f(y, t) , v = 0 (6.102)

and instead of (6.13):
∂u

∂t
= −1

�

∂p

∂x
+ ν

∂2u

∂y2
. (6.103)

We set ∂p/∂x = 0 , i.e. the flow is only kept in motion by the wall velocity
through the no slip condition

u(0, t) = uw = Û eiωt . (6.104a)

On the upper wall the no slip condition reads

u(h, t) = 0 . (6.104b)

We shall only be interested in the steady state oscillation after the initial
transients have died away, so that the initial condition u(y, 0) is superfluous.
The boundary condition (6.104a) suggests that the solution is of the form:

u(y, t) = Û eiωt g(y) , (6.105)

where g(y) satisfies the boundary conditions

g(0) = 1 , and (6.106a)
g(h) = 0 . (6.106b)

Using the form (6.105), the partial differential equation (6.103) reduces to an
ordinary differential equation with constant (complex) coefficients

g′′ − iω
ν
g = 0 , (6.107)

where g′′ = d2g/dy2. From the solution g = eλy we obtain the characteristic
polynomial

λ2 − iω
ν

= 0 , (6.108)

with the roots

λ =
√

i
√
ω/ν = ±(1 + i)

√
ω

2 ν
. (6.109)
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The general solution can then be written in the form

g(y) = A sinh{ (1 + i)
√
ω/2ν y } +B cosh{ (1 + i)

√
ω/2ν y } , (6.110)

from which, using the boundary condition (6.106), we find the special solution

g(y) =
sinh{ (1 + i)

√
ω/2ν (h− y) }

sinh{ (1 + i)
√
ω/2ν h } , (6.111)

and finally by (6.105) the velocity distribution

u(y, t) = Û �
{

eiωt sinh{ (1 + i)
√
ωh2/2ν (1 − y/h) }

sinh{ (1 + i)
√
ωh2/2ν }

}
. (6.112)

We discuss the two limiting cases:

ω h2/ν � 1 , (6.113)
ω h2/ν � 1 (6.114)

and note that h2/ν is the typical time for the diffusion of the rotation across
the channel height h. In the first case this time is much smaller than the
typical oscillation time 1/ω , i.e. the diffusion process adjusts at every instant
the velocity field to the steady shearing flow with the instantaneous wall
velocity uw(t). This is what is called quasi-steady flow.

Using the first term of the expansion of the hyperbolic sine function for
small arguments we have

u = Û �
{

eiωt

√
ωh2/2ν (1 + i) (1 − y/h)√

ωh2/2ν (1 + i)

}
, (6.115)

and deduce that

u = Û cos(ωt) (1 − y/h) = U (1 − y/h) . (6.116)

Equation (6.116) corresponds to (6.4) where the upper plate represents the
moving wall. We also obtain this limiting case if the kinematic viscosity ν
tends to infinity. As is clear from (6.103), the unsteady term then vanishes.
This limiting case ν → ∞ for fixed η also corresponds to taking the limit
� → 0, thus ignoring the inertia terms, and therefore falls into group b) of
the classification discussed in Sect. 4.4.

In the limit ω h2/ν � 1 we use the asymptotic form of the hyperbolic sine
function and write (6.112) in the form

u = Û �
[
e−

√
ω/2ν y ei(ωt−

√
ω/2ν y)

]
, (6.117)

or
u = Û e−

√
ω/2ν y cos(ωt−

√
ω/2ν y) . (6.118)

The separation h no longer appears in (6.118). Measured in units λ =
√

2ν/ω
the upper wall is at infinity. Relative to the variable y the solutions also have
a wave form; we call these shearing waves of wavelength λ (Fig. 6.9).
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Fig. 6.9. Velocity distribution above the oscillating wall

6.2.2 Flow Due to a Wall Which is Suddenly Set in Motion

Using (6.118), we could in principle form the solution for the wall which is
suddenly accelerated to velocity U . However it is more instructive to take
a different path which starts directly with the partial differential equation

∂u

∂t
= ν

∂2u

∂y2
. (6.119)

This differential equation also describes the unsteady one-dimensional heat
conduction (where ν is then replaced by the coefficient of heat conduction a),
and so the desired solution also appears in heat conduction problems. The
no slip condition at the wall furnishes

u(0, t) = U for t > 0 . (6.120)

The second boundary condition is replaced by the condition

u(y, t) = 0 for y → ∞ . (6.121)

In addition we have the initial condition

u(y, t) = 0 for t ≤ 0 . (6.122)
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Equation (6.119) is a linear equation and since U enters the problem only
linearly from the boundary condition (6.120), the field u(y, t) must be pro-
portional to U , so that the solution has to be of the form

u/U = f(y, t, ν) . (6.123)

Since the function on the left-hand side is dimensionless, f must also be
dimensionless, which is only possible if the argument of the function is di-
mensionless. However the only linearly independent dimensionless quantity
is the combination y2/(νt). We set

η =
1
2

y√
ν t

(6.124)

and are now dealing with a similarity variable η, because the solution cannot
change if y and t are changed such that η remains constant. Instead of (6.123)
we now write

u/U = f(η), (6.125)

and from (6.119) we obtain the ordinary differential equation

−2 η f ′ = f ′′ (6.126)

with f ′ = df/dη. Integrating twice gives the general solution

f = C1

η∫

0

e−η2
dη + C2 . (6.127)

For y = 0 we have η = 0, and the boundary condition (6.120) becomes

f(0) = 1 , (6.128)

and therefore it follows that C2 = 1. If we subject (6.127) with C2 = 1 to the
“boundary condition” (6.121),

1/C1 = −
∞∫

0

e−η2
dη (6.129)

must hold. The improper integral has the value 1
2

√
π, and therefore

C1 = −2/
√
π ; (6.130)

thus the solution reads

u/U = 1 − 2/
√
π

η∫

0

e−η2
dη for t ≥ 0 . (6.131)
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The integral

erf (η) = 2/
√
π

η∫

0

e−η2
dη (6.132)

is the error function. For t = 0 we have η → ∞ and u/U = 0; thus the initial
condition is satisfied.

6.3 Unidirectional Flows of Non-Newtonian Fluids

6.3.1 Steady Flow Through a Circular Pipe

In order to calculate the flow of non-Newtonian fluids we shall return to
Cauchy’s equations. As with the flow of Newtonian fluids, for kinematic rea-
sons the only nonvanishing velocity component is that in the axial direction
and this only depends on r. Therefore we are dealing with a unidirectional
flow, and the stress tensor has the form (3.35) in cylindrical coordinates,
where the index 1 corresponds to the z direction, the index 2 to the r direc-
tion and the index 3 to the ϕ direction. Since the tensor valued function ϕij

in (3.35) corresponds to the friction stress tensor Pij (which only depends on
γ̇ = du/dr, that is, on r), we write the stress tensor in the following matrix
form:

[
T
]

=

⎡

⎣
Pzz − p Prz 0
Pzr Prr − p 0
0 0 Pϕϕ − p

⎤

⎦ . (6.133)

The material derivative Du/Dt vanishes and if by p we mean only the pressure
relative to the hydrostatic pressure distribution, we extract from (2.38b)

0 = ∇ ·T . (6.134)

In component representation (see Appendix B) and noting Pij(r) we find for
the r component

∂p

∂r
=

1
r

[
∂

∂r
(r Prr) − Pϕϕ

]
, (6.135)

for the ϕ component
∂p

∂ϕ
= 0, (6.136)

and for the z component

∂p

∂z
=

1
r

∂

∂r
(r Prz) . (6.137)

The right-hand sides of (6.135) and (6.137) are functions of r only. From
(6.136) and (6.137) we conclude p = z g(r) + h(r) and from (6.135) then
g′(r) = 0 . This means that because of the arbitrary function h(r), p is not
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necessarily independent of r, although ∂p/∂z = −K = Δp/l is a constant.
From integration of the equation (6.137) we obtain the distribution

τrz = Prz = −K r

2
+
C

r
, (6.138)

where we set C = 0, since the friction stresses in the center of the pipe cannot
become infinite. Using

τrz(R) = −τw = −KR

2
(6.139)

instead of K we introduce the shear stress at the pipe wall, and write (6.138)
in the form

τrz = −τw r

R
, (6.140)

from which we find the statement valid for all constitutive relations that the
shear stress τrz is a linear function of r. Now we could have obtained this
statement more easily from the balance of momentum in integral form, but
it has arisen here from the exemplary application of Cauchy’s equation.

We shall now specifically use the power law (3.17), and assume that
γ̇ = du/dr is everywhere less than zero. This is not exactly true since, for
symmetry reasons, γ̇ is equal to zero in the center of the tube. Using (3.13)
we extract from (6.140) the equation

τrz = m

[
−du

dr

]n−1 du
dr

= −τw r

R
. (6.141)

We find the velocity distribution to be

u = R

1∫

r/R

(τw/m)1/n (r/R)1/n d(r/R) , (6.142)

or, after integrating

u =
[τw
m

] 1
n n

n+ 1
R

[
1 −

[ r
R

]n+1
n

]
. (6.143)

The volume flux is
V̇ =

n

3n+ 1
(τw/m)1/n π R3 (6.144)

and therefore the average velocity

U = V̇ /(π R2) =
n

3n+ 1
(τw/m)1/n R . (6.145)

Finally, from (6.144) and (6.139) the pressure drop follows:

Δp = p1 − p2 = 2m
l

R

[
V̇

π R3

3n+ 1
n

]n

. (6.146)
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6.3.2 Steady Flow Between a Rotating Disk and a Fixed Wall

We consider the flow with the velocity field

uϕ = r Ω(z) , uz = ur = 0 , (6.147)

of Fig. 6.10 whose form is suggested by the no slip condition on the rotating
plate:

uϕ(h) = r ΩR . (6.148)

We shall first ask under which conditions the field satisfies Cauchy’s equa-
tions. The flow shown in Fig. 6.10 occurs in some forms of viscometers which
is why these flows are named viscometric flows. The calculation of the rate
of deformation tensor (see Appendix B) leads to the matrix representation

[
E
]

=

⎡

⎣
eϕϕ eϕz eϕr

ezϕ ezz ezr

erϕ erz err

⎤

⎦ =
[
1
2

A(1)

]
=

1
2

⎡

⎣
0 γ̇ 0
γ̇ 0 0
0 0 0

⎤

⎦ , (6.149)

with γ̇ = 2 eϕz = r dΩ/dz, so that the first Rivlin-Ericksen tensor indeed has
the same form as in a unidirectional flow.

Therefore the stress tensor has the form (3.35), where here �e1 points in the
ϕ direction, �e2 in the z direction and �e3 in the r direction. Using this stress
tensor and the symmetry condition ∂/∂ϕ = 0, the components of Cauchy’s
equations in cylindrical coordinates are

r :

ϕ :

z :

−�Ω2(z) = −1
r

∂p

∂r
+

1
r

∂Prr

∂r
+

1
r2

(Prr − Pϕϕ) , (6.150)

0 =
∂Pzϕ

∂z
, and (6.151)

0 = −∂p

∂z
+
∂Pzz

∂z
. (6.152)

From (3.35) the friction stresses only depend on γ̇. But from (6.151) we
see that Pzϕ = τzϕ is not a function of z and for symmetry reasons not

Fig. 6.10. Shearing flow between a rotating disk and a fixed wall
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a function of ϕ either. Therefore the shear stress τzϕ is only a function of r,
as is γ̇ = r dΩ/dz :

r
dΩ
dz

= g(r) ; (6.153)

integration of (6.153) gives

uϕ = r Ω(z) = z g(r) + C . (6.154)

The no slip condition on the fixed wall implies

uϕ(0) = r Ω(0) = 0 , (6.155)

therefore C = 0 . From (6.148) it follows that

uϕ(h) = r ΩR = h g(r) , (6.156)

and therefore g(r) = ΩR r/h, so that the solution is

uϕ = r ΩR z/h . (6.157)

By comparing this solution with that of simple shearing flow (6.4) we see that
at radius r with wall velocity U = r ΩR the simple shearing flow appears.
Integration of (6.152) leads us to

p = Pzz + C(r) , (6.158)

where the arbitrary function is, for symmetry reasons, not a function of ϕ.
Therefore the pressure is only a function of r and thus the whole right-hand
side of the Eq. (6.150) is only a function of r. On the left-hand side however
there is a function of z. This means that the calculated velocity field can only
exist in the limit �→ 0, that is, by ignoring the inertia terms.

If the inertia of the fluid cannot be ignored, secondary flows form and the
form of solution (6.147) is not permissible. As well as the kinematic restriction
(class c) in Sect. 4.4), a dynamic restriction also arises (class b) in Sect. 4.4),
while no restrictions of any kind were necessary as far as the constitutive
relation is concerned. If we introduce (6.158) into (6.150), then C(r) can be
expressed through the normal stress differences. Incidentally, by measuring
the force on the plate with radius R and the pressure at r = 0, the normal
stresses of a fluid can be determined by a viscometer which is built according
to the principles in Fig. 6.10.

6.3.3 Unsteady Unidirectional Flows of a Second Order Fluid

We extend the velocity field given in (6.147) to the case where the disk carries
out a rotational oscillation

ϕR = ϕ̂R eiωt , (6.159)
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and instead of (6.147) we now write

uϕ = r Ω̂(z) eiωt . (6.160)

(As in (6.101) we shall use complex notation and allot physical meaning to
the real part only.) The component of Cauchy’s equation (6.151) in the ϕ
direction, with the unsteady flow now considered additionally, contains the
inertia term � ∂uϕ/∂t on the left-hand side. Since we are ignoring inertia
terms, this term also vanishes in the limiting case � → 0 . The Eqs. (6.150)
to (6.157) are therefore still valid since no restriction has been made relative
to the constitutive relation. Since the inertia terms have been ignored, the
problem is unsteady only because of the boundary condition. With

ΩR = ϕ̇R = iω ϕ̂R eiωt (6.161)

we extract directly from (6.157) the unsteady (more exactly the quasi-steady)
velocity field as

uϕ = r iω ϕ̂R
z

h
eiωt . (6.162)

By comparing this with (6.160) we get

Ω̂(z) = iω ϕ̂R
z

h
. (6.163)

We now calculate the torque acting on the oscillating disk with radius R due
to the shear stress τzϕ:

M = 2π

R∫

0

τzϕ r
2 dr . (6.164)

Since the flow is a simple shearing flow at fixed r (cf. (6.4)), where the z
direction corresponds to the x2 direction and the ϕ direction to the x1 direc-
tion, to calculate τzϕ it is enough to determine τ12 in simple shearing flow of
a second order fluid; from (3.40) this is

τ12 = η A(1)12 + β A(1)1j A(1)2j + γ A(2)12 . (6.165)

We already have the first Rivlin-Ericksen tensor from Sect. 1.2.4 as

A(1)12 = 2 e12 =
∂u1(x2)
∂x2

. (6.166)

In unsteady unidirectional flow A(2)12 is not equal to zero and is calculated
from (1.69):

A(2)12 =
D
Dt

[
∂u1(x2)
∂x2

]
+A(1)j2

∂uj

∂x1
+A(1)1j

∂uj

∂x2
. (6.167)
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Since u2 = u3 = 0 and u1 is only a function of x2, A(2)12 reduces to

A(2)12 =
∂2u1

∂x2∂t
. (6.168)

With (6.162) and (6.165) we therefore obtain the shear stress

τzϕ = τ12 = iω ϕ̂R
r

h
(η + iω γ) eiωt , (6.169)

and finally the torque as

M = iω ϕ̂R (η + iω γ) eiωt 2π

R∫

0

r3

h
dr = iω ϕ̂R (η+ iω γ) eiωt π R

4

2 h
. (6.170)

This equation can be applied in the damping of rotational oscillations of
crankshafts. Now the damper consists of a casing attached to the crankshaft
with a fulcrumed disk on the inside (shown in Fig. 6.11). When the crankshaft
carries out rotational oscillations

ϕG = ϕ̂G eiωt (6.171)

the disk inside the casing lags the motion of the casing because of its rota-
tional inertia Θ. The viscoelastic fluid inside the case, which we idealize as

Fig. 6.11. Torsional vibration damper
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a second order fluid, is sheared by the relative motion between the case and
the disk. If ϕD describes the rotational oscillation of the disk, the relative
motion is

ϕR = ϕ̂R eiωt = (ϕ̂G − ϕ̂D) eiωt . (6.172)

If we neglect the torque on the peripheral surface for reasons of simplicity,
the torque from (6.170) acts on each side of the disk

M =
1
2
χ iω ϕ̂R (η + iωγ) eiωt , (6.173)

where

χ =
π R4

h
(6.174)

is a geometric factor. Then we have

Θ ϕ̈D = 2M (6.175)

or
−ω2Θ ϕ̂D = iω ϕ̂R (η + iωγ)χ . (6.176)

It follows from (6.176) that

ϕ̂D =
[χγ
Θ

− i
χ η

Θ ω

]
ϕ̂R . (6.177)

Without loss of generality we assume ϕ̂R to be real. Then the phase angle of
ϕ̂D is given by

tanα =
[
− χ η

Θω

] [χγ
Θ

]−1

= − η

ω γ
. (6.178)

Since γ < 0, α varies between 3π/2 and π. It follows from (6.177) that

|ϕ̂D|/|ϕ̂R| =
χ η

Θ ω

√
1 + (ω γ/η)2 , (6.179)

or using (6.178)

|ϕ̂D|/|ϕ̂R| =
χ η

Θω

√
tan2 α+ 1
tanα

=
χ η

Θω

1
| sinα| . (6.180)

Using (6.172) we further extract the relation

ϕ̂G/ϕ̂R = 1 + ϕ̂D/ϕ̂R , (6.181)

and by using (6.177) again we find the equation

|ϕ̂G/ϕ̂R|2 =
[
1 +

χγ

Θ

]2
+
[ χ η
Θ ω

]2
, (6.182)



6.3 Unidirectional Flows of Non-Newtonian Fluids 195

which we shall make use of later. We first calculate the work W done by the
torque 2M per period of oscillation T = 2π/ω, where we note that only the
real part of the quantities has any physical meaning. We obtain the integral

W =

T∫

0

�(2M)�(ϕ̇R) dt , (6.183)

whose integrand we transform using (6.175) to

�(2M)�(ϕ̇R) = −ω2Θ�(ϕ̂D eiωt)�(iω ϕ̂R eiωt) . (6.184)

Because of (6.178) we shall write the complex angle ϕ̂D as

ϕ̂D = |ϕ̂D| eiα , (6.185)

and since ϕ̂R is purely real
ϕ̂R = |ϕ̂R| , (6.186)

the following expression arises from (6.184):

�(2M)�(ϕ̇R) = Θω3 |ϕ̂D| |ϕ̂R| (cosα cosωt sinωt+ | sinα| sin2 ωt) .
(6.187)

After carrying out the integration, (6.183) furnishes the result

W = π Θω2 |ϕ̂R| |ϕ̂D| | sinα| , (6.188)

which we bring to dimensionless form using the reference work
π

2
Θω2 |ϕ̂G|2

W+ =
2 W

πΘω2 |ϕ̂G|2 =

2χ η
Θ ω[χ η

Θω

]2
+
[
1 +

χγ

Θ

]2 , (6.189)

where we have also made use of (6.180) and (6.182). W+ is a function of
the two dimensionless groups (χ η)/(Θω) and χγ/Θ, and therefore repre-
sents a surface, as is shown in Fig. 6.12 together with the projection in the
(χ η)/(Θω)-W+ plane for negative χγ/Θ values.

The operation points of all possible dampers which use fluid as the dis-
sipating medium lie on the surface W+. Of particular interest are the two
sketched curves γ = 0, which corresponds to a Newtonian fluid, and χγ/Θ =
−1, which is clearly optimal in the following sense: for a given (χ η)/(Θω)
the greatest possible damping is achieved on this curve. If (χ η)/(Θω) = 1
this curve takes on double the value of the maximum damping possible with
a Newtonian fluid.

For second order fluids the “tuning” χγ/Θ = −1, which can always be
reached for a given material constant γ by suitable choice of Θ or χ, is even
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Fig. 6.12. Torsional vibration damper with a second order fluid

frequency independent, i.e. the damper achieves the highest damping in the
entire frequency domain. Real fluids only obey this law for small enough
frequencies (where the memory time of the fluid is small compared to the pe-
riod), so that γ is more or less strongly dependent on ω, and so the damper
can only be used at optimal tuning within a restricted range of frequen-
cies.
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6.4 Unidirectional Flows of a Bingham Material

6.4.1 Channel Flow of a Bingham Material

We shall consider the steady, fully established flow of a Bingham material
through a two-dimensional channel of height h and shall assume that the
pressure gradient ∂p/∂x = −K is negative, that the upper wall (y = h) is
moved in the positive x direction with velocity U and that the wall shear
stress on the lower wall (y = 0) is larger than the yield stress. All other
cases can be referred back to this case. The x and y components of Cauchy’s
equation simplify to

∂p

∂x
=
∂τ ′xy

∂y
(6.190)

and
∂p

∂y
=
∂τ ′yy

∂y
, (6.191)

since in established channel flow the components of the stress deviator are
not functions of x. From (6.191) we conclude

p = τ ′yy + f(x) (6.192)

and, using (6.190) we see that f ′(x) = const = −K, so that

τ ′xy = −Ky + τw , (6.193)

where τw is the shear stress on the lower wall (y = 0). Since τw > ϑ, the
material flows near to the wall until the stress falls below the yield stress ϑ
at a height

y = κ1h = (τw − ϑ)/K (6.194)

and the material becomes solid. As y becomes larger the shear stress finally
becomes negative, until at

y = κ2h = (τw + ϑ)/K (6.195)

the negative shear stress −τ ′xy is equal to the yield stress, after which the
material flows again. Clearly du/dy is positive in the first flow zone as we
conclude from the constitutive relation (3.60) and (3.62). For the unidirec-
tional flow at hand the constitutive relation has the form

τ ′xy = η1
du
dy

+ ϑ sgn
(

du
dy

)
(6.196a)

τ ′yy = 0 . (6.196b)
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From (6.193) and (6.196) and using the boundary condition u(0) = 0 we
obtain the velocity distribution in the first flow zone as

u

U
= − Kh2

2η1U

(( y
h

)2

− 2κ1
y

h

)
, (6.197)

which for κ1 ≥ 1 is already the distribution in the whole channel. In the
second flow zone du/dy is negative and the velocity distribution is

u

U
= 1 +

Kh2

2η1U

(
1 −

( y
h

)2

− 2κ2

(
1 − y

h

))
, (6.198)

where the boundary condition u(h) = U has been used. As expected du/dy
vanishes at the yield surfaces. The velocity at the yield surfaces y = κ1h and
y = κ2h is equal to the solid body velocity which, from (6.197) is

US =
Kh2κ2

1

2η1
(6.199)

and from (6.198) is

US = U +
Kh2

2η1
(1 − κ2)2 . (6.200)

It follows from (6.199) and (6.200) that

κ2
1 − (1 − κ2)2 =

2Uη1

Kh2
; (6.201)

together with (6.194) and (6.195), (6.201) uniquely determines the flow at
a given pressure gradient −K, plate velocity U and material properties η1

and ϑ.
First we shall consider the case where no solid is formed, therefore (6.197)

represents the entire velocity distribution, which with the condition u(y =
h) = U gives for the shear stress τw

τw = ϑ+
Uη1

h
+
Kh

2
. (6.202)

We can easily convince ourselves that for nonvanishing K the velocity distri-
bution is that of Couette-Poiseuille flow (6.19). From (6.194) and (6.202) we
conclude that no solid is formed if 2η1U/(Kh2) > 1.

If the second flow zone in the channel is not formed but a solid does
arise this then, by previous assumptions, adheres to the upper wall, and
from (6.200) we have κ2 = 1. Equation (6.201) furnishes the value κ1 =√

2Uη1/(Kh2), which, with (6.194) determines the shear stress at the wall.
With (6.197) it also gives the velocity distribution for this case.
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Fig. 6.13. Channel flow of a Bingham material

As already explained above, in general a solid forms between the two flow
zones. With the dimensionless numbers 2Uη1/(Kh2) and 2ϑ/(Kh), abbre-
viated to A and B respectively, and using (6.194), (6.195) and (6.201), we
determine the position of the yield surfaces as:

κ1 =
A+ (1 −B)2

2(1 −B)
(6.203)

and

κ2 =
A+ (1 −B2)

2(1 −B)
. (6.204)

Since 0 < κ1 < κ2 < 1, we infer the inequalities

1 >
2ϑ
Kh

> 0 (6.205)

and (
1 − 2ϑ

Kh

)2

>
2Uη1

Kh2
. (6.206)

For pure pressure driven flows (U = 0) and 2ϑ/(Kh) ≥ 1 the solid occupies
the whole channel.

Using the quantities A and B the volume flux (per unit depth) is repre-
sented by the equation

12V̇ η1

Kh3
= 1 + 3A− 3

2
B +

1
2
B3 +

3A2

2(1 −B)2
− 3A2

2(1 −B)
, (6.207)

which for pure pressure driven flow (A = 0) reduces to

12V̇ η1

Kh3
=
(

1 − 3
2
B +

1
2
B3

)
. (6.208)
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For B = 0, (6.207) gives the volume flux of the Newtonian Couette-Poiseuille
flow:

12V̇ η1

Kh3
= 3A+ 1 , (6.209)

or written explicitly

V̇ =
Uh

2
+
Kh3

12η1
. (6.210)

Finally we note that the Eqs. (6.197) to (6.201) and (6.203) to (6.210) are
valid for any sign of U and K, as long as the absolute value of B is taken.

We apply the results to shock absorber using electro-rheological (or
magneto-rheological) fluids, which under the influence of a strong electric
(magnetic) field behave as Bingham media, even if they exhibit Newtonian
behavior without field. For the control volume of Fig. 6.14, we have (2.8) in
the form ∫∫

A−R,R,A

�u · �ndS = 0 , (6.211)

where A is the cross-sectional area of the inner cylinder, R the cross-sectional
ring shaped channel between piston and cylinder and A−R the piston area.
We assume A/R � 1 and therefore A−R ≈ A and obtain from (6.211)

−AuP + V̇ +
dVG

dp
dp
dt

= 0 . (6.212)

−AuP is the volume displaced by the piston per unit time, V̇ the volume flux
through the channel and the third term represents the change of Volume
per unit time by the displacement of the intermediate (mass and frictionless)

Fig. 6.14. Sketch of shock absorber using electro-rheological fluid
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divider , which forms a separate gas chamber acting as a gas spring. dVP /dp
is the volume compliance and the inverse the volume stiffness. We find an
expression for the volume compliance by noting that the mass in the chamber
is constant:

VG dρ+ ρ dVG . (6.213)

The changes of state in the gas spring are practically isentropic and since the
velocity is small, even homentropic, so from (4.174)

dp = a2 dρ (6.214)

which have for the volume compliance
dVG

dp
=

VG

ρ a2
. (6.215)

For small volume changes (6.125) is evaluated using the undisturbed state.
The velocity of the piston may be neglected in the computation of the

volume flow through the ring channel, since this velocity is much smaller
than the flow velocity on account of R/A � 1. For the same reason the
channel height is much smaller than the mean radius and the flow in channel
is essentially plane. Then (6.207) provides the expression for the volume flow
per unit length of the channel, so here we have

V̇ = 2πrmΔp
h3

12η1L

(
1 − 3

2
B +

1
2
B3

)
;

for B < 1 and V̇ = 0 ; for B ≥ 1 ,

where Δp = K L is the pressure difference p − p0 across the piston and
B = 2ϑL/(Δph). Since p0 is time independent we obtain from (6.212) a non-
linear differential equation for Δp:

d(Δp)
dt

=
AuP (t) − 2πrmΔp

h3

12 η1 L

(
1 − 3

2
2 ϑ L
Δp h + 1

2

(
2 ϑ h
Δ p h

)3
)

dVG/dp
;

for B < 1 and
d(Δp)

dt
=
AuP (t)
dVG/dp

; for B ≥ 1 . (6.216)

For a given piston motion xP = x0 sin(ω t); ẋP = uP (t) say, the equation is
integrated numerically giving the force acting on the piston. It is customary
to describe the damper characteristic by graphing F (uP ) since the circum-
scribed area is a measure of the dissipated energy. This graph is displayed in
Fig. 6.15 for a Bingham Material with yield stress ϑ = 5000 N/m2 and ϑ = 0
(Newtonian Fluid).

However the comparison is in so far misleading as damper using Newto-
nian Fluids are not designed according to the principles outlined in Fig. 6.14.
These shocks absorbers have pressure dependent throttle openings. The work
done by the piston is here first converted into kinetic energy which is subse-
quently dissipated. This damper characteristic is nearly independent of vis-
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Fig. 6.15. Damper characteristic

cosity and therefore independent of ambient temperature. (The dissipation
itself is of course due to viscosity).

6.4.2 Pipe Flow of a Bingham Material

Because of the kinematic restriction the steady flow of a Bingham materi-
al through a circular pipe with radius R is also a unidirectional flow. As
explained in Sect. 6.3.1, for any material behavior we obtain a shear stress
distribution in the pipe linearly dependent on the distance from the center r:

τrz = −τw r

R
, (6.217)

where here again τw = KR/2 > 0 and K = −∂p/∂z . Wherever the mate-
rial flows, τrz or τzr are the only nonzero components of the shearing stress

Fig. 6.16. Pipe flow of a Bingham material
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deviator, whose second invariant we obtain as
1
2
τ ′ijτ

′
ij = τ2

rz . (6.218)

Using (6.217) and (6.218) we conclude that the fluid in the whole pipe will
not flow as long as the wall shear stress (3.61) is smaller then the yield stress,
i.e. τw < ϑ . For τw > ϑ a part of the fluid flows, and the stress −τrz reaches
the value of the yield stress at the radius r = a:

a

R
=

ϑ

τw
. (6.219)

In the region r > a the material therefore flows and it follows from the
constitutive relation (3.60) that

τrz = η1
du
dr

− ϑ , (6.220)

where the negative sign appears because du/dr < 0 . From (6.217) we find
an equation for du/dr, which when integrated with u(r = R) = 0 furnishes
the velocity distribution

u(r) =
τwR

2η1

(
1 −

( r
R

)2
)
− ϑR

η1

(
1 −

( r
R

))
. (6.221)

For ϑ = 0 we recover the well known form for Newtonian fluids. In the region
r < a (6.221) yields the constant velocity in the center of the pipe as

umax =
τwR

2η1

(
1 − a

R

)2

=
τwR

2η1

(
1 − ϑ

τw

)2

, (6.222)

and finally we obtain the volume flux as

V̇ =
πτwR

3

4η1

(
1 − 4

3
ϑ

τw
+

1
3

(
ϑ

τw

)4
)

. (6.223)
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7.1 Stability and the Onset of Turbulence

We shall now follow on from the discussion of laminar pipe flow. There we
determined that the pressure drop is proportional to the volume flux, a re-
sult which agrees with experiment only for Reynolds’ numbers smaller than
a critical Reynolds’ number. If this critical Reynolds’ number is exceeded
the pressure drop increases sharply and finally becomes proportional to the
square of the flux through the tube. At the same time there is a striking
change in the behavior of the flow.

Below the critical Reynolds’ number straight particle paths parallel to the
pipe wall with a unidirectional or laminar flow motion are seen, so that this
flow form has the name laminar flow . The particle paths can be observed by
using a glass tube, where color is introduced into the fluid at one point, and
so a streakline appears, which, for steady flow, coincides with the pathline.
In laminar flow a fine thread appears which will only spread out from the
very small effect of the molecular diffusion.

If the Reynolds’ number is increased sufficiently, the flow becomes very
clearly unsteady: the thread waves back and forth and spreads out much
faster than would be expected from molecular diffusion. At only a small dis-
tance from where the color is introduced, the thread has mixed with the fluid.
This form of flow is called turbulent flow . A characteristic sign of turbulent
flow is the strongly increased diffusion which expresses itself in the rapid
spreading out of the color thread. We have already mentioned other charac-
teristics: three-dimensionality and unsteadiness of the always rotational flow,
and stochastic behavior of the flow quantities.

Of course the transition to turbulence does not only occur in pipe flows
but in all laminar flows, particularly laminar boundary layers. In as much
as the laminar flows discussed up to now have been exact solutions of the
Navier-Stokes equations, these solutions hold in principle for arbitrarily large
Reynolds’ numbers. For these solutions to be realized in nature however, not
only must the Navier-Stokes equations be satisfied, but the flows must also
be stable with respect to small disturbances. However this is no longer the
case above the critical Reynolds’ number, where even a vanishingly small
disturbance is enough to induce the transition to the turbulent flow form.
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In most of the laminar flows mentioned, the Reynolds’ number below
which all small disturbances die away can be theoretically calculated. In
others, in particular in Hagen-Poiseuille flows, no critical Reynolds’ number
has been found: it appears as if this flow is theoretically stable at all Reynolds’
numbers. However in nature turbulent flow forms do appear here, as has just
been shown in the example above of pipe flow. Historically the investigation
into turbulent flows began with pipe flows (Reynolds 1883). It is probable that
the instability of pipe flow develops from a disturbance in the pipe entrance
where a pipe flow with parabolic velocity profile has not yet developed. The
experimentally determined critical Reynolds’ number strongly depends on the
conditions of the approach flow at the entrance. Critical Reynolds’ numbers
up to 40000 have been measured for approach flows which are especially
free from disturbances, whereas for the disturbed approach flows typical in
technical applications, the critical Reynolds’ number drops to 2300. Even
if the approach flow is highly disturbed, pipe flow remains laminar when
the Reynolds’ number is lower than 2000. A valid measure for the critical
Reynolds’ number under the conditions found in technical applications is

Recrit = (Ud/ν)crit = 2300 . (7.1)

For Reynolds’ numbers Re < Recrit it is recommended to compute the pres-
sure drop from the laws of laminar pipe flow, while if Re > Recrit the pressure
drop follows from the corresponding laws of turbulent pipe flow.

However, what happens in pipe flow makes it clear that the Reynolds’
number at which the flow becomes turbulent is generally different from the
Reynolds’ number at which the flow becomes unstable for the first time. Both
Reynolds’ numbers are often called the critical Reynolds’ number, but the
difference between them is important, because the instability of a flow relative
to small disturbances does not necessarily and directly imply the transition
to turbulent flow. In general a new, more complicated but still laminar flow
evolves, which, as the Reynolds’ number increases, becomes unstable and
possibly develops into a new laminar flow, but could also make the transition
to turbulence. The transition from unstable to fully turbulent flow has until
now only been accessible by direct numerical simulation.

Experimental investigations are very difficult because the flow is particu-
larly sensitive to unavoidable and often unknown disturbing influences which
can still decisively change the transition behavior. Frequently the Reynolds’
numbers of stability and that of transition to turbulence lie close to one
another, especially if there is a high degree of disturbance in the approach
flow.

The laminar flow between two rotating cylinders offers an example of the
large difference between the two Reynolds’ numbers. In this case the first
instability is interesting because it is closely related to the instability of the
density stratification: a small parcel of fluid moved up from radius r to radius
r1 > r by a small disturbance brings the angular momentum L = r uϕ with
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it in the absence of friction forces. The velocity of the small quantity of fluid
on its new path r1 is L/r1 and its centripetal acceleration is L2/r31. There it
is acted on by the surrounding pressure gradient which, from (6.40) is given
by

�
u2

ϕ1

r1
= �

L2
1

r31
=

∂p

∂r

∣∣∣∣
r1

. (7.2)

If the quantity of fluid is shifted back to the initial radius r by this pres-
sure gradient then the flow is stable. We are led therefore to the necessary
condition for stability:

∂p

∂r

∣∣∣∣
r1

= �
L2

1

r31
> �

L2

r31
, (7.3)

i.e.
r1uϕ1 > r uϕ . (7.4)

The potential vortex with r uϕ = const is apparently just the “neutral” veloc-
ity distribution. However the velocity distribution is unstable if r uϕ is larger
at the smaller radius than it is at the bigger one, as for example if the outer
cylinder does not move and only the inner cylinder is rotated.

So far these considerations only hold for frictionless fluids. If we take the
friction into account we find the critical Reynolds’ number to be

ΩIRI
h

ν
= 41.3

√
RI

h
, (7.5)

where h denotes the gap width. A new laminar flow forms above this
Reynolds’ number; vortices turning alternately to the left and to the right ap-
pear regularly and their axis of symmetry is in the direction of the axis of the
cylinder (Taylor vortices). The transition to turbulence only takes place at
much higher Reynolds’ numbers, about 50 times greater than the Reynolds’
number at which stability is lost. This flow phenomenon is also of technical
interest since it can appear wherever a shaft rotates in a bore, for example
in radial bearings.

7.2 Reynolds’ Equations

In fully developed turbulent flow, i.e. after the transition has been completed,
the flow quantities are random quantities. The flow may be considered to be
the superposition of a basic or main flow with irregular stochastic fluctuations
in the velocity or in other fluid mechanical quantities. The velocity field is
therefore represented as follows:

ui(xj , t) = ui(xj , t) + u′i(xj , t) . (7.6)
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This decomposition is particularly appropriate if the fluctuation velocity u′i
is much smaller than the basic velocity ui. The basic velocity corresponds to
the mean value of the velocity. In even the most general case we can form the
mean value of the velocity ui(xj , t), as well as other mean quantities, using

ui(xj , t) = lim
n→∞

1
n

n∑

k=1

u
(k)
i (xj , t) , (7.7)

where the flow is realized n times and each time the velocity ui(xj , t) is
determined at the same place xj at the same instant t. In flows where these
mean values are independent of time, that is in statistically steady processes ,
we have, instead of the ensemble-mean value calculated from (7.7), the time-
mean value calculated from the formula

ui(xj) = lim
T→∞

1
T

t+T/2∫

t−T/2

ui(xj , t) dt , (7.8)

which would require only one experimental realization. In what follows we
shall restrict ourselves to incompressible flows which are steady in the mean.
We shall now insert (7.6) and the corresponding form for the pressure

p = p+ p′ (7.9)

in the continuity equation (2.5) as well as into the Navier-Stokes equations
in the form (4.9a) and shall subject the resulting equation to the averaging
according to (7.8). From (7.8) and (7.6) we have the following rules for the
calculation of the mean values of two arbitrary random quantities g and f :

g = g , (7.10a)

g + f = g + f , (7.10b)

g f = gf , (7.10c)

∂g/∂s =
∂g

∂s
, and (7.10d)

∫
f ds =

∫
f ds , (7.10e)

where s is any one of the independent variables xi or t, and we obtain from
the continuity equation

∂ui

∂xi
= 0 , (7.11)
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since u′i vanishes as a consequence of (7.8) and therefore so does ∂u′i/∂xi

from (7.10d). It thus follows that for the fluctuating velocities we have

∂u′i
∂xi

= 0 . (7.12)

For the same reason, all terms linear in the fluctuating quantities vanish from
the Navier-Stokes equations

∂u′i
∂t

=
∂2u′i

∂xj∂xj
=

∂p′

∂xi
= u′j

∂ui

∂xj
= 0 , (7.13)

and we obtain the equation

� uj
∂ui

∂xj
+ � u′j

∂u′i
∂xj

= � ki − ∂p

∂xi
+ η

∂2ui

∂xj∂xj
. (7.14)

Along with the following relation from the continuity equation

∂

∂xj
(u′iu

′
j) = u′j

∂

∂xj
(u′i) (7.15)

Eq. (7.14) can be rewritten in the form first cited by Reynolds:

� uj
∂ui

∂xj
= � ki − ∂p

∂xi
+ η

∂2ui

∂xj∂xj
−
∂
(
� u′iu

′
j

)

∂xj
. (7.16)

The vanishing of the mean linear terms means physically that their contribu-
tions to the integral (7.8) cancel. In other words: in the mean the fluctuating
quantities are just as often positive as negative. This is not the case for the
nonlinear terms (e.g. u′iu′j), as is obvious for the main diagonal components
of the tensor u′iu′j, that is u′1u′1, u′2u′2, u′3u′3. But even the terms u′1u′2, etc.,
which are the velocity components in two different directions are in general
nonzero. They would only be zero if we were dealing with statistically inde-
pendent quantities. However the components of the velocity are correlated .
As a measure of the correlation between two fluctuating quantities g′ and f ′

we use the expression

R =
g′f ′

√
g′2 f ′2

, (7.17)

here

Rij(xk, t) =
u′iu

′
j√

u′i
2 u′j

2
, (7.18)
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or, more generally, for the correlation between two velocity components
u′i(xk, t) and u′j(xk + rk, t+ τ)

Rij(xk, t, rk, τ) =
u′i(xk, t)u′j(xk + rk, t+ τ)

√
u′i

2(xk, t)u′j
2(xk + rk, t+ τ)

. (7.19)

(In Eqs. (7.18) and (7.19) we do not sum over the indices i and j.)
The special forms for the spatial and temporal correlation (autocorrela-

tion) arise from (7.19) for τ = 0 and rk = 0 respectively. If the distance |�r|
between �x and �x + �r, at which the velocity components in (7.19) are to be
taken, tends to infinity the velocity components become statistically indepen-
dent and the correlation disappears. A measure of the range of correlation
between two velocity components in the x1 direction, taken at a distance r
along the x1 axis and at the same time (τ = 0), is the integral length scale

L(�x, t) =

∞∫

0

R11(�x, t, r, 0) dr , (7.20)

which represents the spatial extent of turbulent fluctuation. For τ → ∞ the
correlation goes to zero as well. An integral time scale analogous to (7.20)
can also be introduced.

Of course the steady basic flow ui can be kinematically restricted, for
example unidirectional flows or two-dimensional rotationally symmetric flows.
However the superimposed fluctuating motion u′i is always three-dimensional,
and of course, unsteady.

The steady basic flow must satisfy the Reynolds’ equation (7.16) and the
continuity equation (7.11). However these equations are not enough to deter-
mine the basic flow because the terms −� u′iu′j introduced by the averaging
appear as unknowns. These terms represent averaged momentum fluxes (per
unit area) and give rise to a force in the j direction on a surface whose nor-
mal is in the i direction. They are known as Reynolds’ stresses . The tensor of
these stresses is clearly symmetric since the order of the indices results from
the arbitrary order of the factors. We summarize the whole stress tensor in
the form

Tij = τ ij − � u′iu
′
j , (7.21)

or for the assumed incompressible flow (∂uk/∂xk = 0) because of (3.1a), also
in the form

Tij = −p δij + 2η eij − � u′iu
′
j . (7.22)

We then write the Reynolds’ equations without volume body forces in the
form

� uj
∂ui

∂xj
=
∂Tji

∂xj
. (7.23)
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The divergence of the Reynolds’ stresses (final term on the right-hand side of
(7.16)) acts on the basic flow as an additional but unknown force (per unit
volume). In turbulent flow this force is in general much larger than the diver-
gence of the viscous stresses, which in the incompressible flow assumed here
corresponds to the term η ∂2ui/(∂xj∂xj). Only in the immediate neighbor-
hood of solid walls do the fluctuation velocities and with them the Reynolds’
stresses decrease to zero. This is because the fluctuation velocities, just like
the average velocities, have to obey the no slip condition so that the viscous
stresses predominate right at the wall, in a region called the viscous sublayer .

It would now appear obvious to construct differential equations for the
unknown Reynolds’ stresses in a systematic manner, which, along with the
Reynolds’ equations (7.16) and the continuity equation (7.11), would form
a complete system of differential equations. In order to find the appropriate
equations we introduce (7.6) and (7.9) into the Navier-Stokes equation (4.9a)
and subtract the Reynolds’ equation (7.16). In this way we are led to the
equation for the fluctuating velocity field

�

(
∂u′i
∂t

+ uk
∂u′i
∂xk

+ u′k
∂u′i
∂xk

+ u′k
∂ui

∂xk

)
= − ∂p′

∂xi
+

∂

∂xk
(� u′iu

′
k) + η

∂2u′i
∂xk∂xk

.

(7.24)

We can multiply this equation by u′j and find a further equation by in-
terchanging i and j. After averaging, we can add these equations to furnish
equations for the Reynolds’ stresses. We shall not perform this calculation
because it is clear that multiplying (7.24) by u′j introduces terms of the form
u′ju

′
ku

′
i into the problem as new unknowns.

On the other hand if we find new differential equations for these triple cor-
relations they will contain quadruple correlations, and so on. Therefore this
process fails to complete the system of equations. The problem of closing this
system of equations represents the fundamental problem of fully developed
turbulent flow, and until now remains unresolved.

All attempts so far to make the system of equations determinate have
been partly based on considerable simplifications and hypotheses. At the
lowest level, the closure of the system of equations is accomplished by us-
ing relationships between the Reynolds’ stresses and the mean velocity field.
These semi-empirical relationships represent turbulence models , which can
take on the form of algebraic relationships or of differential equations, and
which are classified according to the number of differential equations. As the
name “semi-empirical” implies, they all contain quantities which have to be
determined experimentally.

As a consequence of the turbulent fluctuating motion, not only is the
momentum flux increased (expressed through the Reynolds’ stresses), but so
also are the heat and diffusion fluxes. In order to discuss the turbulent heat
flux we shall start with the energy equation (4.2), where we may not set
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the material change of the density D�/Dt to zero if external heating of the
fluid takes place as is the case in heat transfer problems. While the change
in density can be ignored for liquids, this is not so for gases. If we ignore
the change in density for liquids from (4.2) and since de = cdT , we obtain
directly an equation for the temperature field:

� c
DT
Dt

= Φ+
∂

∂xi

(
λ
∂T

∂xi

)
. (7.25)

The remaining simplifications for gases arise from (4.176) if we ignore the
density changes which result from changes in the pressure, since the equa-
tions necessary for this ((4.182), (4.184) and (4.188)) are satisfied. If there is
external heating the entropy change in (4.176) may not be ignored, and gives
rise to a change in the density. For the calorically perfect gas, Eq. (4.176)
leads, by (4.177), to the expression

1
�

D�
Dt

= − 1
cp

Ds
Dt

, (7.26)

from which, using Gibbs’ relation (2.133) the expression

1
�

D�
Dt

= − 1
T

DT
Dt

(7.27)

follows. We can also extract this directly from the thermal equation of state
� = �(p, T ) if we consider that the change in state of a material particle
is isobaric if the change in density as a result of pressure change is ignored.
Using (7.27) the energy equation (4.2) for gases at low flow velocities (M → 0)
takes the form

� cp
DT
Dt

= Φ+
∂

∂xi

(
λ
∂T

∂xi

)
. (7.28)

In accordance with (4.180), the dissipation can be neglected under the as-
sumptions made, or in other words: the work of deformation (per unit time
and volume) transformed irreversibly to heat, hardly produces any raise in
temperature. We note however that the dissipation plays a decisive role as
a loss in the balance of the mechanical energy in turbulent flow, and may
on no account be ignored there. (The corresponding balance equation for the
kinetic energy of the fluctuating motion is obtained from (7.24) if we multiply
this equation by u′i and then perform the averaging process.)

We shall now insert (7.6) and the corresponding form for the temperature

T = T + T ′ (7.29)

into (7.25) (or for gases into (7.28)), where as explained the dissipation func-
tion is ignored and in addition λ is taken to be constant:

� c

(
∂(T + T ′)

∂t
+ (ui + u′i)

∂(T + T ′)
∂xi

)
= λ

∂2(T + T ′)
∂xi∂xi

. (7.30)
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Noting the rules (7.10), averaging leads us to the equation for the mean
temperature

� c ui
∂T

∂xi
= −� c u′i

∂T ′

∂xi
+ λ

∂2T

∂xi∂xi
, (7.31)

which, because of (7.12), can also be expressed in the form

� c ui
∂T

∂xi
= −� c ∂

∂xi

(
u′iT ′

)
+ λ

∂2T

∂xi∂xi
. (7.32)

By analogy to the Reynolds’ stresses, a “turbulent heat flux vector ” appears
here

qi = � c u′iT ′ , (7.33)

which is unknown, just like the Reynolds’ stresses, and which prevents the
solution of Eq. (7.32). What has been said in connection with the Reynolds’
equation is also valid here: the closure of the system of equations takes place
by a semi-empirical relation between the turbulent heat flux vector and the
average velocity and temperature fields.

7.3 Turbulent Shear Flow Near a Wall

Turbulent shear flows play an important role in technical applications because
they are met in channel and pipe flows as well as in turbulent boundary layer
flows. The emphasis here is on the profiles of the mean velocity and on the
resistance laws. We can already obtain important insights into the behavior
of turbulent shear flows if we consider the simplest case of a unidirectional
flow with a vanishing pressure gradient along a smooth flat wall.

In laminar flow with a vanishing pressure gradient and with the basic
assumptions of unidirectional flow (u1 = f(x2), u2 = u3 = 0) the Navier-
Stokes equations simplify to

0 = η
d2u1

dx2
2
, (7.34)

from which we infer the constant shear stress τ21 = P21 = η du1/dx2 and
the known linear velocity distribution of the simple shearing flow. Using the
same assumption that the mean quantities, i.e. the nonvanishing velocity
components u1 and the Reynolds’ stresses only dependent on x2, we still
obtain quite generally from the Reynolds’ equations (7.23)

0 =
∂Tji

∂xj
. (7.35)
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Using the Cartesian coordinate notation x, y, z and Cartesian velocity com-
ponents u, v and w, we extract from the first of these equations under the
assumption of vanishing x component of the pressure gradient, the equation

0 =
d
dy

(
η

du
dy

− � u′ v′
)

; (7.36)

we shall not be interested in the other two component equations just now.
Integrating (7.36)

const = τw = η
du
dy

− � u′ v′ (7.37)

furnishes the statement that the total shear stress T21, i.e. the sum of the vis-
cous stress P21 = τ21 = η du/dy and the Reynolds’ stress −� u′ v′, is constant
and therefore independent of y. We have already identified the constant of
integration as the shear stress τw at the wall, since for y = 0 the Reynolds’
stress vanishes as a consequence of the no slip condition. Because of the (un-
known) Reynolds’ stress appearing in (7.36), the distribution of the mean
velocity u = f(y) is now no longer a linear function.

In recalling technical applications, in particular those of established tur-
bulent channel and pipe flows, the question of the practical importance of the
result (7.37) arises. In these flows (as well as in most boundary layer flows)
the pressure gradient does not vanish, but in channel and pipe flow is the
only source of motion. Just as with laminar flows, the shear stress is then
not constant, but is a linear function of y (channel flow) or r (pipe flow).
For a nonvanishing pressure gradient, it follows from the first component of
equation (7.35) that

0 = − ∂p

∂x
+

d
dy

(
η

du
dy

− � u′ v′
)

, (7.38)

and from the second component of Eq. (7.35)

0 = −∂p

∂y
+

d
dy

(
−� v′2

)
, (7.39)

while the third leads us to ∂p/∂z = 0 . We conclude from (7.39) that the
sum of p and � v′2 is only a function of x, and therefore that ∂p/∂x is only
a function of x since the Reynolds’ stress −� v′2 by assumption only depends
on y. Since the second term in (7.38) does not depend on x, it also follows
that ∂p/∂x is a constant. The entire shear stress, which we now abbreviate
to

τ = η
du
dy

− � u′ v′ (7.40)

is therefore (as in the laminar case) a linear function of y:

τ =
dp
dx

y + const . (7.41)
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We determine the constant of integration by noting that in the middle of
the channel (y = h) the shear stress vanishes because for symmetry reasons
du/dy and u′ v′ are zero there. Therefore we write (7.41) in the form

τ = − ∂p

∂x
h
(
1 − y

h

)
= τw

(
1 − y

h

)
, (7.42)

where we have denoted the shear stress on the lower wall as τw.
For turbulent pipe flow a linear shear stress distribution also arises, as

can be shown by considerations analogous to the laminar case (6.138) or
(6.140). (Since the results of this section are not only valid for pipe flows, we
depart from (6.140) and denote the coordinate in the axial direction as x.)
We infer from (7.42) that close to the wall (y/h � 1) the entire shear stress
is virtually constant and so a layer exists there in which the effect of the
pressure gradients can be neglected; the simple Eq. (7.37) is here applicable.
This does not only hold for the channel and pipe flows already mentioned,
but also for turbulent boundary layer flows. In all these flows, a layer close
to the wall exists where the outer boundaries of the flow, e.g. the height
of the channel or the thickness of the boundary layer, have no effect, and
in which layer the flow is independent of these quantities. We recognize the
consequences if we bring (7.37) to the form

τw
�

= ν
du
dy

− u′ v′ , (7.43)

from which we see directly that τw/� has the dimension of the square of
a velocity. Thus we introduce the friction velocity as a reference velocity

u∗ =
√
τw
�

, (7.44)

which is also physically significant since it provides a measure for the turbu-
lent fluctuation velocity. Equation (7.43) may now be written in the form

1 =
d (u/u∗)
d(y u∗/ν)

− u′ v′

u2∗
. (7.45)

Thus the mean velocity u when referred to u∗ is only a function of the di-
mensionless coordinate y u∗/ν, in which the friction length ν/u∗ appears as
reference length. (If h were also introduced as a reference length, u/u∗ would
have to depend additionally on the dimensionless quantity hu∗/ν; in other
words, the processes taking place in the layer near the wall would depend on
the distance to the opposite wall.) From (7.45) we infer the so-called law of
the wall

u

u∗
= f

(
y
u∗
ν

)
, (7.46)
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and the corresponding equation

u′v′

u2∗
= g
(
y
u∗
ν

)
. (7.47)

The law of the wall was formulated by Prandtl (1925) and is one of the most
important results from turbulence theory. It is clear from what was said
earlier that the functions f(y u∗/ν) and g(y u∗/ν) are universal functions,
and so are the same for all turbulent flows. Equation (7.45) on its own is
not enough to find the form of the universal function f , since this function
contains the unknown Reynolds’ stresses. As already noted many times, the
Reynolds’ stresses tend to zero directly at the wall, and close to the wall we
can express the universal function f in a Taylor expansion about y = 0. For
simplicity we introduce

y∗ = y
u∗
ν
, (7.48)

and since u(0) = 0 write

u(y∗)
u∗

=
d (u/u∗)

dy∗

∣∣∣∣
0

y∗ +
d2 (u/u∗)

dy∗2

∣∣∣∣
0

1
2
y2
∗ + · · · . (7.49)

From (7.45) the first coefficient follows as

d (u/u∗)
dy∗

∣∣∣∣
0

= 1 , (7.50)

since u′v′|0 = 0. We find the other coefficients through repeated differentia-
tion of the Eq. (7.45) and evaluation at y = 0 and get

d2 (u/u∗)
dy∗2

∣∣∣∣
0

=
1
u2∗

d
(
u′v′

)

dy
dy
dy∗

=
1
u2∗

ν

u∗

[
∂u′

∂y
v′ +

∂v′

∂y
u′
]

0

= 0 , (7.51)

where the zero arises on the right-hand side because u′ and v′ always vanish
at y = 0. The third derivative follows as

d3 (u/u∗)
dy3∗

∣∣∣∣
0

=
1
u2∗

(
ν

u∗

)2
[
∂2u′

∂y2
v′ + 2

∂u′

∂y

∂v′

∂y
+
∂2v′

∂y2
u′
]

0

= 0 . (7.52)

The first and the last terms in the brackets vanish because the fluctuation
velocities at the wall are zero. Since then their derivatives in the x and z
directions are also zero, it follows from the continuity equation (7.12) that
∂v′/∂y vanishes at the wall. If we differentiate (7.52) again using the same
line of reasoning we find for the fourth derivative

d4 (u/u∗)
dy4∗

∣∣∣∣
0

=
1
u2∗

(
ν

u∗

)3
[
3
∂u′

∂y

∂2v′

∂y2

]

0

. (7.53)
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In order to evaluate this expression we would need to know the field of the
fluctuation velocities. Since the expression does not have to vanish from pure
kinematic reasons, we assume that it is in general nonzero. Thus we conclude
from the Taylor expansion (7.49) that

u

u∗
= y∗ +O(y4

∗) . (7.54)

Therefore the fluctuating motion influences the velocity profile only in the
terms of order y4

∗. Accordingly there exists a layer in which, although the
fluctuating motion itself is not zero, the distribution of the average velocity
is mainly influenced by the viscous shear stresses. Thus the name viscous
sublayer is justified. For dimensional reasons the thickness of this layer must
be of the order of magnitude of the friction length ν/u∗. Since there is no
other typical length available, we set δv = β ν/u∗ for the thickness of the
viscous sublayer, where β is a pure number to be determined by experiment.

Of course there is no sudden transition from the viscous layer to the
region where the Reynolds’ stress −� u′v′ is important. As the distance from
the wall increases, the effect of the viscosity eventually completely disappears
(as far as momentum transfer is concerned) and the velocity distribution is
fully determined by the Reynolds’ stresses.

It is this fact which allows us to state the universal function f in this
region. Firstly it follows from (7.40) that the shear stress in this region is

τw = τt = −� u′v′ , (7.55)

where we write τt to express that we are only dealing with the turbulent
shear stress. The velocity distribution cannot be calculated from (7.55) since
there is no relation between the Reynolds’ stress and the mean velocity. It
is clear that we should find this relation using some turbulence model. One
such model is the Boussinesq formulation of the Reynolds’ stresses

−� u′v′ = A
∂u

∂y
, (7.56)

where A is the turbulent transport coefficient, or νt = A/� is the so-called
eddy viscosity. Clearly the Boussinesq formulation follows the formulation
of the viscous shear stress τ = η ∂u/∂y and only shifts the problem of the
unknown Reynolds’ stresses to the problem of the unknown eddy viscosity.
The most simple assumption we can make is that A is constant; however
we cannot do so in wall bounded flows since the Reynolds’ stresses must
vanish near the wall. For so-called “free turbulent shear flow”, i.e. for turbulent
flows not bounded by walls, as typically encountered in jets and wakes, the
assumption of constant eddy viscosity can be useful.

Using the concept known as the “mixing length”, Prandtl found a relation-
ship between the eddy viscosity νt and the mean velocity field. The basic idea
is that the turbulent stresses arise through macroscopic momentum exchange
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in the same manner as the viscous stresses arise from molecular exchange of
momentum. Molecular momentum exchange occurs when a molecule at po-
sition y with a velocity u in the x direction moves to position y − l under
thermal motion where its velocity is u − du. Therefore the molecule carries
over the velocity difference du = ldu/dy, where l is the distance in the y
direction between two molecular collisions. These motions proceed in both
directions, and therefore momentum is carried over from the faster layer to
the slower and vice versa. The number of molecules (per unit volume) moving
parallel to the y axis in the ±y direction is one third of the total number,
and one third also moves parallel to the x and z axes, respectively. The
molecules move with thermal velocity v and the mass flux per unit volume
is thus 1/3� v. The molecular momentum flux which manifests itself as the
viscous shear stress τ21 = η du/dy is therefore 1/3� v du/dy. Although in this
extremely simplified derivation, where all molecules have the same thermal
velocity v, they do not affect each other except during collisions and should
only move parallel to the coordinate axes. This formula leads to a very good
value for the viscosity (η = 1/3l � v) of dilute gases.

In carrying these ideas over to turbulent exchange motion it is assumed
that turbulent fluid parcels, i.e. fluid masses which move more or less as
a whole, behave like molecules, thus moving over the distance l unaffected
by their surroundings, “mixing” with their new surroundings and so losing
their identity. The fluctuation u′ in the velocity is, from the above point of
view, proportional to l du/dy. The “mixing” of two turbulent fluid parcels
goes along with a displacement of the fluid, which gives rise to the transverse
velocity v′ whose magnitude is therefore proportional to ldu/dy. (This is in
contrast to the molecular momentum exchange where the thermal velocity
is independent of du/dy.) Thus, if we absorb the proportionality factor into
the unknown mixing length l, the turbulent shear stress τt becomes

τt = −� u′v′ = � l2
(

du
dy

)2

. (7.57)

The change of sign in (7.57) comes from the fact that a parcel of fluid coming
from above (v′ negative) generally carries a positive u′ with it. If we also take
account of the fact that the sign of τt is the same as that of du/dy, we can
write down Prandtl’s mixing length formula

τt = � l2
∣∣∣∣
du
dy

∣∣∣∣
du
dy

, (7.58)

and the eddy viscosity

νt = l2
∣∣∣∣
du
dy

∣∣∣∣ , (7.59)

which, from Prandtl’s mixing length model, therefore depends on the velocity
gradient.
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At first sight the unknown eddy viscosity in (7.59) has only been replaced
by the unknown mixing length. However the latter is more accessible to phys-
ical insight, so that “rational” assumptions for the mixing length are likely to
be more easy to make. Yet no generally valid representation for the mixing
length has been found so far. The mixing length concept is based on the unre-
alistic assumption that turbulent fluid parcels whose typical diameters are of
the order of magnitude of the mixing length l, traverse this distance l without
influence from the surrounding fluid. The mixing length formula serves only
as a very rough description of shear turbulence. Like all algebraic turbulence
models it has the disadvantage that the Reynolds’ stresses only depend on
the local mean velocity field, while in general the Reynolds’ stresses depend
on the history of the velocity field and require a formulation more in line with
the constitutive relations of non-Newtonian, viscoelastic fluids.

Although there are typical experiments which clearly contradict the mix-
ing length idea, it is certainly a model which is very useful and simple to
apply, and the predictions of this model compare favorably to models which
take the history of the velocity field into account. The model can also be
tensorially generalized; we shall not go into this but shall now turn towards
the application of the law of the wall.

Since the Reynolds’ stresses must vanish at the wall, we choose l to be
proportional to y:

l = κ y . (7.60)

This choice is also inspired by dimensional reasons, since close to the wall
where the law of the wall holds, but outside the viscous sublayer, there is
no typical length we can use and all physically relevant lengths must be
proportional to y. Since the shear stress is constant and thus equal to the
wall shear stress (τ = const = τw = � u2

∗), we find the following relation from
the mixing length formula:

u∗ = κ y
du
dy

, (7.61)

whose integration leads to the desired universal velocity distribution, the
so-called logarithmic law of the wall :

u

u∗
=

1
κ

ln y + C . (7.62)

We may reach this important result purely from dimensional considerations
without having to refer to Prandtl’s mixing length formula. Since viscosity
has no effect in the region in which we are interested, the fluid properties are
only described by the density �. In the relation between the constant shear
stress and the velocity distribution u = f(y), aside from the density, only the
change in u with y may appear, since the momentum flux connected with the
shear stress is only present if the velocity changes in the y direction. Thus u
itself may not appear in the relation we are looking for. The only quantities
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which occur are therefore the shear stress τt = τw, � and the derivatives
dnu/dyn of the velocity distribution, among which the functional relation

f

(
τt, �,

dnu

dyn

)
= 0 (7.63)

exists. This relation must be reducible to a relation between dimensionless
quantities. If we assume that the first two derivatives du/dy and d2u/dy2

characterize the velocity distribution, we can form only one dimensionless
quantity, namely

Π1 =

(
d2u/dy2

)2

(du/dy)4
τt
�
. (7.64)

Restricting ourselves to the first two derivatives, the relation we require is

f(Π1) = 0 , or Π1 = const . (7.65)

We denote the absolute constant Π1 as κ2 and find from (7.64)

τt = � κ2

(
du/dy

d2u/dy2

)2(du
dy

)2

. (7.66)

Comparing this with the mixing length formula (7.57), we deduce a formula
for the mixing length from dimensional analysis

l =
∣∣∣∣κ

du/dy
d2u/dy2

∣∣∣∣ . (7.67)

We make no further use of this here. Using τt = τw = � u2
∗ in (7.66) we obtain

a differential equation for the distribution of the mean velocity:

d2u

dy2
+

κ

u∗

(
du
dy

)2

= 0 , (7.68)

where the sign of the second term has been chosen positive since the curvature
of the velocity profile is negative for flow in the positive x direction. The
solution of (7.68) is the logarithmic law of the wall (7.62)

u

u∗
=

1
κ

ln y + C .

This velocity profile does not hold for y → 0, but only to the edge of a layer
near the wall which we divide up into the already mentioned viscous sublayer
and an intermediate or buffer layer where the Reynolds’ stresses decrease
as the wall is approached, while the viscous stresses increase. The velocity
at the edge of this layer therefore depends on the viscosity. The constant in
(7.62) serves to fit the velocity in the logarithmic part of the law of the wall
to this velocity and so depends on the viscosity too. The second constant of
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integration which appears when we solve (7.68) is fixed so that du/dy tends
to infinity when y tends to zero. Now (7.62) does not hold in this region (as
just stated), but taking the limit y → 0 in (7.62) corresponds to a very thin
viscous sublayer where du/dy must become correspondingly large. We then
set the constant C to

C = B +
1
κ

ln
u∗
ν

(7.69)

and obtain (7.62) in the dimensionally homogeneous form of the logarithmic
law of the wall:

u

u∗
=

1
κ

ln
(
y
u∗
ν

)
+B . (7.70)

This important velocity distribution is met in every turbulent flow near
a smooth wall, in channel and pipe flows, as well as in all turbulent boundary
layer flows. Equation (7.70) is valid in a domain described by the inequality

ν

u∗
� y � δ , (7.71)

where δ stands for either the boundary layer thickness, or else half the channel
height or the pipe radius. The constants κ and B are independent of the
viscosity and therefore also independent of the Reynolds’ number (u∗δ/ν).
They are absolute constants for flow bounded by a smooth wall and are found
experimentally. Different measurements show a certain amount of scatter
in these values, which is in part explained by the fact that fully turbulent
flow was not realized in the experiments, or that the shear stresses were
not constant because of very large pressure gradients (see (7.41)). In the
region

30 ≤ y
u∗
ν

≤ 1000 (7.72)

we find reasonably good agreement for κ ≈ 0.4 and B ≈ 5. (The values given
in the literature for κ vary between 0.36 and 0.41, and for B between 4.4 and
5.85. In applications it is sufficient to round κ off to 0.4 (1/κ = 2.5) and B
to 5.)

From measurements, the entire law of the wall may be divided into three
regions, where of course there is no sudden transition from one region to the
next:

viscous sublayer (linear region) 0 < y u∗/ν < 5 ,
buffer layer 5 < y u∗/ν < 30 ,
logarithmic layer y u∗/ν > 30 .

The velocity profile in the viscous sublayer and the logarithmic layer are
sketched in Fig. 7.1 on the logarithmic scale. Fig. 7.2 shows the same profiles
on the linear scale.
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Fig. 7.1. Universal velocity distribution on the logarithmic scale

Fig. 7.2. Universal velocity distribution on the linear scale

A series of analytic expressions has been given for the buffer layer, which
have the character of interpolation formulae between the linear and logarith-
mic laws, but there are also closed form expressions which describe the entire
wall region. We shall not go any further into these, because the resistance
laws which we will discuss shortly do not require the exact distribution of
the mean velocity in the buffer layer. The exact distribution can however be
important in heat transfer problems.
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7.4 Turbulent Flow in Smooth Pipes and Channels

In the last section it was shown that the universal law of the wall holds for all
turbulent flows, but is restricted to a distance which is small in comparison
to half of the channel height h or to the pipe radius. At large distances from
the wall the effect of the opposite wall becomes noticeable, and as already
mentioned, the velocity distribution then also depends on the Reynolds’ num-
ber u∗R/ν, where R stands for one of the above typical lengths, so that the
corresponding distribution for the law of the wall takes on the form

u

u∗
= F

(
u∗
R

ν
, u∗

y

ν

)
, (7.73)

where y is measured from the wall and so in a circular cross-section we have
y = R − r. If, for fixed u∗/ν, we consider the limit u∗R/ν → ∞, then with
u∗R/ν, R itself vanishes from the relation (7.73), and we return to the law
of the wall. Now if we take the limit u∗R/ν → ∞ for fixed R it also means
that y would no longer appear in the relation. In order not to lose relevant
information in these limits, we form the entirely equivalent form

u

u∗
= F

(
u∗
R

ν
,
y

R

)
. (7.74)

Now taking the limit u∗/ν → ∞ at fixed R, the effect of the Reynolds’ number
vanishes because u∗R/ν → ∞ and therefore so does the effect of the viscosity
on the distribution of the mean velocity outside the wall region

u

u∗
= F

( y
R

)
. (7.75)

In this equation the viscosity appears only indirectly through u∗, i.e. through
the shear stress on the wall and through the condition that (7.75) must be
fitted to the value of the velocity which is given by the law of the wall. In
order to find the unknown function F the same considerations hold as those
which led to (7.70), except that the shear stress τt now depends on y. Instead
of following the reasoning which led to the logarithmic law of the wall, we
shall determine the function F (y/R) so that it agrees with the law of the
wall f(u∗y/ν) in that region where both distributions must coincide with
one another, i.e. for y/R � 1 and simultaneously u∗y/ν � 1. Since the
magnitude of the velocity, in contrast to the velocity distribution, is directly
dependent on the Reynolds’ number we require that the derivatives of the
velocity distributions agree in the overlap region y∗ � 1, y/R� 1:

du
dy

=
u∗
R

dF
dη

=
u2∗
ν

df
dy∗

, (7.76)
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where y∗ = y u∗/ν and η = y/R. These variables are entirely independent of
each other, since changing R will for example leave y∗ unaffected. Multiplying
by y/u∗ leads to

η
dF
dη

= y∗
df
dy∗

= const , (7.77)

since the equation can only hold if both sides are equal to a constant. By
integrating (7.77) as before, we obtain in a completely different manner the
logarithmic law of the wall (7.70)

f =
u

u∗
=

1
κ

ln
y u∗
ν

+B ,

and equally find a logarithmic law for the region where the influence of R is
felt:

F =
u

u∗
=

1
κ

ln
y

R
+ const . (7.78)

If in (7.78) we set y = R, with u(R) = Umax it follows that

u− Umax

u∗
=

1
κ

ln
y

R
, (7.79)

where we note that (7.78) is really being applied outside the region in which
it is valid, which from the derivation is restricted to y/R � 1. The more
general form of (7.79)

u− Umax

u∗
= f

( y
R

)
(7.80)

is known as the velocity defect law . By subtracting (7.79) from the law of the
wall, we acquire the expression

Umax

u∗
=

1
κ

ln
(
u∗
R

ν

)
+B , (7.81)

which shows explicitly how the maximum velocity depends on the Reynolds’
number u∗R/ν. For given Umax and R, (7.81) is an implicit function for u∗ or
for the shear stress and therefore for the pressure gradient K (K = −∂p/∂x).
Therefore (7.81) is already a resistance law. We express it in the form (6.60)
and use the velocity averaged over the cross-section of the pipe, denoted by
U , as a reference velocity

π R2U = 2π

R∫

0

u(R − y) dy . (7.82)

Using the distribution of the mean velocity u given by (7.79) (which already
represents a good description of the whole velocity distribution over the entire
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pipe cross-section), we find

U = Umax − 3.75u∗ , (7.83)

and thus with (7.81)

U

u∗
=

1
κ

ln
u∗R
ν

+B − 3.75 , (7.84)

which relates the velocity U and the wall shear stress. With

τw = � u2
∗ =

KR

2
(7.85)

we find

ζ =
l

d
λ =

p1 − p2

U
2
�/2

=
K l

U
2
�/2

= 4
u2
∗l

U
2
R
, (7.86)

or

λ = 8
u2∗
U

2 , (7.87)

where d = 2R. Using these we write the Eq. (7.84) in the form

2

√
2
λ

=
1
κ

ln

(
1
4
U d

ν

√
λ

2

)
+B − 3.75 . (7.88)

If instead of the natural logarithm we use the logarithm to the base ten
(Brigg’s logarithm), we finally obtain

1√
λ

= 2.03 lg
(
Re

√
λ
)
− 0.8 (7.89)

with the Reynolds’ number Re = U d/ν. The constant -0.8 does not exactly
correspond to the calculated value −[ln(4

√
2)/κ − B + 3.75]/(2

√
2), but is

adjusted to fit experimental results.
We can easily see that for a plane channel of height 2h we reach the

same form as in (7.89), by writing the Reynolds’ number using the hydraulic
diameter introduced in (6.67) (here dh = 4h). However the constant in the
relation corresponding to (7.83) has a somewhat different value:

U = Umax − 2.5u∗ (7.90)

Experiments show that the formula for the circular pipe also describes the
resistance for noncircular cross-sections if the Reynolds’ number is formed
with the hydraulic diameter, as we have already remarked. In reality only
the turbulent flow in circular pipes and in annular conduits is unidirectional.
Contrary to the laminar flow of Newtonian fluids, a fully formed turbulent
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Fig. 7.3. Secondary flow in a pipe with triangular cross-section

flow through a pipe with general cross-sectional shape is no longer unidirec-
tional. It forms a secondary flow with a velocity component perpendicular to
the axial direction.

This secondary flow transports momentum into the “corners” (Fig. 7.3),
which also gives rise to large velocities there. The result is that the shear stress
along the entire wetted surface is almost constant, which is to be considered as
the assumption needed to apply the concept of hydraulic diameter. Therefore
we do not expect that the formula for the circular pipe still applies if, for
example, the angles of a triangular cross-section are too small to allow an
effective secondary flow.

7.5 Turbulent Flow in Rough Pipes

Pipes used in applications are always more or less “rough”. While in lam-
inar flow the wall roughness hardly affects the resistance, its influence in
the turbulent case is quite considerable if the mean protrusion height k is
greater than the thickness of the viscous sublayer. (Here we assume that the
roughness is fully characterized by k or k/R, as is the case in closely spaced
protrusions.) An essential parameter is the ratio of the protrusion height k
to the viscous length ν/u∗. If the protrusion height lies in the linear region
of the velocity profile, that is

u∗
k

ν
≤ 5 , (7.91)

the effect on the resistance is negligible; in this case we speak of hydraulically
smooth surfaces. If the protrusion height is considerably greater than the
thickness of the buffer region we speak of a dynamically completely rough
surface, which is characterized by the inequality

u∗
k

ν
≥ 70 . (7.92)
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Experiments show that the viscosity, that is the Reynolds’ number, then no
longer has an effect on the friction factor. As we have seen in connection with
(7.69) and (7.70), the friction influence appears in the logarithmic law only
through the constant of integration C. In the case of a completely rough wall
the viscous sublayer no longer exists. The constant C is then to be fixed so
that a dimensionally homogeneous form of the velocity distribution arises in
which the viscosity no longer appears. Therefore we set

C = B − 1
κ

ln k (7.93)

and are led to the logarithmic law of the wall for completely rough walls:

u

u∗
=

1
κ

ln
y

k
+B . (7.94)

From measurements the constant B is found to be

B = 8.5 . (7.95)

The velocity defect law (7.79) is not affected by the wall roughness; this
equation continues to be valid, as is Eq. (7.83). Thus we find the equation
corresponding to (7.84) is

U

u∗
=

1
κ

ln
R

k
+ 8.5 − 3.75 . (7.96)

Using (7.87) we obtain the resistance law of the completely rough pipe as

λ = 8
(

2.5 ln
R

k
+ 4.75

)−2

, (7.97)

or using the logarithm to the base ten as before

λ =
(

2 lg
R

k
+ 1.74

)−2

, (7.98)

where the constant found from calculations (1.68) is replaced with the value
1.74, which is in better agreement with the experiments.

Finally we note Colebrook’s formula:

1√
λ

= 1.74 − 2 lg
(
k

R
+

18.7
Re

√
λ

)
, (7.99)

which interpolates the entire spectrum from “hydraulically smooth” to “com-
pletely rough” very well. We see that for Re→ ∞ (vanishing viscosity effects)
this becomes equation (7.98), and for k/R→ 0 the resistance formula for the
smooth pipe appears. For practical purposes Colebrook’s formula is graphed
in Fig. 7.4.



228 7 Fundamentals of Turbulent Flow

Fig. 7.4. Friction factor for circular pipes

With increasing Reynolds’ number the viscous length ν/u∗ and therefore
the protrusion height become continuously smaller from where the pipe may
be considered as being completely rough (i.e. (7.89) is valid). If we set (7.92)
with the equality sign into (7.98), and then using (7.87) to replace u∗ with
U (λ/8)1/2, we obtain the limit curve λl = f(Re) (dashed line in Fig. 7.4).
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8.1 Reynolds’ Equation of Lubrication Theory

The geometric characteristics of the unidirectional flows discussed in Chap. 6
are their infinite extension in the flow direction and the fact that the flow
cross-section does not change in the flow direction. Because of these kinematic
restrictions the nonlinear terms in the equations of motion vanish, simplifying
the mathematical treatment considerably. Now unidirectional flows do not
really occur in nature, but they are suitable models for the flows often met in
applications whose extension in the flow direction is much larger than their
lateral extension. Frequently the cross-section is not constant, but varies, even
if only weakly, in the flow direction. As well as the channel and pipe flows
with slowly varying cross-section, a typical example is the flow in a journal
bearing (Fig. 6.3), where a flow channel with slightly varying cross-section is
formed due to the displacement of the journal.

We now search for a criterion to neglect the convective terms in the
Navier-Stokes equations and consider the lubrication gap shown in Fig. 8.1.
This arises from the flow channel of a simple shearing flow if the upper wall
is inclined to the x-axis at an angle α. Since the fluid adheres to the wall
it is pulled into the narrowing gap so that a pressure builds up in the gap;
this pressure is quite substantial for h/L� 1 and can, for example, support
a load which acts on the upper wall.

Further basic considerations regarding neglecting the convective terms are
based on plane two-dimensional and steady flow. On the lower wall the normal

Fig. 8.1. Lubrication gap
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velocity component (here the y component) vanishes as a consequence of the
kinematic boundary condition. Exactly the same holds at the upper wall;
because of the no slip condition the component of velocity in the y direction
is v = −αU and is at most O(αU) anywhere in the fluid film. Then, from
the continuity equation

∂u

∂x
+
∂v

∂y
= 0

we find the following estimate for plane two-dimensional incompressible flow:

∂u

∂x
∼ α

U

h
, (8.1)

so that the first component of the Navier-Stokes equation (4.9a), ignoring the
volume body force, leads to the order of magnitude equation

�

(
α
U2

h
+ α

U2

h

)
∼ − ∂p

∂x
+ η

(
α2 U

h
2 +

U

h
2

)
. (8.2)

Here h is a mean distance between the upper and lower walls, which in
bearings is typically of the order

h ∼ αL . (8.3)

For α � 1 we ignore the first term in brackets on the right-hand side and
for the ratio of the convective terms to the remaining friction term we obtain
the expression

�αU2/h

η U/h
2 = αRe , (8.4)

where

Re =
�U h

η
(8.5)

is the Reynolds’ number formed with mean wall distance and wall velocity.
Consequently we can ignore the convective terms, and in steady flow therefore
all the inertia terms, if

αRe � 1 (8.6)

holds. We emphasize that a small Reynolds’ number is sufficient but not
necessary for (8.6) to be true. In reality, such high Reynolds’ numbers can
be reached in bearings that the flow becomes turbulent. However in this
chapter we shall restrict ourselves to laminar flow. The criterion (8.6) is also
valid for unsteady flows if the typical time τ is of the order L/U or h/(αU),
since then the local acceleration is of the same order of magnitude as the
convective.
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Under the condition (8.6), the terms in (8.2) which do not contain α must
all balance, and the x component of the Navier-Stokes equations reduces to

∂p

∂x
= η

∂2u

∂y2
. (8.7)

Using (8.1) and since v ∼ αU , the component of the Navier-Stokes equations
in the y direction leads to the order of magnitude equation

�

(
α2U

2

h
+ α2U

2

h

)
∼ −∂p

∂y
+ η

(
α3 U

h
2 + α

U

h
2

)
, (8.8)

from which we infer the equation

0 =
∂p

∂y
. (8.9)

However (8.7) and (8.9) correspond exactly to the differential equations of the
Couette-Poiseuille flow (6.13) and (6.14). Therefore we can immediately state
the solution (where, because α � 1, the x component of the wall velocity is
equal to U):

u

U
=

y

h(x)
− ∂p

∂x

h2(x)
2η U

(
1 − y

h(x)

)
y

h(x)
. (8.10)

Since the gap height h depends on the coordinate x, the flow is only “locally”
a Couette-Poiseuille flow.

We now calculate the volume flux in the x direction per unit depth (that
is, per unit length in the z direction)

V̇x =

h(x)∫

0

�u · �ex dy =

h(x)∫

0

u dy , (8.11)

which must be independent of x for the plane two-dimensional flow considered
here. From (8.11) it follows as in the case of channel flow that

V̇x =
1
2
U h(x) − ∂p

∂x

h3(x)
12η

, (8.12)

and differentiating with respect to x leads to a differential equation for the
pressure distribution in the fluid film:

∂

∂x

(
h3

η

∂p

∂x

)
= 6U

∂h

∂x
. (8.13)

This equation is the two-dimensional form of a general equation which we
shall now develop, and which is called the Reynolds’ equation, but is obviously
not to be confused with Eq. (7.16) of the same name.
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If there also exists a flow in the z-direction, as well as (8.7) we have the
equation

∂p

∂z
= η

∂2w

∂y2
, (8.14)

which has the same form as (8.7). In order to calculate the volume flux per
unit depth V̇z in the z direction, it suffices to replace ∂p/∂x by ∂p/∂z in
(8.12), and to write the wall velocity in the z direction (W ) thus:

V̇z =
1
2
W h(x, z) − ∂p

∂z

h3(x, z)
12η

, (8.15)

where we have allowed for the fact that the gap height may also depend
on z.

In the general case we also allow h to depend on z as well as x in (8.12).
We combine both the volume fluxes V̇x and V̇z vectorially as

�̇V = V̇x�ex + V̇z�ez . (8.16)

Now this plane two-dimensional field must satisfy the continuity equation

∂V̇x

∂x
+
∂V̇z

∂z
= 0 , (8.17)

a result which is easily seen if we apply the continuity equation in the integral
form (2.8) to a cylindrical control volume of base area dxdz. Using (8.12)
and (8.15) the Reynolds’ equation arises directly from Eq. (8.17)

∂

∂x

(
h3

η

∂p

∂x

)
+

∂

∂z

(
h3

η

∂p

∂z

)
= 6

(
∂(hU)
∂x

+
∂(hW )
∂z

)
. (8.18)

If the plates are rigid bodies the derivatives ∂U/∂x and ∂W/∂z on the right-
hand side vanish. Further the plate velocity W in the z direction is often
zero.

8.2 Statically Loaded Bearing

8.2.1 Infinitely Long Journal Bearing

To discuss the journal bearing extending to infinity in the z direction in
Fig. 8.2, we use (8.12). The radius of the bearing shell is

RS = R+ h = R

(
1 +

h

R

)
, (8.19)
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Fig. 8.2. Geometry of the journal bearing

if h is the average height of the lubrication gap (radial clearance) and R is
the radius of the journal. Typical values of the relative bearing clearance

ψ =
RS −R

R
=

h

R
(8.20)

lie in the region of 10−3. If the center of the journal is displaced by distance
e on the line ϕ = 0, the distance to the surface of the journal measured from
the center of the bearing shell is

r = R + e cosϕ = R
(
1 +

e

R
cosϕ

)
(8.21)

for e/R � 1, and because ψ � 1, we have for the distance between the
surface of the journal and the surface of the bearing shell

h(ϕ) = RS − r = h(1 − ε cosϕ) , (8.22)

where
ε =

e

h
(8.23)

is the relative eccentricity. Since ψ is very small the fact that the lubrication
gap or the fluid film is curved is not important; let us consider the fluid film
to be unwrapped (Fig. 8.3) and set dx = Rdϕ.

With the notation we have introduced, we write (8.12) in the form

V̇x

h3(ϕ)
=

ΩR

2h2(ϕ)
− 1

12η R
∂p

∂ϕ
. (8.24)
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Fig. 8.3. Unwrapped fluid film of the journal bearing

We integrate this equation from 0 to 2π and because of course p(0) = p(2π),
we find the (constant) volume flux V̇x to be

V̇x =
ΩRh

2

2π∫

0

(
h

h(ϕ)

)2

dϕ

⎛

⎝
2π∫

0

(
h

h(ϕ)

)3

dϕ

⎞

⎠
−1

. (8.25)

The integrals appearing here can be evaluated in an elementary manner using
the substitution

h(ϕ)
h

= 1 − ε cosϕ =
1 − ε2

1 + ε cosχ
, (8.26)

but for the time being we shall abbreviate them as I2 and I3:

V̇x =
1
2
ΩR2ψ

I2
I3

. (8.27)

Thus the pressure gradient follows from (8.12) as

∂p

∂x
=

1
R

∂p

∂ϕ
= 6

ηΩ R

h2(ϕ)

(
1 − h

h(ϕ)
I2
I3

)
. (8.28)

Of particular technical interest is the force exerted on the journal by the
fluid, or the “load-bearing capacity” of the bearing, which corresponds to the
negative of this force per unit length:

�F =

2π∫

0

�tR dϕ , (8.29)

where �t is the stress vector with the components tX and tY in the X-Y
coordinate system of Fig. 8.2. In order to calculate this stress vector we
first consider the component of the stress tensor in the x-y system of the
lubrication gap. Here the flow is locally a unidirectional flow and therefore the
stress tensor has the components τxx = τyy = −p and τxy = τyx = η ∂u/∂y,
and because of (8.28), we write the order of magnitude equation for their
ratio:

τxx

τxy
∼ η U R/h

2

η U/h
=
R

h
=

1
ψ
. (8.30)
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Therefore it is sufficient to consider only the normal stress −p, and so the
stress vector at the journal has the form �t = −p�n, where �n has the compo-
nents nX = cosϕ and nY = sinϕ. Thus we have

FX = −
2π∫

0

p cosϕR dϕ (8.31)

and

FY = −
2π∫

0

p sinϕR dϕ . (8.32)

Since cosϕ is an even function, so too are h(ϕ) and all powers of h(ϕ). From
(8.28), ∂p/∂ϕ is then also an even function, and the pressure itself must be
an odd function of ϕ. The X component of the force then vanishes. The Y
component balances the load acting on the journal and the journal shifts
perpendicular to the direction in which the force acts. Partial integration of
Eq. (8.32) leads to

FY = Rp cosϕ|2π
0 −R

2π∫

0

∂p

∂ϕ
cosϕdϕ . (8.33)

The first term on the right-hand side vanishes, and we obtain

FY = −6
η Ω R

ψ2

2π∫

0

((
h

h(ϕ)

)2

− I2
I3

(
h

h(ϕ)

)3
)

cosϕdϕ . (8.34)

We denote the first part of the integral with I4 and the second with I5 and
bring (8.34) to the form

So = FY
ψ2

η Ω R
= 6

I2I5 − I3I4
I3

. (8.35)

On the left is now a dimensionless force which is called the Sommerfeld
number . Often 2R is used in the definition instead of R and so So =
FY ψ

2/(2ηΩR); using this definition, the Sommerfeld number S frequently
found in American literature is given by the relation S = 1/(2πSo).

Finally we shall consider the friction torque exerted on the journal through
the shear stress. Let us take the shear stress from (8.10) as

τxy = η
∂u

∂y

∣∣∣∣
h

= η U

(
1
h

+
∂p

∂x

h

2 η U

)
, (8.36)
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and then with (8.28)

τxy = η
Ω

ψ

(
4
h

h
− 3

I2
I3

h
2

h2

)
, (8.37)

and using this the friction torque becomes

T = R2

2π∫

0

τxydϕ =
η Ω R2

ψ

(
4I1 − 3

I2
2

I3

)
, (8.38)

that is

T
ψ

η Ω R2
=

4I1I3 − 3I2
2

I3
. (8.39)

Here we state the integrals used:

I1 =

2π∫

0

(1 − ε cosϕ)−1dϕ =
2π

(1 − ε2)1/2
; (8.40)

I2 =

2π∫

0

(1 − ε cosϕ)−2dϕ =
2π

(1 − ε2)3/2
; (8.41)

I3 =

2π∫

0

(1 − ε cosϕ)−3dϕ =
π(2 + ε2)
(1 − ε2)5/2

; (8.42)

I4 =

2π∫

0

cosϕ (1 − ε cosϕ)−2dϕ =
I2 − I1

ε
; and (8.43)

I5 =

2π∫

0

cosϕ (1 − ε cosϕ)−3dϕ =
I3 − I2

ε
. (8.44)

Equations (8.27), (8.35) and (8.39) can now also be expressed explicitly as
functions of the relative eccentricity ε:

V̇x(ΩR2ψ)−1 =
1 − ε2

2 + ε2
, (8.45)

So = FY ψ
2(η Ω R)−1 =

12π ε√
1 − ε2(2 + ε2)

, and (8.46)

T ψ(η Ω R2)−1 =
4π(1 + 2ε2)√
1 − ε2(2 + ε2)

. (8.47)

We conclude from (8.46) that the eccentricity becomes very small (ε → 0)
either if the bearing is lightly loaded or else if the number of revolutions
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(∼ Ω) is very large, and we then speak of “fast running bearings”. In the
limit ε → 0 we have for the friction torque

T = 2π η Ω
R2

ψ
; (8.48)

a result already obtained and known as Petroff’s formula. We further infer
from these equations that if the viscosity η becomes smaller, both the load-
bearing capacity and the friction torque decrease.

The pressure distribution can be determined from (8.28) with the substi-
tution (8.26), and we finally obtain

p = C − 6
η Ω

ψ2
ε

sinϕ(2 − ε cosϕ)
(2 + ε2)(1 − ε cosϕ)2

. (8.49)

Since up until now we have only applied boundary conditions to the velocity,
the pressure can only be determined up to a constant (as is always the case
in incompressible flow). This constant can be ascertained physically if the
pressure pA is given at some position ϕ = ϕA (usually ϕA = π) using an
axial oil groove, in which the pressure is maintained, for example, by an oil
pump pressure, or into which oil is introduced at ambient pressure.

If this pressure is too low, the pressure in the bearing becomes theoreti-
cally negative (Fig. 8.4). However fluids in thermodynamic equilibrium can-
not maintain negative pressure. The fluid begins to vaporize if the pressure
drops below the vapor pressure pv(T ), and we say that the fluid “cavitates”,
i.e. bubbles filled with vapor (or air) form. (Of course this does not only
occur in bearings, but whenever the pressure in a liquid drops below the va-
por pressure.) The ensuing two phase flow is so difficult that a solution for

Fig. 8.4. Pressure distribution in the fluid film
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this cavitation region is still unknown. It is seen experimentally that when
the cavitation limit is reached, the fluid film ruptures and “fluid filaments”
form, while the hollow space is filled with vapor, or with air which was either
dissolved in the lubricant or has penetrated if the ends of the bearing are
exposed to the atmosphere. In any case it is to be stressed that the fluid no
longer fills up the diverging region of the gap and therefore the continuity
equation in the form (8.17) is not satisfied in this region. It follows that all
our conclusions which were based on the continuity equation are no longer
valid, in particular the asymmetry of the pressure distribution and the van-
ishing of the X component of the force. As experiments show, the pressure
in this region is essentially constant, and for bearings which are “ventilated”
it is equal to the atmospheric pressure. Because of this experimental fact it is
recommended to set the pressure equal to the ambient pressure, that is, to set
the pressure difference to the surroundings to zero. (It is only this pressure
difference that determines the load bearing capacity.) However the extent of
the cavitation region is still unknown and has to be calculated simultaneously
with the pressure distribution.

We are led to a somewhat simpler problem if we lay down the so-called
Reynolds’ boundary condition. To do this we assume that the cavitation re-
gion always ends at the widest part of the lubricating film (ϕ = π), so that
the pressure build up begins there and the appropriate boundary condition
reads

p(π) = 0 . (8.50)

In general we shall only satisfy this boundary condition if pressureless oil (i.e.
at ambient pressure) is supplied to this position by an oil groove. The end of
the pressure distribution, and therefore the start of the cavitation region, is
determined by simultaneously satisfying the two boundary conditions

p(ϕE) = 0 ,
dp
dϕ

∣∣∣∣
ϕE

= 0 . (8.51)

Measured pressure distributions agree well with calculations based on these
boundary conditions, which also show that the position of the start of the
pressure is not critical.

8.2.2 Infinitely Short Journal Bearing

The other limiting case of considerable interest is the infinitely short journal
bearing, whose width B is much smaller that the diameter of the journal. In
this bearing the volume flux as a consequence of the pressure gradient in the
x direction can be neglected but not the Couette flow as a consequence of
the wall velocity. This means that the term ∂p/∂x in (8.18) drops out and
integrating over z leads us to the equation

p = 6
η Ω R

h3

dh
dx

z2

2
+ C1z + C2 . (8.52)
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The constants of integration are determined from the boundary condition

p

(
z = +

B

2

)
= p

(
z = −B

2

)
= 0 , (8.53)

so that the pressure distribution becomes

p = −3
η Ω

R2ψ2

(
B2

4
− z2

)
ε sinϕ

(1 − ε cosϕ)3
. (8.54)

Again this is antisymmetric, and is negative for 0 < ϕ < π. In practice the
pressure in this region is often set to zero. This step of eliminating the nega-
tive pressure, called the half Sommerfeld boundary condition is occasionally
applied to infinitely long journal bearings, but there it leads to results which
do not agree with experimental results as well as the theoretical results based
on the Reynolds’ boundary conditions.

If we also integrate over the width of the bearing, we use the substitution
(8.26) to determine the force components explicitly from (8.31) and (8.32):

FX = −η Ω B3

ψ2R

ε2

(1 − ε2)2
, (8.55)

FY =
η Ω B3

4ψ2R

π ε

(1 − ε2)3/2
. (8.56)

8.2.3 Journal Bearing of Finite Length

It is worth noting that an analytic solution can be found for a finite journal
bearing, based on the Sommerfeld boundary condition, but it leads to an
antisymmetric pressure distribution with negative pressures, which are not
realized in the bearing. The calculation of the bearing under the realistic
Reynolds’ boundary conditions demands that we use numerical methods,
since the outflow boundary, that is the curve where p = dp/dϕ = 0 is met, is
unknown.

If no oil groove is available at the position ϕ = π to fix the pressure there,
the start of the pressure distribution follows first along an unknown curve,
which is determined by the boundary conditions on the pressure (p = 0)
and on the pressure gradient (∂p/∂n = 0). However experimental results
show that these boundary conditions do not predict the start or end of the
pressure very precisely (although for some applications the prediction is pre-
cise enough). The actual boundary conditions demand that we deal with
the “pressureless” region, where the flow is very complicated and where the
surface tension also plays a considerable role.
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8.3 Dynamically Loaded Bearings

A dynamic bearing load occurs if the center of the journal carries out motion.
The resulting forces can, in certain circumstances, increase the motion of
the journal. We then talk about hydrodynamic instability, which typically
occurs with a frequency corresponding to half the rotational frequency of the
shaft. The assumptions discussed earlier (τ ∼ Ω−1 ∼ R/U) for neglecting the
acceleration ∂u/∂t are then valid. The effect of the journal motion needs only
be considered in the continuity equation (8.17). The motion of the journal
gives rise to a volume flux (per unit area) in the y direction, given by �u · �n,
where �u is the flow velocity at the journal, i.e. at the upper wall of the
lubrication gap. The gap height h is now a function of time, given in the
most general case by the equation

y = h(x, z, t) , (8.57)

or else implicitly
F (x, y, z, t) = y − h(x, z, t) = 0 . (8.58)

The kinematic boundary condition (4.170) DF/Dt = 0 directly furnishes

�u · �n = −∂F/∂t

|∇F | , (8.59)

or since

|∇F | =

√

1 +
(
∂h

∂x

)2

+
(
∂h

∂z

)2

≈ 1 ,

also
�u · �n =

∂h

∂t
. (8.60)

This term is to be added to the left-hand side of Eq. (8.17), so that we now
have the Reynolds’ equation in the form

∂

∂x

(
h3

η

∂p

∂x

)
+

∂

∂z

(
h3

η

∂p

∂z

)
= 6

(
∂(hU)
∂x

+
∂(hW )
∂z

+ 2
∂h

∂t

)
. (8.61)

8.3.1 Infinitely Long Journal Bearing

We use (8.61) for the infinitely long bearing, but shall now only calculate the
contribution of the pressure field stemming from the journal motion along
the X axis. The film thickness (8.22) now assumes the form

h(ϕ, t) = h[1 − ε(t) cosϕ] (8.62)
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(see Fig. 8.2), from which we see that the change in the film thickness is

∂h

∂t
= −hε̇ cosϕ , (8.63)

with ε̇ = dε/dt. As before, we set dx = R dϕ and by integrating (8.61) obtain

h3

η R

∂p

∂ϕ
= −12

ϕ∫

0

hε̇ cosϕR dϕ = −12Rhε̇ sinϕ , (8.64)

since, for symmetry reasons

∂p

∂ϕ

∣∣∣∣
ϕ=0

= 0 .

Integrating again first leads us to

p = −12η hε̇ R2

∫
sinϕ
h3

dϕ+ const , (8.65)

and with dh = h ε sinϕdϕ then immediately to

p = 12
η ε̇ R2

h
2

(
1

2ε(1 − ε cosϕ)2
+ C

)
. (8.66)

We note that p is an even function of ϕ here, so that (8.32) implies that the
Y component of the force vanishes. Equation (8.31) combined with (8.43)
furnishes the X component of the force (per unit depth) exerted by the fluid
on the journal as

FX = −
2π∫

0

p cosϕR dϕ = −12π η R3 ε̇

h
2
(1 − ε2)3/2

. (8.67)

8.3.2 Dynamically Loaded Slider Bearing

In applying (8.61) to the plane “slider bearing” shown in Fig. 8.5, we obtain
from integrating twice over x

p(x, t) = 6η U

⎡

⎣
x∫

0

1
h2

dx+
2
U

x∫

0

1
h3

⎛

⎝
x∫

0

∂h

∂t
dx

⎞

⎠ dx+
C

6U

x∫

0

1
h3

dx

⎤

⎦ .

(8.68)
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Fig. 8.5. Geometry of the slider bearing

One of the constants of integration appearing has already been determined
by the boundary condition

p(x = 0) = p(h1) = 0 , (8.69)

while we fix the constant C by the second boundary condition

p(x = L) = p(h2) = 0 . (8.70)

If we wish to make further progress we need to know the film thickness. If
the walls forming the gap are straight and rigid, that is

h(x, t) = h1(t) − αx = h1(t) − h1(t) − h2(t)
L

x , (8.71)

the integration over h can be carried out. After determining the constants of
integration, and using the abbreviation

ḣ =
∂h

∂t

Eq. (8.68) assumes the form

p(x, t) = 3
η U

αh0

(
1 − 2ḣ

αU

)((
h0

h1
− 1
)2

−
(

h0

h(x, t)
− 1
)2
)

. (8.72)

Note that the pressure remains zero for positive squeeze motion ḣ = 1/2αU .
At the film thickness

h0 = 2
h1h2

h1 + h2
(8.73)

the extremum of the pressure distribution is met. The velocity distribution
is linear over the gap height at h = h0. For ḣ = 0 we obtain the pressure
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distribution of the plain “slider” (Fig. 8.6), while for U = 0 the formula for
pure squeeze flow arises (Fig. 8.7), which, for the special case α = 0, that is
h = h(t) reduces to

p(x, t) = −6
η ḣ L2

h3

(
1 − x

L

) x
L
. (8.74)

Integrating the pressure distribution (8.72) leads to the load-bearing capacity
of the slider bearing (per unit depth):

Fy = 6
η U

α2

(
1 − 2ḣ

α U

)(
ln
h1

h2
+ 2

1 − h1/h2

1 + h1/h2

)
. (8.75)

From (8.75), for U = 0 and in the limit α → 0 we obtain the formula

Fy = −η ḣ L3

h3
, (8.76)

which also follows from direct integration of (8.74). In the limit h(t) → 0,
(8.76) renders an infinitely large force. For a given force, (8.76) represents
a differential equation for the motion h(t) of the slider, whose solution is

t =
η L3

2Fy

1
h2

+ const . (8.77)

Fig. 8.6. Pressure distribution in the lubrication gap fluid film (ḣ = 0), for various
angles of inclination α
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Fig. 8.7. Pressure distribution in the squeeze gap fluid film (U = 0) for various
angles of inclination α

We dispose of the constant of integration using the initial condition

h(t = 0) = hA (8.78)

and obtain

t =
η L3

2Fy

(
1
h2

− 1
h2

A

)
; (8.79)

this means that under a finite force, the slider cannot reach the wall within
a finite time.

If the slider is moved in the positive y direction (∂h/∂t > 0), then a pres-
sure below atmospheric pressure occurs in the gap and the fluid begins to
vaporize. This limits the force necessary to displace the slider from the wall.
But the vaporization is a dynamic process which requires time. First, bubbles
form from “cavitation nuclei” (often in the form of small solid particles) and
these grow in the attempt to produce thermodynamic equilibrium. However
the growth of the bubbles is affected by the inertia of the surrounding fluid
and the conduction of heat to the bubble necessary for vaporization. There-
fore under very short-term loads quite substantial forces can be required to
separate the slider from the wall.

If the slider is then brought closer to the wall again and the pressure
increases, the bubbles collapse. The pressure field surrounding the bubbles
can be easily determined using the assumption of incompressible flow: the
pressure increases from the value p∞ far away from the bubble to a maximum
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value close to the bubble boundary, and then drops off to the pressure in the
bubble. A very high peak pressure can be reached in this manner.

All the described processes of bubble formation and collapse are sum-
marized within the concept of cavitation. As already mentioned, this phe-
nomenon does not only occur in the fluid film, but in fact anywhere that the
pressure drops below vapor pressure, for example in the flow past a body
where the pressure drops below atmospheric pressure close to the thickest
part of the body (see Fig. 10.14), and can therefore reach values below vapor
pressure. Bubbles can then form in the low pressure region, and be carried
into the higher pressure region where they collapse, so that the surface of
the body is acted on by pulsating pressure loads, eventually leading to the
destruction of the surface. The collapse of the bubble goes hand in hand with
a cracking noise, giving the first indication of cavitation in, for example, hy-
draulic machines. Cavitation in the fluid film of the finger joints is probably
the origin of “knuckle cracking”: by tugging a finger, low pressure is produced
in the fluid in the joint and a bubble forms. The collapse of this bubble causes
a pressure wave which is perceived as the cracking noise. The squeeze flow
mentioned also forms in valve seats, and this can lead to the phenomenon of
cavitation if the valve is opened too quickly.

We also wish to point out the mathematical relationship between the pure
squeeze flow between parallel walls and the steady pressure driven unidirec-
tional flow. Since for α = 0 the gap height is not a function of position, the
Reynolds’ equation appears in the form of Poisson’s equation for the pressure:

∇ · ∇p = Δp =
12η
h3

∂h

∂t
, (8.80)

where the right-hand side is to be taken as a constant, since time only appears
parametrically. Equation (8.80) is of the same form as (6.72)

Δu = −K

η
,

and we can take its solution directly from Sect. 6.1, replacing u by p, and
−K/η by 12η ḣ/h3. (With regard to the results we note that the coordinates
y, x perpendicular to the flow direction in Sect. 6.1 are to be replaced by the
coordinates x, z here, and so the channel height h corresponds to the length
of the slider L here.) In this analogy, the volume flux V̇ clearly corresponds to
the force and the average velocity U to the pressure averaged over the cross-
section of the slider. In this manner we carry over the velocity distribution
originating from the pressure gradient in (6.19) to the pressure distribution
(8.74), and the volume flux in (6.21) to the load-bearing capacity (8.76).

In the fluid film of a cylindrical slider with circular cross-section A = π R2

we find from the analogy with (6.53) the pressure distribution

p(r, t) = −3η ḣ
h3

(R2 − r2) , (8.81)
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and with (6.55) and (6.58) the load-bearing capacity

Fy = −3π η ḣ
2h3

R4 . (8.82)

Similarly, from the pressure driven part of the velocity distribution (6.65), we
obtain the pressure distribution for a slider with circular ring cross-section
A = π(R2

O −R2
I)

p(r, t) = −3η ḣ
h3

(
R2

O − r2 − (R2
O −R2

I)
ln r/RO

lnRI/RO

)
, (8.83)

and finally from (6.66) the load-bearing capacity

Fy = −3π η ḣ
2h3

(
R4

O −R4
I +

(R2
O −R2

I)
2

lnRI/RO

)
. (8.84)

We refrain from carrying over the results for channel flow through rectangular,
triangular and elliptical cross-sections to the pressure distribution and load-
bearing capacity of sliders with corresponding cross-sections, but do note that
solutions known from the theory of elasticity can be used here too.

8.3.3 Squeeze Flow of a Bingham Material

As we have already shown, the assumptions of lubrication theory imply that
squeeze flows can be locally considered as unidirectional flows. Therefore the
equations of motion are valid in the form (6.190) and (6.191), which reduce to
(8.7) and (8.9) wherever the material flows, since the material then behaves
like a generalized Newtonian fluid. However the wall shear stress τw now
depends parametrically on x, and, because of (6.192) and (6.193), necessarily
the pressure gradient −K too, as well as the dimensionless positions κ1 and
κ2 of the yield surfaces in the velocity distributions (6.197) and (6.198). As
was explained in connection with the Eqs. (8.17) and (8.61), the continuity
equation in the integral form for plane two-dimensional unsteady squeeze flow
reads

∂V̇

∂x
+
∂h

∂t
= 0 . (8.85)

The volume flux vanishes at the position x = L/2 of the gap for symmetry
reasons, so that integrating (8.85) leads to the relation

V̇ = −ḣ
(
x− L

2

)
. (8.86)
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Since the local volume flux V̇ (x) is equal to the volume flux (6.208) of pure
pressure driven flow, if −K is replaced by the local pressure gradient, a non-
linear equation for the pressure gradient arises directly from (8.86):

h3

12η1

∂p

∂x

⎧
⎨

⎩1 + 3
ϑ

h

(
∂p

∂x

)−1

− 4

(
ϑ

h

(
∂p

∂x

)−1
)3
⎫
⎬

⎭ = ḣ

(
x− L

2

)
, (8.87)

or
(
h

ϑ

∂p

∂x

)3

+

(
3 − 12η1ḣL

ϑh2

(
x

L
− 1

2

))(
h

ϑ

∂p

∂x

)2

− 4 = 0 , (8.88)

where, because of the symmetry already mentioned, we have restricted our-
selves to the region L/2 ≤ x ≤ L.

To calculate the pressure distribution from this differential equation we
would first be required to solve the cubic equation for the pressure gradient
and then decide which of the three roots makes physical sense. The solution
may not be found analytically for arbitrary values of the squeeze velocity and
the channel dimensions, and in these cases we are directed towards a numer-
ical solution for a given x. We gain an overview by looking for approximate
solutions for large and small values of

A := −12η1ḣL

ϑh2
with A > 0 . (8.89)

It is directly obvious that (h/ϑ)∂p/∂x = −2 is a root of the Eq. (8.88) for
A = 0. The material does not yet flow for this value, that is, the load given
by this value does not yet lower the plate. For small values of A we obtain
an asymptotic expansion for the pressure gradient, by setting

h

ϑ

∂p

∂x
= −2 + ε (8.90)

and insert this into (8.88). Comparing terms of the same order of magnitude
leads us to the equation

ε = ± 2√
3
A1/2

(
x

L
− 1

2

)1/2

, (8.91)

and then with this to

h

ϑ

∂p

∂x
= −2

(
1 +

(
A

3

)1/2(
x

L
− 1

2

)1/2
)

for A→ 0 , (8.92)

where we choose the sign in (8.91) so that the load, or the magnitude of the
pressure gradient, increases as A becomes larger. For very large A we directly
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infer from (8.88) the pressure gradient

h

ϑ

∂p

∂x
= −A

(
x

L
− 1

2

)
, (8.93)

which corresponds to the Newtonian limiting case from (8.74). As before we
look for an asymptotic expansion and set

h

ϑ

∂p

∂x
= −A

(
x

L
− 1

2

)
+ ε . (8.94)

From (8.88) we use the assumption A(x/L − 1/2) � ε and thus obtain the
equation

h

ϑ

∂p

∂x
= −

(
3 +A

(
x

L
− 1

2

))
, (8.95)

which, however, does not hold near x = L/2. Integrating Eqs. (8.92) and
(8.95) with the boundary condition p(x = L) = 0 leads to the pressure
distribution (relative to the ambient pressure)

p =
2ϑL
h

(
1 − x

L
+

1
3

(
A

6

)1/2
(

1 −
(
x

L
− 1

2

)3/2

2
√

2

))
for A→ 0 ,

(8.96)
or

p =
3ϑL
h

(
1 − x

L
− A

6

(( x
L

)2

− x

L

))
for A→ ∞ , (8.97)

and thus to the load-bearing capacity (per unit depth)

F = 2

L∫

L/2

p dx =
ϑL2

2h

(
1 +

4
5

√
A

6

)
for A→ 0 , (8.98)

and

F =
3ϑL2

4h

(
1 +

A

9

)
for A→ ∞ . (8.99)

To conclude, we refer to a kinematic contradiction in this solution: since the
pressure gradient and thus the positions of the yield surfaces depend para-
metrically on x, the velocities at the yield surfaces are functions of x. The
contradiction becomes clear if we use the Bingham constitutive relation (3.63)
and (3.64). Since the rigid solid body here only carries out a translation, the
velocity at the solid body side of the yield surfaces is independent of x and
thus the no slip condition (4.159) is violated. Numerical calculations (for
the rotationally symmetric case) show that although the pressure distribu-
tion, the load-bearing capacity and the velocity distributions are essentially
correctly predicted by lubrication theory, the yield surfaces are indeed not
predicted correctly. However the yield surfaces from lubrication theory do
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resemble surfaces of constant value of the stress invariants, if these assume
a value slightly different from ϑ: (τ ′ijτ

′
ij/2)1/2 ∼ 1.05ϑ. Because of this, the

solution on the basis of lubrication theory is of sufficient accuracy for most
engineering applications.

8.4 Thin-Film Flow on a Semi-Infinite Wall

The assumptions which underlie hydrodynamic lubrication theory are fre-
quently found to be valid bases of other technically important flows which on
a superficial glance have nothing in common with lubrication theory. A typ-
ical feature of these flows is the gradual thinning of the film flow, which
creates a locally-valid film of constant thickness. As an example of this type
of film flow we now consider the steady plane flow on a semi-infinite wall
and tie it up with the corresponding film flow on an infinitely long wall (see
Sect. 6.1.3). We retain the notation of the cited section, and place the origin
of coordinates, whose position is arbitrary on an infinite wall, at the leading
edge with the negative x-direction along the surface. For the sake of sim-
plicity we assume the plate to be horizontal, so that β (in the notation of
Sect. 6.1.3) is zero.

A prescribed volume flux is maintained. The flow must go over the leading
edge, and we expect that as it does so the surface of the moving film will drop.
The form of the surface of the film is unknown and must be determined as part
of the solution. The differential equations which the solution must satisfy can
be taken directly from Sect. 6.1.3 (see (6.26) and (6.26)), and involve putting
β = 0:

∂p

∂x
= η

∂2u

∂y2
, (8.100)

∂p

∂y
= −ρ g . (8.101)

Using the no-slip condition (6.28) and the continuity of the stress vector on
the free surface (6.29) we obtain:

u(0) = 0 , (8.102)
njτji(1) = njτji(2) . (8.103)

Fig. 8.8. Film flow over a horizontal plate.



250 8 Hydrodynamic Lubrication

Using formula (4.164) we find the normal vector to the free surface,
y = h(x), i.e. nj = (−h′(x)/√1 + h′2(x), 1/

√
1 + h′2(x), 0).

Where lubrication theory is valid the variation of h′(x) is very small, so
we write the normal vector as nj = (0, 1, 0), which is exactly the same as
in Sect. 6.1.3 Accordingly the boundary conditions (6.31), (6.33) hold on
y = h(x), i.e.

p1 = p2 = p0 , (8.104)
∂u

∂y
= 0 . (8.105)

The pressure term, given by (6.35), can be substituted here:

p(x, y) = p0 + ρ g(h(x) − y) , (8.106)

where (unlike the film flow on an infinite plate) the film height is an as
yet unknown function of x. Integrating (8.100) and taking into account the
boundary conditions (8.102) and (8.105), we obtain the result:

u(x, y) = − 1
2η

∂p

∂x
h2(x)

[
2 − y

h(x)

]
y

h(x)
, (8.107)

which becomes, using (8.106):

u(x, y) = − g

2ν
h′(x)h2(x)

[
2 − y

h(x)

]
y

h(x)
. (8.108)

To calculate the film height, we use the kinematic free-surface boundary
condition (4.170), which becomes in steady flow:

�u · ∇F = 0 = −v(x , y) + h′(x)u(x , y) , (8.109)

and on y = h(x) this reduces to:

h′(x) =
v(x , y)
u(x , y)

. (8.110)

We can obtain the v-component of velocity on the free surface using the
two-dimensional continuity equation ∂u/∂x+ ∂v/∂y = 0, which yields:

v(x, h(x)) = −
∫ h(x)

0

∂u

∂x
dy =

g

2ν
h2(x)h′2(x) +

g

3ν
h3h′′(x) (8.111)

and it follows, using u(x, h(x)) from (8.107), either that:

h′(x) = −h(x)h′′(x)
3h′(x)

, (8.112)
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or that:
∂

∂x

[
h′(x)h3(x)

]
= 0 . (8.113)

It is important to notice also that the differential equation for the film thick-
ness can be immediately derived from the Reynolds lubrication equation. We
first obtain from (8.106) the value ρ g h′(x) for ∂p/∂x; then when this value
is substituted in (8.13), using U = 0 and constant η, we obtain (8.113) as
before.

The starting-point for the derivation of the Reynolds lubrication equation
is the expression for constant volume flux. For film flows this takes the form:

V̇x =
∫ h(x)

0

u dy = − g

3ν
h3(x)h′(x) , (8.114)

which is clearly the first integral of (8.113). The expression V̇x3ν/g has di-
mension (length)3, so that a characteristic length L for this problem may be
defined as:

L =

(
νV̇x

g

) 1
3

.

Integrating (8.113) once again, we get:

h4

L4
= 12

(
− x

L
+ c
)
, (8.115)

which, for a given value of L does not depend on special values of volume
flux, density, viscosity or indeed gravitational force. The integration constant
c cannot be determined from the present theory. This shows once more that
the flow as we approach the edge is not known, the reason for which is that
the rate of fall in the free surface, namely h′(x), is no longer small. Obviously
one could construct a solution in the neighbourhood of the edge, but this
would in general be dependent on the Reynolds number. It is clear from the
form of the solution that the thickness of the film far from the edge does not
depend on the thickness at the edge, which obviously increases rapidly as we
move inwards, and so the constant c may be set to zero, which corresponds
to the assumption h(0) = 0. Even though the solution is not correct at the
edge, far from the edge relatively small errors in height arise from this, as has
been confirmed by experiment. If greater accuracy is required, the constant
c may be found from measured values.

When the local Reynolds number is defined by:

Re = u(x, h)
h

ν
,

we find that

αRe = h′(x)Re =
9
2
V̇ 2

x

h3g
,

which is independent of viscosity.
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8.5 Flow Through Particle Filters

Particle filters are installed to remove soot particles from the exhausts of
diesel engines, since such particles may present a health hazard. Often the
filters are made out of long rectangular tubes bounded by ceramic walls: each
entry tube has four sidewalls, each of which adjoins an exit tube, and in the
same way each exit tube is bounded by four entry tubes. A cross-section of
the filter would thus resemble a chess-board, the black squares representing
the cross-sections of (say) the entry tubes, the white those of the exit tubes.
The entry and exit tubes are closed at the outer and inner ends of the filter
respectively.

Exhaust gas, laden with soot particles, flows into an entry tube, and its
gaseous phase then flows into the adjoining exit tubes through the pores
in the walls. Particles which are too large to penetrate the walls remain
inside the entry tube and are deposited on its walls. Such deposits naturally
increase the thickness of the wall, so that an increased pressure difference is
required to maintain the same volume flux through the wall. The filter must
be renewed when this pressure loss impairs engine performance. The renewal
is brought about by burning the soot particles at a high temperature, and
(after a relatively long time interval) removing the accumulated ash from the
sites of the deposits.

Typical ratios of tube thickness to length are about c/L ≈ 4 · 10−3. The
volume flux entering the tube, namely Ū c2, must flow out through the four
side walls, so that Ū c2 = 4V̄ Lc. From this it follows that the streamlines
are inclined to the axis of the tube at an angle roughly V̄ /Ū ≈ 10−3. We
can therefore assume that the flow is locally parallel. The topic of parallel
flow in a square tube (or tube of triangular cross-section, which also is used
in filters) has already been discussed in Sect. 6.1.6, where (6.89) gives the
mean velocity in the form of a rapidly-convergent series, summation of which
yields:

Ū = −∂p(x)
∂x

c2

4η
· 0.4217 , (8.116)

where the pressure gradient is an as yet undetermined function of x. The out-
flow through the side walls of the entry tube is, over a distance dx,−4V̄ cdx;
this equals the change in volume flux in the entry tube, which is dŪinc

2, and
it follows that

dŪin

dx
= −4V̄

c
. (8.117)

Similarly the change in mean velocity at the corresponding position in the
exit tube is

dŪout

dx
= −4V̄

c
. (8.118)
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The local volume flux across unit surface area, namely V̄ , through the wall
at x is related to the pressure difference pin(x) − pout(x) by:

V̄ =
k

η

pin − pout

s
, (8.119)

where s is the thickness of the porous layer.
The formula (8.119) was originally derived on the basis of experimental

evidence by Darcy in 1856. We will discuss this eponymous law at a later
stage. Here we content ourselves with observing that the permeability con-
stant k is an empirical constant, which is characterised by the number, size
and shape of the pores.

Inserting (8.116) into (8.117) and (8.118) and using Darcy’s law from
(8.119) results in two second-order coupled linear differential equations in
the variables pin(x) and pout(x):

∂2pin

∂x2
= 16k

pin − pout

0.4217s c3
,

∂2pout

∂x2
= −16k

pin − pout

0.4217s c3
. (8.120)

It follows immediately that the sum of the pressures in the entry and exit
tubes is a linear function of x. The system is in fact a fourth-order boundary
value problem, with prescribed boundary conditions at x = 0 and x = L.
As the volume flux v̇ on entry to an entry tube may be found by dividing
the total entry flux by the number of entry tubes, with (8.116) we have the
boundary condition:

∂pin(0)
∂x

=
4ηv̇

0.4217c4
. (8.121)

All the gas flowing through an entry tube will have drained through the side
walls on reaching the end x = L, and accordingly:

∂pin(L)
∂x

= 0 . (8.122)

Since the exit tubes are closed at x = 0, it follows that the mean velocity is
zero at this position, so that:

∂pout(0)
∂x

= 0 , (8.123)

whilst at x = L we have:
pout(L) = p0 , (8.124)

where p0 is atmospheric pressure omitting pressure losses in the exhaust pipe.
Obviously the linear system of equations may be solved using the well-known
change of variables pin, out = Ain, oute

λx. This leads to a boundary-value prob-
lem with a complicated analytical solution, details of which are omitted here;
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Fig. 8.9. Pressure distribution in a particle filter.

numerical values may be readily obtained with the aid of widely-available
computer program. (Special algorithms are required for purely numerical in-
tegration.)

Figure 8.9 shows a typical example of such a solution. Obviously there is
a length of filter for which the pressure loss is a minimum for some given filter
geometry and mass flux: a longer filter will naturally lead to a smaller velocity
V̄ and thus to a reduced pressure drop across the wall, while on the other
hand the overall pressure loss from filter entry to exit will increase because
of the greater length of tube over which the shear stress will now operate. In
Fig. 8.9, the length is so chosen as to minimise the overall pressure loss.

Because of the finite (though small) thickness of the tube walls, the cross-
sectional area of the oncoming stream is reduced. This leads to pressure losses,
which will be discussed in Sect. 9.1.4. The fact, however, that the velocity is
suddenly increased on entry even reduces those pressure losses necessary for
the flow to attain its fully-formed velocity profile.

8.6 Flow Through a Porous Medium

The individual stream tubes in the porous medium are made up of more
or less rapidly varying channels, so that the typical angle of declination of
the streamlines is appreciable. Thus the neglect of the convective terms in
the equations of motion on the basis of sufficiently small αRe cannot be
justified. Therefore we require that the Reynolds number itself (in a sense
to be defined later) is sufficiently small. The limiting case Re → 0, whose
technical meaning is given in Sect. 4.1.3, leads to Eq. (4.35), which, together
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with the continuity equation, defines the creeping flow equations to be dealt
with in Chap. 13.

For reasons to be discussed, the calculation of flow in a porous medium
cannot take place on the basis of (4.35) and the continuity equation. The
equations of motion applicable in this instance are, however, closely related
to those of rectilinear flow or, more precisely those of lubrication flow. The dis-
cussion will proceed on this basis although the flow is formally a creeping flow.

A porous medium is a structure which is often made up of granular or
fibrous materials. The cross sections of the pores are as a rule so small,
that the Reynolds number which is formed with typical length d and typical
velocity u of the fluid phase, is small in the pores: thus u d ρ/η � 1. The
precise geometry of the pores is of course unknown; however even for a given
geometry a calculation of the velocity field or the pressure field is not justified,
owing to the complex geometry of the numerous pores. We must therefore
restrict ourselves to treating mean values over numerous pores. Thus, volume
flux over an element of area is interpreted as the local velocity in a porous
medium. The corresponding velocity components in the coordinate directions
are given by volume fluxes through surface elements whose normals are in
the coordinate directions. The linear dimensions of the surface elements are
large compared to d, however they must be small compared to the linear
dimensions of the greater region of interest, so that the mean value is valid
as the local velocity. In the same way we can also treat the mean value of
the pressure p̄ in a volume element whose height is large compared to d and
has as its base a surface element considered above. As a consequence of the
small Reynolds number and the linearity of Eqs. (4.35) the inertia force is
small and one can expect that the pressure gradient is proportional to the
mean velocity, as is the case for unidirectional flows. It may be remarked that
inertia forces do not come into play in some other flows; thus: for laminar
rectilinear flows the inertia terms vanish on kinematic grounds irrespective
of the Reynolds number; for locally rectilinear flows inertia terms may be
neglected because the product of Reynolds number times the deviation angle
of the streamlines is small; in the present case inertia terms can be ignored
because the Reynolds number itself is small. Viscosity must enter into the
relation between pressure gradient and mean velocity. This is because the
only forces remaining available to balance the pressure gradients are due to
viscosity. Furthermore, a quantity whose dimension is the square of a length
must enter into this relation. In rectilinear flows, for example, this quantity is
the square of the transverse thickness; say the square of the channel thickness.
We now proceed to consider this relationship from a more general point of
view.

One can easily show on dimensional grounds, that:

Ūi = −kij

η

∂p̄

∂xj
. (8.125)
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The tensor kij is constant, provided the properties of the porous medium are
homogenous i.e. independent of position. For an isotropic medium it takes
the form:

kij = kδij , (8.126)

then it follows that:
Ūi = −k

η

∂p̄

∂xi
(8.127)

and so:
�̄U = −k

η
∇p̄ . (8.128)

It is therefore the same relationship between mean pressure gradient and
mean velocity, which also arises in lubrication theory (8.12) and in rectilin-
ear flow (6.58). In sedimentary solids it is often a tensor; in consequence the
resistance depends on the direction of flow and is in general greater in the
direction normal to the sedimentation. This appears to be the case in the
deposition of soot in particle filters which we have already discussed. In this
instance a thin layer of soot markedly increases the pressure loss. The ce-
ramic material of the filter is of course isotropic. For a clean filter therefore,
Eq. (8.127) comes into play, and integration of Eq. (8.119) can be carried out
with p(x2 = 0) = pin; p(x2 = s) = pout, where as usual p̄, Ū2, are replaced
by p, V̄ , respectively and from symmetry V̄ = W̄ .

There is a number of models for the structure of a porous medium from
which the permeability can be calculated. The simplest example is that of
a solid through which a bundle of cylindrical holes is bored. Then the mean
velocity over a surface F (in the above sense) is:

Ū =
V̇tot

F
= N

πR4

8η

∂p̄
∂x

F
, (8.129)

where N is the number of holes crossing the surface F and in which (6.63)
gives the volume flux through a single hole. The ratio N/F is at the same time
the ratio of the voids in the material NπR2 L to the entire volume, namely
FL where L is the length of the hole. This ratio is called the porosity, namely
n of the medium.

Therefore we can also write (8.127) in the form:

Ū = n
R2

8η
∂p̄

∂x
= n

d2

32η
∂p̄

∂x
(8.130)

and identify the permeability as:

k =
n d2

32
. (8.131)

The factor 1/32 is valid only for bundles of straight holes and this model
is somewhat unrealistic. When we replace it by a form factor f(s) and the
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porosity by a function of n we obtain a more general expression:

k = f(s) f(n) d2 , (8.132)

where d then is a typical transverse measure of the hole, or grain size in the
case of granular solids; the form factor and the porosity factor may then be
found experimentally.

Measurements show that Darcy’s law is valid for Reynolds numbers
Re = Ū d ρ/η up to about 10. This may appear surprising since we have
applied the law under the express proviso that inertia forces are very small.
This condition (just as with the condition αRe� 1, which is the basis of lo-
cally parallel flow) was based solely on the equations of motion without taking
into account either the complex flow paths or the boundary conditions.

For those cross sections, which are relatively small compared to path
lengths, the spread of vorticity, into the centre of the channel, takes place
by diffusion and is practically uninfluenced by convection. (The vorticity is
produced at the wall where the no-slip condition is enforced by the viscosity
on the adhering fluid). The formula (4.11), for the viscous force per unit
volume, show that it is of great importance whenever the vorticity is large.

In spatially restricted regions of flow, diffusion produces the vorticity
field, and this explains why we see viscous influences still operating at
Reynolds numbers greater than anticipated. It is known from the discus-
sion in Sect. 4.1.3, that in the absence of convection the flow is determined
only by friction, and is completely independent of Reynolds number. The re-
sults calculated on the assumptions that Re � 1, or αRe� 1 are then valid
even when these characteristic quantities are markedly greater than unity.
The precise limits of validity vary from case to case. However, in spatially re-
stricted regions discrepancy between theory and experiment is still acceptable
up to a Reynolds number of about 10. As the influence of the inertia terms
increases, the question of the stability of the flow arises and the flow enters
the transition phase to turbulence. As a rule in technical applications one
seeks a sufficient distance from turbulence so as to keep pressure losses low.

From a mathematical point of view we now remark that for homogenous
and isotropic permeability, that is when (8.127) is valid, these equations lead
to an important and far reaching conclusion, namely that the mean veloc-
ity field is a potential flow. As has been explained in Sect. 1.2.4 when the
velocity field is irrotational then curl �̄U = 0. The continuity equation for
incompressible flows remains unchanged for the mean flow

∂Ūi

∂xi
= 0 . (8.133)

The Laplace equation for the mean pressure follows then from (8.127):

∂2p̄

∂xi∂xi
= 0 . (8.134)
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It should be emphasised, that only the mean velocity �̄U(�x) is irrotational.
The actual velocity field �u(�x) is of course not irrotational, on the contrary:
the diffusion of vorticity inside the holes or cracks gives rise to the precise
character of these flows. Potential flows, where the velocity field is universally
irrotational, will be discussed in Chap. 10, where a detailed account of
potential theory is provided as it lies at the foundation of classical fluid me-
chanics. Suffice it to say that the methods of potential theory are applicable
here in so far as the assumptions of permeability are fulfilled. Flows through
porous media occur frequently in nature, for example ground water flows or
flows of oil or gas through sand or rock, such as sandstone or limestone.

8.7 Hele-Shaw Flows

A flow which is closely related to the solutions discussed already, is that
between two parallel plates, separated by a narrow gap h; between the
plates a section of a cylinder is inserted, whose characteristic cross section
is d. The undisturbed flow consists of a Poiseuille flow (Sect. 6.1.2) with
mean velocity components Ū , W̄ in the x- and z- directions respectively. The
x-component follows from (6.22); thus:

Ū = − h2

12η
∂p

∂x
, (8.135)

while the z-component is obtained by replacing ∂p/∂x, Ū by ∂p/∂z, W̄ re-
spectively; thus:

W̄ = − h2

12η
∂p

∂z
. (8.136)

It is well known that the pressure gradient in the undisturbed flow is constant.
In the presence of a cylinder, however, this is no longer the case.

The connection between pressure gradient and mean velocity is locally
valid provided (h/d)Re, (Re = Ūh/ν), is sufficiently small; it should be noted
that (h/d) plays the role of the inclination angle α here. It then follows from
the continuity equation, namely:

∂Ū

∂x
+
∂W̄

∂z
= 0 , (8.137)

that the pressure satisfies the Laplace equation:

∂2p

∂x2
+
∂2p

∂z2
= 0 . (8.138)

The boundary conditions for the pressure on the contour of the body, namely:

F (x, z) = 0 = −z + f(x) = 0 ,
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may be obtained by substitution (8.135), (8.136) into (4.169), thus:

�̄U · ∇F = ∇ p · ∇F = 0 . (8.139)

From �̄U · ∇F = 0, it follows that:

f ′(x) = W̄/Ū on z = f(x) , (8.140)

which essentially shows that the body contour is a streamline. Equation
(8.140) also provides the streamlines of the flow when the velocity field is
given. These streamlines may also be found by eliminating the curve param-
eter s in equation (1.11a). Since the mean velocity field is irrotational the
streamlines are those of a potential flow. The same differential equations re-
main valid for all streamlines of the local velocity field �u(x, y, z) in the plane
y = const. This becomes evident when the ratio w/u is formed by means
of Eq. (6.19) and the corresponding equation for w (where the wall velocity
is taken to be zero) and is then substituted in (8.140). It follows that the
streamlines in all planes y = const. are congruent to one another.

An experimental setup, based on the above theory, was used by Hele-
Shaw in 1889 to visualise the streamlines of potential flows around a vari-
ety of cylindrical bodies, especially bluff bodies. (Potential flows at greater
Reynolds numbers around bluff bodies are not realised otherwise because of
flow separation). Obviously the kinematic boundary condition on the body
is satisfied, whereas this is not the case for the no-slip condition. Since the
fluid must adhere to the cylinder, equations (8.139) and (8.140) are no longer
valid in that region next to the cylinder whose thickness is of order h. This
error may be reduced by making the gap between the plates arbitrarily small.
But this leads to even smaller Reynolds’ numbers, so that due to the neglect
of the no-slip condition the validity of the solution is restricted to Reynolds
numbers less than unity. In fact noticeable deviations from the theoretical
predictions become evident when (h/d)Re ≈ 4.
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9.1 Incompressible Flow

We shall now follow on with our earlier statement that in many technically
interesting problems the entire flow region can by represented as a single
streamtube, and the behavior of the flow is then characterized by its behavior
at a median streamline. Within the framework of this assumption, the flow
quantities are only functions of the arc length s along the streamline, and
possibly of the time t. Thus the flow quantities are assumed constant over
the cross-section of the streamtube. Now this assumption does not have to
be satisfied for the entire streamtube (at least not in steady flow), but only
in those sections of the streamtube where we wish to calculate the flow in
this quasi-one-dimensional approximation. Therefore the flow must be at
least piecewise uniform, i.e. essentially constant over the cross-section, and
also may not change too strongly in the flow direction: this assumes that
the cross-section is a slowly varying function of the arc length s. In between
these uniform regions the flow can exhibit a three-dimensional character, but
cannot be computed there using stream filament methods.

The assumption of constant flow variables over the cross-section requires
that the friction effect is negligible, because we know from Chap. 6 that
the flow quantities vary considerably over the cross-section of streamtubes
bounded by walls if the flow is dominated by frictional effects, as is the case
in fully developed pipe flow. Even in these flows, the concept of stream fil-
ament theory can be applied if the distribution of the flow quantities over
the cross-section is known, or else it must be possible to make reasonable
assumptions about these distributions. In particular attention must be paid
in the calculation of quantities averaged over the cross-section: the averaged
velocity calculated from the continuity equation, which we used as the typ-
ical velocity in the resistance laws cannot be used in the balances of energy
and momentum. This is because, for example, the momentum flux �U

2
A in

a circular pipe formed with this averaged velocity constitutes only 75% of the
actual momentum flux through the circular cross-section in laminar flow.

In turbulent flow the velocity distributions are flatter and the difference
between the maximum and the average velocities is therefore much smaller.
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The assumption of constant velocity over the cross-section is therefore a much
better approximation in turbulent flow than it is in laminar.

9.1.1 Continuity Equation

We first bring the continuity equation to a form useful in the context of stre-
am filament theory. For this we assume that the cross-sectional area of the
streamtube is given in the form A = A(s, t) and that all flow quantities only
depend on the arc length s and the time t. For the section of the streamtube
in Fig. 9.1 the continuity equation is

L∫

0

∂�

∂t
Ads− �1u1A1 + �2u2A2 +

∫∫

(Sw)

� �u · �n dS = 0 . (9.1)

If the cross-section of the tube does not change in time the integral over the
wall Sw vanishes. Otherwise we take the surface Sw as given by the equation

r = R(t, ϕ, s) , (9.2)

or in its implicit form

F (t, ϕ, s, r) = r −R(t, ϕ, s) = 0 . (9.3)

From the kinematic boundary condition (4.170) we get the normal component
of the flow velocity at the moving wall as

�u · �n = �u · ∇F
|∇F | =

1
|∇F |

∂R

∂t
, (9.4)

Fig. 9.1. The continuity equation in stream filament theory
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and we note that 1/|∇F | is the component nr of the normal to the surface
in the r-direction. Using this we write the integral over Sw in the form

∫∫

(Sw)

� �u · �ndS =
∫∫

(Sw)

�
∂R

∂t
nr dS =

L∫

0

2π∫

0

�
∂R

∂t
R dϕds , (9.5)

since nrdS = R dϕds is the projection of the surface element dS in the radial
direction. From

A =

2π∫

0

R∫

0

r dr dϕ , (9.6)

it follows that
∂A

∂t
=

2π∫

0

R
∂R

∂t
dϕ , (9.7)

and finally the continuity equation is

L∫

0

∂�

∂t
Ads+

L∫

0

�
∂A

∂t
ds− �1u1A1 + �2u2A2 = 0 . (9.8)

In stream filament theory this equation holds quite generally. However in
most technical applications the streamtube cross-section does not change in
time, so that the second integral is equal to zero.

In incompressible flow the first integral vanishes if we again assume that
incompressibility implies constant density (see discussion on page 97). There-
fore, for incompressible steady or unsteady flow, if A does not vary in time,
the relation

u1A1 = u2A2 (9.9)

holds. In compressible flow, the first integral in (9.8) only vanishes if the flow
is steady.

9.1.2 Inviscid Flow

Incompressible inviscid flows can already be dealt with using Bernoulli’s equa-
tion (4.61) or (4.62) and the continuity equation. We show how these are
applied in an example of the steady discharge from a vessel (Fig. 9.2) and
consider the entire flow space as a streamtube. Figure 9.2 shows clearly that
the only region where the assumptions of stream filament theory are not sat-
isfied is in the transition between the large cross-section A1 and the smaller
cross-section A2. We assume that the depth h does not vary with time: this
occurs if the ratio A1/A2 is large enough or if there is an appropriate influx
into the vessel.
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Fig. 9.2. Discharge from a vessel

The flow is then steady and it follows from Bernoulli’s equation (4.62)
that

u2
1

2
+ g h =

u2
2

2
, (9.10)

where we have already made use of the fact that p1 = p2 = p0. Using the
continuity equation (9.9) to solve for u2 furnishes the discharge velocity

u2 =

√
2g h

1 − (A2/A1)2
. (9.11)

For A2/A1 → 0 we obtain the famous Torricelli’s formula

u2 =
√

2g h . (9.12)

For the limit A2/A1 → 1 we find u2 → ∞, which, from (9.9) and also (9.10)
would imply u1 → ∞. This unrealistic result comes from the fact that for
A2/A1 → 1, u1 and u2 cannot satisfy the Eqs. (9.9) and (9.10) simultaneously.
In this case the fluid cannot completely fill the cross-section A2, so that the
assumptions which led to (9.9) break down. For given u1, (9.10) leads to

u2 =
√
u2

1 + 2g h (9.13)

and thus, from the continuity equation, furnishes the largest possible cross-
section A2 which will produce a uniform flow:

A2 =
A1√

1 + 2g h/u2
1

. (9.14)
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If the exit cross-section is any larger, the fluid separates from the wall, and
we see an unsteady and asymmetric exit flow. What has already been said
furnishes the explanation of why the exit tube in funnels is of conical shape.
If we consider A2 as a function of z, the cross-sectional shape at which sepa-
ration is just prevented along the whole tube is

A2(z) =
A1√

1 + 2g (h− z)/u2
1

. (9.15)

For this cross-sectional shape the pressure p in the fluid as a function of z is
equal to the ambient pressure p0. A jet issuing from a circular tube at the
height h takes on this cross-sectional distribution, since its velocity increases
with increasing (h− z) under the effect of gravity.

We shall now consider unsteady discharge and for simplicity assume the
ratio A1/A2 → ∞. For t < 0 the cross-section of (2) is closed; it is suddenly
opened at t = 0. At every time t, Bernoulli’s equation for unsteady flow (4.61)
holds:

�

∫
∂u

∂t
ds+ �

u2

2
+ p+ � g z = C . (9.16)

Here the integral along the streamline (which is fixed in space) is to be taken
from the height h to the exit area. However in the transition region the flow
is three-dimensional and cannot be described by stream filament theory. For
A1/A2 → ∞ the section of the tube contributes the greatest amount to the
integral and we shall only take this into account. The contribution of the
integration path in the container is negligible, since there u ≈ 0 for all times,
and therefore ∂u/∂t ≈ 0. Then it follows from (9.16), since again we have
p1 = p2 = p0, that

l∫

0

∂u

∂t
ds+

u2
2

2
= g h+

u2
1

2
, (9.17)

and also, since u in the pipe is not a function of s (u = u2), that

l
du2

dt
= g h− u2

2

2
, (9.18)

where we have neglected the term u2
1/2 because A1/A2 → ∞. Integrating

(9.18) with the initial condition u2(0) = 0 leads to the solution

u2(t) =
√

2g h tanh
(√

2g h
2l

t

)
, (9.19)

which shows that the maximum discharge velocity is reached for t→ ∞ and
is equal to the steady velocity of Torricelli’s formula. A more precise account
of the flow in the transition region between container and exit tube would
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have led to a slightly different “effective” length l, and there only the time
constant

τ =
2l√
2g h

(9.20)

would have been affected. For t = 3τ the steady velocity is effectively reached,
but during this time, for a large but finite A1/A2, the height of the water has
barely dropped. The discharge after this is quasi-steady: the exit velocity can
be calculated from (9.12) using the water height h(t) at the time t. With this
assumption, we determine the time required for the height to drop from h0 to
the actual height h(t). From the continuity equation and Torricelli’s formula
for A1/A2 → ∞, we obtain the differential equation for the water height

u1 = −dh
dt

=
A2

A1

√
2g h(t) , (9.21)

whose solution with h(0) = h0 reads

t =
A1

A2

√
2
g

(√
h0 −

√
h(t)

)
. (9.22)

The other limiting case A1/A2 → 1, i.e. l → h in (9.17) leads to the result
du/dt = g (free fall), which is as expected since the bounding walls of the
container exerts no force on the fluid.

9.1.3 Viscous Flow

While friction is negligible for pipe lengths l which are not too large, compared
to the diameter, say, friction losses are noticeable for long pipes. Within the
framework of stream filament theory, these losses can only be discussed phe-
nomenologically and are introduced as additional pressure drops according
to Eq. (6.60):

Δpl = �
u2

2
λ

l

dh
, (9.23a)

or

Δpl = ζ �
u2

2
, with ζ = λ

l

dh
. (9.23b)

The formulae (9.23) correspond to the pressure loss in pipes of constant cross-
section. If the cross-section is not constant we can consider these formulae to
apply locally:

d(Δpl) = �
u2(s)

2
λ(s)
dh(s)

ds , (9.24)

so that the equation

Δpl = �
u2

1

2

2∫

1

(
A1

A(s)

)2
λ(s)
dh(s)

ds (9.25)
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holds for the pressure loss between positions (1) and (2). We rewrite this
equation using the loss factor ζ:

Δpl = �
u2

1

2
ζ , (9.26)

where

ζ =

2∫

1

(
A1

A(s)

)2
λ(s)
dh(s)

ds . (9.27)

In doing this we always refer the loss coefficient to the dynamic pressure
� u2

1/2 at position before the loss has occurred. (In literature ζ is often referred
to the dynamic pressure behind the position of loss.)

For long enough pipes, the pipe flow friction coefficients (cf. Chaps. 6
and 7) can be used. However we must recall that fully established pipe flow
only begins at a certain distance after the pipe entrance. A boundary layer
forms at the pipe entrance. Its thickness increases with increasing distance
from the entrance, until the boundary layer finally grows together and fills the
whole cross-section. Only somewhat after this position do we perceive fully
established pipe flow, whose velocity profile no longer changes as the flow
progresses down the pipe (cf. Fig. 9.3). Since the volume flux V̇ is independent
of s, the fluid not yet affected by the friction is accelerated. In steady flow the
pressure drop over the entrance length lE may be calculated from Bernoulli’s
equation for loss free flow, since the streamline in the center of the pipe is
not yet affected by the friction:

p1 − p2 =
�

2

(
4U

2 − U
2
)

= 3
�

2
U

2
. (9.28)

Even if we assume that the contribution to the pressure drop as a consequence
of the friction stresses on the pipe wall at the entrance section is the same
as in fully established pipe flow, we obtain a larger pressure drop, because

Fig. 9.3. Laminar entrance flow
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the flux of the kinetic energy at the entrance is smaller than in the region
of fully established pipe flow. We estimate this additional work from the
energy equation, where we neglect the dissipated energy. In incompressible
and adiabatic flow we then have De/Dt = 0, and it follows that

−π R2�
U

3

2
+ � π

R∫

0

u3(r) r dr = π R2(p1 − p2)kin U . (9.29)

After carrying out the integration we obtain the pressure drop due to the
increase in kinetic energy:

(p1 − p2)kin =
�

2
U

2
. (9.30)

The pressure drop which results from the wall shear stresses has to be added
on to this. We estimate this pressure drop as if the formula for fully estab-
lished pipe flow were also to hold in the entrance section, so that the total
pressure drop becomes

Δptot = (p1 − p2)kin + ζ
�

2
U

2
, (9.31)

or else, using (6.61)

Δptot =
�

2
U

2
(

1 +
lE
d

64
Re

)
. (9.32)

The total pressure drop corresponds to the pressure drop along the streamline
in (9.28). Using Eqs. (9.28) and (9.32) we obtain an estimate for the entrance
length in the laminar case:

lE (laminar) =
Re

32
d . (9.33)

Here we are only dealing with a rough estimate. In reality the transi-
tion proceeds asymptotically: numerical solutions of the Navier-Stokes equa-
tions, in agreement with measurements, show that the velocity in the cen-
ter of the pipe has reached about 90% of its maximum value at the en-
trance length given above (99% of the maximum velocity is finally reached
when l/d = 0.056Re). In turbulent flow the velocity profile is flatter and
the maximum velocity is only about 20% greater than the average velocity
(cf. (7.83), (7.87), and (7.89) for Re ≈ 105). Therefore the work required to
increase the kinetic energy is almost negligible and the drag formula (7.89)
for fully established pipe flow can also be applied in the entrance region. The
entrance length can be obtained from

lE (turbulent) = 0.39Re1/4 d , (9.34)

which is much smaller than that of laminar flow.
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We shall now extend Bernoulli’s equation (4.62) phenomenologically to
include the pressure losses:

�
u2

1

2
+ p1 + � g z1 −Δpl = �

u2
2

2
+ p2 + � g z2 , (9.35)

where instead of U we write u, since in stream filament theory it is always
the average velocity that is meant. The pressure loss in unsteady flow is
only known for a few special cases, and in general it is not allowed to apply
(9.35) to unsteady flows as well, while retaining the steady loss coefficients.
It follows from (9.35) that the discharge velocity in the example in Fig. 9.2
is not (9.11) but rather

u2 =

√
2(� g h−Δpv)
� (1 − (A2/A1)2)

. (9.36)

However, since the loss occurs essentially only in the pipe with the cross-
sectional area A2 where the entrance velocity is also u2, we write

Δpl = ζ �
u2

2

2
, (9.37)

and with this

u2 =

√
2g h

1 + ζ − (A2/A1)2
. (9.38)

Here we recall that ζ in general depends on the Reynolds number and hence
on u2, so that (9.38) still does not give the exit velocity explicitly. If we
assume, for example, that fully developed laminar pipe flow occurs over the
entire length, i.e., that

ζ =
64
Re

l

d

holds, and neglect (A2/A1)2, the explicit formula follows:

u2 = 8
η l

R2�

(√
1 +

2g h
[(8η l)/(R2�)]2

− 1

)
. (9.39)

If the effect of the losses in the pipe is large, i.e. for large ζ, we also get by
expanding the square root

u2 =
� g h

8η l
R2 ; (9.40)

this result can also be obtained directly from (9.38).
In order to calculate the force exerted on the fluid by the vessel, we use

the balance of momentum in the integral form (2.40) and apply it to the
section of the streamline in Fig. 9.1. If �τ is the unit tangent vector of the
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average streamline fixed in space, using the assumptions of stream filament
theory we get the equation

L∫

0

∂(� u)
∂t

�τ Ads− �1u
2
1A1�τ1 + �2u

2
2A2�τ2 +

∫∫

(Sw)

� u�τ(�u · �n) dS =

= p1A1�τ1 − p2A2�τ2 +
∫∫

(Sw)

�tdS . (9.41)

We assume the flow to be uniform only at positions (1) and (2) so that
the friction stresses vanish only there. The last integral represents the force
exerted on the flow by the walls. Therefore the force exerted on the walls by
the flow is exactly the negative of this integral. The surface integral on the
left-hand side of (9.41) vanishes if the cross-section A does not vary in time.
Otherwise we calculate the normal components �u · �n on Sw by (9.4) and, by
a consideration completely analogous to (9.5) and (9.6) obtain the equation:

∫∫

(Sw)

� u�τ(�u · �n) dS =

L∫

0

� u�τ
∂A

∂t
ds , (9.42)

so that the balance of momentum appears in the form

L∫

0

∂(� u)
∂t

�τ Ads+

L∫

0

� u�τ
∂A

∂t
ds− �1u

2
1A1�τ1 + �2u

2
2A2�τ2 =

= p1A1�τ1 − p2A2�τ2 − �F , (9.43)

which is generally valid within the framework of stream filament theory.
In applying (9.43) to the discharge vessel for unsteady flow, we again

come up against the known difficulty that in order to work out the integral
we need to know the flow quantities along the streamline. However, in the
transition region between the large cross-section A1 and the smaller one A2

the quantities are unknown. For A1/A2 → ∞ the section of the pipe again
gives the greatest contribution. The second integral drops out since the cross-
section is not a function of time. Further, both u and �τ are constant along
the pipe, and because �1 = �2 = �, we finally obtain

�F = �τ

(
−�A2l

du2

dt
+ � u2

1A1 − � u2
2A2 + p1A1 − p2A2

)
, (9.44)

where we have not yet used p1 = p2 = p0. In steady flow the first term in the
brackets also drops out. Because A2/A1 → 0, the momentum flux

� u2
1A1 = � u2

2A1
A2

2

A2
1
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can be neglected. (If the velocities over the cross-section are not constant, as
in fully developed laminar flow, the momentum fluxes are to be determined
by integrating over the actual distribution.)

9.1.4 Application to Flows with Variable Cross-Section

The results are generally applicable to flow through pipes whose cross-sections
narrow in the s-direction, such as often appear in applications in the form of
nozzles . Nozzles serve to transform the pressure energy into kinetic energy,
e.g., the blade rows in turbomachines often act as nozzles. Now the pressure
decreases in the flow direction in a nozzle, and in addition they are almost
always very short, so that fully developed flow cannot form. Both of these
facts mean that the effect of friction is reduced. If necessary the effect of
friction can be accounted for through a separate boundary layer calculation.
No free surface appears in these applications and if we take the pressure
relative to the hydrostatic pressure, Bernoulli’s equation in steady flow reads

�
u2

1

2
+ p1 = �

u2
2

2
+ p2 . (9.45)

Instead of (9.11) we then obtain

u2 =

√
2Δp/�

1 − (A2/A1)2
(9.46)

for the velocity at position (2), which shows that the “driving force” of the
flow is the pressure difference Δp = p1 − p2. The magnitude of the force on
the nozzle in Fig. 9.4 can be expressed in quantities at the position (1) using
(9.44) and (9.45):

F = � u2
1A1 − � u2

1

(
A1

A2

)2

A2 + p1A1 −A2

{
�
u2

1

2

[
1 −

(
A1

A2

)2
]

+ p1

}
.

(9.47)

The flow processes within widening pipes are considerably more compli-
cated. These find uses as diffusers and serve to transform kinetic energy into
pressure energy. Since u2 becomes smaller, the pressure here increases in the
flow direction and even if the section of pipe is short (in fact, especially if
it is short) boundary layer separation can occur at the wall, thus affecting
the entire flow if the surface ratio A2/A1 is very large. In a diffuser the fluid
particles must advance into regions of higher pressure, which they are only
able to do because of their kinetic energy. If the Reynolds number is large
a boundary layer forms close to the wall, where the particle velocity is smaller
than the average velocity. The particles in the boundary layer have lost some
of their kinetic energy through dissipation. Now the remaining kinetic energy
is no longer enough to overcome the increasing pressure and the particles come
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Fig. 9.4. Nozzle flow

to a standstill and finally, under the influence of the pressure gradient, are
driven back opposite to their original direction of motion. All these events
constitute the phenomenon of boundary layer separation. Vortices form in
the separated region and are kept in motion by the friction stresses and by
turbulent stresses exerted by the unseparated flow. The separated flow is
usually unsteady. A typical flow form is sketched in Fig. 9.5.

Because of the displacement action of the separated boundary layer the
still unaffected core of the flow experiences a smaller cross-section increase
than that which corresponds to the actual channel geometry. As a result the
pressure build up is smaller than expected. Usually the flow is evened out
again downstream from the separation point by the transfer of momentum
from the core flow to the separated flow. However, the work dissipated by the
friction stresses leads to an additional pressure loss. The ratio of the actual
pressure increase reached in the diffuser to that theoretically obtainable (i.e.
according to the loss free Bernoulli equation) is called the diffuser efficiency:

ηD =
(p2 − p1)real

(p2 − p1)ideal
=
�/2 (u2

1 − u2
2) −Δpl

�/2(u2
1 − u2

2)
, (9.48)

Fig. 9.5. Boundary layer separation in a diffuser
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where here too we set Δpl for the pressure loss in the diffuser

Δpl = ζ �
u2

1

2
,

so that we obtain the equation

ηD = 1 − ζ
1

1 − (A1/A2)2
. (9.49)

Here we have also made use of the continuity equation (9.9). The effici-
ency depends on the opening angle δ of the diffuser (Fig. 9.6). The highest
efficiencies are reached for opening angles of

5◦ < δ < 10◦ (9.50)

and then amount to about 85%. If, for a given area ratio, the opening angles
are smaller, the diffuser becomes so long that the friction losses from the walls
become important, while for larger opening angles boundary layer separation
occurs.

An abrupt change of cross-section can serve as an “ideally poor” diffuser
(Fig. 9.7). Here the separation position is at the point where the cross-section
changes.

The pressure over the cross-section is practically constant at the position
(1), since the streamline curvature is very small (cf. (4.44) ∂p/∂n ≈ 0). In
the subsonic flow considered here, the pressure in the jet is then generally
equal to the surrounding pressure. (We shall see later that in compressible
flow, waves can occur in the jet and as a consequence the pressure in the
jet can be different from the surrounding pressure.) Thus the same pres-
sure as in the jet also acts on the face of the cross-section widening. At
position (2), the flow is uniform again and the pressure is p2. Applying the
balance of momentum to the control volume sketched, we find from (9.44)
that

F = � u2
1A1 − � u2

2A2 + p1A1 − p2A2 . (9.51)

In doing this we have not made any of the simplifications beyond those as-
sociated with stream filament theory. If we neglect the contribution of the

Fig. 9.6. Diffuser opening angle
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Fig. 9.7. Step expansion of the cross-section

shear stress at the pipe wall to the force F , it then is simply the prod-
uct −p1(A2 − A1) of the pressure and the face area, and we have for the
pressure difference

(p2 − p1)real = � u2
1

A1

A2

(
1 − A1

A2

)
. (9.52)

The pressure difference in loss free flow is found from Bernoulli’s equation
(9.45) as

(p2 − p1)ideal = �
u2

1

2

(
1 − A2

1

A2
2

)
, (9.53)

and thus the pressure loss reads

ΔplC = (p2 − p1)ideal − (p2 − p1)real = �
u2

1

2

(
1 − A1

A2

)2

=
�

2
(u1 − u2)2 ,

(9.54)
a relation known as Carnot’s shock loss formula. However we should note
that an increase in pressure also takes place here. For A1/A2 → 0, i. e. for
discharge into an infinitely large space no increase takes place (cf. (9.52)) and
from (9.54) we obtain the exit loss

ΔplE = �
u2

1

2
. (9.55)

This is precisely the kinetic energy necessary to maintain the flow through
the pipe. This exit loss can be reduced with a diffuser at the exit.

A similar loss to that of sudden area expansion also occurs for abrupt
area contraction (Fig. 9.8). The reason for this can be seen in the separati-
on of the flow at the sharp convex edge of the channel narrowing which the
flow cannot follow. The separated stream then contracts to the cross-section
A3 = αA2, where α is dependent on the cross-section ratio A1/A2, and is
called the contraction coefficient . The losses mainly arise during jet spreading
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Fig. 9.8. Step contraction of the cross-section

and can therefore by estimated using Carnot’s shock loss formula:

ΔplC = �
u2

3

2

(
1 − A3

A2

)2

= �
u2

2

2

(
1 − α

α

)2

. (9.56)

The contraction coefficient α can be determined theoretically for A1/A2 →
∞. For a plane two-dimensional orifice, the methods of function theory
(Sect. 10.4.7) lead to α = 0.61. For a circular aperture we find α = 0.58
by numerical methods. Jet contraction and the losses associated with it can
be minimized by rounding off the corner at the transition in cross-section. In
bends or elbows, flow separation occurs usually at the inner side of the bend,
and with it contraction of the main jet. The flow is smoothed out sufficiently
far from the bend and we again have uniform flow. Contraction also occurs
in pipe branches and valves and losses are associated with the subsequent
smoothing out of the velocity. The flow patterns are usually so complicated
that the losses cannot be estimated and we are nearly always referred to em-
pirical data. Because of the large number of geometrical shapes, we refer to
manufacturers’ data and handbooks for the corresponding loss coefficients.

Associated with the sudden cross-section expansion is the mixing process
of Fig. 9.9. Applying the balance of momentum in integral form and neglecting
the shear stresses at the wall we obtain the increase in pressure due to the
mixing process as

p2 − p1 = � u2
1(1 − n) + � u2

1(1 − ε)2n− � u2
2 . (9.57)

From the continuity equation it follows that

u2 = u1(1 − n ε) , (9.58)

and therefore the pressure increase is

p2 − p1 = n(1 − n)ε2� u2
1 , (9.59)

which is always positive because n ≤ 1. For ε = 1 we obtain the result (9.52)
by replacing A1 by (1 − n)A2.



276 9 Stream Filament Theory

Fig. 9.9. Mixing

9.1.5 Viscous Jet

The discussion of viscosity effects in flow filament theory was so far restricted
to flows in pipes and ducts, were the no-slip condition gives rise to shear
stresses. We now turn to the effect normal viscous stresses have on the flow.
Normal viscous stresses are important in free jets of highly viscous liquids as
they occur e.g. in the discharge from a vessel under the influence of gravity.
For inviscid fluids this case has been treated in Sect. 9.1.2. However it would
in general be quite wrong to compute the normal stresses a posteriori from
this solution.

In case of viscous jets we neglect air friction at the free surface, as was
already done in (6.33) so that only normal stresses occur in the jet. We know
from Sect. 9.1.2, Fig. 9.2, that the jet contracts and is strained not only in
the (negative) z-direction but also in r-and ϕ-directions. In the framework of
one-dimensional filament theory, where all quantities are functions of z only,
we introduce the normal stress in the jet by way of

σ = ηT
du
dz

, (9.60)

where the phenomenological viscosity ηT is called the Trouton viscosity.
We determine the Trouton viscosity by requiring that the energy dissi-

pated per unit time and volume σ du/dz be equal to the energy Pzzezz +
Prrerr + Pϕϕeϕϕ dissipated by the actual stretchings in z, r, ϕ-directions.
From Appendix B 2 we have

ezz =
duz

dz
=

du
dz

(9.61)

and find from the continuity equation A(z) = π r2(z) = const

du
dz

= − u

A

dA
dz

= −2
r
u

dr
dz

= −2
r
ur , (9.62)
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where ur is the material derivative of r(z). From (9.62) and Appendix B 2
follows

eϕϕ =
1
r
ur = −1

2
du
dz

, and (9.63)

err =
∂ur

∂r
= −1

2
du
dz

. (9.64)

Since the stretchings are the same, so are the normal friction stresses irre-
spective of constitutive relations:

Prr = Pϕϕ . (9.65)

Using this the above claim leads to

ηT =
Pzz − Prr

du/dz
, (9.66)

which is occasionally cited as a “definition” of the Trouton viscosity. With
Pzz = 2 η du/dz and Prr = −η du/dz the Trouton viscosity is three times the
shear viscosity for Newtonian fluids:

ηT =
2η du/dz + η du/dz

du/dz
= 3 η . (9.67)

Starting point for the equation of motion of the jet is (2.18). Choosing
Adz as the infinitesimal integration domain for the volume integrals, where
A is the cross-sectional area of the jet, the integrand may be considered con-
stant in the domain, so that the right side of (2.18) becomes ρD�u/Dt A dz
and the first integral on the left side ρ�k Adz. The stress vector (−p + σ)�n
varies over the surface and the integration for the surface force in (2.18)
must be carried out. The integration of the pressure over the closed surface
A+dA,A, dM vanishes as the pressure on the outer covering dM is the same
as on the cross sections A + dA and A. According to Fig. 9.2 z-direction
is anti-parallel to the body force �g, so on A + dA, �n = �ez and the
viscous normal stress there is σ+dσ. On A �n = −�ez and the viscous normal
stress is σ. Viscous normal stresses are obviously not present on dM . The
surface force is therefore ((A+ dA)(σ + dσ) −Aσ)�ez which brings (2.18) to
the form

ρ
D �u

Dt
Adz = d(Aσ)�ez + ρ�kAdz . (9.68)

Since �u = −u�ez and �k = −g �ez, and using (9.60) and (9.61) this can be
rewritten as

d2u

dz2
− 1
u

(
du
dz

)2

+
ρ

ηT

(
u

du
dz

− g

)
= 0 . (9.69)

Contrary to the corresponding equation for the inviscid flow, which follows
from (9.69) in the limit η → 0, (9.69) is a second order differential equation
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requiring two boundary (or initial) conditions. The nonlinear equation is best
integrated numerically as an initial value problem and (9.69) is now integrated
from the jet exit to the jet length L. It is then expedient to choose the positive
z-direction parallel to the flow direction, i.e. replace �ez by −�ez in the above
equations. (This does not change (9.69)). One initial condition is the exit
velocity of the jet from the mouth, and a second initial condition (for du/dz)
may be found from the momentum equation in the form (2.40). For a jet of
length L exiting at x = 0 and a control volume consisting of the areas A(0)

Fig. 9.10. Diameter and velocity distribution



9.2 Steady Compressible Flow 279

and A(L), and the outer covering M we find the momentum equation in the
form

−ρ u(0)A(0) �u(0)+ ρ u(L)A(L) �u(L) = −σ(0)A(0)�ez +σ(L)A(L)�ez + ρ�gV ,
(9.70)

where V =
∫ L

0 A(ζ) dζ is the jet volume and �ez now points in flow direction.
With the mass flow ṁ = ρ u(0)A(0) we also have the scalar form

ṁ (u(0) − u(L)) − ηT (u′(0)A(0) − u′(L)A(L)) + ρ g V = 0 , (9.71)

where the prime indicates differentiation with respect to z. Integration pro-
ceeds using the known value u(0) = U say and an estimated value of u′(0). If
the momentum equation (9.71) is not satisfied by the values found at x = L,
u′(0)is varied until it is. Figure 9.10 shows the diameter and velocity distribu-
tion so computed for an inviscid jet and a viscous jet having a shear viscosity
of 100Pas, a value typically for molten glass.

Simpler forms of (9.70) emerge if the weight and the momentum are ne-
glected and find application in fiber spinning.

9.2 Steady Compressible Flow

9.2.1 Flow Through Pipes and Ducts with Varying Cross-Section

We shall first restrict ourselves to those steady flows where, from the esti-
mate (4.184), compressibility effects are to be expected, and therefore the
inequality M2 � 1 is no longer satisfied. A number of flow attributes then
arise which do not occur in incompressible flow.

In steady, homentropic flow, which is barotropic, we can still calculate the
flow quantities at the position (2) from Bernoulli’s equation (4.64) and the
continuity equation

�1u1A1 = �2u2A2 , (9.72)
which follows from (9.8), given the quantities at the position (1). Instead of
Bernoulli’s equation, the energy equation together with the condition that
the entropy is constant along the streamline, can be used. While the energy
which is dissipated into heat is lost in the case of incompressible flow and
can therefore no longer be transformed into mechanical energy, the energy
transformed into heat is still usable in compressible flow. We see from the
energy equation (4.2) for adiabatic incompressible flow,

De
Dt

=
Φ

�
, (9.73)

that all the dissipated energy flows into the increase of the internal energy,
which incidentally does not depend on the density, since density is a con-
stant rather than a state variable in incompressible flow. The corresponding
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equation for compressible flow reads

De
Dt

+ p
Dv
Dt

=
Φ

�
, (9.74)

showing that part of the dissipated energy can be converted to work of ex-
pansion. However the irreversible process of dissipation increases the entropy,
so that Bernoulli’s equation is no longer applicable. Its place is taken by the
energy equation (2.114), which we shall first bring it to a form suitable for
stream filament theory. We further assume that the flow at positions (1) and
(2) is uniform, and so the friction stresses and temperature gradients vanish
here, but as before we allow friction and heat conduction processes between
these positions. We take the streamtube wall to be at rest, but allow moving
surfaces Sf within the streamtube (e.g., moving blades of turbomachines).
Further, for reasons already explained, we neglect the work of the volume
body force, and for the section of the streamtube in Fig. 9.1 we obtain

L∫

0

∂

∂t

(
�
u2

2
+ � e

)
Ads−

(
u2

1

2
+ e1

)
�1u1A1 +

(
u2

2

2
+ e2

)
�2u2A2 +

−p1u1A1 + p2u2A2 =
∫∫

(Sf )

uiti dS −
∫∫

(Sw)

qini dS . (9.75)

We write Q̇ for the heat supplied through the wall and P for the power
supplied from the moving surfaces. We specialize the equation to steady flow
and use the continuity equation (9.72)

u2
2

2
+ e2 +

p2

�2
=
u2

1

2
+ e1 +

p1

�1
+

Q̇+ P

�1u1A1
. (9.76)

With the definition of enthalpy (2.117) we write

u2
2

2
+ h2 =

u2
1

2
+ h1 + q + w , (9.77)

where for short we have set

q =
Q̇

�1u1A1
(9.78)

and
w =

P

�1u1A1
. (9.79)

For adiabatic flow (q = 0) where no work is supplied (w = 0), the energy
equation assumes that same form as the Eq. (4.150) for inviscid flow:

u2
1

2
+ h1 =

u2
2

2
+ h2 = ht . (9.80)
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However we should note that (9.80) only holds between two positions which
are in equilibrium states, i.e. where there are no temperature and velocity
gradients. On the other hand the energy equation for isentropic flow holds
for every point on the streamline. Since every point on the streamline is in
equilibrium in isentropic flow, (9.80) reduces to (4.150). The result (9.80) also
becomes obvious if we recall that, although the viscous stresses perform work
within the control volume, this is dissipated into heat and therefore implies
no net change in the energy.

The influence of the Mach number gives rise to further differences between
compressible and incompressible flow. We shall see that surfaces of disconti-
nuity, over which flow quantities change discontinuously, are possible also for
steady supersonic flow (M > 1). The most important of these surfaces has
already been discussed in connection with Fig. 4.28. We shall first however
examine the effect that the Mach number has on the relation between the
cross-sectional area A and the velocity u in isentropic flow. In incompressible
flow this relation is directly obvious from the continuity equation

uA = const (9.81)

as A becomes large u must decrease, and vice versa. However the continuity
equation for compressible flow

� uA = const (9.82)

contains the additional variable �, so that we should expect differing behavior.
If we call the arc-length along the streamline x (to distinguish it from the
entropy s), by logarithmic differentiation of (9.82) with respect to x we obtain
the expression

1
u

du
dx

+
1
A

dA
dx

+
1
�

d�
dx

= 0 . (9.83)

For isentropic flow, thus p = p(�), we have from the definition of the speed
of sound

a2 =
(
∂p

∂�

)

s

, (9.84)

in particular dp/d� = a2 and therefore from (9.83)

1
u

du
dx

+
1
A

dA
dx

+
1
a2�

dp
dx

= 0 . (9.85)

Using the component of Euler’s equation in the direction of the streamline,

� u
∂u

∂x
= − ∂p

∂x
, (9.86)

we then obtain the equation

1
u

du
dx

+
1
A

dA
dx

=
u

a2

du
dx

, (9.87)
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which we reduce to:
1
u

du
dx

(1 −M2) = − 1
A

dA
dx

. (9.88)

For M < 1 we obtain qualitatively the same behavior as in incompressible
flow: increasing cross-sectional area (dA/dx > 0) corresponds to decreasing
velocity (du/dx < 0) and vice versa. However, for M > 1 (9.88) shows that if
the cross-sectional area (dA/dx > 0) increases the velocity must also increase
(du/dx > 0), or if the area decreases so does the velocity. If dA/dx vanishes,
i.e. if the cross-sectional area has an extremum, then either M = 1 or u(x)
also has an extremum. Since du/dx must remain finite, the Mach number
M = 1 is only reached at the position where the cross-sectional area has an
extremum, that being a minimum.

If the Mach number at this section of minimum area, also called the throat ,
is not one, the velocity has an extremum there. The possible flows in conver-
ging-diverging channels are sketched in Fig. 9.11. These flow forms are only
realized if the pressure ratio across the entire converging-diverging channel is
properly adjusted.

For the nozzle flows occurring in applications, say, in turbomachines or
in jet engines, one of the following questions mostly arises: either the cross-
section A(x) of the nozzle is given, and the flow quantities are required as

Fig. 9.11. Possible flow forms in converging-diverging channels
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a function of x (direct problems), or else the velocity u(x) is known, and
it is the associated cross-section that is required (indirect problems). Closed
formulae can be given in the case of the calorically perfect gas and isentropic
flow.

However, to begin with we shall discuss the more general solution for real
gases, and shall assume that the equations of state are given in the well known
form of the Mollier diagram. We characterize the thermodynamic state of the
gas by the reservoir values or total values : if the gas discharges from a large
reservoir, the gas is in its state of rest inside the reservoir, and it is therefore
said to be in its reservoir state or total state. In particular in the case of the
calorically perfect gas, this state is used as a convenient reference state which
can be defined at every point in the flow field as the state which would be
attained were the gas brought to rest isentropically.

We infer from the energy equation (9.80) that the reservoir enthalpy ht

has the same value in adiabatic flow whether the gas has been brought to
rest isentropically or not. We call ht a conserved quantity. In the calorically
perfect gas, because h = cpT , the same also holds for the reservoir or total
temperature Tt. On the other hand, the pressure depends on how the gas
has been brought to rest, i.e. on the particular change of state. The reservoir
or total pressure is only reached again if this change of state is isentropic.
Therefore in this sense the total pressure is not a conserved quantity. It
changes when the entropy changes, for example, if the gas passes through
a shock wave.

As the governing equation for the design of the nozzle, besides the conti-
nuity equation

� uA = ṁ , (9.89)

we use the energy equation which holds for every point along the streamline
in isentropic flow:

u2

2
+ h = ht . (9.90)

Besides ht and pt, the pressure drop across the nozzle p1 − p2 and the mass
flux ṁ must be given in the problem. For the direct problem we first form
the variable

� u =
ṁ

A(x)
, (9.91)

whose right-hand side is a given function of x. We then note the values of h
and � along the isentrope st which is fixed by ht and pt, and insert (9.91)
as well as the relation found for h(�) into the energy equation and obtain an
equation for �(x):

h(�) +
1

2�2

(
ṁ

A(x)

)2

= ht . (9.92)

We then solve this equation graphically or numerically for a given A(x). Using
the known �(x), we find the remaining variables of state h(x), T (x) and p(x)
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along the isentrope st. In this manner the entire flow process can be found.
The speed of sound a is determined by noting the values of p and � along the
isentrope st and forming the derivative dp/d� = a2, graphically if necessary.
Now the Mach number distribution M(x) can be found.

In indirect problems, we first calculate h(x) from the given distribution
u(x) and find all the associated variables of state along the isentrope st. With
�(x) now known, the distribution of the cross-section A(x) follows from the
continuity equation (9.89). For calorically perfect gas, closed form solutions
can be given for the flow quantities. To do this we proceed by first giving
the flow quantities as functions of the Mach number and then the cross-
sectional area of the nozzle as a function of the Mach number. However
first we introduce Bernoulli’s equation for calorically perfect gas. From the
isentropic relation for calorically perfect gas

p = C �γ , (9.93)

we calculate the pressure function P as

P =
∫

dp
�

= C1/γ γ

γ − 1
p(γ−1)/γ . (9.94)

Replacing C by (9.93) evaluated at the reference state, i.e.,

C = p1�
−γ
1 ,

we extract

P (p) =
γ

γ − 1
p1

�1

(
p

p1

)(γ−1)/γ

, (9.95)

or by directly applying the isentropic relation (9.93),

P (p, ρ) =
γ

γ − 1
p

�
. (9.96)

By doing this, Bernoulli’s equation assumes the same form as the energy
equation:

u2

2
+

γ

γ − 1
p

�
= const , (9.97)

while (9.95) leads to

u2

2
+

γ

γ − 1
p1

�1

(
p

p1

)(γ−1)/γ

= const (9.98)

or
u2

1

2
+

γ

γ − 1
p1

�1
=
u2

2

2
+

γ

γ − 1
p1

�1

(
p2

p1

)(γ−1)/γ

. (9.99)

In particular we refer to the last form as Bernoulli’s equation for compressible
flow of a calorically perfect gas.
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We now obtain the discharge velocity from a large reservoir as

u2 =

√√√√2
γ

γ − 1
p1

�1

(
1 −

(
p2

p1

)(γ−1)/γ
)
. (9.100)

Equation (9.100) corresponds to Torricelli’s formula for incompressible flow
and is called the Saint-Venant-Wantzel formula. The greatest velocity in
steady flow is reached for p2 = 0, i.e., for expansion into a vacuum:

umax =
√

2
γ

γ − 1
p1

�1
. (9.101)

If air under normal conditions expands into a vacuum, we obtain a maximum
velocity of about

umax ≈ 735m/s . (9.102)

In order to represent the thermodynamic variables as functions of the Mach
number, we rewrite Bernoulli’s equation (9.97) with the expression from
(9.93),

a2 = γ
p

�
, (9.103)

and obtain
u2

2
+

1
γ − 1

a2 =
1

γ − 1
a2

t , (9.104)

or for the ratio of the total to the local temperature,

Tt

T
=
(at

a

)2

=
γ − 1

2
M2 + 1 . (9.105)

Using the isentropic relation (9.93) and the equation of state for the thermally
perfect gas p = �RT we then obtain

pt

p
=
(
Tt

T

)γ/(γ−1)

=
(
γ − 1

2
M2 + 1

)γ/(γ−1)

(9.106)

and
�t

�
=
(
Tt

T

)1/(γ−1)

=
(
γ − 1

2
M2 + 1

)1/(γ−1)

. (9.107)

We call the flow variables encountered at M = 1 critical or sonic and denote
them with the superscript *. These values differ from the total values only by
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constant factors and are therefore often used as reference values. In particular
for diatomic gases (γ = 1.4), we find

a∗

at
=
(

2
γ + 1

)1/2

= 0.913 , (9.108)

p∗

pt
=
(

2
γ + 1

)γ/(γ−1)

= 0.528 , and (9.109)

�∗

�t
=
(

2
γ + 1

)1/(γ−1)

= 0.634 . (9.110)

We shall now obtain the relation between the Mach number and the cross-
sectional area. It follows from the continuity equation that

ṁ = � uA = �∗u∗A∗ = �∗a∗A∗ , (9.111)

in which A∗ is the cross-section where M = 1 is reached. We also use this
cross-section as the reference cross-section, even if the Mach number M = 1
is not reached in the nozzle, and define it with the given mass flux ṁ as

A∗ =
ṁ

�∗a∗
. (9.112)

In
A

A∗ =
�∗�ta

∗

�t� u
, (9.113)

we replace a∗/u using the energy equation (9.104)

u2 +
2

γ − 1
a2 = u∗2 +

2
γ − 1

a∗2 =
γ + 1
γ − 1

a∗2 , (9.114)

then replace �t/� and �∗/�t using (9.107) and (9.110), respectively, and in
this manner finally obtain the desired relation

(
A

A∗

)2

=
1
M2

[
2

γ + 1

(
1 +

γ − 1
2

M2

)](γ+1)/(γ−1)

. (9.115)

If the mass flux, total state and cross-section are given, the Mach number
distribution in the nozzle is known from (9.115). Using (9.105), (9.106) and
(9.107) we then know the distribution of the temperature, pressure and den-
sity in the nozzle. The velocity then follows from (9.113). The relations men-
tioned are tabulated for γ = 1.4 in Appendix C and depicted in Fig. 9.12. In
agreement with the qualitative considerations, Fig. 9.12 shows that in order to
reach supersonic velocities the cross-section must increase again. Converging-
diverging nozzles were first used in steam turbines and are known as Laval
nozzles , but they find many other applications in, for example, rocket en-
gines, nozzles in supersonic wind tunnels, etc. However, in order to produce
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Fig. 9.12. Area ratio and variables of state as functions of the Mach number for
steady flow of a perfect diatomic gas (γ = 1.4)

supersonic velocities a large enough pressure drop is required over the nozzle.
We shall discuss the possible operational states of the Laval nozzle, starting
with the normal case where the ambient pressure pa is so chosen that it is
the same as the pressure pe at the nozzle exit given by the area ratio A∗/Ae

(Fig. 9.13).

Fig. 9.13. Correctly expanding nozzle
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If the ambient pressure is increased, we then talk of an over expanded jet,
because the gas in the nozzle expands to a lower than the ambient pressure:
pe < pa. At first the flow in the nozzle does not change (curve 1 in Fig. 9.15).
Outside the nozzle the flow is no longer quasi-one-dimensional and therefore
cannot be discussed within the framework of stream filament theory. We shall
restrict ourselves to a qualitative description of the flow. In doing so we make
use of the concept of the shock , which will be treated in detail in Sect. 9.2.3.
For the discussion here, all we need to know is that the shock represents
a discontinuity surface of pressure and temperature. Such a shock surface
emanates from the rim of the nozzle, raising the lower nozzle discharge pres-
sure discontinuously to the ambient pressure. The shock surfaces intersect
and are reflected at the jet boundary as steady expansion waves (Fig. 9.14).

A rhombic pattern characteristic of supersonic jets arises and this is some-
times visible to the naked eye in exhaust jets of rocket engines, because the
temperature of the fluid particles is raised by passing through the shock and
then lowered again by passing through the expansion waves, where the in-
trinsic luminosity of the exhaust is altered in a corresponding manner.

If the ambient pressure is further raised, the shock moves into the nozzle
and forms a normal shock wave in the nozzle. This discontinuous pressure in-
crease positions itself in the nozzle just so that the required ambient pressure
is reached. Behind the shock the flow is subsonic, as we will show later. The
section of the nozzle behind the shock then works as a subsonic diffuser which
theoretically raises the pressure behind the shock to the ambient pressure.
However, in practice a flow separation occurs and the actual gain in pressure
is so small that the pressure behind the shock is actually about the same as
the ambient pressure. The subsonic jet cannot sustain steady waves, and for
(almost) parallel discharge, the pressure in the jet must be the same as the
ambient pressure (curve 2 in Fig. 9.15).

If the ambient pressure is raised even further, the shock migrates further
into the nozzle and it becomes weaker, since the Mach number in front of
the shock becomes smaller. If the ambient pressure is so increased that the
shock finally reaches the throat of the nozzle, the shock strength drops to
zero and the whole nozzle contains subsonic flow (curve 3 in Fig. 9.15). If we
increase pa even further, the Mach number has a maximum at the throat,

Fig. 9.14. Overexpanded jet
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Fig. 9.15. Overexpanding nozzle

but M = 1 is no longer reached (curve 4 in Fig. 9.15); the value of the Mach
number at the throat can be determined from the area relation (9.115) if we
set A = Amin. A∗ is then only a reference area which is never realized within
the nozzle.

In underexpanded jets the pressure at the nozzle exit pe is larger than
the ambient pressure pa (Fig. 9.16). The pressure is reduced to the ambient
pressure through stationary expansion waves. The flow in the nozzle remains
unaffected by this. The expansion waves penetrate into themselves and are
then reflected at the boundary of the jet as “compression waves” and these

Fig. 9.16. Underexpanded jet
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Fig. 9.17. Subsonic nozzle and subsonic jet

Fig. 9.18. Subsonic nozzle with after expansion in the jet

often reform themselves into a shock. In this manner a rhombic pattern is set
up in the jet again, very much the same as for over-expanded jets.

In a purely convergent nozzle, no steady supersonic flow can be formed in
the above stated manner. As long as the ambient pressure pa is larger than
the critical pressure p∗, the pressure in the jet pe is the same as the ambient
pressure pa (Fig. 9.17).

If the Mach number M = 1 is reached at the smallest cross-section, then
pe = p∗ and the ambient pressure can be decreased below this pressure (pa <
pe). Then an after-expansion takes place in the free jet: the pressure at the
nozzle exit is expanded to the ambient pressure pa again through stationary
expansion waves (Fig. 9.18).

9.2.2 Constant Area Flow

As a further application of stream filament theory we shall consider the flow
in a duct where the cross-sectional area remains the same, without moving
internal surfaces or friction, but with heat transfer through the pipe wall.
Then (9.77) holds:

u2
2

2
+ h2 =

u2
1

2
+ h1 + q . (9.116)

In the application of the balance of momentum, we assume here that there is
no friction at the wall. Because of �F = 0 and A1 = A2 we obtain from (9.43)

�2u
2
2 + p2 = �1u

2
1 + p1 . (9.117)
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With the continuity equation

�2u2 = �1u1, (9.118)

and the equation of state h = h(p, �), e.g., for the calorically perfect gas

h =
γ

γ − 1
p

�
, (9.119)

four equations with four unknowns are available. For a real gas this system of
equations can be solved iteratively, but for the perfect gas the solution can be
stated explicitly. However, here we only want to demonstrate an important
property of this flow. From the balance of momentum

� u2 + p = C1 , (9.120)

and the continuity equation
� u = C2 , (9.121)

we extract the relation
C2

2

�
+ p = C1 . (9.122)

Equation (9.122) holds in inviscid flow, independent of whether heat is added
or removed. The graphical representation of this equation p = p(�) is called
the Rayleigh curve. In general we can state the equations of state for the
enthalpy and entropy of a substance, h = h(p, �) and s = s(p, �), often in the
form of a diagram. For the perfect gas these are the Eqs. (9.119) and

s = s0 + cv ln

(
p

p0

(
�

�0

)−γ
)

. (9.123)

Using these two equations of state the Rayleigh curve can be transformed
into an h-s-diagram (Fig. 9.19). If we heat the gas we raise its entropy and
move along the curve from left to right. We obtain the velocity in the pipe
by differentiating (9.122) and inserting (9.121) to get

u2d� = dp (9.124)

or
u2 =

(
dp
d�

)

R

, (9.125)

where the index R means that the change of pressure with density is to be
taken along the Rayleigh curve. If the heating is sufficiently high, we reach
a point where (ds/dh)R = 0 and which lies on the isentrope s = const.
Therefore for this point we have

u2 =
(

dp
d�

)

R

=
(
∂p

∂�

)

s

= a2 , (9.126)
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Fig. 9.19. Rayleigh curve for the perfect diatomic gas (γ = 1.4)

and we see that this point corresponds to M = 1. If we cool the gas we
decrease its entropy and we move along the curve from right to left. On the
upper part of the curve (the subsonic branch) the Mach number is increased
by heating as a consequence of the increase in entropy, and we see that there
is a region where the enthalpy decreases with increasing entropy.

For a perfect gas this means that the temperature decreases there while
the entropy increases. Clearly we cannot move through the point M = 1 from
either the subsonic or the supersonic branch by heating, since the entropy
would then have to decrease under heating. Of course, starting for example
from the subsonic branch, we can apply heat until M = 1 is reached, and
then remove heat to move back along the supersonic branch. If the Mach
number M = 1 is reached at the exit (2) in the duct flow in Fig. 9.20, the
greatest possible heat is thus added for a given mass flux.

Fig. 9.20. Pipe flow with addition of heat
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If, in spite of this, we increase the heating further, the flow conditions
change at position (1): the mass flux and with this the Mach number are
reduced, so that increased heating again leads to M = 1 at the position (2).

We shall now consider the case where no heat is supplied in a duct of
constant cross-section, but where friction may occur. From the continuity
equation (9.121) and the energy equation

u2

2
+ h = C3 , (9.127)

which we derive from (2.114) in the same manner that led to (9.77), we obtain
the Fanno curve h = h(�):

1
2

(
C2

�

)2

+ h = C3 . (9.128)

This can also be transformed into an h-s-diagram using the equation of state
s = s(�, h) (Fig. 9.21). The Fanno curve is valid for a duct flow without
heating, independent of the size of the wall friction. On this curve there is
again a point where (ds/dh)F = 0 and through which the isentrope goes.
From Gibbs’ relation

T ds = dh− dp
�

, (9.129)

it follows that for this point
(

dp
dh

)

F

= � =
(
∂p

∂h

)

s

. (9.130)

Using (9.128) and (9.121) we further have

u2

�
d� = dh (9.131)

or (
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)
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u2
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)
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(9.132)

and, because of � = (∂p/∂h)s finally

u2 =
(
∂p

∂h

)

s

(
∂h

∂�

)

s

=
(
∂p

∂�

)

s

= a2 . (9.133)

The velocity associated with the point is again the velocity of sound. The
upper part of the curve is the subsonic branch and the lower is the supersonic
branch. Since in a flow where there is friction the entropy can only increase,
the Mach number always increases in the subsonic branch until M = 1, but
always decreases in the supersonic branch until the Mach number M = 1
is reached. Again the velocity of sound is reached at the end of the pipe. If
we increase the effect of friction, for example by lengthening the pipe in the
subsonic region, then the mass flux must decrease. In the supersonic region,
if the length of the duct is greater than that where M = 1 is reached at the
exit, a shock wave occurs and this brings the flow to subsonic velocity.
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Fig. 9.21. Fanno curve for the perfect diatomic gas (γ = 1.4)

9.2.3 The Normal Shock Wave Relations

The shock wave mentioned in connection with the nozzle flow, i. e. the dis-
continuous transition from supersonic to subsonic velocity, occurs very often
in supersonic flows. Here we shall discuss the normal shock wave, in which
the shock surface is perpendicular to the velocity. However the more general
relations of the oblique shock wave can be obtained from the results.

For most purposes it is enough to consider the shock wave as a surface of
discontinuity across which the flow variables suddenly change. In what follows
we shall derive relations from the conservation laws from which the quantities
behind the shock can be determined knowing the corresponding ones in front
of the shock. Strictly speaking the shock is not a surface of discontinuity. The
quantities actually change continuously over a distance which is of the order
of magnitude of the mean free path, and thus can be taken as infinitesimally
small in almost all technical problems. Inside the shock the heat conduction
and friction effects play a decisive role and the structure can be determined
from, among other things, the Navier-Stokes equations. The theoretical and
experimental results agree well for small supersonic Mach numbers. However
we shall not go into the calculation of the shock structure here since in prac-
tice it is usually enough to know the change in flow quantities across the
shock.

We assume that changes in velocity and temperature in front of and be-
hind the actual shock vanish, or are at least much smaller than the changes
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within the shock itself. Since the thickness of the shock is very small, we
neglect all volume integrals in the application of the conservation laws to the
shock. (In particular, this is also the case for the unsteady flow to be dis-
cussed later.) In addition we neglect the external heating, since the surface
of integration Sw in the balance of energy (9.75) tends to zero. From the
continuity equation (9.8), the balance of momentum (9.41) and the balance
of energy (9.75), we then obtain:

�1u1 = �2u2 , (9.134)

�1u
2
1 + p1 = �2u

2
2 + p2 , and (9.135)

u2
1

2
+ h1 =

u2
2

2
+ h2 , (9.136)

where the index 1 denotes the position just in front of the shock and the
index 2 the position just behind (Fig. 9.22).

Since the thickness of the shock is assumed to be infinitesimally small,
the areas A1 and A2 are the same, even if the cross-section of the duct varies.
The balance laws provide three equations for the four unknowns u2, �2, p2

and h2. The system is made determinate by the addition of the equation of
state

p = p(�, h) (9.137)

in the form of a Mollier chart, or else for the perfect gas

p = � h
γ − 1
γ

. (9.138)

With these, knowing the state in front of the shock, the state behind the
shock can be determined, and the shock structure itself does not need to be
known.

In general, only compression shock waves occur where �2 > �1, but ex-
pansion shock waves are also possible, according to the second law of thermo-
dynamics if the inequality (∂2p/∂v2)s < 0 holds, as is possible, for example,
near the critical point.

Fig. 9.22. Normal shock wave
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In what follows we shall only deal with compression shocks and first shall
discuss the application of the conservation laws for a real gas whose Mollier
chart is given. If we insert the continuity equation (9.134) into the balances
of momentum (9.135) and of energy (9.136) we obtain

p2 − p1 = �1u
2
1

(
1 − �1

�2

)
(9.139)

and

h2 − h1 =
u2

1

2

[
1 −

(
�1

�2

)2
]
. (9.140)

The following calculation proceeds best if, for a given state in front of the
shock, we estimate the density ratio �1/�2 across the shock, since it, contrary
to the pressure and temperature ratios, remains finite even for a very strong
shock. From (9.139) and (9.140) we directly obtain the pair of values (h2, p2),
and using these find a new �2 from the Mollier diagram, from which a more
precise estimate of the density ratio �1/�2 is obtained. Usually a few iterations
are enough to determine the state behind the shock to the required precision.

Again for the calorically perfect gas closed relations can be given. We first
of all eliminate the velocity u1 from (9.139), (9.140), and obtain a relation
solely between thermodynamic quantities, the so-called Hugoniot relation:

h2 − h1 =
1
2
(p2 − p1)

(
1
�1

+
1
�2

)
, (9.141)

which still holds in general. Using (9.138) we find for the perfect gas the
relation

p2

p1
=

(γ + 1)�2/�1 − (γ − 1)
(γ + 1) − (γ − 1) �2/�1

, (9.142)

between the pressure and the density ratios, from which we infer, for p2/p1 →
∞, the maximum density ratio

(
�2

�1

)

max

=
γ + 1
γ − 1

. (9.143)

Contrary to this Hugoniot change of state (Fig. 9.23), we have for the isen-
tropic change of state

p2

p1
=
(
�2

�1

)γ

, (9.144)

and in the limit p2/p1 → ∞ we obtain an infinitely large density ratio �2/�1.
The maximum density ratio across a shock for diatomic gases with γ =
cp/cv = 7/5 is then �2/�1 = 6, for fully excited internal degrees of freedom
of the molecular vibration (γ = 9/7) we find �2/�1 = 8, and for monatomic
gases (γ = 5/3) then �2/�1 = 4.
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Fig. 9.23. Hugoniot curve for the perfect diatomic gas (γ = 1.4)

We note that because p = �RT ,

p2

p1
=
�2

�1

T2

T1
(9.145)

holds, and so for the limit p2/p1 → ∞, T2/T1 also tends to infinity. If we
solve (9.139) for the velocity, it follows that

u2
1 =

p1

�1

(
p2

p1
− 1
)(

1 − �1

�2

)−1

, (9.146)

and with a2 = γ p/� for the calorically perfect gas also
(
u1

a1

)2

= M2
1 =

1
γ

(
p2

p1
− 1
)(

1 − �1

�2

)−1

, (9.147)

from which we can eliminate �1/�2 using the Hugoniot relation (9.30).
In this manner we obtain an equation for the pressure ratio

(
p2

p1
− 1
)2

− 2
γ

γ + 1
(M2

1 − 1)
(
p2

p1
− 1
)

= 0 , (9.148)

which, besides the trivial solution p2/p1 = 1 (no shock), also has the solution

p2

p1
= 1 + 2

γ

γ + 1
(M2

1 − 1) . (9.149)
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This is an explicit relation between the pressure ratio across the shock and the
Mach number M1 in front of the shock. For M1 = 1 both solutions merge into
one another and the shock becomes a sound wave. Equation (9.149) shows
that, for a shock wave (p2/p1 > 1) the Mach number M1 must be greater
than one, and that for a very strong shock (M1 → ∞) the pressure ratio
tends to infinity. If we replace p2/p1 in (9.149) using the Hugoniot relation
(9.142), we acquire the equation for the jump in density

�2

�1
=

(γ + 1)M2
1

2 + (γ − 1)M2
1

, (9.150)

which leads us again to the result (9.143) for M1 → ∞. Because of (9.145)
we can now use (9.149) and (9.150) to obtain the jump in temperature as

T2

T1
=
p2

p1

�1

�2
=

[2γM2
1 − (γ − 1)][2 + (γ − 1)M2

1 ]
(γ + 1)2M2

1

. (9.151)

To find the Mach number behind the shock, we use the continuity equation
(9.134) and a2 = γp/� to get

M2
2 =

(
u2

a2

)2

= u2
1

(
�1

�2

)2
�2

γ p2
= M2

1

p1�1

p2�2
, (9.152)

from which, using (9.149) and (9.150), we finally find

M2
2 =

γ + 1 + (γ − 1)(M2
1 − 1)

γ + 1 + 2γ(M2
1 − 1)

. (9.153)

We infer from this equation that in a normal shock wave, because M1 > 1,
the Mach number behind the shock is always lower than 1. In the case of
a very strong shock (M1 → ∞), M2 takes on the limiting value

M2|(M1→∞) =
√

1
2
γ − 1
γ

. (9.154)

The shock relations are tabulated in Appendix C for γ = 1.4 and are graphed
in Fig. 9.24.

Because of the irreversible processes (friction, heat conduction), the en-
tropy increases through the shock. We apply Reynolds’ transport theorem
(1.96) to (2.143) and it follows that for an infinitesimally thin shock,

∫∫

(S)

� s(�u · �n) dS > 0 , (9.155)

or using the continuity equation (9.134),

s2 − s1 > 0 . (9.156)
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Fig. 9.24. Mach number and variables of state behind a shock as functions of the
Mach number in front of the shock

We can confirm this explicitly for the calorically perfect gas if we use the
equation arising from (9.123)

s2 − s1 = cv ln

[
p2

p1

(
�2

�1

)−γ
]

(9.157)

and eliminate the density ratio using the Hugoniot relation (9.142):

s2 − s1 = cv ln
[
p2

p1

(
(γ − 1)p2/p1 + γ + 1
(γ + 1)p2/p1 + γ − 1

)γ]
. (9.158)

For p2/p1 → ∞ the entropy difference tends logarithmically to infinity. For
a weak shock we set p2/p1 = 1 + α and write out the following relation by
expanding the right-hand side for small α:

s2 − s1
cv

=
γ2 − 1
12γ2

(
p2 − p1

p1

)3

. (9.159)

This shows directly that for calorically perfect gases, p2 − p1 must always
be greater than zero so that only compression shock waves can occur, since
otherwise the entropy would have to decrease across the shock.

9.3 Unsteady Compressible Flow

Just as in steady compressible flow, shocks also occur in unsteady compress-
ible flow as surfaces separating different flow regions across which the shock
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relations must be satisfied. The shock relations therefore play the role of
boundary conditions. First we shall discuss the shock relations for a shock
wave which is in motion. As we have already noted, the volume integrals
drop out of the balance laws even for unsteady shocks (shocks moving with
varying velocity) as long as the shock thickness is taken to be infinitesimally
thin. Therefore the balance equations (9.134) to (9.136) and all the relations
derived from these are still valid; we only have to pay attention to choose the
correct velocities in front of and behind the shock.

To do this we shall consider a shock moving with velocity us(t) in a duct
(not necessarily with constant cross-section) (Fig. 9.25).

Let the flow in front of the shock have the velocity u′1 and the thermo-
dynamic quantities p1, �1 and h1. We characterize the gas velocity in this
system with a dash and call the reference system in which the duct is at rest
and the shock is moving the laboratory frame, because this is the system in
which experimental measurements are often made.

We distinguish this reference system from the moving reference frame in
which the shock is at rest and so the steady shock relations (9.149), (9.150),
(9.151) and (9.153) are valid. The moving reference frame is obtained by
superimposing the shock velocity to all velocities in such a way that the
shock itself is at rest (Fig. 9.26). Doing this we obtain the transformation
equations

u1 = us − u′1 , (9.160)

and
u2 = us − u′2 , (9.161)

where we take the velocities to be positive if they are opposite to �τ , as denoted
by the arrows in Fig. 9.26. The results from the steady shock relations can
thus be carried over to the laboratory frame. Often the velocity in front of
the shock is zero in the laboratory system, therefore,

u′1 = 0 ; since u1 = us , (9.162)

it is sufficient to replace M1 in the shock relations for perfect gas by the shock
Mach number

Ms =
us

a1
(9.163)

in order to obtain the shock relations of the moving shock. Then for the
velocity u2 in the moving frame we use (9.161) and the continuity equation

Fig. 9.25. Shock in the laboratory frame
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Fig. 9.26. Shock in the moving reference frame

in this frame
�1us = �2u2 (9.164)

to obtain the relation
u′2 = us

(
1 − �1

�2

)
. (9.165)

In this equation we can again replace �1/�2 using the shock relation (9.150),
so that

u′2 =
2

γ + 1
a1

(
Ms − 1

Ms

)
. (9.166)

For very high shock Mach numbers we find that

u′2|(Ms→∞) =
2

γ + 1
us , (9.167)

and we see that gas flows with high velocities can be produced behind the
shock. However, further consideration shows that while the gas reaches su-
personic velocity, the Mach number M ′

2 remains bounded as a consequence
of the strong heating of the gas. From (9.161) we have for the Mach number

M ′
2 =

u′2
a2

= Ms
a1

a2
−M2 , (9.168)

where we replace a1/a2 by
√
T1/T2 and introduce the resulting expression in

the shock relation (9.151). We then extract the limit

M ′
2|(Ms→∞) =

√
2

γ(γ − 1)
≈ 1.89 (for γ = 1.4) (9.169)

for Ms → ∞. (At high Mach numbers, air shows real gas effects and conse-
quently higher values of M ′

2 are reached.)
To calculate the unsteady flow in the framework of stream filament theory

we begin with the differential form of the balance equations. We obtain the
differential form of the continuity equation from its integral form (9.8) if we
integrate there only over the differential length dx and replace the quantities
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at position (2) by a Taylor expansion about the position (1). This leads to
the equation

A
∂�

∂t
dx+�

∂A

∂t
dx−� uA+

(
�+

∂�

∂x
dx
)(

u+
∂u

∂x
dx
)(

A+
∂A

∂x
dx
)

= 0 ,

(9.170)
which reduces to

∂(�A)
∂t

+
∂(� uA)
∂x

= 0 , (9.171)

where the terms quadratic in dx drop out in the limit dx → 0. For the
differential form of the equations of motion we begin directly with (4.56) and
neglect the volume body forces:

∂u

∂t
+ u

∂u

∂x
= −1

�

∂p

∂x
. (9.172)

In (9.172) the friction effects can also be accounted for phenomenologically,
by adding the additional pressure gradients according to (9.26). As already
noted, however, the friction coefficients are mostly unknown for unsteady
flow. Therefore in what follows we shall restrict ourselves to loss free adiabatic
flow, which is then isentropic. From the general equation of state � = �(p, s),
and using Ds/Dt = 0 it follows that

D�
Dt

=
[
∂�

∂p

]

s

Dp
Dt

= a−2 Dp
Dt

. (9.173)

In addition we restrict ourselves to flows through ducts of constant cross-
section. Then the continuity equation (9.171) takes on the form (2.3a), which
reads here:

D�
Dt

+ �
∂u

∂x
= 0 . (9.174)

If we also insert (9.173), after multiplying with a/� we obtain

1
� a

∂p

∂t
+

u

� a

∂p

∂x
+ a

∂u

∂x
= 0 . (9.175)

Adding this equation to the equation of motion (9.172) we extract the inter-
esting relation

∂u

∂t
+ (u+ a)

∂u

∂x
+

1
� a

(
∂p

∂t
+ (u+ a)

∂p

∂x

)
= 0 . (9.176)

If we view this equation in connection with the general time derivative (1.19)
(there applied to the temperature) we come to the following interpretation:
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along the path of an observer described by dx/dt = u+ a, the change du/dt
is equal to the change dp/dt multiplied by −(� a)−1. Instead of the partial
differential equation (9.176) two coupled ordinary differential equations then
appear:

du+
1
� a

dp = 0 along dx = (u+ a) dt . (9.177)

If we subtract (9.175) from (9.172) we extract the equation

∂u

∂t
+ (u− a)

∂u

∂x
− 1
� a

(
∂p

∂t
+ (u − a)

∂p

∂x

)
= 0 , (9.178)

from which follow the two ordinary differential equations

du− 1
� a

dp = 0 along dx = (u− a) dt . (9.179)

Ds/Dt = 0 (cf. (4.48)) clearly implies that the change in the entropy of
a material particle vanishes; expressed otherwise, the change in entropy along
a particle path is zero:

ds = 0 along dx = u dt . (9.180)

The rearrangement and interpretation described have allowed us to reduce
the three nonlinear partial differential equations (9.172), (9.174), and (4.48)
to a system of six ordinary differential equations. From a mathematical point
of view, we note that this equivalence represents the fundamental content of
the theory of characteristics , which is a theory for the solution of systems of
hyperbolic differential equations. The system of equations (9.172), (9.174),
and (4.48) is of this hyperbolic kind. The method of solution can also be
carried over to steady supersonic flow because the differential equations de-
scribing supersonic flow are hyperbolic. We call the solution curves of the
differential equations

dx
dt

= u± a and
dx
dt

= u (9.181)

in the x-t-plane characteristics ; the path of a particle is therefore also a char-
acteristic. The differential equations which are valid along these characteris-
tics are called characteristic or sometimes compatibility relations .

As an example of their application we shall consider homentropic flow,
for which

∂s

∂x
= 0 (9.182)

is valid and because of Ds/Dt = 0 also

∂s

∂t
= 0 . (9.183)
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Therefore, the entropy is constant in the entire x-t-plane, in particular along
the characteristic lines. The Eqs. (9.180) which determine the distribution of
the entropy thus drop out. From (9.93),

p = C �γ ,

where C is an absolute constant due to the constancy of the entropy, it follows
that

dp
d�

= a2 = C γ �γ−1 . (9.184)

Using this, the compatibility relations (9.177) and (9.179),

du± 1
� a

dp = du± a

�
d� = du±

√
γ C �(γ−1)/2 d�

�
= 0 (9.185)

can be directly integrated:

u+
√
γ C

2
γ − 1

�(γ−1)/2 = u+
2

γ − 1
a = 2r , (9.186)

u−
√
γ C

2
γ − 1

�(γ−1)/2 = u− 2
γ − 1

a = −2s , (9.187)

The constant of integration 2r is constant along the characteristic described
by dx/dt = u + a; −2s is constant along the characteristic dx/dt = u − a.
We call these constants of integration Riemann invariants.

We now use these equations to calculate the flow in an infinitely long duct.
Since the duct has no ends we are dealing with a pure initial value problem.
At time t = 0 the initial condition in the duct is given by u(x, 0) and a(x, 0)
(Fig. 9.27). We are looking for the state of the flow at a later instant in time t0
at the place x0, which is denoted in the x-t-plane as the point P0 = P (x0, t0)

Fig. 9.27. Initial distributions
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Fig. 9.28. Characteristics in the x–t plane

(Fig. 9.28). The quantities 2r and −2s are constant along the characteristics
and are given by the initial conditions. Therefore, we must have:

2r = u(xA, 0) +
2

γ − 1
a(xA, 0) = u(x0, t0) +

2
γ − 1

a(x0, t0) , (9.188)

and

−2s = u(xB , 0) − 2
γ − 1

a(xB , 0) = u(x0, t0) − 2
γ − 1

a(x0, t0) , (9.189)

where xA and xB are points through which the characteristics pass. With
these we now know u and a at the point P0:

u(x0, t0) = r − s , (9.190)

a(x0, t0) =
γ − 1

2
(r + s) . (9.191)

The characteristics which run through the point P0 and points xA and
xB are not yet known. They can be determined by approximation: we fix
a series of points along the x-axis, and at these we know the directions of
the characteristics from the initial values. We approximate the characteristics
by their tangents at these points. At the point where the tangents cross we
can determine the values of u and a by the above method; but by doing
this we again know the directions of the characteristics in these points and
can approximate again. This process must be carried out until we reach the
point P0 that we want. The state of the flow at the point P0 only depends
on the initial data in the interval between xA and xB. We call this interval
the domain of dependence of the point P0 (Fig. 9.29). On the other hand the
initial conditions at a point PI only act in a bounded region, the range of
influence of the point PI .
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Fig. 9.29. Domain of dependence and range of influence in the x–t plane

Another example is an initial-boundary value problem: in an infinitely
long tube at position x = 0 there is a piston which is accelerated suddenly
to a constant velocity −|up| at time t = 0. The state in the tube before
the piston is set in motion is given by u = 0, a = a4. Therefore, the initial
conditions are

u(x > 0, t = 0) = 0 ; a(x > 0, t = 0) = a4 (9.192)

and
−|up| ≤ u(x = 0, t = 0) ≤ 0 . (9.193)

The initial condition (9.193) comes from the fact that as the piston is set sud-
denly in motion at the position x = 0 at time t = 0 (thus in an infinitesimally
short time), the gas must pass through the whole velocity interval, from the
undisturbed velocity u = 0 up to the velocity given by the kinematic bound-
ary condition

u(x = xp, t) = −|up| (9.194)

at the piston (piston path xp = −|up| t). Therefore, the point Ps = P (0, 0) is
a singular point in the x-t-plane. To solve the problem we have available the
equations for the characteristics

dx
dt

= u± a (9.195)

as well as the Eqs. (9.190) and (9.191), which read in general

u = r − s (9.196)

and
a =

γ − 1
2

(r + s) , (9.197)
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where the Riemann constants r and s are given by (9.186) and (9.187). As
before we determine their values from the initial conditions. First it follows
from (9.192) that

2r =
2

γ − 1
a4 and − 2s = − 2

γ − 1
a4 , (9.198)

and then we find from (9.196) u = 0 and from (9.197) a = a4 in a solution
domain outside the range of influence of the singular point Ps, where the
initial condition (9.193) holds. From

dx
dt

= +a4 it follows that x = +a4t+ const (9.199)

and from
dx
dt

= −a4 it follows that x = −a4t+ const . (9.200)

The characteristics with the positive sign on “a” point to the right and are
therefore called forward-facing characteristics for short, although in general
they could point to the left also; we shall denote them less ambiguously as
C+ characteristics . The characteristics with the negative sign on “a” are
called backward-facing or C− characteristics . The constants of integration
are determined by the x value, the characteristics take at t = 0.

The range of influence of the singular point Ps is bounded on the right
by the C+ characteristic through Ps, for which u = 0 still holds. Between
this characteristic x = a4t and the x axis the flow velocity is u = 0 and the
velocity of sound is a = a4. Physically this characteristic can be interpreted
as a wave which reports the first effect of the piston motion to the gas at
rest in the tube. In compressible media such a report can only propagate
at a finite velocity, namely the velocity of sound. However a whole bundle
of forward-facing characteristics whose slopes dx/dt = u + a take on all the
values between a4 and −|up| + a3 run through the singular point Ps. These
characteristics are already drawn as straight lines in Fig. 9.30, since we shall
presently show that both u and a are constant along these C+ characteristics.

We calculate u at the point P1 in Fig. 9.30 and using (9.186) and (9.187)
obtain from (9.196)

u =
1
2

(
u+

2
γ − 1

a

)
− 1

2

(
2

γ − 1
a4

)
, (9.201)

where −2s is fixed by the initial condition (9.192) and 2r follows from the
initial condition (9.193).

If we now calculate the velocity u at the point P ′
1 on the same C+ char-

acteristic, we are led to exactly the same equation, because the value of the
Riemann invariant 2r is the same along the same characteristic, and the value
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Fig. 9.30. x-t diagram of the piston problem

of −2s is also the same on all C− characteristics, since they come from a re-
gion of homogeneous flow conditions. The velocity of sound a at the point P1

follows from (9.197) as

a =
γ − 1

2

[
1
2

(
u+

2
γ − 1

a

)
+

1
2

(
2

γ − 1
a4

)]
, (9.202)

and just as before we show that a has the same value at the point P ′
1 as at

the point P1. Thus u and a are constant on forward-facing characteristics,
and the equation of the characteristics through the origin Ps reads

x = (u+ a) t , −|up| ≤ u ≤ 0 . (9.203)

We insert this equation into (9.201), solve for u and in this way obtain u
explicitly as a function of x and t:

u =
2

γ + 1

(x
t
− a4

)
. (9.204)

We insert this u into (9.203) and obtain

a =
γ − 1
γ + 1

x

t
+

2
γ + 1

a4 . (9.205)

We could have reached exactly the same results using (9.202). We obtain the
last characteristic belonging to the “fan” from (9.203) if we set u = |up| there.



9.3 Unsteady Compressible Flow 309

We call the velocity of sound met on this characteristic a3, and calculate it
from (9.205) by inserting x = (−|up| + a3)t:

a3 = −γ − 1
2

|up| + a4 . (9.206)

In order to calculate the velocity of sound at the piston (point P2) we can
use Eq. (9.202) by setting u = −|up| and a = ap,

ap = −γ − 1
2

|up| + a4 , (9.207)

and comparing this with (9.206) shows

ap = a3 . (9.208)

Since the same result is found for every point P2 on the path of the piston
we conclude that the velocity of sound a = a3 and the velocity u = −|up|
prevail in the region between the piston path xp = −|up| t and the last C+

characteristic x = (−|up| + a3).
Therefore, we find three different solution regions. The first region, labeled

(4) in Fig. 9.30, is between the positive x axis and the initial characteristic
x = a4t of the fan. The flow velocity is u = 0 and the velocity of sound is
a4 there. All characteristics in this region are parallel lines, Next to this is
the solution region between the initial characteristic x = a4t and the end
characteristic x = (−|up| + a3)t, where u and a are given by (9.204) and
(9.205). This region represents the so-called expansion wave which widens
as it moves into the positive x direction. The C+ characteristics there are
straight lines, spacing out to form a fan; the C− characteristics in this region
are no longer straight lines. We call this region the expansion fan. Next to
this is the region labeled (3) between the end characteristic and the path of
the piston, in which all the characteristics are again straight lines. The flow
is homentropic, i. e. (9.93) or else

p

p4
=
(
�

�4

)γ

(9.209)

is valid everywhere; therefore

p3

p4
=
(
T3

T4

)γ/(γ−1)

=
(
a3

a4

)2γ/(γ−1)

=
(

1 − γ − 1
2

|up|
a4

)2γ/(γ−1)

. (9.210)

A vacuum is produced at the piston base if

|up| =
2

γ − 1
a4 . (9.211)

Since up is equal to the gas velocity at the bottom of the piston, Eq. (9.211)
represents the maximum possible velocity which can be reached in unsteady
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expansion of a calorically perfect gas. This is considerably larger than the
maximum velocity in steady flow (cf. (9.101)). Of course the result (9.211)
does not contradict the energy equation. If the piston is moved even faster,
a region in which vacuum prevails is generated between the piston and the
gas.

Just as in (9.201) we obtain the pressure distribution in the expansion
fan as

p

p4
=
(

1 +
γ − 1

2
u

a4

)2γ/(γ−1)

(9.212)

or written explicitly in x and t

p

p4
=
(
γ − 1
γ + 1

x

a4t
+

2
γ + 1

)2γ/(γ−1)

(9.213)

The density distribution in the expansion fan is calculated from

�

�4
=
(
p

p4

)1/γ

. (9.214)

In Fig. 9.31 we see the distribution of velocity u and pressure p for fixed t. It
is clear from the figure that the flow quantities may have discontinuities in

Fig. 9.31. Distribution of the velocity and the pressure inside an expansion fan
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their derivatives. This is typical for the solution of hyperbolic equations. (Dis-
continuities in the derivatives also propagate along the characteristic lines.)
To complete the picture we state the particle path in the expansion fan

x = − 2
γ − 1

a4t+
γ + 1
γ − 1

a4t0

(
t

t0

)2/(γ+1)

, (9.215)

which is obtained as a solution of the linear differential equation

dx
dt

= u =
2

γ + 1

(x
t
− a4

)
(9.216)

with the initial condition x(t0) = a4t0 using standard methods. The equation
of the C− characteristic is found from the solution of the differential equation

dx
dt

= u− a =
3 − γ

γ + 1
x

t
− 4
γ + 1

a4 (9.217)

to be

x = − 2
γ − 1

a4t+
γ + 1
γ − 1

a4t0

(
t

t0

)(3−γ)/(γ+1)

. (9.218)

The solution of the initial-boundary value problem we have discussed
is one of the very few exact and closed solutions for the nonlinear system
(9.172), (9.174) and (4.48). Basically this is due to the fact that no typical
lengths enter into the problem. Since no typical time occurs, the independent
variables can also only appear in combinations of x/t. Therefore the problem
only depends on one similarity variable x/t.

If the piston is moved to the left with a finite acceleration fp(t) it still holds
that the gas velocity u and the velocity of sound a are constant along every
C+ characteristic. Our problem is now to calculate for a general point P (x, t),
the intersection P ∗(x∗, t∗) of the forward-facing characteristic with the path
of the piston (Fig. 9.31). With t∗ = t∗(x, t) we find the desired velocity to
be u(x, t) = −|up(t∗)| and the velocity of sound to be a(x, t) = ap(|up(t∗)|)

Fig. 9.32. Piston with finite acceleration (expansion)
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according to (9.207). If the piston acceleration fp is constant, an explicit
solution can be given:

u(x, t) = −
⎡

⎣a4

γ
+
γ + 1
2γ

fpt−
√(

a4

γ
+
γ + 1
2γ

fpt

)2

− 2fp

γ
(a4t− x)

⎤

⎦ ,

(9.219)

a(x, t) = a4 +
γ − 1

2
u(x, t) , (9.220)

which is valid for x ≤ a4t. To the right of the first C+ characteristic, thus for
x > a4t, we again have u = 0 and a = a4.

If the piston moves with finite acceleration in the positive x direction, then
compression waves occur, which satisfy exactly the same equations as the ex-
pansion waves. However now the characteristics of the same family (C+) can
intersect each other. Yet at the point of intersection of the characteristics, the
solution is no longer unique since different values of the Riemann invariants
r hold along the different characteristics. Since, for example, the velocity is
u = r − s, different velocities occur at the same point, something that is, of
course, physically impossible. The characteristics form an envelope, and in
the region enclosed within the envelope the solutions are no longer unique.
Experiments show that in these cases a shock wave forms (Fig. 9.33).

Fig. 9.33. Piston with finite acceleration (compression)
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The shock begins at the cusp P of the envelope, that is, at the position
where the solution ceases to be unique. The appearance of the shock is to
be expected physically because in the region where the characteristics crowd
together (just before they cross) the flow quantities change rapidly and the
changes in the velocity and temperature in the x-direction become so large
that friction and heat conduction can no longer be neglected. The equation
for the envelope can be stated in a closed form under certain assumptions
(i. e. for certain piston paths). However we can determine the starting point
of the envelope (and thus the position xP in the tube at which the shock
wave appears at time tP ) generally if the acceleration of the piston is at
no time larger than the initial acceleration. Then it is enough to consider
a constantly accelerated piston. Under this assumption we obtain the velocity
field immediately from (9.219) if we replace fp there by −fp:

u(x, t) =

√(
a4

γ
− γ + 1

2γ
fpt

)2

+
2fp

γ
(a4t− x)−

(
a4

γ
− γ + 1

2γ
fpt

)
(9.221)

and thus determine ∂u/∂x to be

∂u

∂x
= −

[(
a4

γ
− γ + 1

2γ
fpt

)2

+
2fp

γ
(a4t− x)

]−1/2
fp

γ
. (9.222)

Since ∂u/∂x tends to infinity at the cusp of the envelope, we obtain this
point by setting the expression in brackets in (9.222) to zero. Because of
x ≤ a4t the bracket only vanishes for

xP = a4tP , (9.223)

i.e. the point lies on the initial characteristic. In addition it must hold that

a4

γ
=
γ + 1
2γ

fptP , (9.224)

from which we determine the t-coordinate to be

tP =
2

γ + 1
a4

fp
. (9.225)

For fp(0) → ∞ the starting point lies at the origin. If the piston is set in
motion suddenly with constant velocity, the shock forms at the origin of the
x-t-plane (Fig. 9.34), i.e., the shock immediately forms which moves ahead
of the piston at constant velocity.

If we apply the Eqs. (9.177) and (9.179) to liquids, the velocity u is often
much smaller than the velocity of sound a. Then the density and the velocity
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Fig. 9.34. Piston suddenly set in motion (compression)

of sound in the flow change very little from their undisturbed values a4 and
�4, so that instead of (9.177) and (9.179) we can write:

du +
1

�4a4
dp = 0 for C+ : x = +a4t+ const (9.226)

and
du− 1

�4a4
dp = 0 for C− : x = −a4t+ const . (9.227)

Here then the characteristics are always straight lines in the x–t diagram.
These equations are the starting point for the numerical calculation of pres-
sure waves in hydraulic pipes (hydroelectric power stations, fuel injection
systems, water mains, etc.), as they may occur if valves are suddenly opened
or closed. Since in liquids the sound speed and the density is comparatively
high, the pressure changes can become so large, even for small changes in
velocity, that conduits may be damaged structurally.

If valves are shut suddenly, the pressure downstream can drop below the
vapor pressure, so that the fluid cavitates. As the cavity is refilled, a very
high pressure occurs again. A velocity change of, for example, Δu = 2 m/s
originating with a closure of valve leads to a pressure wave which propagates
with the velocity of sound a4 = 1400 m/s (for water) upstream, with

Δp = 2 m/s · 1400 m/s · 1000 kg/m3 = 28 bar .

However, the effective velocity of sound is often smaller, on the one hand
because the elasticity of the pipe wall lowers the propagation velocity, and
on the other hand because small air bubbles are often found in the fluid and
these also lower the effective speed of sound.



10 Potential Flows

As the discussions in Sects 4.1 and 4.3 have already shown, solid walls and
discontinuities in the tangential velocity represent surfaces from which an-
gular velocity (�ω = curl�u/2) diffuses into the flow field. Since the widths of
the developing regions (boundary layers) tend to zero in the limit Re → ∞,
the flow can be treated within the framework of potential theory. Because
of the kinematic restriction of irrotationality, only the kinematic boundary
condition, but not the no slip condition, can be satisfied. Therefore potential
flows, although they are exact solutions of the Navier-Stokes solutions in the
incompressible case, can in general only describe the flow field of an inviscid
fluid (with exceptions, like the potential vortex for the flow around a rotat-
ing cylinder). However, the results of a calculation for inviscid fluid can be
carried over to real flows as long as the flow does not separate. If separation
does occur, the boundaries of the separation region are generally not known.
In cases where these boundaries are known or can be reasonably estimated,
a theory based on inviscid flow can also be useful.

Besides ignoring the viscosity, the overriding simplifications of the theory
of potential flows stem from the introduction of a velocity potential and
the use of Bernoulli’s equation (with Bernoulli’s constant the same value
everywhere in the flow field). Therefore the flow is described by the continuity
equation (2.3) and Bernoulli’s equation (4.73). We introduce the velocity
potential from (1.50)

ui =
∂Φ

∂xi

into the continuity equation. To do this we use the assumption of barotropy,
which is already within Bernoulli’s equation:

dP =
1
�
dp , (10.1)

or, by (9.184)
dp = a2d�, (10.2)

also

dP =
a2

�
d� , (10.3)
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and express ∂�/∂t and ∂�/∂xi by � a−2∂P/∂t and � a−2∂P/∂xi, respectively.
Thus we obtain (2.3a) in the form

a−2 ∂P

∂t
+ a−2 ∂Φ

∂xi

∂P

∂xi
+

∂2Φ

∂xi∂xi
= 0 , (10.4)

which together with Bernoulli’s equation (4.73)

∂Φ

∂t
+

1
2
∂Φ

∂xi

∂Φ

∂xi
+ P + ψ = C(t)

furnishes two coupled equations for the two unknowns P and Φ. In applying
potential theory to compressible flow, ψ can usually be ignored. However it
is seldom necessary to solve these nonlinear equations, which almost always
require numerical methods.

10.1 One-Dimensional Propagation of Sound

We shall consider the case where ui = ∂Φ/∂xi and ∂P/∂xi are so small that
all the nonlinear terms can be neglected, and � and a can be approximated by
the unperturbed quantities �0 and a0. Within the scheme of Sect. 4.4, besides
the simplifications of type a) in the constitutive relation (zero viscosity) and
of type c) in the kinematics (potential flow), another simplification of type b)
in the dynamics (neglecting the convective terms) appears. In spite of this it
is clear from the derivation that we are still dealing with compressible flows
(D�/Dt �= 0.). Under this assumption, the continuity equation reads

∂P

∂t
+ a2

0

∂2Φ

∂xi∂xi
= 0 , (10.5)

while Bernoulli’s equation assumes the form

∂Φ

∂t
+ P = 0 , (10.6)

where the constant has been absorbed into the potential. (10.6) corresponds
to the linearized form of Euler’s equation �∂ui/∂t = −∂p/∂xi. If we differ-
entiate (10.6) with respect to t and subtract (10.5), we obtain

∂2Φ

∂t2
− a2

0

∂2Φ

∂xi∂xi
= 0 . (10.7)

This is the wave equation: it is the most important special case of a hyperbolic
partial differential equation. In (10.7) it describes the velocity potential Φ of
sound, in electrodynamics it describes the propagation of electromagnetic
waves and in the theory of oscillations, the transverse oscillations of strings
and membranes, or the longitudinal oscillations in elastic bodies.
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For the one-dimensional propagation of sound, for example in tubes, we
obtain (10.7) in the form

∂2Φ

∂t2
= a2

0

∂2Φ

∂x2
, (10.8)

whose general solution is known as d’Alembert’s solution:

Φ = h(x− a0t) + g(x+ a0t) . (10.9)

This solution can be directly verified by insertion. The unknown functions
h and g are determined by the initial and boundary conditions of a specific
problem. From (10.9) we obtain the velocity u as

u =
∂Φ

∂x
= h′(x − a0t) + g′(x + a0t) , (10.10)

where the dash denotes the derivatives of the functions with respect to their
arguments. Then from (10.6) we extract the pressure function as

P = −∂Φ

∂t
= a0h

′(x − a0t) − a0g
′(x + a0t) . (10.11)

For x = a0t + const, that is, along the C+ characteristics introduced in
Chap. 9, (10.10) furnishes

u = g′(x+ a0t) + const , (10.12)

and (10.11)
P = −a0g

′(x + a0t) + const . (10.13)

Within the framework of the assumptions being used, in (10.1) we replace �
by �0, and compare (10.12) and (10.13) to obtain

dp+ �0a0du = 0 along x = a0t+ const . (10.14)

In the same manner we find

dp− �0a0du = 0 along x = −a0t+ const . (10.15)

These are again the Eqs. (9.226) and (9.227). In Chap. 9 we dealt with
the nonlinear propagation of waves, but the assumptions which led to the
Eq. (9.226) and (9.227) reduced the general problem of nonlinear waves to
the problem of acoustics . We note that d’Alembert’s solution is a special
application of the theory of characteristics described in Chap. 9.

We shall first consider the application of d’Alembert’s solution to the
initial value problem, where the distributions of u and P = (p − p0)/�0 are
given for the time t = 0:

u(x, 0) = uI(x) , P (x, 0) = PI(x) . (10.16)
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Using this it follows from (10.10) that

uI(x) = h′(x) + g′(x) , (10.17)

and from (10.11)
PI(x) = a0h

′(x) − a0g
′(x) . (10.18)

With these we express the unknown functions h′(x) and g′(x) in terms of the
initial distributions:

h′(x) =
1
2
[uI(x) + a−1

0 PI(x)] , and (10.19)

g′(x) =
1
2
[uI(x) − a−1

0 PI(x)] . (10.20)

We insert these now known functions into, for example, the formula for ve-
locity (10.10):

u(x, t) =
1
2
[uI(x−a0t)+uI(x+a0t)]+

1
2
a−1
0 [PI(x−a0t)−PI(x+a0t)] . (10.21)

For simplicity let us take PI(x) ≡ 0 in the following example: for u we set
the initial condition

u(x, 0) = uI(x) =

{ 0 for x > b
1 for |x| ≤ b
0 for x < −b

, (10.22)

and we infer from (10.21) that the initial rectangular distribution (10.22)
resolves into two rectangular waves each of half the initial amplitude, of
which one moves to the right and the other to the left. From

u(x, t) =
1
2
uI(x− a0t) +

1
2
uI(x + a0t) , (10.23)

the initial distribution

uI(x) =
1
2
uI(x) +

1
2
uI(x) (10.24)

is generated for t = 0. For t = t1, we obtain for the first wave 1/2uI(x−a0t1),
that is, the same rectangular function, now displaced a0t1 to the right. For
the second wave we find 1/2uI(x + a0t1), i. e. again the same rectangle but
now displaced by −a0t1 (therefore to the left), as is also clear in Fig. 10.1.
Along the characteristics x = a0t+ const and x = −a0t+ const the value of
the amplitudes remains the same.

We now consider the initial-boundary value problem with a rigid wall at
the position x = 0, and so the kinematic boundary initial condition implies
that the velocity u vanishes there. The initial condition uI is the function
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Fig. 10.1. Propagation of a rectangular disturbance

shown in Fig. 10.2a, where again we set PI ≡ 0. We look for a solution in the
semi-infinitely long tube (x ≥ 0) with the initial condition

u(x, 0) = uI(x) , x ≥ 0 , (10.25)

and the boundary condition

u(0, t) = 0 , t ≥ 0 . (10.26)

This initial-boundary value problem is equivalent to the pure initial value
problem of the pipe extending to infinity in both directions, with the initial
distribution sketched in Fig. 10.2b

u(x, 0) =
{

+uI(+x) for x ≥ 0
−uI(−x) for x < 0 . (10.27)

With (10.21) the solution for u reads

u(x, t) =
1
2
[uI(x− a0t) + uI(x + a0t)] . (10.28)

For x ≥ a0t the argument is x− a0t ≥ 0, and with (10.27) we write

u(x, t) =
1
2
[uI(x− a0t) + uI(x+ a0t)] , x ≥ a0t . (10.29)
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Fig. 10.2. Initial distributions of a) the initial-boundary value problem, and b)
the equivalent initial value problem

For x < a0t the argument is x − a0t < 0, and from (10.28) and (10.27) we
then obtain

u(x, t) =
1
2
[−uI(−x+ a0t) + uI(x + a0t)] , x < a0t . (10.30)

Because of the properties of the function uI given in (10.27), u(x, t) satis-
fies the initial condition (10.25) and the boundary condition (10.26), so that
(10.29) and (10.30) together represent the solution of the initial-boundary
value problem. However it is more perceptive to view the graphical solu-
tion of the equivalent initial value problem. The initial distribution shown
in Fig. 10.2b is again resolved into two waves, one moving to the right and
one to the left, each with the initial velocity a0. At the position x = 0 the
superimposed waves cancel each other out, so that the boundary condition
u(0, t) is always satisfied. The graphical solution is shown in Fig. 10.3. The
solution has physical meaning only for x ≥ 0.

In addition to d’Alembert’s solution, the method of separation is also
applicable to the linear wave equation (10.8). We start out directly with the
differential equation for the velocity u, which also satisfies the wave equation:

∂2u

∂t2
= a2

0

∂2u

∂x2
. (10.31)

Now we shall treat the problem where there are rigid walls at the positions
x = 0 and x = l, and so the boundary conditions read

u(0, t) = u(l, t) = 0 . (10.32)
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Fig. 10.3. Propagation of a wave in the semi-infinite pipe

As initial conditions we take

u(x, 0) = uI(x) , (10.33)

and again
P (x, 0) = PI(x) = 0 . (10.34)

From (10.34) we obtain a second initial condition for u:

∂u

∂t

∣∣∣∣
t=0

= 0 , (10.35)

which is a consequence of the linearized Euler’s equation �∂u/∂t = −∂p/∂x.
The separation form

u(x, t) = T (t)X(x) (10.36)

leads to
T ′′

T
= a2

0

X ′′

X
= const = −ω2 , (10.37)

with the solutions

T = C1 cos(ωt) + C2 sin(ωt) , and (10.38a)

X = C3 cos
(
ωx

a0

)
+ C4 sin

(
ωx

a0

)
. (10.38b)

The initial condition (10.35) requires that C2 = 0; C3 vanishes because of the
boundary condition u(0, t) = 0, so that for the velocity we obtain

u(x, t) = A cos(ωt) sin
(
ωx

a0

)
, (10.39)
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where A = C1C4. For

ωk = k a0
π

l
, k = 1, 2, 3, . . . (10.40)

Eq. (10.39) now also satisfies the boundary condition u(l, t) = 0. The ωk/2π
are the eigenfrequencies of the column of fluid in the tube of length l. (Note
the following, if one of these eigenfrequencies ωk/2π lies close to the eigenfre-
quency of an elastic element (such as a valve) which comes into contact with
the fluid, self excited oscillations can occur.)

With (10.40) we obtain the solutions

uk = Ak cos
(
k π a0t

l

)
sin
(
k π x

l

)
, (10.41)

whose sum, because of the linearity of (10.31) is also a solution. Therefore
the general solution reads

u =
∞∑

k=1

Ak cos
(
k π a0t

l

)
sin
(
k π x

l

)
. (10.42)

The initial condition (10.33) leads to the equation

u(x, 0) = uI(x) =
∞∑

k=1

Ik sin
(
k π x

l

)
, 0 ≤ x ≤ l . (10.43)

This is an instruction to expand the initial distribution uI(x) into a sine
series, whose coefficients are determined from

Ak =
2
l

l∫

0

uI(x) sin
(
k π x

l

)
dx . (10.44)

With this the velocity field is known. We calculate the pressure field from
(10.5)

∂P

∂t
= −a2

0

∂2Φ

∂x2
= −a2

0

∂u

∂x
= −a2

0

∞∑

k=1

k π

l
Ak cos

(
k π a0t

l

)
cos
(
k π x

l

)

(10.45)
as

P = −a0

∞∑

k=1

Ak sin
(
k π a0t

l

)
cos
(
k π x

l

)
, (10.46)

where the constants of integration appearing are set to zero because of the
initial condition (10.34).
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10.2 Steady Compressible Potential Flow

As a further case of compressible potential flow which emerges from the
simplifications in the general equations (10.4) and (4.73), we shall consider
steady flow. From the continuity equation (10.4) we then extract

a−2 ∂Φ

∂xi

∂P

∂xi
+

∂2Φ

∂xi∂xi
= 0 , (10.47)

and from Bernoulli’s equation (4.73) neglecting the volume body forces,

1
2
∂Φ

∂xj

∂Φ

∂xj
+ P = C . (10.48)

With the help of (10.48) we eliminate P from (10.47) and bring the resulting
equation to the form

a−2 ∂Φ

∂xi

∂

∂xi

(
1
2
∂Φ

∂xj

∂Φ

∂xj

)
=

∂2Φ

∂xi∂xi
, (10.49)

from which a nonlinear partial differential equation for the velocity potential
Φ follows:

a−2 ∂Φ

∂xi

∂Φ

∂xj

∂2Φ

∂xi∂xj
=

∂2Φ

∂xi∂xi
. (10.50)

This equation holds without restrictions for steady subsonic (M < 1), tran-
sonic (M ≈ 1), and supersonic flows (M > 1). The steady homenergic hyper-
sonic flow (M � 1) is generally not a potential flow, as Crocco’s law (4.157)
implies, so that (10.50) is not used in that case.

Equation (10.50) is the starting point of classical aerodynamics. The an-
alytic method of the solution of (10.50) exploits simplifications which arise
from the Mach number range, and/or from “linearizations”. An example of
this is the flow past slender bodies, although in practice numerical methods
are more often called into play. With the known potential Φ the velocity field
is then also known: �u = ∇Φ. From Bernoulli’s equation (10.48) the pressure
function P then follows, from this the pressure, and finally the density. From
(9.95) we can compute the pressure of the calorically prefect gas

p

p0
=
(
γ − 1
γ

�0

p0
P

)γ/(γ−1)

, (10.51)

and with (9.93) then the density

�

�0
=
(
γ − 1
γ

�0

p0
P

)1/(γ−1)

. (10.52)
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10.3 Incompressible Potential Flow

The simplifications arising from the assumption of incompressibility have al-
ready been explained: incompressibility can be seen as a particular form of the
constitutive relation (D�/Dt = 0) or as a kinematic restriction (div �u = 0).
Besides this kinematic restriction of divergence free flow (solenoidal flow),
irrotationality (curl �u = 0) appears in addition in incompressible potential
flow. From (2.5)

∂ui

∂xi
= 0

together with (1.50)

ui =
∂Φ

∂xi

the already known linear potential equation (Laplace’s equation) follows

∂2Φ

∂xi∂xi
= 0 . (10.53)

Laplace’s equation is the most important form of a partial differential equa-
tion of the elliptic type, which occurs here as the differential equation for
the velocity potential of volume preserving fluid motion. (As already men-
tioned, Laplace’s equation is, together with Poisson’s equation, the subject
of potential theory. It occurs in many branches of physics, and describes, for
example, the gravitational potential, from which we can calculate the mass
body force of gravity �k = −∇ψ. In electrostatics it determines the potential
of the electric field, and in magnetostatics the potential of the magnetic field.
The temperature distribution in a solid body with steady heat conduction
also obeys this differential equation.)

From the derivation, it is clear that (10.53) holds both for steady and
unsteady flows. The unsteadiness of the incompressible potential flow exhibits
itself only in Bernoulli’s equation (4.61) or (4.73), in which now P = p/�. We
also obtain Laplace’s equation (10.53) from the potential equation (10.50),
or directly from (10.4) by taking the limit a2 → ∞ there. Taking this limit
actually corresponds to D�/Dt = 0, because it follows from dp/d� = a2 that
then

D�
Dt

= a−2 Dp
Dt

→ 0 . (10.54)

The treatment of incompressible flow is not exhausted by solving Laplace’s
equation for given boundary conditions and then computing the pressure
distribution from Bernoulli’s equation. As we have seen, associated with the
lift is a circulation around a body. The changes in time and space of the
circulation are subject to Thomson’s and Helmholtz’s vortex theorems, which
also must be satisfied in the solution of the flow past a body. The changes in
circulation give rise to surfaces of discontinuity and vortex filaments where
the vorticity does not vanish, as sketched in Figs. 4.6, 4.18, 4.20 and 4.21.
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In incompressible flow the solenoidal term �uR from (4.111) or (4.123), whose
calculation requires knowledge of the vorticity distribution, is added to the
velocity field ∇Φ. For these reasons, computing the flow past a body turns
out to be more difficult than just the classical solution of Laplace’s equation.

In problems of flow past a body where there is no lift, discontinuity sur-
faces and vortex filaments do not occur. Then the flow field only depends
on the instantaneous boundary conditions, i. e. on the instantaneous posi-
tion and velocity of the body. Physically this is explained by the infinitely
large velocity of sound which imposes the time varying boundary conditions
on the entire flow field instantaneously. In lift problems, the discontinuity
surface develops behind the body, and its position and extension, and with
this the lift itself, depend on the history of the motion of the body. Now this
problem is easier in steady flow, but even there it is necessary to make some
assumptions about the position of the discontinuity surface. Here we shall
only deal with flow without lift, and with steady flow where lift occurs but
where no discontinuities appear in the velocity.

In problems involving flow past a body, the domain of flow reaches to
infinity. As well as the boundary conditions at the body already mentioned,
conditions at infinity must then also be given (we have already made use of
these in Sect. 4.2). We only state these conditions, which are based on the
existence of the integrals occurring in Green’s formulae (e.g. (4.114)), from
potential theory.

If U∞i is the velocity at infinity, we then have
a) for a three-dimensional rigid body:

ui ∼ U∞i + O(r−3) for r → ∞ , (10.55)

or
Φ ∼ U∞ixi +O(r−2) for r → ∞ , (10.56)

i.e. the perturbation in the velocity originating from the body must die away
as r−3;
b) for a plane rigid body without circulation:

ui ∼ U∞i +O(r−2) for r → ∞ ; or (10.57)

c) for a plane rigid body with circulation

ui ∼ U∞i + O(r−1) for r → ∞ . (10.58)

If the body experiences a change in volume, we then have in the three-
dimensional case

ui ∼ U∞i + O(r−2) for r → ∞ ,

and for the plane two-dimensional case

ui ∼ U∞i + O(r−1) for r → ∞ .
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Fig. 10.4. Flow past a body

The “direct problem” of potential theory is mathematically represented as
follows: the surface of the body (Fig. 10.4) is given in the most general case
as F (�x, t) = 0. Then Laplace’s equation is to be solved under the boundary
condition (4.170) and the condition at infinity (10.56). With Φ known, we de-
termine the velocity field from ui = ∂Φ/∂xi and the pressure from Bernoulli’s
equation

∂Φ

∂t
+

1
2
∂Φ

∂xi

∂Φ

∂xi
+
p

�
= C , (10.59)

where we have assumed that the pressure is constant at infinity and only
the pressure differences caused by the motion are of interest, so that the
mass body force does not appear explicitly in (10.59). The direct problem
can, with reasonable effort, only be solved in a closed form for a few bod-
ies which are geometrically very simple, like rectangles, spheres, cylinders
and, ellipsoids. For the body shapes met in practice we are reduced to using
numerical methods.

Therefore in what follows we shall deal with the “indirect problem”, where
we examine known solutions of Laplace’s equation to see if they represent
flows of practical interest. In doing this, solutions from electrostatics, in par-
ticular, can be carried over to fluid mechanics.

10.3.1 Simple Examples of Potential Flows

In these indirect problems we shall first examine solutions in the form of
polynomials. In this manner we are led to three solutions of particular impor-
tance: translation flows, plane two-dimensional, and rotationally symmetric
stagnation point flows.

The potential of the translational flow is given by

Φ = U∞ixi = U∞x+ V∞y +W∞z ; (10.60)

we have already used this in (10.56). Equation (10.60) clearly satisfies
Laplace’s equation. The potential of the translational flow is part of every
flow past a finite body. The particular form, for which the velocity vector

�u = ∇Φ = U∞�ex + V∞�ey +W∞�ez



10.3 Incompressible Potential Flow 327

is parallel to the x-axis, is
Φ = U∞x , (10.61)

and is called parallel flow .
The polynomial

Φ =
1
2
(a x2 + b y2 + c z2) (10.62)

satisfies Laplace’s equation

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 , (10.63)

assuming the coefficients satisfy the condition

a+ b+ c = 0 . (10.64)

The choice c = 0, that is a = −b, leads to steady plane stagnation point flow :

Φ =
a

2
(x2 − y2) , (10.65)

with the velocity components

u = ax ,

v = −ay ,
w = 0 . (10.66)

This represents the inviscid flow against a flat wall (Fig. 10.5). From (1.11)
we obtain the equation of the streamlines as

dy
dx

= − y

x
, (10.67)

Fig. 10.5. Plane stagnation point flow
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and integrating this leads to hyperbolae

x y = x0y0 , (10.68)

where x0, y0 is the position through which the streamline runs. From
Bernoulli’s equation (10.59) and with (10.65) it follows that the pressure
distribution is

a2

2
(x2 + y2) +

p

�
=
pg

�
, (10.69)

where Bernoulli’s constant C is determined by the pressure at the stagnation
point . The stagnation point is the point on the body at which the velocity
vanishes (�u = 0); the pressure there is pg, and, from Bernoulli’s equation,
this is the highest pressure occurring at the body. The lines of equal pressure
(isobars) are circles. The pressure at the wall decreases in the direction of flow,
so that no boundary layer separation occurs even for viscous flow. Contrary
to a flow where the pressure increases in the direction of flow, fluid particles
in the boundary layer here do not come to a standstill. As we shall show
in Sect. 12.1, the boundary layer in the present case has constant thickness,
which tends to zero as ν → 0.

Plane stagnation point flow is met close to the stagnation point (or more
exactly, the stagnation line) of a plane body (Fig. 10.6), but it is only realized
locally there, as we see from the fact that the incident flow velocity tends to
infinity as y → ∞.

Within the framework of the inviscid theory, each streamline can be
viewed as a wall, in particular the streamline x = 0, i. e. the y-axis, but
we see here that this potential flow would not occur in a real (viscous) fluid.

Now along the y-axis the pressure in the direction of flow increases. In the
boundary layer formed along the y-axis the fluid particles have lost kinetic
energy, and their remaining kinetic energy is not enough to advance them
into the region of increasing pressure. The motion comes to a standstill and
thus to boundary layer separation, as sketched in Fig. 10.7.

If we consider now the flow in all four quadrants, no solid wall appears
on which the no slip boundary conditions would be enforced physically and
so the potential flow satisfies all boundary conditions. By (4.11) it is then an
exact solution of Navier-Stokes equations.

Fig. 10.6. Flow past a plane airfoil close to the forward stagnation point
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Fig. 10.7. Flow in a right-angled corner

The choice b = a, that is c = −2a, in (10.62) leads to the potential of
rotationally symmetric stagnation point flow (Fig. 10.8)

Φ =
a

2
(x2 + y2 − 2z2) , (10.70)

whose velocity components are

u = a x , v = a y , w = −2a z . (10.71)

The equations for the streamlines can be brought to the form
dx
dy

=
u

v
=
x

y
,

dx
dz

=
u

w
= − x

2z
,

dy
dz

=
v

w
= − y

2z
. (10.72)

The integral curves of the first equation in (10.72) represent the projection
of the streamlines into the x-y-plane. These are the straight lines

x = C1y (10.73)

through the origin. The integral curves of the two other differential equations
are the projections into the x-z-plane

x2z = C2 , (10.74)

and into the y-z-plane
y2z = C3 . (10.75)

From Bernoulli’s equation we extract the pressure field as

a2

2
(x2 + y2 + 4z2) +

p

�
=
pg

�
, (10.76)

where pg is again the pressure in the stagnation point.
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Fig. 10.8. Rotationally symmetric stagnation point flow

We are led to unsteady stagnation point flow if the coefficient a depends on
the time: a = a(t). The directions of the associated velocity fields (10.66) and
(10.71) are clearly steady, and so they are of the form (1.13). The streamlines
are fixed in space for unsteady stagnation point flow too, as we see directly
from the fact that a does not arise in the equations for the streamlines.
In order to determine the pressure field we now have to apply Bernoulli’s
equation for unsteady flow, leading to

1
2

da
dt

(x2 + y2 − 2z2) +
a2

2
(x2 + y2 + 4z2) +

p

�
=
pg

�
. (10.77)

Of particular importance in potential theory are singular or fundamental
solutions . With the help of these fundamental solutions, solutions to the
direct problem can also be formed using, for example, integration processes.
As a typical example we consider the potential of a point source

Φ =
A

r
, (10.78)

which we met in Eq. (4.115) as a Green’s function. Just as was the case there,
r is the distance from the position �x′ of the source to the position �x where
the potential Φ is given by (10.78). Therefore in Cartesian coordinates

r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2, (10.79)

and for the source at the origin �x′ = 0 then

r =
√
x2 + y2 + z2 =

√
xjxj . (10.80)
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Equation (4.111) shows the importance of this singular solution in potential
theory. Here the intuitive interpretation should stand in the foreground, but
first we show that (10.78) satisfies Laplace’s equation. In index notation it
follows that

∂Φ

∂xi
= −A

r2
∂r

∂xi
= −A

r3
xi, (10.81)

and further

∂2Φ

∂xi∂xi
= −A

r3
∂xi

∂xi
+ 3

A

r4
xixi

r
=

A

r3
(−3 + 3) = 0 . (10.82)

Therefore Laplace’s equation is satisfied where r �= 0. In order to evaluate the
behavior at the singular point we calculate the volume flux (for simplicity)
through the surface of a sphere with radius r, which we call the strength m
of the source:

m =
∫∫

(Ssph)

�u · �n dS =
∫∫

(Ssph)

∂Φ

∂xi
ni dS =

∫∫

(Ssph)

∂Φ

∂r
dS . (10.83)

With the surface element dΩ of the unit sphere we find

m =
∫∫

(Ssph)

−A dΩ = −4πA . (10.84)

The strength is independent of the radius of the sphere, and we write for the
potential of the source

Φ = −m

4π
1
r
. (10.85)

We take a source to be the fundamental solution (10.85) with positive
strength m > 0, and a sink to be the same solution with negative strength
m < 0. The sink flow is realized physically when the volume flux m is
withdrawn by suction almost at a point, for example by a very thin tube
(Fig. 10.9), but note that the source flow cannot be realized in this manner.

The volume flux m violates the continuity equation at the singularity
r = 0, where div �u = ΔΦ tends to infinity. This fact can be described with the
help of the Dirac delta function δ(�x− �x′). The delta function is a generalized
function with the properties

δ(�x− �x′) = 0 for �x �= �x′ (10.86)

and ∫∫∫

(V′)

f(�x′)δ(�x − �x′) dV ′ = f(�x′) , (10.87)
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Fig. 10.9. Realizing a point sink and a point source

if �x lies in the domain of integration (V ′), otherwise the integral vanishes.
Using this we write

div �u =
∂2Φ

∂xi∂xi
= mδ(�x− �x′) (10.88)

and we see that the continuity equation is satisfied everywhere with the ex-
ception of the singular point �x = �x′. With f(�x′) = m, (10.87) reads

∫∫∫

(V′)

mδ(�x− �x′) dV ′ = m . (10.89)

If we now consider (10.88) as Poisson’s equation (4.102), from its solution
(4.103) it follows that the potential of the source is

Φ = −m

4π

∫∫∫

(∞)

δ(�x′′ − �x′)
|�x− �x′′| dV ′′ = −m

4π
1

|�x− �x′| , (10.90)

from which with �x′ = 0 we again obtain (10.85). The breakdown of the
continuity equation at the singular point is not troublesome if this point is
excluded from the region of interest. We calculate the pressure distribution
as before from Bernoulli’s equation (10.59) as

1
2
uiui +

p

�
=

1
2
A2r−4 +

p

�
= C , (10.91)

and see that the isobaric surfaces are those with r = const, and that the
pressure falls off as r−4.

Often flow fields of technical interest are obtained if we superimpose the
potential of the singularities with the potential of the translational or par-
allel flow. Because of the linearity of Laplace’s equation the sum of the po-
tentials will also satisfy it. From the superposition of the parallel flow with



10.3 Incompressible Potential Flow 333

the potential of the point source at the origin, for example, we obtain the
potential

Φ = U∞x− m

4π
1√

x2 + y2 + z2
, (10.92)

which, in spherical coordinates r, ϑ, ϕ (Appendix B) reads

Φ = U∞r cosϑ− m

4π
1
r
. (10.93)

We first determine whether this flow has a stagnation point, that is, we look
for the place where ui = 0. Using (10.81), we get the velocity in index notation
as

ui = U∞1δ1i +
m

4π
1
r3
xi , (10.94)

since U∞i has only one component in the x1-direction. From the requirement
that u2 = u3 = 0 we conclude that the stagnation point must lie on the
x1-axis. There x2 = x3 = 0, and r = |x1|, therefore

u1 = U∞ +
m

4π
x1

|x1|3 . (10.95)

The equation u1 = 0 only has a real solution on the negative x-axis
(x1 = x = −|x|), and therefore the stagnation point lies at

x = −
√

m

4π U∞
. (10.96)

At this place the velocity from the source is exactly equal to the incident flow
velocity at infinity. The streamline through the stagnation point divides the
fluid of the outer flow from the source fluid (Fig. 10.10). This streamline can
be viewed as the wall of a semi-infinite rotationally symmetric body, so that
the outer flow represents the flow past such a body. For r → ∞ we again
obtain U∞ for the velocity of the outer flow, just as for the source flow. The
fluid coming out of the source flows through the cross-section π R2, so that

m = U∞π R2 , (10.97)

from which we calculate the radius of the body as

R =
√

m

πU∞
. (10.98)

Since we are dealing with a flow which is rotationally symmetric about the
x-axis, we use spherical coordinates. With the vector element d�x in spherical
coordinates (Appendix B) we obtain the equation of the streamline as

dr
dϑ

= r
ur

uϑ
, (10.99)
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Fig. 10.10. Flow past a semi-infinite, rotationally symmetric body from the su-
perposition of the source potential with the potential of the parallel flow

and bring this equation into the form

r urdϑ− uϑdr = 0 . (10.100)

If the left-hand side of (10.100) is a total differential of a function Ψ(r, ϑ),
then

Ψ(r, ϑ) = const (10.101)

is the solution of (10.99). The integrating factor which turns (10.100) into an
exact differential equation is r sinϑ; thus we find the total differential

r2ur sinϑdϑ− r uϑ sinϑdr = dΨ , (10.102)

for which the necessary and sufficient condition is provided by the continuity
equation in spherical coordinates:

∇ · �u =
∂

∂r
(r2ur sinϑ) +

∂

∂ϑ
(r uϑ sinϑ) = 0 . (10.103)

We call Ψ the stream function, and in this case of rotationally symmetric
flow, Stokes’ stream function, and we note that this result is independent
of the requirement that curl�u = 0, and so it also holds for rotational and
viscous flows. From (10.102) we now infer the equations

−r uϑ sinϑ =
∂Ψ

∂r
(10.104)

and
r2ur sinϑ =

∂Ψ

∂ϑ
, (10.105)
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from which we see that in rotationally symmetric flow the velocity compo-
nents can be calculated also from the stream function Ψ . From the condition
curl �u = 0, we obtain, with (10.104) and (10.105), the following differential
equation for rotationally symmetric flows

∂

∂ϑ

(
1

r2 sinϑ
∂Ψ

∂ϑ

)
+

∂

∂r

(
1

sinϑ
∂Ψ

∂r

)
= 0 , (10.106)

to be satisfied by Ψ . We note that, contrary to plane two-dimensional flow,
Ψ here does not satisfy Laplace’s equation. (A stream function can be intro-
duced in the same manner in cylindrical coordinates for rotationally symmet-
ric flow. The same also holds for plane two-dimensional flows.)

From (10.104) and (10.105) we now calculate the stream function of the
point source and parallel flow: with ur = ∂Φ/∂r it follows that

ur = U∞ cosϑ+
m

4π
1
r2

=
1

r2 sinϑ
∂Ψ

∂ϑ
, (10.107)

and therefore for the stream function

Ψ = U∞
r2

2
sin2 ϑ− m

4π
cosϑ+ f(r) . (10.108)

By inserting this result into (10.104) and using

uϑ =
1
r

∂Φ

∂ϑ
= −U∞ sinϑ

we obtain the condition df/dr = 0, i.e., f(r) = const. Up to a constant the
stream function then reads

Ψ = U∞
r2

2
sin2 ϑ− m

4π
cosϑ , (10.109)

from which we read off the stream function of a source in the origin

Ψ = −m

4π
x

r
, (10.110)

or of a source at position (x′, y′, z′)

Ψ = −m

4π
x− x′√

(x − x′)2 + (y − y′)2 + (z − z′)2
. (10.111)

With this we extract the equation of the streamlines from (10.101):

Ψ = const = U∞
r2

2
sin2 ϑ− m

4π
cosϑ . (10.112)

According to (10.96) we have at the stagnation point ϑ = π and therefore

const =
m

4π
, (10.113)
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from which, with (10.98) we finally obtain the equation of the stagnation
streamline as

r =
R

sinϑ

√
1 + cosϑ

2
. (10.114)

From Bernoulli’s equation
�

2
U2
∞ + p∞ = p+

�

2
uiui (10.115)

we calculate the pressure at the stagnation point as

pg =
�

2
U2
∞ + p∞ , (10.116)

where the pressure pg is the stagnation pressure, and �U2
∞/2 the dynamic

pressure. If we were to place a pressure tap at the stagnation point of the
body in Fig. 10.10, we would measure the stagnation pressure, as in (10.116).
At a pressure tap on the (almost) cylindrical part of the body some distance
behind the stagnation point, we would measure the static pressure prevailing
there. For the dynamic pressure � uiui/2, which can be defined at every point
in the flow field, we find, from (10.94) and (10.98) the asymptotic behavior

�

2
uiui ∼ �

2
U2
∞

(
1 +

1
2
(R/r)2 +O(R/r)4

)
, (10.117)

which, together with Bernoulli’s equation, shows that at a point on the surface
of the body whose distance from the stagnation point is large compared with
R, the static pressure p is practically equal to the static pressure p∞ at
infinity. This fact is exploited by the Prandtl tube, with which the dynamic
pressure and therefore the velocity can be measured (Fig. 10.11). In doing
this it is not necessary that the form (10.114) be realized, but a well rounded
nose of the Prandtl tube is sufficient.

In the same manner, sources and sinks can be arranged on the x-axis
to generate the flow past a spindle shaped body, as sketched in Fig. 10.12.
The contours of the body are calculated using the same methods which led
to (10.114). For closed bodies the sum of the strengths of sources and sinks
must vanish (closure condition):

∑
mi = 0 . (10.118)

In an obvious manner we shall generalize the methods discussed to a con-
tinuous distribution of sources, and shall consider as the simplest case a source
distribution on a line l along the x-axis (Fig. 10.13). Let q(x′) be the source
intensity (strength per unit length), which can be positive (source) or nega-
tive (sink), then the closure condition reads

l∫

0

q(x′)dx′ = 0 . (10.119)
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Fig. 10.11. Prandtl tube

Fig. 10.12. Body generated by sources and sinks

The potential of a source at position x′, with the infinitesimal strength
dm = q(x′)dx′ is

dΦ = − q(x′)dx′

4π
√

(x− x′)2 + y2 + z2
. (10.120)
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Fig. 10.13. Source distribution

Integration over the source distribution and superposition with the potential
of the parallel flow leads to the total potential of

Φ = U∞x− 1
4π

l∫

0

q(x′) dx′√
(x− x′)2 + y2 + z2

. (10.121)

Since the flow is rotationally symmetric it is sufficient to view it in the
x-y-plane, thus to set z = 0. By suitable distribution of q(x′), different forms
of spindle-shaped bodies can be generated. In order to calculate the contour
we require the stream function of a source distribution, which, in analogy to
(10.121), we find by integrating the stream function (10.111) for an infinites-
imal source at the position x′ and the superposition of a parallel flow:

Ψ = U∞
y2

2
− 1

4π

l∫

0

q(x′)(x − x′) dx′√
(x− x′)2 + y2

. (10.122)

Fig. 10.14 shows a body generated in the above manner, and a comparison
of the theoretical with the measured pressure coefficient . This comparison is
also interesting for historical reasons, because it was one of the first systematic
pieces of work in the field of aerodynamics. The theoretical pressure coefficient
follows from Bernoulli’s equation as

cp =
p− p∞
�/2U2∞

= 1 − u2 + v2

U2∞
, (10.123)

where the Cartesian velocity components u and v are found from the gradient
of the potential (10.121).

The direct problem can also be computed with the help of the singularity
distribution. Here the source distribution is to be determined for a given body
contour, which leads to an integral equation. We are also led to an integral
equation if the function Φ(�x) in (10.121) is given and we are now looking for



10.3 Incompressible Potential Flow 339

Fig. 10.14. Spindle-shaped airfoil with theoretical and measured pressure coeffi-
cient (after Prandtl)

the source intensity q(x′). Incidentally not all rotationally symmetric bodies
can be represented by a source distribution on the x-axis. For example, no
body, blunter than the body found from the superposition of a translational
flow and a point source can be generated in this manner, and we must turn
from a line distribution to a surface distribution of sources for an arbitrarily
shaped body.

Apart from the indirect problems just discussed, and the direct problems,
which we shall treat in Sect. 10.4.9, there is a third class of problems of con-
siderable interest, namely to determine a body shape, which on the surface
generates a constant pressure (except near the fore and aft stagnation points,
where this is obviously not possible). This question arises for example if it
is desirable to keep the surplus speed on the surface of the body as small as
possible, or in connection with cavitation problems. As already mentioned
in Sect. 8.3.2 cavitation occurs in the flow of liquids past bodies when the
pressure drops below vapor pressure. At sufficiently high velocity, the vapor
bubble stays attached to the body and we speak of “supercavition” typically
encountered behind circular disks with axis normal to the flow direction. In
the interior of the cavity the vapor is practically at rest and the pressure is
constant and equal to the vapor pressure. The surface of the cavity is a free
surface and if we neglect surface tension, justified on account of the small
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curvatures, the pressure difference across the free surface vanishes (6.31). For
the outer flow, the cavity acts as a body and the determination of the shape of
the free surface amounts to finding a body shape, which generates a constant
pressure on its surface and therefore a constant velocity. Such cavities occur
quite often e.g. on highly loaded blades of hydraulic machinery or propellers
and are undesirable since they can adversely affect the efficiency. But un-
der special circumstances one tries purposely to achieve supercavitation, for
example if one wishes to move a vehicle through the liquid with the small-
est possible drag. Such vehicles are equipped with a cavitator at the bow,
which generates the cavity that encloses the remaining body. This part of
the body has practically no drag quite independent of its shape (The cavita-
tor of course experiences a drag, but it is much smaller than the drag which
the fully wetted body would have).

Using the methods of the theory of functions, two-dimensional plane
flow problems with free surfaces can still be handled with relative ease (see
Sect. 10.4.7), but in general these problems are difficult, even in rotationally
symmetric flows that we are treating here. The difficulty is in part due to the
fact, that the boundary conditions (4.169) and (4.173) must be satisfied on a
not yet known boundary. The determination of the cavity shape is a difficult
numerical problem, which we cannot go into here. But the above body with
constant pressure on the body surface is already a very good description of
the actual cavity.

In fact the first computations of the cavity shape use this idea (Reichardt
1944) and his most convenient approximate formula for the shape is still in
use.

We start from (10.122) and render the coordinates in the x, y-plane of the
rotationally symmetric flow dimensionless, using half of the source distribu-
tion length l/2 Fig. 10.13. We introduce with U∞ (l/2) q(x′) the dimension-
less source distribution and refer the stream function to U∞l2/4 which brings
(10.122) to the form

ψ =
y2

2
− 1

4 π

2∫

0

q(x′)(x− x′) dx√
(x− x′)2 + y2

. (10.124)

It will be shown, that the superposition of only three source distribution
leads to an almost constant pressure distribution. These are: a linear source
distribution q1 = −2 (x′ − 1), a cubic distribution q2 = −4 (x′ − 1)3, a source
of strength +m at x = 0 together with a source of strength −m (sink) at
x = 2. Each of these distributions satisfy the closure condition

2∫

0

q(x′)dx′ = 0 (10.125)
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so the body will be closed. For the whole source distribution we set q(x′) =
A(q1 + b q2 + cq3), with still unknown constants A, b, c, and write for the
stream function

ψ =
y2

2
− A

4π

⎛

⎝
2∫

0

q1(x′) (x− x′)dx′√
(x− x′)2 + y2

+ b

2∫

0

q2(x′) (x− x′)dx′√
(x− x′)2 + y2

+ c

(
x√

x2 + y2
− (x− 2)√

(x− 2)2 + y2

))
, (10.126)

where the stream function of the source-sink has been taken directly from
(10.111). The other integrals can be solved in closed form, but we prefer a
numerical integration and label them ψ1 and ψ2. The body contour is given by
ψ = 0 which provides an implicit relation for the contour y = yB(x). At first,
estimated values for the constants b, c should be used. Then we determine
the constant A by choosing the dimensionless radius R. This radius appears
at x = 1 (from symmetry) and fixes the aspect ratio of the cavity. Evaluating
(10.126) with the estimated values we find

A =
2 π R2

ψ1(1, R) + b ψ2(1, R) + 2 c/
√
R2 + 1

. (10.127)

For a list of x-coordinates the equations ψ = 0 are then solved numerically
for the y-coordinates. These are of course the coordinates of the contour
y = yB(x). Introducing the body contour into (10.123) leads to cp(x, yB(x)) =
cp(x). The constants b, c are now found by trial and error. However if after
each trial the function cp(x) is plotted, the correct choice may be found rather
quickly. For the choice R = 0.16 the values b = 0.145 and c = 0.214 are
thus found. The resulting contour is shown in Fig. 10.15 and the (negative)
pressure coefficient −cp(x) in Fig. 10.16. (Note that Fig. 10.16 is only a section
of the whole graph −cp(x), thus the coefficient at the stagnation points is out
of bounds.) The evaluation of (10.123) requires the velocity components u, v.
For the rotationally symmetric flow here, these may be determined using
the stream function, thus avoiding the use of the potential function as was
done using spherical coordinates with (10.104) and (10.105). The continuity
equation ∇ · �u = 0 in cylindrical coordinates (from B2) with ∂/∂ ϕ = 0 is

∂(urr)
∂ r

+
∂(uzr)
∂ r

= 0 , (10.128)

where we have temporarily reverted to dimensional coordinates. (10.128) is
necessary and sufficient for the differential

dψ = uzr dr − urr dz (10.129)
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Fig. 10.15. Constant pressure body

Fig. 10.16. Pressure coefficient of constant pressure body

to be a total differential. Thus

uz =
1
r

∂ ψ

∂ r
, ur = −1

r

∂ψ

∂ r
. (10.130)

Since Cartesian coordinates in the plane z = 0 correspond to z, rand the
velocity components u, v to uz, ur we write for (10.130)

u =
1
y

∂ψ

∂ y
, v =

1
y

∂ψ

∂ x
(10.131)

and in dimensionless form

u

U∞
=

1
y

∂ψ

∂ y
,

v

U∞
= −1

y

∂ψ

∂ x
, (10.132)

which may also be used in computing the pressure coefficient.
That part of the body where the pressure is very nearly constant may be

considered as the cavity contour. The part of the body near the front stag-
nation point is taken up by the cavitator so the change in pressure there is
of no consequence in this application. The rear stagnation point cannot be
part of a bubble since the pressure there would have to be equal to the vapor
pressure, while on the other hand it should be the stagnation pressure. There
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are closure models to circumvent this problem, but they are not free of con-
tradictions. It is very doubtful, if the rear part of the cavity can be properly
handled within potential theory. Experimentally one observes unsteady flow
at rear part of the cavity with intermittent ejection of vapor from the cavity.

In connection with cavitation we point out that the negative pressure
coefficient is here called Cavitation Number σ:

σ =
p∞ − pv

ρ/2U2∞
, (10.133)

and is the most important characteristic number in cavitation problems. It
is noteworthy, that only the difference between the pressure at infinity and
the pressure in the bubble is important. The pressure in the bubble can be
increased (within limits) be bleeding foreign gas into the cavity and thereby
control the cavitation number. This fact increases the usable range of su-
percavitating vehicles considerably. We also mention that an approximate
solution for the cavity shape may be found for σ � 1.

We shall now consider the potential of a source (strength +m) and a sink
(strength −m) on the x-axis at distance Δx (Fig. 10.17):

Φ =
m

4π
Δx

[
(x−Δx)2 + y2 + z2

]−1/2 − (x2 + y2 + z2)−1/2

Δx
. (10.134)

We now let the distance Δx shrink to zero and simultaneously raise the
strength, so that

lim
Δx→0, m→∞

mΔx = M . (10.135)

Because of

lim
Δx→0

[
(x−Δx)2 + y2 + z2

]−1/2 − (x2 + y2 + z2)−1/2

Δx
=
∂
(−r−1

)

∂x
=

x

r3
(10.136)

the potential

Φ =
M

4π
x

r3
(10.137)

Fig. 10.17. Source-sink pair
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Fig. 10.18. Streamlines and equipotential lines of a three-dimensional dipole

of a dipole at the origin results, which in spherical coordinates reads

Φ =
M

4π
cosϑ
r2

. (10.138)

The direction from the sink to the source is the direction of the dipole, and
we call M the magnitude of the dipole moment. For this reason the dipole
moment is a vector; for the orientation chosen here we have

�M = −M�ex , (10.139)

and in general we obtain the potential of a dipole at the coordinate origin to
be (Fig. 10.18)

Φ = −
�M · �x

4π |�x|3 . (10.140)

For the velocity in the radial direction we find

ur =
∂Φ

∂r
= −M

2π
cosϑ
r3

, (10.141)

and therefore for r = r0

ur(r = r0) = − cosϑ · const . (10.142)

If we now consider a sphere which moves with velocity

�U = −U�ex (10.143)

(Fig. 10.19), then of course every point on its surface moves with the velocity
−U in the x-direction. The component of the velocity normal to the surface
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Fig. 10.19. The normal component of the velocity on the surface

of the sphere is
�U · �n = −U�ex · �er = −U cosϑ . (10.144)

For
�U =

�M

2π r30
, (10.145)

the normal component of the velocity of the dipole on a spherical surface
r = r0 is then equal to the normal component of the sphere velocity. But
then the value of the velocity is uniquely determined everywhere because the
solution of Laplace’s equation is unique.

Therefore the dipole field is identical to the velocity field caused by
a sphere instantaneously at the origin moving with the velocity according
to (10.145). In this instant the flow has the potential

Φ = −r30
2

�U · �x
|�x|3 . (10.146)

At another instant, when the sphere is at the position �a (Fig. 10.20) we obtain
the potential

Φ = −r30
2

�U · (�x− �a)
|�x− �a|3 = −r30

2

�U · �r
r3

. (10.147)

Fig. 10.20. Potential of the sphere
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If we superimpose the potential (10.146) with the potential of the parallel
flow, whose velocity corresponds to the negative velocity of the sphere

−�U = U∞�ex ,

we bring the sphere to rest and obtain the potential of steady flow past
a sphere at the origin. In Cartesian coordinates it reads

Φ = U∞x+
r30
2
U∞

x

r3
, (10.148)

and in spherical coordinates

Φ = U∞

(
r +

r30
2r2

)
cosϑ . (10.149)

We shall now compute the velocity on the surface of the sphere r = r0: for
the radial component we obtain

ur =
∂Φ

∂r

∣∣∣∣
r=r0

= U∞

(
1 − r30

r3

)

r=r0

cosϑ = 0 , (10.150)

as indeed has to be the case in order to satisfy the kinematic boundary
condition for a sphere at rest. The velocity component in the ϑ-direction is

uϑ =
1
r

∂Φ

∂ϑ

∣∣∣∣
r=r0

= −U∞

(
1 +

r30
2r3

)

r=r0

sinϑ = −3
2
U∞ sinϑ . (10.151)

The magnitude of this velocity component reaches a maximum at ϑ = π/2
and at ϑ = 3π/2. We obtain the pressure coefficient from Bernoulli’s equation
as

cp =
p− p∞
�/2U2∞

= 1 − 9
4

sin2 ϑ . (10.152)

It is obvious from symmetry reasons that the force on the sphere has no
component perpendicular to the incident flow. Since the pressure distri-
bution is an even function of ϑ, and therefore symmetric about the line
ϑ = π/2 , ϑ = 3π/2, the force in the x-direction also vanishes (as can easily
be demonstrated by direct computation). However this result holds more
generally:

“A body with no lift in steady, incompressible, inviscid potential flow
experiences no drag.”

This statement is contrary to experimental results and is called d’Alembert’s
paradox .
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In potential flow the kinetic energy of the fluid particles increases starting
from the forward stagnation point (ϑ = π) on the body to reach a maximum
at ϑ = π/2. This kinetic energy is just enough to carry the fluid particles
against the increasing pressure to the rear stagnation point (ϑ = 0). A force
towards the front is produced on the rear half of the sphere which is exactly
canceled out by the force on the front half of the sphere. In viscous flow the
particles have lost kinetic energy in the boundary layer. Their “impetus” is
not enough to bring them to the rear stagnation point against the increasing
pressure. The fluid particles come to a standstill, and the flow separates from
the body. With this any further increase in pressure is inhibited, with the
result that the force on the back hemisphere is smaller than that on the
front. Thus a drag is produced even if we disregard the friction drag due
to the shear stress at the wall. We call this contribution to the drag the
pressure drag. (This drag can be reduced by replacing the rear hemisphere
with a streamlined body shape to prevent separation and again we are led to
the spindle-shaped bodies discussed earlier.)

If we consider the flow past a body at small Reynolds’ numbers, where
the inertia forces (and therefore the kinetic energy) are small compared to
the friction forces, then the fluid particles close to the wall are pulled along
by the surrounding fluid and carried to the rear stagnation point by the then
strong friction forces. Separation then does not occur, and we see a streamline
pattern resembling superficially the streamline pattern of a potential flow.

As the Reynolds’ number increases, a separation with a steady vortex-ring
is formed behind the sphere. The streamlines still close behind the sphere
and the vortex. As the Reynolds’ number increases even further the vortex
becomes larger until it finally becomes unstable and an unsteady wake forms.
Periodic vortices then separate from the body and are carried away in the
wake. The flow past a cylinder in a cross-flow is similar, and is easier to
observe. The vortices arrange themselves into a vortex street behind the body,
since this is again a stable configuration.

At even higher Reynolds’ numbers the flow in the wake becomes turbulent,
but even then large, ordered vortex-like structures are visible. It is clear
that the drag changes greatly with the different flow forms, but however
complicated the flow may be, in incompressible flow the drag coefficient cD is
only a function of the Reynolds’ number. The function cD = cD(Re) for the
sphere is shown in Fig. 10.21, together with sketches of the flow configurations
at the corresponding Reynolds’ numbers Re = U d/ν.

The sharp drop off of the drag coefficient at Re ≈ 3 · 105 is due to the
transition of the previous laminar boundary layer on the sphere to a turbu-
lent boundary layer. The shear stresses in the turbulent boundary layer are
larger, and the outer fluid is able to drag the fluid close to the wall towards
the axis. The flow then separates later and the wake becomes narrower. The
flow which has not separated acts on a larger part of the back of the sphere, so
that a larger force in the forward direction arises and the drag thus becomes
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Fig. 10.21. Drag coefficient of the sphere

smaller. The transition point can be shifted towards smaller Reynolds’ num-
bers by roughness protrusions on the surface (as we know from our discussion
of turbulent transition in pipe flow) and then the lower drag can be realized
at lower Reynolds’ numbers (dashed line in Fig. 10.21). An example of this
can be found with golf balls, whose surfaces are artificially “roughened” by
indentations.

10.3.2 Virtual Masses

The previous discussion has shown that steady potential flow past a sphere
or other blunt body is not found in nature because of the boundary layer
separation. However if we suddenly accelerate a body from rest, the flow is
described well by potential theory within a certain period of time τ ∼ O(d/u).
If the acceleration is large, the inertial forces are larger than the viscous forces
and the flow behaves almost as if it were inviscid. On the other hand, the
accelerated body must set the surrounding fluid into motion and therefore
perform work, which must again be found in the kinetic energy of the fluid.
However this means that even a body with no lift experiences a drag if it
is accelerated. This drag manifests itself in many technical applications, for
example in oscillations of machine parts immersed in high density fluid, as
in the oscillation of blades in hydraulic machines. The drag acts like an ap-
parent increase in the oscillating mass (added or virtual mass). These virtual
masses can be estimated within the framework of potential theory. We shall
demonstrate this in an example of a sphere moving through a fluid at rest
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with a velocity which varies in time. We choose a coordinate system fixed in
space, for which the potential takes from (10.147) the form

Φ = −1
2
r30Ui(t)

ri

r3
, (10.153)

with �r = �x − �a and r = |�r| = √
rjrj . We note that �a depends on t and

therefore so does �r, and thus the potential itself varies in time, even if the
sphere moves with constant velocity.

We shall calculate the force on the sphere by integration of the pressure
distribution. Let the pressure at infinity be p∞, according to (10.153) Φ there
is zero, and Bernoulli’s equation reads

∂Φ

∂t
+

1
2
ujuj +

p

�
=
p∞
�

. (10.154)

As we already know, the terms 1
2 ujuj , which also occur in the steady case,

must cancel out in the integration for the force; therefore we shall ignore
them right away. With (10.153) we obtain for ∂Φ/∂t

∂Φ

∂t
= −1

2

(r0
r

)3
[
rj

dUj

dt
− UjUj +

3
r2
UiUj rirj

]
. (10.155)

According to d’Alembert’s paradox, only the term with dUj/dt can provide
a contribution to the force, as we can convince ourselves by explicit calcula-
tion.

The other term results from the fact that Φ is time dependent even for
constant sphere velocity. The pressure on the surface r = r0 arising from this
term, because of rj/r0 = nj is

p− p∞
�

=
1
2
r0nj

dUj

dt
. (10.156)

Since incompressible flow without circulation react immediately to the in-
stantaneous boundary conditions, it is sufficient to compute the force at the
instant in which the center of the sphere passes the coordinate origin. For
the sphere moving with U in the positive x-direction, we compute the non-
vanishing x-component of the force as

Fx = −
∫∫

(S)

p cosϑdS ,

with dS = r20 sinϑ dϑ dϕ:

Fx = −�

2
dU
dt

r30

2π∫

0

π∫

0

cos2 ϑ sinϑ dϑ dϕ = −2
3
π r30�

dU
dt

. (10.157)
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Therefore the sphere experiences a force acting against the acceleration. This
statement is valid independent of the chosen coordinate system. If an external
force Xx acts on the sphere of mass M , then, taking the drag force Fx into
account, it follows from Newton’s second law that

M
dU
dt

= Xx + Fx , (10.158)

or
Xx =

(
M +

2
3
π r30�

)
dU
dt

. (10.159)

Therefore if we wish to calculate the acceleration of a sphere in fluid due to
an external force, to the actual mass of the sphere M must be added the
added or virtual mass

M ′ =
2
3
π r30� . (10.160)

This mass is due to the fact that both the sphere and the surrounding fluid
must be accelerated.

The virtual mass of the sphere is precisely half of the fluid mass displaced
by the sphere. The additional work per unit time which is performed during
acceleration as a consequence of the virtual mass must then be equal to the
change in the kinetic energy of the fluid. The kinetic energy in the volume V
of fluid is given by

K =
∫∫∫

(V )

�

2
uiui dV =

�

2

∫∫∫

(V )

∂Φ

∂xi

∂Φ

∂xi
dV . (10.161)

With
∂

∂xi

(
Φ
∂Φ

∂xi

)
=

∂Φ

∂xi

∂Φ

∂xi
+ Φ

∂2Φ

∂xi∂xi
(10.162)

and
∂2Φ

∂xi∂xi
= 0 ,

it follows that
K =

�

2

∫∫∫

(V )

∂

∂xi

(
Φ
∂Φ

∂xi

)
dV , (10.163)

and further from Gauss’ theorem

K =
�

2

∫∫

(S)

Φ
∂Φ

∂xi
ni dS =

�

2

∫∫

(S)

Φ
∂Φ

∂n
dS . (10.164)

The total kinetic energy of the fluid contained between the surface of the
sphere Ss and a surface S∞ surrounding the whole fluid and extending to
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Fig. 10.22. Integration domain

infinity (r → ∞, Fig. 10.22) is

K = −�

2

∫∫

(Ss)

Φ
∂Φ

∂r
dS +

�

2

∫∫

(S∞)

Φ
∂Φ

∂r
dS . (10.165)

For a sphere instantaneously at the origin, the potential in spherical coordi-
nates is

Φ = − r30
2r2

U cosϑ . (10.166)

From this we calculate
∂Φ

∂r
= U

r30
r3

cosϑ , (10.167)

and obtain from (10.165)

K = −1
4
r60U

2�

⎛

⎜⎝−
∫∫

(Ss)

r−5 cos2 ϑ dS +
∫∫

(S∞)

r−5 cos2 ϑ dS

⎞

⎟⎠ . (10.168)

The second integral vanishes in the limit r → ∞, and therefore the kinetic
energy in the fluid is

K =
2
3
π r30�

U2

2
. (10.169)

The change in the kinetic energy is

dK
dt

=
2
3
π r30�U

dU
dt

, (10.170)

and equal to the work per unit time of the virtual mass:

M ′ dU
dt

U =
2
3
π r30�

dU
dt

U . (10.171)

As an example we shall consider a sphere of mass M under the influence of
gravity in an infinitely extending fluid. The force of gravity M g acts on the
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sphere. In addition the sphere experiences a hydrostatic lift which is equal
to the weight of the displaced fluid (with (10.160) then 2M ′g). The drag due
to the virtual mass acts against the acceleration. Therefore the equation of
motion reads

(M +M ′)
dU
dt

= M g − 2M ′g , (10.172)

or
dU
dt

=
M − 2M ′

M +M ′ g . (10.173)

With M = �sV and M ′ = 1
2� V we also write the acceleration as

dU
dt

= g
�s − �

�s + �/2
= g

�s/�− 1
�s/�+ 1/2

. (10.174)

If the density of the sphere is much larger than that of the fluid then the
acceleration is essentially equal to the gravitational acceleration (as, for ex-
ample, for a heavy body falling through the atmosphere). If, on the contrary,
the density of the fluid is much larger than the density of the sphere, then
the sphere moves upwards with an acceleration of 2g (as, for example, a gas
bubble in a liquid).

We shall now sketch the manner of computation for the virtual mass of
a general body which carries out a pure translational motion: we obtain the
velocity field from the solution of Laplace’s equation under the boundary
conditions

Φ = const for r → ∞ (10.175)

and
uini =

∂Φ

∂xi
ni =

∂Φ

∂n
= Uini for F (xi, t) = 0. (10.176)

Since both the differential equation and the boundary conditions are linear,
and the velocity of the body Ui also only appears linearly, Ui can only appear
linearly in the solution, which must therefore have the form

Φ = Uiϕi . (10.177)

From (10.176) it follows that

∂ϕi

∂n
= ni for F (xi, t) = 0 , (10.178)

where the vector function ϕi thus only depends on the shape of the body. By
(10.177) and (10.176) the kinetic energy is

K = −1
2
UiUj

∫∫

(Ss)

�ϕinj dS , (10.179)
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where the negative sign appears since now nj is taken relative
to the surface of the body Ss. The integral is a symmetric second order tensor
whose six independent components are required in the general case to com-
pute the kinetic energy of the flow generated by the translational motion of
the body. (If the body carries out a rotation in addition to a translation,
three of these tensors are required.) The components of the tensor have
the dimension of mass, and the tensor is called the virtual or added
mass tensor :

mij = −
∫∫

(Ss)

�ϕinj dS . (10.180)

With it we can write down the kinetic energy of the fluid:

K =
1
2
UiUj mij . (10.181)

If the vector function ϕi is known, then the mij can be calculated. For the
case of the sphere at the origin we have

ϕi = − r30
2r3

xi , (10.182)

and, because of nj = xj/r0, the virtual mass tensor is computed from

mij =
�

2r0

∫∫

(Ss)

xixj dS . (10.183)

It is easily shown that the tensor mij in this case is spherically symmetric:

m11 = m22 = m33 = M ′ . (10.184)

Taking into account the virtual mass tensor, the equation of motion for a body
of mass M acted on by an external force Xi is

M
dUi

dt
+mij

dUj

dt
= Xi . (10.185)

From this equation in the form

(Mδij +mij)
dUj

dt
= Xi (10.186)

we see that in general the direction of the acceleration is not the same as
the direction of the force. This becomes evident if one tries to accelerate
a submerged, asymmetric body in a certain direction.
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10.4 Plane Potential Flow

For plane flows a Cartesian coordinate system can always be found where the
flow in all planes z = const is the same and the velocity component in the
z-direction vanishes. It is often useful, instead of the Cartesian coordinates
x, y, to use the polar coordinates r, ϕ, which we obtain from cylindrical
coordinates (Appendix B) by setting z = const there.

10.4.1 Examples of Incompressible, Plane Potential Flows

Here we first have the potential of a source available as a fundamental solution
(line source, Fig. 10.23), which we met in (4.122) as Green’s function:

Φ =
m

2π
ln r , (10.187)

with r2 = (x−x′)2 +(y− y′)2 or r2 = x2 + y2 for a source at the origin. The
velocity components in polar coordinates are then

ur =
∂Φ

∂r
=

m

2π
1
r
, and (10.188)

uϕ =
1
r

∂Φ

∂ϕ
= 0 . (10.189)

In Cartesian coordinates, the components read

u =
∂Φ

∂x
=

m

2π
x

x2 + y2
, and (10.190)

v =
∂Φ

∂y
=

m

2π
y

x2 + y2
. (10.191)

Fig. 10.23. Plane source in the origin
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By superimposing a source with the parallel flow in the same manner as
before, the flow past a semi-infinite body is generated (Fig. 10.24):

Φ = U∞x+
m

2π
ln
√
x2 + y2 = U∞r cosϕ+

m

2π
ln r . (10.192)

As in the rotationally symmetric case, the superposition of parallel flow
with line distributions of sources and sinks gives rise to flows past cylindrical
bodies of various shapes. By differentiation of the source potential we obtain
the fundamental solution of the dipole in the plane. The potential of a dipole
at the origin orientated in the negative x-direction reads

Φ =
M

2π
x

x2 + y2
=
M

2π
cosϕ
r

. (10.193)

The velocity potential (10.193) also describes the flow past a circular cylinder
with axis in the z-direction moving to the left with velocity

U∞ =
M

2π
1
r20

.

The superposition of a dipole with a parallel flow generates the flow past
a circular cylinder at rest. The associated potential is

Φ = U∞x+
M

2π
x

x2 + y2
= U∞

(
r +

r20
r

)
cosϕ . (10.194)

Another important singular solution of Laplace’s equation is the potential
vortex or straight vortex filament which we have already met. The potential
of the vortex filament coinciding with the z-axis is given by

Φ =
Γ

2π
ϕ =

Γ

2π
arctan

y

x
. (10.195)

Fig. 10.24. Plane semi-infinite body
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Fig. 10.25. Potential vortex

For the velocity components in the r- and ϕ-directions we find

ur =
∂Φ

∂r
= 0 , and (10.196)

uϕ =
1
r

∂Φ

∂ϕ
=

Γ

2π
1
r
. (10.197)

The origin is a singular point: the velocity becomes infinite there. The stream-
lines are circles. The flow is irrotational with the exception of the singular
point. In Sect. 6.1 we also met the velocity field (10.197) as an exact solution
of the Navier-Stokes equations, and we showed there that this potential flow
arises as a limiting case of viscous fluid between two circular cylinders, if the
inner one (radius RI) rotates and the radius of the outer one becomes in-
finitely large. The rotating cylinder exerts a friction torque (per unit length)
on the fluid, which, because of

τw = −τϕr|RI
= −η

(
∂uϕ

∂r
− uϕ

r

)∣∣∣∣
RI

=
η Γ

π

1
R2

I

(10.198)

(see Appendix B) is found to be

T = τw2πR2
I = 2Γ η . (10.199)

Therefore the torque is independent of the radius, and as a consequence every
cylinder of fluid with radius r ≥ RI transmits the same torque. The ring of
fluid between RI and r is not accelerated, in accordance with the fact that the
divergence of the friction stresses in incompressible potential flow vanishes.
However the power of the friction torque on the cylinder r = RI is

PI = T
(uϕ

r

)∣∣∣
RI

= 2Γ
η Γ

2π
1
R2

I

(10.200)
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Fig. 10.26. Velocity distribution of a decaying vortex

and at the position r

P =
η Γ 2

πr2
. (10.201)

The difference

ΔP =
η Γ 2

π

(
1
R2

I

− 1
r2

)
(10.202)

is dissipated into heat. This result also shows that an isolated potential vortex
without a supply of energy cannot maintain the velocity distribution (10.197).
In addition we note that the kinetic energy of this distribution is infinitely
large, and therefore physically there is no vortex whose distribution behaves
as 1/r and which reaches to infinity. If we have the velocity distribution
(10.197) at the time t = 0, at a later time it then reads

uϕ =
Γ

2π
1
r

[
1 − exp

(
− r2

4ν t

)]
. (10.203)

We obtain this solution from the ϕ component of the Navier-Stokes equa-
tions since no typical length appears in the problem, so r is to be made
dimensionless with (ν t)−1/2, and the solution must be a relation between
the dimensionless groups

Π1 =
uϕr

Γ
, Π2 =

r√
ν t

(Fig. 10.26). This flow is no longer irrotational.
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Fig. 10.27. Superposition of sink and potential vortex (logarithmic spiral)

The superposition of a potential vortex with a sink (or source) generates
a flow whose streamlines are logarithmic spirals (spiral vortex , Fig. 10.27).
The solution of the differential equation for the streamline in polar coordi-
nates

1
r

dr
dϕ

=
ur

uϕ
=
m

Γ
(10.204)

is
r = K exp

(mϕ

Γ

)
. (10.205)

This flow is known as “bathtub drainage” and has a technically important
application in the potential flow through radial cascades (see Fig. 2.9). In the
bladeless ring space, far in front of or behind the cascade, the streamlines
are logarithmic spirals, but with different values of Γ in front of and behind
the cascade. (If the circulation in front of the cascade is Γi, then behind the
cascade it is

Γo = Γi + nΓb ,

where Γb is the circulation of a single blade and n is the number of blades in
the cascade.)

10.4.2 Complex Potential for Plane Flows

Plane flows differ from other two-dimensional flows (with two independent
variables) because the two independent variables x and y can be combined
into one complex variable:

z = x+ i y , i =
√−1 . (10.206)
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Since every analytic function of the complex coordinate z satisfies Laplace’s
equation, the computation of both the direct and indirect problems becomes
considerably easier. If we know the flow past a cylindrical body whose cross-
sectional surface is simply connected (e.g. circular cylinder), then according
to the Riemann mapping theorem, we can obtain the flow past any other
cylinder using a conformal mapping. By this theorem every simply connected
region in the complex plane can by mapped into the inside of the unit circle.
By doing this we have in principle solved the problem of flow past a body,
and we only need to find a suitable mapping function.

The complex function F (z) is said to be analytic (holomorphic) in an
open set G, if it is complex differentiable at every point z there, that is the
limit

lim
Δz→0

F (z +Δz) − F (z)
Δz

=
dF
dz

(10.207)

exists and is independent of the path from z to z + Δz. If this requirement
is not satisfied, the point is a singular point .

First we note that along a path parallel to the x-axis

dF
dz

=
∂F

∂x
(10.208)

holds, and along a path parallel to the y-axis

dF
dz

=
∂F

∂(i y)
. (10.209)

Since every complex function F (z) is of the form

F (z) = Φ(x, y) + iΨ(x, y), (10.210)

we therefore have
∂F

∂x
=
∂Φ

∂x
+ i

∂Ψ

∂x
=

1
i
∂Φ

∂y
+
∂Ψ

∂y
=

1
i
∂F

∂y
. (10.211)

Clearly for the derivative to exist it is necessary that
∂Φ

∂x
=
∂Ψ

∂y
and

∂Φ

∂y
= −∂Ψ

∂x
(10.212)

hold. The Cauchy-Riemann differential equations (10.212) are also sufficient
for the existence of the derivative of F (z). We can also show easily that
both the real part �(F ) = Φ(x, y) and the imaginary part �(F ) = Ψ(x, y)
satisfy Laplace’s equation. To do this, we differentiate the first differential
equation in (10.212) by x and the second by y and add the results. We then
see that Φ satisfies Laplace’s equation. If we differentiate the first by y and the
second by x and subtract the results, we see that the same also holds for Ψ .
Both functions can therefore serve as the velocity potential of a plane flow.
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We choose Φ as the velocity potential and shall now consider the physical
meaning of Ψ . With

�u = ∇Φ =
∂Φ

∂x
�ex +

∂Φ

∂y
�ey = u�ex + v�ey (10.213)

because of (10.212) we also have

∇Ψ =
∂Ψ

∂x
�ex +

∂Ψ

∂y
�ey = −v�ex + u�ey . (10.214)

From ∇Φ · ∇Ψ = 0 we conclude that ∇Ψ is perpendicular to the velocity
vector �u, and therefore Ψ = const are streamlines. We have thus identified Ψ
as a stream function. (As already mentioned in connection with (10.104) and
(10.105), the introduction of a stream function is not restricted to potential
flows.) Since an additive constant clearly plays no role in a stream function,
we can always adjust it so that

Ψ = 0 (10.215)

is the equation of the body contour. With Ψ known, we obtain the velocity
vector directly from the formula

�u = ∇Ψ × �ez or ui = εij3
∂Ψ

∂xj
, (10.216)

therefore
u =

∂Ψ

∂y
, v = −∂Ψ

∂x
, (10.217)

so that the continuity equation
∂u

∂x
+
∂v

∂y
= 0

is identically satisfied.
We now calculate the volume flux (per unit depth) between the points A

and B (Fig. 10.28):

V̇ =

A∫

B

uinids (10.218)

and to evaluate the integral we write ni = εik3τk, where τk = dxk/ds is the
unit vector along the path of integration ds in the direction of increasing Ψ
(Fig. 10.28).

With (10.216) we then obtain

V̇ =

A∫

B

(
εij3

∂Ψ

∂xj
εik3

dxk

ds

)
ds (10.219)
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Fig. 10.28. Meaning of the stream function in plane flow

or with εij3εik3 = δjk also

V̇ =

A∫

B

∂Ψ

∂xj
dxj =

A∫

B

dΨ = ΨA − ΨB . (10.220)

This result confirms that the volume flux is independent of the path between
A and B and is equal to the difference of the values of the stream function
at these points. The velocity components can be most easily calculated using

dF
dz

=
∂F

∂x
=
∂Φ

∂x
+ i

∂Ψ

∂x
= u− iv , (10.221)

where the sign of v is to be noted: dF/dz furnishes the complex conjugate
velocity

dF
dz

= w = u− iv ,

that is, the reflection of the complex velocity w = u+ iv at the real axis.
We shall now look at some examples of complex potentials:

a) Translational flow:
F (z) = (U∞ − iV∞) z , (10.222)

or
F = (U∞x+ V∞y) + i (U∞y − V∞x) , (10.223)

because of (10.210) therefore

Φ = U∞x+ V∞y , (10.224)

Ψ = U∞y − V∞x . (10.225)

The streamlines follow from Ψ = const to y = xV∞/U∞+C and the complex
conjugate velocity is

dF
dz

= U∞ − iV∞ . (10.226)
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b) Source flow:
F (z) =

m

2π
ln z (10.227)

or because of z = reiϕ also

F =
m

2π
(ln r + iϕ) . (10.228)

With (10.210) we obtain the velocity potential and the stream function as

Φ =
m

2π
ln r , (10.229)

Ψ =
m

2π
ϕ . (10.230)

The streamlines Ψ = const are straight lines through the origin.

c) Potential vortex:

F (z) = −i
Γ

2π
ln z , (10.231)

where the negative sign is needed because we count Γ anticlockwise positive.
In polar coordinates we obtain

F = −i
Γ

2π
(ln r + iϕ) , (10.232)

therefore

Φ = +
Γ

2π
ϕ , and (10.233)

Ψ = − Γ

2π
ln r . (10.234)

The streamlines Ψ = const are circles (r = const).

d) Dipole:

F (z) =
M

2π
1
z
, (10.235)

or
F =

M

2π
1
r
(cosϕ− i sinϕ) =

M

2π
1
r2

(x− iy) , (10.236)

from which we read off directly:

Φ = +
M

2π
cosϕ
r

=
M

2π
1
r2
x , and (10.237)

Ψ = −M

2π
sinϕ
r

= −M

2π
1
r2
y . (10.238)
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Fig. 10.29. Streamlines and equipotential lines of the plane dipole

For Ψ = const we obtain with sinϕ = y/r

r2 = x2 + y2 = −M

C
y , (10.239)

that is, the streamlines are circles which are tangent to the x-axis in the
origin (Fig. 10.29).

e) Corner flow:
F (z) =

a

n
zn , (10.240)

with z = reiϕ it follows that

F =
a

n
rn(cosnϕ+ i sinnϕ), (10.241)

and therefore

Φ =
a

n
rn cosnϕ , and (10.242)

Ψ =
a

n
rn sinnϕ . (10.243)

For the magnitude of the velocity we obtain

|�u| =
∣∣∣∣
dF
dz

∣∣∣∣ =
∣∣a zn−1

∣∣ = |a| rn−1 . (10.244)

The streamlines are generally found from Ψ = const. In particular for Ψ = 0,
therefore sinnϕ = 0 or ϕ = kπ/n (k = 0, 1, 2, . . .), these are straight lines
through the origin which can represent walls in the flow field. Fig. 10.30 shows
the streamline plot for different values of the exponent n.
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Fig. 10.30. Corner flow for different values of the exponent n

f) Flow past a circular cylinder (Fig. 10.31):

F (z) = U∞

(
z +

r20
z

)
(10.245)
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or again with z = reiϕ

F = U∞

(
r +

r20
r

)
cosϕ+ iU∞

(
r − r20

r

)
sinϕ , (10.246)

and therefore

Φ = U∞

(
r +

r20
r

)
cosϕ , and (10.247)

Ψ = U∞

(
r − r20

r

)
sinϕ . (10.248)

We obtain Ψ = 0 for r = r0 and ϕ = 0, π, . . .. From the complex conjugate
velocity

dF
dz

= U∞

(
1 − r20

z2

)
(10.249)

by dF/dz = 0 we find the location of the stagnation points at z = ±r0 and
deduce the velocity components

u− iv = U∞

(
1 − e−i2ϕ r

2
0

r2

)
(10.250)

or

u = U∞

(
1 − r20

r2
cos 2ϕ

)
, (10.251)

and

v = −U∞
r20
r2

sin 2ϕ . (10.252)

The maximum velocity is reached for r = r0, i.e. on the body at ϕ = π/2,
3π/2 , . . .:

Umax = 2U∞ . (10.253)

Fig. 10.31. Flow past a circular cylinder without circulation
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g) Flow past a circular cylinder with potential vortex:
This superposition is possible since a potential vortex at the axis satisfies the
kinematic boundary condition at the circular cylinder. The complex potential
of this flow is

F (z) = U∞

(
z +

r20
z

)
− i

Γ

2π
ln(z/r0) , (10.254)

from which we read off the velocity potential and the stream function as

Φ = U∞

(
r +

r20
r

)
cosϕ+

Γ

2π
ϕ , and (10.255)

Ψ = U∞

(
r − r20

r

)
sinϕ− Γ

2π
ln(r/r0) . (10.256)

Since F (z) represents the flow past a circular cylinder for all values of Γ , it
is not unique. We obtain a survey of the different flows, by computing the
stagnation points on the body contour. From

uϕ =
1
r

∂Φ

∂ϕ

∣∣∣∣
r=r0

= −2U∞ sinϕ+
Γ

2π
1
r0

(10.257)

the equation for the stagnation points follows:

sinϕ =
Γ

4π
1

U∞r0
. (10.258)

Figure 10.32 shows the flow forms for different values of the circulation Γ .
The force (per unit depth) on the cylinder in the x-direction vanishes for
symmetry reasons, and that in the y-direction is

Fy = −�U∞Γ , (Γ < 0) . (10.259)

The flow field in Fig. 10.32d can be experimentally realized if a rotating
cylinder is exposed to a cross-flow with undisturbed U∞ sufficiently small
compared to the circumferential velocity Ω r0, corresponding to the condition
|Γ | > 4π r0U∞. As we know a rotating cylinder without an external stream in
viscous fluid produces a potential vortex, and it is clear that a small enough
cross-flow will not lead to separation at the cylinder. As experiments show,
the lift calculated from potential theory is already reached at Ω r0/U∞ > 4.
We call the phenomenon where rotating cylinder in a cross-flow experiences
a lift, the Magnus effect . It can generally be seen with rotating bodies,
as for example, a sliced tennis ball. However this effect is very important
in ballistics (spinning missiles). There have been attempts to use rotating
cylinders instead of sails on ships (Flettner rotor).
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Fig. 10.32. Flow past a circular cylinder with clockwise circulation Γ =
−4π r0U∞cΓ

10.4.3 Blasius’ Theorem

We shall restrict ourselves to steady flows and shall consider a simply con-
nected domain, say the cross-section of a cylinder in a flow (Fig. 10.33). From

Fi = −
∮

(C)

p nids (10.260)

we compute the components of the force per unit depth with ni = εik3dxk/ds
(cf. (10.219)) as

F1 = Fx = −
∮

(C)

p dy (10.261)
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Fig. 10.33. Blasius’ Theorem

and
F2 = Fy = +

∮

(C)

p dx . (10.262)

In complex notation

z = x+ iy , z = x− iy

we combine the force components as

Fx − iFy =
∮

(C)

(−ip)dz . (10.263)

The moment on the cylinder about the origin only has a component in the
z-direction:

�M · �ez = M = −
∮

(C)

εij3xinjp ds = −
∮

(C)

εij3xiεjk3p dxk =
∮

(C)

xiδikp dxk

(10.264)
or

M =
∮

(C)

(x p dx+ y p dy) . (10.265)

We write the line integral using complex notation as

M =
∮

(C)

p�(z dz) . (10.266)

In steady flow, from Bernoulli’s equation

p+
�

2
(u2 + v2) = p0 , (10.267)

and from the square of the magnitude of the complex conjugate velocity
∣∣∣∣
dF
dz

∣∣∣∣
2

=
dF
dz

dF
dz

= u2 + v2 (10.268)
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it follows that the pressure is

p = p0 − �

2
dF
dz

dF
dz

. (10.269)

Therefore we write for the force

Fx − iFy = i
�

2

∮

(C)

dF
dz

dF , (10.270)

because the closed integral over the constant pressure p0 vanishes. Since the
contour of the body is a curve Ψ = const, we have

dF = dΦ = dF , (10.271)

and from (10.266) emerges the first Blasius’ theorem:

Fx − iFy = i
�

2

∮

(C)

(
dF
dz

)2

dz . (10.272)

In an analogous manner we obtain from (10.286) the second Blasius’ theorem:

M = −�

2
�

⎛

⎜⎝
∮

(C)

(
dF
dz

)2

zdz

⎞

⎟⎠ . (10.273)

According to the derivation the integration is to be carried out along the
contour of the body. As a consequence of Cauchy’s theorem
∮

(C)

f(z) dz = 0
{

if f(z) is holomorphic on C and in the domain enclosed
by C

(10.274)

the integration can also be carried out along any arbitrary closed curve enclos-
ing the body, as long as there are no singularities between the contour of the

Fig. 10.34. Application of Cauchy’s theorem
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body and the integration curve. Using the sense of integration in Fig. 10.34
it follows from (10.274) that

∮

(C1)

f(z) dz +
∮

(C2)

f(z) dz = 0 (10.275)

or, if C1 and C2 are followed in the same sense,
∮

(C1)

f(z) dz =
∮

(C2)

f(z) dz . (10.276)

10.4.4 Kutta-Joukowski Theorem

Using the first Blasius’ theorem, we calculate the force on a cylinder of arbi-
trary contour in steady flow. Let the stream velocity at infinity be U∞+iV∞,
and let there be no singularities outside the body, although there will be
inside, in order to represent the body and to produce the lift. Outside the
singularities we can represent the velocity field by a Laurent series of the
form

dF
dz

= u− iv = A0 +A1z
−1 +A2z

−2 +A3z
−3 + · · · =

∞∑

n=0

Anz
−n , (10.277)

which yields the complex potential

F (z) = A0z +A1 ln z −
∞∑

n=2

1
n− 1

Anz
−(n−1) + const . (10.278)

From the condition at infinity

dF
dz

∣∣∣∣
∞

= U∞ − iV∞ (10.279)

it follows that
A0 = U∞ − iV∞ . (10.280)

In order to calculate the coefficient A1 we form the integral of (u− iv) around
the contour of the body:

∮

(C)

(u− iv)dz =
∮

(C)

(u− iv)(dx + idy) (10.281)

or ∮

(C)

(u− iv)dz =
∮

(C)

�u · d�x+ i
∮

(C)

dΨ , (10.282)



10.4 Plane Potential Flow 371

where the second integral vanishes since dΨ is zero along the contour of the
body. With the definition of the circulation (1.105) we therefore write

∮

(C)

(u− iv)dz = Γ . (10.283)

Since the Laurent series (10.277) has only one essential singularity (z = 0),
then from the residue theorem we have

∮

(C)

(u − iv) dz = 2πiA1 = Γ . (10.284)

From this we obtain the complex conjugate velocity in the form

u− iv = U∞ − iV∞ − i
Γ

2π
z−1 +

∞∑

n=2

Anz
−n . (10.285)

We now calculate the force on the cylinder using Blasius’ theorem (10.272).
Because of
(

dF
dz

)2

= (U∞ − iV∞)2 − i
Γ

π z
(U∞ − iV∞)− Γ 2

4π2z2
+

2A2

z2
(U∞ − iV∞) + · · · ,

(10.286)
and by applying the residue theorem we first obtain

∮

(C)

(
dF
dz

)2

dz = −(2π i)iΓ
U∞ − iV∞

π
(10.287)

and then from (10.272) the Kutta-Joukowski theorem

Fx − iFy = i�Γ (U∞ − iV∞) . (10.288)

From this equation we firstly conclude that the lift is perpendicular to the
undisturbed stream at infinity, that is, the body experiences no drag, and
secondly for a given circulation Γ the lift is independent of the contour of
the body.

In a similar manner we obtain for the moment

M = −2π �U∞�
[
iA2

(
1 − i

V∞
U∞

)]
; (10.289)

the moment then depends on the complex coefficient A2 and therefore on the
contour of the body.
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10.4.5 Conformal Mapping

We know that it is possible to transform the flow past a circular cylinder
to the flow past a cylinder of arbitrary contour with the help of conformal
mapping. As long as no separation of the boundary layer occurs in the real
flow, potential theory will describe the actual flow behavior very well. For
this reason the potential flow past a circular cylinder has great technical
importance.

The complex analytic mapping function

ζ = f(z) , (10.290)

defined at all points z at which f ′(z) has a finite nonzero value, maps the
z-plane onto the ζ-plane such that the mapping is “similar in the smallest
parts”. In other words, infinitesimal configurations remain conformal , that
is, they remain the same. The transformation has the following properties
which are easy to prove:

a) The angle between any two curve elements and its sense of rotation
remains the same.

b) The ratio of two small lengths remains the same, therefore

|Δz|
|Δz′| =

|Δζ|
|Δζ′| .

c) A small element Δz is transformed into the element Δζ according
to

Δζ = Δz
dζ
dz

.

As an example we shall consider the mapping function (Fig. 10.35).

ζ = z2 = (x+ iy)2 (10.291)

It follows that
ζ = ξ + iη = (x2 − y2) + 2ixy (10.292)

therefore
ξ = x2 − y2 , η = 2xy . (10.293)

Lines x = C in the z-plane are mapped onto parabolae open to the left,
as we see if we eliminate y from the two last equations:

ξ = C2 − η2

4C2
. (10.294)
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For C = 0 (y-axis) the parabola coincides with the negative ξ-axis. Lines
y = C are mapped onto parabolae open to the right:

ξ =
η2

4C2
− C2 , (10.295)

where for C = 0 (x-axis) the parabola lies along the positive ξ-axis. The origin
is a singular point of this mapping. There f ′ = dζ/dz has a simple zero, and
the mapping is no longer conformal at this point. At a simple zero the angle
between two line elements, such as the x- and y-axes (π/2), is doubled in the
ζ-plane (π). In general we have: at a zero of order n of f ′(z), the angle is
altered by a factor (n+ 1) (branch point of order n).

We now consider the mapping of a circular cylinder from the z-plane to
the ζ-plane. By the mapping function the region outside the cylinder in the
z-plane is mapped onto the region outside another cylinder in the ζ-plane
(Fig. 10.36).

Let P and Q be corresponding points in the z- and ζ-planes respectively.
The potential at the point P is

F (z) = Φ+ iΨ . (10.296)

Fig. 10.35. Conformal mapping

Fig. 10.36. Conformal mapping of a circular cylinder onto an airfoil



374 10 Potential Flows

The point Q has the same potential, and we obtain it by insertion of the
mapping function

F (z) = F [z(ζ)] = F (ζ) . (10.297)

We then compute the complex conjugate velocity wζ in the ζ-plane from

wζ(ζ) =
dF
dζ

. (10.298)

The following procedure is often more useful: we consider z to be a parameter
and calculate the value of the potential at the point z. With the help of the
mapping function ζ = f(z) we determine the complex coordinate of ζ which
corresponds to z. At this point ζ, the potential then has the same value as
at the point z. In order to determine the velocity in the ζ-plane, we form

dF
dζ

=
dF
dz

dz
dζ

=
dF
dz

(
dζ
dz

)−1

, (10.299)

or

wζ(ζ) = wz(z)
(

dζ
dz

)−1

. (10.300)

Therefore to compute the velocity at a point in the ζ-plane we divide the
velocity at the corresponding point in the z-plane by dζ/dz. The derivative
dF/dζ exists at all points with dζ/dz �= 0. At singular points with dζ/dz =
0, the complex conjugate velocity in the ζ-plane wζ(ζ) = dF/dζ becomes
infinite, if it is not equal to zero at the corresponding point in the z-plane.

10.4.6 Schwarz-Christoffel Transformation

The properties of conformal mappings at singular points mentioned in con-
nection with the mapping function ζ = z2 can also be used to map the x-axis
onto a polygon. We shall consider the mapping given by

dζ
dz

= f ′(z) = K(z − x1)α1/π−1(z − x2)α2/π−1 · · · (z − xn)αn/π−1 , (10.301)

which is known as the Schwarz-Christoffel transformation. If we denote the
polar angle ϕ of a complex number z = r exp(iϕ) with arg (z), because of

ln z = ln r + i arg (z) , (10.302)

we read off the logarithm of (10.301):

arg (dζ) = arg (dz) + arg (K) +
(α1

π
− 1
)

arg (z − x1) +

+
(α2

π
− 1
)

arg (z − x2) + · · · +
(αn

π
− 1
)

arg (z − xn) .

(10.303)
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Fig. 10.37. Schwarz-Christoffel transformation

If we move from a point on the x-axis to the left of x1 (Fig. 10.37) in the
direction of increasing x, then the polar angle is arg (dz) = 0. For x < x1

all (z − xi) in (10.303) are less than zero and real, i.e. arg (z − xi) = π.
Therefore arg (dζ) is constant, until the first singularity x1 is reached.
As we move past x1 the sign of the term (z − x1) changes, and therefore
arg (z − x1) decreases abruptly from the value π to 0. Since all the other
terms in (10.303) remain unchanged, arg (dζ) changes by the amount
(α1/π − 1) · (−π) = π − α1 and then again remains constant until x2 is
reached. Therefore at the position ζ1 = f(x1) in the transformed plane, the
line corresponding to A− x1 − x (x < x2) is turned by π − α1. At z = x2,
arg (z − x2) jumps by −π, arg (dζ) therefore by the amount π − α2, etc.
Between the singular points xi the corresponding images of the x-axis are
straight lines (arg (dζ) = const), and the angle between each of the straight
lines is αi. The upper half of the z-plane is mapped onto the inside of the
polygon in the ζ-plane, where the constant K in (10.301) allows a constant
stretching and rotation of the polygon.

As an example we shall treat the transformation

dζ
dz

= K(z + 1)(1/2−1)(z − 1)(3/2−1) = K

√
z − 1
z + 1

. (10.304)

The singular points are x1 = −1, x2 = 1, and the associated angles are
α1 = π/2, α2 = 3π/2. The line element on the x-axis to the left of x1 has,
from (10.303), in the ζ-plane a polar angle of

arg (dζ) = arg (dz) + arg (K) +
(
−1

2

)
π +

1
2
π = arg (K) . (10.305)

If we choose K to be a real number, the mapping of the x-axis begins with
a straight line parallel to the ξ-axis. For x1 < x < x2 the polar angle is
arg (dζ) = π − α1 = π/2, i.e. the second straight piece is parallel to the iη-
axis. For x > x2, arg (dζ) = π/2 + (π − α2) = 0, i.e. the line is again parallel
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Fig. 10.38. Step in parallel flow

to the ξ-axis. The mapping function for this example can be stated in closed
form. From the integration of (10.304) it follows that

ζ = f(z) = K

∫ √
z − 1
z + 1

dz = K
(√

z2 − 1 − ln(z +
√
z2 − 1)

)
+ C ,

(10.306)
where C occurs as a constant of integration. The image point of the singular
point x1 = −1 is ζ1 = −K ln(−1) + C = −iKπ + C, and that of the point
x2 = 1 is ζ2 = C. For C = iKπ, ζ1 = 0, ζ2 = iKπ, and we obtain the
configuration shown in Fig. 10.38. Every flow field in the z-plane for which
the x-axis is a streamline gives a flow field in the ζ-plane over a step of
height K π. In particular for parallel flow in the plane F (z) = U∞z, we have
F (ζ) = U∞z(ζ) the complex potential of the flow over a step represented in
Fig. 10.38.

10.4.7 Free Jets

In the discussion of the abrupt contraction of a cross-section (Fig. 9.8) we
inferred that the fluid separates at the sharp edge, and then no longer follows
the wall, but forms a free jet which contracts. The free surface of the jet
is unstable and if the surrounding fluid has the same density as the jet (as
discussed in the case of cross-section contraction), this instability causes rapid
mixing of the jet with the surrounding fluid, as is indicated in Fig. 9.8.
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However if the jet exits into a fluid of considerably lower density even
for distances large in comparison with the linear measure of the opening, no
mixing takes place and thus no jet disintegration. (If the diameter of the jet
is small and its velocity is high, disintegration of the jet can occur directly
behind the exit. We shall not discuss this process where the surface tension
and the viscosity play a role.)

In free jets the shape of the jet is of technical importance, since, for ex-
ample, the contraction coefficient can be deduced from it. However the com-
putation of the jet flow is in general a difficult problem, since the dynamic
boundary condition (4.171) has to be satisfied on the as yet unknown jet
boundaries. Only in plane potential flow can problems with free jet bound-
aries be solved rather simply by conformal mapping.

As the first example we shall compute the jet contraction coefficient of
a plane free jet, and to this end shall consider the discharge from a large
vessel (Fig. 10.39). The emerging jet contracts from the cross-section B−B′

to the cross-section C − C′. There the pressure inside the jet is equal to
the ambient pressure since the curvature of the streamlines vanishes. The
pressure is constant on the free surface of the jet, and the constancy of the
velocity then follows from Bernoulli’s equation:

U∞ =
√

2
�
(pI − p0) , (10.307)

from which the volume flux (per unit depth) follows as

V̇ = αhU∞ . (10.308)

We conclude from the curvature of the free surface that the pressure increases
as we move towards the center of the jet, and therefore the velocity decreases
from its value U∞ on the edge of the jet towards the middle.

In order to determine the shape of the free jet we use the mapping which
results from the definition of the complex conjugate velocity:

ζ = f(z) =
dF
dz

= w = u− iv . (10.309)

Therefore this function maps the z-plane onto the velocity plane, which is
also called the hodograph plane.

We shall first examine the course of the streamline from the point A
(x = 0, y → ∞) to the point B (edge of the container outlet) and then to
the point C (Fig. 10.39). From the equality of the potentials at correspond-
ing points in the z- and ζ-planes, it follows directly that streamlines remain
streamlines under conformal mapping (Ψ = Ψ(z) = Ψ [z(ζ)] = const). There-
fore the line under consideration is also a streamline in the hodograph plane.
On the section of the line A − B we have u ≡ 0, and −v increases from
zero to the value U∞; thus its image coincides with the η-axis from η = 0
to η = −v = U∞. On the contour of the free jet from B (w = iU∞) to C



378 10 Potential Flows

Fig. 10.39. Plane free jet

(w = U∞), |w| is, from (10.307), constant equal to U∞, and so the image of
this section of the streamline is the quarter circle sketched in Fig. 10.40. The
image of the lower streamline A′−B′−C′, on which the velocities are every-
where the complex conjugates of those above, corresponds to a reflection of
the image of A−B−C through the ξ-axis. The upper and lower free surfaces

Fig. 10.40. Free jet in the hodograph plane
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of the jet then form the semicircle

ζ = w = U∞eiϑ , (10.310)

with −π/2 ≤ ϑ ≤ π/2. The streamlines inside the container and the jet fall
into the inside of this semicircle in the right half plane.

The flow field in the hodograph plane can be generated from the su-
perposition of a source at the origin and two sinks at ζ = ±U∞, but then
of course it also occupies the ξ-η-plane outside the region of interest. Since
only half of the strengths of the source (m > 0) and of the right-hand sink
(m < 0) flow into or out of the semicircle, the strengths are chosen to be
|m| = 2V̇ = 2αhU∞, respectively. From (10.227) the complex potential now
reads

F (ζ) =
α

π
U∞h[ln ζ − ln(ζ − U∞) − ln(ζ + U∞)] . (10.311)

We can easily convince ourselves that the free surface of the jet (10.310) really
is a streamline.

Our next step is to determine the mapping function z = z(ζ), and thus
to obtain the free surface in the z-plane. From (10.309) it follows that

z =
∫

dF
ζ

=
∫

dF
dζ

dζ
ζ

, (10.312)

and with (10.311) then

z =
α

π
U∞h

∫ (
1
ζ2

+
1

ζ(U∞ − ζ)
− 1
ζ(U∞ + ζ)

)
dζ . (10.313)

The integral is easily evaluated after decomposing the integrand into partial
fractions, and leads to the relation

z =
α

π
h

[
−U∞

ζ
+ ln

(
1 +

ζ

U∞

)
− ln

(
1 − ζ

U∞

)]
+ const , (10.314)

which is the desired mapping of the velocity plane onto the z-plane. The
inverse function ζ = w = u − iv = f(z) describes the velocity field in the jet
and container. We now introduce the equation of the upper free streamline
(10.310) with 0 ≤ ϑ ≤ π/2 into Eq. (10.314), and by applying the identity

ln
(
1 + eiϑ

)− ln
(
1 − eiϑ

)
= ln

(
1 + eiϑ

1 − eiϑ

)
= i

π

2
+ ln

(
sinϑ

1 − cosϑ

)
(10.315)

obtain the shape of the jet in the z-plane as

z(ϑ) =
α

π
h

[
−e−iϑ + ln

(
sinϑ

1 − cosϑ

)]
+K , 0 ≤ ϑ ≤ π

2
. (10.316)
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We determine the constant of integration K from the condition that at the
point B

z(ϑ = π/2) = i
h

2
(10.317)

to
K = i

h

2

(
1 − 2α

π

)
. (10.318)

Taking the limit ϑ→ 0 in (10.316) furnishes an equation for the contraction
coefficient α. For ϑ→ 0 the real part of z tends to infinity, i.e. the point C in
the z-plane lies at infinity. The imaginary part �[z(ϑ)] must, from Fig. 10.39,
satisfy the condition

lim
ϑ→0

�[z(ϑ)] = iα
h

2
, (10.319)

so that from (10.316), iαh/2 = K, and thus with (10.318) the contraction
coefficient

α =
π

π + 2
≈ 0.61 (10.320)

follows.
The impact of a plane free jet on an infinite plane wall can also be com-

puted with the method discussed, where here an explicit equation for the
free streamline can be given. The flow in the z-plane (Fig. 10.41) has the
hodograph of Fig. 10.42. Analogous to the previous example, this field can
be represented by two sources at the positions ζ = ±U∞ and two sinks at
the positions ζ = ±iU∞. The strength in each case is

|m| = 2V̇ = 4U∞h . (10.321)

Fig. 10.41. Free jet impact perpendicular to a wall
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Fig. 10.42. Free jet impact in the hodograph plane

The complex potential in the ζ-plane therefore, according to (10.227) is

F (ζ) =
2
π
U∞ h [ln(ζ − U∞) + ln(ζ + U∞) − ln(ζ − iU∞) − ln(ζ + iU∞)] .

(10.322)
As before we obtain from (10.311)

z =
2h
π

[
ln
(

1 − ζ/U∞
1 + ζ/U∞

)
− i ln

(
1 − iζ/U∞
1 + iζ/U∞

)]
, (10.323)

where the integration constant is found, from the condition at the stagnation
point

z(ζ = 0) = 0 , (10.324)

to be zero. On the lower free streamline we again have

ζ = U∞eiϑ , 0 ≤ ϑ ≤ π

2
(10.325)

so that by applying the identities

ln
(

1 − eiϑ

1 + eiϑ

)
= −i

π

2
+ ln

(
1 − cosϑ

sinϑ

)
= −i

π

2
+ ln

(
tan

ϑ

2

)
, (10.326)

and

ln
(

1 − i eiϑ

1 + i eiϑ

)
= ln

(
1 − ei(ϑ+π/2)

1 + ei(ϑ+π/2)

)
= −i

π

2
+ ln

[
tan
(
ϑ

2
+
π

4

)]
(10.327)
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the equation of the free streamline appears in the form

z(ϑ) = x+ iy = −h
{

1 − 2
π

ln
[
tan

ϑ

2

]}
− ih

{
1 +

2
π

ln
[
tan
(
ϑ

2
+
π

4

)]}
.

(10.328)

From the real part the relation

tan
ϑ

2
= exp

[π
2

(
1 +

x

h

)]
(10.329)

follows, and with

ln
[
tan
(
ϑ

2
+
π

4

)]
= ln

(
1 + tan(ϑ/2)
1 − tan(ϑ/2)

)
= 2arctanh

(
tan

ϑ

2

)
(10.330)

we obtain, from the imaginary part, the explicit equation of the lower free
streamline:

− y

h
= 1 +

4
π

arctanh
{

exp
[π
2

(
1 +

x

h

)]}
, x < −h . (10.331)

The upper free streamline is symmetric to this.

10.4.8 Flow Around Airfoils

The main purpose of the conformal mapping lies in the possibility to map
the unknown flow past an airfoil to the known flow past a circular cylinder.
In this manner we can obtain the direct solution of the flow past a cylinder
of arbitrary contour. Although numerical methods of solution of the direct
problem have now superseded the method of conformal mapping, it has still
retained its fundamental importance. We shall discuss these methods using
as an example the Joukowski mapping:

ζ = f(z) = z +
a2

z
. (10.332)

The function f(z) maps a circle with radius a in the z-plane onto a “slit” in
the ζ-plane. With the complex coordinate of the circle

z = a eiϕ (10.333)

we obtain
ζ = 2a cosϕ (10.334)

purely real, i.e. the circle is mapped onto a section of the ξ-axis reaching from
−2a to 2a (Fig. 10.43). With the complex potential (10.245) of the cylinder
flow (r0 = a)

F (z) = U∞

(
z +

a2

z

)
(10.335)
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Fig. 10.43. Mapping of a circle onto a slit and ellipse

Fig. 10.44. Joukowski mapping

the Joukowski mapping function directly furnishes the potential in the ζ-
plane as

F (ζ) = U∞ζ , (10.336)

as was indeed expected. Now if we map a circle with radius b which is smaller
or larger than the mapping constant a, we obtain an ellipse (Fig. 10.43). If
we map a circle whose midpoint coordinates (x0, y0) are not zero, we obtain
typical airfoils (Fig. 10.44).

The Joukowski mapping has a singular point at each of the positions
z = ±a, as can be seen

dζ
dz

= 1 − a2

z2
. (10.337)

The point z = −a is generally mapped into the interior of the airfoil
and is thus of no interest to us. The angle between the two line elements
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Fig. 10.45. Trailing edge angle of a Joukowski airfoil

emerging from z = a, dz1 and dz2 in Fig. 10.45 is π. Since we are dealing
with a simple zero, the angle between the corresponding line elements dζ1
and dζ2 is doubled, and thus is 2π. Therefore the trailing edge angle is zero,
a typical property of the Joukowski mapping, which is already evident from
the mapping of the circle of radius a to a slit.

At the singular point B, the velocity in the ζ-plane becomes infinite if
we do not ensure that it is zero at the point B in the z-plane. We ac-
complish this by choosing the circulation of the cylinder flow such that B
lies at a stagnation point. This requirement determines the value of the
circulation and prevents a flow past the trailing edge in the ζ-plane, which we
already excluded in our discussion of the generation of circulation (Fig. 4.6).
If the angle of attack is not too large, the real circulation adjusts itself accord-
ing to this condition known as Joukowski’s hypothesis or Kutta condition. It
enables us to fix the value of the circulation about the cylinder. The circula-
tion about the airfoil is then exactly the same size, because

Γ =
∮

Cζ

wζ(ζ) dζ =
∮

Cζ

wz(z)
dz
dζ

dζ =
∮

Cz

wz(z)dz . (10.338)

For a coordinate system z′ = x′ + iy′, whose origin lies in the center of the
circle and whose x′-axis denotes the direction of the undisturbed velocity, the
complex potential, from (10.254), reads

F (z′) = U∞

(
z′ +

r20
z′

)
− i

Γ

2π
ln
z′

r0
. (10.339)

In order to obtain the potential of the flow past a circular cylinder with center
at z0 in a uniform stream at an angle of attack α to the x-axis, we use the
transformation

z = z0 + |z′| ei(ϕ′+α) = z0 + z′eiα , (10.340)

which can be read off Fig. 10.46. We insert the transformation

z′ = (z − z0)e−iα , (10.341)
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Fig. 10.46. Coordinate transformation

into (10.339) to get

F (z) = U∞(z − z0)e−iα + U∞
r20

z − z0
eiα − i

Γ

2π
ln
(
z − z0
r0

e−iα

)
. (10.342)

The complex conjugate velocity is then

w = u− iv = U∞e−iα − U∞eiα r20
(z − z0)2

− i
Γ

2π
1

z − z0
. (10.343)

At the point B, i.e. for z− z0 = r0e−iβ, Joukowski’s hypothesis requires that
u− iv = 0 holds, so that (10.343) becomes an equation for the circulation Γ
with the solution

Γ = −4π r0U∞ sin(α+ β) . (10.344)

The value of Γ depends on the airfoil parameters r0 and β, on the angle of
attack α and on the undisturbed velocity U∞. The mapping function itself
need not be known to determine Γ , because as we have already shown, the
circulation in the ζ-plane is exactly the same as in the z-plane.

The force per unit depth on the airfoil is calculated from the Kutta-Jou-
kowski theorem (10.288), where we note that the complex conjugate velocity
U∞ − iV∞ is now to be replaced by U∞ exp(−iα). We obtain the complex
conjugate force as

Fx − iFy = −i 4π r0�U2
∞e−iα sin(α+ β) . (10.345)

The magnitude of the force is

|F | =
√
F 2

x + F 2
y =

√
(Fx − iFy)(Fx + iFy) , (10.346)
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Fig. 10.47. Airfoil length

and therefore
|F | = 4π r0�U2

∞ sin(α + β) . (10.347)

We denote the dimensionless quantity

cl =
|F |

(�/2)U2∞l
= 8π

r0
l

sin(α + β) (10.348)

as the lift coefficient , where l is the length, or the chord , of the airfoil
(Fig. 10.47) which can be calculated from the mapping function.

For β = 0 and r0 = a the circle in the z-plane again is at the origin,
and the Joukowski mapping takes this circle over to a plate of length l = 4a
(Fig. 10.48). We then have a lift coefficient of

cl = 2π sinα . (10.349)

A suction force in the negative x-direction arises from the flow past the
leading edge, and together with the pressure force perpendicular to the plate
gives rise to a lift force, which (in agreement with the Kutta-Joukowski the-
orem) is perpendicular to the undisturbed flow direction, so that the drag
force vanishes (d’Alembert’s paradox).

The angle α = −β is called the no lift direction (cl = 0) of the airfoil. In
Fig. 10.49 a typical comparison between theoretical and experimental results
is shown. Also sketched is the drag coefficient cd. The experimental results
found in Fig. 10.49 are often given in the form of a polar diagram (Fig. 10.50),
with cl as the ordinate and cd as the abscissa, where the angle of attack α
is the curve parameter. The tangent of the angle σ shown is the drag-to-lift

Fig. 10.48. Flow past an infinitesimally thin plate
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Fig. 10.49. Lift and drag coefficients

Fig. 10.50. Polar representation of lift and drag

ratio ε:
tanσ = ε =

cd
cl

. (10.350)

The smallest drag-to-lift ratio is given by the tangent to the polar curve at
the origin. Beyond a certain angle of attack, the lift decreases and the drag
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Fig. 10.51. Construction of an airfoil from the mean camber line and symmetric
thickness distribution

rises. This is due to boundary layer separation on the suction (upper) side of
the airfoil. The airfoil is then said to be stalled.

10.4.9 Approximate Solution for Slender Airfoils
in Incompressible Flow

In aerodynamics, airfoils where the length is much larger than the thickness
are invariably used, in order to avoid separation. We can generate these air-
foils by a symmetric thickness distribution about a mean camber line. For
a slender airfoil, i.e.

d

l
= ε� 1 ,

the flow past the airfoil can be determined by first computing the solution
for the symmetric airfoil of the same thickness distribution, then the solution
for an infinitesimally thin mean camber line, and finally superimposing both
solutions to obtain the flow past the real airfoil. In doing this, of course, an
error is involved, but this is only of the order of magnitude O(ε2), which is
negligible for a very slender airfoil. This method leads to an explicit solution
of the direct problem, although it has now been superseded by numerical
methods. In spite of this we shall discuss the method, since it can serve as an
introduction to perturbation theory, and some numerical methods are only
generalizations of this method.

We first consider the symmetric airfoil (Fig. 10.52) with a contour given
by

y = ±f(x) (10.351)

and envisage an airfoil generated by a source distribution along the x-axis,
so that the potential is

Φ = U∞x+
1
2π

l∫

0

q(x′) ln
√

(x− x′)2 + y2 dx′ . (10.352)

The velocity components generated by the source distribution are denoted
by u and v. Since the body is very slender the perturbation velocities u and
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Fig. 10.52. Symmetric airfoil

v are small compared to U∞ and we have

u

U∞
∼ v

U∞
∼ ε . (10.353)

With F (x, y) = −y ± f(x) = 0 the kinematic boundary condition (4.170)
reads

±(U∞ + u)
df
dx

− v = 0 (at the wall), (10.354)

or
v = ±(U∞ + u)

df
dx

at y = ±f(x) . (10.355)

Now f = O(d) holds and thus df/dx = O(ε); because of (10.353) we therefore
also write

v

U∞
= ±df

dx
+O(ε2) at y = ±f(x) . (10.356)

In what follows we shall ignore terms of the order O(ε2). There are still
difficulties involved in satisfying the boundary condition (10.356) on the body,
since then f(x) occurs as an argument in the unknown function v(x, y). We
therefore expand v(x, y) in a Taylor series about y = 0:

v(x, y)
U∞

=
v(x, 0)
U∞

+
y

U∞

(
∂v

∂y

)

y=0

+ · · · , (10.357)

and estimate the order of magnitude of the second term from the continuity
equation as

∂u

∂x
= −∂v

∂y
∼ u

l
, and (10.358)

y

U∞
∂v

∂y
∼ d

U∞
u

l
=

u

U∞
d

l
∼ ε2 . (10.359)

Since we are neglecting terms of the order O(ε2), it follows that

v(x, y)
U∞

=
v(x, 0)
U∞

= ±df
dx

at y = 0 ; (10.360)
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therefore we can satisfy the boundary condition on the x-axis instead of on
the body y = ±f(x). If we denote the upper side of the airfoil with O+ and
the lower side with O−, we then write (10.356) in the form

v(x, 0+)
U∞

=
df
dx

,
v(x, 0−)
U∞

= −df
dx

. (10.361)

The velocity v(x, y) is found from the potential (10.352)

v(x, y) =
∂Φ

∂y
=

1
2π

l∫

0

q(x′)y
(x − x′)2 + y2

dx′ . (10.362)

If we insert (10.362) into (10.361), an integral equation is obtained for the
unknown source distribution q(x), which can, in fact, be easily solved; we
obtain the velocity v(x, 0) by taking the limit y → 0. The integral has a sin-
gularity at x = x′ and only there is the integrand nonzero for y → 0. Using
the transformation

η =
x− x′

y
; x′ = x− η y ;

dx′

y
= −dη (10.363)

we get a regular integral

v(x, y) = − 1
2π

−(l−x)/y∫

x/y

q(x− η y)
1 + η2

dη , (10.364)

thus for 0 < x < l

v(x, 0+) = lim
y→0+

[v(x, y)] =
q(x)
2π

+∞∫

−∞

dη
1 + η2

=
q(x)
2

. (10.365)

The desired source distribution then follows from the boundary condition:

q(x) = 2
df
dx

U∞ . (10.366)

For v(x, 0−) we correspondingly obtain

v(x, 0−) = −q(x)
2

(10.367)

or again

q(x) = 2
df
dx

U∞ . (10.368)

It is easy to show that the closure condition (10.119) is satisfied, and thus the
problem is solved. With the known source distribution q(x) the potential is
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now known, and the velocity and pressure fields follow in the manner already
discussed. We note that the solution is in general not uniformly valid in the
entire flow field. For airfoils with blunt noses, df/dx is infinite at x = 0.
From Eq. (10.361) it then follows that v/U∞ → ∞, so that the assumptions
of perturbation theory break down locally. The solution there is no longer
valid, and we have to deal with a singular perturbation problem.

In order to calculate flow past the mean camber line, we cover it with
a continuous vortex distribution, thus replacing the mean camber line with
a bound vortex sheet. This represents a surface of discontinuity in the tan-
gential velocity. Since the sheet is fixed in space, the jump in the tangential
velocity leads to a pressure difference between the upper and lower sides,
which gives rise to a force on the mean camber line. (A free vortex sheet,
such as appears in unsteady motion of an airfoil, will deform such that the
dynamic boundary condition of pressure equality (4.173) is satisfied.) Let the
mean camber line be given by

y = f(x) . (10.369)

With fmax/l = ε the order of magnitude equation

df
dx

= O(ε) (10.370)

is valid, as is (10.353). Let the angle of attack α be of the order O(ε). Within
our approximation we can place the vortex distribution along the x-axis in-
stead of along the mean camber line. For a vortex intensity γ opposite to the
mathematically positive sense, the infinitesimal vortex strength is

dΓ = −γ(x)dx , (10.371)

so that with (10.195) and in analogy to the source distribution we obtain the
potential

Φ = U∞x+ V∞y − 1
2π

l∫

0

γ(x′) arctan
y

x− x′
dx′ , (10.372)

with the still unknown vortex intensity γ(x′). We then obtain the velocity
components from (10.372) as before, by taking the differentiation with respect
to x and y into the integral. For the perturbation velocities we thus obtain
the expressions

u(x, y) = +
1
2π

l∫

0

γ(x′)
y

(x− x′)2 + y2
dx′ (10.373)

and

v(x, y) = − 1
2π

l∫

0

γ(x′)
x− x′

(x− x′)2 + y2
dx′ . (10.374)
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Because of the formal equality of the expression for u with that for v in the
source distribution (10.362), we can directly obtain the velocity on the x-axis:

u(x, 0±) = ±1
2
γ(x) , (10.375)

which is equal to the velocity on the mean camber line, up to terms of the
order O(ε2). Therefore the jump in velocity through the vortex sheet is

Δu = u+ − u− = γ(x) . (10.376)

From this, the pressure jump could be computed directly from Bernoulli’s
equation and then integrated to find the force (per unit depth). However we
shall prefer to determine the lift from the Kutta-Joukowski theorem (10.288):

Fa = −�Γ U∞

√

1 +
(
V∞
U∞

)2

, (10.377)

with Γ (positive in the anticlockwise sense) from (10.371)

Γ =

l∫

0

−γ(x′)dx′ . (10.378)

Since V∞/U∞ ≈ α ∼ ε, we have

Fa = �U∞

l∫

0

γ(x′)dx′ +O(ε2) . (10.379)

The implicit form of the mean camber line is F (x, y) = −y + f(x) = 0, and
we obtain the kinematic boundary condition from (4.170) as

(U∞ + u)
df
dx

− (V∞ + v) = 0 at y = f(x), (10.380)

or
α+

v

U∞
=

df
dx

(
1 +

u

U∞

)
at y = f(x) . (10.381)

By neglecting terms of the order O(ε2), we can again satisfy the boundary
condition on the x-axis instead of on y = f(x), and with (10.374) we extract
the equation

U∞
df
dx

− αU∞ = − 1
2π

l∫

0

γ(x′)
x− x′

dx′ , (10.382)

which is a singular integral equation of the first kind for the unknown distri-
bution γ(x). The integral equation has no unique solution. Here we do not
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wish to go into the mathematical aspects, but shall only note that the flow
past a circular cylinder with circulation (cf. (10.254)) is not unique either.
Since this solution can be mapped onto the flow past airfoils, these are also
not unique. It is necessary in addition to specify the value of the circulation,
i.e. invoke Joukowski’s hypothesis. In steady flow this is equivalent to requir-
ing that the velocities on the upper and lower sides be equal at the trailing
edge x = l:

Δu(x = l) = γ(l) = 0 . (10.383)

In general then there is a flow around the leading edge of the mean camber
line. This leads to infinitely large velocities, and to an infinitely large γ(0).
Only if the local flow direction towards the airfoil (not the undisturbed stream
at infinity) is there tangential to the mean camber line, does no flow around
this edge occur. We call this the shock-free incidence. For the flow past an
infinitely thin edge, we find the potential from (10.242) with n = 1/2:

Φ = 2a
√
r cos

ϕ

2
. (10.384)

From this we extract the velocity on the upper side (ϕ = 0) of the edge as

u+ =
dΦ
dr

∣∣∣∣
ϕ=0

=
a√
r

=
a√
x
, (10.385)

and on the lower side (ϕ = 2π) as

u− = − a√
x
. (10.386)

Therefore the jump in the tangential velocity is

lim
x→0

Δu(x) = lim
x→0

2
a√
x
. (10.387)

The function

γ0(x) = 2a

√
l − x

x
(10.388)

satisfies the required conditions at the leading and trailing edges, because
of (10.376), but is not yet the desired function in the domain 0 < x < l.
We subtract the distribution γ0(x) from the desired distribution γ(x). The
remaining part of the distribution can be expanded into a Fourier series in
the coordinate ϕ, given by

x =
l

2
(1 + cosϕ) . (10.389)

Because x = 0 for ϕ = π and x = l for ϕ = 0, the cosine terms in the series
expansion must vanish, since these are not zero for x = 0 and x = l. We set
the constant a = U∞A0 and expand (γ − γ0) in a Fourier series:

γ(ϕ) − 2U∞A0 tan
ϕ

2
= 2U∞

∞∑

n=1

An sinnϕ . (10.390)
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We insert this into the integral equation (10.382), use the transformation
(10.389) for x′ and obtain the integral equation in the form

α− df
dx

=
1
π
A0

π∫

0

1 − cosϕ′

cosϕ− cosϕ′ dϕ
′ +

1
π

∞∑

n=1

An

π∫

0

sinnϕ′ sinϕ′

cosϕ− cosϕ′ dϕ
′ .

(10.391)
The integrals can be evaluated with

sinnϕ′ sinϕ′ =
1
2

[cos(n− 1)ϕ′ − cos(n+ 1)ϕ′]

from the formula

1
π

π∫

0

cosnϕ′

cosϕ− cosϕ′ dϕ
′ = − sinnϕ

sinϕ
, (10.392)

and in this manner we see that the left-hand side should be expanded in
a cosine series:

α− df
dx

= A0 +
∞∑

n=1

An cosnϕ . (10.393)

As is known, the coefficients are

A0 = α− 1
π

π∫

0

df
dx

(ϕ)dϕ , (10.394)

and

An = − 2
π

π∫

0

df
dx

(ϕ) cosnϕdϕ . (10.395)

From (10.379) we determine the lift coefficient cl to be

cl = π (2A0 +A1) . (10.396)

With (10.266) the moment about the leading edge can be determined. It is
taken as positive if it tends to increase the angle of attack. Without perform-
ing the calculation we shall simply state the moment coefficient:

cm =
M

�/2U2∞l2
= −π

4
(2A0 + 2A1 +A2) . (10.397)

In shock-free incidence, we have A0 = 0, and since γ(π) remains finite, we
have for this case

cl = π A1 . (10.398)

As an example we shall compute the coefficients for a flat plate, for which
df/dx = 0, and therefore A0 = α, An = 0 hold. If follows immediately that

cl = 2π α (10.399)
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(in agreement with (10.349) for small α) and

cm = −π

2
α = −1

4
cl , (10.400)

from which we conclude that the point at which the lift force acts is x = l/4
(cf. Fig. 10.48).

10.4.10 Slender Airfoils in Compressible Flow

As in Sect. 10.4.9 we shall consider slender airfoils (d/l = ε � 1). The
perturbation velocities u and v are then of the order O(ε U∞), and for the
potential we assume the form:

Φ = U∞x+ ϕ , (10.401)

where ϕ is the perturbation potential, and u = ∂ϕ/∂x and v = ∂ϕ/∂y are
the perturbation velocities. We shall start out with the potential equation
(10.50), in which we replace a2 from the energy equation:

a2 = a2
∞ +

γ − 1
2

(
U2
∞ − ∂Φ

∂xi

∂Φ

∂xi

)
. (10.402)

If we insert (10.401) into the resulting equation and neglect all terms of the
order O(ε2), then after some manipulation we obtain a differential equation
for the perturbation potential:

(1 −M2
∞)

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= (γ + 1)M2

∞
u

U∞
∂2ϕ

∂x2
+ (γ − 1)M2

∞
u

U∞
∂2ϕ

∂y2

+ 2M2
∞

v

U∞
∂2ϕ

∂x∂y
, (10.403)

in which M∞ = U∞/a∞. In many practical cases this equation or the original
equation (10.50) is solved numerically. However here we shall discuss the
simplifications arising in the limit ε → 0, since in this case the solution can
be found using the methods already known. In the limit ε → 0 the right-hand
side vanishes, since each term contains a factor of order O(ε). We obtain the
equation

(1 −M2
∞)

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 , (10.404)

which is valid in both the subsonic and supersonic flows. The sign of (1−M2
∞)

determines the type of this partial differential equation. For M∞ < 1 the
equation is elliptic; for M∞ > 1 it is hyperbolic. For M∞ ≈ 1 the sign of
∂2ϕ/∂x2 is also affected by the first term on the right-hand side of (10.403),
which can then no longer be neglected; for this case we obtain the transonic
perturbation equation

(1 −M2
∞)

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= (γ + 1)

M2
∞

U∞
∂ϕ

∂x

∂2ϕ

∂x2
. (10.405)
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This equation is nonlinear, and apart from some specific solutions, numerical
methods are used to integrate it.

We shall first consider the subsonic flow past a slender airfoil given by
y = f(x). Then (10.404) is to be solved subject to the boundary condition
(10.356), that is

1
U∞

∂ϕ

∂y
=

df
dx

for y = 0 . (10.406)

It is clear that (10.404) can be brought to the form of Laplace’s equation
by a suitable coordinate transformation. We could, for example, transform x
(i.e. change the length of the airfoil) and leave y unchanged, or else retain x
and transform y (i.e. change the thickness of the airfoil). We choose

y = y
√

1 −M2∞ ; x = x (10.407)

and for
ϕ = ϕ (1 −M2

∞) (10.408)

obtain from (10.404) Laplace’s equation

∂2ϕ

∂ x2 +
∂2ϕ

∂ y2 = 0 . (10.409)

The equation of the upper surface in the transformed coordinates reads

y =
√

1 −M2∞ f(x) = f(x) , (10.410)

and with this the boundary condition

1
U∞

∂ ϕ

∂ y
=

d f
dx

. (10.411)

With (10.409) and (10.411) the solution of compressible flow past an airfoil
y = f(x) in the x-y-plane in a stream with undisturbed velocity U∞ and Mach
number M∞ is reduced to the incompressible flow past a (thinner) airfoil y =
f(x) in the x-y-plane with the undisturbed velocity U∞. At corresponding
points the perturbation velocities u and v are to be calculated from the
perturbation velocities u and v of the incompressible flow, according to

u =
∂ϕ

∂x
=

1
1 −M2∞

∂ ϕ

∂ x
=

u

1 −M2∞
, (10.412)

and
v =

∂ϕ

∂y
=

1√
1 −M2∞

∂ ϕ

∂ y
=

v√
1 −M2∞

. (10.413)

Within our approximation we can neglect the change in density in the field,
and Bernoulli’s equation holds in the form valid for incompressible flow. Ne-
glecting the quadratic terms in the perturbation velocities, the pressure co-
efficient (10.123) then reads

cp = − 2u
U∞

, (10.414)
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where with (10.412) the transformation

cp = − 1
1 −M2∞

2u
U∞

=
1

1 −M2∞
cp (10.415)

follows, called Goethert’s rule. Now in practice we often want to know the
change in the pressure coefficient as a function of the Mach number for a given
airfoil, which is approximately described by the Prandtl-Glauert rule:

cp(M∞) = cp(0)
1√

1 −M2∞
. (10.416)

Here cp(M∞) is the pressure coefficient at the Mach number M∞ for an
airfoil, which in incompressible flow has the coefficient cp(0).

For supersonic flow (M2
∞ − 1) > 0, (10.404) corresponds to the wave

equation
∂2ϕ

∂y2
= (M2

∞ − 1)
∂2ϕ

∂x2
. (10.417)

The solution can therefore proceed in analogy to the one-dimensional sound
propagation of Sect. 10.1. There is, however, a difference, in so far as there
the perturbation is also felt upstream, while this is not possible in supersonic
flows. The reason for this is that a perturbation can only propagate with the
speed of sound. We shall explain this fact in Chap. 11, and in Sect. 11.4 we
shall return to the Eq. (10.417).



11 Supersonic Flow

In a supersonic flow, the disturbance caused by a body is perceived only
within a bounded range of influence. This is completely analogous to unsteady
compressible flow, which also is described by hyperbolic differential equations,
but there the resulting state of affairs is independent of whether the Mach
number is greater than or less than one.

For example, consider a steady flow with a stationary sound source, which
sends out a signal at t = 0. This signal imparts a small pressure disturbance
to the fluid. In a reference frame moving with the flow velocity u, the distur-
bance spreads out spherically with the velocity of sound a. With respect to
a reference frame fixed in space, the sound wave has the position shown in
Fig. 11.1 after time t and for u < a (subsonic).

As t → ∞ the sound wave will fill the entire space. If u > a (supersonic)
the sound wave has the positions shown in Fig. 11.2 in the fixed frame at
successive points in time. We can see from this figure that the sound wave
will not reach the entire space as t → ∞. We call the envelope of the waves
the Mach cone whose angle μ is calculated from

sinμ =
a

u
=

1
M

(11.1)

and is called the Mach angle. We can also imagine, for example, a very slender
body as a source of the disturbance. A thick body, however, will cause a dis-
turbance which is no longer small and then the Mach cone becomes a shock
front. The disturbance which originates from the body remains restricted to
the region behind the shock surface even in this case.

Fig. 11.1. Propagation of a disturbance in subsonic flow
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Fig. 11.2. Propagation of a disturbance in supersonic flow

11.1 Oblique Shock Wave

As the first step in the treatment of supersonic flow we want to derive the
relations of an oblique shock wave in two-dimensional flow from those of
a one-dimensional, normal shock wave. To do this we decompose the velocity
�u1 in front of the shock into its components u1n normal to and u1t tangential
to the shock front (Fig. 11.3):

u1n = u1 sinΘ , (11.2)

u1t = u1 cosΘ . (11.3)

For an observer who moves with velocity u1t along the shock, the flow velocity
in front of the shock is now normal to the shock. Therefore in his reference
frame the relations of the normal shock wave are valid, where the Mach
number in front of the shock is then

M1n =
u1n

a1
= M1 sinΘ . (11.4)

Fig. 11.3. Oblique shock wave
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The shock relations (9.149), (9.150), and (9.151) can then be carried over to
the oblique shock wave, if M1 there is replaced by M1n from (11.4):

p2

p1
= 1 + 2

γ

γ + 1
(M2

1 sin2 Θ − 1) , (11.5)

�2

�1
=

(γ + 1)M2
1 sin2Θ

2 + (γ − 1)M2
1 sin2Θ

, (11.6)

T2

T1
=

[2γM2
1 sin2Θ − (γ − 1)][2 + (γ − 1)M2

1 sin2Θ]
(γ + 1)2M2

1 sin2Θ
. (11.7)

Behind the oblique shock, the Mach number is formed with u2, therefore
M2 = u2/a2. Since u2n = u2 sin(Θ − δ) holds, it follows that

M2n =
u2n

a2
= M2 sin(Θ − δ) . (11.8)

Although M2n is smaller than 1, M2 can be larger than 1. If we again replace
M1 and M2 by M1n and M2n (using (11.4) and (11.8), respectively), in the
relation (9.153) valid for a normal shock, we extract the equation

M2
2 sin2(Θ − δ) =

γ + 1 + (γ − 1)[M2
1 sin2Θ − 1]

γ + 1 + 2γ[M2
1 sin2Θ − 1]

. (11.9)

Using the continuity equation, we can transform this into a relation between
the wave angle Θ and the deflection angle δ (Fig. 11.4):

tan δ =
2 cotΘ [M2

1 sin2Θ − 1]
2 +M2

1 [γ + 1 − 2 sin2Θ]
. (11.10)

The lower of the two dividing lines sketched in Fig. 11.4 separates the regions
where the Mach number M2 is larger and smaller than one, and the upper
line connects the points of maximum deflections. (A diagram of the relation
between wave angle Θ and deflection angle δ with the family parameter M1 is
also found in Appendix C.) A shock is called a strong shock if the wave angle
Θ for a given Mach number M1 is larger than the angle Θmax associated with
the maximum deflection δmax; otherwise we talk of a weak shock .

In a weak shock the fluid velocity behind the shock can lie in either
the subsonic or the supersonic range, but behind a strong shock the flow is
always subsonic. If the deflection angle δ is smaller than δmax, there are then
two possible solutions for the shock angle Θ. Which solution actually arises
depends on the boundary conditions far behind the shock.

Knowing about the oblique shock wave, we can immediately consider
supersonic flow in a corner and around a wedge, providing δ < δmax

(Fig. 11.5). It is observed that in flows past “slender wedges” δ < δmax, weak
shocks are always attached to the nose. On the one side, the wave angle Θ is
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Fig. 11.4. Relation between wave angle and deflection angle

Fig. 11.5. Supersonic flow in a corner and past a wedge

limited by the value π/2 (normal shock) and on the other by the condition
M1 sinΘ ≥ 1 (velocity normal to the shock supersonic). Using (11.1) we then
have

sinΘ ≥ 1
M1

= sinμ1 . (11.11)

Therefore Θ must be equal or larger than μ, and thus move in the range

μ ≤ Θ ≤ π

2
. (11.12)

For Θ = μ the shock deteriorates into a Mach wave. From M2 = M2(Θ, δ,M1)
and δ = δ(M1, Θ) we can eliminate the wave angle Θ to obtain M2(δ,M1).
This relation is given in the form of a diagram in Appendix C.

11.2 Detached Shock Wave

We now consider deflection angles δ>δmax; these lead to flows past “blunt
wedges”. If, for a given Mach number M1 a deflection angle δ larger than
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Fig. 11.6. Detached shock wave

δmax arises, a detached shock is the only possibility. Both strong and weak
shocks are then realized in the shock configuration (Fig. 11.6a). Close to the
stagnation streamline the wave angle is around 90◦ (strong shock, subsonic
flow behind the shock), while at greater distances from the body the shock
deteriorates into a Mach wave (Θ = μ, Fig. 11.6b). It is difficult to calculate
the resulting flow behind the shock, since subsonic flow, supersonic flow and
flow close to the velocity of sound all appear together (transonic flow). Behind
a curved shock, the flow is no longer homentropic, and from Crocco’s theorem
(4.157) is no longer irrotational.

The shock behavior derived up to now also holds locally for curved shocks;
we recognize this from the fact that no derivatives appear in the shock rela-
tions. Then Θ is the local inclination of the shock front.

11.3 Reflection of Oblique Shock Waves

If a shock meets a wall it is reflected. The strength of the reflected shock
adjusts itself so that the flow velocity after the shock is again directed parallel
to the wall. The reflected shock can be either a weak or strong shock. If the
original shock is a weak shock it is generally observed that the reflected
shock is also a weak shock. We can interpret this flow as the same as the
intersection of two oblique shocks of the same strenght where the line of
symmetry is replaced by a plane wall (Fig. 11.7).

Downstream from the reflected shocks, the state of the gas is everywhere
the same and the flow direction is the same as the flow direction in front of
the shock.
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Fig. 11.7. Reflection, or intersection of two equally strong shocks

If two shocks of different strengths cross (Fig. 11.8), then the reflected
shocks must be such that the same pressure and the same flow direction are
produced behind each. However all other fluid mechanical and thermody-
namical quantities, particularly the magnitude of the flow velocity, can be
different from each other in the regions of constant gas state 1 and 2. These
are separated from each other by the dot-dashed contact discontinuity C
which is a streamline.

The contact discontinuity has the property of a vortex layer, i.e., its tan-
gential velocity on this surface changes discontinuously. We conclude from
Crocco’s theorem that the entropy in regions 1 and 2 is different. We come
to the same conclusion if we consider that gas particles on both sides of the
contact discontinuity have moved through shocks of different strengths where
the change in entropy is different for each particle.

Similar behavior is observed in a flow past a wall having two successive
corners (Fig. 11.9). At the point P two shocks merge into one. From the
above arguments, it is clear that a contact discontinuity (dot-dashed line)
must emanate from the point P . However another wave (here dashed) must
also emerge from P , and it can be either a weak shock wave or an expansion
wave (see Sect. 11.5) for the following reason: the shock strengths of S1, S2

and S3 are all determined by the slope of the wall. Since the pressure must be
the same on either side of the contact discontinuity C (the dynamic boundary
condition), this can in general only be accompanied by another wave.

Fig. 11.8. Intersection of two shocks of different strengths
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Fig. 11.9. Confluence of two shocks

If the wedge angle of Fig. 11.7 is increased, the Mach number behind the
shock becomes smaller. If the wedge angle is large enough, the maximum de-
flection associated with the Mach number behind the shock becomes smaller
than is necessary to satisfy the boundary condition (parallel flow to the wall)
behind the reflected shock. Then the so-called Mach reflection takes place
(Fig. 11.10).

The theory of Mach reflection is difficult because the shocks S1, S2 and
the contact discontinuity are curved and the state of flow downstream from
S1 and S2 is no longer constant. In addition the flow behind the partly normal
shock S2 must be subsonic, and so the shock configuration also depends on
the conditions far behind the shock.

11.4 Supersonic Potential Flow Past Slender Airfoils

We now return to the flow past slender airfoils. Within the framework of
perturbation theory, the shock reduces to a Mach wave.

We compute the flow from the wave equation (10.417), whose general
solution is

ϕ = h(x− β y) + g(x+ β y) (11.13)

Fig. 11.10. Mach reflection
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with
β =

√
M2∞ − 1 . (11.14)

In supersonic flow from the left, disturbances can only spread out to the right
and we must have g ≡ 0 above the airfoil and h ≡ 0 below. We shall first
consider only the flow above the upper side of the airfoil (Fig. 11.11), where

f(x) = fu(x) .

Above the airfoil the perturbation potential is

ϕ = h(x− β y), (11.15)

and the component of the perturbation velocity in the y-direction is therefore,

v =
∂ϕ

∂y
= −β h′(x, y) . (11.16)

We introduce (11.16) into the boundary condition (10.406), resulting in

v(x, 0) = U∞
dfu

dx
= −β h′(x, 0) . (11.17)

From this it follows immediately that

h(x) = −U∞
fu(x)
β

(11.18)

and therefore, for the potential at the position y = 0, we have

ϕ(x) = −U∞
fu(x)
β

, (11.19)

Fig. 11.11. Supersonic flow past a slender airfoil
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or more generally in the whole upper half plane

ϕ(x, y) = −U∞
fu(x− β y)

β
. (11.20)

In the same manner we find the solution in the lower half plane to be

ϕ(x, y) = U∞
fl(x+ β y)

β
, (11.21)

where we now know the solution everywhere.
The fundamental assumption of linear supersonic flow (M∞ε� 1) allows

us to use (10.414) here as well, and we obtain the pressure coefficient on the
upper side (in the approximation y = 0+) of the airfoil as

cpu = − 2
U∞

∂ϕ

∂x
=

2
β

dfu

dx
, (11.22)

and on the lower side (y = 0−) as

cpl = − 2
β

dfl

dx
. (11.23)

Using (10.262) we can also write the force in the y-direction per unit depth
as

Fy =
∮

(p− p∞)dx , (11.24)

since p∞ provides no contribution. From the definition of the lift coefficient,
it then follows that

cl =
2Fy

�∞U2∞l
=

1
l

∮
cpdx =

1
l

l∫

0

(cpl − cpu)dx . (11.25)

If we insert the expressions for cpu and cpl, the integration yields

cl =
2
l β

[−fl(l) + fl(0) − fu(l) + fu(0)] . (11.26)

Since fu(l) = fl(l) = −α l/2 and fu(0) = fl(0) = α l/2 hold, we find a lift
coefficient which is independent of the shape of the airfoil:

cl =
4α√

M2∞ − 1
. (11.27)

The analogous calculation furnishes the force Fx, or rather the drag coefficient
cd as

cd =
2
β l

l∫

0

[(
dfl

dx

)2

+
(

dfu

dx

)2
]

dx , (11.28)
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Fig. 11.12. Supersonic flow past an infinitesimally thin plate

which depends on the shape of the airfoil. For the flat plate we find

cl =
4α√

M2∞ − 1
, and cd = α cl , (11.29)

as can be seen from Fig. 11.12.

11.5 Prandtl-Meyer Flow

We have seen that supersonic flows at concave corners are turned by oblique
shock waves, and we now ask what the conditions at a convex corner are.
To do this we consider the supersonic flow in Fig. 11.13. Suppose that all
flow quantities in the flow to the corner are homogeneous in space, and so
no characteristic length can be formed from the data of the flow. Even using
the independent and dependent variables, no new dimensionless independent
variable can be combined, aside from the angle ϕ. Since the flow boundary
has no typical length either, the solution may also not depend on a length,
which means it cannot depend on r. From the continuity equation in polar
coordinates (see Appendix B) we then have

uϕ

r

d�
dϕ

+
�

r

duϕ

dϕ
+ �

ur

r
= 0 . (11.30)

Euler’s equations in polar coordinates now simplify to

uϕ

r

dur

dϕ
− u2

ϕ

r
= 0 or

dur

dϕ
= uϕ , (11.31)
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Fig. 11.13. Geometry of the Prandtl-Meyer flow

and
uϕ

r

duϕ

dϕ
+
uruϕ

r
+

1
� r

dp
dϕ

= 0 . (11.32)

Finally the entropy equation becomes

uϕ

r

ds
dϕ

= 0 . (11.33)

Since uϕ �= 0 it follows that ds/dϕ = 0. Therefore the flow is homentropic.
By Crocco’s relation it is then also irrotational. We could now introduce
a velocity potential but shall here refrain from doing this. Since the flow is
homentropic, dp/d� = a2 holds. The continuity equation becomes

1
r

u2
ϕ

a2

dp
dϕ

+
�

r

(
uϕ

duϕ

dϕ
+ uruϕ

)
= 0 . (11.34)

Equation (11.32) yields

�

r

(
uϕ

duϕ

dϕ
+ uruϕ

)
+

1
r

dp
dϕ

= 0 . (11.35)

The difference of the last two equations gives us

1
r

(
u2

ϕ

a2
− 1

)
dp
dϕ

= 0 . (11.36)

Clearly dp/dϕ cannot vanish in the entire field since then there would be no
turning of the flow. In the region where dp/dϕ �= 0 it follows that u2

ϕ = a2,
and since ϕ is measured anticlockwise,

uϕ = −a . (11.37)

With u = |�u|, we see from Fig. 11.14

−uϕ

u
=
a

u
=

1
M

= sinμ , (11.38)

i.e., �u just forms the Mach angle μ with the r-direction. Therefore, the straight
lines ϕ = const are Mach lines, or characteristics. Such a flow where the flow
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Fig. 11.14. The connection between the Mach angle and the angle of inclination

velocity and thermodynamic state along a Mach line are constant is called
a simple wave. The velocity vector �u(ϕ) on such a characteristic is turned
about the angle

ν = μ− ϕ (11.39)

from the direction of the incident flow (M1 = 1).
We shall now restrict ourselves to the calorically perfect gas and form,

using a2 = γ p/� and (11.37), the expression

d(a2) = (γ − 1)
dp
�

= 2uϕduϕ , (11.40)

which we insert into (11.32):

γ + 1
γ − 1

duϕ

dϕ
= −ur . (11.41)

From (11.31) we further replace uϕ by dur/dϕ:

d2ur

dϕ2
+
γ − 1
γ + 1

ur = 0 . (11.42)

This equation is the equation of the simple harmonic oscillator, whose general
solution is

ur = C sin
(√

γ − 1
γ + 1

ϕ+ ϕ0

)
, (11.43)

which is here subject to the boundary conditions

ur(ϕ = π/2) = 0 (11.44)

and
uϕ(ϕ = π/2) =

dur

dϕ

∣∣∣∣
π
2

= −a∗ . (11.45)

With

a∗ =
√

2
γ + 1

at
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we obtain the solution

ur =
√

2
γ − 1

at sin
(√

γ − 1
γ + 1

(π/2 − ϕ)
)

(11.46)

for ur and from (11.31) we find that uϕ is

uϕ = −
√

2
γ + 1

at cos
(√

γ − 1
γ + 1

(π/2 − ϕ)
)

. (11.47)

With these the velocity field is known. The domain in which equations
(11.46) and (11.47) are valid is limited in ϕ: after the end characteristic, whose
slope ϕ2 = μ2 − ν2 depends on the turning angle ν2, the flow is homogeneous
again (Fig. 11.15). Equation (11.36) is satisfied here because dp/dϕ = 0.

The characteristics between the start and end characteristics form an
“expansion fan”, similar to the one we have already met in the case of the
suddenly accelerated piston in Sect. 9.3. Since the flow is homentropic

p

pt
=
(
a

at

)2γ/(γ−1)

=
[√

2
γ + 1

cos
(√

γ − 1
γ + 1

(π/2 − ϕ)
)]2γ/(γ−1)

(11.48)

holds everywhere and we recognize that for a value of ϕ

ϕV = −π

2

(√
γ + 1
γ − 1

− 1
)

(11.49)

(≈ −130◦ for γ = 1.4) vacuum is reached (Fig. 11.16).
For ϕ = ϕV the Mach number becomes infinite, i.e. μ = 0, and because

of (11.39) the associated turning angle is ν2 = νV = −ϕV . Then a further

Fig. 11.15. Expansion fan of Prandtl-Meyer flow
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Fig. 11.16. Expansion in a vacuum

increase of the turning angle does not change the flow any more. A vacuum
forms between the wall and the line ϕ = ϕV .

In order to calculate the flow for a given flow deflection, the relation
between ν and the Mach number will first be found. With

M2 =
u2

r + u2
ϕ

a2
, (11.50)

the function M(ϕ) is given. Together with sinμ = sin(ν + ϕ) = M−1, after
some easy computation, the relation known as the Prandtl-Meyer function
appears:

ν =
√
γ + 1
γ − 1

arctan
√
γ − 1
γ + 1

(M2 − 1) − arctan
√
M2 − 1 , (11.51)

which is tabulated in Appendix C.
We have derived the Prandtl-Meyer function for an incident flow with

Mach number M1 = 1, to which the value ν1 = 0 belongs. If we wish to know
the downstream Mach number M2 (M2 ≥ M1) for any incident flow Mach
number M1 > 1, we first of all determine the angle ν1 associated with M1

from the table in Appendix C (Fig. 11.17).
If the flow is then turned about δ it holds that

ν2 = ν1 + δ , (11.52)

from which we determine the Mach number after the turning with the help
of the table. Take as an example M1 = 2: we read off the associated value
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Fig. 11.17. Prandtl-Meyer flow for arbitrary incident flow Mach number

of ν1 as 26.38◦. If the flow around the corner is turned about δ = 10◦,
then ν2 = 36.38◦ and the associated value M2 ≈ 2.38 is the outflow Mach
number.

Of course the same formulae hold if the turning is continuous and also
for compression waves (Fig. 11.18). If the Mach lines form an envelope in the
case of the concave wall, a shock wave forms at some distance from the wall
(Fig. 11.19). This is analogous to unsteady flow where a piston with finite
acceleration forms compression waves (see Fig. 9.33).

If y′′w(0) ≥ y′′w(x) for all x > 0 (Fig. 11.19), the cusp of the envelope lies on
the first characteristic which emanates from the point where the turning of
the wall begins (the origin in Fig. 11.19), and its coordinates can be explicitly
calculated in the same way as before which led to Eqs. (9.223) and (9.225):

yP =
sin2(2μ1)

2(γ + 1)y′′w(0)
, (11.53)

xP = yP cotμ1 . (11.54)

Fig. 11.18. Gradual deviation
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Fig. 11.19. Formation of a shock wave

Fig. 11.20. For large incident flow Mach numbers the shock leans against the wall

We conclude from this result that for μ1 = π/2, i.e., M1 = 1, the coordinates
yP and xP tend to zero. In this case a normal shock wave degenerates to
a Mach wave which forms at the origin.

For M1 → ∞ the shock wave moves into the origin, and μ1 tends to zero
so that the shock wave leans against the wall (Fig. 11.20). Between the shock
and the wall, the strongly compressed gas moves in a very thin layer along
the surface of the body. If y′′w(0) tends to infinity (wall corner) we obtain
a shock wave which starts at the corner, that is the case shown in Fig. 11.5.

11.6 Shock Expansion Theory

With the help of the relations for the oblique shock wave and the Prandtl-
Meyer function, the supersonic flow past an airfoil may be calculated in a sim-
ple manner.

The flow past an inclined plate (Fig. 11.21) is on the upper side at the
leading edge first turned by a centered Prandtl-Meyer expansion wave and
then at the trailing edge by an oblique shock wave, whereas on the lower side
the flow is first turned by an oblique shock and then by an expansion wave.
A contact discontinuity starts out from the trailing edge which, at small angle
of attack, is almost parallel to the undisturbed flow. The wave system behind
the plate does not affect the force on the plate. Since the expansion waves
reflected by the shocks never reach the plate again, flow quantities along the
surface, like Mach number and pressure are computed exactly within the
framework of inviscid flow theory.

In the same way we find the solution for the supersonic flow past a dia-
mond airfoil (Fig. 11.22). Depending on the geometry and the conditions of
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Fig. 11.21. Exact solution for the supersonic flow past a plate

the incident flow, the reflected waves can reach the airfoil again. However in
shock expansion theory, these reflections are ignored in determining the flow
quantities along the surface of the airfoil. If the reflected waves do not meet
the airfoil, then this solution is again exact.

As we already know from perturbation theory, an airfoil in supersonic
flow has a drag, in spite of the assumption of no viscosity. The value of this
per unit depth for the symmetric diamond airfoil in Fig. 11.22 is

Fw = (p2 − p3)d . (11.55)

With an airfoil having continuous surface curvature (Fig. 11.23), the re-
flected Mach waves will certainly meet the airfoil. Therefore the flow field
between the front and rear shocks is not a simple combination of shocks
and Prandtl-Meyer flow. On the upper side of the airfoil, besides the waves
leaning to the right (y = x tanμ + const) of the Prandtl-Meyer flow, waves
leaning to the left also occur. Exact calculation of the flow field can be done
by the method of characteristics, however if only the data along the airfoil
contour are of interest, the following simplified view is sufficient: to determine
the flow at the leading edge, we approximate this edge by a wedge, so that
the shock and the conditions behind the shock are known. Using the now
known initial data, we calculate the flow along the curved surface as a sim-
ple Prandtl-Meyer expansion. The trailing edge is then also approximated as
a wedge again.
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Fig. 11.22. Supersonic flow past a diamond airfoil

Fig. 11.23. Supersonic flow past an airfoil



12 Boundary Layer Theory

We have shown earlier that the flow past a body found under the assumption
of zero viscosity can serve as an approximate solution to viscous flow for large
Reynolds’ numbers. However this solution is not uniformly valid in the entire
field because it breaks down completely near a solid wall to which a real
fluid adheres, while the theory of inviscid flow in general yields a nonzero
tangential velocity.

The thickness of the boundary layer, i.e. the layer where friction effects
cannot be ignored, is proportional to Re−1/2. As previously stated, this is
so in the laminar case to which we restrict ourselves for the time being. But
even in turbulent flow the boundary layer thickness goes to zero in the limit
Re → ∞, so that the body “seen” by the flow corresponds to the actual
body. The inviscid solution then represents an approximate solution of the
Navier-Stokes equations for large Reynolds’ numbers, with an error of order
O(Re−1/2) in the laminar case. The breakdown of the solution directly at the
wall nevertheless remains, no matter how large the Reynolds’ number is.

The complete approximate solution to the Navier-Stokes equations must
be built up from two part solutions valid in different regions. One of these is
the solution of the inviscid flow problem, the so-called outer solution, and the
other is the inner solution close to the wall. The inner solution describes the
boundary layer flow and must be such that the flow velocity from its value
zero at the wall passes asymptotically into the velocity predicted by the outer
(inviscid) solution directly at the wall. Because of this nonuniformity, the ap-
proximate solution of the Navier-Stokes equation represents an example of
a singular perturbation problem, as they often appear in applications. An ex-
ample already mentioned is the approximate solution for the potential flow
past a slender airfoil (Sect. 10.4) which only breaks down at the blunt nose
of the airfoil and outside this region describes the flow quite accurately. The
outer, inviscid solution for large Reynolds’ numbers gives important informa-
tion about, for example, the pressure and velocity distributions, but is not
able to predict the drag and makes no statements about where the boundary
layer separates, or even if it does so at all. The answer to these questions is
obviously important, and requires the solution of the inner problem, which
is the subject of boundary layer theory.
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The differential equations required for the inner solution can be found
systematically from the Navier-Stokes equations within the framework of
singular perturbation theory. However, here we proceed along a more intu-
itive path. In what follows we shall assume that the outer solution is known
and so the pressure and velocity distributions are at hand from this solu-
tion.

To begin with we restrict ourselves to incompressible and plane two-
dimensional flow and introduce the so-called boundary layer coordinate sys-
tem, in which x is measured along the surface of the body and y perpendicular
to it. If the boundary layer thickness is very small compared to the radius
of curvature R of the wall contour (δ/R � 1), the Navier-Stokes equations
hold in the same form as in Cartesian coordinates. In the calculation of the
inner solution, i.e. of the boundary layer flow, the curvature of the wall then
plays no role. The boundary layer developes as if the wall were flat. The wall
curvature only manifests itself indirectly through the pressure distribution
given by the outer solution.

Since the boundary layer is very thin for large Reynolds’ numbers, the
following inequalities hold:

∂u

∂x
� ∂u

∂y
and

∂2u

∂x2
� ∂2u

∂y2
. (12.1)

A consequence of the last condition is that the x-component of the Navier-
Stokes equations reduces to

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

�

∂p

∂x
+ ν

∂2u

∂y2
. (12.2)

In order to determine the order of magnitude of the term u ∂u/∂x in com-
parison to v ∂u/∂y, we begin with the continuity equation for plane two-
dimensional and incompressible flow

∂u

∂x
+
∂v

∂y
= 0 , (12.3)

and together with (12.1) conclude that ∂v/∂y � ∂u/∂y, so that v � u holds.
Therefore the second and third terms on the left-hand side in (12.2) are of
the same order of magnitude.

While the viscous forces are completely ignored in the outer flow, they do
play a role in the boundary layer. The order of magnitude of the boundary
layer thickness can be determined by considering the thickness of the layer
where the viscous forces are of the same order of magnitude as the inertial
forces, e.g., where

u

ν

∂u/∂x

∂2u/∂y2
∼ 1 . (12.4)
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Fig. 12.1. Boundary layer coordinates

In the x-direction, let L be the typical length scale (cf. Fig. 12.1), and if U∞
is the incident flow velocity, we have the order of magnitude equation

u
∂u

∂x
∼ U2∞

L
. (12.5)

The typical length scale in the y-direction is the average boundary layer
thickness δ0, so that

ν
∂2u

∂y2
∼ ν

U∞
δ20

. (12.6)

Using (12.5) we then have the estimate

U2
∞/L

ν U∞/δ20
∼ 1 , (12.7)

from which we obtain the result (4.38) again:

δ0
L

∼ Re−
1
2 . (12.8)

With this result, the individual terms in the equations of motion are reviewed
in order to systematically simplify the equations themselves. It follows from
the continuity equation that

v ∼ δ0
L
U∞ and therefore v ∼ U∞Re−

1
2 . (12.9)

To discuss this further we introduce dimensionless quantities, chosen so that
they are all of the same order of magnitude:

u+ =
u

U∞
, v+ =

v

U∞
L

δ0
=

v

U∞
Re

1
2 , p+ =

p

U2∞�
(12.10)

and
x+ =

x

L
, y+ =

y

δ0
=

y

L
Re

1
2 , t+ = t

U∞
L

. (12.11)
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Using these variables the Navier-Stokes equations take on the form

∂u+

∂t+
+ u+∂u

+

∂x+
+ v+ ∂u

+

∂y+
= − ∂p+

∂x+
+

1
Re

∂2u+

∂x+2 +
∂2u+

∂y+2 , (12.12)

and

1
Re

(
∂v+

∂t+
+ u+ ∂v

+

∂x+
+ v+ ∂v

+

∂y+

)
= −∂p+

∂y+
+

1
Re2

∂2v+

∂x+2 +
1
Re

∂2v+

∂y+2 , (12.13)

in which all differential expressions have the same order of magnitude, and
the order of magnitude of the whole term is controlled by the prefactor.

Since we are looking for an approximate solution for large Reynolds’ num-
bers, we take the limit Re → ∞ and obtain the boundary layer equations in
dimensionless form:

∂u+

∂t+
+ u+∂u

+

∂x+
+ v+ ∂u

+

∂y+
= − ∂p+

∂x+
+
∂2u+

∂y+2 , (12.14)

and
0 = −∂p+

∂y+
. (12.15)

In addition we have the continuity equation which remained unaffected by
taking the limit

∂u+

∂x+
+
∂v+

∂y+
= 0 . (12.16)

The dynamic boundary condition at the wall reads

y+ = 0 : u+ = v+ = 0 , (12.17)

and, since at the outer edge of the boundary layer the velocity u should pass
asymptotically into the velocity U(x, t) = U(x, y = 0, t) of the outer flow,

y+ → ∞ : u+ → U

U∞
. (12.18)

We shall address the initial conditions later on, but shall first show that
Eqs. (12.14) and (12.15) are much simpler than the Navier-Stokes equations.
In the dimensionless boundary layer equations and in the boundary condi-
tions the viscosity does not appear, and therefore the solution is valid for
all Reynolds’ numbers, as long as they are large enough (always assuming
laminar flow) so that the simplifications are justified. Of course in terms of
dimensional quantities the solution does change with the Reynolds’ number.
We read off from (12.10) and (12.11) that u and x do not change if u+ and x+

respectively do not change, and that for fixed v+ and y+ respectively, v and y
are proportional to Re−1/2. In the “physical” plane the quantities change with
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the Reynolds’ number as follows: distances and velocities in the y-direction
vary proportionally to Re−1/2, while in the x-direction they remain constant.

We shall now rewrite the boundary layer equations in dimensional form
and shall restrict ourselves to steady flow. These were first stated in this form
in 1904 by Prandtl:

u
∂u

∂x
+ v

∂u

∂y
= −1

�

∂p

∂x
+ ν

∂2u

∂y2
, (12.19)

0 =
∂p

∂y
, and (12.20)

∂u

∂x
+
∂v

∂y
= 0 . (12.21)

From the second equation of this system of partial differential equations of the
parabolic type we see that p = p(x). In the remaining equations u and v are
the independent variables, while p is no longer to be counted as an unknown.
Because of (12.20) the pressure in the boundary layer p(x) has the same
value as outside it, where it is known from the outer solution. Therefore the
pressure gradient in (12.19) is a known function and, using Euler’s equation,
can be replaced by

−1
�

∂p

∂x
= U

∂U

∂x
. (12.22)

We note that for y → ∞ only one condition is placed (on the component
u). Because of the parabolic character of the system of equations, an initial
distribution must be given as well as the boundary conditions (12.17) and
(12.18):

x = x0 : u = u0(y) . (12.23)

The system of equations is nonlinear and must in general be solved numeri-
cally. The methods of solution can be arranged into field and integral meth-
ods. Numerical field methods arise from replacing the differential equations
(12.19) and (12.21) by their finite difference forms. We shall go into the in-
tegral methods in Sect. 12.4.

12.1 Solutions of the Boundary Layer Equations

For certain pressure and velocity distributions, the partial differential equa-
tions (12.19) to (12.21) can be reduced to ordinary differential equations. The
most important cases are the power law distributions

U(x) = C xm . (12.24)

These correspond to the corner flows (10.240) with C = |a| and m = n− 1.
Stagnation point flow (m = 1, n = 2) and parallel flow (m = 0, n = 1) are of
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particular interest. However in this connection, flows with exponents in the
range 1 < n < 2 are interesting, since they describe flow past wedges. First
we shall consider the particularly simple case m = 0, which describes the flow
past a semi-infinite plate.

12.1.1 Flat Plate

The outer flow is the unperturbed parallel flow U = U∞ (Fig. 12.2), and
therefore ∂p/∂x = 0 holds. From (12.19) and (12.21) it then follows that

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(12.25)

and
∂u

∂x
+
∂v

∂y
= 0 , (12.26)

which is to be solved subject to the boundary conditions

y = 0 , x > 0 : u = v = 0 , (12.27)

y → ∞ : u = U∞ , (12.28)

and the initial condition

x = 0 : u = U∞ . (12.29)

By introducing the stream function we satisfy the continuity equation iden-
tically and from (12.25) obtain the differential equation

∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂y2
= ν

∂3Ψ

∂y3
. (12.30)

Fig. 12.2. Boundary layer on the flat plate
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The boundary conditions now become

Ψ(x, y = 0) =
∂Ψ

∂y

∣∣∣∣
(x,y=0)

= 0 (12.31)

and
∂Ψ

∂y

∣∣∣∣
(x, y→∞)

= U∞ , (12.32)

while the initial condition takes on the form

∂Ψ

∂y

∣∣∣∣
(x=0, y)

= U∞ . (12.33)

The stream function of the unperturbed incident flow is

Ψ = U∞y ,

and we expect that in the boundary layer Ψ = O(U∞δ0). Because of (12.8)
we therefore have

Ψ ∼ U∞L√
Re

. (12.34)

We use this result to make the stream function dimensionless. It must hold
then that

Ψ√
Lν U∞

= f(x+, y+) = f

(
x

L
, y

√
U∞
Lν

)
. (12.35)

Since no geometrical length is introduced into this problem of the infinitely
long plate, L plays the role here of an “artificial” length. The requirement
that this artificial length vanish from the problem leads us to the similarity
variables

η = y

√
U∞/(Lν)√

x/L
= y

√
U∞
ν x

, (12.36)

and

Ψ

√
L/x√

LU∞ν
=

Ψ√
ν U∞x

. (12.37)

Therefore the solution must be of the form

Ψ =
√
ν U∞xf(η) . (12.38)

If we insert this form of solution into (12.30), the differential equation

2f ′′′ + ff ′′ = 0 , (12.39)
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appears; this is known as the Blasius’ equation. The boundary conditions on
f follow from (12.31) and (12.32) as

f(0) = f ′(0) = 0 (12.40)

and
f ′(∞) = 1 . (12.41)

Since
η(y → ∞, x) = η(y, x = 0) = ∞ , (12.42)

the initial condition (12.33) also leads to (12.41). The solution of the Blasius
equation with these boundary conditions is a boundary value problem, since
conditions are given on both boundaries η = 0 and η = ∞. The problem
can also be solved numerically as an initial value problem: besides the initial
values (12.40) we then lay down a further initial value for f ′′, say f ′′(0) = α,
and try out different values of α until the boundary condition for η = ∞ is
satisfied (shooting method). In this manner we find that

f ′′(0) = 0.33206 . (12.43)

As well as showing the velocity f ′(η) = u/U∞, Fig. 12.3 also shows the
functions f(η) and f ′′(η). Using (12.43) the shear stress at the wall

τw = η
∂u

∂y

∣∣∣∣
y =0

= η

√
U3∞
ν x

f ′′(0) (12.44)

can be calculated, where η in Eq. (12.44) is the shear viscosity and not the
similarity variable of (12.36).

Theoretically the boundary layer reaches to infinity because the transition
from the boundary layer to outer flow is asymptotic, and so the geometric
boundary layer thickness can be arbitrarily defined. Often the boundary layer
thickness is taken as the distance from the wall where u/U∞ = 0.99. As the
numerical calculation shows, this value is reached for η ≈ 5. The boundary
layer thickness defined in this way is therefore

δ = 5
√

ν x

U∞
. (12.45)

Instead of the geometric boundary layer thickness δ, the uniquely defined
displacement thickness δ1 is often preferred:

δ1 =

∞∫

0

(
1 − u

U

)
dy , (12.46)
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Fig. 12.3. Solution of the Blasius equation

which is a measure of the displacing action of the boundary layer. From the
velocity profile u/U∞, because of U ≡ U∞, we obtain

δ1 = 1.7208
√
ν x

U∞
. (12.47)

The outer, inviscid flow does not “see” the infinitesimally thin plate, but
instead a half body with the contour (12.47). A measure for the loss of mo-
mentum in the boundary layer is the momentum thickness δ2:

δ2 =

∞∫

0

(
1 − u

U

) u

U
dy , (12.48)

for which we here obtain the value

δ2 = 0.664
√
ν x

U∞
. (12.49)

Of course the plate experiences a drag (per unit depth), which for the plate
wetted on one side and extending to x = L is found as

Fw =

L∫

0

τwdx = 0.664�U2
∞L

(
U∞L
ν

)−1/2

. (12.50)
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The formula for the coefficient of friction cf may be obtained from (12.50):

cf =
Fw

�/2U2∞L
=

1, 33√
Re

, (12.51)

a result which is called Blasius’ friction law .

12.1.2 Wedge Flows

We consider symmetric wedges as in Fig. 12.4 and shall first deal with the
outer inviscid potential flow, whose velocity distribution leads to asymptotic
boundary conditions for the inner flow calculation. The outer flow has al-
ready been given by the corner flow in Fig. 10.30 in the exponent range
1 ≤ n ≤ 2, which, for the equality sign, also includes parallel plate and
stagnation point flows. Since, compared to the corner flows in Fig. 10.30,
in Fig. 12.4 the negative instead of the positive x-axis is a streamline, first
of all the coordinate system of Fig. 10.30 will be turned about π − π/n in
the positive direction. This means that the complex coordinate z is replaced
by z exp{−iπ[(n−1)/n]}. The stream function corresponding to (10.243) now
reads

Ψ =
a

n
rn sin[nϕ− π(n− 1)] , (12.52)

and Ψ = 0 is obtained for the angle

β = π
n− 1
n

= π
m

m+ 1

as well as for the negative x-axis.

Fig. 12.4. Wedge flow
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As we reflect the corner flow through the x-axis, it becomes a wedge
flow whose velocity distribution is given by (10.244). In the boundary layer
coordinates where we measure x along the upper surface of the body and y
perpendicular to it, we therefore obtain exactly the power law distribution
(12.24).

As is shown by Euler’s equation

−1
�

∂p

∂x
= mC2x2m−1 , (12.53)

the pressure gradient here does not in general vanish; in spite of this no
typical length appears in wedge flows, and we should not be surprised that
using the variables (12.36) and (12.37) leads to a similarity solution here too.
The similarity form:

Ψ =
√
ν U(x)xf(η) (12.54)

with

η = y

√
U(x)
ν x

(12.55)

transforms the system (12.19) to (12.21) with (12.53) into the ordinary dif-
ferential equation

f ′′′ +
m+ 1

2
ff ′′ +m(1 − f ′2) = 0 . (12.56)

The solutions of this so-called Falkner-Skan equation, which must satisfy the
boundary conditions (12.40) and (12.41), are sketched in Fig. 12.5 for different
wedge angles which correspond to the exponent range m = 0 (i.e. β = 0◦) to
m = 1 (i.e. β = 90◦). From the figure we take the boundary layer thickness
corresponding to f ′ = 0.99 of the two-dimensional stagnation point flow as

δ = 2.4
√

ν x

U(x)
= 2.4

√
ν

a
, (12.57)

where for the stagnation point flow we follow the convention of setting C in
(12.24) to a.

The differential equation (12.56) with the boundary conditions (12.40)
and (12.41) also allows solutions for negative values of m which correspond
to flows past convex corners. As was mentioned in connection with Fig. 10.30
and as is directly clear from (12.24), the velocity at x = 0 becomes infinite and
the solution can only have any physical meaning beyond a certain distance
downstream from this position. Since the solutions with negative m are not
unique their physical meaning is called into question. In fact there is an
infinite number of solutions of the differential equation (12.56) which satisfy
the boundary conditions and have different values of f ′′(0), and therefore
different values of the shear stress at the wall.
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Fig. 12.5. Velocity distribution in the boundary layer of a wedge flow

A “plausible” solution with m = −0.09043 is included in Fig. 12.5, because
this profile represents a separation profile as we shall show in Sect. 12.1.4. This
small negative value of m makes it clear that the boundary layer separates
even for very small positive pressure gradients. Turbulent boundary layers
can suffer a considerably higher increase in pressure; a fact which is very
important for flow past an airfoil and to which we have already referred in
the discussion of the drag on a sphere.

The importance of the solutions of the Falkner-Skan equation also rests in
the fact that they also provide the necessary initial distributions (cf. (12.23))
for the numerical calculation of the boundary layer flow about general bodies,
since they may be approximated close to the front stagnation point by wedges.
The case β = 90◦, i.e. the stagnation point flow, is of the greatest practical
importance; it is already interesting because at the same time it represents
an exact solution of the Navier-Stokes equations.

12.1.3 Unsteady Stagnation Point Flow

Now a similarity solution can be found even for the unsteady stagnation point
boundary layer flow. We have mentioned the inviscid potential flow for this
case in Sect. 10.3. Using U = a(t)x we obtain the pressure gradients along
the wall (v = 0) from Euler’s equations as

−1
�

∂p

∂x
=
∂U

∂t
+ U

∂U

∂x
= a2x

(
ȧ

a2
+ 1
)

, (12.58)



12.1 Solutions of the Boundary Layer Equations 429

where we have set da/dt = ȧ. Here the form of solution (12.54) with (12.55)
is

Ψ =
√
ν a(t)xf(η), (12.59)

with

η = y

√
a(t)
ν

(12.60)

and transforms the boundary layer equations (12.2), (12.20) and (12.21) using
(12.58) into the equation

ȧ

a2

(
f ′ +

η

2
f ′′
)

+ f ′2 − ff ′′ =
(
ȧ

a2
+ 1
)

+ f ′′′ . (12.61)

This becomes an ordinary differential equations if ȧ/a2 is a constant:

1
a2

da(t)
dt

= const ,

where in particular const = 0 gives the steady stagnation point flow. Choosing
const = 1/2, and integrating ȧ/a2 = 1/2 leads to the relation a(t) = −2/t, if
the constant of integration is set to zero. Therefore the velocity of the inviscid
potential flow at the edge of the boundary layer is

U = −2x
t
, (12.62)

which is positive for t < 0 and which tends to infinity as t → 0. We can
imagine this velocity in inviscid fluid as being produced when the upper wall
(see Fig. 12.6) is moved towards the lower wall with the velocity

ẏw =
2yw

t
,

thus carrying out the motion

yw = C t2 .

The velocity distribution in the boundary layer for this case is shown in
Fig. 12.6.

We also note here that the similarity solution mentioned can be extended
to compressible flow.

12.1.4 Flow Past a Body

In general problems involving flow past a body we have ∂p/∂x �= 0; as is
known the pressure at the stagnation point is at its highest, and it decreases
from there to reach its lowest value (∂p/∂x = 0) near the thickest part of the
body, thereafter increasing again (Fig. 12.7). As has already been explained
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Fig. 12.6. Velocity distribution in the boundary layer of the unsteady stagnation
point flow

Fig. 12.7. Pressure distribution at an airfoil

elsewhere, the fluid in the boundary layer has lost energy thus preventing
it from penetrating into the region of higher pressure. Indeed the boundary
layer fluid is pulled along by the surrounding fluid through the shear stress
forces, however if the pressure rise is too large it comes to a standstill. Here
the velocity gradient at the wall (∂u/∂y = 0 for y = 0) vanishes. In two-
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Fig. 12.8. Sketch of the separation region

dimensional flow this point is accepted as the separation point ; the curvature
of the velocity profile has to be positive here.

From (12.19) we find that at the wall

1
�

∂p

∂x
= ν

∂2u

∂y2
for y = 0 , (12.63)

and we conclude that separation is only possible for positive pressure gra-
dients, i.e. the separation point (Fig. 12.8) lies in the region where the pressure
is rising, as we have already shown heuristically. As we have previously stated,
only numerical methods can be used for the general problem of flow past
a body. For a given pressure distribution, the boundary layer calculation
cannot in general be carried further than the separation point.

The reason for this is to be found in the parabolic character of the bound-
ary layer equation. We can only count on the convergence of a numerical al-
gorithm if the velocity profile stays positive. However there remains a need to
develop a computational method which predicts the flow past the separation
point. This can successfully be done in the so-called “inverse problem”, where
instead of the pressure distribution the shear stress distribution is given.

12.2 Temperature Boundary Layer in Forced Convection

In calculating the temperature distribution within the boundary layer we
start out with the energy equation (4.4), where we first introduce the sim-
plifications possible within boundary layer theory. Because of (12.1), we find
the same relation for the dissipation function as for unidirectional flows:

Φ = η

(
∂u

∂y

)2

, (12.64)
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and for the calorically perfect gas, (4.4) assumes the form

� cp
DT
Dt

− Dp
Dt

= η

(
∂u

∂y

)2

+ λ
∂2T

∂y2
, (12.65)

where again ∂2/∂x2 has been neglected compared to ∂2/∂y2.
The transfer of heat between a body and its surrounding fluid takes place

in a layer along the contour of the body, in which, besides convection, i.e.
transport of heat by fluid motion, heat conduction plays a role. While heat
conduction can usually be ignored in the outer flow, it is of the same order
of magnitude as the convection term in (12.65) in the inner layer, called the
temperature boundary layer ; that is

� cpu
∂T

∂x
∼ λ

∂2T

∂y2
. (12.66)

If we replace these terms by their typical magnitudes

� cpU∞
ΔT

L
∼ λ

ΔT

δ0
2
t

, (12.67)

we obtain the following estimate for the thickness of the temperature bound-
ary layer: (

δ0t

L

)2

∼ λ

cpη

1
Re

. (12.68)

The dimensionless combination of the material properties λ, cp, η in the first
brackets on the right-hand side is the inverse of the Prandtl number

Pr =
cpη

λ
, (12.69)

which we met in (4.178), and which, as is clear from (12.8) and (12.68),
determines the ratio of the thicknesses of the velocity boundary layer and
the temperature boundary layer:

δ0
δ0t

∼
√
Pr . (12.70)

For monatomic gases the kinetic gas theory furnishes the relation between λ
and η

λ =
5
2
cvη , (12.71)

so that for γ = cp/cv = 5/3 the Prandtl number assumes the value Pr = 2/3.
For diatomic gases, the Prandtl number can be calculated from the formula
of Eucken:

Pr =
cp

cp + 1.25R
. (12.72)

From this we find for the ideal gas that Pr = 0.74. This formula does not
produce good results for polyatomic gases, and it is recommended to calculate
the Prandtl number from the measured values of η, λ and cp.
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The Prandtl number for gases is of the order of 1, so that the temperature
and velocity boundary layers are of about the same thickness. The Prandtl
number for liquids is considerable larger than 1 (water: Pr ≈ 7 at a tem-
perature of 20◦C and 1 bar pressure), so the temperature boundary layer
is usually smaller than the velocity boundary layer. Compared to this, Pr
for liquid metals is much smaller than 1 (mercury: Pr ≈ 0.026), so that the
temperature boundary layer is correspondingly large.

If instead of the thermal conductivity λ we use the thermal diffusivity

a =
λ

cp�
,

the Prandtl number can be written in the easily remembered form

Pr =
ν

a
.

We can simplify the energy equation even further within the framework of
the boundary layer theory. For the dissipation function Φ from (12.64) and
the work (per unit volume) of the pressure forces Dp/Dt, we obtain the order
of magnitude equations

Φ ∼ η

(
U∞
δ0

)2

∼ �∞
U3∞
L

(12.73)

and
Dp
Dt

∼ U∞
∂p

∂x
∼ �∞

U3∞
L

. (12.74)

The estimate shows that both terms are of the same order of magnitude. The
ratio of these terms to the convective heat transport

� cpu
∂T

∂x
∼ �∞cpU∞

Tw − T∞
L

(12.75)

is known as Eckert’s number Ec:

Ec =
U2
∞

cp(Tw − T∞)
. (12.76)

Eckert’s number is the ratio of (twice) the kinetic energy of the unperturbed
flow to the enthalpy difference between the wall and the fluid. The largest
possible self-heating of the fluid is found from the energy equation (4.150)
for the calorically perfect gas as

cp(Tt − T∞) =
U2
∞
2

, (12.77)

or with a2∞ = γ RT∞
Tt − T∞
T∞

=
γ − 1

2
M2

∞ . (12.78)

As we have stated previously, the self-heating of incompressible fluids
(M∞ → 0) is negligible. In heat transfer problems with small Mach num-
bers, Eckert’s number is generally very small and the dissipation Φ as well as
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the work per unit volume Dp/Dt are negligible, so that we obtain the energy
equation (12.65) in the form

� cp

(
u
∂T

∂x
+ v

∂T

∂y

)
= λ

∂2T

∂y2
. (12.79)

In order to solve (12.79) we clearly require the velocity field in the bound-
ary layer. The assumption of incompressibility has the consequence that the
equations of motion are decoupled from the energy equation. Therefore we
can first solve the equations for the flow boundary layer and then with the ve-
locity distribution resulting from this solve the temperature boundary layer.

However in the case of strong external heating the change in density as
a result of the change in temperature must be taken into account. Then
the flow is to be treated as a compressible flow even for vanishing Mach
numbers, and the decoupling mentioned above in general does not occur. In
these circumstances the temperature dependence of the material properties
usually has to be taken into account too. In what follows we shall start out
from the idea that the temperature differences in the boundary layer are so
small that the above effects can be ignored.

We shall consider the heat transfer problem of a flat plate; the system of
equations and boundary conditions are summarised below:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (12.80)

∂u

∂x
+
∂v

∂y
= 0 , (12.81)

u
∂T

∂x
+ v

∂T

∂y
=

ν

Pr

∂2T

∂y2
; (12.82)

y = 0, x > 0 : u = v = 0, T = Tw , (12.83)

y → ∞ : u = U∞, T = T∞ . (12.84)

The velocity components u and v follow from (12.38) as

u = U∞f ′ , and (12.85)

v = −1
2

√
ν U∞
x

(f − η f ′) . (12.86)

We conclude from (12.80) to (12.82) that the dimensionless temperature too
can only be a function of the similarity variables (12.36). Therefore

Tw − T

Tw − T∞
= Θ(η) , (12.87)

and from (12.82) the equation

Θ′′ +
1
2
Pr f Θ′ = 0 (12.88)
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follows, with the boundary conditions

η = 0 : Θ = 0 , (12.89a)

η → ∞ : Θ = 1 . (12.89b)

If we first set Θ′ = F as the solution to (12.88) then

F = C1 exp

⎛

⎝−1
2
Pr

η∫

0

fdη

⎞

⎠ , (12.90)

and further because of (12.89a)

Θ =

η∫

0

Fdη = C1

η∫

0

exp

⎛

⎝−1
2
Pr

η∫

0

fdη

⎞

⎠dη . (12.91)

Taking account of the boundary condition (12.89b) this finally becomes

Θ =

⎡

⎣
η∫

0

exp

⎛

⎝−1
2
Pr

η∫

0

fdη

⎞

⎠ dη

⎤

⎦

⎡

⎣
∞∫

0

exp

⎛

⎝−1
2
Pr

η∫

0

fdη

⎞

⎠ dη

⎤

⎦
−1

.

(12.92)
Because of (12.39) we also have f = −2f ′′′/f ′′, so that we can write:

−1
2
Pr

η∫

0

fdη = Pr

η∫

0

f ′′′

f ′′ dη = Pr ln
(
f ′′(η)
f ′′(0)

)
, (12.93)

and (12.92) then becomes

Θ =

⎡

⎣
η∫

0

f ′′Prdη

⎤

⎦

⎡

⎣
∞∫

0

f ′′Prdη

⎤

⎦
−1

. (12.94)

The dimensionless temperature Θ is thus known, since f ′′(η) is given from
the solution of the Blasius’ equation. The solution in the above form was
first given by Pohlhausen. Θ = Θ(η, Pr) for various values of Pr is shown in
Fig. 12.9.

We shall now calculate the only nonzero component of the heat flux vector
qy at the wall:

qy(x) = q(x) = −λ ∂T

∂y

∣∣∣∣
w

, (12.95)

or

q(x) = λ(Tw − T∞)
dΘ
dη

∣∣∣∣
w

√
U∞
ν x

. (12.96)
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Fig. 12.9. Temperature profiles of the flat plate boundary layer

From (12.94) is follows that

dΘ
dη

∣∣∣∣
η=0

= [f ′′(0)]Pr

⎛

⎝
∞∫

0

f ′′Prdη

⎞

⎠
−1

= g(Pr) , (12.97)

so that the heat flux is obtained as

q(x) = λ(Tw − T∞)g(Pr)

√
U∞
ν x

. (12.98)

From

Q̇ = −
∫∫

(S)

qini dS =

L∫

0

q(x)dx (12.99)

we finally find the total heat per unit time and unit width transferred from
the plate of length L (on one side of the plate) as

Q̇ = 2λ(Tw − T∞)g(Pr)

√
U∞L
ν

, (12.100)

or
Q̇ = 2λ(Tw − T∞)g(Pr)

√
Re . (12.101)

The function g(Pr) is well approximated by

g(Pr) = 0.332Pr1/3 . (12.102)
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Using this we obtain

Q̇ = 0.664λPr1/3Re1/2(Tw − T∞) , (12.103)

or else, using the defining equation for Nusselt’s number

Q̇ = NuλA
Tw − T∞

L
, A=̂L (12.104)

we find Nusselt’s relation

Nu = 0.664Pr1/3Re1/2 . (12.105)

This is a specific form of the general law valid for forced convection

Nu = Nu(Pr,Re) . (12.106)

12.3 Temperature Boundary Layer
in Natural Convection

In the chapter on hydrostatics we showed that static equilibrium is only
possible if the density gradient is parallel to the vector of the mass body
force. If we again choose the coordinate system so that the z-direction is
antiparallel to the direction in which gravity acts, then in equilibrium the
density can only be a function of z. Close to a heated wall where the density
is affected by heating, this condition of static equilibrium in general breaks
down, and the fluid is set in motion so that a flow originates close to the wall.
Under certain conditions which will be defined more precisely later, this flow
has the character of a boundary layer.

In order to derive the equations of motion we start out from the Navier-
Stokes equations and split the pressure and density up into their static and
dynamic parts:

p = pst + pdyn , � = �st + �dyn .

It follows that

(�st + �dyn)
Dui

Dt
= �stki − ∂pst

∂xi
+ �dynki − ∂pdyn

∂xi
+ η

∂2ui

∂xj∂xj
, (12.107)

or, since the hydrostatic equation is given by

∂pst

∂xi
= �stki ,

we have

(�st + �dyn)
Dui

Dt
= �dynki − ∂pdyn

∂xi
+ η

∂2ui

∂xj∂xj
. (12.108)
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We assume that the change in density �dyn is very small (�dyn � �st), so
that, using the mass body force of gravity ki = gi it follows first that

Dui

Dt
=
�dyn

�st
gi − 1

�st

∂pdyn

∂xi
+ ν

∂2ui

∂xj∂xj
. (12.109)

Now for the change in density we set

�dyn = −�stβ(T − T∞) , (12.110)

where the thermal expansion coefficient is given by

β =

[
−1
�

(
∂�

∂T

)

p

]

∞
, (12.111)

and therefore for the ideal gas

β =
1
T∞

. (12.112)

Again we abbreviate pdyn with p and �st with �. In the boundary layer the
convective terms are again of the same order of magnitude as the viscosity
terms, so that we have

U2/L

ν U/δ20
∼ 1 . (12.113)

In this case where there is no velocity U∞, the typical velocity can only be
given indirectly by the data of the problem. The driving force of the flow is
the term �dyng = �stβ ΔT g, where ΔT = |Tw−T∞|. Using the characteristic
length L, the typical velocity

U =
√
β ΔT g L (12.114)

can be formed. Then from (12.113) we extract

δ0
L

∼
(

ν2

g β ΔT L3

)1/4

. (12.115)

For

Gr =
g β ΔT L3

ν2
� 1 (12.116)

δ0/L � 1, i.e. the flow has the character of a boundary layer if the di-
mensionless number Gr (Grashof’s number) is large. Under this condition,
the boundary layer simplifications are valid. Instead of Grashof’s number,
Rayleigh’s number Ra = Gr Pr is often used.

Let us consider the flow at a vertical semi-infinite, heated plate as an
example. The origin lies at the lower edge, x is measured along the plate and
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y normal to it. Then the vector of the mass body force of gravity has the
components gx = −g and gy = 0. Introducing the dimensionless temperature

Θ =
T − T∞
Tw − T∞

, (12.117)

the now coupled system of equations for the ideal gas reads

∂u

∂x
+
∂v

∂y
= 0 , (12.118)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ g Θ

Tw − T∞
T∞

, and (12.119)

u
∂Θ

∂x
+ v

∂Θ

∂y
=

λ

� cp

∂2Θ

∂y2
. (12.120)

This is to be solved subject to the boundary conditions

y = 0 : u = v = 0 ; Θ = 1 , (12.121)

y → ∞ : u = 0 ; Θ = 0 . (12.122)

Introducing a dimensionless stream function analogous to (12.38), and using

U =
√
g ΔT L

4T∞
and ΔT = |Tw − T∞| (12.123)

we obtain

Ψ = 4
(
ν2ΔT g L3

4T∞

)1/4

f

[
x

L
, y

(
ΔT g

4T∞ν2L

)1/4
]
. (12.124)

Since L may not appear in the solution, Ψ must have the following form:

Ψ = 4
(
ν2ΔT g x3

4T∞

)1/4

ζ(η) , (12.125)

where

η = y

(
ΔT g

4T∞ν2x

)1/4

(12.126)

is the dimensionless similarity variable of the problem. Writing

C =
(
ΔT g

4T∞ν2

)1/4

, (12.127)

we find the following form for the stream function:

Ψ = 4C ν x3/4ζ(η) . (12.128)



440 12 Boundary Layer Theory

The dimensionless temperature can also only be a function of the dimension-
less variable η; therefore

Θ(x, y) = Θ(η) . (12.129)

Setting these into Eqs. (12.119) and (12.120) we obtain the coupled ordinary
differential equations

ζ′′′ + 3ζζ′′ − 2ζ′ +Θ = 0 , (12.130)

Θ′′ + 3Pr ζ Θ′ = 0, (12.131)

with the boundary conditions

η = 0 : ζ = ζ′ = 0; Θ = 1 , (12.132)
η → ∞ : ζ′ = 0; Θ = 0 . (12.133)

This system of equations must be solved numerically. For Pr = 0.733 this
gives us Nusselt’s number as

Nu = 0.48Gr1/4 . (12.134)

The following formula, which explicitly states the dependency on Prandtl’s
number, is considered a good approximation:

Nu =
(

Ra

2.43478 + 4.884Pr1/2 + 4.95283Pr

)1/4

. (12.135)

12.4 Integral Methods of Boundary Layer Theory

In order to calculate boundary layers approximately, we often use methods
where the equations of motion are not satisfied everywhere in the field but
only in integral means across the thickness of the boundary layer. The starting
point for these integral methods is usually the momentum equation which
can be derived by applying the continuity equation (2.7) and the balance of
momentum (2.43) in its integral form to a section of the boundary layer of
length dx (Fig. 12.10).

The infinitesimal mass flux dṁ per unit depth which flows between (1)
and (2) into the control volume is

dṁ = ṁ(x+ dx) − ṁ(x) = dx
dṁ
dx

= dx
d
dx

δ(x)∫

0

� u dy . (12.136)

With this mass flux the momentum flux

Udṁ = Udx
d
dx

δ(x)∫

0

� u dy (12.137)
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Fig. 12.10. Control volume in the boundary layer

in the x-direction is associated so that the component of the balance of mo-
mentum in this direction reads:

−U d
dx

δ(x)∫

0

� u dy +
d
dx

δ(x)∫

0

� u2 dy = −dp
dx

δ(x) − τw . (12.138)

Again we shall restrict ourselves to incompressible flows for which the inte-
grals appearing in (12.138) can be expressed using the displacement thickness
(12.46) and the momentum thickness (12.48):

δ(x)∫

0

u dy = U(δ − δ1) , and (12.139)

δ(x)∫

0

u2 dy = U2(δ − δ1 − δ2) . (12.140)

With dp/dx = −�UdU/dx the momentum equation can be brought to the
form

dδ2
dx

+
1
U

dU
dx

(2δ2 + δ1) =
τw
�U2

. (12.141)

We can also obtain this directly by integrating the equation of motion (12.19)
over y (from 0 to ∞) and using the continuity equation. This holds for steady
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incompressible laminar and turbulent boundary layers, but can also be ex-
tended to unsteady and compressible flows. Equation (12.141) is an ordinary
differential equation for the unknowns δ1, δ2 and τw. In the laminar case the
equations necessary to complete the mathematical description are found by
specifying the velocity profile inside the boundary layer. In the turbulent case
empirical relations are necessary in addition; in this respect reference is made
to Sect. 12.5.

As a simple example of the application of Eq. (12.141) we shall calculate
the boundary layer on a flat plate, whose exact solution has already been
found in Sect. 12.1.1. For the velocity distribution inside the boundary layer
we assume the profile

u

(
y

δ(x)

)
= U sin

(
π

2
y

δ(x)

)
, (12.142)

from which the ratios for the boundary layer thicknesses take on the values

δ1
δ

=

1∫

0

(
1 − u

U

)
d(y/δ) =

π − 2
π

(12.143)

and
δ2
δ

=

1∫

0

u

U

(
1 − u

U

)
d(y/δ) =

4 − π

2π
. (12.144)

Using (12.142) we find the wall shear stress to be

τw = η
∂u

∂y

∣∣∣∣
y =0

= η
π

2
U

δ
= η

4 − π

4
U

δ2
, (12.145)

where we have made use of (12.144) to eliminate the boundary layer thickness
δ. Inserting τw from (12.145) into the momentum equation (12.141), and
recalling that U ≡ U∞, furnishes the ordinary differential equation

dδ2
dx

=
ν

U∞
4 − π

4
1
δ2

, (12.146)

in which δ2 is the only unknown appearing and whose general solution reads

δ22
2

=
4 − π

4
ν x

U∞
+ C . (12.147)

We obtain the constant of integration from the momentum thickness at the
position x = 0. This is zero for the flat plate, so that the solution is

δ2 = 0.655
√
ν x

U∞
. (12.148)
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Using (12.143) and (12.144) we obtain the displacement thickness as

δ1 =
δ1/δ

δ2/δ
δ2 =

2π − 4
4 − π

δ2 = 1.743
√
ν x

U∞
. (12.149)

Comparing with the exact values in (12.49) and (12.47) we see that these
results agree very well; the relative error for δ1 and δ2 is about 1.3%.

We use the same profile (12.142) to calculate the boundary layer of the
two-dimensional stagnation point flow (10.65) along the x-axis, where ac-
cording to (10.66), U = a x. While (12.143) to (12.145) are still valid, from
(12.141) we obtain the differential equation linear in δ22 :

x

2
dδ22
dx

+
4

4 − π
δ22 =

4 − π

4
ν

a
. (12.150)

The homogeneous solution of this reads

δ2H = C x−
4

4−π . (12.151)

Since the boundary layer thickness must remain finite for x→ 0, we conclude
that the homogeneous solution vanishes (C = 0). Therefore the solution of
(12.150) only consists of the particular solution

δ2 =
4 − π

4

√
ν

a
= 0.215

√
ν

a
, (12.152)

i.e. the momentum thickness and therefore also the boundary layer thickness
of the two-dimensional stagnation point flow are constant. Using (12.48) and
f ′ from Fig. 12.5 (β = 90◦) we obtain the exact solution for the momentum
thickness

δ2 = 0.292
√
ν

a
, (12.153)

and comparison shows that the simple velocity profile in (12.142) indeed
predicts the constancy of the boundary layer thickness correctly, although it
does not lead to good quantitative results.

In flows with a pressure gradient, as in the previous case, fourth order
polynomials in y/δ are better since they satisfy the condition (12.63) which
has previously not been satisfied. As long as the flow does not separate, this
method leads to quite good results, but the separation point is generally not
predicted precisely enough by it.

12.5 Turbulent Boundary Layers

Restricting ourselves to steady, plane two-dimensional, incompressible flows,
the relations for turbulent boundary layers can be obtained from the laminar
boundary layer equations by replacing the quantities there with the corre-
sponding mean quantities and adding onto the right-hand side of (12.19) the
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only important term from the divergence of the Reynolds’ stresses, namely
−� ∂(u′v′)/∂y. If we further introduce the exchange coefficient A defined in
Eq. (7.56), or the eddy viscosity A/� = νt, the boundary layer equations read

u
∂u

∂x
+ v

∂u

∂y
= −1

�

∂p

∂x
+

∂

∂y

[
(ν + νt)

∂u

∂y

]
, and (12.154)

∂u

∂x
+
∂v

∂y
= 0 . (12.155)

In (12.154) we have ignored the term ∂(u′2 − v′2)/∂x so that the pressure
gradient inside the boundary layer is the same as outside.

These equations are formally the same as the boundary layer equations
for laminar flow and are subject to the same boundary conditions. If we use a
turbulence model, the numerical field method can also be applied here. If the
eddy viscosity according to (7.59) is used, then for example the distribution of
the mixing length is required. In the region where the law of the wall is valid
(i.e. approximately in the region y ≤ 0.22 δ) the formula (7.60) is often used,
but from y/δ ≈ 0.22 onwards the ratio l/δ is set constant, approximately
equal to 0.22 κ = 0.09. Within the intermediate layer, (7.60) is no longer
valid and must be modified for very small values, for example by multiplying
by the factor [1 − exp(−y∗/A)], where A ≈ 26.

As well as this there are further modifications of the mixing length for-
mula. These algebraic semi-empirical methods still have the disadvantage
that the eddy viscosity vanishes, even for nonzero mixing lengths whenever
∂u/∂y is zero, therefore at places where u is at its maximum. The eddy vis-
cosity model (7.59) loses its meaning in such turbulent fields where the mean
velocity is homogeneous. In attempting to avoid this problem (and others),
higher order methods are used. If we set the typical fluctuation velocity u′

not proportional to (l du/dy), but to the root of the kinetic energy (per unit
mass) of the fluctuating motion

k =
1
2
(u′2 + v′2 + w′2) , (12.156)

we obtain the following expression for the eddy viscosity:

νt = C k1/2L , (12.157)

where now L is an integral length scale which essentially represents the mixing
length, while C is a dimensionless constant. For the turbulent kinetic energy,
a differential equation is then formed which (semi-empirically) accounts for
the processes that contribute to the material change of the turbulent energy.
Through the solution of the equation, the eddy viscosity at some position now
depends on the history of the turbulent kinetic energy of the particle passing
this position, and the direct coupling of νt to the local field of the mean ve-
locity is avoided. A distribution must still be stated for the length L. Since
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one differential equation appears in this turbulence model, it is called a one-
equation model. If a differential equation is also used for the length L, we are
then dealing with models in which two differential equations appear, hence
they are called two-equation models. Models which retain the concept of the
eddy viscosity cannot be used if u′v′ vanishes at some position other than
∂u/∂y. We can get around this difficulty if instead of Boussinesq’s formula,
differential equations for the Reynolds’ stresses themselves are introduced,
sometimes in addition to the equations already mentioned. With increasing
number of differential equations in the turbulence model, the number of as-
sumptions required to close the system of equations increases. In addition,
the solution of the differential equations demands boundary conditions for
the unknown functions, which in certain circumstances may themselves be
unknown. However here we shall not discuss the use of turbulence models in
the field methods any further.

Apart from the field methods the integral methods mentioned in Sect. 12.4
are also widely used in the description of turbulent boundary layers. As we
already know, the velocity distribution in laminar flows can be represented
by polynomials in y/δ, something that clearly does not make sense in the
turbulent case since the flat profile can only be approximated very badly by
polynomials. Instead the power law is more useful in the form

u

U
=
(y
δ

)1/n

, (12.158)

where the exponent n ≈ 7 but increases slowly with the Reynolds’ num-
ber. Using this distribution, we calculate the displacement thickness and the
momentum thickness as

δ1 =
δ

n+ 1
, and (12.159)

δ2 =
n δ

(n+ 1)(n+ 2)
; (12.160)

thus for n = 7
δ1 =

1
8
δ and δ2 =

7
72

δ . (12.161)

From (12.141) we then obtain the differential equation for the boundary layer
thickness on the flat plate

τw
�U2∞

=
7
72

dδ
dx

, (12.162)

which indeed cannot be solved since the wall shear stress is not known, and
it is necessary to refer back to empirical data. In the Reynolds’ number range
in which the 1/7–power law is valid, the following empirical relation (Blasius
law) also holds:

τw
�U2∞

= 0.0225
(

ν

U∞δ

)1/4

, (12.163)
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with which the boundary layer thicknesses become

δ

x− x0
= 0.37Re−1/5

x , (12.164)

δ1
x− x0

= 0.046Re−1/5
x , and (12.165)

δ2
x− x0

= 0.036Re−1/5
x , (12.166)

where Rex is the Reynolds number formed with the length x− x0:

Rex = U∞
x− x0

ν
(12.167)

and x0 is the fictitious distance from the leading edge of the plate at which
the thickness of the turbulent boundary layer would be zero; this position
does not coincide with the leading edge of the plate. First a laminar bound-
ary layer forms from the leading edge of the plate. At a certain displacement
thickness δ1, more precisely at the Reynolds’ number formed with this dis-
placement thickness, the boundary layer becomes unstable for the first time
(indifference point x = xI , U∞δ1/ν ≈ 520). The fully turbulent boundary
layer is established through a “transition region” between the indifference
point xI and the transition point (x = xtr). The length of this transition
region depends on the disturbances of the incident flow. If we extrapolate
the turbulent boundary layer forwards using the boundary layer thickness
found at xtr, we find the fictitious starting point x0 of the boundary layer
(see Fig. 12.11).

For very large plate lengths L, x0 can be ignored compared to L. In this
case, using (12.141), we find for the drag per unit depth for a plate wetted
on one side

Fw =

L∫

0

τwdx = �U2
∞δ2(L) . (12.168)

For the friction coefficient cf , the formula

cf =
Fw

L�/2U2∞
= 0.072Re−1/5

L (12.169)

follows, where ReL is the Reynolds’ number formed with the plate length L
(Re = U∞L/ν). The local coefficient of friction c′f is then defined as

c′f =
τw

�/2U2∞
, (12.170)

which, with (12.141) furnishes the expression

c′f = 2
dδ2
dx

= 0.0576Re−1/5
x (12.171)
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Fig. 12.11. Definition of the fictitious starting point

directly. The formulae stated are restricted to the range where Blasius’ law
is valid, which, expressed in terms of ReL lies approximately in the interval

5 · 105 < ReL < 107 . (12.172)

In order to make more precise statements, we use the universal law of the wall
(7.46), which however is only valid close to the wall. For the whole boundary
layer, the law of the wall is to be supplemented by a distribution which is so
chosen that it vanishes for y → 0 and which, together with the law of the
wall, passes over into the outer flow for y → ∞. We therefore write the entire
profile as

u

u∗
= f(y u∗/ν) +

Π(x)
κ

W (y/δ) , (12.173)

where W (y/δ) describes the deviation of the velocity distribution from the
law of the wall. This so-called wake function W (y/δ) is known from empirical
data and is well approximated by the function

W (y/δ) = 2 sin2
(π

2
y

δ

)
. (12.174)

Sometimes other, algebraically simpler, formulae are used. The wake function
satisfies the normalization

1∫

0

W (y/δ)d(y/δ) = 1 (12.175)
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and the boundary conditions

W (0) = 0 , W (1) = 2 . (12.176)

The change of the distribution u/u∗ with x is now handled by the profile
parameter Π(x), which is dependent on the pressure gradient. If we only use
the logarithmic wall law (7.70), from (12.173) we extract the equation for
y = δ

U

u∗
=

1
κ

ln(δu∗/ν) +B + 2
Π

κ
(12.177)

or
U − u

u∗
= − 1

κ
ln(y/δ) +

Π

κ
[2 −W (y/δ)] . (12.178)

The last equation is called the velocity defect law . For constant Π this is
the same as the defect law (7.79) of pipe flow. Equation (12.177) directly
represents a relation between the shear stress at the wall and the profile
parameterΠ . With the definition of the local friction coefficient and τw = ρu2

∗
we write this equation in the form

√
2
c′f

=
U

u∗
=

1
κ

ln

⎛

⎝δU

ν

√
c′f
2

⎞

⎠+B + 2
Π

κ
. (12.179)

If we ignore the effect of the viscous sublayer in integrating and use the def-
inition of the displacement thickness δ1 from (12.173) we obtain the relation

δ1
δ

= (1 +Π)
u∗
U κ

=

√
c′f
2

1 +Π

κ
, (12.180)

and correspondingly for the momentum thickness

δ2
δ

=

√
c′f
2

1 +Π

κ
− 2 + 3.18Π + 1.5Π2

κ2

c′f
2
. (12.181)

In the last equations, the unknowns c′f , δ, δ1, δ2 and Π appear. Including the
balance of momentum (12.141) we then have four equations available for the
five unknowns, so that a further empirical relation is needed:

Π ≈ 0.8(β + 0.5)3/4 , (12.182)

in which β is the equilibrium parameter

β =
δ1
τw

∂p

∂x
= −δ1

δ2

2
c′f

δ2
U

dU
dx

. (12.183)

With this we now have five equations for the five unknowns and for a given
velocity profile the turbulent boundary layer can by calculated by numerical
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methods where the initial values of the quantities to be calculated must be
given.

The integral methods of which the above exposition is a simple example
are often equivalent to the field methods for turbulent boundary layers (al-
though this is not so in the laminar case). This is probably due to the large
amount of empirical data that enters into the calculation. In the application
to the turbulent boundary layer on a flat plate (U ≡ U∞), we set Π ≈ 0.55
(instead of Π = 0.476 from (12.182)) and rewrite the momentum equation
(12.141) with Reδ2 = U∞δ2/ν and Rex = U∞x/ν:

dδ2
dx

=
dReδ2

dRex
=
c′f
2
. (12.184)

We now represent c′f as a function of the Reynolds’ number Reδ2 , where we
replace δ in (12.179) by δ2 using the relation (12.181). We can describe the
result of the numerical integration of (12.184) using the formula

Reδ2 = 0.0142Re6/7
x . (12.185)

If we insert this result into (12.184) the local coefficient of friction is found
to be

c′f = 0.024Re−1/7
x . (12.186)

This formula is valid in the domain

105 < Rex < 109 .

As is clear, the calculation of the coefficient of friction and the boundary layer
thicknesses is, even in the case of the flat plate, rather complicated. There-
fore we wish to derive simpler formulae for this case, based on dimensional
considerations. We assume that the logarithmic law of the wall is valid in the
entire boundary layer. Then we must insert Π = 0 into (12.173) and instead
of (12.177) we obtain

U∞
u∗

=
1
κ

ln(δ u∗/ν) +B . (12.187)

The boundary layer thickness δ cannot yet be represented as a function of x
from this equation, since the shear stress τw and therefore u∗ depend on x,
so that δ must satisfy a relation of the form

δ = δ(x, u∗, U∞) . (12.188)

For dimensional reasons the relation takes on the form

δ

x
= f(u∗/U∞) . (12.189)
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The slope of the boundary layer is of the order v′/U∞, and since v′ is of the
order u∗, it follows that

dδ
dx

∼ u∗
U∞

. (12.190)

If u∗ only weakly depends on x then

δ ∼ xu∗/U∞ (12.191)

is valid, in accordance with (12.189), and where we assumed that the tur-
bulent boundary layer begins at the position x = 0. Therefore the boundary
layer grows proportionally to x while the more precise formula (12.185) gives
a slightly weaker growth proportional to x6/7. We insert the result (12.191)
into (12.187) and obtain

U∞
u∗

=
1
κ

ln
[
(U∞x/ν)(u∗/U∞)2

]
+B , (12.192)

from which, with the universal constant B ≈ 5, we extract the friction law

c′f
−1/2 = 1.77 ln(Rexc

′
f ) + 2.3 . (12.193)

The three different friction formulae (12.171), (12.186) and (12.193) are com-
pared in Fig. 12.12.

Fig. 12.12. Drag formulae
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In this chapter we investigate steady flows at low Reynolds number, restrict-
ing ourselves to incompressible flows, which of course include gas flows at low
Mach number. The equations of motion are already known (see (4.35)), and
may be expressed in the form:

∇ p = ηΔ�u . (13.1)

To this we add the continuity equation (2.5):

∇ · �u = 0 . (13.2)

The pressure dependence may be eliminated by taking the curl of Eq. (13.1),
that is to say operating on (13.1) by ∇×. Then if we use the vector identity
(4.10) in which �u is replaced by 2�ω, we obtain, using (4.14), the relation:

Δ(∇ × �u) = 2Δ�ω = −2∇ × (∇ × �ω) = 0 . (13.3)

Taking the divergence of Equation (13.1) reduces it to the Laplace equation
for the pressure:

Δp = 0 . (13.4)

13.1 Plane and Axially-Symmetric Flows

It is well known that stream functions may be defined for plane and axially-
symmetric flows; the continuity Equation (13.2) is then eliminated because it
is identically satisfied by the stream function. In the case of plane flows, taking
the velocity components from (10.217) shows that the only non-vanishing
component of curl �u, using Appendix B.1, is:

2�ω = curl �u =
(
∂v

∂x
− ∂u

∂y

)
�ez = −

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
�ez = −ΔΨ �ez . (13.5)

Using this, we obtain the stream-function equation:

Δ(Δψ) = 0 , (13.6)
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or alternatively:
∇4Ψ = 0 . (13.7)

This equation is known as the biharmonic equation, the name being indicated
by the form of (13.6).

To obtain the corresponding equations for the axially-symmetric stream
function we start with (13.3) in the form:

∇ × (∇ × �ω) = 0 ; (13.8)

the equation is then derived by repeated application of the operation ∇×,
given in Appendix B.3.

In Sect. 13.1.3 below, we seek to calculate creeping flow past a sphere. In
order to satisfy the no-slip condition on the surface of the sphere, we express
the equation in spherical polar coordinates, for which the surface of the sphere
is then a coordinate surface. Next it follows from B.3 that:

2�ω = curl�u =
1
r

{
∂(ruϑ)
∂r

− ∂ur

∂ϑ

}
�eϕ (13.9)

and, using (10.104) and (10.105), that:

�ω = − 1
2r sinϑ

{
∂2

∂r2
+

sinϑ
r2

∂

∂ϑ

(
1

sinϑ
∂

∂ϑ

)}
Ψ �eϕ = − 1

2r sinϑ
E2Ψ �eϕ ,

(13.10)
where the expression behind the last equality sign defines the operator E2.
We now calculate ∇ × �ω by replacing �u by �ω in the expression for curl �u
given in Appendix B.3. Observing that only wϕ �= 0 and that the derivative
with respect to ϕ of every component vanishes yields the equation:

∇ × �ω = − 1
2r2 sinϑ

∂

∂ϑ
(E2Ψ)�er +

1
2r sinϑ

∂

∂r
(E2Ψ)�eϑ . (13.11)

Proceeding with ∇ × �ω in a similar way to that used above for �ω gives:

∇ × (∇ × �ω) =
1

2r sinϑ

{
∂2

∂r2
(E2Ψ) +

sinϑ
r2

∂

∂ϑ

(
1

sinϑ
∂

∂ϑ
(E2Ψ)

)}
�eϕ = 0 ,

(13.12)
and

E2(E2Ψ) = 0 . (13.13)
For the sake of completeness we state also the operator E2 in cylindrical
coordinates (Appendix B.2):

E2 =
∂2

∂z2
+

∂2

∂r2
− 1
r

∂

∂r
. (13.14)

For axially-symmetric flows in the plane z = 0, we have:

E2 =
∂2

∂x2
+

∂2

∂y2
− 1
y

∂

∂y
, (13.15)

where x, y are Cartesian coordinates as in Sect. 10.3.1.
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13.1.1 Examples of Plane Flows

We include here the potential flows in and around corners already discussed
in Chap. 10. As in the above cases, we therefore consider those flows whose
boundaries are given by the lines ϕ = constant and for which polar coordi-
nates r, ϕ may be used.

Each flow is, as has been seen above, described in terms of its stream
function Ψ(r, ϕ), in which dimensional considerations require a dimensional
constant to be present. We start with:

Ψ = Arn f(ϕ) , (13.16)

for which the biharmonic equation is separable. The constant A has dimen-
sion (length2−n/ time). Just as in the corner flows of Chap. 10, these flows
are only valid in the locality of the corner. The constant A depends on the
“driving force” outside the region of validity of the local solution; it can only
be determined when the flow in the entire region is known. We now restrict
ourselves to those cases for which the constant n is a whole number. This is
for example the case when the driving force is produced by a boundary which
moves with a given velocity. The interpretation of the constant A is obvious
when one or both boundaries of the flow are in motion.

We consider now the flow generated by a plane, inclined at an angle ϕ0

to the x-axis, moving at velocity U parallel to the x-axis and scraping fluid
off a stationary wall coincident with the x-axis. In a moving frame in which
the scraper is at rest the flow is stationary, with the lower wall moving under
the scraper with velocity: −U . When the polar form of the Laplace operator
is twice repeated on the expression:

Ψ = −U r f(ϕ) , (13.17)

we obtain the ordinary differential equation:

U

r3
(f + 2(f ′′ + f ′′′′)) = 0 , (13.18)

whose general solution is:

f = (C1 + ϕC2) cos(ϕ) + (C3 + ϕC4) sin(ϕ) . (13.19)

Now the polar form of Equation (13.2), that is to say:

∂(ur r)
∂r

+
∂uϕ

∂ϕ
= 0 (13.20)

yields the necessary and sufficient condition for the perfect differential:

dΨ = −uϕ dr + ur rdϕ , (13.21)
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from which follow the velocity components:

ur =
1
r

∂Ψ

∂ϕ
= −Uf ′(ϕ) , uϕ = −∂Ψ

∂r
= U f(ϕ) . (13.22)

The no-slip conditions on wall and scraper lead to the boundary conditions:

f(0) = 0 , f ′(0) = 1 and f(ϕ0) = 0 , f ′(ϕ0) = 0 . (13.23)

The particular solution which satisfies these boundary conditions is found
from (13.19) to be:

f(ϕ) =
2ϕ sinϕ0 sin(ϕ0 − ϕ) + 2ϕ0(ϕ− ϕ0) sinϕ

2ϕ2
0 − 1 + cos(2ϕ0)

. (13.24)

When ϕ0 = π / 2 the stream function becomes:

Ψ = U r
4ϕ cosϕ− π2 sinϕ+ 2πϕ sinϕ

π2 − 4
; (13.25)

the streamlines of the flow are shown in Fig. 13.1 The shear stress on the
wall may be evaluated by using Appendix B.2; it is:

τrϕ(0) = η
1
r

∂ur(0)
∂ϕ

= η
1
r2
∂2Ψ(0)
∂ϕ2

= η
U

r

4π
π2 − 4

. (13.26)

This shows that the force necessary to move the scraper with velocity U ,
which is obtained by integrating the shear force, is logarithmically infinite.

Fig. 13.1. Streamlines in the neighbourhood of the point of intersection of the
scraper and wall, ϕ0 = π / 2
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Of course this result arises from the infinitesimally small gap between scraper
and wall; in reality this gap must naturally be finite; however, it is clear that
the force driving the scraper increases with decreasing gap size. A flow closely
related to the above arises in the case of a heavy fluid with a free surface that
is bounded by a plane which is inclined at an angle −ϕ0 to the horizontal
and moves with speed U as in Fig. 13.2 The general solution (13.19) for f(ϕ),
then holds. The continuity of stress on the free surface requires that the shear
stress vanish there, that is f ′′(0) = 0. Since the free surface is a streamline
it follows that f(0) = 0; also, because the fluid adheres to the moving wall,
f(−ϕ0) = 0, f ′(−ϕ0) = 1. Under these conditions the particular solution
takes the form:

f(ϕ) =
2(ϕ0 cosϕ0 sinϕ− ϕ cosϕ sinϕ0)

2ϕ0 − sin(2ϕ)
. (13.27)

When ϕ0 = π/4, the stream function is:

Ψ =
U r(π sinϕ− 4ϕ cosϕ)

21/2(π − 2)
. (13.28)

The streamlines of the flow are shown in Fig. 13.2 As a further example of
a flow corresponding to a whole-number value of the exponent n, we consider
the case n = 3, which leads to Stokes’s stagnation point flow; thus:

Ψ = Ar3 f(ϕ) . (13.29)

In contrast to the previous flows, the dimensional constant can be found only
when the entire flow is known, the reason being that the “driving force” acts
at large distances. Greater generality of related solutions is achieved if we
include stagnation point flows in which the dividing streamline (which passes
through the stagnation point) is inclined at an angle ϕ0 to the wall. The
boundary conditions then are as follows. The no-slip condition on the wall
(x-axis) give f(0) = f(π) = f ′(0) = f ′(π) = 0 and on the inclined dividing
streamline f(ϕ0) = 0. The boundary conditions at ϕ = π being obviously
redundant, only three conditions stand. When these are satisfied, we find
from (13.19) that the stream function is:

Ψ =
−Ar3 sin(ϕ− ϕ0) sin2 ϕ

sinϕ0
, (13.30)

in which the undetermined constant has been absorbed into A. Figures 13.3
and 13.4 show the streamlines for ϕ0 = π/2; and ϕ0 = π/4 respectively; in
both cases A is positive. To compare Stokes’s stagnation point flow with the
corresponding incompressible potential flow given in Sect. 10.3.1 and with the
known exact solution (see Sect. 12.1.2), we introduce Cartesian coordinates
with x = r cosϕ, y = r sinϕ; then restricting ourselves to the case ϕ0 = π/2
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Fig. 13.2. Streamlines in the neighbourhood of the point of intersection of a free
surface and wall ϕ0 = π/4

Fig. 13.3. Creeping flow streamlines in the neighbourhood of a stagnation point,
ϕ0 = π/2

we obtain from (13.30):
Ψ = Axy2 , (13.31)

with Cartesian velocity components:

u =
∂Ψ

∂y
= 2Axy and v = −∂Ψ

∂x
= −Ay2 . (13.32)



13.1 Plane and Axially-Symmetric Flows 457

Fig. 13.4. Creeping flow streamlines in the neighbourhood of a stagnation point,
ϕ0 = π/4

The potential flow stream function (10.243) is:

Ψ = axy .

It is obvious that the higher power relating to the y-coordinate in (13.31) is
necessary for the fulfilment of the no-slip condition. When the velocity field
is inserted in Eq. (13.1), it follows that:

∂p

∂x
= ηΔu = 0 and

∂p

∂y
= ηΔv = −A , (13.33)

and therefore
p = −Aη y + pw , (13.34)

where the constant of integration may be identified with the pressure on the
wall.

It was noted in Sect. 12.1.2 that the stagnation point boundary layer
was an exact solution of the Navier-Stokes equations; this is always the case
when the boundary-layer solution remains regular as x→ 0. The above result
(13.31) must agree with the case of the Falkner-Skan equation in whichm = 1,
when all non-linear terms are neglected and the pressure gradient term in
(12.53) is set equal to zero. The pressure gradient is imposed by the outer
flow on the boundary layer where it balances out the inertia force. From
(12.56) we then obtain the equation:

f ′′′(η) = 0 , (13.35)
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in which η is now the similarity variable defined by (12.55). Integration of
(13.35) subject to the boundary conditions (12.40) leads to:

f = cη2 = c
a

ν
y2 , (13.36)

in which c = f ′′(0)/2 is a dimensionless constant whose value is known only
when the solution of the complete Falkner-Skan equation has been calculated.
Using (12.54) the stream function then becomes:

Ψ = c a

√
a

ν
x y2 . (13.37)

The combination of constants (13.37) corresponds and is dimensionally equiv-
alent to the constant A in (13.31). The component of pressure gradient ∂p/∂y
does not vanish in the Navier-Stokes equation; when the solution of (12.56)
has been found it may be determined by using the y-component of the Navier-
Stokes equation; with the non-linear terms neglected, Eq. (13.1) is again ap-
propriate for the calculation of pressure and leads of course to the result
(13.34).

The dimensional constant a of a local potential flow is fixed when the po-
tential flow round the body is known. For example, the irrational flow around
a circular cylinder as given by (10.257) with Γ = 0, thus:

uϕ = −2U∞ sinϕ = −2U∞ sin
(
π − x

r0

)
. (13.38)

Here x is the circumferential distance along the cylinder measured clockwise
from the front stagnation point. The velocity −uϕ then corresponds to the
velocity u in the positive x-direction in the body coordinates; thus:

u = 2U∞ sin
x

r0
= 2U∞

x

r0
+O((x/r0)2) . (13.39)

For small x/r0, the coefficient a is determined by comparison with the
x-component of the plane stagnation point flow (10.66); thus:

a = 2U∞/r0 . (13.40)

Of course the theoretical value of the velocity is not attained experimentally.
At higher Reynolds numbers the flow separates and goes through a series of
different forms which have been described already in Sect. 10.3 Separation
especially, which is responsible for the form drag, influences the entire flow
round the cylinder so that in the region around the forward stagnation
point Reynolds-number-dependent departures occur; measurements of these
indicate a deviation of roughly 10% at a Reynolds number of about 20,000.
There is however better agreement between the theoretical predictions and
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the results of experiment when the body is streamlined and separation
therefore prevented; a small shape drag nevertheless arises from the dis-
placment thickness of the boundary layer. The flow “sees” a body which is
enlarged by the displacement thickness, and this gives rise to an additional
pressure term which may be determined using potential theory. The altered
pressure component gives rise to another force which no longer satisfies the
D’Alembert paradox and leads therefore to a shape drag; this is considerably
smaller than the frictional drag, from which it is difficult to distinguish, since
both resistances are proportional to Re−1 / 2 in laminar flow: see (12.47) and
(12.51) respectively.

We now consider the flow in the neighbourhood of the intersection of fixed
walls; for example, around wedges or flows in corners. The no-slip condition
then holds on both walls, and there are therefore four homogeneous bound-
ary conditions to be satisfied. In general the exponent n in (13.16) is no
longer a whole number. Substituting the relation (13.16) into the biharmonic
equation gives:

Ψ = Arn−4(n2(n− 2)2 f(ϕ) + 2(n(n− 2) + 2)f ′′(ϕ) + f ′′′′(ϕ)) . (13.41)

The general solution for f(ϕ) is:

f(ϕ) = B1ei(n−2)ϕ +B2e−i(n−2)ϕ + C3 cos nϕ+ C4 sin nϕ , (13.42)

or

f(ϕ) = C1 cos(n− 2)ϕ+ C2 sin(n− 2)ϕ+ C3 cos nϕ+ C4 sin nϕ , (13.43)

where the constants are complex. When the four boundary conditions are
imposed on this solution, a system of four homogeneous equations in the
unknown coefficients Ci is obtained. A unique but trivial solution Ci = 0 is
obtained when the determinant D of the matrix of coefficients is non-zero.
Non-trivial solutions arise when D vanishes. Because of this additional con-
dition only three of the four equations are independent; thus only the ratios
of the coefficients are determined. The equation D = 0 is a transcendental
equation for n which has more than one solution. On physical grounds we are
interested only in those solutions for which the velocity at the point of inter-
section vanishes; this occurs when n > 1 or �(n) > 1, when n is complex. It is
to be expected that the solution which corresponds to the smallest real part
is dominant in the corner. In determining the roots of D an iterative process
such as Newton’s method is recommended; for this process a good starting
value, if necessary complex, must be used. If simultaneously the streamlines
of a known flow are plotted, then the correct exponent can be found after
some trials.

Since the biharmonic equation is linear, it is convenient to discuss the
symmetric and antisymmetric parts of Equation (13.41) separately. The gen-
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eral solution can then be formed by superposition. The symmetric part of
the equation, namely:

f(ϕ) = C1 cos(n− 2)ϕ+ C3 cos nϕ (13.44)

leads to an antisymmetric velocity field. In this case applying the boundary
condition on the walls (ϕ = ±ϕ0) yields f(±ϕ0) = 0, f ′(±ϕ0) = 0, and thus:

C1 cos(n− 2)ϕ0 + C3 cos nϕ0 = 0 , (13.45)

C1(n− 2) sin(n− 2)ϕ0 + C3n sin nϕ0 = 0 ,

where n satisfies the equation:

D = −(sin 2ϕ0 + (n− 1) sin 2(n− 1)ϕ0) = 0 . (13.46)

From (13.45) it follows that:

C3 = −C1 cos(n− 2)ϕ0/ cos nϕ0 (13.47)

and hence:

Ψ = Arn(cos(n− 2)ϕ− cos(n− 2)ϕ0/(cos nϕ0) cos nϕ , (13.48)

where C has been absorbed into A.
Equation (13.46) indicates that there are infinitely many solutions in the

case ϕ0 = π, the smallest non-trivial value being, n = 1.5. The streamlines
corresponding to this value are shown in Fig. 13.5; this flow is in fact that
around the leading edge of an infinitely thin flat plate.

The antisymmetric part of the general solution (13.43) may be processed
in the same way. When ϕ0 = π the exponent is again; n = 3/2. The stream-
lines in Fig. 13.6 correspond to a symmetric flow. The velocity at the point
r = 0 is zero, which is true for all these flows; the shear stress at this point
is finite, in contrast to the boundary-layer flow on a flat plate, where it is
infinite at the leading edge. This is a consequence of the boundary-layer flow
being valid for large Reynolds numbers, which in the present case correspond
to large values of x, while the creeping flow described here is valid for small
Reynolds numbers, here small x.

Flows around a wedge are found when π/2 < ϕ0 < π. The symmetric
flow is the creeping flow around a wedge; this is related to the wedge flows
at large Reynolds numbers which have already been discussed in Sect. 12.1.2
On the other hand, the antisymmetric flow occurs in the flow around a sharp
leading edge.

It is surprising that there are no more real solutions in the case of a sharp
corner for which ϕ0 <≈ 73◦. The streamlines for this limiting value are
shown in Fig. 13.7 Apart from the trivial solution; n = 1, there is only one
solution, which is found to be: n ≈ 2.76. One can think of the flow in the
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Fig. 13.5. Creeping flow streamlines around the leading edge of a flat plate, ϕ0 = π

sharp corner being produced by a rotating cylinder which is far from the
intersection point of both walls and drives the flow into the corner. The
fluid velocity falls as the corner is approached, but is only zero on the walls.
Obviously it is more difficult to push the flow into the corner as the angle
becomes smaller.

The volume flux simply cannot vanish in the flows, and streamlines must
either end on the wall bounding the flow or must form closed curves. Each
closed streamline encloses a region of circulating flow, similar to that of a ro-
tating cylinder, which tries to drive the underlying flow into the corner. There
is in fact an infinite series of circulating flow cells, and by reason of the con-
tinuity of the velocity field these must rotate in alternating senses. They
are separated from one another by null streamlines which end on the walls;
moving through a null streamline changes the sign of the stream function.
Figure 10.7 has already suggested the series of alternating vortices for the
flow in a right angled corner.

The zeros of the stream function on the line of symmetry for one of the
complex-exponent solutions of (13.48), where n = n′+in′′ may be found from
the relation:

Ψ = Arn′+in′′
(a′(n, ϕ0) + ia′′(n , ϕ0)) = 0 . (13.49)
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Fig. 13.6. Creeping flow streamlines around a plate, ϕ0 = π

The meaning of the complex number a′ + ia′′ follows by comparing (13.48)
with (13.49). Using the relation:

rn′
rin

′′
= rn′

eln r(in′′) = rn′
[cos(n′′ ln r) + i sin(n′′ ln r)] , (13.50)

we obtain:

Ψ = A(a′ + ia′′)rn′
(cos(n′′ ln r) + i sin(n′′ ln r)) = 0 . (13.51)

The real part of Ψ which has physical significance, is:

�[Ψ ] = Arn′
[a′ cos(n′′ ln r) − a′′ sin(n′′ ln r)] = C rn′

cos(n′′ ln r + δ) = 0 ,
(13.52)

where δ is a phase angle. When r (measured in arbitrary units) runs from
r = 1 to r = 0, the argument of the cosine in (13.52) goes from δ to minus
infinity, and thus the stream function, has zeros at

n′′ ln r + δ = −
(

1
2

+ k

)
π ; k = 0, 1, 2, . . . (13.53)

Let rk denote the distance measured along the axis of symmetry from the
origin to the kth zero, then, using (13.53):

ln rk − ln rk+1 =
π

n′′ (13.54)

and so the distance ratio between two neighbouring zeros is:
rk

rk+1
= eπ/n′′

. (13.55)
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The difference rk − rk+1 may be used as a measure for the cell size. The
stream function has extrema at the points:

n′′ ln r + δ = −πl ; l = 0, 1, 2, . . . (13.56)

and the ratio of neighbouring r-coordinates is:

rl

rl+1
= eπ/n′′

. (13.57)

The value of the extremum of the stream function in a cell serves as a measure
of the “strength” of the cell. The ratio of two neighbouring cell strengths is
therefore ∣∣∣∣

�[Ψl]
�[Ψl+1]

∣∣∣∣ =
rn′
l

rn′
l+1

= eπ n′ / n′′
. (13.58)

As is evident from (13.46), the exponent n depends on the angle ϕ0. The
imaginary part n′′ is zero for the critical value ϕ0 ≈ 73◦. One can interpret
this as the distance between cells becoming infinite.

When ϕ0 < 73◦ the imaginary part increases and the distance between
adjacent cells beomes smaller as does the ratio of their strengths. Let the
angle ϕ0 tend to zero so that a plane channel comes into being; a channel in
which a point other than the apex is fixed on both walls and the angle ϕ0

is then allowed to tend to zero. Then both cell sizes and strengths tend to
constant values.

We now consider the flow sketched in Fig. 10.7 as a concrete example
of cell sizes and relative distances between cells. For the right-angled corner
ϕ0 = π/4 the solution of (13.46) is found to be n = 3.7396 + 1.1191i. The
streamlines of this flow are displayed in Fig. 13.8. (see also Fig. 10.7).

In Fig. 13.8 two complete cells and the boundary of a third cell may
be clearly identified. The ratio of the distances between successive zeros (or
the ratio of the distances between two extrema) is given by exp(π/n′′) =
16, 56 which one can also gather from Fig. 13.8. The streamlines are shown
for the following values of the stream function: (0, 10−10, 10−9,−10−6,−8 ·
10−6,−3.6 · 10−5, 10−5, 10−4), the units being arbitrary. The ratio of cell
strengths is exp(π n′/n′′) ≈ 3.6 · 105; these correspond roughly to the respec-
tive values of the stream function at the centre of the cells.

We refrain from discussing further streamlines corresponding to small
angles; these can be readily solved using the results considered above. We
confine ourselves to the observation that cell formation is nature’s quickest
way of reducing the fluid flow in a sharp corner. If quantitative estimates
of such flows are lacking because the constant A is unknown, we can for
most practical purposes assume that the flow in such corners is essentially
stagnant.
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Fig. 13.7. Creeping flow streamlines in a sharp corner, ϕ0 = 73◦

Fig. 13.8. Creeping flow streamlines in a rectangular corner
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13.1.2 Plane Creeping Flow Round a Body (Stokes’s Paradox)

The flow round a body plays a very significant role in fluid dynamics. By plane
flow we mean here the flow about cylindrical bodies at very small Reynolds
numbers. We confine ourselves to flow round a circular cylinder, where clearly
the fundamental problem of creeping flow is evident.

The stream function for potential flow round a cylinder is made up of two
parts, namely (1) the uniform flow, i.e U∞ r sinϕ, and (2) the dipole flow
−U∞ r20/r sinϕ; part (2) is responsible for the displacement of fluid by the
cylinder. We expect these two parts to be present in the creeping flow as well
as the potential flow. We introduce dimensionless coordinates with r̄ = r/r0,
and write the general form of the solution as:

Ψ = U∞ r0f(r̄) sinϕ . (13.59)

In the analysis that follows, we neglect the bar above the coordinate r.
Substitution into the biharmonic equation gives for the function f(r) the

solution:
f(r) = C4r

3 + C3r ln r + C2r + C1
1
r
. (13.60)

Applying the no-slip condition (see 13.22) on the surface of the cylinder
gives f(1) = f ′(1) = 0, and the condition at infinity leads to the result
Ψ ∝ U∞ r0 sinϕ as → ∞. The last condition can only be satisfied if C4 = 0.
Inserting the no-slip condition into the general solution accordingly yields the
new form:

Ψ = U∞ r0 sinϕC3

(
r ln r − 1

2
r +

1
2

1
r

)
, (13.61)

when C3 = −2 the second term corresponds to the uniform flow and the third
term to a dipole of importance to the displacement of the fluid. The first
term is called a Stokeslet, the example here being that of a two-dimensional
Stokeslet. This term is responsible for the vorticity in the flow. It is obvious
that the conditions at infinity are not satisfied by this choice of constants,
since the stream function diverges logarithmically there. In fact, the condition
at infinity cannot be satisfied for any choice of constants; thus no creeping-
flow solution past a cylinder exists which satisfies the condition at infinity.
This fact is called Stokes’s Paradox.

The divergence of the solution originates from the circumstance that the
disturbance due to the Stokeslet does not die away. In the case of the flow
round a sphere, there exists a solution which is made possible because the
three-dimensional disturbances involved die away faster. We now proceed to
discuss this latter case.

13.1.3 Creeping Flow Round a Sphere

It is obviously helpful to express the boundary conditions of a sphere in terms
of spherical polar coordinates, since then r = r0 constitutes a coordinate
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surface. Previously we introduced the dimensionless coordinate r̄ = r / r0; in
the following analysis we will omit the bar.

In spherical polar coordinates, the stream function takes the form:

Ψ = U∞
r20
2

sinϑ f(r) , (13.62)

which, when substituted in (13.13), yields the equation for f(r):

r4 f ′′′′(r) − 4r2 f ′′(r) + 8r f ′(r) − 8 f(r) = 0 . (13.63)

Substituting f(r) = rm in this equation and determining m, we get the
general solution in the form:

f(r) =
C1

r
+ C2r + C3r

2 + C4r
4 . (13.64)

The stream function at infinity entails the conditions C4 = 0 and C3 = 1. The
boundary conditions on the surface of the sphere, i.e. f(1) = 0 and f ′(1) = 0,
determine the constants C1 = 1/2 and C2 = −3/2 the solution is thus:

Ψ = U∞
r20
2

sin2 ϑ

(
1
2

1
r
− 3

2
r + r2

)
. (13.65)

The streamlines are shown in Fig. 13.9. It may be of interest to compare
these with the corresponding streamlines of a potential flow round a sphere.
We can obtain the relevant stream function from the general solution (13.64)
by eliminating the Stokeslet i.e. setting C2 = 0 and setting the coefficients of
the dipole singularity and the uniform flow to C1 = −1, C3 = 1 respectively.
Alternatively one can obtain the velocity components from the potential func-
tion (10.149) of the flow past a sphere and with (10.105) obtain a differential
equation which together with (10.104) leads to the stream function:

Ψ = U∞
r20
2

sin2 ϑ

(
r2 − 1

r

)
. (13.66)

The streamlines of this flow are shown in Fig. 13.10 As we have already
remarked (Sect. 10.3.1), the streamlines in both cases are symmetric but
differ in detail. From the list of examples of creeping flow in Sect. 13.1.1 it
becomes evident that the drag on a sphere in creeping flow has a special
significance. (It is well known that with the help of the resistance formula
the charge of an electron was determined with great accuracy.) To determine
the force we use the stress vector (2.29a) in the form:

ti = (−pδij + 2η eij)nj =
(
−pδij + η

(
∂ui

∂xj
+
∂uj

∂xi

))
nj . (13.67)
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Fig. 13.9. Creeping flow streamlines past a sphere

Fig. 13.10. Potential flow streamlines past a sphere

One can now find the components of the rate-of-deformation tensor and those
of the normal to the surface (Appendix B.3), which will enable the stress
vector on the surface of the sphere to be integrated. We prefer, however, to
proceed with a familiar result which we now explain. Consider a surface
element to which fluid adheres, an element which coincides with the coordi-
nate surface of an orthogonal coordinate system (not necessarily Cartesian,
but an orthogonal system to which (13.67) is applicable). The normal to the
surface then has only one component, for example n3 = 1, and accordingly
the terms (∂uj/∂xi)nj reduce to ∂u3/∂xi. Because of the no-slip condition uj
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is zero over the whole element, as is the variation of the velocity components
with x1 and x2.

The only remaining term is ∂u3/∂x3 which vanishes as a consequence of
the continuity equation. We can therefore replace (13.67) by:

ti =
(
−pδij + η

(
∂ui

∂xj
− ∂uj

∂xi

))
nj = −pni − η2ωkεijknj (13.68)

or
�t = − p�n+ η 2�ω × �n . (13.69)

Using the stream function (13.65) we now obtain form (13.10):

2�ω = −3U∞
2

sinϑ
r0 r2

�eϕ , (13.70)

in which r is still dimensionless. Still Formula (13.1) may now be used to
calculate the pressure. We first calculate ∇ × �ω using formula (13.11), and
then substitute into (4.11), getting from (13.1):

∇ p =
3η U∞ cosϑ

r0 r3
�er +

3η U∞ sinϑ
2r0 r3

�eϑ (13.71)

which on integration gives:

p = −3η U∞ cosϑ
2r0 r2

+ p0 , (13.72)

where p(r → ∞) = p0.
The stress vector on the surface of the sphere (�n = �er, r = 1) is thus:

�t =
(
η
3U∞ cosϑ

2 r0
− p0

)
�er − η

3U∞ sinϑ
2 r0

�eϕ × �er . (13.73)

The component of the stress vector in the direction of flow, �U∞ = U∞�ex, is:

�t · �ex = η

(
3U∞ cos2 ϑ

2 r0
+

3U∞ sin2 ϑ

2 r0

)
− p0 cosϑ , (13.74)

as follows from the identities �eϕ × �er ·�ex = �eϑ ·�ex = − sinϑ and �er ·�ex = cosϑ.
The viscous term in (13.74) is obviously constant over the surface of the

sphere. The pressure term does not contribute to the force on the sphere, as
can be verified by direct integration, and it follows that the expression for
the force, namely F , on the sphere in the direction of flow is:

F = η
3U∞
2 r0

· 4π r20 = 6πη r0U∞ . (13.75)

It is immediately evident that the force vanishes for the potential flow (�ω = 0),
which is in agreement with the D’Alembert paradox. The force in (13.75) is
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proportional to the first power of the velocity, and also to the body’s linear
dimensions. These properties hold equally when the body has a general form.
Of course the force is in general no longer in the direction of flow, so that
(13.75) takes the form:

�F = A · �U∞η d , (13.76)

in which A is a tensor which depends on the body’s form and for complicated
shapes can be determined only numerically.

When the sphere is itself a fluid, other boundary conditions come into
play. If η′ is the viscosity of the fluid drop, then we state without derivation
that

F = 6πη r0U∞
2η + η′

3η + η′
. (13.77)

For drops of very large viscosity (η′ � η), such as droplets of water in air,
(13.77) reduces to (13.75).

It is astonishing that the streamlines around the sphere are symmetric
with respect to the plane ϑ = π/2 even though the sphere experiences a force.
From the balance of momentum we should expect a momentum deficit in the
wake behind the sphere. That this is not evident here is a consequence of
the fact that the creeping solution is not valid for large r. The flow (13.65)
is produced by the diffusion of vorticity (see (13.3)). The vorticity diffuses
throughout the fluid, and at large distances from the source (namely, the
sphere) it is plausible that convection plays a role and with it inertia effects.
This is the case when the typical convective term �u · ∇ω in the vorticity
transport Equation (4.15), becomes comparable with the diffusion term νΔω:
the former has order of magnitude O(U∞ ω/r) and the latter O(ν ω/r2). It
follows that the ratio of these terms is:

U∞ r

ν
=
U∞ r0
ν

r

r0
= Re

r

r0
. (13.78)

The convective terms accordingly become arbitrarily large at large distances
from the sphere, no matter how small the Reynolds number. The creeping-
flow solution is thus no longer valid at large distances from the sphere, though
it is an approximate solution for small Reynolds numbers which is valid in the
neighbourhood of the sphere. This situation is closely related to the singular
nature of potential flow, which for large Reynolds numbers is a consistent
approximation but breaks down close to the wall, where it must be replaced
by a boundary layer flow. Creeping flow is in fact a singular perturbation
problem and can be treated systematically by singular perturbation methods.

Long before these methods were known, Oseen, in 1910, discovered the
outer flow using a heuristic approach which provided a uniformly valid solu-
tion at small Reynolds numbers. In the Oseen approximation the convection
terms were replaced by U∞�ex · ∇�u, thus linearising the equation, whose so-
lution is still so complicated that we will not discuss it here: suffice it to
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say that the method leads also to the uniformly valid solution for the low-
Reynolds-number flow around a circular cylinder.

In the breakdown of the Stokes solution at large distances we see the
reason why the solution’s region of validity is restricted at relatively small
Reynolds numbers. Using the drag coefficient (3.11) we obtain with W = F
and L = r0

√
π the expression:

cw =
W

p
2U

2∞π r20
=

24
Re

, (13.79)

where the convention is used that the Reynolds number is defined in terms of
the diameter of the sphere. Figure 10.23, which is in log-log form, indicates
that the experimentally measured values deviate from the straight line cor-
responding to (13.79) when Re > 1. Actually this is already the case when
Re ≈ 0.6.



A Introduction to Cartesian Tensors

In this text book a certain knowledge of tensors has been assumed. We restrict
ourselves to Cartesian tensors, since all equations in fluid mechanics can in
principle be developed in Cartesian coordinate systems. The most important
elements of Cartesian tensors are summarized in this chapter; otherwise the
literature should be consulted.

A.1 Summation Convention

When dealing with quantities in index notation we make use of Einstein’s
summation convention, which states that all indices which appear twice
within an expression are to be summed. In R3 the summation indices run
from 1 to 3:

P = Fiui =
3∑

i=1

Fiui ,

ti = τjinj =
3∑

j=1

τjinj ,

�x = xi�ei =
3∑

i=1

xi�ei .

Indices which appear twice are called dummy indices. Since they vanish after
carrying out the summation, they may be arbitrarily named:

Fiui = Fkuk = Fjuj ,

xi�ei = xl�el = xm�em .

As well as the dummy indices, single indices can also appear in equations.
These free indices must be identical in all terms of the same equation:

ti = τjinj ,

�ei = aij�gj ,

aij = bikckj + dijlnl .
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Otherwise they may be arbitrarily named:

tm = τjmnj ,

tk = τmknm .

In order to by unambiguous, the summation convention requires that an index
appears no more than twice within an expression. A forbidden expression
would be

ti = aijbijnj (wrong!) ,

but the following would be allowed

ti = −p δijnj + 2η eijnj .

A.2 Cartesian Tensors

A tensor consists of tensor components and basis vectors . The number of
linearly independent basis vectors gives the dimension of the tensor space.
In three dimensional space R3, from which, in what follows, we shall al-
ways start from, there are three linearly independent vectors, which along
with three linear factors are in the position to determine a point in space
uniquely. Such a set of three vectors which span a (not necessarily orthog-
onal) coordinate system can be used as a set of basis vectors. If these basis
vectors are functions of position, the coordinate system which they span is
called a curvilinear coordinate system. (Think for example of polar coordi-
nates where the direction of the basis vectors is a function of the polar angle.)
As basis vectors we choose fixed, orthogonal unit vectors , which we denote
by �ei (i = 1, 2, 3). The coordinate system spanned by these is the Cartesian
coordinate system with the coordinate axes xi (i = 1, 2, 3).

We differentiate between tensors of different orders. Tensors of order zero
are scalars . Since a scalar is completely independent of the choice of coordi-
nate system, no basis vector is needed to describe it. Tensors of order one are
vectors . The example of the position vector,

�x =
3∑

i=1

xi�ei = xi�ei , (A.1)

shows that each component of a tensor of order one appears along with one
basis vector.

Tensors of order two (dyadics) can be thought of as being formed from
two vectors �a and �b multiplied together, so that each term ai�ei of the vector
�a is multiplied with each term bj�ej of the vector �b:

T = �a�b =
3∑

i=1

3∑

j=1

aibj�ei�ej = aibj�ei�ej . (1.2)
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This product is called the dyadic product , and is not to be confused with the
inner product �a ·�b (whose result is a scalar), or the outer product �a×�b (whose
result is a vector). Since the dyadic product is not commutative, the basis
vectors �ei�ej in (1.2) may not be interchanged, since aibj�ej�ei would correspond
to the tensor �b�a. If we denote the components of the tensor T with tij in (1.2)
we obtain

T = tij�ei�ej . (1.3)

Therefore to every component of a second order tensor there belong two basis
vectors �ei and �ej. In R3 nine of these basis vector pairs form the so called
basis of the tensor.

Completely analogously tensors of any order may be formed: the dyadic
product of a tensor of order n and one of order m forms a tensor of order
(m+ n). The basis of an nth order tensor in R3 consists of 3n products each
of n basis vectors.

Since the basis vectors for Cartesian tensors (unit vectors �ei) are constant,
it suffices to give the components of a tensor if a Cartesian coordinate system
has already been layed down. Therefore, for a vector �x it is enough to state
the components

xi (i = 1, 2, 3) ,

and a second order tensor T is fully described by its components

tij (i, j = 1, 2, 3) .

Therefore, if we talk about the tensor tij , we shall tacitly mean the tensor
given in (1.3).

The notation in which the mathematical relations between tensors are
expressed solely by their components is the Cartesian index notation. Because
we assume fixed and orthonormal basis vectors �ei, Cartesian index notation
is only valid for Cartesian coordinate systems. It is possible to develop this
to general curvilinear coordinate systems, but we refer for this to the more
advanced literature.

The components of tensors up to the second order may be written in the
form of matrices , so for example

T=̂

⎡

⎣
t11 t12 t13
t21 t22 t23
t31 t32 t33

⎤

⎦ . (1.4)

Note however that not every matrix is a tensor.
In order to derive some rules we shall digress from the pure index notation

and carry the basis vectors along, using a mixed notation. First we shall deal
with the inner product (scalar product):

�a ·�b = (ai�ei) · (bj�ej) = aibj(�ei · �ej) . (1.5)



474 A Introduction to Cartesian Tensors

Because of the orthogonality of the unit vectors, the product �ei ·�ej is different
from zero only if i = j. If we expand (1.5) we can easily convince ourselves
that it is enough to carry out the summation

�a ·�b = aibi = ajbj . (1.6)

Clearly within a summation, the product �ei ·�ej will cause the index on one of
the two vector components to be exchanged. We can summarize all possible
products �ei · �ej into a second order tensor:

δij = �ei · �ej =
{

1 for i = j
0 for i �= j

(1.7)

This tensor is called the Kronecker delta, or because of its properties stated
above, the exchange symbol . Multiplying a tensor with the Kronecker delta
brings about an exchange of index in this tensor:

aijδjk = aik , (1.8)

aibjδij = aibi = ajbj . (1.9)

Applying the Kronecker delta in (1.5) therefore furnishes the inner product
in Cartesian index notation

�a ·�b = aibjδij = aibi . (1.10)

We now consider the outer product (vector product) of two vectors:

�c = �a×�b = (ai�ei) × (bj�ej) = aibj(�ei × �ej) . (1.11)

Now the outer product of two orthogonal unit vectors is zero if i = j, since
this is outer product of parallel vectors. If i �= j, the outer product of the
two unit vectors is the third unit vector, possibly with negative sign. It easily
follows that the relation

�ei × �ej = εijk�ek (1.12)

holds if we define εijk as a third order tensor having the following properties:

εijk =

⎧
⎨

⎩

+1 if ijk is an even permutation (i.e. 123, 231, 312)
−1 if ijk is an odd permutation (i.e. 321, 213, 132)
0 if at least two indices are equal

. (1.13)

We call εijk the epsilon tensor or the permutation symbol . Inserting (1.12)
into (1.11) leads to

�c = aibjεijk�ek . (1.14)

We read off the components of �c from this equation as

ck = εijkaibj , (1.15)

where we have used the fact that the order of the factors is arbitrary; we are
dealing with components, that is, just numbers.
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We shall now examine the behavior of a tensor if we move from a Cartesian
coordinate system with basis vectors �ei to another with basis vectors �ei

′.
The “dashed” coordinate system arises from rotating (and possibly also from
translating) the original coordinate system. If we are dealing with a zeroth
order tensor, that is a scalar, it is clear that the value of this scalar (e.g. the
density of a fluid particle) cannot depend of the coordinate system. The same
holds for tensors of all orders. A tensor can only have a physical meaning if it
is independent of the choice of coordinate system. This is clear in the example
of the position vector of a point. If �x and �x′ denote the same arrow (Fig. A.1)
in the “dashed” and the “undashed” coordinate systems, then

�x′ = �x , (1.16)

that is,
x′i�ei

′ = xi�ei . (1.17)

To decompose the vector �x into its components relative to the dashed coor-
dinate system, we form the scalar product with �ej

′ and obtain

x′i�ei
′ · �ej

′ = xi�ei · �ej
′ . (1.18)

The scalar product of the unit vectors in the same (dashed) coordinate system
�ei

′ · �ej
′, using (1.7), furnishes just δij . The scalar product of the unit vectors

of the dashed and undashed coordinate systems forms the matrix

aij = �ei · �ej
′ (A.19a)

or
aij = cos(� xi, x

′
j) . (A.19b)

We call the matrix aij the rotation matrix . It is not associated with a basis
and therefore is not a tensor. Inserting (A.19a) into (1.18) leads to the desired
transformation law for the components of a vector:

x′j = aijxi . (A.20)

Fig. A.1. Rotation of the coordinate system
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If we take the scalar product of (1.17) with �ej we decompose the vector �x
into its components relative to the undashed system and thus we obtain the
inverse

xj = ajix
′
i . (A.21)

The transformation and its inverse may look formally the same, but we note
that in (A.20) we sum over the first index and in (A.21) over the second.

Knowing the transformation law for the components we can easily derive
that for the basis vectors. To do this we relabel the dummy indices on the
right-hand side of (1.17) as j so that we can insert (A.21). We obtain the
equation

x′i�ei
′ = x′iaji�ej , (A.22)

from which, using the fact that x′i is arbitrary (independent variable), we can
read off the transformation as �ei

′ = aji�ej . In order to be able to compare this
with the components (A.20), we relabel the index i as j (and vice versa), and
therefore write

�ej
′ = aij�ei . (A.23)

We see that for Cartesian coordinate systems both the components and the
basis vectors of a tensor obey the same transformation laws. Thus we take
the inverse directly from (A.21) as

�ej = aji�ei
′ , (A.24)

where we could also have obtained this formally be inserting (A.20) into
(1.17).

Before we consider the transformation laws for tensors of a higher order
we shall take note of one well known property of the rotation matrix. To do
this we exchange the indices in the transformation (A.20) (e.g.: x′i = akixk),
insert this into (A.21) and thus obtain

xj = ajiakixk . (A.25)

Since the vector components are independent variables we can read off the
following identity from (A.25)

ajiaki = δjk , (A.26a)

which reads
AAT = I (A.26b)

in matrix notation. Since AA−1 = I is the equation which determines the
inverse of A, we conclude from (A.26a) that the transpose of the rotation
matrix is equal to its inverse (orthogonal matrix).

The transformation for the components of a tensor of arbitrary order re-
sults from the transformations for the unit vectors (A.23) and (A.24). For
clarity we shall restrict ourselves to a second order tensor whose basis we
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express in terms of the basis of the dashed coordinate system using the trans-
formation (A.24) as

T = tij�ei�ej = tijaikajl�ek
′�el

′ . (A.27)

Because of T = T′ = t′kl�ek
′�el

′ we can read off the components in the rotated
system directly from (A.27) as

t′kl = aikajltij . (A.28)

If in T′ we replace the basis vectors using (A.23), we obtain

tkl = akialjt
′
ij . (A.29)

The same procedure is carried out for tensors of any order. The transforma-
tion behavior of tensor components is characteristic of them and therefore is
used as the definition of a tensor. If we drop the basis vectors and use pure
Cartesian index notation, the transformation behavior is the only criterion by
which we can decide if a given expression is a tensor. Let us take an example:
we shall examine whether the gradient of a scalar function is a scalar of order
one. The equation �u = ∇Φ reads in index notation

ui =
∂Φ

∂xi
, (A.30)

or in the rotated coordinate system

u′j =
∂Φ

∂x′j
. (A.31)

If �u is a first order tensor, using the transformation (A.20) should transform
(A.30) into (A.31)

u′j = aijui = aij
∂Φ

∂xi
, (A.32)

or using the chain rule,

u′j = aij
∂Φ

∂x′k

∂x′k
∂xi

. (A.33)

By x′k = ajkxj we have
∂x′k
∂xi

= ajk
∂xj

∂xi
, (A.34)

and since xj and xi are independent variables for i �= j, we write

∂xj

∂xi
= δij , (A.35)

so that we replace (A.34) with

∂x′k
∂xi

= aik . (A.36)
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We should note that the result of (A.35) is the Kronecker delta and it is
therefore a second order tensor, and should not be confused with (A.36),
whose result is the rotation matrix and is therefore not a tensor. If we insert
(A.36) into (A.33), we obtain

u′j = aijaik
∂Φ

∂x′k
, (A.37)

which, because of (A.26a), is identical to

u′j = δjk
∂Φ

∂x′k
=

∂Φ

∂x′j
. (A.38)

This result corresponds to (A.31), and so the gradient of a scalar function is
a second order tensor.

The gradient of a tensor of the nth order comes from forming the dyadic
product with the Nabla operator and is therefore a tensor of the (n + 1)th
degree. An important example of this in fluid mechanics is the velocity gra-
dient:

∇�u =
(
�ei

∂

∂xi

)
(uj�ej) =

∂uj

∂xi
�ei�ej . (A.39)

This is a second order tensor with the components

∇�u =̂ tij =
∂uj

∂xi
. (A.40)

The coordinate with respect to which we differentiate is given by the first
index of tij (the row index in matrix representation) and the component of
�u is determined by the second index (the column index). In index notation
we usually write the velocity gradient as ∂ui/∂xj , that is in matrix represen-
tation as the transpose of (A.40). Although the matrix representation is not
needed in index notation, in going from matrix equations to index notation
(or vice versa), we should be aware of the sequence of indices determined by
(A.39).

The divergence of the velocity vector (or of another first order tensor)
reads ∂ui/∂xi in index notation, and formally corresponds with the scalar
product of the Nabla operator with the vector �u. Thus symbolically the diver-
gence reads ∇·�u or else div�u. The result is a scalar. In general, the divergence
of an nth order tensor is an (n− 1)th order tensor. Therefore the divergence
of a scalar is not defined. An important quantity in fluid mechanics is the
divergence of the stress tensor ∂τji/∂xj, which is a vector.

Every second order tensor can be decomposed into a symmetric and an
antisymmetric part. From the identity

tij =
1
2
(tij + tji) +

1
2
(tij − tji) (A.41)
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we obtain the symmetric tensor

cij =
1
2
(tij + tji) , (A.42)

and the antisymmetric tensor

bij =
1
2
(tij − tji) . (A.43)

We can see that the symmetric part satisfies cij = cji and the antisymmetric
part satisfies bij = −bji. It follows immediately for the antisymmetric tensor
that its diagonal elements (where i = j) must be zero. While a symmet-
ric tensor has six independent components, an antisymmetric tensor is fully
described by three components:

[bij ] =

⎡

⎣
0 b12 b13

−b12 0 b23
−b13 −b23 0

⎤

⎦ . (A.44)

In this connection we wish to refer to an important property of the ε tensor.
To do this we multiply the decomposition of a second order tensor with the
ε tensor:

pk = εijktij = εijkcij + εijkbij , (A.45)

where cij and bij are again the symmetric and antisymmetric parts respec-
tively of tij . We rewrite this equation as follows:

pk =
1
2
(εijkcij + εijkcji) +

1
2
(εijkbij − εijkbji) , (A.46)

which is allowable because of the properties of cij and bij . We now exchange
the dummy indices in the second expression in brackets:

pk =
1
2
(εijkcij + εjikcij) +

1
2
(εijkbij − εjikbij) . (A.47)

From the definition of the ε tensor (1.13) it follows that εijk = −εjik, so that
the first bracket vanishes. We obtain the equation

pk = εijkbij , (A.48a)

which written in matrix form reads
⎡

⎣
p1

p2

p3

⎤

⎦ =

⎡

⎣
b23 − b32
b31 − b13
b12 − b21

⎤

⎦ = 2

⎡

⎣
b23

−b13
b12

⎤

⎦ . (A.48b)



480 A Introduction to Cartesian Tensors

Applying the ε tensor to an arbitrary second order tensor using (A.45) there-
fore leads to the three independent components of the antisymmetric part
of the tensor (compare (A.48b) with (A.44)). From this we conclude that
application of the ε tensor to a symmetric tensor furnishes the null vector:

εijkcij = 0 , if cij = cji . (A.49)

Here follow four identities of the ε tensor, given without proof:

εikmεjln = det

⎡

⎣
δij δil δin

δkj δkl δkn

δmj δml δmn

⎤

⎦ . (A.50)

Contraction by multiplication with δmn (setting m = n) leads to

εiknεjln = det
[
δij δil

δkj δkl

]
. (A.51)

Contracting again by multiplying with δkl furnishes

εiknεjkn = 2δij , (A.52)

and finally for i = j
εiknεikn = 2δii = 6 . (A.53)

Table A.1 contains a summary of the most important rules of calculation in
vector and index notation.

Table A.1.

Operation Symbolic Notation Cartesian Index Notation

Scalar product c = �a ·�b c = δijaibj = aibi

�c = �a · T ck = δijaitjk = aitik

Vector product �c = �a ×�b ci = εijkajbk

Dyadic product T = �a�b tij = aibj

Gradient of a scalar field �c = grad a = ∇ a ci =
∂a

∂xi

Gradient of a vector field T = grad�a = ∇�a tij =
∂aj

∂xi

Divergence of a vector field c = div�a = ∇ · �a c =
∂ai

∂xi

Divergence of a tensor field �c = div T = ∇ · T ci =
∂tji

∂xj

Curl of a vector field �c = curl�a = ∇× �a ci = εijk
∂ak

∂xj

Laplace operator on a scalar c = �ϕ = ∇ · ∇ϕ c =
∂2ϕ

∂xi∂xi



B Curvilinear Coordinates

In applications it is often useful to use curvilinear coordinates. In order to
derive the component equation for curvilinear coordinates we can start from
general tensor calculus, which is valid in all coordinate systems. However, if
we restrict ourselves to curvilinear but orthogonal coordinates, we can move
relatively easily from the corresponding equations in symbolic notation to
the desired component equations. Since it is orthogonal coordinate systems
which are needed in almost all applications, we shall indeed restrict ourselves
to these.

We consider the curvilinear orthogonal coordinates q1, q2, q3, which can
be calculated from the Cartesian coordinates x1, x2, and x3:

q1 = q1(x1, x2, x3) ,
q2 = q2(x1, x2, x3) ,
q3 = q3(x1, x2, x3) ,

or in short:
qi = qi(xj) . (B.1)

We assume that (B.1) has a unique inverse:

xi = xi(qj) (B.2a)

or
�x = �x(qj) . (B.2b)

If q2 and q3 are kept constant, the vector �x = �x(q1) describes a curve in space
which is the coordinate curve q1. ∂�x/∂q1 is the tangent vector to this curve.
The corresponding unit vector in the direction of increasing q1 reads:

�e1 =
∂�x/∂q1
|∂�x/∂q1| . (B.3)

If we set |∂�x/∂q1| = b1, we see that

∂�x

∂q1
= �e1 b1 , (B.4)
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and in the same way
∂�x

∂q2
= �e2 b2 , (B.5)

∂�x

∂q3
= �e3 b3 , (B.6)

with b2 = |∂�x/∂q2| and b3 = |∂�x/∂q3| .
Because of �x = �x(qj) it follows that

d�x =
∂�x

∂q1
dq1 +

∂�x

∂q2
dq2 +

∂�x

∂q3
dq3 = b1 dq1 �e1 + b2 dq2 �e2 + b3 dq3 �e3 , (B.7)

and, since the basis vectors are orthogonal to each other, the square of the
line element is

d�x · d�x = b21 dq21 + b22 dq22 + b23 dq23 . (B.8)

For the volume element dV (Fig. B.1) we have

dV = b1 dq1 �e1 · ( b2 dq2 �e2 × b3 dq3 �e3 ) = b1 b2 b3 dq1 dq2 dq3 . (B.9)

The q1 surface element of the volume element dV (i.e. the surface element
normal to the q1 direction) is then

dS1 = |b2 dq2 �e2 × b3 dq3 �e3| = b2 b3 dq2 dq3 . (B.10)

In a similar manner we find for the remaining surface elements

dS2 = b3 b1 dq3 dq1 , (B.11)

dS3 = b1 b2 dq1 dq2 . (B.12)

Fig. B.1. Volume element in the curvilinear orthogonal coordinate system
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The continuity equation, Cauchy’s equation of motion and the entropy equa-
tion read symbolically:

∂�

∂t
+ �u · ∇ �+ �∇ · �u = 0 ,

�
D�u
Dt

= ��k + ∇ · T , and

� T

[
∂s

∂t
+ �u · ∇ s

]
= Φ+ ∇ · (λ∇T ) .

In Cauchy’s equation we write the material derivative in the form (1.78), as
this is more useful for getting the equations in curvilinear coordinates:

�

[
∂�u

∂t
− �u× (∇× �u) + ∇ (�u2/2)

]
= ��k + ∇ · T . (B.13)

Now in order to reach the component form of these equation, the Nabla oper-
ations ∇, ∇· and ∇× (gradient, divergence and curl) are given in curvilinear
coordinates. The components of the vector ∇Φ are:

q1 : (∇Φ)1 =
1
b1

∂Φ

∂q1
,

q2 : (∇Φ)2 =
1
b2

∂Φ

∂q2
, and

q3 : (∇Φ)3 =
1
b3

∂Φ

∂q3
.

(B.14)

If u1, u2 and u3 are the components of the vector �u in the direction of in-
creasing q1, q2 and q3, we have:

∇ · �u =
1

b1 b2 b3

[
∂

∂q1
(b2 b3 u1) +

∂

∂q2
(b3 b1 u2) +

∂

∂q3
(b1 b2 u3)

]
. (B.15)

Since the basis vectors are orthonormal, the Laplace operator Δ = ∇·∇ = ∇2

can be easily calculated, if, in (B.15) we identify the components of �u with
the components of ∇:

Δ =
1

b1 b2 b3

{
∂

∂q1

[
b2 b3
b1

∂

∂q1

]
+

∂

∂q2

[
b3 b1
b2

∂

∂q2

]
+

∂

∂q3

[
b1 b2
b3

∂

∂q3

]}
.

(B.16)
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∇× �u has the components

q1 : (∇× �u)1 =
1

b2 b3

[
∂

∂q2
(b3 u3) − ∂

∂q3
(b2 u2)

]
,

q2 : (∇× �u)2 =
1

b3 b1

[
∂

∂q3
(b1 u1) − ∂

∂q1
(b3 u3)

]
, (B.17)

q3 : (∇× �u)3 =
1

b1 b2

[
∂

∂q1
(b2 u2) − ∂

∂q2
(b1 u1)

]
.

The components of the divergence of the stress tensor are:

q1 : (∇ · T)1 =
1

b1 b2 b3

[
∂

∂q1
(b2 b3 τ11) +

∂

∂q2
(b3 b1 τ21) +

∂

∂q3
(b1 b2 τ31)

]
+

+
τ21
b1 b2

∂b1
∂q2

+
τ31
b1 b3

∂b1
∂q3

− τ22
b1 b2

∂b2
∂q1

− τ33
b1 b3

∂b3
∂q1

,

q2 : (∇ · T)2 =
1

b1 b2 b3

[
∂

∂q1
(b2 b3 τ12) +

∂

∂q2
(b3 b1 τ22) +

∂

∂q3
(b1 b2 τ32)

]
+

+
τ32
b2 b3

∂b2
∂q3

+
τ12
b2 b1

∂b2
∂q1

− τ33
b2 b3

∂b3
∂q2

− τ11
b2 b1

∂b1
∂q2

,

q3 : (∇ · T)3 =
1

b1 b2 b3

[
∂

∂q1
(b2 b3 τ13) +

∂

∂q2
(b3 b1 τ23) +

∂

∂q3
(b1 b2 τ33)

]
+

+
τ13
b3 b1

∂b3
∂q1

+
τ23
b3 b2

∂b3
∂q2

− τ11
b3 b1

∂b1
∂q3

− τ22
b3 b2

∂b2
∂q3

.

(B.18)

Here for example the stress component τ13 is the component in the direction
of increasing q3 which acts on the surface whose normal is in the direction of
increasing q1.

The Cauchy-Poisson law in symbolic form holds for the components of
the stress :

T = (−p+ λ∗ ∇ · �u) I + 2 ηE .

The components of the rate of deformation tensor are given by

e11 =
1
b1

∂u1

∂q1
+

u2

b1 b2

∂b1
∂q2

+
u3

b3 b1

∂b1
∂q3

,

e22 =
1
b2

∂u2

∂q2
+

u3

b2 b3

∂b2
∂q3

+
u1

b1 b2

∂b2
∂q1

,

e33 =
1
b3

∂u3

∂q3
+

u1

b3 b1

∂b3
∂q1

+
u2

b2 b3

∂b3
∂q2

,

2 e32 =
b3
b2

∂(u3/b3)
∂q2

+
b2
b3

∂(u2/b2)
∂q3

= 2 e23 ,
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2 e13 =
b1
b3

∂(u1/b1)
∂q3

+
b3
b1

∂(u3/b3)
∂q1

= 2 e31 , and

2 e21 =
b2
b1

∂(u2/b2)
∂q1

+
b1
b2

∂(u1/b1)
∂q2

= 2 e12 . (B.19)

As an example of how to apply this we consider spherical coordinates r, ϑ,
ϕ with the velocity components ur, uϑ, uϕ . The relation between Cartesian
and spherical coordinates is given by the transformation (cf. Fig. B.4)

x = r cosϑ ,
y = r sinϑ cosϕ , (B.20)
z = r sinϑ sinϕ .

The x axis is the polar axis and ϑ is the polar angle. With

q1 = r , q2 = ϑ , and q3 = ϕ (B.21)

it follows that

b1 =
{
cos2 ϑ+ sin2 ϑ (sin2 ϕ+ cos2 ϕ)

}1/2
= 1 ,

b2 =
{
r2 sin2 ϑ+ r2 cos2 ϑ (cos2 ϕ+ sin2 ϕ)

}1/2
= r , (B.22)

b3 =
{
r2 sin2 ϑ (sin2 ϕ+ cos2 ϕ)

}1/2
= r sinϑ .

The line element reads

d�x = dr �er + r dϑ�eϑ + r sinϑ dϕ�eϕ , (B.23)

and the volume element is

dV = r2 sinϑ dr dϑ dϕ . (B.24)

For the surface elements we obtain

dSr = r2 sinϑ dϑ dϕ ,

dSϑ = r sinϑ dr dϕ , (B.25)
dSϕ = r dr dϑ .

The components of gradΦ = ∇Φ are

r : (∇Φ)r =
∂Φ

∂r
,

ϑ : (∇Φ)ϑ =
1
r

∂Φ

∂ϑ
,

ϕ : (∇Φ)ϕ =
1

r sinϑ
∂Φ

∂ϕ
.

(B.26)
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For div �u = ∇ · �u it follows that

∇ · �u = (r2 sinϑ)−1

[
∂

∂r
(r2 sinϑur) +

∂

∂ϑ
(r sinϑuϑ) +

∂

∂ϕ
(r uϕ)

]
.

(B.27)

The components of curl�u = ∇× �u are

r : (∇× �u)r = (r2 sinϑ)−1

[
∂

∂ϑ
(r sinϑuϕ) − ∂

∂ϕ
(r uϑ)

]
,

ϑ : (∇× �u)ϑ = (r sinϑ)−1

[
∂

∂ϕ
(ur) − ∂

∂r
(r sinϑuϕ)

]
,

ϕ : (∇× �u)ϕ = r−1

[
∂

∂r
(r uϑ) − ∂

∂ϑ
(ur)

]
.

(B.28)

We now wish to calculate the rth component of the Navier-Stokes equations.
To do this we require the rth component of �u× (∇× �u) and of ∇ ·T :

{�u× (∇× �u)}r =
1
r
uϑ

[
∂

∂r
(r uϑ) − ∂

∂ϑ
(ur)

]
−

1
r sinϑ

uϕ

[
∂

∂ϕ
(ur) − ∂

∂r
(r sinϑuϕ)

]
, (B.29)

(∇ ·T)r =
1

r2 sinϑ

[
∂

∂r
(r2 sinϑ τrr) +

∂

∂ϑ
(r sinϑ τϑr) +

∂

∂ϕ
(r τϕr)

]
−

1
r

(τϑϑ + τϕϕ) , (B.30)

where, from (3.1b) for incompressible flow:

τrr = −p+ 2 η err ,

τϑϑ = −p+ 2 η eϑϑ ,

τϕϕ = −p+ 2 η eϕϕ ,

τϑr = 2 η eϑr ,

τϕr = 2 η eϕr , and
τϕϑ = 2 η eϕϑ . (B.31)

The components of the rate of deformation tensor are

err = ∂ur/∂r ,

eϑϑ =
1
r
{∂uϑ/∂ϑ+ ur} ,

eϕϕ =
1

r sinϑ
(∂uϕ/∂ϕ) +

1
r

(ur + uϑ cotϑ) ,
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2 eϕϑ = 2 eϑϕ = sinϑ
∂

∂ϑ

[
1

r sinϑ
uϕ

]
+

1
sinϑ

∂

∂ϕ

[
1
r
uϑ

]
,

2 erϕ = 2 eϕr =
1

r sinϑ
∂ur/∂ϕ+ r sinϑ

∂

∂r

[
1

r sinϑ
uϕ

]
, and

2 eϑr = 2 erϑ = r
∂

∂r

[
1
r
uϑ

]
+

1
r
∂ur/∂ϑ . (B.32)

By inserting these equations into Cauchy’s equation, we obtain the rth com-
ponent of the Navier-Stokes equations for incompressible flow

�

{
∂ur

∂t
− uϑ

r

[
∂(r uϑ)
∂r

− ∂ur

∂ϑ

]
+

+
uϕ

r sinϑ

[
∂ur

∂ϕ
− ∂(r sinϑuϕ)

∂r

]
+

1
2
∂(u2

r + u2
ϑ + u2

ϕ)
∂r

}
=

= � kr +
1

r2 sinϑ

{
∂

∂r

[
r2 sinϑ

{
− p+ η

∂ur

∂r
+ η

∂ur

∂r

}]
+

+
∂

∂ϑ

[
r2 sinϑ η

∂(uϑ/r)
∂r

+ sinϑ η
∂ur

∂ϑ

]
+

∂

∂ϕ

[
η

sinϑ
∂ur

∂ϕ
+

+r2 sinϑ η
∂

∂r

( 1
r sinϑ

uϕ)
]}

+
p

r
− 2 η

r2

[
∂uϑ

∂ϑ
+ ur

]
+

+
p

r
− 2 η
r2 sinϑ

∂uϕ

∂ϕ
− 2 η

r2

(
ur + uϑ cotϑ

)
. (B.33)

All terms containing p together result in −∂p/∂r . In spherical coordinates
the Laplace operator reads

Δ =
1
r2

∂

∂r

[
r2

∂

∂r

]
+

1
r2 sinϑ

[
∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1
sinϑ

∂2

∂ϕ2

]
. (B.34)

We see that the doubly underlined terms can be written together as the
differential operator η Δur. For the singly underlined terms we can write

η
∂

∂r

{
1

r2 sinϑ

[
∂

∂r
(r2 sinϑur) +

∂

∂ϑ
(r sinϑuϑ) +

∂

∂ϕ
(r uϕ)

]}
;

we can convince ourselves of this by differentiating it out. The expression in
curly brackets is, by (B.27) equal to ∇·�u , and in incompressible flow is zero.
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Fig. B.2. Cartesian coordinates

If we carry out all the differentiation on the left-hand side we find

�

{
∂ur

∂t
+ ur

∂ur

∂r
+

1
r
uϑ

∂ur

∂ϑ
+

1
r sinϑ

uϕ
∂ur

∂ϕ
− u2

ϑ + u2
ϕ

r

}
=

= � kr − ∂p

∂r
+ η

{
Δur − 2

r2

[
ur +

∂uϑ

∂ϑ
+ uϑ cotϑ+

1
sinϑ

∂uϕ

∂ϕ

]}
(B.35)

as the rth component of the Navier-Stokes equations. The remaining compo-
nents are obtained in the same manner. We shall now summarize the results
for Cartesian, cylindrical and spherical coordinates.

B.1 Cartesian Coordinates

a) Unit vectors:
�ex , �ey , �ez

b) Position vector �x :
�x = x�ex + y �ey + z �ez

c) Velocity vector �u :
�u = u�ex + v �ey + w�ez

d) Line element:
d�x = dx�ex + dy �ey + dz �ez
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e) Surface elements:

dSx = dy dz
dSy = dxdz
dSz = dxdy

f) Volume element:
dV = dxdy dz

g) Gradient of the scalar Φ :

gradΦ = ∇Φ =
∂Φ

∂x
�ex +

∂Φ

∂y
�ey +

∂Φ

∂z
�ez

h) Laplace operator on the scalar Φ :

ΔΦ = ∇ · ∇Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2

i) Divergence of the vector �u :

div �u = ∇ · �u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z

j) Curl of the vector �u :

curl �u = ∇× �u =
[
∂w

∂y
− ∂v

∂z

]
�ex +

[
∂u

∂z
− ∂w

∂x

]
�ey +

[
∂v

∂x
− ∂u

∂y

]
�ez

k) Laplace operator on the vector �u :

Δ�u = ∇ · ∇ �u = Δu�ex +Δv�ey +Δw�ez

l) Divergence of the stress tensor T :

div T = ∇ ·T = (∂τxx/∂x+ ∂τyx/∂y + ∂τzx/∂z)�ex +
+ (∂τxy/∂x+ ∂τyy/∂y + ∂τzy/∂z)�ey +
+ (∂τxz/∂x+ ∂τyz/∂y + ∂τzz/∂z)�ez
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m) Rate of deformation tensor E :

exx = ∂u/∂x

eyy = ∂v/∂y

ezz = ∂w/∂z

2 exy = 2 eyx = ∂u/∂y + ∂v/∂x

2 exz = 2 ezx = ∂u/∂z + ∂w/∂x

2 eyz = 2 ezy = ∂v/∂z + ∂w/∂y

n) Continuity equation:

∂�

∂t
+

∂

∂x
(� u) +

∂

∂y
(� v) +

∂

∂z
(�w) = 0

o) Navier-Stokes equations (with �, η = const):

x : � (∂u/∂t+ u ∂u/∂x+ v ∂u/∂y+ w ∂u/∂z) = � kx − ∂p/∂x+ η Δu

y : � (∂v/∂t+ u ∂v/∂x+ v ∂v/∂y + w ∂v/∂z) = � ky − ∂p/∂y + η Δv

z : � (∂w/∂t+ u ∂w/∂x+ v ∂w/∂y + w ∂w/∂z) = � kz − ∂p/∂z + η Δw

B.2 Cylindrical Coordinates

a) Unit vectors:

�er = + cosϕ�ex + sinϕ�ey

�eϕ = − sinϕ�ex + cosϕ�ey

�ez = �ez

b) Position vector �x :
�x = r �er + z �ez

c) Velocity vector �u :
�u = ur �er + uϕ �eϕ + uz �ez

d) Line element:
d�x = dr �er + r dϕ�eϕ + dz �ez
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Fig. B.3. Cylindrical Coordinates

e) Surface elements:

dSr = r dϕdz
dSϕ = dr dz
dSz = r dr dϕ

f) Volume element:
dV = r dr dϕdz

g) Gradient of the scalar Φ :

gradΦ = ∇Φ =
∂Φ

∂r
�er +

1
r

∂Φ

∂ϕ
�eϕ +

∂Φ

∂z
�ez

h) Laplace operator on the scalar Φ :

ΔΦ = ∇ · ∇Φ =
∂2Φ

∂r2
+

1
r

∂Φ

∂r
+

1
r2

∂2Φ

∂ϕ2
+
∂2Φ

∂z2

i) Divergence of the vector �u :

div �u = ∇ · �u =
1
r

{
∂(ur r)
∂r

+
∂uϕ

∂ϕ
+
∂(uz r)
∂z

}
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j) Curl of the vector �u :

curl�u = ∇× �u =
{

1
r

∂uz

∂ϕ
− ∂uϕ

∂z

}
�er +

{
∂ur

∂z
− ∂uz

∂r

}
�eϕ +

+
1
r

{
∂(uϕ r)
∂r

− ∂ur

∂ϕ

}
�ez

k) Laplace operator on the vector �u :

Δ�u = ∇ · ∇�u =
{
Δur − 1

r2

[
ur + 2

∂uϕ

∂ϕ

]}
�er +

+
{
Δuϕ − 1

r2

[
uϕ − 2

∂ur

∂ϕ

]}
�eϕ +Δuz�ez

l) Divergence of the stress tensor T :

div T = ∇ · T =
{

1
r

∂(τrr r)
∂r

+
1
r

∂τϕr

∂ϕ
+
∂τzr

∂z
− τϕϕ

r

}
�er +

+
{

1
r

∂(τrϕ r)
∂r

+
1
r

∂τϕϕ

∂ϕ
+
∂τzϕ

∂z
+
τrϕ

r

}
�eϕ +

+
{

1
r

∂(τrz r)
∂r

+
1
r

∂τϕz

∂ϕ
+
∂τzz

∂z

}
�ez

m) Rate of deformation tensor E :

err =
∂ur

∂r

eϕϕ =
1
r

∂uϕ

∂ϕ
+

1
r
ur

ezz =
∂uz

∂z

2 erϕ = 2 eϕr = r
∂(r−1 uϕ)

∂r
+

1
r

∂ur

∂ϕ

2 erz = 2 ezr =
∂ur

∂z
+
∂uz

∂r

2 eϕz = 2 ezϕ =
1
r

∂uz

∂ϕ
+
∂uϕ

∂z

n) Continuity equation:

∂�

∂t
+

1
r

∂

∂r
(� ur r) +

1
r

∂

∂ϕ
(� uϕ) +

∂

∂z
(� uz) = 0
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o) Navier-Stokes equations (with �, η = const):

r : �

{
∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z
+

1
r

[
uϕ

∂ur

∂ϕ
− u2

ϕ

]}
=

= � kr − ∂p

∂r
+ η

{
Δur − 1

r2

[
ur + 2

∂uϕ

∂ϕ

]}

ϕ : �

{
∂uϕ

∂t
+ ur

∂uϕ

∂r
+ uz

∂uϕ

∂z
+

1
r

[
uϕ

∂uϕ

∂ϕ
+ ur uϕ

]}
=

= � kϕ − 1
r

∂p

∂ϕ
+ η

{
Δuϕ − 1

r2

[
uϕ − 2

∂ur

∂ϕ

]}

z : �

{
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
+

1
r
uϕ

∂uz

∂ϕ

}
= � kz − ∂p

∂z
+ η Δuz

B.3 Spherical Coordinates

a) Unit vectors:

�er = cosϑ�ex + sinϑ cosϕ�ey + sinϑ sinϕ�ez

�eϑ = − sinϑ�ex + cosϑ cosϕ�ey + cosϑ sinϕ�ez

�eϕ = − sinϕ�ey + cosϕ�ez

b) Position vector �x :
�x = r �er

Fig. B.4. Spherical coordinates
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c) Velocity vector �u :
�u = ur �er + uϑ �eϑ + uϕ �eϕ

d) Line element:

d�x = dr �er + r dϑ�eϑ + r sinϑ dϕ�eϕ

e) Surface elements:

dSr = r2 sinϑ dϑ dϕ
dSϑ = r sinϑ dr dϕ
dSϕ = r dr dϑ

f) Volume element:
dV = r2 sinϑ dr dϑ dϕ

g) Gradient of the scalar Φ :

gradΦ = ∇Φ =
∂Φ

∂r
�er +

1
r

∂Φ

∂ϑ
�eϑ +

1
r sinϑ

∂Φ

∂ϕ
�eϕ

h) Laplace operator on the scalar Φ :

ΔΦ = ∇ · ∇Φ =
1
r2

∂

∂r

[
r2
∂Φ

∂r

]
+

1
r2 sinϑ

∂

∂ϑ

[
sinϑ

∂Φ

∂ϑ

]
+

1
r2 sin2 ϑ

∂2Φ

∂ϕ2

i) Divergence of the vector �u :

div �u = ∇ · �u =
1

r2 sinϑ

{
∂(r2 sinϑur)

∂r
+
∂(r sinϑuϑ)

∂ϑ
+
∂(r uϕ)
∂ϕ

}

j) Curl of the vector �u :

curl�u =
1

r2 sinϑ

{
∂(r sinϑuϕ)

∂ϑ
− ∂(r uϑ)

∂ϕ

}
�er +

+
1

r sinϑ

{
∂ur

∂ϕ
− ∂(r sinϑuϕ)

∂r

}
�eϑ +

+
1
r

{
∂(r uϑ)
∂r

− ∂ur

∂ϑ

}
�eϕ

k) Laplace operator on the vector �u :

Δ�u =
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l) Divergence of the stress tensor T :

∇ · T =
{

1
r2 sinϑ

[
∂(r2 sinϑ τrr)

∂r
+
∂(r sinϑ τϑr)

∂ϑ
+
∂(r τϕr)
∂ϕ
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−

− τϑϑ + τϕϕ

r
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+
{

1
r2 sinϑ

[
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∂r
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+
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r

}
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1
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∂(r sinϑ τϑϕ)

∂ϑ
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]
+

+
τrϕ + τϑϕ cotϑ

r

}
�eϕ

m) Rate of deformation tensor E :

err =
∂ur

∂r

eϑϑ =
1
r

∂uϑ

∂ϑ
+

1
r
ur

eϕϕ =
1

r sinϑ
∂uϕ

∂ϕ
+

1
r

(ur + uϑ cotϑ)

2 eϕϑ = 2 eϑϕ = sinϑ
∂

∂ϑ

[
1

r sinϑ
uϕ

]
+

1
sinϑ

∂

∂ϕ

[
1
r
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]

2 erϕ = 2 eϕr =
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r sinϑ
∂ur

∂ϕ
+ r sinϑ

∂
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[
1

r sinϑ
uϕ

]

2 eϑr = 2 erϑ = r
∂
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[
1
r
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+

1
r

∂ur
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n) Continuity equation:

∂�

∂t
+

1
r2 sinϑ

[
∂

∂r
(r2 sinϑ �ur) +

∂

∂ϑ
(r sinϑ �uϑ) +

∂

∂ϕ
(r � uϕ)

]
= 0

o) Navier-Stokes equations (with �, η = const):

r : �

{
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[
ur +

∂uϑ
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+ uϑ cotϑ+

1
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∂uϕ
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]}
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ϑ : �
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Table C.1

Pressure, density, temperature and area ratio as dependent on the Mach
number for calorically perfect gas (γ = 1.4)

Subsonic

M p/pt �/�t T/Tt a/at A∗/A

0.000 1.000000 1.000000 1.000000 1.000000 0.000000
0.010 0.999930 0.999950 0.999980 0.999990 0.017279
0.020 0.999720 0.999800 0.999920 0.999960 0.034552
0.030 0.999370 0.999550 0.999820 0.999910 0.051812
0.040 0.998881 0.999200 0.999680 0.999840 0.069054
0.050 0.998252 0.998751 0.999500 0.999750 0.086271
0.060 0.997484 0.998202 0.999281 0.999640 0.103456
0.070 0.996577 0.997554 0.999021 0.999510 0.120605
0.080 0.995533 0.996807 0.998722 0.999361 0.137711
0.090 0.994351 0.995961 0.998383 0.999191 0.154767
0.100 0.993032 0.995018 0.998004 0.999002 0.171767
0.110 0.991576 0.993976 0.997586 0.998792 0.188707
0.120 0.989985 0.992836 0.997128 0.998563 0.205579
0.130 0.988259 0.991600 0.996631 0.998314 0.222378
0.140 0.986400 0.990267 0.996095 0.998046 0.239097
0.150 0.984408 0.988838 0.995520 0.997758 0.255732
0.160 0.982284 0.987314 0.994906 0.997450 0.272276
0.170 0.980030 0.985695 0.994253 0.997122 0.288725
0.180 0.977647 0.983982 0.993562 0.996776 0.305071
0.190 0.975135 0.982176 0.992832 0.996409 0.321310
0.200 0.972497 0.980277 0.992064 0.996024 0.337437
0.210 0.969733 0.978286 0.991257 0.995619 0.353445
0.220 0.966845 0.976204 0.990413 0.995195 0.369330
0.230 0.963835 0.974032 0.989531 0.994752 0.385088
0.240 0.960703 0.971771 0.988611 0.994289 0.400711
0.250 0.957453 0.969421 0.987654 0.993808 0.416197
0.260 0.954085 0.966984 0.986660 0.993308 0.431539
0.270 0.950600 0.964460 0.985629 0.992789 0.446734
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M p/pt �/�t T/Tt a/at A∗/A

0.280 0.947002 0.961851 0.984562 0.992251 0.461776
0.290 0.943291 0.959157 0.983458 0.991695 0.476661
0.300 0.939470 0.956380 0.982318 0.991120 0.491385
0.310 0.935540 0.953521 0.981142 0.990526 0.505943
0.320 0.931503 0.950580 0.979931 0.989915 0.520332
0.330 0.927362 0.947559 0.978684 0.989285 0.534546
0.340 0.923117 0.944460 0.977402 0.988637 0.548584
0.350 0.918773 0.941283 0.976086 0.987971 0.562440
0.360 0.914330 0.938029 0.974735 0.987287 0.576110
0.370 0.909790 0.934700 0.973350 0.986585 0.589593
0.380 0.905156 0.931297 0.971931 0.985865 0.602883
0.390 0.900430 0.927821 0.970478 0.985128 0.615979
0.400 0.895614 0.924274 0.968992 0.984374 0.628876
0.410 0.890711 0.920657 0.967474 0.983602 0.641571
0.420 0.885722 0.916971 0.965922 0.982813 0.654063
0.430 0.880651 0.913217 0.964339 0.982008 0.666348
0.440 0.875498 0.909398 0.962723 0.981185 0.678424
0.450 0.870267 0.905513 0.961076 0.980345 0.690287
0.460 0.864960 0.901566 0.959398 0.979489 0.701937
0.470 0.859580 0.897556 0.957689 0.978616 0.713371
0.480 0.854128 0.893486 0.955950 0.977727 0.724587
0.490 0.848607 0.889357 0.954180 0.976821 0.735582
0.500 0.843019 0.885170 0.952381 0.975900 0.746356
0.510 0.837367 0.880927 0.950552 0.974963 0.756906
0.520 0.831654 0.876629 0.948695 0.974010 0.767231
0.530 0.825881 0.872279 0.946808 0.973041 0.777331
0.540 0.820050 0.867876 0.944894 0.972056 0.787202
0.550 0.814165 0.863422 0.942951 0.971057 0.796846
0.560 0.808228 0.858920 0.940982 0.970042 0.806260
0.570 0.802241 0.854371 0.938985 0.969012 0.815444
0.580 0.796206 0.849775 0.936961 0.967968 0.824398
0.590 0.790127 0.845135 0.934911 0.966908 0.833119
0.600 0.784004 0.840452 0.932836 0.965834 0.841609
0.610 0.777841 0.835728 0.930735 0.964746 0.849868
0.620 0.771639 0.830963 0.928609 0.963643 0.857894
0.630 0.765402 0.826160 0.926458 0.962527 0.865688
0.640 0.759131 0.821320 0.924283 0.961396 0.873249
0.650 0.752829 0.816443 0.922084 0.960252 0.880579
0.660 0.746498 0.811533 0.919862 0.959094 0.887678
0.670 0.740140 0.806590 0.917616 0.957923 0.894545
0.680 0.733758 0.801616 0.915349 0.956739 0.901182
0.690 0.727353 0.796612 0.913059 0.955541 0.907588
0.700 0.720928 0.791579 0.910747 0.954331 0.913765
0.710 0.714485 0.786519 0.908414 0.953107 0.919715
0.720 0.708026 0.781434 0.906060 0.951872 0.925437
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M p/pt �/�t T/Tt a/at A∗/A

0.730 0.701552 0.776324 0.903685 0.950624 0.930932
0.740 0.695068 0.771191 0.901291 0.949363 0.936203
0.750 0.688573 0.766037 0.898876 0.948091 0.941250
0.760 0.682071 0.760863 0.896443 0.946807 0.946074
0.770 0.675562 0.755670 0.893991 0.945511 0.950678
0.780 0.669050 0.750460 0.891520 0.944203 0.955062
0.790 0.662536 0.745234 0.889031 0.942885 0.959228
0.800 0.656022 0.739992 0.886525 0.941554 0.963178
0.810 0.649509 0.734738 0.884001 0.940214 0.966913
0.820 0.643000 0.729471 0.881461 0.938862 0.970436
0.830 0.636496 0.724193 0.878905 0.937499 0.973749
0.840 0.630000 0.718905 0.876332 0.936126 0.976853
0.850 0.623512 0.713609 0.873744 0.934743 0.979750
0.860 0.617034 0.708306 0.871141 0.933349 0.982443
0.870 0.610569 0.702997 0.868523 0.931946 0.984934
0.880 0.604117 0.697683 0.865891 0.930533 0.987225
0.890 0.597680 0.692365 0.863245 0.929110 0.989317
0.900 0.591260 0.687044 0.860585 0.927677 0.991215
0.910 0.584858 0.681722 0.857913 0.926236 0.992920
0.920 0.578476 0.676400 0.855227 0.924785 0.994434
0.930 0.572114 0.671079 0.852529 0.923325 0.995761
0.940 0.565775 0.665759 0.849820 0.921857 0.996901
0.950 0.559460 0.660443 0.847099 0.920380 0.997859
0.960 0.553169 0.655130 0.844366 0.918894 0.998637
0.970 0.546905 0.649822 0.841623 0.917400 0.999238
0.980 0.540668 0.644520 0.838870 0.915898 0.999663
0.990 0.534460 0.639225 0.836106 0.914389 0.999916
1.000 0.528282 0.633938 0.833333 0.912871 1.000000
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Supersonic

M p/pt �/�t T/Tt a/at A∗/A

1.000 0.528282 0.633938 0.833333 0.912871 1.000000
1.010 0.522134 0.628660 0.830551 0.911346 0.999917
1.020 0.516018 0.623391 0.827760 0.909813 0.999671
1.030 0.509935 0.618133 0.824960 0.908273 0.999263
1.040 0.503886 0.612887 0.822152 0.906726 0.998697
1.050 0.497872 0.607653 0.819336 0.905172 0.997975
1.060 0.491894 0.602432 0.816513 0.903611 0.997101
1.070 0.485952 0.597225 0.813683 0.902044 0.996077
1.080 0.480047 0.592033 0.810846 0.900470 0.994907
1.090 0.474181 0.586856 0.808002 0.898890 0.993593
1.100 0.468354 0.581696 0.805153 0.897303 0.992137
1.110 0.462567 0.576553 0.802298 0.895711 0.990543
1.120 0.456820 0.571427 0.799437 0.894113 0.988815
1.130 0.451114 0.566320 0.796572 0.892509 0.986953
1.140 0.445451 0.561232 0.793701 0.890899 0.984963
1.150 0.439829 0.556164 0.790826 0.889284 0.982845
1.160 0.434251 0.551116 0.787948 0.887664 0.980604
1.170 0.428716 0.546090 0.785065 0.886039 0.978242
1.180 0.423225 0.541085 0.782179 0.884409 0.975762
1.190 0.417778 0.536102 0.779290 0.882774 0.973167
1.200 0.412377 0.531142 0.776398 0.881134 0.970459
1.210 0.407021 0.526205 0.773503 0.879490 0.967643
1.220 0.401711 0.521292 0.770606 0.877842 0.964719
1.230 0.396446 0.516403 0.767707 0.876189 0.961691
1.240 0.391229 0.511539 0.764807 0.874532 0.958562
1.250 0.386058 0.506701 0.761905 0.872872 0.955335
1.260 0.380934 0.501888 0.759002 0.871207 0.952012
1.270 0.375858 0.497102 0.756098 0.869539 0.948597
1.280 0.370828 0.492342 0.753194 0.867867 0.945091
1.290 0.365847 0.487609 0.750289 0.866192 0.941497
1.300 0.360914 0.482903 0.747384 0.864514 0.937819
1.310 0.356029 0.478225 0.744480 0.862832 0.934057
1.320 0.351192 0.473575 0.741576 0.861148 0.930217
1.330 0.346403 0.468954 0.738672 0.859461 0.926299
1.340 0.341663 0.464361 0.735770 0.857771 0.922306
1.350 0.336971 0.459797 0.732869 0.856078 0.918242
1.360 0.332328 0.455263 0.729970 0.854383 0.914107
1.370 0.327733 0.450758 0.727072 0.852685 0.909905
1.380 0.323187 0.446283 0.724176 0.850985 0.905639
1.390 0.318690 0.441838 0.721282 0.849283 0.901310
1.400 0.314241 0.437423 0.718391 0.847579 0.896921
1.410 0.309840 0.433039 0.715502 0.845874 0.892474
1.420 0.305489 0.428686 0.712616 0.844166 0.887972
1.430 0.301185 0.424363 0.709733 0.842457 0.883416
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M p/pt �/�t T/Tt a/at A∗/A

1.440 0.296929 0.420072 0.706854 0.840746 0.878810
1.450 0.292722 0.415812 0.703978 0.839034 0.874154
1.460 0.288563 0.411583 0.701105 0.837320 0.869452
1.470 0.284452 0.407386 0.698236 0.835605 0.864706
1.480 0.280388 0.403220 0.695372 0.833889 0.859917
1.490 0.276372 0.399086 0.692511 0.832173 0.855087
1.500 0.272403 0.394984 0.689655 0.830455 0.850219
1.510 0.268481 0.390914 0.686804 0.828736 0.845315
1.520 0.264607 0.386876 0.683957 0.827017 0.840377
1.530 0.260779 0.382870 0.681115 0.825297 0.835405
1.540 0.256997 0.378896 0.678279 0.823577 0.830404
1.550 0.253262 0.374955 0.675448 0.821856 0.825373
1.560 0.249573 0.371045 0.672622 0.820135 0.820315
1.570 0.245930 0.367168 0.669801 0.818414 0.815233
1.580 0.242332 0.363323 0.666987 0.816693 0.810126
1.590 0.238779 0.359511 0.664178 0.814971 0.804998
1.600 0.235271 0.355730 0.661376 0.813250 0.799850
1.610 0.231808 0.351982 0.658579 0.811529 0.794683
1.620 0.228389 0.348266 0.655789 0.809808 0.789499
1.630 0.225014 0.344582 0.653006 0.808088 0.784301
1.640 0.221683 0.340930 0.650229 0.806368 0.779088
1.650 0.218395 0.337311 0.647459 0.804648 0.773863
1.660 0.215150 0.333723 0.644695 0.802929 0.768627
1.670 0.211948 0.330168 0.641939 0.801211 0.763382
1.680 0.208788 0.326644 0.639190 0.799494 0.758129
1.690 0.205670 0.323152 0.636448 0.797777 0.752869
1.700 0.202594 0.319693 0.633714 0.796061 0.747604
1.710 0.199558 0.316264 0.630987 0.794347 0.742335
1.720 0.196564 0.312868 0.628267 0.792633 0.737064
1.730 0.193611 0.309502 0.625555 0.790920 0.731790
1.740 0.190698 0.306169 0.622851 0.789209 0.726517
1.750 0.187824 0.302866 0.620155 0.787499 0.721245
1.760 0.184990 0.299595 0.617467 0.785791 0.715974
1.770 0.182195 0.296354 0.614787 0.784083 0.710707
1.780 0.179438 0.293145 0.612115 0.782378 0.705444
1.790 0.176720 0.289966 0.609451 0.780674 0.700187
1.800 0.174040 0.286818 0.606796 0.778971 0.694936
1.810 0.171398 0.283701 0.604149 0.777270 0.689692
1.820 0.168792 0.280614 0.601511 0.775571 0.684457
1.830 0.166224 0.277557 0.598881 0.773874 0.679230
1.840 0.163691 0.274530 0.596260 0.772179 0.674014
1.850 0.161195 0.271533 0.593648 0.770486 0.668810
1.860 0.158734 0.268566 0.591044 0.768794 0.663617
1.870 0.156309 0.265628 0.588450 0.767105 0.658436
1.880 0.153918 0.262720 0.585864 0.765418 0.653270
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M p/pt �/�t T/Tt a/at A∗/A

1.890 0.151562 0.259841 0.583288 0.763733 0.648118
1.900 0.149240 0.256991 0.580720 0.762050 0.642981
1.910 0.146951 0.254169 0.578162 0.760369 0.637859
1.920 0.144696 0.251377 0.575612 0.758691 0.632755
1.930 0.142473 0.248613 0.573072 0.757016 0.627668
1.940 0.140283 0.245877 0.570542 0.755342 0.622598
1.950 0.138126 0.243170 0.568020 0.753671 0.617547
1.960 0.135999 0.240490 0.565509 0.752003 0.612516
1.970 0.133905 0.237839 0.563006 0.750337 0.607504
1.980 0.131841 0.235215 0.560513 0.748674 0.602512
1.990 0.129808 0.232618 0.558030 0.747014 0.597542
2.000 0.127805 0.230048 0.555556 0.745356 0.592593
2.010 0.125831 0.227505 0.553091 0.743701 0.587665
2.020 0.123888 0.224990 0.550637 0.742049 0.582761
2.030 0.121973 0.222500 0.548192 0.740400 0.577879
2.040 0.120087 0.220037 0.545756 0.738753 0.573020
2.050 0.118229 0.217601 0.543331 0.737110 0.568186
2.060 0.116399 0.215190 0.540915 0.735469 0.563375
2.070 0.114597 0.212805 0.538509 0.733832 0.558589
2.080 0.112823 0.210446 0.536113 0.732197 0.553828
2.090 0.111075 0.208112 0.533726 0.730566 0.549093
2.100 0.109353 0.205803 0.531350 0.728937 0.544383
2.110 0.107658 0.203519 0.528983 0.727312 0.539699
2.120 0.105988 0.201259 0.526626 0.725690 0.535041
2.130 0.104345 0.199025 0.524279 0.724071 0.530410
2.140 0.102726 0.196814 0.521942 0.722456 0.525806
2.150 0.101132 0.194628 0.519616 0.720844 0.521229
2.160 0.099562 0.192466 0.517299 0.719235 0.516679
2.170 0.098017 0.190327 0.514991 0.717629 0.512157
2.180 0.096495 0.188212 0.512694 0.716027 0.507663
2.190 0.094997 0.186120 0.510407 0.714428 0.503197
2.200 0.093522 0.184051 0.508130 0.712832 0.498759
2.210 0.092069 0.182004 0.505863 0.711240 0.494350
2.220 0.090640 0.179981 0.503606 0.709652 0.489969
2.230 0.089232 0.177980 0.501359 0.708067 0.485617
2.240 0.087846 0.176001 0.499122 0.706485 0.481294
2.250 0.086482 0.174044 0.496894 0.704907 0.477000
2.260 0.085139 0.172110 0.494677 0.703333 0.472735
2.270 0.083817 0.170196 0.492470 0.701762 0.468500
2.280 0.082515 0.168304 0.490273 0.700195 0.464293
2.290 0.081234 0.166433 0.488086 0.698631 0.460117
2.300 0.079973 0.164584 0.485909 0.697071 0.455969
2.310 0.078731 0.162755 0.483741 0.695515 0.451851
2.320 0.077509 0.160946 0.481584 0.693963 0.447763
2.330 0.076306 0.159158 0.479437 0.692414 0.443705
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M p/pt �/�t T/Tt a/at A∗/A

2.340 0.075122 0.157390 0.477300 0.690869 0.439676
2.350 0.073957 0.155642 0.475172 0.689327 0.435677
2.360 0.072810 0.153914 0.473055 0.687790 0.431708
2.370 0.071681 0.152206 0.470947 0.686256 0.427769
2.380 0.070570 0.150516 0.468850 0.684726 0.423859
2.390 0.069476 0.148846 0.466762 0.683200 0.419979
2.400 0.068399 0.147195 0.464684 0.681677 0.416129
2.410 0.067340 0.145563 0.462616 0.680159 0.412309
2.420 0.066297 0.143950 0.460558 0.678644 0.408518
2.430 0.065271 0.142354 0.458510 0.677133 0.404758
2.440 0.064261 0.140777 0.456471 0.675626 0.401026
2.450 0.063267 0.139218 0.454442 0.674123 0.397325
2.460 0.062288 0.137677 0.452423 0.672624 0.393653
2.470 0.061326 0.136154 0.450414 0.671129 0.390010
2.480 0.060378 0.134648 0.448414 0.669638 0.386397
2.490 0.059445 0.133159 0.446425 0.668150 0.382814
2.500 0.058528 0.131687 0.444444 0.666667 0.379259
2.510 0.057624 0.130232 0.442474 0.665187 0.375734
2.520 0.056736 0.128794 0.440513 0.663712 0.372238
2.530 0.055861 0.127373 0.438562 0.662240 0.368771
2.540 0.055000 0.125968 0.436620 0.660772 0.365333
2.550 0.054153 0.124579 0.434688 0.659309 0.361924
2.560 0.053319 0.123206 0.432766 0.657849 0.358543
2.570 0.052499 0.121849 0.430853 0.656394 0.355192
2.580 0.051692 0.120507 0.428949 0.654942 0.351868
2.590 0.050897 0.119182 0.427055 0.653494 0.348573
2.600 0.050115 0.117871 0.425170 0.652051 0.345307
2.610 0.049346 0.116575 0.423295 0.650611 0.342068
2.620 0.048589 0.115295 0.421429 0.649176 0.338858
2.630 0.047844 0.114029 0.419572 0.647744 0.335675
2.640 0.047110 0.112778 0.417725 0.646316 0.332521
2.650 0.046389 0.111542 0.415887 0.644893 0.329394
2.660 0.045679 0.110320 0.414058 0.643474 0.326294
2.670 0.044980 0.109112 0.412239 0.642058 0.323222
2.680 0.044292 0.107918 0.410428 0.640647 0.320177
2.690 0.043616 0.106738 0.408627 0.639239 0.317159
2.700 0.042950 0.105571 0.406835 0.637836 0.314168
2.710 0.042295 0.104418 0.405052 0.636437 0.311204
2.720 0.041650 0.103279 0.403278 0.635042 0.308266
2.730 0.041016 0.102152 0.401513 0.633650 0.305355
2.740 0.040391 0.101039 0.399757 0.632263 0.302470
2.750 0.039777 0.099939 0.398010 0.630880 0.299611
2.760 0.039172 0.098851 0.396272 0.629501 0.296779
2.770 0.038577 0.097777 0.394543 0.628126 0.293972
2.780 0.037992 0.096714 0.392822 0.626755 0.291190
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M p/pt �/�t T/Tt a/at A∗/A

2.790 0.037415 0.095664 0.391111 0.625389 0.288435
2.800 0.036848 0.094626 0.389408 0.624026 0.285704
2.810 0.036290 0.093601 0.387714 0.622667 0.282999
2.820 0.035741 0.092587 0.386029 0.621312 0.280319
2.830 0.035201 0.091585 0.384352 0.619962 0.277663
2.840 0.034669 0.090594 0.382684 0.618615 0.275033
2.850 0.034146 0.089616 0.381025 0.617272 0.272426
2.860 0.033631 0.088648 0.379374 0.615934 0.269844
2.870 0.033124 0.087692 0.377732 0.614599 0.267286
2.880 0.032625 0.086747 0.376098 0.613268 0.264753
2.890 0.032134 0.085813 0.374473 0.611942 0.262242
2.900 0.031652 0.084889 0.372856 0.610619 0.259756
2.910 0.031176 0.083977 0.371248 0.609301 0.257293
2.920 0.030708 0.083075 0.369648 0.607986 0.254853
2.930 0.030248 0.082183 0.368056 0.606676 0.252436
2.940 0.029795 0.081302 0.366472 0.605370 0.250043
2.950 0.029349 0.080431 0.364897 0.604067 0.247672
2.960 0.028910 0.079571 0.363330 0.602768 0.245323
2.970 0.028479 0.078720 0.361771 0.601474 0.242997
2.980 0.028054 0.077879 0.360220 0.600183 0.240693
2.990 0.027635 0.077048 0.358678 0.598897 0.238412
3.000 0.027224 0.076226 0.357143 0.597614 0.236152
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Table C.2

Pressure, density, temperature, total pressure and Mach number M2 behind
a normal shock as dependent on the Mach number M1 in front of the shock
for calorically perfect gas (γ = 1.4).

M1 p2/p1 �2/�1 T2/T1 pt2/pt1 M2

1.000 1.000000 1.000000 1.000000 1.000000 1.000000
1.010 1.023450 1.016694 1.006645 0.999999 0.990132
1.020 1.047133 1.033442 1.013249 0.999990 0.980520
1.030 1.071050 1.050240 1.019814 0.999967 0.971154
1.040 1.095200 1.067088 1.026345 0.999923 0.962026
1.050 1.119583 1.083982 1.032843 0.999853 0.953125
1.060 1.144200 1.100921 1.039312 0.999751 0.944445
1.070 1.169050 1.117903 1.045753 0.999611 0.935977
1.080 1.194133 1.134925 1.052169 0.999431 0.927713
1.090 1.219450 1.151985 1.058564 0.999204 0.919647
1.100 1.245000 1.169082 1.064938 0.998928 0.911770
1.110 1.270783 1.186213 1.071294 0.998599 0.904078
1.120 1.296800 1.203377 1.077634 0.998213 0.896563
1.130 1.323050 1.220571 1.083960 0.997768 0.889219
1.140 1.349533 1.237793 1.090274 0.997261 0.882042
1.150 1.376250 1.255042 1.096577 0.996690 0.875024
1.160 1.403200 1.272315 1.102872 0.996052 0.868162
1.170 1.430383 1.289610 1.109159 0.995345 0.861451
1.180 1.457800 1.306927 1.115441 0.994569 0.854884
1.190 1.485450 1.324262 1.121719 0.993720 0.848459
1.200 1.513333 1.341615 1.127994 0.992798 0.842170
1.210 1.541450 1.358983 1.134267 0.991802 0.836014
1.220 1.569800 1.376364 1.140541 0.990731 0.829987
1.230 1.598383 1.393757 1.146816 0.989583 0.824083
1.240 1.627200 1.411160 1.153094 0.988359 0.818301
1.250 1.656250 1.428571 1.159375 0.987057 0.812636
1.260 1.685533 1.445989 1.165661 0.985677 0.807085
1.270 1.715050 1.463413 1.171952 0.984219 0.801645
1.280 1.744800 1.480839 1.178251 0.982682 0.796312
1.290 1.774783 1.498267 1.184557 0.981067 0.791084
1.300 1.805000 1.515695 1.190873 0.979374 0.785957
1.310 1.835450 1.533122 1.197198 0.977602 0.780929
1.320 1.866133 1.550546 1.203533 0.975752 0.775997
1.330 1.897050 1.567965 1.209880 0.973824 0.771159
1.340 1.928200 1.585379 1.216239 0.971819 0.766412
1.350 1.959583 1.602785 1.222611 0.969737 0.761753
1.360 1.991200 1.620182 1.228997 0.967579 0.757181
1.370 2.023050 1.637569 1.235398 0.965344 0.752692
1.380 2.055133 1.654945 1.241814 0.963035 0.748286
1.390 2.087450 1.672307 1.248245 0.960652 0.743959
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M1 p2/p1 �2/�1 T2/T1 pt2/pt1 M2

1.400 2.120000 1.689655 1.254694 0.958194 0.739709
1.410 2.152783 1.706988 1.261159 0.955665 0.735536
1.420 2.185800 1.724303 1.267642 0.953063 0.731436
1.430 2.219050 1.741600 1.274144 0.950390 0.727408
1.440 2.252533 1.758878 1.280665 0.947648 0.723451
1.450 2.286250 1.776135 1.287205 0.944837 0.719562
1.460 2.320200 1.793370 1.293765 0.941958 0.715740
1.470 2.354383 1.810583 1.300346 0.939012 0.711983
1.480 2.388800 1.827770 1.306947 0.936001 0.708290
1.490 2.423450 1.844933 1.313571 0.932925 0.704659
1.500 2.458333 1.862069 1.320216 0.929786 0.701089
1.510 2.493450 1.879178 1.326884 0.926586 0.697578
1.520 2.528800 1.896258 1.333574 0.923324 0.694125
1.530 2.564383 1.913308 1.340288 0.920003 0.690729
1.540 2.600200 1.930327 1.347025 0.916624 0.687388
1.550 2.636250 1.947315 1.353787 0.913188 0.684101
1.560 2.672533 1.964270 1.360573 0.909697 0.680867
1.570 2.709050 1.981192 1.367384 0.906151 0.677685
1.580 2.745800 1.998079 1.374220 0.902552 0.674553
1.590 2.782783 2.014931 1.381081 0.898901 0.671471
1.600 2.820000 2.031746 1.387969 0.895200 0.668437
1.610 2.857450 2.048524 1.394882 0.891450 0.665451
1.620 2.895133 2.065264 1.401822 0.887653 0.662511
1.630 2.933050 2.081965 1.408789 0.883809 0.659616
1.640 2.971200 2.098627 1.415783 0.879920 0.656765
1.650 3.009583 2.115248 1.422804 0.875988 0.653958
1.660 3.048200 2.131827 1.429853 0.872014 0.651194
1.670 3.087050 2.148365 1.436930 0.867999 0.648471
1.680 3.126133 2.164860 1.444035 0.863944 0.645789
1.690 3.165450 2.181311 1.451168 0.859851 0.643147
1.700 3.205000 2.197719 1.458330 0.855721 0.640544
1.710 3.244783 2.214081 1.465521 0.851556 0.637979
1.720 3.284800 2.230398 1.472741 0.847356 0.635452
1.730 3.325050 2.246669 1.479991 0.843124 0.632962
1.740 3.365533 2.262893 1.487270 0.838860 0.630508
1.750 3.406250 2.279070 1.494579 0.834565 0.628089
1.760 3.447200 2.295199 1.501918 0.830242 0.625705
1.770 3.488383 2.311279 1.509287 0.825891 0.623354
1.780 3.529800 2.327310 1.516686 0.821513 0.621037
1.790 3.571450 2.343292 1.524117 0.817111 0.618753
1.800 3.613333 2.359223 1.531577 0.812684 0.616501
1.810 3.655450 2.375104 1.539069 0.808234 0.614281
1.820 3.697800 2.390934 1.546592 0.803763 0.612091
1.830 3.740383 2.406712 1.554146 0.799271 0.609931
1.840 3.783200 2.422439 1.561732 0.794761 0.607802
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M1 p2/p1 �2/�1 T2/T1 pt2/pt1 M2

1.850 3.826250 2.438112 1.569349 0.790232 0.605701
1.860 3.869533 2.453733 1.576998 0.785686 0.603629
1.870 3.913050 2.469301 1.584679 0.781125 0.601585
1.880 3.956800 2.484815 1.592392 0.776548 0.599568
1.890 4.000783 2.500274 1.600138 0.771959 0.597579
1.900 4.045000 2.515680 1.607915 0.767357 0.595616
1.910 4.089450 2.531030 1.615725 0.762743 0.593680
1.920 4.134133 2.546325 1.623568 0.758119 0.591769
1.930 4.179049 2.561565 1.631444 0.753486 0.589883
1.940 4.224200 2.576749 1.639352 0.748844 0.588022
1.950 4.269583 2.591877 1.647294 0.744195 0.586185
1.960 4.315200 2.606949 1.655268 0.739540 0.584372
1.970 4.361050 2.621964 1.663276 0.734879 0.582582
1.980 4.407133 2.636922 1.671317 0.730214 0.580816
1.990 4.453450 2.651823 1.679392 0.725545 0.579072
2.000 4.500000 2.666667 1.687500 0.720874 0.577350
2.010 4.546783 2.681453 1.695642 0.716201 0.575650
2.020 4.593800 2.696181 1.703817 0.711527 0.573972
2.030 4.641049 2.710851 1.712027 0.706853 0.572315
2.040 4.688533 2.725463 1.720270 0.702180 0.570679
2.050 4.736249 2.740016 1.728548 0.697508 0.569063
2.060 4.784200 2.754511 1.736860 0.692839 0.567467
2.070 4.832383 2.768948 1.745206 0.688174 0.565890
2.080 4.880799 2.783325 1.753586 0.683512 0.564334
2.090 4.929450 2.797643 1.762001 0.678855 0.562796
2.100 4.978333 2.811902 1.770450 0.674203 0.561277
2.110 5.027450 2.826102 1.778934 0.669558 0.559776
2.120 5.076799 2.840243 1.787453 0.664919 0.558294
2.130 5.126383 2.854324 1.796006 0.660288 0.556830
2.140 5.176199 2.868345 1.804594 0.655666 0.555383
2.150 5.226249 2.882307 1.813217 0.651052 0.553953
2.160 5.276533 2.896209 1.821875 0.646447 0.552541
2.170 5.327050 2.910052 1.830569 0.641853 0.551145
2.180 5.377800 2.923834 1.839297 0.637269 0.549766
2.190 5.428783 2.937557 1.848060 0.632697 0.548403
2.200 5.480000 2.951220 1.856859 0.628136 0.547056
2.210 5.531450 2.964823 1.865693 0.623588 0.545725
2.220 5.583133 2.978365 1.874563 0.619053 0.544409
2.230 5.635050 2.991848 1.883468 0.614531 0.543108
2.240 5.687200 3.005271 1.892408 0.610023 0.541822
2.250 5.739583 3.018634 1.901384 0.605530 0.540552
2.260 5.792200 3.031937 1.910396 0.601051 0.539295
2.270 5.845049 3.045179 1.919443 0.596588 0.538053
2.280 5.898133 3.058362 1.928527 0.592140 0.536825
2.290 5.951449 3.071485 1.937645 0.587709 0.535612
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M1 p2/p1 �2/�1 T2/T1 pt2/pt1 M2

2.300 6.005000 3.084548 1.946800 0.583294 0.534411
2.310 6.058783 3.097551 1.955991 0.578897 0.533224
2.320 6.112799 3.110495 1.965218 0.574517 0.532051
2.330 6.167049 3.123379 1.974480 0.570154 0.530890
2.340 6.221533 3.136202 1.983779 0.565810 0.529743
2.350 6.276249 3.148967 1.993114 0.561484 0.528608
2.360 6.331199 3.161671 2.002485 0.557177 0.527486
2.370 6.386383 3.174316 2.011892 0.552889 0.526376
2.380 6.441799 3.186902 2.021336 0.548621 0.525278
2.390 6.497449 3.199429 2.030815 0.544372 0.524192
2.400 6.553332 3.211896 2.040332 0.540144 0.523118
2.410 6.609450 3.224304 2.049884 0.535936 0.522055
2.420 6.665800 3.236653 2.059473 0.531748 0.521004
2.430 6.722383 3.248944 2.069098 0.527581 0.519964
2.440 6.779200 3.261175 2.078760 0.523435 0.518936
2.450 6.836250 3.273347 2.088459 0.519311 0.517918
2.460 6.893533 3.285461 2.098193 0.515208 0.516911
2.470 6.951050 3.297517 2.107965 0.511126 0.515915
2.480 7.008800 3.309514 2.117773 0.507067 0.514929
2.490 7.066783 3.321453 2.127618 0.503030 0.513954
2.500 7.125000 3.333333 2.137500 0.499015 0.512989
2.510 7.183449 3.345156 2.147418 0.495022 0.512034
2.520 7.242133 3.356922 2.157373 0.491052 0.511089
2.530 7.301049 3.368629 2.167365 0.487105 0.510154
2.540 7.360199 3.380279 2.177394 0.483181 0.509228
2.550 7.419583 3.391871 2.187460 0.479280 0.508312
2.560 7.479199 3.403407 2.197562 0.475402 0.507406
2.570 7.539049 3.414885 2.207702 0.471547 0.506509
2.580 7.599133 3.426307 2.217879 0.467715 0.505620
2.590 7.659449 3.437671 2.228092 0.463907 0.504741
2.600 7.719999 3.448980 2.238343 0.460123 0.503871
2.610 7.780783 3.460232 2.248631 0.456362 0.503010
2.620 7.841799 3.471427 2.258955 0.452625 0.502157
2.630 7.903049 3.482567 2.269317 0.448912 0.501313
2.640 7.964532 3.493651 2.279716 0.445223 0.500477
2.650 8.026249 3.504679 2.290153 0.441557 0.499649
2.660 8.088199 3.515651 2.300626 0.437916 0.498830
2.670 8.150383 3.526569 2.311137 0.434298 0.498019
2.680 8.212800 3.537431 2.321685 0.430705 0.497216
2.690 8.275450 3.548239 2.332270 0.427135 0.496421
2.700 8.338333 3.558991 2.342892 0.423590 0.495634
2.710 8.401449 3.569690 2.353552 0.420069 0.494854
2.720 8.464800 3.580333 2.364249 0.416572 0.494082
2.730 8.528383 3.590923 2.374984 0.413099 0.493317
2.740 8.592199 3.601459 2.385756 0.409650 0.492560
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M1 p2/p1 �2/�1 T2/T1 pt2/pt1 M2

2.750 8.656249 3.611941 2.396565 0.406226 0.491810
2.760 8.720532 3.622369 2.407412 0.402825 0.491068
2.770 8.785049 3.632744 2.418296 0.399449 0.490332
2.780 8.849799 3.643066 2.429217 0.396096 0.489604
2.790 8.914783 3.653335 2.440176 0.392768 0.488882
2.800 8.980000 3.663552 2.451173 0.389464 0.488167
2.810 9.045449 3.673716 2.462207 0.386184 0.487459
2.820 9.111133 3.683827 2.473279 0.382927 0.486758
2.830 9.177049 3.693887 2.484388 0.379695 0.486064
2.840 9.243199 3.703894 2.495535 0.376486 0.485375
2.850 9.309583 3.713850 2.506720 0.373302 0.484694
2.860 9.376199 3.723755 2.517942 0.370140 0.484019
2.870 9.443048 3.733608 2.529202 0.367003 0.483350
2.880 9.510132 3.743411 2.540499 0.363890 0.482687
2.890 9.577449 3.753163 2.551834 0.360800 0.482030
2.900 9.644999 3.762864 2.563207 0.357733 0.481380
2.910 9.712782 3.772514 2.574618 0.354690 0.480735
2.920 9.780800 3.782115 2.586066 0.351670 0.480096
2.930 9.849050 3.791666 2.597552 0.348674 0.479463
2.940 9.917533 3.801167 2.609076 0.345701 0.478836
2.950 9.986250 3.810619 2.620637 0.342750 0.478215
2.960 10.055200 3.820021 2.632236 0.339823 0.477599
2.970 10.124383 3.829375 2.643874 0.336919 0.476989
2.980 10.193799 3.838679 2.655549 0.334038 0.476384
2.990 10.263450 3.847935 2.667261 0.331180 0.475785
3.000 10.333333 3.857143 2.679012 0.328344 0.475191
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Table C.3

Prandtl-Meyer function and Mach angle as dependent on the Mach number
for calorically perfect gas (stated for ν and μ in degrees).

M ν μ M ν μ

1.000 0.0000 90.0000 2.000 26.3798 30.0000
1.010 0.0447 81.9307 2.010 26.6550 29.8356
1.020 0.1257 78.6351 2.020 26.9295 29.6730
1.030 0.2294 76.1376 2.030 27.2033 29.5123
1.040 0.3510 74.0576 2.040 27.4762 29.3535
1.050 0.4874 72.2472 2.050 27.7484 29.1964
1.060 0.6367 70.6300 2.060 28.0197 29.0411
1.070 0.7973 69.1603 2.070 28.2903 28.8875
1.080 0.9680 67.8084 2.080 28.5600 28.7357
1.090 1.1479 66.5534 2.090 28.8290 28.5855
1.100 1.3362 65.3800 2.100 29.0971 28.4369
1.110 1.5321 64.2767 2.110 29.3644 28.2899
1.120 1.7350 63.2345 2.120 29.6309 28.1446
1.130 1.9445 62.2461 2.130 29.8965 28.0008
1.140 2.1600 61.3056 2.140 30.1613 27.8585
1.150 2.3810 60.4082 2.150 30.4253 27.7177
1.160 2.6073 59.5497 2.160 30.6884 27.5785
1.170 2.8385 58.7267 2.170 30.9507 27.4406
1.180 3.0743 57.9362 2.180 31.2121 27.3043
1.190 3.3142 57.1756 2.190 31.4727 27.1693
1.200 3.5582 56.4427 2.200 31.7325 27.0357
1.210 3.8060 55.7354 2.210 31.9914 26.9035
1.220 4.0572 55.0520 2.220 32.2494 26.7726
1.230 4.3117 54.3909 2.230 32.5066 26.6430
1.240 4.5694 53.7507 2.240 32.7629 26.5148
1.250 4.8299 53.1301 2.250 33.0184 26.3878
1.260 5.0931 52.5280 2.260 33.2730 26.2621
1.270 5.3590 51.9433 2.270 33.5268 26.1376
1.280 5.6272 51.3752 2.280 33.7796 26.0144
1.290 5.8977 50.8226 2.290 34.0316 25.8923
1.300 6.1703 50.2849 2.300 34.2828 25.7715
1.310 6.4449 49.7612 2.310 34.5331 25.6518
1.320 6.7213 49.2509 2.320 34.7825 25.5332
1.330 6.9995 48.7535 2.330 35.0310 25.4158
1.340 7.2794 48.2682 2.340 35.2787 25.2995
1.350 7.5607 47.7945 2.350 35.5255 25.1843
1.360 7.8435 47.3321 2.360 35.7715 25.0702
1.370 8.1276 46.8803 2.370 36.0165 24.9572
1.380 8.4130 46.4387 2.380 36.2607 24.8452
1.390 8.6995 46.0070 2.390 36.5041 24.7342
1.400 8.9870 45.5847 2.400 36.7465 24.6243
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M ν μ M ν μ

1.410 9.2756 45.1715 2.410 36.9881 24.5154
1.420 9.5650 44.7670 2.420 37.2289 24.4075
1.430 9.8553 44.3709 2.430 37.4687 24.3005
1.440 10.1464 43.9830 2.440 37.7077 24.1945
1.450 10.4381 43.6028 2.450 37.9458 24.0895
1.460 10.7305 43.2302 2.460 38.1831 23.9854
1.470 11.0235 42.8649 2.470 38.4195 23.8822
1.480 11.3169 42.5066 2.480 38.6551 23.7800
1.490 11.6109 42.1552 2.490 38.8897 23.6786
1.500 11.9052 41.8103 2.500 39.1236 23.5782
1.510 12.1999 41.4718 2.510 39.3565 23.4786
1.520 12.4949 41.1395 2.520 39.5886 23.3799
1.530 12.7901 40.8132 2.530 39.8199 23.2820
1.540 13.0856 40.4927 2.540 40.0503 23.1850
1.550 13.3812 40.1778 2.550 40.2798 23.0888
1.560 13.6770 39.8683 2.560 40.5085 22.9934
1.570 13.9728 39.5642 2.570 40.7363 22.8988
1.580 14.2686 39.2652 2.580 40.9633 22.8051
1.590 14.5645 38.9713 2.590 41.1894 22.7121
1.600 14.8604 38.6822 2.600 41.4147 22.6199
1.610 15.1561 38.3978 2.610 41.6392 22.5284
1.620 15.4518 38.1181 2.620 41.8628 22.4377
1.630 15.7473 37.8428 2.630 42.0855 22.3478
1.640 16.0427 37.5719 2.640 42.3074 22.2586
1.650 16.3379 37.3052 2.650 42.5285 22.1702
1.660 16.6328 37.0427 2.660 42.7488 22.0824
1.670 16.9276 36.7842 2.670 42.9682 21.9954
1.680 17.2220 36.5296 2.680 43.1868 21.9090
1.690 17.5161 36.2789 2.690 43.4045 21.8234
1.700 17.8099 36.0319 2.700 43.6215 21.7385
1.710 18.1034 35.7885 2.710 43.8376 21.6542
1.720 18.3964 35.5487 2.720 44.0529 21.5706
1.730 18.6891 35.3124 2.730 44.2673 21.4876
1.740 18.9814 35.0795 2.740 44.4810 21.4053
1.750 19.2732 34.8499 2.750 44.6938 21.3237
1.760 19.5646 34.6235 2.760 44.9059 21.2427
1.770 19.8554 34.4003 2.770 45.1171 21.1623
1.780 20.1458 34.1802 2.780 45.3275 21.0825
1.790 20.4357 33.9631 2.790 45.5371 21.0034
1.800 20.7251 33.7490 2.800 45.7459 20.9248
1.810 21.0139 33.5377 2.810 45.9539 20.8469
1.820 21.3021 33.3293 2.820 46.1611 20.7695
1.830 21.5898 33.1237 2.830 46.3675 20.6928
1.840 21.8768 32.9207 2.840 46.5731 20.6166
1.850 22.1633 32.7204 2.850 46.7779 20.5410
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M ν μ M ν μ

1.860 22.4492 32.5227 2.860 46.9820 20.4659
1.870 22.7344 32.3276 2.870 47.1852 20.3914
1.880 23.0190 32.1349 2.880 47.3877 20.3175
1.890 23.3029 31.9447 2.890 47.5894 20.2441
1.900 23.5861 31.7569 2.900 47.7903 20.1713
1.910 23.8687 31.5714 2.910 47.9905 20.0990
1.920 24.1506 31.3882 2.920 48.1898 20.0272
1.930 24.4318 31.2072 2.930 48.3884 19.9559
1.940 24.7123 31.0285 2.940 48.5863 19.8852
1.950 24.9920 30.8519 2.950 48.7833 19.8149
1.960 25.2711 30.6774 2.960 48.9796 19.7452
1.970 25.5494 30.5050 2.970 49.1752 19.6760
1.980 25.8269 30.3347 2.980 49.3700 19.6072
1.990 26.1037 30.1664 2.990 49.5640 19.5390
2.000 26.3798 30.0000 3.000 49.7574 19.4712
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Diagram C.1

Relation between wave angle Θ and deflection angle δ for an oblique shock,
and calorically perfect gas (γ = 1.4)
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Diagram C.2

Relation between Mach number M2 behind an oblique shock and deflection
angle δ, for calorically perfect gas (γ = 1.4)



D Physical Properties of Air and Water

Table D.1. Dynamic viscosity η [in 10−6 kg/(m s)] of dry air

p t (◦C)
(bar) -50 0 25 50 100 200 300 400 500

1 14.55 17.10 18.20 19.25 21.60 25.70 29.20 32.55 35.50
5 14.63 17.16 18.26 19.30 21.64 25.73 29.23 32.57 35.52

10 14.74 17.24 18.33 19.37 21.70 25.78 29.27 32.61 35.54
50 16.01 18.08 19.11 20.07 22.26 26.20 29.60 32.86 35.76

100 18.49 19.47 20.29 21.12 23.09 26.77 30.05 33.19 36.04
200 25.19 23.19 23.40 23.76 24.98 28.03 31.10 34.10 36.69
300 32.68 27.77 27.25 27.28 27.51 29.67 32.23 34.93 37.39
400 39.78 32.59 31.41 30.98 30.27 31.39 33.44 35.85 38.15
500 46.91 37.29 35.51 34.06 32.28 33.15 34.64 36.86 38.96

Table D.2. Kinematic viscosity ν [in 10−8 m2/s ] of dry air

p t (◦C)
(bar) -50 0 25 50 100 200 300 400 500

1 931.1 1341. 1558. 1786. 2315. 3494. 4809. 6295. 7886.
5 186.1 268.5 312.2 358.1 464.2 700.5 964.1 1262. 1580.

10 93.03 134.5 156.5 179.6 232.8 351.4 483.6 632.8 792.1
50 19.11 27.74 32.39 37.19 48.13 72.43 99.35 129.5 161.8

100 10.53 14.82 17.23 19.72 25.34 37.75 51.48 66.77 83.15
200 7.402 9.140 10.33 11.57 14.33 20.68 27.83 35.74 44.00
300 7.274 7.916 8.615 9.455 11.15 15.34 20.11 25.42 31.03
400 7.633 7.687 8.112 8.693 9.825 12.84 16.38 20.38 24.64
500 8.188 7.762 8.005 8.273 8.962 11.44 14.21 17.45 20.87
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Table D.3. Thermal conductivity λ [in 10−3 W/(m K)] of dry air

p t (◦C)

(bar) -50 0 25 50 100 200 300 400 500

1 20.65 24.54 26.39 28.22 31.81 38.91 45.91 52.57 58.48

5 20.86 24.68 26.53 28.32 31.89 38.91 45.92 52.56 58.42

10 21.13 24.88 26.71 28.47 32.00 38.94 45.96 52.57 58.36

50 24.11 27.15 28.78 30.26 33.53 40.34 46.86 53.41 58.98

100 28.81 30.28 31.53 32.75 35.60 42.00 48.30 54.56 60.07

200 41.96 38.00 37.90 38.21 39.91 45.18 50.69 56.62 61.96

300 54.84 46.84 45.38 44.56 44.81 48.54 53.06 58.70 63.74

400 65.15 55.30 52.83 51.29 49.97 52.59 55.91 60.95 65.56

500 73.91 62.92 59.80 57.40 54.70 55.66 58.60 62.86 67.24

Table D.4. Dynamic viscosity η [in 10−6 kg/(m s)] of water

p t (◦C)

(bar) 0 20 50 100 150 200 300 400 500

1 1750. 1000. 544.0 12.11 14.15 16.18 20.25 24.30 28.40

10 1750. 1000. 544.0 279.0 181.0 15.85 20.22 24.40 28.50

50 1750. 1000. 545.0 280.0 182.0 135.0 20.06 25.00 28.90

100 1750. 1000. 545.0 281.0 183.0 136.0 90.50 25.80 29.50

150 1740. 1000. 546.0 282.0 184.0 137.0 91.70 26.90 30.30

200 1740. 999.0 546.0 283.0 185.0 138.0 93.00 28.60 31.10

300 1740. 998.0 547.0 285.0 188.0 141.0 95.50 45.70 32.70

400 1730. 997.0 548.0 287.0 190.0 143.0 98.10 62.80 36.90

500 1720. 996.0 549.0 289.0 192.0 145.0 101.0 69.30 42.20
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Table D.5. Kinematic viscosity ν [in 10−6 m2/s] of water

p t (◦C)

(bar) 0 20 50 100 150 200 300 400 500

1 1.750 1.000 0.551 20.50 27.40 35.20 53.40 75.40 101.0

10 1.750 1.000 0.550 0.291 0.197 3.260 5.220 7.480 10.10

50 1.750 1.000 0.550 0.292 0.198 0.156 0.909 1.450 2.020

100 1.740 0.998 0.549 0.292 0.198 0.156 0.126 0.681 0.967

150 1.730 0.995 0.549 0.292 0.199 0.157 0.126 0.421 0.630

200 1.720 0.992 0.548 0.293 0.199 0.157 0.127 0.285 0.459

300 1.720 0.987 0.547 0.293 0.202 0.159 0.127 0.128 0.284

400 1.700 0.981 0.545 0.294 0.203 0.160 0.128 0.120 0.207

500 1.680 0.977 0.544 0.295 0.204 0.162 0.130 0.120 0.164

Table D.6. Thermal conductivity λ [in 10−3 W/(m K)] of water

p t (◦C)

(bar) 0 20 50 100 150 200 300 400 500

1 569.0 604.0 643.0 24.80 28.60 33.10 43.30 54.50 66.60

10 570.0 604.0 644.0 681.0 687.0 35.00 44.20 55.20 67.20

50 573.0 608.0 647.0 684.0 690.0 668.0 52.10 59.30 70.50

100 577.0 612.0 651.0 688.0 693.0 672.0 545.0 67.40 75.70

150 581.0 616.0 655.0 691.0 696.0 676.0 559.0 81.80 82.50

200 585.0 620.0 659.0 695.0 700.0 681.0 571.0 106.0 91.50

300 592.0 627.0 666.0 701.0 706.0 689.0 592.0 263.0 117.0

400 599.0 634.0 672.0 707.0 713.0 697.0 609.0 388.0 153.0

500 606.0 640.0 678.0 713.0 720.0 704.0 622.0 437.0 202.0
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Index

absolute velocity, 48
acceleration cascade, 56
acoustics, 150, 317
adiabatic, 71
aerodynamics, 323, 388
airfoil, 382ff

–, slender, 388, 405
Almansi’s strain tensor, 92
analytic, 359
angle, Mach, 399
angular momentum, 44, 206

–, integral form of balance of, 45
angular momentum flux, 45
apparent forces, 38, 50
approximation

–, Oseen, 469
–, quasi-one-dimensional, 261

arc length, 10
Archimedes’ principle, 157
area contraction, 274
area moment of inertia, 159
area moments of the second order, 159
autocorrelation, 210
Avogadro’s number, 82

Baer’s law, 52
balance

– of angular momentum, 44
– of energy, 65
– of entropy, 69
– of momentum, 37, 38, 269

barometric altitude formula, 152
barotropic flow, 108
barotropy, 151
basic invariants, 23
basis, 473
basis vector, 472
bearing clearance, relative, 233

Bernoulli’s equation, 107ff, 132, 263,
284

biharmonic, 452
Bingham constitutive relation, 91
Bingham material, 2, 91, 197, 202
Biot-Savart law, 127
Blasius’ equation, 424, 435
Blasius’ friction law, 426
Blasius’ law, 445
Blasius’ theorem

–, first, 369
–, second, 369

body forces, 37
boundary condition, 141

–, dynamic, 142, 144
–, half Sommerfeld, 239
–, kinematic, 142, 240, 262
–, physical, 142
–, Reynolds’, 238

boundary layer, 105, 267, 417ff
boundary layer coordinate system, 418
boundary layer equation, 420
boundary layer flow, 221

–, turbulent, 213ff, 443ff
boundary layer separation, 272
boundary layer theory, 417
boundary layer thickness, 148, 417ff

–, geometric, 424
Boussinesq formulation, 217
Boussinesq’s formula, 445
buffer layer, 220, 221
bulk viscosity, 78
buoyancy force, 157
Buys-Ballot’s rule, 52

calorically perfect, 72
capillary constant, 162
capillary force, 162
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capillary tension, 162
Carnot’s shock loss, 274
Cartesian coordinate system, 472
Cartesian index notation, 473
Cartesian tensor, 471
cascade, straight, 55
Cauchy’s deformation tensor, 92
Cauchy’s law of motion, 42
Cauchy’s theorem, 369
Cauchy-Green tensor, 92

–, right, 88
Cauchy-Green-tensor, 77
Cauchy-Poisson law, 77
Cauchy-Riemann differential equation,

359
cavitation, 245
cavitation nucleus, 244
cavitation region, 238
centrifugal force, 46, 50, 51
centripetal acceleration, 46, 174
centripetal force, 46
centroid, 157
centroid coordinates, 158
change

–, convective, 15
–, local, 15

characteristic, 303ff, 317ff
–, backward-facing, 307
–, fan of, 308
–, forward-facing, 307
– relations, 303
–, theory of, 303

circulation, 33, 60, 112ff
– theorem, Kelvin’s, 113

circumferential velocity, 48
Clausius-Duhem’s inequality, 70
closure condition, 336, 390
coefficient of friction, local, 446, 449
coefficient of heat conduction, 186
Colebrook’s formula, 227
compatibility relations, 303
completely rough, 226
compression wave, 289, 312, 413
condition, Kutta, 384
conduction, 6
cone, Mach, 399
conformal, 372
conformal mapping, 359, 372ff

conservation of mass, 29, 35
conserved quantity, 283
constant pressure cascade, 56
constant, Riemann, 307
constitutive equation, 42
constitutive relation, 7, 76

–, Bingham, 91
contact discontinuity, 404
contact force, 37, 38
continuity equation, 35, 36, 262, 281

–, integral form of the, 36
continuum, 5

– hypothesis, 5
– theory, 7, 29
– velocity, 6

contraction, 480
– coefficient, 274, 377

control volume, 36
convection

–, forced, 431
–, natural, 437

convection time, 147
converging-diverging nozzle, 286
coordinate system, 472

–, Cartesian, 472
–, curvilinear, 472

coordinate transformation, 384
coordinates

–, Cartesian, 15
–, curvilinear, 472ff
–, material, 8
–, natural, 16, 106

Coriolis force, 50
corner flow, 363, 421
correlation, 209
Couette flow, 168
Couette-Poiseuille flow, 170, 231
crankshaft, 193
critical variables, 285
Crocco’s relation, 140, 409
cross-section increase, 272
curl, 483
curvature, 163

–, mean, 163
curve parameter, 10
curved shock, 403
curvilinear coordinate system, 472
cylinder flow, 382, 384
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d’Alembert’s paradox, 346, 349
d’Alembert’s solution, 317
deceleration cascade, 56
deformation gradient, 92
deformation history, 25
delta function, Dirac, 331
density field, homogeneous, 36
dependence, domain of, 305
derivative

–, Jaumann’s, 85, 87
–, material, 14
–, Oldroyd’s, 25, 85
–, substantial, 14

description
–, Eulerian, 9
–, Lagrangian, 8
–, material, 8
–, referential, 8
–, spatial, 9

detached shock, 403
diameter

–, equivalent, 179
–, hydraulic, 179, 182ff

diamond airfoil, 414
differential equation

–, Cauchy-Riemann, 359
–, exact, 334

differential, total, 15
diffuser, 271
diffuser efficiency, 272
diffusion, 6, 101
diffusion flux, 211
dilatant, 81
dimension of tensor space, 472
dimensionally homogeneous, 101
dipole, 344, 355, 362
dipole moment, 344
Dirac delta function, 331
direct problem, 283
discharge formula, Saint-Venant-

Wantzel, 285
discharge velocity, 264, 285
discontinuity surface, 115, 144
displacement thickness, 424, 441ff
dissipation function, 68, 79, 95, 431
distance, mean, 4
divergence, 478, 483
divergence free, 24

drag
–, induced, 131
–, pressure, 347

drag coefficient, 81, 347, 407
drag-to-lift ratio, 386
dummy index, 471
dyadic product, 473
dyadics, 472
dynamic pressure, 336

easterly deflection, 47
eccentricity, relative, 233
Eckert’s number, 433
eddy viscosity, 217, 218, 444
eigenfrequency, 322
eigenvalue problem, 23
eigenvalues, 23, 41
Einstein’s summation convention, 40,

471
electrorheological fluid, 91
elliptic, 324, 395
energy

–, internal, 65
–, kinetic, 6, 66

energy balance, 67
energy equation, 67, 106, 138ff, 283

–, mechanical, 140
enthalpy, 73
entrance, 267
entrance length, 267, 268
entropy, 69

–, specific, 68
entropy equation, 107
entropy flux vector, 70
entropy production, 147
envelope, 312, 399, 413
epsilon tensor, 21, 474
equation

–, Bernoulli’s, 107ff, 132, 263, 284
–, characteristic, 23
–, Euler’s, 103, 106, 107, 110
–, Laplace’s, 121, 324
–, Navier-Stokes, 95
–, Poisson’s, 121, 180, 245, 324
–, Reynolds’, 207ff, 210, 229ff, 231

equation of state, 3, 71
–, caloric, 72
–, canonical, 72
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–, fundamental, 72
–, thermal, 72

equilibrium parameter, 448
equilibrium, hydrostatic, 151
equivalent diameter, 179
error function, 188
Eucken, formula of, 432
Euler’s

– equation, 103, 106, 107, 110
– expansion formula, 31
– turbine equation, 46, 62, 64

Eulerian description, 9
Eulerian strain tensor, 92
exact differential equation, 334
exchange symbol, 474
exit loss, 274
expansion coefficient, thermal, 438
expansion fan, 309, 411
expansion wave, 288ff, 309
extension invariants, 23
extrudate swell, 82

factor, integrating, 334
Falkner-Skan equation, 427, 428
family parameter, 10
Fanno curve, 293
fictitious forces, 50
field coordinate, 9
field methods, 421, 445
first Blasius’ theorem, 369
first integral, 107
fixed cascade, 55
Flettner rotor, 366
flow

–, barotropic, 108
–, homenergic, 139
–, homentropic, 107
–, incompressible, 36, 97
–, inviscid, 106
–, isentropic, 107
–, laminar, 102, 205
–, plane, 146
–, Prandtl-Meyer, 408ff
–, quasi-steady, 185
–, subsonic, 323
–, supersonic, 323
–, transonic, 323, 403
–, turbulent, 205
–, two-dimensional, 146

–, uniform, 261
–, viscometric, 27, 190

flow down an inclined plane, 171ff
fluctuating motion, 210
fluctuation velocity, 207
fluid

–, electrorheological, 91
–, generalized Newtonian, 83
–, inviscid, 80, 99
–, liquid, 2
–, Newtonian, 2, 78, 95
–, non-Newtonian, 2, 76, 77
–, second order, 90, 192, 194
–, shear-thickening, 81
–, shear-thinning, 81
–, simple, 77
–, viscoelastic, 85
–, viscous, 77

fluid particle, 4
flux, 32
force

–, buoyancy, 157
–, gravitational, 37
–, intermolecular, 6

formula
–, Colebrook’s, 227
–, Eucken’s, 432
–, Euler’s expansion, 31
–, Green’s second, 123
–, Petroff’s, 237
–, Torricelli’s, 264

formulation, Boussinesq, 217
Foucault’s pendulum, 47
Fourier’s law, 79
free index, 471
free jet, 377
friction

– coefficient, 446
– factor, 177
– formula, 450
–, internal, 6
– length, 215
– loss, 266
– stress tensor, 77
– velocity, 215

friction law, Blasius’, 426
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function
–, analytic, 359
–, Green’s, 125

functional, 88
fundamental solution, 123, 330
fundamental theorem of kinematics, 23

gas dynamics, 3
gases, 2

–, calorically perfect, 72, 73
–, ideal, 7
–, kinetic theory of, 7
–, thermally perfect, 72, 73

Gauss’ theorem, 31
geoid, 51
Gibbs’ relation, 69, 212, 293
Goethert’s rule, 397
gradient, 477, 483
Grashof’s number, 438
gravitational force, 37
gravity volume body force, 157
Green’s deformation tensor, 92
Green’s formula, second, 123
Green’s function, 125
Green’s second formula, 123
group, dimensionless, 357
guide blades, 55
guide vanes, 55

Hagen-Poiseuille equation, 178
Hagen-Poiseuille flow, 175

–, generalized, 178
half Sommerfeld boundary condition,

239
heat conduction, 152, 186
heat flux, 66, 211
heat flux vector, 66, 435

–, turbulent, 213
heat transfer problem, 433
heat, radiation, 66
Heisenberg’s Uncertainty Principle, 4
Hele-Shaw flows, 258
Helmholtz’s vortex theorem, 100, 113ff

–, first, 117, 119, 130
–, second, 134
–, third, 138

history, 88
hodograph plane, 377
holomorphic, 359

homenergic, 139
homentropic flow, 107
horseshoe vortex, 131
Hugoniot

– change of state, 296
– relation, 296

hydraulic diameter, 179, 182ff
hydraulically smooth, 226
hydrodynamic

– instability, 240
– lubrication theory, 147

hydrostatic equilibrium, 151
hydrostatics, 151ff
hyperbolic, 395
hypersonic flow, 105, 141, 323
hypothesis

–, Joukowski’s, 384, 393
–, Stokes’, 78

incidence, shock-free, 393, 394
incompressible, 36, 97, 147
index

–, dummy, 471
–, free, 471

index notation, Cartesian, 473
indifference point, 446
indirect problem, 283
induced downwash, 131
inertia, force of, 46, 347
inertial frame, 37
influence, range of, 305
initial condition, 141
inner product, 473, 474
inner solution, 417
instability, 206

–, hydrodynamic, 240
integral

– equation, 338, 390
–, first, 107
– length scale, 210
– methods, 421, 440ff, 445
– theorem, Stokes’, 117
– time scale, 210

integrating factor, 334
intermediate layer, 220
invariant, Riemann, 304, 307, 312
inverse, 476
inversion, 153
irrotational, 22
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isentropic flow, 107
isentropic relation, 284

Jacobian, 9
Jaumann’s derivative, 85, 87
jet contraction, 275

– coefficient, 377ff
Joukowski mapping, 382
Joukowski’s hypothesis, 384, 393
journal bearing, 171, 229

Kelvin’s circulation theorem, 113
kinematics, 7
Kronecker delta, 21, 474
Kutta condition, 384
Kutta-Joukowski theorem, 129, 370,

371

laboratory frame, 300
Lagrange’s theorem, 144
Lagrangian description, 8
Lagrangian strain tensor, 92
laminar, 102, 205
Laplace operator, 97, 483
Laplace’s

– equation, 121, 324
– length, 164

Laurent series, 370
Laval nozzle, 286
law

–, Baer’s, 52
–, Biot-Savart, 127
–, Cauchy-Poisson, 77
–, Fourier’s, 79
– of communicating tubes, 154

law of motion, Cauchy’s first, 42
law of the wall, 215, 444

–, logarithmic, 219ff, 448
layer, logarithmic, 221
Leibniz’s rule, 30, 32
length

–, friction, 215
–, viscous, 102

lift, 113, 116, 129, 324, 371
– coefficient, 386, 394, 407
–, dynamic, 114
– force, 386

limit curve, 228
line element, 482

–, material, 18
line source, 354
load-bearing capacity, 234
logarithmic law of the wall, 219ff, 448
Loschmidt’s number, 5
loss factor, 177, 179, 267

Mach
–, angle, 399
–, cone, 399
– line, 409
– number, 147, 148, 281
– reflection, 405
– wave, 414

Magnus effect, 366
mapping, 8

–, conformal, 359, 372ff
–, Joukowski, 382

mapping function, 359, 372
mapping theorem, Riemann, 359
mass

–, added, 348
–, virtual, 348

mass body force, potential of the, 43,
158

mass density, 5
mass flux, 59, 64
material description, 8
matrix, orthogonal, 476
mean camber line, 388, 391
mean free path, 4
mean value, 208
memory span, 85
meteorology, 3
mixed notation, 473
mixing length, 217, 218, 220, 444
mixing length formula, Prandtl’s, 218
mixing process, 275
Mollier diagram, 73, 283
moment coefficient, 394
momentum, 4, 37

–, differential form of balance of, 42
–, exchange of, 6, 217
–, flux of, 211
–, integral form of balance of, 42
–, thickness of, 425, 441

moving blades, 55
moving cascade, 55
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Nabla operator, 15, 28, 483
Navier-Stokes equation, 95
Newton’s second law, 137, 350
Newtonian fluid, 78, 95
no lift direction, 386
normal shock wave, 288, 294
normal stress, 38
normal stress effect, 82
normal stress function

–, primary, 90
–, secondary, 90

normal vector, 124, 143
nozzle, 271

–, converging-diverging, 286
null viscosity, 82
number

–, Avogadro’s, 82
–, Eckert’s, 433
–, Grashof’s, 438
–, Loschmidt’s, 5
–, Mach, 148, 281
–, Nusselt’s, 437
–, Prandtl’s, 148, 432, 440
–, Rayleigh’s, 438
–, Reynolds’, 80, 101, 102, 445, 465
–, Sommerfeld, 235

Nusselt’s number, 437
Nusselt’s relation, 437

oblique shock wave, 294, 400ff
Oldroyd’s derivative, 25, 85
opening angle, 273
osculating plane, 16
Oseen approximation, 469
outer product, 474
outer solution, 417
overlap region, 223

parabolic, 421, 431
paraboloids of rotation, 156
paradox

–, d’Alembert’s, 346, 349
–, Pascal’s, 154

parallel flow, 327
parametric representation, 10
Pascal’s paradox, 154
pathline, 8, 10, 16
pendulum, Foucault’s, 47
permutation symbol, 474

perturbation equation, transonic, 395
perturbation potential, 395, 406
perturbation problem, singular, 391,

417
perturbation theory, 388, 405
perturbation velocity, 388
Petroff’s formula, 237
plane stagnation point flow, 327
Pohlhausen, 435
point

–, material, 5, 29
–, singular, 359
– source, 330

Poiseuille flow, 170
Poisson’s equation, 121, 180, 245, 324
polar diagram, 386
potential

–, complex, 358ff
– of the force of gravity, 152
– of the mass body force, 43, 158
– of the volume body force, 43, 152
– of velocity, 315

potential flow, 22, 109, 315ff
–, incompressible, 324ff
–, plane, 354ff
–, steady compressible, 323

potential theory, 121, 324
potential vortex, 127, 175, 207, 355, 362
power law, 83, 189, 445
power law distribution, 421
Poynting’s vector, 66
Prandtl tube, 336
Prandtl’s mixing length formula, 218
Prandtl’s number, 148, 432, 440
Prandtl-Glauert rule, 397
Prandtl-Meyer flow, 408ff, 415
Prandtl-Meyer function, 412, 414
pressure

– coefficient, 338, 397, 407
– distribution, hydrostatic, 154, 158
– drag, 347
– drop, 163ff, 177, 179, 183, 189, 266,

268
–, dynamic, 336, 437
– function, 108
–, hydrostatic, 167
– increase, 275
– loss, 267, 274



528 Index

– point, 160
–, stagnation, 336
–, static, 336, 437
– wave, 314

principal axis system, 22
principal radius of curvature, 163
principle, Archimedes’, 157
problem

–, direct, 283, 326, 388
–, indirect, 283, 326
–, inverse, 431

process
–, irreversible, 65, 68
–, reversible, 68
–, statistically steady, 208

product, dyadic, 473
profile parameter, 448
protrusion height, 226
pseudoplastic, 81

quasi-one-dimensional, 261
quasi-steady, 185, 266

radial cascade, 358
random quantities, 207
rate of deformation tensor, 19
rate of strain tensor, 19
Rayleigh curve, 291
Rayleigh’s number, 438
rectilinear shear flow, 2
reference frame

–, accelerating, 46
–, inertial, 46
–, moving, 300

referential description, 8
reflected shock, 403
region, linear, 221
relation

–, Crocco’s, 140
–, Gibbs’, 69, 212, 293

relative bearing clearance, 233
relative eccentricity, 233
relative velocity, 48
replacement body, 157
replacement volume, 161
reservoir

– enthalpy, 283
– pressure, 283
– state, 283

– temperature, 283
– value, 283

residue theorem, 371
resistance law, 224
Reynolds’

– boundary condition, 238
– equation, 207ff, 210, 229ff, 231
– number, 80, 101, 102, 205ff, 347
– number, critical, 102, 205ff
– stress, 210, 217
– transport theorem, 32

Riemann constant, 307
Riemann invariant, 304, 307, 312
Riemann mapping theorem, 359
Rivlin-Ericksen tensors, 25, 190, 192
rotation matrix, 475ff
rotational, 22

– oscillation damper, 193
– symmetry, 146, 155

rotationally symmetric stagnation point
flow, 329

rule
–, Buys-Ballot’s, 52
–, Goethert’s, 397
–, Leibniz’s, 30, 32
–, Prandtl-Glauert, 397

Saint-Venant-Wantzel discharge
formula, 285

scalar, 472
scalar product, 473
Schwarz-Christoffel transformation,

374ff
second Blasius’ theorem, 369
secondary flow, 226
separation, 320, 347

– of variables, 181
– point, 431
– profile, 428

shear flow, 28
–, simple, 2, 6, 25, 81, 168, 191, 192
–, turbulent, 213ff

shear modulus, 1
shear rate, 2, 20
shear stress deviator, 202
shear stress function, 90
shear viscosity, 2, 79, 81, 178
shear waves, 185
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shock, 5, 288
–, curved, 403
–, detached, 403
–, reflected, 403
–, strong, 401
–, weak, 401

shock expansion theory, 414ff
shock loss, Carnot’s, 274
shock relations, 401
shock wave, 294ff

–, normal, 288, 294
–, oblique, 294, 400ff

shock-free incidence, 393, 394
shooting method, 424
similarity solution, 145
similarity variable, 187, 311
simple wave, 410
singular, 123

– perturbation problem, 391, 417
– point, 359
– solution, 330

sink, 331
slider, 243
slider bearing, 241
solids, Hooke’s, 1
solution

–, asymptotic, 102
–, d’Alembert’s, 317
–, fundamental, 330
–, inner, 417
–, outer, 417
–, singular, 123, 330

Sommerfeld boundary condition, half,
239

Sommerfeld number, 235
sonic variables, 285
sound

–, propagation of, 317, 397
–, velocity of, 311
– wave, 298, 399

source, 331, 335, 337
– distribution, 338
– flow, 331, 333
– free, 24
– intensity, 336
–, line, 354

spatial description, 9
spherical, 41

spherically symmetric, 146
spin tensor, 21
spiral

–, logarithmic, 358
– vortex, 358

squeeze flow, 243ff
stability, 153, 206
stagnation point, 328
stagnation point boundary layer flow,

unsteady, 428
stagnation point flow

–, plane, 327
–, rotationally symmetric, 329
–, unsteady, 330

stagnation pressure, 336
standard temperature and pressure, 4
starting point, fictitious, 446
starting vortex, 116
state, 3
state of rest, 283
static pressure, 336
steady, 9
step, flow over, 376
Stokes’

– hypothesis, 78
– integral theorem, 117
– stream function, 334

streakline, 11
stream filament theory, 13, 109, 146,

261ff
stream function, 334, 335, 360, 361

–, Stokes’, 334
streamline, 10
streamtubes, 12
strength, 337

– of a source, 331
stress

–, Reynolds’, 210, 217
– tensor, 41
– vector, 38

stretching tensor, 19
strong shock, 401
sublayer, viscous, 211, 217, 221
subsonic, 323
summation convention, Einstein’s, 40,

471
supersonic, 323

– flow, 399ff
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– flow, linear, 147, 407
– velocity, 286

surface
–, completely rough, 226
– element, 482
– force, 37–39
–, free, 162ff, 249
–, hydraulically smooth, 226
–, material, 29
– tension, 162ff, 377

tangential stress, 38
Taylor

– expansion, 17
– vortex, 207

temperature
–, critical, 3
–, local, 285
–, total, 285

temperature boundary layer, 432
tensor, 17

–, added mass, 353
–, Almansi’s strain, 92
–, antisymmetric, 479
–, Cartesian, 471
–, Cauchy’s deformation, 92
–, Eulerian strain, 92
–, Green’s deformation, 92
–, Lagrangian strain, 92
–, objective, 85
–, stress, 41
–, symmetric, 479
–, virtual mass, 353
–, viscous stress, 42

tensor components, 472
tensor space, dimension of, 472
the strength of the vortices, center of

gravity of, 137
theorem

–, Cauchy’s, 369
–, first Blasius’, 369
–, Gauss’, 31
–, Kutta-Joukowski, 371
–, Lagrange’s, 144
–, second Blasius’, 369

theory of thin bodies, 147
thermal conductivity, 79
thermodynamics

–, first law of, 65, 67

–, second law of, 71
thin-film flow, 249
Thomson’s vortex theorem, 113
throat, 282
time derivative, general, 16
tip vortex, 131
Torricelli velocity, 265
Torricelli’s formula, 264
total

– pressure, 283
– state, 283
– temperature, 283
– value, 283

traction vector, 38
trailing edge, 115
trailing edge angle, 384
transformation law, 475
transition point, 446
transition region, 446
translational flow, 326, 361
transonic, 323
transonic flow, 403
transport

– coefficient, turbulent, 217
– properties, 5
– theorem, Reynolds’, 32

tube, Prandtl, 336
tuning, 195
turbine equation, Euler’s, 46, 62, 64
turbo force machines, 55
turbo work machines, 55
turbomachine, 54
turbulence models, 211, 444, 445
turbulent, 102, 205

– fluctuation, 210
– fluid parcel, 218

turning cascade, 56
two phase flow, 237
two-viscosity model, 94

U-tube manometer, 154
unidirectional flow, 89, 145, 167ff

–, unsteady, 192
unit tangent vector, 10, 269
unit tensor, 77
unit vector, 472
unsteady, 9
unsteady stagnation point flow, 330
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vacuum, 285, 411
vapor pressure, 237, 245, 314
variables

–, critical, 285
– of state, 71
–, sonic, 285

vector, 472
–, Poynting’s, 66

vector product, 474
velocity

–, average, 170
–, complex, 361
–, complex conjugate, 361
– defect law, 224, 227, 448
– field, 9
– gradient, 17
–, induced, 127ff
–, macroscopic, 4
–, mean, 223
– of sound, 281
– potential, 22, 315
– strain tensor, 19

viscometer, 190
viscometric, 27
viscometric flow, 27, 89, 190
viscosity, 6

–, kinematic, 79
viscous

– length, 102
– sublayer, 211, 217, 221

viscous stress tensor, 42
volume

– body force, 43
– body force, potential of the, 43, 152
– element, 482
– flux, 59, 360
–, material, 29
– preserving, 24

–, specific, 30, 68
von Mises’ hypothesis, 94
vortex

–, bound, 116
– distribution, 391
– dynamics, 135
– filament, 120
– filament, straight, 355
– intensity, 391
– number, dynamic, 28
– number, kinematic, 28
– sheet, 391
– street, 347
– strength, 119
– theorem, Helmholtz’s, 100, 113ff
– theorem, Helmholtz’s first, 117,

119, 130
– theorem, Helmholtz’s second, 134
– theorem, Helmholtz’s third, 138
– theorem, Thomson’s, 113

vortex-line, 22, 118
vortex-sheet, 22
vortex-tube, 22, 118
vorticity equation, 98
vorticity vector, 22, 101

wake, 347
wake function, 447
wall roughness, 226
wave

–, Mach, 414
–, simple, 410

wave angle, 401, 403
wave equation, 316, 405
weak shock, 401
wedge flow, 426
Weissenberg effect, 82

zero viscosity, 104
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