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Preface to the First English Edition

This textbook is the translation of the fourth edition of Stromungslehre, Ein-
fihrung in die Theorie der Stromungen. The German edition has met with
a favorable reception in German-speaking countries, showing that there was
a demand for a book that emphazises the fundamentals. In the English lit-
erature there are books of the same nature, some excellent, and these have
indeed influenced me to write this book. However, they cover different ground
and are not aimed primarily at mechanical engineering students, which this
book is. I have kept the original concept throughout all editions and there is
little to say that has not been said in the preface to the first German edition.
There is now a companion volume Solved Problems in Fluid Mechanics, which
alleviates the drawback of the first German edition, namely the absence of
problem exercises.

The book has been translated by Katherine Mayes during her stay in
Darmstadt, and I had the opportunity to work with her daily. It is for this
reason that I am solely responsible for this edition, too. My thanks also go
to Prof. L. Crane from Trinity College in Dublin for his assistance with this
book. Many people have helped, all of whom I cannot name, but I would
like to express my sincere thanks to Ralf Miinzing, whose dependable and
unselfish attitude has been a constant encouragement during this work.

Darmstadt, January 1997 J. H. Spurk

Preface to the Second English Edition

The first English edition was the translation of the fourth German edition. In
the meantime the textbook has undergone several additions, mostly stimu-
lated by consulting activities of the first author. Since the textbook continues
to receive favourable reception in German speaking countries and has been
translated in other languages as well, the publisher suggested a second English
edition. The additions were translated for the most part by Prof. L. Crane
from Trinity College in Dublin, who has accompanied this textbook from
the very beginning. Since the retirement of the first author, Prof. N. Aksel
from the University of Bayreuth, Germany, the second author, was actively
engaged in the sixth and the seventh edition. The additions were written by
the first author who accepts the responsibility for any mistakes or omissions
in this book.
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1 The Concept of the Continuum
and Kinematics

1.1 Properties of Fluids, Continuum Hypothesis

Fluid mechanics is concerned with the behavior of materials which deform
without limit under the influence of shearing forces. Even a very small shear-
ing force will deform a fluid body, but the velocity of the deformation will be
correspondingly small. This property serves as the definition of a fluid: the
shearing forces necessary to deform a fluid body go to zero as the velocity
of deformation tends to zero. On the contrary, the behavior of a solid body
is such that the deformation itself, not the velocity of deformation, goes to
zero when the forces necessary to deform it tend to zero. To illustrate this
contrasting behavior, consider a material between two parallel plates and
adhering to them acted on by a shearing force F' (Fig. 1.1).

If the extent of the material in the direction normal to the plane of Fig. 1.1
and in the z-direction is much larger than that in the y-direction, experience
shows that for many solids (Hooke’s solids), the force per unit area 7 =
F/A is proportional to the displacement a and inversely proportional to the
distance between the plates h. At least one dimensional quantity typical for
the material must enter this relation, and here this is the shear modulus G.
The relationship

T=Gy (y<1) (1.1)

between the shearing angle v = a/h and 7 satisfies the definition of a solid:
the force per unit area 7 tends to zero only when the deformation ~y itself

% % AV .

Fig. 1.1. Shearing between two parallel plates
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goes to zero. Often the relation for a solid body is of a more general form,
e.g. 7= f(v), with f(0) = 0.

If the material is a fluid, the displacement of the plate increases continually
with time under a constant shearing force. This means there is no relationship
between the displacement, or deformation, and the force. Experience shows
here that with many fluids the force is proportional to the rate of change of
the displacement, that is, to the velocity of the deformation. Again the force
is inversely proportional to the distance between the plates. (We assume
that the plate is being dragged at constant speed, so that the inertia of the
material does not come into play.) The dimensional quantity required is the
shear viscosity n, and the relationship with U = da/d¢ now reads:

U .
=N =07, (1.2)

or, if the shear rate 7 is set equal to du/dy,

T(y) =n j—z : (1.3)

7(y) is the shear stress on a surface element parallel to the plates at point y.
In so-called simple shearing flow (rectilinear shearing flow) only the -
component of the velocity is nonzero, and is a linear function of y.

The above relationship was known to Newton, and it is sometimes in-
correctly used as the definition of a Newtonian fluid: there are also non-
Newtonian fluids which show a linear relationship between the shear stress T
and the shear rate 4 in this simple state of stress. In general, the relationship
for a fluid reads 7 = f(%), with f(0) = 0.

While there are many substances for which this classification criterion suf-
fices, there are some which show dual character. These include the glasslike
materials which do not have a crystal structure and are structurally liquids.
Under prolonged loads these substances begin to flow, that is to deform with-
out limit. Under short-term loads, they exhibit the behavior of a solid body.
Asphalt is an oftquoted example: you can walk on asphalt without leaving
footprints (short-term load), but if you remain standing on it for a long time,
you will finally sink in. Under very short-term loads, e. g. a blow with a ham-
mer, asphalt splinters, revealing its structural relationship to glass. Other
materials behave like solids even in the long-term, provided they are kept
below a certain shear stress, and then above this stress they will behave like
liquids. A typical example of these substances (Bingham materials) is paint:
it is this behavior which enables a coat of paint to stick to surfaces parallel
to the force of gravity.

The above definition of a fluid comprises both liquids and gases, since nei-
ther show any resistance to change of shape when the velocity of this change
tends to zero. Now liquids develop a free surface through condensation, and
in general do not fill up the whole space they have available to them, say
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a vessel, whereas gases completely fill the space available. Nevertheless, the
behavior of liquids and gases is dynamically the same as long as their volume
does not change during the course of the flow.

The essential difference between them lies in the greater compressibility
of gases. When heated over the critical temperature T,, liquid loses its ability
to condense and it is then in the same thermodynamical state as a gas com-
pressed to the same density. In this state even gas can no longer be “easily”
compressed. The feature we have to take note of for the dynamic behavior,
therefore, is not the state of the fluid (gaseous or liquid) but the resistance
it shows to change in volume. Insight into the expected volume or tempera-
ture changes for a given change in pressure can be obtained from a graphical
representation of the equation of state for a pure substance F(p, T, v) = 0
in the wellknown form of a p-v-diagram with 7" as the parameter (Fig. 1.2).

This graph shows that during dynamic processes where large changes of
pressure and temperature occur, the change of volume has to be taken into
account. The branch of fluid mechanics which evolved from the necessity to
take the volume changes into account is called gas dynamics. It describes the
dynamics of flows with large pressure changes as a result of large changes in
velocity. There are also other branches of fluid mechanics where the change
in volume may not be ignored, among these meteorology; there the density
changes as a result of the pressure change in the atmosphere due to the force
of gravity.

The behavior of solids, liquids and gases described up to now can be
explained by the molecular structure, by the thermal motion of the molecules,
and by the interactions between the molecules. Microscopically the main

liquid
\ solid and liquid
solid

C vapor

liquid and vapor

Y, solid and vapor

Fig. 1.2. p-v-diagram
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difference between gases on the one hand, and liquids and solids on the other
is the mean distance between the molecules.

With gases, the spacing at standard temperature and pressure (273.2 K;
1.013 bar) is about ten effective molecular diameters. Apart from occasional
collisions, the molecules move along a straight path. Only during the collision
of, as a rule, two molecules, does an interaction take place. The molecules first
attract each other weakly, and then as the interval between them becomes
noticeably smaller than the effective diameter, they repel strongly. The mean
free path is in general larger than the mean distance, and can occasionally be
considerably larger.

With liquids and solids the mean distance is about one effective molecular
diameter. In this case there is always an interaction between the molecules.
The large resistance which liquids and solids show to volume changes is ex-
plained by the repulsive force between molecules when the spacing becomes
noticeably smaller than their effective diameter. Even gases have a resis-
tance to change in volume, although at standard temperature and pressure
it is much smaller and is proportional to the kinetic energy of the molecules.
When the gas is compressed so far that the spacing is comparable to that in
a liquid, the resistance to volume change becomes large, for the same reason
as referred to above.

Real solids show a crystal structure: the molecules are arranged in a lattice
and vibrate about their equilibrium position. Above the melting point, this
lattice disintegrates and the material becomes liquid. Now the molecules are
still more or less ordered, and continue to carry out their oscillatory motions
although they often exchange places. The high mobility of the molecules
explains why it is easy to deform liquids with shearing forces.

It would appear obvious to describe the motion of the material by inte-
grating the equations of motion for the molecules of which it consists: for
computational reasons this procedure is impossible since in general the num-
ber of molecules in the material is very large. But it is impossible in principle
anyway, since the position and momentum of a molecule cannot be simul-
taneously known (Heisenberg’s Uncertainty Principle) and thus the initial
conditions for the integration do not exist. In addition, detailed information
about the molecular motion is not readily usable and therefore it would be
necessary to average the molecular properties of the motion in some suitable
way. It is therefore far more appropriate to consider the average properties
of a cluster of molecules right from the start. For example the macroscopic,

or continuum, velocity
L1 o
u= g G (1.4)

where ¢; are the velocities of the molecules and n is the number of molecules
in the cluster. This cluster will be the smallest part of the material that
we will consider, and we call it a fluid particle. To justify this name, the
volume which this cluster of molecules occupies must be small compared to
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the volume occupied by the whole part of the fluid under consideration. On
the other hand, the number of molecules in the cluster must be large enough
so that the averaging makes sense, i.e. so that it becomes independent of
the number of molecules. Considering that the number of molecules in one
cubic centimeter of gas at standard temperature and pressure is 2.7 x 109
(Loschmidt’s number), it is obvious that this condition is satisfied in most
cases.

Now we can introduce the most important property of a continuum, its
mass density p. This is defined as the ratio of the sum of the molecular
masses in the cluster to the occupied volume, with the understanding that
the volume, or its linear measure, must be large enough for the density of
the fluid particle to be independent of its volume. In other words, the mass
of a fluid particle is a smooth function of the volume.

On the other hand the linear measure of the volume must be small com-
pared to the macroscopic length of interest. It is appropriate to assume that
the volume of the fluid particle is infinitely small compared to the whole
volume occupied by the fluid. This assumption forms the basis of the con-
tinuum hypothesis. Under this hypothesis we consider the fluid particle to be
a material point and the density (or other properties) of the fluid to be con-
tinuous functions of place and time. Occasionally we will have to relax this
assumption on certain curves or surfaces, since discontinuities in the density
or temperature, say, may occur in the context of some idealizations. The
part of the fluid under observation consists then of infinitely many material
points, and we expect that the motion of this continuum will be described
by partial differential equations. However the assumptions which have led us
from the material to the idealized model of the continuum are not always
fulfilled. One example is the flow past a space craft at very high altitudes,
where the air density is very low. The number of molecules required to do
any useful averaging then takes up such a large volume that it is comparable
to the volume of the craft itself.

Continuum theory is also inadequate to describe the structure of a shock
(see Chap. 9), a frequent occurrence in compressible flow. Shocks have thick-
nesses of the same order of magnitude as the mean free path, so that the
linear measures of the volumes required for averaging are comparable to the
thickness of the shock.

We have not yet considered the role the thermal motion of molecules plays
in the continuum model. This thermal motion is reflected in the macroscopic
properties of the material and is the single source of viscosity in gases. Even
if the macroscopic velocity given by (1.4) is zero, the molecular velocities ¢;
are clearly not necessarily zero. The consequence of this is that the molecules
migrate out of the fluid particle and are replaced by molecules drifting in.
This exchange process gives rise to the macroscopic fluid properties called
transport properties. Obviously, molecules with other molecular properties
(e.g. mass) are brought into the fluid particle. Take as an example a gas
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which consists of two types of molecule, say Oy and Ns. Let the number of
O2 molecules per unit volume in the fluid particle be larger than that of
the surroundings. The number of Oz molecules which migrate out is pro-
portional to the number density inside the fluid particle, while the number
which drift in is proportional to that of the surroundings. The net effect is
that more O molecules drift in than drift out and so the Oy number density
adjusts itself to the surroundings. From the standpoint of continuum theory
the process described above represents the diffusion.

If the continuum velocity 4 in the fluid particle as given by (1.4) is larger
than that of the surroundings, the molecules which drift out bring their mo-
lecular velocities which give rise to @ with them. Their replacements have
molecular velocities with a smaller part of the continuum velocity . This re-
sults in momentum exchange through the surface of the fluid particle which
manifests itself as a force on this surface. In the simple shearing flow (Fig. 1.1)
the force per unit area on a surface element parallel to the plates is given by
(1.3). The sign of this shear stress is such as to even out the velocity. How-
ever nonuniformity of the velocity is maintained by the force on the upper
plate, and thus the momentum transport is also maintained. From the point
of view of continuum theory, this momentum transport is the source of the
internal friction, i.e. the wviscosity. The molecular transport of momentum
accounts for internal friction only in the case of gases. In liquids, where the
molecules are packed as closely together as the repulsive forces will allow,
each molecule is in the range of attraction of several others. The exchange of
sites among molecules, responsible for the deformability, is impeded by the
force of attraction from neighboring molecules. The contribution from these
intermolecular forces to the force on surface elements of fluid particles hav-
ing different macroscopic velocities is greater than the contribution from the
molecular momentum transfer. Therefore the viscosity of liquids decreases
with increasing temperature, since change of place among molecules is fa-
vored by more vigorous molecular motion. Yet the viscosity of gases, where
the momentum transfer is basically its only source, increases with tempera-
ture, since increasing the temperature increases the thermal velocity of the
molecules, and thus the momentum exchange is favored.

The above exchange model for diffusion and viscosity can also explain the
third transport process: conduction. In gases, the molecules which drift out of
the fluid particle bring with them their kinetic energy, and exchange it with
the surrounding molecules through collisions. The molecules which migrate
into the particle exchange their kinetic energy through collisions with the
molecules in the fluid particle, thus equalizing the average kinetic energy
(i. e. the temperature) in the fluid.

Thus, as well as the already mentioned differential equations for describing
the motion of the continuum, the relationships which describe the exchange
of mass (diffusion), of momentum (viscosity) and of kinetic energy (conduc-
tion) must be known. In the most general sense, these relationships establish
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the connection between concentration and diffusion flux, between forces and
motion, and between temperature and heat flux. However these relations only
reflect the primary reasons for “cause” and “effect”. We know from the kinetic
theory of gases, that an effect can have several causes. Thus, for example,
the diffusion flux (effect) depends on the inhomogeneity of the concentra-
tion, the temperature and the pressure field (causes), as well as on other
external forces. The above relationships must therefore occasionally permit
the dependency of the effect on several causes. Relationships describing the
connections between the causes and effects in a body are called constitutive
relations. They reflect macroscopically the behavior of matter that is deter-
mined microscopically through the molecular properties. Continuum theory
is however of a phenomenological nature: in order to look at the macroscopic
behavior of the material, mathematical and therefore idealized models are
developed. Yet this is necessary, since the real properties of matter can never
be described exactly. But even if this possibility did exist, it would be waste-
ful to include all the material properties not relevant in a given technical
problem. Thus the continuum theory works not with real materials, but with
models which describe the behavior for the given application sufficiently ac-
curately. The model of an ideal gas, for example, is evidently useful for many
applications, although ideal gas is never encountered in reality.

In principle, models could be constructed solely from experiments and
experiences, without consideration for the molecular structure. Yet consider-
ation of the microscopic structure gives us insight into the formulation and
limitations of the constitutive equations.

1.2 Kinematics

1.2.1 Material and Spatial Descriptions

Kinematics is the study of the motion of a fluid, without considering the
forces which cause this motion, that is without considering the equations
of motion. It is natural to try to carry over the kinematics of a mass-point
directly to the kinematics of a fluid particle. Its motion is given by the time
dependent position vector Z(t) relative to a chosen origin.

In general we are interested in the motion of a finitely large part of the
fluid (or the whole fluid) and this is made up of infinitely many fluid par-
ticles. Thus the single particles must remain identifiable. The shape of the
particle is no use as an identification, since, because of its ability to deform
without limit, it continually changes during the course of the motion. Natu-
rally the linear measure must remain small in spite of the deformation during
the motion, something that we guarantee by idealizing the fluid particle as
a material point.
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For identification, we associate with each material point a characteristic
vector £. The position vector & at a certain time ¢g could be chosen, giving
Z(to) = £. The motion of the whole fluid can then be described by

=T t) or z=uxi(&,1) (1.5)

(We use the same symbol for the vector function on the right side as we use
for its value on the left.) For a fixed &, (1.5) gives the path in space of the
material point labeled by £ (Fig. 1.3). For a different &, (1.5) is the equation
of the pathline of a different particle.

While E is only the particle’s label we shall often speak simply of the “gth”
particle. The velocity

and the acceleration

of a point in the material 5 can also be written in the form

w0 =5] o wen=|% (1.6
w60 = 5], o wten=[5] (17)

where “differentiation at fixed 5 ”indicates that the derivative should be taken
for the “gth” point in the material. Confusion relating to differentiation with
respect to t does not arise since E does not change with time. Mathemati-
cally, (1.5) describes a mapping from the reference configuration to the actual
configuration.

For reasons of tradition we call the use of the independent variables 5
and t the material or Lagrangian description, but the above interpretation
of (1.5) suggests a more accurate name is referential description. E is called
the material coordinate.

z)

Fig. 1.3. Material description
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Although the choice of 5 and ¢ as independent variables is obvious and is
used in many branches of continuum mechanics; the material description is
impractical in fluid mechanics (apart from a few exceptions). In most prob-
lems attention is focused on what happens at a specific place or in a specific
region of space as time passes. The independent variables are then the place
Z and the time t. Solving Eq. (1.5) for ¢ we get

£=¢€(, t) (1.8)

This is the label of the material point which is at the place & at time ¢. Using
(1.8) & can be eliminated from (1.6):

€t =a [E(f, 1), t] = (&, 1) . (1.9)

For a given Z, (1.9) expresses the velocity at the place & as a function of
time. For a given ¢ (1.9) gives the velocity field at time ¢. 7 is called the field
coordinate, and the use of the independent variables Z and t is called the
spatial or Eulerian description.

With the help of (1.8) every quantity expressed in material coordinates
can be expressed in field coordinates. Using (1.5) all quantities given in field
coordinates can be converted into material coordinates. This conversion must
be well defined, since there is only one material point 5 at place & at time t.
The mapping (1.5) and the inverse mapping (1.8) must be uniquely reversible,
and this is of course true if the Jacobian J = det(0x;/I¢;) does not vanish.

If the velocity is given in field coordinates, the integration of the differ-

ential equations
dz ( . t) d.’L‘l
— z, or
dt dt

(with initial conditions Z(to) = £) leads to the pathlines # = Z(&, ¢).

If the velocity field and all other dependent quantities (e.g. the density
or the temperature) are independent of time, the motion is called steady,
otherwise it is called unsteady.

The Eulerian description is preferable because the simpler kinematics are
better adapted to the problems of fluid mechanics. Consider a wind tunnel
experiment to investigate the flow past a body. Here one deals almost always
with steady flow. The paths of the fluid particles (where the particle has
come from and where it is going to) are of secondary importance. In addition
the experimental determination of the velocity as a function of the mate-
rial coordinates (1.6) would be very difficult. But there are no difficulties in
measuring the direction and magnitude of the velocity at any place, say, and
by doing this the velocity field @ = @(Z) or the pressure field p = p(Z) can
be experimentally determined. In particular the pressure distribution on the
body can be found.

S

:ui(xj, If) (1.10)



10 1 The Concept of the Continuum and Kinematics
1.2.2 Pathlines, Streamlines, Streaklines

The differential Eq. (1.10) shows that the path of a point in the material
is always tangential to its velocity. In this interpretation the pathline is the
tangent curve to the velocities of the same material point at different times.
Time is the curve parameter, and the material coordinate 5 is the family
parameter.

Just as the pathline is natural to the material description, so the stream-
line is natural to the Eulerian description. The velocity field assigns a velocity
vector to every place & at time ¢t and the streamlines are the curves whose
tangent directions are the same as the directions of the velocity vectors. The
streamlines provide a vivid description of the flow at time t.

If we interpret the streamlines as the tangent curves to the velocity vectors
of different particles in the material at the same instant in time we see that
there is no connection between pathlines and streamlines, apart from the fact
that they may sometimes lie on the same curve.

By the definition of streamlines, the unit vector «/|u| is equal to the unit
tangent vector of the streamline 7 = dZ/|dZ| = dZ/ds where dZ is a vector
element of the streamline in the direction of the velocity. The differential
equation of the streamline then reads

j—i = u(gi, t) . (t = const) (1.11a)

or in index notation

d i 4 'at
& _ M, (t = const) . (1.11b)

ds N

Integration of these equations with the “initial condition” that the streamline
emanates from a point in space @y (Z(s = 0) = o) leads to the parametric
representation of the streamline ¥ = Z(s, Zy). The curve parameter here is
the arc length s measured from 7y, and the family parameter is Zy.

The pathline of a material point 5 is tangent to the streamline at the place
Z, where the material point is situated at time ¢. This is shown in Fig. 1.4.
By definition the velocity vector is tangential to the streamline at time ¢ and
to its pathline. At another time the streamline will in general be a different
curve.

In steady flow, where the velocity field is time-independent (@ = @(Z)),
the streamlines are always the same curves as the pathlines. The differential
equations for the pathlines are now given by dZ/dt = (%), where time de-
pendence is no longer explicit as in (1.10). The element of the arc length along
the pathline is do = |u|d¢, and the differential equations for the pathlines are
the same as for streamlines

Az ()
- = 1.12
do ld] ( )
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streamline

Fig. 1.4. Streamlines and pathlines

because how the curve parameter is named is irrelevant. Interpreting the
integral curves of (1.12) as streamlines means they are still the tangent curves
of the velocity vectors of different material particles at the same time ¢. Since
the particles passing through the point in space Z all have the same velocity
there at all times, the tangent curves remain unchanged. Interpreting the
integral curves of (1.12) as pathlines means that a material particle must
move along the streamline as time passes, since it does not encounter velocity
components normal to this curve.

What has been said for steady velocity fields holds equally well for un-
steady fields where the direction of the velocity vector is time independent,
that is for velocity fields of the form

@(T,t) = f(&, 1) iio(7) - (1.13)

The streakline is also important, especially in experimental fluid mechanics.
At a given time t a streakline joins all material points which have passed
through (or will pass through) a given place ¢ at any time ¢’. Filaments of
color are often used to make flow visible. Colored fluid introduced into the
stream at place ¥ forms such a filament and a snapshot of this filament is
a streakline. Other examples of streaklines are smoke trails from chimneys or
moving jets of water.

Let the field @ = @(Z, t) be given, and calculate the pathlines from (1.10),
solving it for 5 Setting & = ¢ and ¢ = ¢’ in (1.8) identifies the material points
€ which were at place 7 at time #'.

The path coordinates of these particles are found by introducing the label
5 into the path equations, thus giving

F=1 [5(37, ), t] . (1.14)

At a given time ¢, t' is the curve parameter of a curve in space which goes
through the given point ¢, and thus this curve in space is a streakline. In
steady flows, streaklines, streamlines and pathlines all lie on the same curve.
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streakline

=z [5(37, t’)'N
(t fixed, t' curve parameter)

pathlines
=7 [{(7,¢).1]

(¢ fixed, t curve parameter)

Iy

Fig. 1.5. Streaklines and pathlines

Surfaces can be associated with the lines introduced so far, formed by all
the lines passing through some given curve C. If this curve C' is closed, the
lines form a tube (Fig. 1.6).

Streamtubes formed in this way are of particular technical importance.
Since the velocity vector is by definition tangential to the wall of a streamtube,
no fluid can pass through the wall. This means that pipes with solid walls
are streamtubes.

Often the behavior of the whole flow can be described by the behavior
of some “average” representative streamline. If the properties of the flow are

Fig. 1.6. Streamsheet and streamtube



1.2 Kinematics 13

approximately constant over the cross-section of the streamtube at the lo-
cation where they are to be determined, we are led to a simple method of
calculation: so-called stream filament theory. Since the streamtubes do not
change with time when solid walls are present, the flow fields are, almost
trivially, those where the direction of the velocity vector does not change.
Consequently these flows may be calculated with relative ease.

Flows are often met in applications where the whole region of interest can
be thought of as one streamtube. Examples are flows in tubes of changing
cross-section, like in nozzles, in diffusers, and also in open channels. The space
that the fluid occupies in turbomachines can often be taken as a streamtube,
and even the flow between the blades of turbines and compressors can be
treated approximately in this manner (Fig. 1.7).

The use of this “quasi-one-dimensional” view of the whole flow means that
sometimes corrections for the higher dimensional character of the flow have
to be introduced.

Steady flows have the advantage over unsteady flows that their streamlines
are fixed in space, and the obvious convenience that the number of indepen-
dent variables is reduced, which greatly simplifies the theoretical treatment.
Therefore whenever possible we choose a reference system where the flow is
steady. For example, consider a body moved through a fluid which is at rest
at infinity. The flow in a reference frame fixed in space is unsteady, whereas
it is steady in a reference frame moving with the body. Fig. 1.8 demonstrates
this fact in the example of a (frictionless) flow caused by moving a cylinder
right to left. The upper half of the figure shows the unsteady flow relative
to an observer at rest at time ¢ = ¢ty when the cylinder passes through the
origin. The lower half shows the same flow relative to an observer who moves
with the cylinder. In this system the flow is towards the cylinder from the left

nozzle axial flow turbomachine

discharge from a vessel
7

W% NN [\”\H

/ diffuser radial ﬂow turbomachine
| G s
_—/
—\

0

Fig. 1.7. Examples of streamtubes
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pathline

streamline

unsteady

~%%/%

pathline = streamline

Fig. 1.8. Unsteady flow for a motionless observer; steady flow for an observer
moving with the body

and it is steady. A good example of the first reference system is the everyday
experience of standing on a street and feeling the unsteady flow when a vehicle
passes. The second reference system is experienced by an observer inside the
vehicle who feels a steady flow when he holds his hand out of the window.

1.2.3 Differentiation with Respect to Time

In the Eulerian description our attention is directed towards events at the
place & at time t. However the rate of change of the velocity @ at & is not
generally the acceleration which the point in the material passing through
at time ¢ experiences. This is obvious in the case of steady flows where the rate
of change at a given place is zero. Yet a material point experiences a change
in velocity (an acceleration) when it moves from & to & + dZ. Here dZ is the
vector element of the pathline. The changes felt by a point of the material or
by some larger part of the fluid and not the time changes at a given place or
region of space are of fundamental importance in the dynamics. If the velocity
(or some other quantity) is given in material coordinates, then the material
or substantial derivative is provided by (1.6). But if the velocity is given in
field coordinates, the place Z in u(Z,t) is replaced by the path coordinates
of the particle that occupies & at time ¢, and the derivative with respect to
time at fixed { can be formed from

= (im{f;—i’t)’t} , (1.15a)

2|8

ey
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du; _ {M}E . (1.15b)

or

dt ot

The material derivative in field coordinates can also be found without direct
reference to the material coordinates. Take the temperature field T(Z, t) as
an example: we take the total differential to be the expression
oT oT oT oT

dT:Edt—’—a_xld o 2d$2+a 3d (1.16)
The first term on the right-hand side is the rate of change of the temperature
at a fixed place: the local change. The other three terms give the change in
temperature by advancing from & to £+dx. This is the convective change. The
last three terms can be combined to give dZ- VT or equivalently dz; 07 /Jx;.
If d is the vector element of the fluid particle’s path at Z, then (1.10) holds
and the rate of change of the temperature of the particle passing & (the
material change of the temperature) is

dr  oT
E—EﬁLu'VT (1.17&)
or
dr aT+ oT aT+ aT+ aT+ oT (1.17b)
— ==t Us— = tUs— +tUs— tU3T— . .
dt — ot or; ot ' ox  Oxe | °Ors

This is quite a complicated expression for the material change in field co-
ordinates, which leads to difficulties in the mathematical treatment. This is
made clearer when we likewise write down the acceleration of the particle
(the material change of its velocity):

du Ou ou

—=—+4+(u-V)u i - grad) u 1.18a

= S (@ V)T = o+ (i grad) (1.182)

or

= + Uj .
dt ot 6,Tj
(Although the operator d/dt = 9/0t + (@ - V) is written in vector nota-
tion, it is here only explained in Cartesian coordinates. Now by appropriate
definition of the Nabla operator, the operator d/d¢ is also valid for curvilin-
ear coordinate systems, its application to vectors is difficult since the basis
vectors can change. Later we will see a form for the material derivative of
velocity which is more useful for orthogonal curvilinear coordinates since,
apart from partial differentiation with respect to time, it is only composed
of known quantities like the rotation of the velocity field and the gradient of
the kinetic energy.)

It is easy to convince yourself that the material derivative (1.18) results
from differentiating (1.15) with the chain rule and using (1.6).

The last three terms in the ith component of (1.18b) are nonlinear (quasi-
linear), since the products of the function u;(Z, t) with its first derivatives

(1.18D)
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Ou;(Z, t)/0x; appear. Because of these terms, the equations of motion in field
coordinates are nonlinear, making the mathematical treatment difficult. (The
equations of motion in material coordinates are also nonlinear, but we will
not go into details now.)

The view which has led us to (1.17) also gives rise to the general time
derivative. Consider the rate of change of the temperature felt by a swimmer
moving at velocity @ relative to a fluid velocity of i, i.e. at velocity @ + W
relative to a fixed reference frame. The vector element dZ of his path is
d# = (u+w) dt and the rate of change of the temperature felt by the swimmer
is

dr  or
dat ot
where the operator 9/0t+ (i+w)-V or 0/0t+ (u;+w;) 0/0x;, applied to other
field quantities gives the rate of change of these quantities as experienced by
the swimmer.
To distinguish between the general time derivative (1.19) and the material
derivative we introduce the following symbol

b_o6,,0_398
Dt ot Yoz, ot

+ (i + W) - VT (1.19)

+ (- V) (1.20)

for the material derivative. (Mathematically, of course there is no difference
between d/dt and D/Dt.)
Using the unit tangent vector to the pathline

- dx dz
t=—s = — 1.21
|[dZ|  do (121)
the convective part of the operator D/Dt can also be written:
L, - _, 0
u-V=lut V=|u-—, (1.22)
do

so that the derivative §/do is in the direction of # and that the expression

D 0

Dt oi
holds. This form is used to state the acceleration vector in natural coordi-
nates, that is in the coordinate system where the unit vectors of the accom-
panying triad of the pathline are used as basis vectors. ¢ is the coordinate in
the direction of 7, n is the coordinate in the direction of the principal normal
vector fi, = Rdi/do, and b the coordinate in the direction of the binormal

0
5 (1.23)

vector l;g =1{x fly. R is the radius of curvature of the pathline in the oscu-
lating plane spanned by the vectors t and 7i,. Denoting the component of o
in the t-direction as u, (u = |i|), (1.23) then leads to the expression

D -»_{au au}-» u?

= (uf) o . (1.24)
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—

Resolving along the triad (7, 7is, bs) of the streamline at time ¢, the convective
acceleration is the same as in expression (1.24), since at the place & the
streamline is tangent to the pathline of the particle found there. However
the local change contains terms normal to the streamline, and although the
components of the velocity u, and w,, are zero here, their local changes do
not vanish:

ou Ou_ Ou, _ Ouyp -

Resolving the acceleration vector into the natural directions of the streamline
then gives us:

Du ou oul| _ ou, u?] _ oup -

When the streamline is fixed in space, (1.26) reduces to (1.24).
1.2.4 State of Motion, Rate of Change of Line, Surface

and Volume Elements

Knowing the velocity at the place & we can use the Taylor expansion to find
the velocity at a neighboring place 7 + dz:

aui
aCCj

For each of the three velocity components u; there are three derivatives in the
Cartesian coordinate system, so that the velocity field in the neighborhood
of & is fully defined by these nine spatial derivatives. Together they form
a second order tensor, the welocity gradient Ou;/0xz;. The symbols Vi or
gradi (defined by (A.40) in Appendix A) are used, and (1.27a) can also be

written in the form
@7+ d7, t) = @(Z, t) + dF - Vi . (1.27b)
Using the identity
- Z — — 1.28
6,Tj 2{(956] + 6$Z}+2{6$J axl} ( )
we expand the tensor du;/ Ox; into a symmetric tensor

1 Bul auj
o + 1.2
€ij 2 {&rj ox; } ’ (1.292)
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where this can be symbolically written, using (A.40), as

E= €ij€€5 =

(V) + (Va)'] (1.29b)

N | =

and an antisymmetric tensor

- 1 811,1 a’le
Q=3 {axj - axi} : (1.30a)

where this is symbolically (see A.40)
Q= Qe = % (Vi) — (Va)'] . (1.30b)
Doing this we get from (1.27)
wi (T +da, t) = wi(Z, t) + e;jde; + 2;;dz; (1.31a)
or
UZ+dZ, t) =d(z, t)+dd- E+dZ- Q. (1.31b)

The first term in (1.31) arises from the translation of the fluid at place &
with velocity u;. The second represents the velocity with which the fluid in
the neighborhood of & is deformed, while the third can be interpreted as an
instantaneous local rigid body rotation. There is a very important meaning
attached to the tensors e;; and §2;;, which each describe entirely different
contributions to the state of the motion. By definition the frictional stresses
in the fluid make their appearance in the presence of deformation velocities,
so that they cannot be dependent on the tensor (2;; which describes a local
rigid body rotation. To interpret the tensors e;; and (2;; we calculate the
rate of change of a material line element dz;. This is a vector element which
always consists of a line distribution of the same material points. The material
change is found, using

D Dz
—(d?) =d | —| =du 1.32
a9 = | 3 | =a. (1.32)
as the velocity difference between the endpoints of the element. The vector
component dig in the direction of the element is obviously the velocity with
which the element is lengthened or shortened during the motion (Fig. 1.9).
With the unit vector dZ/ds in the direction of the element, the magnitude of
this component is
_ dz dz; dz;

du - g = duzd—; = (eij + Qij)dl'j—; , (133)
and since §2;;dz;dz; is equal to zero (easily seen by expanding and interchang-
ing the dummy indices), the extension of the element can only be caused by
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pathlines

ds

]

Fig. 1.9. The physical significance of the diagonal components of the deformation
tensor

the symmetric tensor e;;. e;; is called the rate of deformation tensor. Other
names are: stretching, rate of strain, or velocity strain tensor. We note that
the stretching, for example, at place Z is the stretching that the particle expe-
riences which occupies the place Z. For the rate of extension per instantaneous
length ds we have from (1.33):

du; da; d _1D(dz;) da; 1d572D(d82)

_ A — 1.34
ds ds 0 "Dt ds 2 Dt (1:34)

and using (1.33), we get
du;de; . _D(ds)  da;day (1.35)

ds ds 0 "Dt Uds ds

Since d;/ds = I; is the ith component and dz;/ds = [; is the jth component
of the unit vector in the direction of the element, we finally arrive at the
following expression for the rate of extension or the stretching of the material
element: D(ds)
s
dS_1T = eijlilj . (136)
(1.36) gives the physical interpretation of the diagonal elements of the tensor
e;j. Instead of the general orientation, let the material element dZ be viewed
when orientated parallel to the x1-axis, so that the unit vector in the direction
of the element has the components (1,0,0) and, of the nine terms in (1.36),
only one is nonzero. In this case, with ds = dzy, (1.36) reads:

—1 D(dzy)
Dt

= €11 . (137)

The diagonal terms are now identified as the stretching of the material el-
ement parallel to the axes. In order to understand the significance of the
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remaining elements of the rate of deformation tensor, we imagine two per-
pendicular material line elements of the material d# and d#’ (Fig. 1.10). The
magnitude of the component dir perpendicular to dZ (thus in the direction
of the unit vector I’ = di’ /ds’ and in the plane spanned by d# and dz’) is
du - d2’ /ds’. After division by ds we get the angular velocity with which the
material line element rotates in the mathematically positive sense:

Dy  du d7 du; da

- . 1.38
Dt ds ds’ ds ds’ ( )
Similarly we get the angular velocity with which dZ’ rotates:
D¢’ da’ dz du} dx;
- ) = . 1.39
Dt ds’ ds ds’ ds ( )

The difference between these gives the rate of change of the angle between
the material elements dZ and dZ’ (currently ninety degrees), and it gives
a measure of the shear rate. Since

du;  Ou; dzj du)  Ou,; dol
- = - L= 1.40
ds Oxj ds w1 Ox; ds’ ( )
we get, for the difference between the angular velocities
Dy —¢') Oui  Ouy | da; daf /
= — = —2¢;;;l; . 1.41
Dt z; + Ozr; | ds ds’ Cistity (1.41)

To do this, the dummy indices were relabeled twice. Choosing dZ parallel to
the zo-axis, dZ’ parallel to the z;-axis, so that | = (0,1,0) and /= (1,0,0),
and denoting the enclosed angle by a1, (1.41) gives the element ej5 as half
of the velocity with which a;5 changes in time:

Dalg

= —2612 . (1.42)

Dt

Fig. 1.10. The physical significance of the nondiagonal elements of the rate of
deformation tensor
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The physical interpretation of all the other nondiagonal elements of e;; is
now obvious. The average of the angular velocities of the two material line
elements gives the angular velocity with which the plane spanned by them
rotates:

s+ =31

. , gt
Oui _ Ou; } dojdve _ g, (1.43)

Ox; Oz | ds ds

Here again the dummy index has been relabeled twice and the property of
the antisymmetric tensor §2;; = —2;; has been used. The Eq. (1.43) also
yields the modulus of the component of the angular velocity & perpendicular
to the plane spanned by dZ and dZ’. The unit vector perpendicular to this
plane

— X — =

ds’ ds
can be written in index notation with the help of the epsilon tensor as i €,
so that the right-hand side of (1.43) can be rewritten as follows:

A7 d7 ,
R Y (1.44)

Q5ilil; = wp 11 €4 - (1.45)
This equation assigns a vector to the antisymmetric tensor (2;;:
Wr€ijk = $25; . (1.46)

Equation (1.46) expresses the well known fact that an antisymmetric tensor
can be represented by an axial vector. Thus the contribution (2;;dz; to the
velocity field about the place Z is the same as the ith component e j;widz;
of the circumferential velocity & x d¥ produced at the vector radius dZ by
a rigid body at Z rotating at angular velocity . For example, the tensor ele-
ment (215 is then numerically equal to the component of the angular velocity
perpendicular to the z;-z2-plane in the negative zs-direction. (2;; is called
the spin tensor. From (1.46) we can get the explicit representation of the
vector component of &, using the identity

€ijk€ijn = 2 Okn (1.47)
(where 0y, is the Kronecker delta) and multiplying by €;;,, to get
WE€ijk€ijn — 2wn = jSeijn . (148)

Since e;; is a symmetric tensor, then €;;,e;; = 0, and in general the following
holds:
o 1 8uj

= -7 €ijn -
26:101- J

(1.49a)

Wn
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The corresponding expression in vector notation

1 1
= §V X U= §curlﬁ (1.2)

&1

introduces the wvorticity vector curlw, which is equal to twice the angular
velocity . If this vorticity vector vanishes in the whole flow field in which we
are interested, we speak of an irrotational flow field. The absence of vorticity
in a field simplifies the mathematics greatly because we can now introduce
a velocity potential . The generally unknown functions u; result then from
the gradient of only one unknown scalar function &:

L

u; or 4=Vo. (1.50)
This is the reason why irrotational flows are also called potential flows. The
three component equations obtained from (1.50) are equivalent to the exis-
tence of a total differential

0P
The necessary and sufficient conditions for its existence are that the following
equations for the mixed derivatives should hold throughout the field:

8u1 - 8uz 8u2 - 8U3 8u3 o 8u1

= 22 2 1.52
(956‘2 (9.%‘1 ’ 6$3 6$2 ’ (9.%‘1 (956‘3 ( g )

Because of (1.50) these relationships are equivalent to the vanishing of the
vorticity vector curl .

As with streamlines, in rotational flow vortex-lines are introduced as tan-
gent curves to the vorticity vector field, and similarly these can form vortex-
sheets and vortex-tubes.

As is well known, symmetric matrices can be diagonalized. The same
can be said for symmetric tensors, since tensors and matrices only differ in
the ways that their measures transform, but otherwise they follow the same
calculation rules. The reduction of a symmetric tensor e;; to diagonal form
is physically equivalent to finding a coordinate system where there is no
shearing, only stretching. This is a so-called principal axis system. Since e;;
is a tensor field, the principal axis system is in general dependent on the
place #. If I (or I;) is the unit vector relative to a given coordinate system
in which e;; is nondiagonal, the above problem amounts to determining this
vector so that it is proportional to that part of the change in velocity given
by e;j, namely e;;dx;. We divide these changes by ds and since

du; dx;
E = eijd—sj = eijlj (153)
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we are led to the eigenvalue problem
eijlj = eli. (154)

A solution of (1.54) only exists when the arbitrary constant of proportionality
e takes on specific values, called the eigenvalues of the tensor e;;. Using the
Kronecker Delta symbol we can write the right-hand side of (1.54) as el; d;;
and we are led to the homogeneous system of equations

(eij — e&ij)lj =0. (155)

This has nontrivial solutions for the unit vector we are searching for only
when the determinant of the matrix of coefficients vanishes:

det(eij - e5ij) =0. (156)

This is an equation of the third degree, and is called the characteristic equa-
tion. It can be written as

—A 4 Nee? —Lee+I3.=0, (1.57)

where I, Is., I3, are the first, second and third invariants of the rate of
deformation tensor, given by the following formulae:

1
Ile = €45, Ige = E(eiiejj — eijeij); Ige = det(eij) . (158)

These quantities are invariants because they do not change their numerical
values under change of coordinate system. They are called the basic invariants
of the tensor e;;. The roots of (1.57) do not change, and so neither do the
eigenvalues of the tensor e;;. The eigenvalues of a symmetric matrix are all
real, and if they are all distinct, (1.54) gives three systems of equations,
one for each of the components of the vector [. With the condition that [
is to be a unit vector, the solution of the homogeneous system of equations
is unique. The three unit vectors of a real symmetric matrix are mutually
orthogonal, and they form the principal axis system in which e;; is diagonal.
The statement of Eq. (1.31) in words is thus:

“The instantaneous velocity field about a place Z is caused by the su-
perposition of the translational velocity of the fluid there with stretch-
ing in the directions of the principal axes and a rigid rotation of these
axes.” (fundamental theorem of kinematics)

By expanding the first invariant Ir., and using equation (1.37) and corre-
sponding expressions, we arrive at the equation

D(d
—i—dx;l (Df2)

_1 D(dz)
Dt

D(d
€ii :dxl _1ﬂ .

+ dxg D (1.59)
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On the right is the rate of change of the material volume dV, divided by dV:
it is the material change of this infinitesimal volume of the fluid particle. We
can also write (1.59) in the form

D(dV)
Dt

Now, in flows where D(dV')/Dt is zero, the volume of a fluid particle does not
change, although its shape can. Such flows are called volume preserving, and
the velocity fields of such flows are called divergence free or source free. The
divergence V- and the curl V x « are quantities of fundamental importance,
since they can tell us a lot about the velocity field. If they are known in
a simply connected space (where all closed curves may be shrunk to a single
point), and if the normal component of @ is given on the bounding surface,
then, by a well known principle of vector analysis, the vector @(Z) is uniquely
defined at all Z. We also note the rate of change of a directional material
surface element, n;dS, which always consists of a surface distribution of the
same fluid particles. With dV = n;dSdx; we get from (1.60)

D
or D
finally leading to
D ou; Ou;
—(n;dS) = —2n;dS — —Zn;dS . 1.
Dt(n S) axjn S &Cinj S (1.63)

After multiplying by n; and noting that D(n;n;)/ Dt = 0 we obtain the
specific rate of extension of the material surface element d.S

= 2% _ eiinin; . 1.64
s Dt ox; MM (1.64)

Divided by the Euclidean norm of the rate of deformation tensor (e elk)l/ 2,

this can be used as a local measure for the “mixing’
D(IndS)
Dt

ou;

[(ew en)? = [a—x] - eijni”j:| [(ew ew)'? . (1.65)
J

The higher material derivatives also play a role in the theory of the constitu-
tive equations of non-Newtonian fluids. They lead to kinematic tensors which
can be easily represented using our earlier results. From (1.35) we can read
off the material derivative of the square of the line element ds as

D(ds?)
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and by further material differentiation this leads to the expression

D?(ds?) D(2e;5) Ouy, Ouy,
= 2e;j— + 2eip— ¢ da;dz; . 1.67
le2 { Dt + ki 6:101- + e afL‘j } TGy ( )

Denoting the tensor in the brackets as A(s);; and 2e;; as A(y);5, (symbolically
A (5) and A(y)), we find the operational rule for higher differentiation:

D"(ds?)

Din = A(n)ijdzidxj 5 (168)
where DA 5 5
(n—1)ij Uk Uk
Apyii = ————+ Ao + Apn—1)ik = 1.69
(n)ij Dt + (n—1)kj 81171 + (n—1)ik 8:cj ( )

gives the rule by which the tensor A, can be found from the tensor A, _1)
(Oldroyd’s derivative). The importance of the tensors A, also called the
Rivlin-Ericksen tensors, lies in the fact that in very general non-Newtonian
fluids, as long as the deformation history is smooth enough, the friction stress
can only depend on these tensors. The occurrence of the above higher time
derivatives can be disturbing, since in practice it is not known if the required
derivatives actually exist. For kinematically simple flows, so called viscometric
flows (the shearing flow in Fig. 1.1 is an example of these), the tensors A,
vanish in steady flows for n > 2. In many technically relevant cases, non-
Newtonian flows can be directly treated as viscometric flows, or at least as
related flows.

We will now calculate the kinematic quantities discussed up to now with
an example of simple shearing flow (Fig. 1.11), whose velocity field is given
by

uyp = ’:Y:CQ ’
uz =0, (1.70)
us = 0.

The material line element dZ is rotated about dy = —(duy/ dzs)dt in time

dt, giving Do/ Dt = —4.
The material line element dZ’ remains parallel to the xi-axis. The rate of
change of the angle originally at ninety degrees is thus —4. The agreement

\ N
(uj+du,) dt
L e

l——ul dt——]
Z 7, g

Fig. 1.11. Kinematics of simple shear flow
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with (1.41) can be seen immediately since e12 = €21 = /2. Of the compo-
nents of the tensor e;;, these are the only ones which are nonzero. The average
of the angular velocities of both material lines is —¥/2, in agreement with
(1.43). In order to work out the rotation of the element due to the shearing,
we subtract the rigid body rotation —%/2dt¢ from the entire rotation calcu-
lated above (—4 dt and 0), and thus obtain —3/2d¢t for the rotation of the
element dZ arising from shearing, and similarly +4/2d¢ for the rotation of
the element dZ’ due to shearing.

Now we can fully describe this flow: it consists of a translation of the
point in common to both material lines along the distance u; dt, a rigid body
rotation of both line elements about an angle —y/2dt and a shearing which
rotates the element dZ’ about the angle ++/2dt (so that its total rotation is
zero) and the element dZ about the angle —%/2d¢t (so that its total rotation
is —jdt). Since A(y);; = 2e;, the first Rivlin-Ericksen tensor has only two
nonzero components: Ay1o = A()21 = 4. The matrix representation for
A(1); thus reads:

[Aw] = (1.71)

O 2O
o O 2
o O O

Putting the components of A(1);; in (1.71) we find there is only one nonva-
nishing component of the second Rivlin-Ericksen tensor (A(g)22 = 242), so
that it can be expressed in matrix form as

o

0
[Aw]=|0 29 (1.72)
0

o
o o o

All higher Rivlin-Ericksen tensors vanish.

An element dZ whose unit tangent vector dZ/ds has the components
(cos ¥, sindd, 0), thus making an angle ¢ with the z;-axis (I3 = 0), experi-
ences, by (1.36), the stretching:

1 D(ds)
ds Dt

= eijlilj = eq1l1ly + 2e12l1ls + easlsls . (173)

Since e11 = ezo = 0 the final expression for the stretching is:

éDl()dts) = 2% cos¥sind = %sin219 . (1.74)
The stretching reaches a maximum at ¥ = 45°, 225° and a minimum at
¥ = 135°, 315°. These directions correspond with the positive and negative
directions of the principal axes in the x1-xo-plane.

The eigenvalues of the tensor e;; can be calculated using (1.57), where
the basic invariants are given by I, = 0, Iz, = —32/4 and I3, = 0. Since
L = e;; = divid = 0 we see that this is a volume preserving flow. (The
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vanishing of the invariants I, and I3, of the tensor e;; is a necessary condi-
tion for wviscometric flows, that is for flows which are locally simple shearing
flows.) The characteristic Eq. (1.55) then reads e(e? — 42/4) = 0 and it has
roots ell) = —e®) = 4/2, e = 0. The eigenvectors belonging to these
roots, i) = (1/v/2, 1/v/2, 0), @® = (0,0,1) and #® = (1/v/2, —1/v/2, 0),
give the principal rate of strain directions, up to the sign. (The otherwise
arbitrary indexing of the eigenvalues is chosen so that e > (2 > ¢()))
The second principal rate of strain direction is the direction of the z3 axis,
and the principal rate of strain e(? is zero, since the velocity field is two-
dimensional. The distortion and extension of a square shaped fluid particle
is sketched in Fig. 1.12. In this special case the eigenvalues and eigenvectors
are independent of place . The principal axis system is the same for all fluid
particles, and as such Fig. 1.12 also holds for a larger square shaped part of
the fluid.

We return now to the representation of the acceleration (1.18) as the
sum of the local and convective accelerations. Transforming (1.20) into index
notation and using the identity

_ Y . 7 . — - 1.75
Dt ot Yox, ot Y {axj s } Uge  1T)
and the definition (1.30), we are led to
Du;  Ou; 0 (u;u;
YT {#} . 1.76
Dt ot % T T (1.76)
With (1.46), we finally obtain
Du;  Ou; d (uju;
Lo T o hw {#} 1.77
Di ot MR T 5T (L.77)
initial square element stretched stretched and rotated

%ds dt

1
2

92
odt

Fig. 1.12. Deformation of a square of fluid in simple shearing flow
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which written symbolically using (1.2), is

Du ou .
E—E—UX(VXU)-FV[

a-a} (1.78)

2

This form shows explicitly the contribution of the rotation V x 4 to the accel-
eration field. In steady irrotational flow, the acceleration can be represented
as the gradient of the kinetic energy (per unit mass).

We will often also use orthogonal curvilinear coordinate systems (e.g.
cylindrical and spherical coordinates). In these cases the material derivative
of the velocity in the form (1.78) is more useful than in (1.18), since the
components of the acceleration in these coordinate systems are readily ob-
tainable through the definition of the Nabla operator and by using the rules
for calculation of the scalar and vector product. From (1.78) we can also get
a dimensionless measure for the contribution of the rotation to the accelera-
tion:

Wy = XV xa)| (1.79)

ou u-u

5 5
The ratio is called the dynamic vortex number. In general, it is zero for
irrotational flows, while for nonaccelerating steady flows it takes the value 1.
We can get a measure called the kinematic vortex number by dividing the
Euclidean norm (the magnitude) of the rotation |V x @| by the Euclidean
norm of the rate of deformation tensor:

|V x|

The kinematic vortex number is zero for irrotational flows and infinite for
a rigid body rotation if we exclude the pure translation for which indeed
both norms are zero.

Let us also compare the local acceleration with the convective acceleration
using the relationship

Wk (1.80)

ou
B o
- }—ﬁx(Vxﬁ)JrV[i'rﬁH .

S

(1.81)

For steady flows we have S = 0, unless the convective acceleration is also
equal to zero. S = oo is an important special case in unsteady flows, because
the convective acceleration is then zero. This condition is the fundamental
simplification used in acoustics and it is also used in the treatment of unsteady
shearing flows.
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1.2.5 Rate of Change of Material Integrals

From now on we shall always consider the same piece of fluid which is sep-
arated from the rest of the fluid by a closed surface. The enclosed part of
the fluid is called a “body” and always consists of the same fluid particles
(material points); its volume is therefore a material volume, and its surface
is a material surface. During the motion, the shape of the material volume
changes and successively takes up new regions in space. We will denote by
(V(t)) the region which is occupied by our part of the fluid at time ¢. The
mass m of the bounded piece of fluid is the sum of the mass elements dm
over the set (M) of the material points of the body:

m— /dm_ (1.82)

(M)

Since in continuum theory, we consider the density to be a continuous function
of position, we can also write the mass as the integral of the density over the
region in space (V(t)) occupied by the body:

m= [ dm= p(Z,t)dV . (1.83)
( (

M) V(t))

Equivalently, the same holds for any continuous function ¢, whether it is
a scalar or a tensor function of any order:

[ eam=[[[ voav. (1.84)
(

(M) V(1))

In the left integral we can think of ¢ as a function of the material coordinates E
and ¢, and on the right we can think of it as a function of the field coordinates
Z and t. (Note that ¢ is not a property of the label 5, but a property of the
material point labeled 5) We are most interested in the rate of change of
these material integrals and are led to a particularly simple derivation of the
correct expression if we use the law of conservation of mass at this stage: the
mass of the bounded part of the fluid must remain constant in time:

Dm

— =0. 1.85

This conservation law must also hold for the mass of the material point:

D
By (dm) =0, (1.86)

since by (1.82) the mass is additive and the part of the fluid we are looking
at must always consist of the same material points. Now taking the rate of
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change of the integral on the left side of (1.84) the region of integration is
constant, and we have to differentiate the integral by the parameter ¢. Since
 and Dg/ Dt are continuous, the differentiation can be executed “under” the
integral sign (Leibniz’s rule), so that the equation now becomes:

D
= . 1.
D pdm = / (1.87)
(i) (i)

The right-hand side can be expressed by an integration over the region in
space (V(t)) and we get using (1.84):

e e [

(M) (V(t) V(t))

The result of the integration in the last integral does not change when, in-
stead of a region varying in time (V' (t)), we choose a fixed region (V'), which
coincides with the varying region at time ¢t. We are really replacing the rate of
change of the integral of ¢ over a deforming and moving body by the integral
over a fixed region.

Although we got this result by the explicit use of the conservation of
mass, the reduction of the material derivative of a volume integral to a fixed
volume integral is purely kinematical. We recognize this when we apply the
conservation of mass again and construct a formula equivalent to (1.88) where
the density p does not appear. To this end we will consider the rate of change
of a material integral over a fluid property related to volume, which we again

call
///90 V__ Sm’dm:/;))t(w)d : (1.89)

V(1) (M) (M)

Here v = 1/p is the specific volume. Carrying out the differentiation in the
integrand, and replacing Dv/ Dt dm by D(dV')/Dt (as follows from (1.86)) we
get the equation

] e [ B 25 o
V(1) V) V)

Without loss of generality we have replaced the time varying region on the
right-hand side (V' (¢)) with a fixed region (V) which coincides with it at
time ¢. This formula shows that the derivative of material integrals can be
calculated by interchanging the order of integration and differentiation. From
this general rule, Eq. (1.88) emerges immediately taking into account that,
by (1.86), D(pdV)/ Dt = 0 holds.

Another approach to (1.90), which also makes its pure kinematic nature
clear is gained by using (1.5) and thereby introducing the new integration
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variables ¢; instead of x;. This corresponds to a mapping of the current
domain of integration (V' (¢)) to the region (V) occupied by the fluid at the
reference time to. Using the Jacobian J of the mapping (1.5) we have

dv =JdV, ,
and obtain (V) D
= — 1.91
o~ o (1.912)

since V} is independent of time, from which follows, using (1.60), the material
derivative of the Jacobian:

2 —eud = =T, 1.91b
Dr ¢ J BzviJ (1.91b)

a formula known as Fuler’s expansion formula. From the last two equations
we then have

B ] o [ B ] B e

(V(®) (Vo)

which under the inverse mapping leads directly to (1.90). Using (1.91b) and
the inverse mapping the forms

B o [l

(V(®)

o I e JIf [+

V(t)

and

)} av (1.93)

follow. If ¢ is a tensor field of any degree, which together with its partial
derivatives is continuous in (V'), then Gauss’ theorem holds:

/// S;Z dv = //sam—dS. (1.94)

S is the directional surface bounding V', and the normal vector n; is out-
wardly positive. Gauss’ theorem relates a volume integral to the integral over
a bounded, directional surface, provided that the integrand can be written as
the “divergence” (in the most general sense) of the field . We will often make
use of this important law. It is a generalization of the well known relationship

b
/df(x)d:z: = f(b) — f(a) . (1.95)
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The application of Gauss’ law to the last integral in (1.93) furnishes a rela-
tionship known as Reynolds’ transport theorem:

/// pdV = ///&DdV—i—//goumidS. (1.96)

V(t) V) (%)

This relates the rate of change of the material volume integral to the rate of
change of the quantity ¢ integrated over a fixed region (V'), which coincides
with the varying region (V(¢)) at time ¢, and to the fluz of the quantity ¢
through the bounding surfaces.

We note here that Leibniz’s rule holds for a domain fixed in space: this
means that differentiation can take place “under” the integral sign:

wlff o=l ae )

V)

To calculate the expression for the rate of change of a directional material
surface integral we change the order of integration and differentiation. If
(S(t)) is a time varying surface region which is occupied by the material
surface during the motion, in analogy to (1.90) we can write

Dt // pn;dS = /—nzdS—i—// —(n; dS) . (1.98)

(5(1)

For the integrals on the right—hand side, we can think of the region of integra-
tion (S(¢)) as replaced by a fixed region (S) which coincides with the varying
region at time t. After transforming the last integral with the help of (1.63)
we get the formula

ou, Ou,;
id id —In;pdS — 7 d
Di // pn; dS = // —n S+//axjn<p S //ax njedS .
(8()) (%) (%)
(1.99)

Let (C(t)) be a time varying one-dimensional region which is occupied by
a material curve during the motion, and let ¢ be a (tensorial) field quantity.
The rate of change of the material curve integral of ¢ can then be written as

D ©® Dz;
Di / gada:l—/—d:cZ /wd{Dt} (1.100)

(c@®) @) (©)

from which we get using (1.10):

D Dy

2 dz; = | =2 dz du; . 1.101
Dt/wrc /th+/<ﬁu (1.101)
(C(#)) () (C)
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This formula has important applications when ¢ = w;; in this case then

pdu; =u;du; =d [%}
is a total differential, and the last curve integral on the right-hand side of
(1.101) is independent of the “path™ it is only determined by the initial point
I and the endpoint E. This obviously also holds for the first curve integral on
the right-hand side, when the acceleration Dy/ Dt = Du;/ Dt can be written

as the gradient of a scalar function:

(1.102)

D’U,i ol
—_— = 1.103
Then (and only then) is the first curve integral path independent:
Dy ol
—dx; = dz; = dl =1 — Iy . 1.104
[ Bawi= [ San- [ar-ne-1, (1.104)

@) @) (©)

The curve integral of u; round a closed material curve (in the mathematically
positive sense of direction)

I'= j{uldxl (1.105)

is called the circulation. Later we will discuss the conditions under which
the acceleration may be written as the gradient of a scalar function, but now
we will infer from (1.101) that then the rate of change of the circulation is
zero. This follows directly from the fact that the initial and final points of
a closed curve coincide and from our implicit assumption that I and u; are
continuous functions. The fact that the circulation is a conserved quantity, so
that its rate of change is zero, often leads to an explanation for the strange
and unexpected behavior of vortices and vortex motion.
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2.1 Conservation of Mass, Equation of Continuity

Conservation of mass has already been postulated in the last chapter, and
now we will make use of our earlier results and employ (1.83) and (1.93) to
change the conservation law (1.85) to the form

[ ew= [+ o] av=s e

V(1))

This equation holds for every volume that could be occupied by the fluid,
that is, for arbitrary choice of the integration region (V). We could therefore
shrink the integration region to a point, and we conclude that the continuous
integrand must itself vanish at every #. Thus we are led to the local or
differential form of the law of conservation of mass:

do 0 B

This is the continuity equation. If we use the material derivative (1.20) we

obtain

=0, (2.3a)

or written symbolically

Do
— = 2.
Dt—i—gV u=0. (2.3b)

This also follows directly by using (1.86) together with (1.60). If
Do 0o do

Dt ot Yo,

=0 (2.4)

holds, then the density of a single material particle does not vary during its
motion. By (2.3a), (2.4) is equivalent to

=0, (2.5)
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i.e., the flow is volume preserving. This is also often called incompressible
flow, by which is meant that the fluid, whether it is gas or liquid, can be
viewed as incompressible. If (2.4) is satisfied, the continuity equation takes
on the simpler form (2.5) where no derivative with respect to time appears,
but which nevertheless holds for unsteady flows.

The conditions under which the assumption Do/ Dt = 0 is justified can
only be properly discussed in the fourth chapter; it is enough to say here
that in many technically important cases even gas flows may be regarded as
incompressible.

As a rule the condition Dp/ Dt = 0 is satisfied by liquids, but there are
flows where even the change in volume in liquids is significant. This is the
case in the unsteady flows which occur when valves on conduits are quickly
opened or closed, or in supply pipes of hydraulic turbines when the gate
settings are suddenly changed, but also in fuel injection systems when the
injectors are opened or closed.

Incompressible flow does not mean that the density is the same for every
particle. Consider the flow in the ocean which is incompressible (Dgp/ Dt = 0
holds), but where the density of particles differ from one to another as a result
of different salt concentrations.

If the density is spatially constant, so Vo = 0, we talk of a homogeneous
density field. In incompressible flow, not only do the four terms in (2.4) sum
to zero, but each term itself is now identically equal to zero.

Transforming the conservation of mass (1.85) with the help of Reynolds’
transport theorem, we arrive at the integral form of the continuity equation:

Dt T Dt /// odV = // —dV+//QUinidS:0 (2.6)
(8)

(V(®)

///% V*—///é’d"—*//@umid& (2.7)

W) W) (5)

In this equation we consider a fixed domain of integration, a so-called con-
trol volume, and we interpret this equation as follows: the rate of change of
the mass in the control volume is equal to the difference between the mass
entering and the mass leaving through the surface of the control volume per
unit time. This very obvious interpretation often serves as a starting point
for the elucidation of the mass conservation. In steady flow, 9p/0t = 0, and
the integral form of the continuity equation reads:

//guinidSzo, (2.8)

(5)

i.e. , just as much mass enters as leaves the control volume per unit time.
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2.2 Balance of Momentum

As the first law (axiom) of classical mechanics, accepted to be true without
proof but embracing our experience, we state the momentum balance: in an
inertial frame the rate of change of the momentum of a body is balanced by
the force applied on this body:

DP

— =F. 2.9

Dr (2.9)
What follows now only amounts to rearranging this axiom explicitly. The
body is still a part of the fluid which always consists of the same material
points. Analogous to (1.83), we calculate the momentum of the body as the
integral over the region occupied by the body:

P = /// odV . (2.10)

(V(®)

The forces affecting the body basically fall into two classes, body forces, and
surface or contact forces. Body forces are forces with a long range of influence
which act on all the material particles in the body and which, as a rule, have
their source in fields of force. The most important example we come across
is the earth’s gravity field.The gravitational field strength ¢ acts on every
molecule in the fluid particle, and the sum of all the forces acting on the
particle represents the actual gravitational force:

AF =G> m; = Gam . (2.11)

The force of gravity is therefore proportional to the mass of the fluid particle.
As before, in the framework of the continuum hypothesis, we consider the
body force as a continuous function of mass or volume and call

S AF
k= 1l —_— 2.12
A0 A (2.12)
the mass body force; in the special case of the earth’s gravitational field
k = g, we call it the gravitational force. The volume body force is the force
referred to the volume, thus
- AF
= lim =— 2.1
f= A av (2.13)

(cf. Fig. 2.1), and in the special case of the gravitational force we get:

f= lim §=—— =go. (2.14)
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Other technically important body forces appear because of electromagnetic
fields, or are so-called apparent forces (like the centrifugal force), when the
motion is referred to an accelerating reference frame.

The contact or surface forces are exerted from the surrounding fluid or
more generally from other bodies on the surface of the fluid body under
observation. If AF is an element of the surface force, and AS is the surface
element at Z where the force is acting, we call the quantity

Fo AF
T AsD0 AS
the stress or traction vector at T (cf. Fig. 2.1). The stress vector is not only
dependent on # and the time ¢, but also on the orientation of the surface
element at &, that is on the surface element’s normal vector 7, and it is in
general not directed parallel to the normal vector. More often we call the
projection of ¢ in the direction parallel to the normal the normal stress and
the projection in the plane perpendicular to 7 the tangential stress.
We assume that the applied force is the sum of the two kinds of force and
work out the whole force acting on the part of the fluid under observation by
integration over the volume occupied by the fluid and over its surface to get

F= /// ok dV + // rds (2.16)

(V(®) (5(1))

(2.15)

so that the balance of momentum takes the form

/// ondv = ///QEdVJF({)/ £as . (2.17)

V(t)

As before, without loss of generality, we can replace the time varying domains
of integration on the right with fixed domains. Then applying (1.88) to the
left-hand side leads us to the form

[[[ 5= [Jf v Jfeas. e

Fig. 2.1. Depiction of the volume and surface forces
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from which we reach an important conclusion: if we divide this equation by
12, where [ is a typical dimension of the domain of integration, say | ~ V'1/3,
and take the limit I/ — 0, the volume integrals vanish and we are left with

hm I~ 2//tdS =0. (2.19)

(S)

Equation (2.19) means that the surface forces are locally balanced. Obviously
(2.19) holds for nonvanishing #, because ¢ does not represent a field in the
usual sense, but one which is dependent on 7 as well as . We will use this
result to show the way that the stress vector is dependent on the normal
vector 71 at the fixed place Z. Looking at the tetrahedron of Fig. 2.2, the
normal vector to the inclined surface is 7i, and the other surfaces are parallel
to the coordinate planes; their normal vectors are then —éj, —é5 and —ej.
If AS is the area of the inclined surface, then the other surface areas are
ASny, ASne and AS ng, respectively. For the stress vector belonging to
the inclined surface we will write (), and for the others ¢(—€), (=€) and

)

(=) Applying the local stress equilibrium (2.19) we arrive at:

AS [ o L
lim |1- 2//tds _hm{l—2 [t(_el)m-l-t(_62)n2+t(_63)n3+t(")}} =0,

(2.20)
or .
F — (= Bl)nl _ (=), Nng — F(—¢ )n3 , (221)

since AS vanishes as [%. In (2.21) all the stress vectors are to be taken at the
same point, namely the origin of the coordinate system of Fig. 2.2. If we put
7i = €1 we have ny =1, ng = n3 =0, and (2.21) leads to

f@) — _p(=é) , (2.22)

or more generally

{0 = =) (2.23)

This means that the stress vectors on the opposite sides of the same surface
elements have the same magnitudes and opposite signs. Then instead of (2.21)

we write B
£ = 7@y 4 (@), 4§y (2.24)

Therefore, the stress vector is a linear function of the normal vector. The
stress vector belonging to the surface with normal vector €; can now be
resolved into its components

E‘(€1) = 7-1161 —+ T1252 + Tlggg, (225)
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5113‘

I3

Z

Fig. 2.2. The relationship between the normal vector and the stress vector

and we designate the first index as giving the direction of the normal vector,
and the second as fixing the direction of the component. Similarly we can
resolve the stress vectors of the other coordinate planes and of the inclined
surfaces into their components, and insert them into equation (2.24). From
the resulting equation

o t1€1+  n1(T11€1 + T12€2 + T13€3) +
t(n) = t2€2 + = HQ(T2151 + T22€2 + TQggg) =+ (226)
t3€3 n3(731€1 + T3262 + T33€3)

we can read off the component equation in the first direction:
t1 = 111n1 + 219 + T31N3 (2.27)

where the superscript 77 has been and will continue to be dropped. The result
for the ith direction is

t; = TN + To;no + T3;M3 . (2.28)
We can shorten Eq. (2.28) using Einstein’s summation convention:
ti(f, ﬁ, If) = Tji(f, t)nj (i, ] = 1, 2,3) ] (2.29&)

here we have indicated the dependency of £ on Z, 7@ and ¢ explicitly. The nine
quantities necessary to specify the stress vector on a surface element with
some normal vector 71 at Z form a second order tensor. The physical meaning
of the general component 7j; is given by (2.26): 7;; is the magnitude of the
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ith component of the stress vector at the element of the coordinate plane
with normal vector in the jth direction.

Although ¢; is not a vector field in the usual sense, since it is linearly
dependent on the vector @ at &, 7;;(Z,t) is a field, or to be more precise,
a tensor field. Expressed mathematically, (2.29a) is a linear homogeneous
mapping of the normal vector 7 onto the vector . Symbolically we can write
(2.29a) as

t=n-T, (2.29b)

where the matrix representation of the stress tensor T is given below:

Ti1 Ti2 Ti13
[T] = 721 T29 723 . (230)
731 T32 733

The main diagonal elements are the normal stresses and the nondiagonal
elements are the shearing stresses. We will show later that the stress tensor
is a symmetric tensor of the second order and it is therefore diagonalizable.
At every & we can specify three mutually orthogonal surface elements on
which only normal stresses act. These surface elements are parallel to the
coordinate surfaces of the principal axis system. Just as we did in connection
with the rate of deformation tensor, we find the normal vectors to these
surface elements by looking for vectors which are parallel to the stress vectors,
that is, those which satisfy the equation:

ti = TjiMN; = 0 Ng = anjéji . (231)
The characteristic equation of this homogeneous system of equations is
—U3+Il-,—0'2 —Iyyo+ 13, =0, (2.32)

where the invariants can be calculated in the same way as in (1.58). If this
characteristic equation has three distinct roots (eigenvalues), there is only
one principal axis system. In a fluid at rest, all the friction stresses vanish, by
definition, and all three eigenvalues are equal: 1) = ¢(?) = ¢(3) = —p. Now
every orthogonal system of axes is a principal axis system and (2.31) holds
for any 7. The state of stress is now spherical, i.e.,

Tji = —péj' (233)
and is called hydrostatic. The stress vector is, from (2.31)
ti = TjiN; = —P 5jinj = —pn;, (234&)

or, written symbolically
t=—pn. (2.34b)
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The magnitude of this stress vector is the pressure p, which is a scalar quan-
tity, independent of 77. Occasionally, although it is always possible, an arbi-
trary state of stress is decomposed as

Tij = —P 5ij + Pij y (235)

and Pj; is called the friction stress tensor. It has the same principal axes as
the tensor 7;;. The mean normal stress p is defined by

3
which in general is not equal to the negative pressure. However if this is the
case, then P;; is a deviator.
If we put the expression (2.29) for the stress vector into the momentum
law (2.18), and transform the surface integral into a volume integral using
Gauss’ theorem, we get

D’U,i 8731- -
///(g Dr le(’“)xj)dv_ . (2.37)

V)

Because of the assumed continuity of the integrand and the arbitrary domain
of integration (V'), (2.37) is equivalent to the differential form of the balance
of momentum:

Du; O0Tji
L=k - 2.38
e Dt e + aCCj ’ ( a)
or written symbolically:
Du -
— =k -T . 2.38b
0p; =ok+V (2.38Db)

This relationship is known as Cauchy’s first law of motion. We can reach an-
other form of it when we transform the left-hand side of (2.17) using Reynolds’
transport theorem (1.93), and then conclude that

() + g (o) = oki+ 5 (r) (2.39)
Cauchy’s law of motion holds for every continuum, so it holds for every fluid,
whatever its particular material properties are. It is the starting point for the
calculation of fluid mechanical problems. Using the constitutive equation,
that is, the relationship between the stress tensor and the motion (for exam-
ple, the rate of deformation tensor), Cauchy’s equation of motion is changed
to a specific equation of motion for the material under observation.

If we are able to write the integrals as surface integrals, the integral form
of the balance of momentum attains a considerable importance in technical
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applications. In order to do this, we first transform the balance of momentum
(2.17) with Reynolds’ transport theorem in the form of (1.96), and we obtain

/// dV*//@U )dS—(/V/)/gEdV+(é)/FdS. (2.40)

The first integral on the left-hand side cannot be transformed into a surface
integral. Therefore the balance of momentum in its integral form attains the
afore mentioned importance only if this integral vanishes. This is the case
in steady flows, or in unsteady flows whose time averaged values are steady,
as happens in turbulent steady flows. (In steady turbulent flows, the time
averaged momentum flux, which is different from the momentum flux formed
with the average velocity, must be used in (2.40). We refer in this connection
to Chap. 7.)

The first integral on the right-hand side can be written as a surface integral
when the volume body force can be calculated as the gradient of a scalar
function, that is, when the volume body force has a potential. We will write
the potential of the volume body force as (2 (f = QE = —V{2), and the
potential of the mass body force as (E = —V). (To illustrate this, think of
the most important potential: the gravitational potential (2 = —pg;z; , ¥ =
—gix;)). Analogous to our remarks about the velocity potential, V x (9 k) = 0
is a necessary and sufficient condition for the existence of the potential of
the volume body force. The most important case here is the one where p is
constant and the mass body force k has a potential. Then the volume integral
can be written as a surface integral:

///ledv:*///vgdvz’//QﬁdS, (2.41)

V) V) (5)

and the balance of momentum (2.40) now reads

//gaﬁﬁ S:—//QﬁdS—i—//FdS. (2.42)
(S) (S)

(5)

We can get insight into the meaning of the balance of momentum when we
consider that by knowing the momentum flux and the potential 2 we know
the force on the surface of the control volume. Often we will only want to
know the force which comes from the momentum flux. Then we take the
balance of momentum in its most frequently used form:

//ga'(ﬁ-ﬁ)dsz // tds . (2.43)
(S) (S)
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Conversely, the momentum flux is known from (2.43) if the force has been
given. The often unknown, and sometimes incalculable, events right inside
the control volume do not appear in the balance of momentum (2.43), and
only the quantities on the surface are of importance. Since we can choose the
control volume whatever way we want, we usually fix the surface so that the
integrals are as easy as possible to evaluate. Often we can fix the surface so
that the stress vector takes the same form as that in a fluid at rest, that is,
t = —pii. Then it is possible to draw conclusions from (2.43) without having
to refer to a particular constitutive law.

2.3 Balance of Angular Momentum

As the second general axiom of classical mechanics we shall discuss the an-
gular momentum balance. This is independent of the balance of linear mo-
mentum. In an inertial frame, the rate of change of the angular momentum
is equal to the moment of the external forces acting on the body:

D, - -
5 (L) =1 (2.44)

We calculate the angular momentum L as the integral over the region occu-

pied by the fluid body
L= /// 7 x (p@)dV . (2.45)
(

V(1))

The angular momentum in (2.45) is taken about the origin such that the
position vector is Z, and so we must use the same reference point to calculate
the moment of the applied forces

M = ///fx(glz)dv+ // 7 xtds (2.46)

(V(®) (5(8))

recalling, however, that the choice of reference point is up to us. Therefore
the law of angular momentum takes the form

> /// fx(ga)dvz///fx(gé)dv+//fx{ds (2.47)
W3

(V(®) (S)

where, for the same reasons as before, we have replaced the time varying
domain of integration on the right with a fixed domain. Now we wish to show
that the differential form of the balance of angular momentum implies the
symmetry of the stress tensor. We introduce the expression (2.29) into the
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surface integral, which can then be written as a volume integral. In index
notation this becomes

0
// €ijk T TIENY ds = /// Eijka—zl(wjﬂk)dv , (2.48)
() V)

and after applying (1.88) to the left-hand side of (2.47) we get first

D 0
/// fijk <QE(CCjuk) — a—wl(xjnk) — :Ejg/{k> dV = O 5 (249)

V)

and after differentiation and combining terms

Du 0T
/// |:6ijk$j (QD_tk — a—;f — Qkk) + Q€ijkUjUE — Eijijk:| dV =0.
(V)

(2.50)

If the balance of momentum (2.38) is satisfied, the expression in the middle
brackets vanishes, thus eliminating position vector, x; which then shows that
the balance of angular momentum is indeed invariant with respect to reference
point. The outer product €;;,u;ju) vanishes also, since @ is naturally parallel
to itself, so the balance of angular momentum is reduced to

J]] cnrwav =o. (2.51)

")
Since the tensor field 75 is continuous, (2.51) is equivalent to
€ijkTik =0, (2.52)
proving that 7;; is a symmetric tensor:
Tik = Thj - (2.53)

Just as in the case of the integral form of the balance of momentum, so the in-
tegral form of the balance of angular momentum achieves special significance
in technical applications. We are only interested in the moment which is due
to the angular momentum flux through the control surface, and we restrict
ourselves to steady flows, or unsteady flows which are steady in the manner
discussed earlier. Using Reynolds’ transport theorem (1.96), (2.47) yields the
balance of angular momentum in a form where only surface integrals appear:

// €ijkTiuroun; dS = // €kt dS (2.54a)

(9) (S)
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//fxﬁg -ﬁdS://fxde. (2.54b)

(S) (S)

There is a particular form of the balance of angular momentum (2.54) called
Euler’s turbine equation (see Sect. 2.5) which forms the most important law
in the theory of turbomachines.

or symbolically

S

2.4 Momentum and Angular Momentum
in an Accelerating Frame

The balance of momentum and angular momentum that we have discussed
so far are only valid in inertial reference frames. An inertial reference frame
in classical mechanics could be a Cartesian coordinate system whose axes
are fixed in space (relative, for example, to the fixed stars), and which uses
the average solar day as a unit of time, the basis of all our chronology. All
reference frames which move uniformly, i.e. not accelerating in this system,
are equivalent and thus are inertial frames.

The above balances do not hold in frames which are accelerating relative
to an inertial frame. But the forces of inertia which arise from nonuniform
motion of the frame are often so small that reference frames can by regarded
as being approximately inertial frames. On the other hand, we often have to
use reference frames where such forces of inertia cannot be neglected.

To illustrate this we will look at a horizontal table which is rotating with
angular velocity (2. On the table and rotating with it is an observer, who
is holding a string at the end of which is a stone, lying a distance R from
the fulecrum of the table. The observer experiences a force (the centrifugal
force) in the string. Since the stone is at rest in his frame, and therefore the
acceleration in his reference frame is zero, the rate of change of momentum
must also be zero, and thus, by the balance of momentum (2.9), the force
in the string should vanish. The observer then correctly concludes that the
balance of momentum does not hold in his reference frame. The rotating table
must be treated as an noninertial reference frame. The source of the force in
the string is obvious to an observer who is standing beside the rotating table.
He sees that the stone is moving on a circular path and so it experiences
an acceleration toward the center of the circle, and that according to the
balance of momentum, there must be an external force acting on the stone.
The acceleration is the centripetal acceleration, which is given here by 22R.
The force acting inwards is the centripetal force which is exactly the same
size as the centrifugal force experienced by the rotating observer.

In this example the reference frame of the observer at rest, that is the
earth, can be taken as an inertial reference frame. Yet in other cases deviations
from what is expected from the balance of momentum appear. This is because
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the earth is rotating and therefore the balance of momentum strictly does
not hold in a reference frame moving with the earth. With respect to a frame
fixed relative to the earth we observe, for example, the deflection of a free
falling body to the east, or the way that the plane of oscillation of Foucault’s
pendulum rotates. These examples, and many others, are not compatible with
the validity of the balance of momentum in the reference frame chosen to be
the earth. For most terrestrial events, however, a coordinate system whose
origin is at the center of the earth, and whose axes are directed towards
the fixed stars, is valid as an inertial reference frame. The easterly deflection
mentioned above can then be explained by the fact that the body, in its
initial position, has a somewhat higher circumferential speed because of the
rotation of the earth than at the impact point nearer the center of the earth.
To explain Foucault’s pendulum, we notice that, in agreement with (2.9),
the pendulum maintains its plane of oscillation relative to the inertial frame.
The reference frame attached to the earth rotates about this plane, and an
observer in the laboratory experiences a rotation of the plane of oscillation
relative to his system with a period of twenty-four hours.

The description of the motion in the inertial reference frame is of little
interest for the observer; it is far more important for him to be able to describe
the motion in his own reference frame, since this is the only system where
he can make measurements. In many applications the use of an accelerating
reference frame is unavoidable, for example in meteorology we always want
to know the motion of the wind relative to the earth, that is, in a rotating
reference frame. It is often useful, and sometimes essential for the solution of
technical problems, to use an accelerating frame.

If we want to calculate the motion of a spinning top, the earth is a good
enough inertial reference frame. But in this system the tensor of the moments
of inertia is time dependent, so it is better to choose a reference frame at-
tached to the top, where, even though this is an accelerating reference frame,
this tensor is constant in time. In problems in fluid mechanics it is a good
idea to use an accelerating reference frame if the boundary of the flow region
is at rest relative to this frame. Consider for example, the flow in the passages
of a turbomachine. In a frame fixed to the rotor, and therefore rotating, not
only are the blades forming the passages at rest, but the flow itself is more
or less steady, making the analytical treatment of the problem much easier.

In what follows we shall formulate the balances for momentum and angu-
lar momentum so that they only contain quantities which can be determined
in an accelerating system. We shall use the basic assumption that forces and
moments are the same for all observers, whether they are in accelerating or
inertial reference frames. The rate of change of the momentum or angular
momentum, or the rate of change of the velocity is dependent on the refer-
ence frame, as is the change of any vector (with an exception, as we shall
see).
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First we shall turn towards the differential form of the balances of mo-
mentum and angular momentum in an accelerating system. Let us look at
a system fixed in space (inertial reference frame) and a system accelerating
with respect to it, which is carrying out a translation with velocity #(¢) and
a rotation with angular velocity 2(t) (Fig. 2.3). We shall denote the rate of
change of the position vector Z of a material particle in the moving reference
frame with D

z .
[DJA = u (2.55)

and we shall call W the relative velocity.

In the inertial reference frame the position vector of the particle under
observation is Z + 7 and its rate of change is called the absolute velocity:

D

[Bﬂf+ﬁk_6. (2.56)

Following the usual notation used in turbomachinery we shall denote the

absolute velocity with ¢. The absolute velocity results from the vector sum
of the relative velocity w, the velocity of the origin of the moving frame

- [2] )

and the circumferential velocity OxE arising from the rotation of the moving
frame at the position Z, to give:

=W+ xT+7. (2.58)

Fig. 2.3. Moving reference frame



2.4 Momentum and Angular Momentum in an Accelerating Frame 49

From (2.55) to (2.58) we get the basic formula for the rate of change of the
vector Z in the two reference frames:

Dz Dz =
— | == NxT. 2.59
{ Dt } I [ Dt ] A Il (259)
Obviously this formula does not only hold for the vector Z, but it holds in

general. Consider the general vector b which has relative to the accelerating
reference frame the Cartesian resolution:

EZ b1€1 + boes + byes = b;e; . (260)
Its observed change in the inertial reference frame is

Db
Dt

Db; Dé;
= Dig g p 2.61
) VY (2.61)

The first three terms represent the change of the vector b in the moving
reference frame. In this system the basis vectors €; are fixed. Yet in the
inertial reference frame these unit vectors are translated parallel, which does
not change them, but they are also rotated. For the time being we interpret
Deé; /Dt as the velocity of a material particle with position vector €;. But since
€; is a unit vector its velocity can only be the circumferential velocity [03% €5,
so that we extract the equation:

Dé;
Dt
Using this we get from (2.61) the Eq. (2.59)

=0 xé. (2.62)

Dj
Dt

Di
Dt

+0xb. (2.63)
A

1

If b = (2 the changes in the inertial reference frame and in the frame moving
relative to it are equal:

D
Dt

DG | 40
Dt | &t
A

(2.64)

I

This obviously holds only for the angular velocity (3 or for vectors which are
always parallel to 0.

We will need the rate of change of the absolute velocity [Dé/Dt]; in
Cauchy’s equation (2.38). As we have already noted, the right-hand side is
frame invariant. If we use (2.58) we are led to the equation
D¢ Dw D(f2 x &) Dv
o], =[5+ ol e

I

Dt Dt
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Dt

to which we apply (2.63) and (2.64) to get
X T+ by
T+ = .
Dt |,

D& D] = . ([D& .
= | = +0xu+0x(|=| +0x7
5], = [5r] reme ([5]  + 2) ¢

(2.66)

If we write (D¥/Dt); = @ for the translational acceleration of the frame and
replace (DZ/Dt)p by @ using (2.55), the acceleration in the inertial reference
frame can be expressed in quantities of the accelerating frame:

Dé D < 5 4o

—| =|= 20X W+ 02X (2 XE)+—xT+d. 2.67
B, = D), 2 E e Ax @x e Gxara o
Only the acceleration as seen from the inertial frame can enter Cauchy’s equa-
tion, since it is only valid in this frame. But by using (2.67) this acceleration
can be expressed in quantities seen from the accelerating system, so that we

finally reach the equation

Q|:D—w:| =ok+V.-T— (g&+2gﬁx1ﬁ+gﬁx (ﬁxf)+g£ X T
Dt |, dt

(2.68)
(Note here that (2.68) is a vector equation where k and V-T have meanings in-
dependent of frame, i. e. they are the same arrows in all frames. Where written
as a matrix equation or in index notation the components must transform into
the moving coordinate system, using the relationships in Appendix A.) Apart
from the terms in the curved brackets, equation (2.68) has the same form as
Cauchy’s equation in the inertial reference frame. In the moving reference
frame, these terms act as additional volume forces, which are added to the
external forces. They are pure inertial forces which stem from the motion
of the system relative to the inertial reference frame, and are therefore only
“apparent” external forces hence their name apparent or fictitious forces.

The term —pa is the apparent force due to the translational acceleration
(per unit volume) and it vanishes when the origin of the relative system
is at rest or is moving with constant velocity. The term 729(_} X w is the
Coriolis force, and it vanishes when the material point is at rest in the moving
reference frame. The centrifugal force is represented by the term —gﬁ X
(ﬁ x Z), and is also present when the material point is at rest in the moving
reference frame. The fourth expression has no special name.

Equation (2.68) furnishes the differential form of the balance of momen-
tum in a moving reference frame. If this law is satisfied, no rate of change
of velocity appears in the differential form of the balance of angular momen-
tum (cf. (2.50)), and this law remains valid in all reference frames, something
that is expressed by the symmetry of the stress tensor in all reference frames.
Thus the apparent forces appear only in the differential form of the balance
of momentum and not in that of angular momentum.
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The apparent forces that arise from the rotation of the earth can only
influence events if the spatial extent of the motion under consideration is
the order of the earth’s radius, or if its duration is the order of hours. That
means that their influence is barely noticed in rapid flow events of small
extent, and can, in general, be ignored. However their influence is noticeable
in the motion of the sea, and it is even larger in atmospheric flows. The
earth rotates about 27 in one sidereal day (which with 86164 s is somewhat
shorter than a solar day of 86400 s), so it moves with an angular velocity of
2 = 27/86164 ~ 7.29 - 107551, Since the angular velocity is constant, the
last term of (2.68) vanishes. In addition, the effect of the rotation about the
sun can be ignored, so that only the Coriolis and centrifugal forces act as
apparent forces. The centrifugal force at the equator amounts to 0.3% of the
earth’s attraction. In measurements it is hardly possible to separate the two
forces and it is actually the resultant of both forces that we call the gravity
force g. The vector ¢ is normal to the geoid, and is not directed exactly at
the center of the earth.

Now let us consider an air particle which moves in a north-south direction
(Fig. 2.4). In the northern hemisphere the vector 2 points out of the earth.
The Coriolis force —20 2 x @ is perpendicular to @ and to @, and forces
the particle in the direction of its motion to the right. The same holds for
a particle which is moving in a south-north direction: it is forced to the
right seen in the direction of motion. As a rule, irrespective of the velocity
direction, particles in the northern hemisphere are forced to the right and
those in the southern hemisphere are forced to the left. Without allowing for
the Coriolis force in Cauchy’s equation, we would conclude that the air flows

)

particle path

g

Fig. 2.4. The influence of the Coriolis force on the particle path
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in the direction of the pressure gradient, and therefore normal to the isobars.
If we ignore the friction, we get from (2.35)

Tij = —péij . (269)

If in addition, we only consider motion parallel to the geoid, so that the force
of gravity o g has no component in the direction of motion, (2.68) reads in
index notation
0 le _ 6(—p5ij) _ 6p ’ (270)
Dt aZCj 8:171
which means that the air is only accelerated in the direction of the pressure
gradient, and so it flows radially into a low. Yet because of the Coriolis force,
the air in the northern hemisphere is turned to the right, and it flows anti-
clockwise, almost tangential to the isobars, into the low (Fig. 2.5). Since the
acceleration in the relative system is small compared to the Coriolis accel-
eration, the pressure gradient and the Coriolis force almost balance (Buys-
Ballot’s rule). A consequence of the Coriolis force is the slightly higher water
level in the right bank of rivers in the northern hemisphere and a tendency
to deviate to the right. This phenomenon, called Baer’s law, can also be ob-
served in lakes into and out of which rivers flow. Definite erosion can even
be seen on the right bank of some rivers. However, other influences, like the
mutable resistance of the river bed, are morphologically more important.
Although on the earth the Coriolis force is very small, these examples
show that is cannot always be ignored. Even with velocities of v = 1000
m/s, typical of artillery shells, the maximum Coriolis acceleration is only

without Coriolis force

isobar

isobar

with Coriolis force

Fig. 2.5. Low in the northern hemisphere
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20u=~2-(7.29-107°s) - (1000 ms~2) ~ 0.015 g. In spite of this its influence
on the trajectory is quite noticeable.

In technical applications, the balances of momentum and of angular mo-
mentum in their integral form must often be used in reference frames attached
to rotating machine parts. As already noted, the flow is then almost always
steady. A starting point is the balance of momentum (2.17). The velocity
appearing here is of course the absolute velocity ¢:

Dt /// ocdV :///QEdV+//de. (2.71)
(V) (S)

(V(®)

We will apply the basic formula (2.63) to the rate of change of momentum
in order to express this in quantities relative to the rotating reference frame.
This leads to

Dt /// ocdV +Qx///gadvz///g/2dv+//Fds, (2.72)

V(1) V) (V) (9)

where, in the second integral on the left-hand side, we have replaced a time
dependent domain with a fixed integration domain. Immediately we can apply
Reynolds’ transport theorem to the first term, since this theorem is purely
kinematical, and therefore holds in all reference frames. Equation (2.72) now
takes the form

5 ///chV +//gcw dS—i—Qx///gch ///gde—i—//tdS

(8)

(2.73)
In this equation, both the absolute velocity ¢ and the relative velocity w
enter. The latter appears because the momentum in the relative system is
transported through the surface of the control volume with the relative veloc-
ity . As mentioned, in applications the flow in the relative system is often
steady, and the rotational velocity @ is constant, so that in many technically
important cases the first term on the left-hand side drops out. If we restrict
ourselves to the statement of the balance of momentum without volume body
forces, we get from (2.73)

//ga(w-ﬁ)ds+///gﬁxadvz//fds, (2.74)
(s) V) (s)

where we have brought the constant vector @ into the volume integral. For
incompressible flow, the volume integral can be transformed into a surface
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integral. We shall not do this because in applications we are often only inter-
ested in the component of the momentum in the @ direction. If we take the
inner product with the unit vector €o = 2/|/2| the volume integral vanishes,
since 3 x s always perpendicular to €y,. Therefore the component equation
in the ( direction reads:

//gé'g-a(w-ﬁ)dsz//é'g-Fds. (2.75)
(S)

(S)

We note the appearance of both the relative and the absolute velocities. In
applications this does not cause confusion and we refrain from replacing ¢
using (2.58).

Now we shall apply the same considerations to the balance of angular
momentum: using the formula (2.63) the rate of change in the inertial refer-
ence frame is expressed through the change in the relative system, and then
Reynolds’ transport theorem is applied to this. Let the flow in the relative
system be steady. Neglecting the moment of the volume forces, the integral
form of the balance of angular momentum then becomes

//g(:ﬁ’xé)(u?-ﬁ)d5+ﬁx///g(:?xé’)dV://:E’xde. (2.76)
(S) (V) (S)

The middle term contains a volume integral, but it is zero if the angular
momentum vector L has the same direction as 2. Turbomachines are designed
so that this is the case. Only in very extreme operating conditions, near shut-
off, is it possible that the flow is no longer rotationally symmetric to the axis
of rotation. Then the angular momentum L is no longer in the direction of
. This corresponds to a dynamic imbalance of the rotor. If we consider only
the component equation of angular momentum in the direction of 10; (from
which the torque on the rotor can be calculated) we always get an equation
where the volume integral no longer appears:

59-//9(:E'><E)(u7-ﬁ)dS:é'g-//:E’xde. (2.77)
(S) ()

Here too both the absolute velocity ¢ and the relative velocity  appear.

2.5 Applications to Turbomachines

Typical applications of the balances of momentum and of angular momentum
can be found in the theory of turbomachines. The essential element present
in all turbomachines is a rotor equipped with blades surrounding it, either in
the axial or radial direction.
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When the fluid exerts a force on the moving blades, the fluid does work.
In this case we can also speak of turbo force machines (turbines, wind wheels,
etc.). If the moving blades exert a force on the fluid, and thus do work on it,
increasing its energy, we speak of turbo work machines (fans, compressors,
pumps, propellers).

Often the rotor has an outer casing, called stator, which itself is lined with
blades. Since these blades are fixed, no work is done on them. Their task is
to direct the flow either towards or away from the mowving blades attached to
the rotor. These blades are called guide blades or guide vanes. A row of fixed
blades together with a row of moving blades is called a stage. A turbomachine
can be constructed with one or more of these stages. If the cylindrical surface
of Fig. 2.6 at radius r through the stage is cut and straightened, the contours
of the blade sections originally on the cylindrical surface form two straight
cascades. The set up shown consists of a turbine stage where the fixed cascade
is placed before the moving cascade seen in the direction of the flow.

, , stationary cascade s ,

moving cascade m 2N\ |
Q\\\ \

L

Fig. 2.6. Axial turbine stage
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Obviously the cascades are used to turn the flow. If the turning is such that
the magnitude of the velocity is not changed, the cascade is a pure turning or
constant pressure cascade, since then no change of pressure occurs through
the cascade (only in the case of frictionless flow). In general the magnitude
of the velocity changes with the turning and therefore also the pressure. If
the magnitude of the velocity is increased we have an acceleration cascade,
typically found in turbines, and if it is decreased we have a deceleration
cascade, typically found in compressors. We shall consider the cascade to be
a strictly periodic ordering of blades, that is, an infinitely long row of blades
with exactly the same spacing s between blades along the cascade. Because
of this the flow is also strictly periodic.

In the following the object is to calculate the force acting on the cascade
or on a single blade for a given flow deflection and pressure drop through
the cascade. We shall assume that the flow is a plane two-dimensional flow,
that is, that the same flow is found in all sections parallel to the plane of
Fig. 2.6. In reality the flow passages between blades become wider in the
radial direction, so that the assumption of plane cascade flow represents the
limit r — oo with constant blade height. For the moving blades this also
means that for a given constant circumferential velocity of |2 x & = £r,
the angular velocity tends to zero as r tends to infinity. Then the centrifugal
acceleration |2 x (£ x #)| = £22r and the Coriolis acceleration 282 x | both
tend to zero with (2.

The assumption of a plane twodimensional flow therefore means that the
moving cascade is an inertial reference frame. This is also evident from the
fact that in this approximation every point of the moving cascade moves with
the same constant velocity. The balance of momentum in an inertial referen-
ce frame can therefore be applied both to the stationary and the moving
cascade.

In dealing with the moving cascade, we observe that the approach flow to
the moving cascade is not equal to the flow leaving the stationary cascade. If
the moving cascade in Fig. 2.6 has a circumferential velocity of 9 x & down-
wards, an observer in the reference frame of the moving cascade experiences
an air-stream of the same magnitude blowing upwards — (3 x . This velocity
is to be added to the velocity of the flow leaving the stationary cascade, that
is, we have to subtract ) x ¥ to calculate the velocity of the flow towards the
moving cascade. Similarly in order to calculate the flow leaving the moving
blade relative to a system fixed in space, we have to add 9 x & to the exit
velocity in the relative system.

The resulting velocity triangles are shown in Fig. 2.7. Here we have used
the notation often used in turbomachinery, and denoted the circumferential
velocity O x & by @. (Apart from this section about turbomachines we shall
continue to use the notation 2 x # for the circumferential velocity. If there
is no need to differentiate between the absolute and relative velocities, then
@ is the general velocity vector.) In accordance with (2.58), in all velocity
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Fig. 2.7. Velocity triangle

triangles, the velocity vectors ¢, w and @ satisfy the equation
C=w+1u. (2.78)

This allows the construction of the velocity triangle without having to con-
sciously change reference frames.

Now we shall consider a single cascade at rest Fig. 2.8. The equations
which follow also hold for a rotating cascade in an axial turbomachine, since

C20€2

Fig. 2.8. Control volume for applying the momentum balance
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by the earlier arguments, every straight cascade of blades represents an in-
ertial system. (The absolute velocity ¢ is then only to be replaced by the
relative velocity @ measured in the moving reference frame.) At a large dis-
tance from the cascade the inlet velocity ¢; and the outlet velocity ¢, are
constant in space, that is, homogeneous. Homogeneous conditions, especially
behind the cascade, are strictly only true at infinite distances away from the
cascade, although for practical purposes the flow evens out only a short dis-
tance away. To apply the momentum balance in the form (2.43) we use the
control volume shown in Fig. 2.8. Inlet and outlet surface areas (per unit
length of the cascade) A; and A, correspond to the spacing s. As the upper
and lower boundaries we choose streamlines. The blade profile is excluded
from the control volume by using a narrow, but otherwise arbitrary, slit. In-
stead of using streamlines as the upper and lower boundaries to the control
volume we could have used any other lines such that the upper boundary is
mapped onto the lower by a translation through the spacing s. Since the flow
is periodic, we can be sure that at corresponding points on the upper and
lower boundaries exactly the same flow conditions prevail. Since the normal
vectors at these corresponding points are directed opposite to each other, and
the same holds for the stress vectors (cf. Eq. (2.23)), all integrals along the
upper and lower boundaries cancel each other out. Exactly the same holds for
the slit, where both the normal and the stress vectors on the upper side are
opposite to the corresponding vectors on the lower bank. Since both sides are
located infinitely close together, all integrals here also cancel out. Therefore
we only need to integrate along the inlet and outlet surfaces (A4;, A,) as well
as over the part of the control surface enclosing the blade (Ay). Putting into
(2.43) our notation for the absolute velocity, we get

// 0 (@) dS + // 0@ i) dS + // 0@(-7)dS  (2.79)
(A7) (45) (A7)
= // rds + // rds + // tds .

(Ai) (A0) (Ay)

This equation is further simplified because ¢-77 at the entrance surface is given
by —c1; and by +c¢1, at the exit surface. At the blade itself, ¢-7 vanishes. Since
there is no flow through the blade, the normal component of the velocity is
in any case zero. By assumption, the flow at the inlet and outlet surfaces is
homogeneous, and in Newtonian fluids with which we are often concerned
(like water and gases) this means that the friction stresses vanish. This is
also the case for general constitutive relations, when the flow is homogeneous
over a larger area. Then the stress vector can be written as i = —p#. Finally,
the last integral represents the force which the blade exerts on the flow (or
the negative of the force applied to the blade by the flow). If we solve for
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the force (per unit height of the cascade), noting that the flow properties are
constant over A; and A,, we get first

F = —¢jpic1i5 + €500C105 + Pitis + Potlys . (2.80)

Resolving to get the components in the e7 and €5 directions, with n; = —ej,
n, = €1 we extract the equations:

F-é=F = =035+ 00625 — pi§ + Dos , (2.81)
F ey =Fy = —0ic1ic2i8 + 00C10C205 - (2.82)

The continuity equation for steady flow in integral form (2.8) leads to

// 0@ -7dS + // o0& 7dS =0, (2.83)

(Aq) (Ao)

or, using the concept of mass flux, to

m = // gé-ﬁdS:f// oc-1ndS . (2.84)

(A0) (Ai)

The notation 72 used in the literature is not very well chosen: it has nothing
to do with the rate of change of the mass, which is of course zero, but with
the flux of the mass through a surface, according to the definition in (2.84).
An expression for the mass flux per unit height of the cascade follows from
this definition:

M = 0;C1i8 = 0oCloS - (2.85)

In incompressible flow, and with the assumed homogeneity of the approach
flow, the density is always constant (0; = 0, = 0), and from (2.85), with
vV =m/o, .

V =18 = 108 - (2.86)

V is the volume fluz (per unit height of the cascade), and this is often used
instead of the mass flux in incompressible flow. Finally, we get the expression
below for the force components

F, = ’I”i’L(Clo — Clz‘) + S(po —pi) , (2.87)
Fy = 1m(coo — c2i) , (2.88)

where, for our assumed incompressible flow, the first term on the right-hand
side of (2.87) drops out.
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If the integration path along the blade is omitted in Fig. 2.8, the control
surface is again a closed line, which surrounds the blade profile, so that we
can form the curve integral

Ir= jéa- az (2.89)

which has mathematically positive sense. We have already met this integral
in (1.105). Even when this curve is fixed in space, and so is not a material
curve, we call this curve integral the circulation, and again use the symbol
I' for it. To evaluate this integral, we note that at corresponding points on
the upper and lower boundaries in Fig. 2.8, ¢ has the same value, while the
line element of the curve dZ has opposite signs at corresponding points. Thus
the contribution from the upper and lower boundaries to the curve integral
cancels out. The straight sections yield the values —cg;s and ca,s, so we get

I'=(c20 — c2i) s, (2.90)
and therefore the following holds:
Fy = pic1il” = 0oc101" . (2.91)

Clearly one wishes to design cascades so that losses are as small as possible.
Since losses originate through the friction stresses (ignoring the losses from
heat conduction), one tries to build cascades so that they are as close as
possible to being theoretically frictionless. Assuming frictionless flow, and
to go only a small step further, potential flow, the component Fj of the
force can also be expressed by the circulation. We then arrive at the result
that the whole force is proportional to the circulation. We shall not use this
assumption here, because here we stress the general validity of the expressions
for the momentum balance ((2.87) and (2.91)). Yet we point to the important
fact that if the cascade spacing is given, the action of losses are restricted to
the component F of the force.

As a second example, consider the calculation of the torque about the
radial cascade of a single stage radial machine, using the balance of angular
momentum in its integral form. Both force and work turbomachines have
a similar design to that shown in Fig. 2.9. The flow in radial force turboma-
chines (Francis turbines, exhaust driven turbines) is predominantly radial and
as a rule inward, i. e. towards the axis of rotation, whereas in work machines
(pumps, compressors) it is always outward. Therefore, in work machines, the
stationary cascade is placed behind the moving cascade in the direction of
the flow. The sketched radial cascade is the cascade of a work machine. The
cascade is fixed, and the reference system is an inertial reference frame, so
that the balance of angular momentum can be used in the form (2.54). The
control volume is chosen as shown in Fig. 2.9: it starts at the outlet surface
A,, goes along the side of a narrow slit to a vane, and around the other side
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Fig. 2.9. Radial machine with control volume in the guiding cascade flow

and back along the side of the slit to the outlet surface, and then on to the
next vane. The outlet surface is connected to the inlet surface via the lateral
surfaces of the guide vane ring, and so the control volume is closed. The wet-
ted surfaces (vane and sides of the ring) are denoted as A,,. Because of the
reasons given when we applied the balance of momentum earlier, integrating
around the sides of the slit gives no contribution, and, replacing 4 with ¢ we
extract from (2.54)

[~
—
8
X
oL
S~—
oY
St
N~—
o
wn
Il
8]
X

!
o
n

(2.92)

(A'L7A0;Aw) (A'L7A0;Aw)

On the left there is no contribution to the integral from A,,, since there is no
flow through the wetted surfaces. At the inlet and outlet surfaces, the velocity
is homogeneous, so that the stress vector is given by ¢ = —pii. However,
this is not exactly true for radial cascades, because, among other things,
the flow area increases with increasing r. The integration over the inlet and
outlet surfaces on the right-hand side do not provide any contribution to the
moment, since on these surfaces 71 is always parallel to Z. This can be directly



62 2 Fundamental Laws of Continuum Mechanics

understood: the stress vector —pii on these surfaces is directed towards the
center of the cascade, so that there is no torque about the center. The term
remaining on the right-hand side is the torque f, which the wetted surface
exerts on the flow. Therefore —7 is the torque which the fluid exerts on the
cascade. Thus we are led to:

// 0 (ExE)E-A)dS =T , (2.93)

(A'LaAo)

and we note that the vector Z x ¢is constant over the inlet and outlet surfaces,
and thus can be brought in front of the integral. Using the continuity equation
in the form (2.84), we obtain the torque in the form of the famous Euler’s
turbine equation:

T = 1Ty X Ty — Ty X &) . (2.94)
In this rotationally symmetric problem, Euler’s turbine equation has only
one component in the direction of the axis of symmetry. After scalar multi-
plication of (2.94) with the unit vector €y in this direction, we obtain the
component form usually given in the literature:

T = 1m(roCuo — TiCui) (2.95)

in which the torque T that the vane ring exerts on the fluid, as well as the
tangential velocity components ¢,, and c¢,; are to be taken as positive in
an agreed sense. The surprisingly simple Eq. (2.95) will also be found for
the axial component of the torque on a rotor. It is the core of the theory of
turbomachinery. If the fluid experiences no torque (for example, if there are
no vanes on the ring, and the friction moment can be ignored on the lateral
surfaces of the vane ring), then

ToCuo — TiCui = 0 5 (296)

or
7Cy = const . (2.97)

As a consequence of the balance of angular momentum, this means that in
a rotating fluid on which no external moments are acting, the tangential
velocity component falls off as 1/7.

In order to calculate the torque on the rotor, we use the balance of angular
momentum relative to a rotating reference frame. In this system the flow is
steady. We assume that at the inlet and outlet surfaces, and only there, the
friction stresses can be ignored, for the reasons explained earlier. From (2.77)
we obtain the component of the torque in the direction of the axis of rotation,
as

// 080 - (T x & (@-7)dS + // péo - (ExA)dS=T. (2.98)

(Ai,A,) (Ai,Ao)
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T is the torque exerted on the fluid by the rotor; —T is the torque exerted on

the rotor by the fluid. The inlet and outlet surfaces are surfaces of rotation
(Fig. 2.10), so that the vector Z x 7 is perpendicular to €, and the pressure
integrals, clearly, do not contribute to the torque. To continue we resolve
the position vector and the velocity vector into components along the radial,
circumferential and axis of rotation directions, thus

r=re, + ro€o, (2.99)

C=c¢ € + cu€, + coén, (2.100)

and so the cross product 7 x ¢ becomes
T X = —xncyy — (rcg — e )€y + rey€pn, (2.101)

from which the following expression for the component in the direction of the
axis of rotation results

€q - (T X C) =rey, (2.102)
since the unit vectors €., €, and €y, are orthogonal. Therefore (2.98) simplifies
to

// orey (W-n)dS=T. (2.103)
(Aiqu)

If re, at A; and A, are constant, or if their variations are so small that they
can be ignored, then, using the continuity equation in the reference frame
fixed to the rotor

(2.104)

=

Fig. 2.10. Half axial rotor
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we write the torque in the direction of the axis of rotation in the form of
Euler’s turbine equation:

T = 1m(roCuo — TiCui) - (2.105)

The mass flux through the rotor is to be calculated using the component
of the relative velocity normal to the surface through which the fluid flows
- 1i. Often the normal components of the relative and absolute velocities
are equal. For example, this occurs if the surfaces as in the above case are

surfaces of rotation. The second term on the right-hand side of

oL

AR=@-A+a-f (2.106)

is then zero, because the circumferential velocity is orthogonal to 7. We
interpret the component of the torque along the axis of rotation as the work
per unit angle of rotation. The work done by the torque is therefore the
moment times the angle of rotation, and the power P is this moment times
the angular velocity. If we take into account the vectorial character of these
quantities, we write the power as

P=T-0=0m(receo —ricui) - (2.107)

If the vectors of the torque and of the angular velocity form an acute angle,
the power of the rotor is delivered on the fluid and we have a work machine.
Finally we calculate the force in the axial direction which is transferred to
the fluid from the rotor, or to the rotor from the fluid. This force is usually
supported by special thrust bearings. It is desirable to keep this axial force
as small as possible. For this reason the sides of the rotor are often fully or
partially acted on by the fluid. By properly choosing these wetted areas the
axial force can be influenced as desired.

The control volume is then so shaped that these surfaces become com-
ponents of the control surface. We shall take the control volume down along
the rotor sides to some desired radius, and, forming a slit, back up to either
the inlet or outlet surface (Fig. 2.11). Then, in an already familiar way the
control volume is formed so that the wetted surfaces (blades and casings)
are parts of the control surface. Starting from the momentum balance in the
accelerating reference frame, we need to integrate the left-hand side of this
equation only over the inlet and outlet surfaces, since there is no flow through
the wetted surfaces including the wetted side surfaces and the surfaces Ag
opposite to these. Assuming that the friction stresses can be ignored on A;,
A, and Ag, we reach

// Qég E(’lﬁﬁ)dszf // pég-ﬁdS+Fa, (2108)
(Ai,40) (Ai,A0,4A5)

where F), is the axial force exerted on the fluid by the rotor. Further simpli-
fications are possible when the integrand is constant over the given surfaces,
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Fig. 2.11. Control volume for calculating the axial thrust

and often because in practical cases the momentum flux through the surfaces
A; and A, is much smaller than the pressure forces.

2.6 Balance of Energy

The fact that mechanical energy can be changed into heat and heat can be
changed into mechanical energy shows that the balance laws of mechanics we
have discussed up to now are not enough for a complete description of the
motion of a fluid. As well as the two laws we have already treated, therefore
a third basic empirical law, the balance of energy, appears:

“The rate of change of the total energy of a body is equal to the power
of the external forces plus the rate at which heat is transferred to the
body.”

This law can be “deduced” from the well known first law of thermodynamics
together with a mechanical energy equation which follows from Cauchy’s
equation (2.38). However here we prefer to postulate the balance of the total
energy, and to infer from it the more restrictive statement of the first law of
thermodynamics.

We shall assume the fundamentals of classical thermodynamics as known.
Thermodynamics is concerned with processes where the material is at rest
and where all quantities appearing are independent of position (homoge-
neous), and therefore are only dependent on time. An important step to the
thermodynamics of irreversible processes as they appear in the motion of
fluids, consists of simply applying the classical laws to a material particle. If
e is the internal energy per unit mass, then the internal energy of a mate-
rial particle is given by e dm, and we can calculate the internal energy E of
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a body, that is, the energy of a bounded part of the fluid, as the integral over
the region occupied by the body:

E = /// eodV . (2.109)

(V(®)

In order to obtain the total energy of the fluid body under consideration, the
kinetic energy which does not appear in the classical theory must be added
to (2.109). The kinetic energy of the material particle is (u?/2) dm, and the
kinetic energy K of the body is correspondingly

K — /// %QdV. (2.110)

(V(®)

The applied forces which appear are the surface and body forces which were
discussed in the context of the balance of momentum. The power of the
surface force tdS is @ - £dS, while that of the body force QE dV is i - EQ dv.
The power of the applied forces is then:

P= /// ou; k; AV + // u; t; dS . (2.111)
(

(V(®) 5(t))

In analogy to the volume flow - 7 dS through an element of the surface, we
introduce the heat flux through an element of the surface with —¢- 7 d.S and
denote ¢ as the heat fluz vector. The minus sign is chosen so that inflowing
energy (¢ and 7 forming an obtuse angle) is counted as positive. From now
we shall limit ourselves to the transfer of heat by conduction, although ¢
can also contain other kinds of heat transfer, for example, heat transfer by
radiation, via Poynting’s vector.

The relationship between the heat flux vector ¢'and the temperature field
(or other quantities) depends on the material under consideration. Therefore
it is a constitutive relation, which we leave open to be specified later. Using
the amount of heat flowing into the body per unit time

Q=- // g;ni dS, (2.112)
(5())
we can write for the energy balance

D .
5 E+E) =P+Q, (2.113)
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or, more explicitly

/// (5 +¢] oav = ///uikingwL//uitidS—//qinidS.

(V(6)) () () (5)
(2.114)

On the right-hand side, we have already replaced the time varying domains
with the fixed domains V' and S. By applying (1.88), this is also possible on
the left. If we express the stress vector in the first surface integral using the
stress tensor, both surface integral can be transformed into volume integrals
using Gauss’ theorem. Thus equation (2.114) becomes

dq;

uzuz (9
///{ Dt 5 +e} Qkuzfa (szul)Jraxl}dV_o (2.115)

Since the integrand is assumed to be continuous, and the domain of inte-
gration is arbitrary, the integrand must vanish, and, after differentiating, we
obtain the differential form of the energy balance

Du;
Dt

De 0T Ou;  0g¢;
D = okiu; +u oz, + 7 ( 6)

+ °Dt afL‘j afL'l

QUi —~

Using the expansion of the stress tensor (2.35), the definition of enthalpy

h=e+? (2.117)
0

and the continuity equation (2.3), the energy equation can be recast in the
often used form:

9q;
afL'i '

D [”“ (2.118)

dp 0
°p; | 2 +h] —JerUz —(Pjiug) —

ot afL‘j
If Eq. (2.38) is satisfied, the terms in (2.116) which are multiplied with u;
drop out, and we are led to the following equation for the rate of change of
the internal energy of a material particle

De o Tji aui 1 8qi

Dt o dx; Ox;’

(2.119)

which is the continuum mechanical analogue to the first law of classical ther-
modynamics. In the first law,

de = dw + dgq, (2.120)

de is the change in the internal energy in the time d¢, dw is the work done
in this time, and dq is the gain of heat in this time (each per unit mass). In
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applying the classical law to a material particle, we replace the operator “d”
by “D/Dt”, and therefore we must replace dw on the right-hand side with the
work done per unit time, which we shall denote by dw. Similarly we replace
dq with ¢, so that the first law of thermodynamics must be written in the
form

De
— = 0w+ 0q . 2.121
D = W+ 04 ( )

Just like (2.120), this equation holds without restrictions both for reversible
and irreversible processes. In particular, for reversible processes we have the
classical thermodynamic relations

dw = —pdv (2.122)
and
g = Tds , (2.123)
or
1) = fp%, (2.124)
5g = T% . (2.125)

Here, v = 1/ is the specific volume, and s is the specific entropy. By compar-
ing (2.121) with (2.119), we can extract two formulas which are valid without
restriction to calculate the work done

Tii Ou;
S =L = 2.126
= (2.126)
and the heat added 19
. qi
0g=——— 2.127

where each are per unit time and mass. The work per unit time and mass can
be split up into the reversible work as in (2.124), and the irreversible work.
The latter contribution is irreversibly changed into heat by the action of the
friction stresses. Replacing the stress tensor by its decomposition according
to (2.35), we extract the following

Ju; 1
Bt + - Bieis (2.128)

0w =

0 0x;

where the last term results from Pj;0u;/dz;, because the friction stress tensor

P is, like 7;;, a symmetric tensor. This term represents the deformation work

converted irreversibly into heat. In general, the deformation work per unit
time and volume P;je;; is written as a dissipation function @, where
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The dissipation function depends on the relationship between the friction
stresses and the motion, that is, on the constitutive relation, and therefore
we defer calculating this explicitly until we know the constitutive relation.
However this term is zero for frictionless flow, or for fluids at rest. We identify
the first term, using the continuity equation (2.3), as the reversible contribu-
tion to the work, known from (2.124):

pou; p Do  Duv
00x; 02Dt Poe

so that we finally attain the expression for the work per unit time and mass

(2.130)

Dv @
o =—p—+ — . 2.131
W=yt (2.131)
2.7 Balance of Entropy
We begin with the equation
Tds =de+ pdv , (2.132)

which is known as Gibbs’ relation. It is given here for the special case of
single component material, in which there is no phase change and where no
chemical reactions take place. It is to this that we wish to restrict our dis-
cussion. Apart from this, this equation holds without restriction for both
reversible and irreversible processes. Its validity for reversible processes can
be found from the first law of thermodynamics, in connection with (2.122)
and (2.123). Its acceptance for irreversible processes is the fundamental as-
sumption for the thermodynamics of these processes. We shall not justify
this assumption further, except to say that its consequences agree with our
experience. Gibbs’ relation can also be obtained from kinetic theory, where
the results of the kinetic theory of gases remain restricted to small deviations
from thermodynamic equilibrium, and to a monatomic dilute gas. Therefore
these results can neither be used as a “proof” of Gibbs’ relation, nor do they
have the general validity in which we shall apply this relation. Gibbs’ relation
for a material particle leads to the equation

Ds  De n Do
Dt Dt Dt
in which we replace the material change of the internal energy using the en-

ergy equation (2.121), and (2.127) and (2.131), so that the following equation
emerges:

(2.133)

Ds & 109g

Transforming the last term on the right-hand side using the identity

T

0 1¢7  190q¢ q 0T
6:101- |: ] o T&xz T2 6:101- (2135)
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furnishes the balance of entropy

Ds & ¢ 0T 0 [qz} '

T T20z; T

Ds _ 2.1
°Dt T T T20x, oz, (2.136)

In this equation the rate of change of the entropy of a material particle is
split up into two contributions: A rate of entropy production with the value
D o q OT
=g = — — 2L ,
Dt T T T T2 o

(2.137)

which is always greater or equal to zero, and a divergence of an entropy flux
vector ¢;/T, which can be greater than, equal to, or less than zero:

D o= [8]

= = _— 2.1
QDt S(rev) ox; LT ( 38)

The first part arises via the irreversible actions of friction and heat conduction
in the fluid particle. Sufficient for the inequality

D
are the conditions
>0 (2.140)
and T
i <0. 2.141
Gigy, = ( )

The first inequality expresses the experience that during deformation me-
chanical energy is dissipated into heat by the action of friction, but that heat
cannot be changed into mechanical energy by the action of friction during
deformation. The second inequality states that the heat flux vector must form
an obtuse angle with the temperature gradient, and reflects the fact that heat
flows in the direction of falling temperature. Equation (2.138) represents the
change in entropy which the particle experiences from its neighborhood, since
the divergence of the entropy flux is the difference between the inflowing and
outflowing entropy flux. This difference can clearly be positive, negative or
Z€ro0.

Elimination of /T between Eqgs. (2.137) and (2.134) leads to a form of
(2.139) known as Clausius-Duhem’s inequality:

Dsjpr Ds 1 0g; q OT
—p g B

We can obtain the change of entropy of a bounded part of the fluid by
integrating (2.136) over the domain occupied by the fluid. We shall apply
Reynolds’ transport theorem to the left-hand side, and transform the inte-
gral on the right-hand side using Gauss’ theorem. Doing this, we extract the
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following equation for the balance of entropy of the fluid body

D] soav =28 [ [ 0y [] s s
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As stated, the volume integral on the right-hand side is never negative, and
therefore we can read off the second law of thermodynamics

DS qin;
—_— > — —dS . 2.14
Dt = // 7 49 (2.143)

(5)

The equality sign only holds when the process in the body is reversible.
However all real processes in nature are irreversible, so the inequality sign
must hold for these. If heat is neither added to nor taken away from the body,
the surface integral on the right-hand side vanishes. The process taking place
in the body is then adiabatic, and Eq. (2.142) expresses the following fact:

“The entropy cannot decrease in an adiabatic process.”

The second law of thermodynamics is of course, like the first law, a law of
experience. In our discussion, the second law arises as a consequence of the
assumptions in (2.140) and (2.141), which are based on experience. Had we
postulated the second law we would have had to conclude that the integrand
of the volume integral on the right-hand side of (2.142) is never negative. The
Egs. (2.140) and (2.141) are sufficient for this.

2.8 Thermodynamic Equations of State

The principles we have discussed so far in Chap. 2 form the basis of contin-
uum mechanics. These principles represent a summary of our experience of
the behavior common to all bodies. All solids and fluids, whether Newtonian
or non-Newtonian fluids, are subject to these universal laws. The distinguish-
ing properties of solids and fluids are determined by the materials from which
they consist. These properties are abstracted by constitutive relations. They
define ideal materials, and therefore are models of the material’s real behav-
ior. Besides these constitutive relations in a narrow sense, i.e. those which
establish the relationship between stress state and motion, or between heat
flux vector and temperature, there are also the thermodynamic equations of
state. We shall introduce the constitutive relations in the next chapter, but
here we discuss how the equations of state known from classical thermody-
namics are carried over to the moving continuum, and their application to
determining the thermodynamic state of a material particle.

It is a fact of experience of classical thermodynamics that a thermody-
namic state is uniquely defined by a certain number of independent variables
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of state. For the single component material to which we shall restrict our-
selves, two independent variables of state are required. These two independent
variables, which otherwise are of arbitrary choice, fix the value of every other
variable of state. An equation of state, which can also be given in the form
of a diagram or graph, is a relationship by which two variables of state, as
independent variables, determine a third as a dependent variable. For a small
class of materials, in particular for gases, equations of state can be found on
the basis of specific molecular models from statistical mechanics and quan-
tum mechanics. Here, however, we do not wish to go into the origin of the
equations of state, and we shall consider them as given.

We call an equation of state between p, o and T a thermal equation of
state, and so we have

p=p(oT). (2.144)
The equation of state
p=0oRT (2.145)

defines, for example, the thermally perfect gas. If the so-called caloric vari-
ables of state, such as internal energy e, enthalpy h or entropy s, appear as
dependent variable, we denote equations like, for example

e=¢e(p,T) (2.146)

as caloric equations of state. For a thermally perfect gas, the caloric equation
of state takes the simple form

e=ce(T) (2.147)

or

h=h(T) . (2.148)

The equation of state e = ¢,T (or h = ¢,T') with constant specific heat c,
(or ¢,) therefore also defines the calorically perfect gas.

In general, however, one equation of state does not necessarily determine
the other. There exist “reciprocity relations” between the thermal and caloric
equations of state. Yet these are relations between partial differentials, so
that the determination of the other equation of state requires an integration,
where unknown functions appear as “constants” of integration. An equation
of state, from which the other can be found by the processes differentiation
and elimination alone, is called a canonical or fundamental equation of state.
If we compare the differential of the canonical equation of state e = e(s, v)

-2 aor [2] @ o140

with Gibbs’ relation (2.132), we read off

7= %] 2.150
gl 2250
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and
v
The right-hand sides of (2.150) and (2.151) are functions of s and v. If we
consider both relationships to be solved for s, the equations s = s(v,T') and
s = s(p,v) arise. Elimination of s gives a relation between T', p and v, and
thus the thermal equation of state.
The Mollier diagram known from applications is the graphical represen-
tation of the canonical equation of state h = h(s,p), where h is plotted as
a function of s, with p as family parameter. Specific volume and tempera-

ture may then be ascertained by comparing the differential of the canonical
equation of state h = h(s, p)

p=- [66]5. (2.151)

ah — {@] ds + [@] dp (2.152)
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with Gibbs’ relation in the form
Tds =dh —vdp , (2.153)
which yields
oh
= |=— 2.154
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and oh
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Now to obtain v, for example, note the values of h and p along an isentrope
s = const, and numerically or graphically determine the slope of h = h(p).
For thermally and calorically perfect gas the canonical form of the enthalpy
is easily explicitly given:

h = const - ¢, exp (s/c,) p /). (2.156)

The essential step which leads from the classical thermodynamics of reversible
homogeneous processes to the thermodynamics of irreversible processes of
continuum mechanics is the assumption that exactly the same equations of
state as hold for the material at rest also hold for a moving material point
of the continuum. This means, for example, that the internal energy e of
a material particle can be calculated from the values of s and v, irrespective
of where the particle is or what its motion is. This assumption is equivalent
to the assumption that Gibbs’ relation is valid for irreversible processes. For
from the material derivative of the relation e = e(s,v) we have

De |:86:| Ds [86] Dv

=] Bt 5] B (2.157)
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If this relationship always holds, and if we regard (2.150) and (2.151) as
definitions of temperature and pressure, Gibbs’ relation (2.133) follows im-
mediately. This means then too, that the internal energy is given at every
place and time if s and v are known at this place and time. Although the
thermodynamic state changes from place to place, it is not dependent on the
gradients of the variables of state.
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As already explained in the previous chapter on the fundamental laws of
continuum mechanics, bodies behave in such a way that the universal bal-
ances of mass, momentum, energy and entropy are satisfied. Yet only in very
few cases, like, for example, the idealizations of a point mass or of a rigid
body without heat conduction, are these laws enough to describe a body’s
behavior. In these special cases, the characteristics of “mass” and “mass dis-
tribution” belonging to each body are the only important features. In order
to describe a deformable medium, the material from which it is made must
be characterized, because clearly, the deformation or the rate of deformation
under a given load is dependent on the material. Because the balance laws
yield more unknowns than independent equations, we can already conclude
that a specification of the material through relationships describing the way
in which the stress and heat flux vectors depend on the other field quanti-
ties is generally required. Thus the balance laws yield more unknowns than
independent equations. The summarizing list of the balance laws of mass

do 0
a. i) = 0 )
of momentum (2.38)
Dui o k + 8731-
0T =kt g
of angular momentum (2.53)
Tij = Tji
and of energy (2.119)
De 8UZ 8(]1'

QDIf =T 6,Tj 6:51

yield 17 unknown functions (¢, w;, 7ij, ¢, €) in only eight independently
available equations. Instead of the energy balance, we could also use the
entropy balance (2.134) here, which would introduce the unknown function
s instead of e, but by doing this the number of equations and unknown
functions would not change. Of course we could solve this system of equations
by specifying nine of the unknown functions arbitrarily, but the solution found
is then not a solution to a particular technical problem.
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It may happen that the “mechanical” balance laws for mass, momentum
and angular momentum are decoupled from the energy equation. Then six
constitutive relations are enough to complete the reduced system for g, u; and
7;;. If the internal energy field is not required, it can be assumed arbitrarily
without changing, for example, the velocity field. In these cases the internal
energy is not counted as an unknown function, and the energy equation is
superfluous.

Even if no proof for the uniqueness of the solution is available, we still
expect that the solution of a physical problem is unique if the number of
unknown functions is the same as the number of equations and the properly
posed initial and boundary values are present. Further, we take as self ev-
ident that all equations are given by the problem itself, and that therefore
only constitutive relations as they arise from the specification of the flowing
material, appear along with the universal balance laws.

In principle, constitutive relations could be gotten from the molecular the-
ory of gases and liquids. For structurally simple molecules, and in particular
for gases, this theory provides constitutive relations which agree very well
with experimental results. This has not been successful to the same extent
for Newtonian liquids; even less so for non-Newtonian fluids. Yet the results
found from the molecular theory do not contradict the phenomenological
model of continuum theory. In fact, they show that this model provides a suit-
able framework for describing the material behavior of even non-Newtonian
fluids. Indeed continuum theory has become for the most part a theory of the
constitutive relations. It develops mathematical models from specific experi-
mental observations which idealize the behavior of the actual material but
which in more general circumstances do describe it as accurately as possible.

Let us adopt the viewpoint of an engineer who forecasts the flow of a given
fluid from the balance laws on the basis of the constitutive relations. As with
the thermodynamic constitutive relations (equations of state), we shall not
go any further into the derivations, but will only note that certain axioms
are of fundamental importance for the formulation of the constitutive rela-
tions. Some of these axioms have arisen during more recent developments of
continuum mechanics, and are not satisfied by older constitutive relations,
which were proposed to explain particular features of the behavior of ma-
terials. Constitutive relations which these axioms satisfy must, among other
things

a) be consistent with the balance laws and with the second law of
thermodynamics (but they are not consequences of these laws),

b) be valid in all coordinate systems (thus they must be formulated
as tensor equations),

¢) be deterministic (the history of the motion and of the temperature
of the body up to time ¢ determines, for example, the stresses on the
material particle at time t),

d) hold locally (thus, for example, the stress at a material particle
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depends only on the motion of material particles in its immediate
neighborhood),

e) reflect the symmetry properties of the material, and

f) be valid in all reference frames, i.e. be objective or frame inde-
pendent.

The final condition is here of particular importance, since, as we know from
Sect. 2.4, the equations of motion (momentum balance) are not frame inde-
pendent in this sense. In accelerating reference frames, the apparent forces
are introduced, and only the axiom of objectivity ensures that this remains
the only difference for the transition from an inertial system to a relative sys-
tem. However, it is clear that an observer in an accelerating reference frame
detects the same material properties as an observer in an inertial system. To
illustrate this, for a given deflection of a massless spring, an observer in a ro-
tating reference frame would detect exactly the same force as in an inertial
frame.

In so-called simple fluids, the stress on a material point at time ¢ is deter-
mined by the history of the deformation involving only gradients of the first
order or more exactly, by the relative deformation tensor (relative Cauchy-
Green-tensor) as every fluid is isotropic. Essentially all non-Newtonian fluids
belong to this group.

The most simple constitutive relation for the stress tensor of a viscous fluid
is a linear relationship between the components of the stress tensor 7;; and
those of the rate of deformation tensor e;;. Almost trivially, this constitutive
relation satisfies all the above axioms. The material theory shows that the
most general linear relationship of this kind must be of the form

Tij = —p0ij + Newr 035 + 2neij (3.1a)
or, using the unit tensor 1
T=(—p+ A"V -0)I+2nE (3.1b)

(Cauchy-Poisson law), so that noting the decomposition (2.35), the tensor of
the friction stresses is given by

Pij = Aexr 0ij + 2n €45 (3.2a)

or

P=X\V.-il+2E . (3.2b)

We next note that the friction stresses at the position 7 are given by the
rate of deformation tensor e;; at &, and are not explicitly dependent on &
itself. Since the friction stress tensor P;; at & determines the stress acting on
the material particle at &, we conclude that the stress on the particle only
depends on the instantaneous value of the rate of deformation tensor and is
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not influenced by the history of the deformation. We remind ourselves that
for a fluid at rest or for a fluid undergoing rigid body motion, e;; = 0, and
(3.1a) reduces to (2.33). The quantities A* and 7 are scalar functions of the
thermodynamic state, typical to the material. Thus (3.1) is the generalization
of 7 = 1+, which we have already met in connection with simple shearing
flow and defines the Newtonian fluid.

The extraordinary importance of the linear relationship (3.1) lies in the
fact that it describes the actual material behavior of most technically impor-
tant fluids very well. This includes practically all gases, in particular air and
steam, gas mixtures and all liquids of low molecular weight, like water, and
also all mineral oils.

As already noted, e;; = 0 describes the stress state of a fluid at rest or in
rigid body motion. The pressure p of compressible fluids is then determined
by the thermal equation of state p = p(p, T'). The same equation of state also
holds for the moving material particle, thus the pressure is fixed for every
position of the particle and for every instant by ¢ and T'. In incompressible
fluids, the pressure is not a function of the thermodynamic state, but is a fun-
damentally dependent variable. As is already clear from Cauchy’s equation
(2.38) in connection with (3.1), and as we shall show explicitly later, only
the gradient of the pressure appears in Cauchy’s equation. In incompressible
flow, an arbitrary constant may be added to the pressure without affecting
the equations of motion. If the pressure is not fixed by a boundary condition
it can only be determined up to this additive constant. Expressed otherwise,
only pressure differences can be calculated from the theory of incompressible
flow.

Using (2.36) and (3.1a), we extract the following equation for the sum of
the mean normal stress and the pressure:

1 2
ﬁer:gTiiﬁLp:eii()\*ﬁLgn). (3.3)
By (2.5), e;; = 0 holds for incompressible flow, thus the mean normal stress
is equal to the negative pressure. This only holds in compressible flow if the
bulk viscosity

2
nB = ¥ + g n (34)

vanishes. Kinetic gas theory shows that the bulk viscosity arises because
the kinetic energy of the molecules is transferred to the internal degrees of
freedom. Therefore, the bulk viscosity of monatomic gases, which have no
internal degrees of freedom, is zero. The bulk viscosity is proportional to the
characteristic time in which the transfer of energy takes place. This effect
can be important for the structure of shock waves, but is otherwise of lesser
importance, and therefore, even for polyatomic gases, use is most often made
of Stokes’ hypothesis

np=0. (3.5)
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The assumption of the constitutive relation now also allows the explicit cal-
culation of the dissipation function @. Following (2.129) we obtain

D = Pijei; = Nepk i + 2n¢€55 €55 (3.6a)
or, written symbolically
& = \*(spE)? + 2nspE? | (3.6b)

and we see, by expansion and relabelling the dummy indices, that the in-
equality (2.140) is satisfied, if the inequalities

hold for the shear viscosity n and the bulk viscosity np.

As already noted, the viscosity depends on the thermodynamic state, so
1 =n(p, T'), where the dependency on pressure is small. The kinetic gas the-
ory states that for dilute gases the only dependency is on the temperature: for
the model of hard sphere molecules we have 17 ~ +/T'. In the phenomenological
model, the dependency on p and T remains free and must be determined by
experiment. The shear viscosity 7 often appears in the combination /o = v,
which is known as the kinematic viscosity, and clearly depends strongly on
the density or the pressure.

From kinetic gas theory, the viscosity 1 can be predicted quantita-
tively very well if a realistic molecular potential is used. The less devel-
oped kinetic theory for liquids can not yet furnish comparable viscosity
data. In this case the temperature dependency of the viscosity is given by
1 ~ exp(const/T), that is, it decreases exponentially with temperature. This
behavior has been experimentally confirmed qualitatively for most liquids,
and so we see that liquids show a contrasting viscosity behavior to gases.
The reason for this lies in the differing molecular structure, and has already
been discussed in Sect. 1.1.

With the linear constitutive equation (3.1) for the stress goes a linear
constitutive relation for the heat flux vector. This linear relationship is known
as Fourier’s law, and for isotropic materials reads

oT
8:1:1-

qG=-X or ¢=-AVT. (3.8)
Here X is a positive function of the thermodynamic state, and is called the
thermal conductivity. The minus sign here is in agreement with the inequality
(2.141). Experiments show that this linear law describes the actual behavior
of materials very well. The dependency of the thermal conductivity on p and
T remains open in (3.8), and has to be determined experimentally. For gases
the kinetic theory leads to the result A ~ 7, so that the thermal conductivity
shows the same temperature dependence as the shear viscosity. (For liquids,
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one discovers theoretically that the thermal conductivity is proportional to
the velocity of sound in the fluid.)

In the limiting case i, A* = 0, we extract from the Cauchy-Poisson law
the constitutive relation for inviscid fluids

Tij = —péij . (39)

Thus, as with a fluid at rest, the stress tensor is only determined by the
pressure p. As far as the stress state is concerned, the limiting case n, A* =0
leads to the same result as e;; = 0. Also consistent with 1, A* = 0 is the case
A = 0; ignoring the friction stresses implies that we should in general also
ignore the heat conduction.

It would now appear that there is no technical importance attached to
the condition 7, A*, A = 0. Yet the opposite is actually the case. Many tech-
nically important, real flows are described very well using this assumption.
This has already been stressed in connection with the flow through turboma-
chines. Indeed the flow past a flying object can often be predicted using the
assumption of inviscid flow. The reason for this can be clearly seen when we
note that fluids which occur in applications (mostly air or water) only have
“small” viscosities. However, the viscosity is a dimensional quantity, and the
expression “small viscosity” is vague, since the numerical value of the physical
quantity “viscosity” may be arbitrarily changed by suitable choice of the units
in the dimensional formula. The question of whether the viscosity is small or
not can only be settled in connection with the specific problem, however this
is already possible using simple dimensional arguments. For incompressible
fluids, or by using Stokes’ relation (3.5), only the shear viscosity appears in
the constitutive relation (3.1). If, in addition, the temperature field is homo-
geneous, no thermodynamic quantities enter the problem, and the incident
flow is determined by the velocity U, the density o and the shear viscosity 7.
We characterize the body past which the fluid flows by its typical length L,
and we form the dimensionless quantity

Re=ULo_UL (3.10)

n v

which is called the Reynolds’ number. This is the most important dimension-
less group of fluid mechanics, and is a suitable measure for the action of the
viscosity. If 7 tends to zero, then the Reynolds’ number becomes infinite. The
assumption of inviscid flow is thus only justified if the Reynolds’ number is
very large. If we have, for example, a cascade flow in a water turbine with the
blade chord L = 1 m, inflow velocity U = 10m/s, and kinematic viscosity of
water of v = 107°m? /s, the Reynolds’ number is already Re = 107, and so
is indeed very large. It therefore can make sense to perform the calculation
on the basis of an inviscid flow.

A further fact, which is important in connection with viscous flow, follows
from simple dimensional analysis: let us consider, for example, the drag D on
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a body in a flow field. This drag may be made dimensionless using the data
of the above problem, forming the drag coefficient
cp = QL . (3.11)

= U?L?

2
The drag coefficient as a dimensionless number can only be dependent on
other dimensionless variables, and the only one which can be formed using
the above data is the Reynolds’ number. Thus we are led inevitably to the
relation

c¢p = cp(Re). (3.12)
This relation has been confirmed in countless experiments. It represents per-
haps the most convincing argument for the applicability of the constitutive
relation (3.1) to pure, low molecular fluids.

The constitutive relations for the linear viscous fluid (3.1) and for the
inviscid fluid (3.9) apply to most technical applications. In what follows, we
shall deal almost exclusively with the flows of these fluids. Yet there is a se-
ries of technical applications where non-Newtonian fluids play a role, among
these the manufacture of plastics, lubrication technology, food processing and
paint production. Typical representatives of non-Newtonian fluids are liquids
which are formed either partly or wholly of macromolecules (polymers), and
two phase materials like, for example, high concentration suspensions of solid
particles in a liquid carrier solution. For most of these fluids, the shear vis-
cosity decreases with increasing shearrate, and we call them shear-thinning
fluids. Here the shear viscosity can decrease by many orders of magnitude.
This is a phenomenon which is very important in the plastics industry, since
the aim is to process plastics at high shearrates in order to keep the dissipated
energy small. If the shear viscosity increases with increasing shearrate, we
speak of shear-thickening fluids. Note that this notation is not unique, and
shear-thinning fluids are often called “pseudoplastic”’, and shear-thickening
fluids are called “dilatant”.

In the simple shearing flow of incompressible fluids (Fig. 1.1), which con-
forms with the linear law (3.1), the normal stresses (terms on the main diag-
onal of the matrix representation of the tensor T) are all equal. Expansion
of the equation (3.1) leads to

T = —p+2n0uy/0x; ,
Tog = —p + 21 0uz/0zs ,
T33 = —p + 21 dug/Oxs .
Since the velocity field is u; = yxa, ugs = usz =0,
Ti1 = T22 = 733 = —P

follows. Obviously this also holds for more general flows with u; = wuy(z2),
ug = uz = 0. Indeed, the normal stress differences vanish in all steady unidi-
rectional flows which follow the linear law (3.1).
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In general this is not the case in non-Newtonian flows. They show normal
stress effects, of which the best known is the Weissenberg effect. Contrary to
what a Newtonian fluid does, some non-Newtonian fluids climb up a rotating
rod which is inserted perpendicular to the free surface. This effect, which
only takes place with a small enough rod radius, can be seen by stirring paint
or cream. It is caused by the nonvanishing difference between the normal
stresses. Another normal stress effect is the extrudate swell: as the liquid
emerges from a capillary tube the diameter increases. This phenomenon is
important in the extrusion of melted plastics, because, depending on the
extrusion pressure, the diameter can be more than twice the diameter of
the tube. (At smaller Reynolds’ numbers, we see, even for Newtonian fluids,
a small jet swell which has its origin in the rearrangement of the velocity
profile at the exit.) The normal stress effects are an expression of a “fluid
elasticity”, which manifests itself in an elastic recovery when the load on the
liquid is suddenly removed. These phenomena can be qualitatively explained
by the structure of the polymeric fluid. Polymers are macromolecules
consisting of long chains, whose single members have arisen from monomers
and still show a similar structure. Silicon oil (polydimethylsiloxane), for
example, consists of chain molecules of the form

CHsz CHsz CHs
—Si—0—5i—0—-85i—0—,
CHsz CHsz CHs

which arise, through polymerization, from monomers with the formula
CHj
OH—-Si—OH .
CHj

These long chains can, in some cases, contain many thousand molecules, so
that the molecular weight, that is, the weight of 6.0222 x 10?3 molecules

(Avogadro’s number) is correspondingly large, and reaches values of up to
108 g/mol. Typical non-Newtonian effects are seen at molecular weights of
over 103 g/mol. Polymeric fluids can have quite different physical properties
from those of the corresponding monomeric fluid. This also comes from the
fact that the chains themselves (which indeed are not all the same length) can
easily become tangled. Because of the thermal motion, they continually undo
and reform new tangles. Under shearing loads, the chains are straightened
out, and this can serve as a rough model to explain the decreasing viscos-
ity with increasing shearrate. The remaining viscosity when the shearrate
vanishes is the so-called null viscosity, which is almost proportional to the
molecular weight of the fluid. The aligned molecules try to retangle them-
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selves and if this is hindered additional normal stresses arise. In the extrusion
process the molecules in the tube are aligned. Following this highly ordered
state, the molecules retangle themselves after exiting the tube, and thus cause
an increase of the extrudate diameter. In accordance with the second law of
thermodynamics, they try to reach a state of maximum disorder, that is,
of maximum entropy. The elastic recovery mentioned above can be viewed
similarly. We stress that this form of elasticity has a completely different
character from the elasticity of a solid. By stretching a solid, the atoms are
pulled away from each other. The work done by stretching is then retained by
the solid as potential energy. On release, the solid immediately springs back
into shape, if we ignore the inertia of the material. The elasticity of a poly-
mer fluid is a consequence of the thermal motion (retangling) and therefore
it needs a certain time, which is the reason why the extrudate swell does not
necessarily begin directly after the material exits the tube.

As well as the phenomena we have already mentioned, non-Newtonian
fluids exhibit a number of further, sometimes very surprising, effects, and
therefore we do not expect that a single constitutive relation is enough to
describe all these different phenomena. From a technical standpoint, shear-
thinning is particularly important, because many flows in applications are
shear flows, or closely related flows. Thus the strong dependency of the vis-
cosity on the shearrate can have a great influence. For example, this is the case
in hydrodynamic lubrication flows and pipe flow of non-Newtonian fluids, as
well as in the processing of plastics.

We have already described the constitutive relation 7 = 7(¥) for the
simple shearing flow of non-Newtonian fluids, and we shall write this as

T=n(9)7 - (3.13)
We obtain an extension of this relation for the general stress state if we
allow a dependency of the shear viscosity on the rate of deformation tensor
n (3.1). Since 7 is a scalar, it can only be dependent on the invariants of
this tensor. For incompressible flow, the first invariant (cf. (1.58)) I1. = e;; is
zero, the third invariant I3, = det(e;;) vanishes for simple shearing flow, and
for incompressible flow, the second invariant becomes 2 I3, = —e;; e;;. Using
these we introduce a generalized shearrate

A= =41, (3.14)
so that, in agreement with (1.3), we have for simple shearing flow
4 =du/dy . (3.15)

The constitutive relation of the generalized Newtonian fluid then follows from
the Cauchy-Poisson law (3.1):

Tij = =P 0i; +21(F) €ij - (3.16)

In the literature, we find numerous empirical or semi-empirical models for
the function 7(¥), of which we shall only mention the often used power law

n(y) =mly" ", (3.17)
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(where the parameters m and n are determined experimentally), because
in simple cases, this allows closed form solutions. Obviously m is a param-
eter whose dimension depends on the dimensionless parameter n. For n > 1
shear-thickening behavior is described, and for n < 1 we have shear-thinning
behavior. For 4¥ — 0, the yield function in the first case tends to zero, and in
the second case it becomes infinite, so that then (3.17) is of no use if ¥ = 0 is
reached in the flow field. This difficulty can be overcome with a modification
of the model (3.17) with three free parameters:

70 for 4 <+
= . n— . . . 3.18
K {770 17/ ol ' for 4> ( )

Here #g is the shearrate up to which Newtonian behavior with the null vis-
cosity 1o is found. The generalized Newtonian fluid shows no normal stress
effects. These are only found in a more comprehensive model for steady shear-
ing flow, which we shall not go into now, but which contains the generalized
Newtonian fluid as a special case.

For unsteady flows, where fluid elasticity is particularly noticeable, linear
viscoelastic models, whose origin goes back to Maxwell, are often used. The
mechanical analogue to the linear viscoelastic model is the series arrangement
of a spring and a damper (Fig. 3.1). We identify the deflection of the spring
with the shearing g, that of the damper with vyp, and the force with 7o,
and so we obtain from the balance of forces

o1 =Gvs =n9D - (3.19)

7
G
N
T21

Fig. 3.1. Maxwell’s model of a linear elastic fluid
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We write the complete deflection vs + vp as v, so that, from (3.19), the
equation

T21 :77"}/7%7.'21 (320)

arises. Using /G = Ao, ¥ = du/dy = 2e1o for the simple shearing flow,
(3.20) can also be written in the form

To1 + Ao T21 = 21 €12 - (3.21)

The tensorial generalization of this equation is the constitutive relation of
the linear viscoelastic fluid:
P + )\0% =2ne;j . (3.22)
ot
We can call the characteristic time Ag the “memory span” of the fluid. As
Ao — 0, we obtain from (3.22) the constitutive relation valid for Newtonian
fluids (3.2), if we set there ey, = 0 (incompressible flow).

In this sense the Newtonian fluid is a fluid without memory. But equa-
tion (3.22) is neither frame independent, nor describes the phenomena of
shear-thinning or shear-thickening. However, the constitutive relation can
be brought to a frame independent form if the partial time derivative is re-
placed by an objective time derivative, like that given by Oldroyd’s derivative
in (1.69), or by Jaumann’s derivative, of which (2.63) is a special case, and
in general it then describes also shear-thinning behavior.

This is so, because constitutive relations describe properties of the ma-
terial point, and therefore should be formulated in a reference frame which
moves and rotates with the material particle (or deforms with it). By doing
this we ensure that the material behavior is independent of the rotation and
translation of the particle, which indeed represent local rigid body motion.

If the stress on the material particle only depends on the instantaneous
value of the rate of deformation tensor, as is the case, for example, in
Cauchy-Poisson’s law, then an observer-fixed reference frame, for the time
being considered as fixed in space, is adequate. Because then the constitutive
relation takes exactly the same form as in the frame co-rotating with the par-
ticle. We can immediately convince ourselves of this if we transform from one
system into the other by the rules of Appendix A. If the deformation history
enters the stress state, for example if the constitutive relations take the form
of differential equations, then the frame fixed in space is not allowed, since
the rates of change of tensors do not in general comply with the transforma-
tion rules in Appendix A: they are thus not frame independent or objective
tensors. This is the name for tensors which comply with usual transforma-
tion rules even when the transformation matrix is time dependent. This is of
course necessary for the constitutive relations to have the same form in all
systems. Thus a constitutive relation of the form (3.22) only holds in systems
which rotate and translate with the particle, where the translation is taken
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into account if the partial derivative in (3.22) is the material derivative. It
would appear obvious at first to transform the equations of motion into the
reference frame rotating with the material particle. There are many reasons
why this is not practicable: apart from the fact that in general the angular
velocities of different material particles are different, and the boundary con-
ditions of a given problem would continually have to be transformed, it is
also almost impossible to make measurements in the different rotating sys-
tems. As a rule, measurements and calculations are performed in a frame
fixed in space, in which as a rule the boundary of the flow field is at rest. In
fact it is this point which decides which reference frame we use. Therefore
we attempt to express the constitutive relations which are only valid in the
system rotating and translating with the material particle through quantities
referred to the fixed frame. To do this, it is enough to interpret the partial
time derivative in (3.22) as a material derivative of the components in the ro-
tating system, and to represent this derivative in quantities and components
of the frame fixed in space, since the other tensors are already in the fixed
frame. We reach the required formula for the derivative if, starting with the
transformation (A.29)

Pij = aikaij,él 5 (323)

where the P}, are the components in the rotating system, we form the material
derivative

DF)Z Daik Dajl DPIél
Dt = < Dt a1 +aikﬁ Plgl Jraikajlﬁ . (324)
It is the expression in parantheses which prevents the objectivity of the rate
of change of the tensor. The time derivative of the orthogonal transformation
matrix a;; = €; - €;/(t) is found from (2.62), in which the angular velocity {2
is now to be replaced by the angular velocity & of the particle, leading to
Da
D—;J = é} . ((47 X gj/) = é; . ((47 X é’m)amj s (325)
where the final expression follows from (A.23) and contains only terms in the
system fixed in space. Writing the scalar triple product in index notation

—

€ (J X €m) = (€i)kErinWi(Em)n (3.26)

and noting that the kth component €; - €, = (€;) of the ith basis vector is
the Kronecker-Delta, we extract from (1.46) the expression

Daij
Dt
which brings (3.24) to the form

= EilmWiAmj = _Qmiamj ’ (327)

DP,, DP;
ainaji =t = =5+ Prjfmi + Pim ;- (3.28)
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The right-hand side of (3.28) already is the required rate of change of the
tensor P}, in the system rotating with the material particle, given in com-
ponents of the system fixed in space. This derivative, Jaumann’s derivative
mentioned above, will be denoted with the symbol D/Dt:

DP;; DPy

Jaumann’s derivative of an objective tensor is another objective tensor, as
can be read from (3.28) noting that the spin tensor vanishes in the co-rotating
frame. Thus the reference frame which was denoted as fixed in space above
can also be a relative system. The rate of change (DP/Dt)4 in the relative
system is the same as in the inertial system (DP/Dt);, while the components
transform according to (A.28). Constitutive relations in which only objective
tensors appear are then valid in all reference frames, and satisfy the axiom
of frame independence. They have the same form in relative and inertial sys-
tems. Closely related to Jaumann’s derivative is Oldroyd’s derivative (1.67),
which, when applied to the friction stress tensor, leads to the expression

- Py Lm  p,, Q. .
5t Dt ™ am ™o, (3:30)

This is also found when the objective symmetric tensor Pp,jemi + Pimem;
is added to the right-hand side of Eq. (3.29). Then, besides the spin tensor,
the rate of deformation tensor also appears. Indeed, Oldroyd’s derivative
represents the rate of change of a tensor in the “body fixed” frame, thus in
a reference frame which translates, rotates and deforms with the particle,
again decomposed into components of the frame fixed in space. Oldroyd’s
derivative of an objective tensor is also objective, and therefore the Rivlin-
Ericksen tensors known from Sect. 1.2.4 are objective tensors. A relation
between the stress tensor and the Rivlin-Ericksen tensors always expresses
an objective constitutive relation.

The value of these objective derivatives (and indeed others) lies in the
fact that they generalize material behavior measured in the frame fixed
in space to arbitrarily large deformations. For sufficiently small deforma-
tion velocities, which in general also means small rotational velocities,
(3.29) and (3.30) reduce back to the partial time derivatives, and therefore
Eq. (3.22) serves to describe oscillatory fluid motions of small amplitude very
well.

Both of the models discussed are examples from the many non-Newtoni-
an fluid models, which are, as a rule, all of empirical nature. On the basis of
a simple fluid, a number of these constitutive relations can be systematically
ordered. We refer here to the more advanced literature, but shall mention two
more models which have found numerous technological applications, because
the general functional dependency of the friction stress tensor on the history
of the relative deformation gradient has an explicit form in these cases. The
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viscous stress tensor is a tensor valued function of this history, with nine
(or in the case of symmetry, six) components. The history is a function of
the time ¢, which describes the course of the relative deformation gradient
tensor. ¢’ can lie between —oc and the current time ¢. The tensor of the
friction stresses is therefore a tensor valued function, whose arguments are
also tensor valued functions. We speak of a function of a function, or of
a functional. The relative deformation gradient tensor Cj;(Z,t,t") describes
the deformation which the particle situated at Z at time ¢ has experienced at
time #'. Consider the fluid motion # = Z(¢, ) and the position of the material
point £ at time ¢/ < ¢, i.e. 2/ = f(g, t"). If we replace € here by £ = g(:f, t) to
obtain
@ =TT, t, 1)

we are actually using the current configuration as the reference configuration.
For fixed current time ¢ and the new parameter ¢t —t' > 0, the relative motion
is the history of the motion. The symmetric tensor

aCCZ' aCCj

formed with the relative deformation gradient

Oz,
8:1:1-

is the above relative deformation gradient tensor, also called the relative right
Cauchy-Green tensor (see also equation (3.45)).

We are considering the case in which the history C;;(Z, t, t') can be ex-
panded into a Taylor series. The coefficients of the series are Rivlin-Ericksen
tensors defined by (1.68), so that the following holds for the expansion:

1

DC;;

we differentiate the square of the line element ds’ with respect to t':

(To see the equivalence

d:c}C da!

m

Dnds/2 o D™ 8:02 8:172 dede. — D”Oij % aCCj
Dt'n D' \ Ox; Ox; Y D 9, oxl,

On the other hand by (1.68)

D"ds’?
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For ¢/ =t therefore

{%] Sikdjmdatdal = Agyydalda’
Diin ikOjm AL ALy = A(n)ij AT AT 5
t=t

hence the above equivalence.)

If we truncate the series at the nth term (either because the higher Rivlin-
Ericksen tensors become very small, as according to (1.68) is the case if the
change of the material line element occurs at a low enough rate, or if the
kinematics is so restricted that the higher tensors vanish identically, as is the
case in steady unidirectional or viscometric flow for n > 2), then the friction
stress tensor is no longer a function of a function, but is a function of n
Rivlin-Ericksen tensors. Then the constitutive relation reads

Tij = —p0ij + Pi{ Aykts - Ak} (3.32a)

or, symbolically
T = —pI+(p{A(1), R A(n)} , (3.32b)

where ¢ is a tensor valued function of the n tensor variables A () to A,).
For unidirectional flows in particular, the transition from the functional leads
to the equation

T=—-pl+ @{A(l), A(g) } . (333)

By unidirectional flows we understand flows in which in a certain (not neces-
sarily Cartesian) coordinate system, only one velocity component is nonzero,
and this varies only perpendicular to the direction of flow. Because of the par-
ticularly simple kinematics, this class of flows often leads to closed solutions,
and will be treated further in Chap. 6.

If we denote the flow direction with the unit vector €i, the direction of
velocity change with €5 and the direction orthogonal to these by €3, the first
and second Rivlin-Ericksen tensors take on the form known from Sect. 1.2 of
the simple shearing flow (1.71) and (1.72). Since the components of Ay and
A () are only functions of 4, we extract from (3.33) the equation

Tij = =P 0i; + i () - (3.34)

The stresses 713 = 731 and Ty3 = 732 are zero in all unidirectional flows, and
the matrix representation of (3.34) reads

e1(¥)—p  p12(9) 0
[T =] el emG)-p 0 | (339
0 0 @33(¥) —p

In order to eliminate the undefined pressure in incompressible flow, we form
the differences of the normal stresses:

T11 — T2 = N1(%)

3 s 3.36
Tog — 733 = Na(7¥) ( )
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which, together with the shear stress
T12 = T(’}/) (337)

fully determine the behavior of the simple fluid in steady unidirectional flows.
Ni(%) is called the primary normal stress function, N2(%) the secondary
normal stress function and 7(%) the shear stress function. N1 and Ny are
even functions of 4, and 7 is an odd function of 4. Of course all of these
functions depend on the material. However, two different fluids with the same
normal and shearing stress functions can show completely different behavior
in flows which are not unidirectional.

We consider now the case where the change of ds? in (1.68) is sufficiently
slow. This occurs in slow and slowly varying motions, and we shall say that
A (1) is of the first order and A (s is of the second order:

If we restrict ourselves to terms of the first order in €, (3.32) can be written
in the form

T=-pl+nAgy), (3.39a)

or
Tij = —p0oij + N Awyij - (3.39h)

Since A(1y;; = 2e;5, we recognize the Cauchy-Poisson law (3.1) for incom-
pressible Newtonian fluids, which we have reached here for the limiting case
of very slow or slowly varying motions. However, “slow variations” implies
a variation with a typical time scale large in comparison to the memory time
of the fluid. As we already found in connection with (3.22), the Newtonian
fluid has no memory, so that the time scale can be arbitrarily small in the
sense of the approximation (3.39).

If we consider terms up to the second order in €, (3.32b) furnishes the
definition of a second order fluid:

T=—-pl+nAqu) +BAY) +7Aq) . (3.40)

The coefficients 7, 8 and v here are material dependent constants (where,
from measurements, v turns out to be negative and should not be confused
with the shear angle). The validity of this constitutive relation is not kine-
matically restricted, and it can be used in general also for unsteady, three-
dimensional flows. The restriction is the necessary “slowness” of the flow un-
der consideration, where the meaning of “slow” is to be clarified in the given
problem.

The second order fluid is the simplest model which shows two different
normal stress functions in simple shearing flow, which increase with 42 as
they should. But the shear-thinning always seen in experiments on polymeric
fluids is not described. In spite of this, this model is used in many appli-
cations, and it also predicts most non-Newtonian effects qualitatively, if not
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always quantitatively. Finally, this constitutive relation, which satisfies all the
axioms stated at the beginning of this chapter, can be seen, separate from its
derivation, as an admissible fluid model, whose agreement with actual ma-
terial behavior is in any case to be checked experimentally (as is also done
with the Cauchy-Poisson law).

The materials mentioned until now have been pure fluids, that is materials
where the shearing forces vanish when the rate of deformation vanishes. As
already said, we often have to deal with substances which have a dual charac-
ter. Of these substances, we shall mention here the Bingham material, which
can serve as a model for the material behavior of paint, or more generally, for
high concentration suspensions of solid particles in Newtonian fluids. If the
solid particles and the fluid are dielectrics, that is do not conduct electrically,
then these dispersions can take on Bingham character under a strong electric
field, even if they show only pure fluid behavior without electric field. These
electrorheological fluids, whose material behavior can be changed very quickly
and without much effort, can find applications, for example, in the damping
of unwanted oscillations. Through appropriate measures the material can be
made to self-adjust to changing requirements and may be formed into “intel-
ligent” materials, which are found increasingly interesting. Even the behavior
of grease used as a means of lubricating ball bearings, can be described with
the Bingham model.

We can gain considerable insight into the behavior of Bingham materials
behavior looking at the simple shearing flow: if the material flows, we have
for the shear stress

T=my+9; T>9. (3.41)

Otherwise the material behaves like an elastic solid, i.e. the shear stress is
T=Gv; T <, (3.42)

where ¥ is the yield stress and G is the shear modulus. In a general stress
state, the yield stress becomes tensorial, and in place of 1, 9;; appears, so
that the criterion for flow is not immediately obvious. In what follows, we
introduce the generalized Bingham constitutive relation, and first describe
the elastic behavior. Our starting point is equations (1.5) and (1.8), where

\ arctan(n,)

-
T

Fig. 3.2. Behavior of Bingham materials
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we now consider 5 as the particle position in a stress free state, and & as the
position of the same particle in the deformed state. An undeformed material
vector element has the following relation with the deformed element dz:

ox;

dx; = 2,

—d¢; (3.43)

which follows directly from (1.5) and where Ox;/9¢; is the deformation gra-
dient. Thus we write for the square of the element of length |dZ|

0x; Ox;
dr;dr; = d id 3.44
as well as for the difference
- Ox; Ox;
dz|® — |dé]? = L 6 | désd 4
a? a6 = (G2 5% ) dgjs (3.45)

and we shall denote the half of the expression in parantheses as Lagrangian
strain tensor Ej,. The obviously symmetric tensor (0z;/90¢;)(0x;/0&) in
(3.44) is called Green’s deformation tensor or the right Cauchy-Green tensor.
Using the intermediate step

- ut 8:01 8:171 8§ 8§k
dE1? — 1d€12 = _5. J d - A
equation (1.5) allows the representation of (3.45) in field coordinates:
. 5 Ok 0.
dz)? — |d€)? = dzidzy,. A4
|dz|” — [d¢] (51 9y 0, ) nde (3.47)

We call the half of the expression in parantheses in (3.47) Eulerian strain ten-
SOT €1 this is also known as Almansi’s strain tensor. The symmetric tensor
(0€1/0x1) (0 / Oxyy) s Cauchy’s deformation tensor, and it is the Eulerian
counterpart to Green’s deformation tensor. We also express the deformation
tensors using the displacement vector

j=z-¢ (3.48)
and extract, with Green’s deformation tensor

T 2R PR TR 2 4 3.49
o¢; 06, O, 0& | 0g; o0&, (8.49)

the following expression for the Lagrangian strain tensor

= 1 (5%‘ Oyi ] dy; n ayk)
! 08 08, 0& 0§

(3.50)
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which, for small enough deformations (ignoring the quadratic terms), simpli-

fies to L /9 5
Yj Yk
Ep=-|"2+-") . 3.51
e 2(agk+agj) (3:51)
From (3.48) follows
Ay, 9;
=0 — .52
allfk ki 8:ck (3 o a)
and for small deformations, i.e. dy;/0xi < 0€;/0x), we find
9&;
— & 0 . .52
. Ok;j (3.52Db)

Comparison of (3.46) and (3.47) furnishes

0&; Ok
B L 258 m .
gk ox; Oxym, “l (3.53)
and we are led to
Elm X €lm - (354)

In this case the difference between Lagrangian and Eulerian strain tensor
vanishes. In what follows we shall restrict ourselves to small deformations,
and we find from the substantial derivative of the deformation tensor ¢, =
1/2(0yi /0%, + Oym/Ox;) again the rate of deformation tensor (1.29a)

Degn . 1 ouy O, .
Dt 2 (8:cm * o ) - Cm (8:55)

In rheology it is usual to denote the negative mean normal stress as the
pressure, and we shall follow this usage here, noting however that the mean
normal stress in general includes isotropic terms which are dependent on
the motion. (See Eq. (3.3) for the case of Newtonian fluid.) However, for
incompressible materials, to which we shall restrict ourselves, the pressure
is an unknown function which follows from the solution of the equations of
motion only to within an additive constant, and the absolute value of the
pressure is not important. Therefore, for the constitutive relation we shall
write

1
Tij = —p0ij +Tilj, p= _ngk . (3.56)

The tensor T{j is, as above, a deviator, that is the trace of the tensor vanishes.
If e;; and €}; are the deviators of the rate of deformation and the strain
tensors, the following holds at the yield point:

!
€i

;=0 and 7;; =2Ge; =10;; . (3.57)
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We shall assume that yield occurs according to the von Mises’ hypothesis,
that is when the energy stored in the material as a result of the deviatoric
stresses reaches a given value

1

56137'” const . (3.58)

By (3.57), the potential energy at the yield point is then

1

L oo
4G = const = ﬁﬁ , (3.59)

so that we obtain the constitutive relation of the Bingham material in the
form

1
Ti/j = 2776% if 57'1-’]-7'{]- > 92, (3.60)
and 1
Ti/j = 2Ge;j if §T{j7’{j <92, (3.61)
where
n=m +19/(2¢;¢; )1/2 . (3.62)

The incompressible Bingham material is determined by the three material
constants G, ¥ and 1. Wherever it flows it behaves as a fluid with variable
viscosity n, which depends on the second invariant of the rate of deformation
deviator I},. Therefore here it behaves as a generalized Newtonian fluid. The
yield criterion in (3.60) and (3.63) contains only the second invariant I}, of
the stress deviator, so this is coordinate invariant. For simple shearing flow
we have 7/;7/; = 272, and Egs. (3.60) and (3.61) reduce to Egs. (3.41) and

Ty
(3.42), since by (3.62) €, = 1du/dy Often, instead of the elastic solid body
behavior in the region where 27'”7' < 92, rigid body behavior is assumed.

Then the constitutive relation takes on the form

1
Ti/j = 2776% if 57'1-’]-7'{]- > 92, (3.63)

and 1
€; =0 if 27'1]% <92 (3.64)

In numerical calculations, the Bingham constitutive relation is also approxi-
mated with a two-viscosity model, which is more easily dealt with numerically,
and which also offers advantages in localizing the yield surfaces. In this model
the rigid body character (3.64) is replaced by a Newtonian flow behavior with
very high viscosity 1o (19 > n1). Then instead of (3.64) we have the law

, 1
Ty =2moe; i ST < 0, (3.65)

which, for 79 — oo, i.e. €]; — 0 becomes (3.64).



4 Equations of Motion for Particular Fluids

We shall now specialize the universally valid equations, namely Cauchy’s
equation (2.38) and the energy equation (2.119) to the two most technically
important cases: Newtonian fluids and inviscid fluids. The continuity equa-
tion (2.2) (mass balance) and the symmetry of the stress tensor (2.53) (angu-
lar momentum balance) remain unaffected by the choice of the constitutive
relation.

4.1 Newtonian Fluids

4.1.1 The Navier-Stokes Equations

We start with a Newtonian fluid which is defined by the constitutive relation
(3.1) and, by setting (3.1) and (1.29) into (2.38), we obtain the Navier-Stokes

equations:
0 ouy, 0 Ou;  Ouy
— = = — 4.1
8171-{ prA 8xk}+8xj {n[&cj—i—a:z:i}} ’ (4.1)

where we have used the exchange property of the Kronecker delta d;;.

With the linear law for the friction stresses (3.2) and the linear law for
the heat flux vector (3.8), we specialize the energy equation to the case of
Newtonian fluids:

D’U,i
° Dt

ngi‘f'

De pDo & 0 {/\ 8T}, (4.2)

Qﬁigﬁ: 6:101- 6:51

where the dissipation function @ is given by (3.6). In the same way we deal
with the forms (2.116) and (2.118) of the energy equation, which are often
more appropriate. Another useful form of the energy equation arises by in-
serting the enthalpy h = e 4+ p/p into (4.2). Because of

Dh  De pDe  Dp

LS R e T 4.
°Di ~°Di oDt Dt (4.3)

(4.2) can also be written as
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As a consequence of Gibbs’ relation (2.133), the entropy equation for New-
tonian fluids can also appear in place of (4.2)

0 P\aT].

Ds
T—=9¢
¢ Dt + 8:01 8:171

(4.5)
If we choose the energy equation (4.2), together with the continuity equa-
tion and the Navier-Stokes equations we have five partial differential equa-
tions with seven unknown functions. But both the thermal equation of state
p = p(o, T) and the caloric equation of state e = e(p, T') appear also. This
set of equations forms the starting point for the calculation of frictional com-
pressible flow.

By (4.1) the Navier-Stokes equations are given in Cartesian coordinates.
However in many technical applications the geometry of the flow boundary
suggests a curvilinear coordinate system (If we consider, for example, the
unidirectional flow between rotating cylinders (Fig. 6.5), there is only one
nonzero velocity component to consider in cylindrical coordinates, while in
Cartesian coordinates there would be two components). It is then advisable to
use the symbolic notation valid in all coordinate systems. In order to do this,
we introduce the constitutive relation (3.1b) into Cauchy’s equation (2.38b):

—

D —
QD_;‘:Qk_vp+V(A*V-ﬁ)+V-(2nE), (4.6)

where now the use of the material derivative (1.78) is more expedient. In
Eqgs. (4.2) to (4.5), the operator 9/0z; is to be replaced by the Nabla oper-
ator V, and the dissipation function is to be inserted in symbolic notation
(3.6b). The most important curvilinear coordinate systems are orthogonal,
and knowing the appropriate definition of the Nabla operator we can directly
calculate the component equations of (4.6) in the chosen coordinate system.
The method of calculation is explained in Appendix B, where the component
forms of the Navier-Stokes equations (for incompressible flow) in the most
often used coordinate systems can be found.

For isothermal fields, or by ignoring the temperature dependence of n and
A*, the final term on the right-hand side of (4.1) can be put in a different
form. In Cartesian index notation we have then

0 Oui  Ouj1| _ Pu; 0 [0uy
%j {W{axj * awz}} B n{axj&vj + ox; [a_xk}} ) (4.7)

where we have interchanged the order of differentiation in an intermediate
step, so that from (4.1) the form cited by Navier and Stokes is obtained:

Du; _ Op |y« 0 [Oux &2u;
°Dr T oki = ox; + ("4 ox; [&ck} n{({):cjazj} ' (4.82)
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In symbolic notation, this equation reads

—

Du -
Qﬁ:Qk—Vp—l—()\*-i-n)V(V-ﬂ')-i-nAG. (4.8b)
In this A = V - V is the Laplace operator, whose explicit form in various

coordinate systems may be found in Appendix B. In incompressible flow
(Oug/Ox, =V -4 = 0) (4.8) is reduced to

Du; Op 0*u;
S L A e 4.9
e Dt e ox; o 0xL0x), ( a)
or D
Q—D?ZQE—VP—F??ATT- (4.9b)

Often the density distribution g is homogeneous when the incompressible fluid
is set in motion. Because Dp/Dt = 0, this homogeneity remains for all time,
so that the condition “incompressible flow” can be replaced by the condition
“constant density”. In what follows, we shall always assume this unless the
opposite is explicitly stated (see also the discussion in Sect. 2.1). With (4.9)
and the continuity equation (Ou;/dx; = 0), we have four differential equations
for the four unknown functions u; and p, where p is now a dependent variable
of the problem.

We interpret Eq. (4.9) as follows: on the left is the product of the mass of
the material particle (per unit volume) and its acceleration; on the right is
the sum of the volume body force QE, the net pressure force per unit volume
—Vp (the difference between the pressure forces on the material particle, i.e.
the divergence of the pressure stress tensor —V - (pI)), and the net viscous
force per unit volume nAw (the difference between the viscous forces on the
particle, i.e. the divergence of the viscous stress tensor in incompressible flow
2nV - E).

We next use the vector identity

Al =V (V- i) -V x (VX , (4.10)

which is easily verified in index notation, and which reduces the application
of the Laplace operator to operations with V even in curvilinear coordinates.
Because V - 4 = 0, we then have

nAL=-2nV xd . (4.11)

This equation makes it clear that in incompressible and irrotational flow
(Vx i = 20 = 0), the divergence of the viscous stress tensor vanishes.
The viscous stresses themselves are not zero, it is only that they provide
no contribution to the acceleration of the particle. From the fact that the
angular velocity appears on the right-hand side, we may not conclude that
the viscous stresses depend on & (which is of course impossible), but that Aw
can be expressed by —2V x & in incompressible flow.
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4.1.2 Vorticity Equation

Since a viscous incompressible fluid behaves like an inviscid fluid in regions
where & = 0, the question arises of what the differential equation for the
distribution of & is. Of course this question does not arise if we consider the
velocity field as given, because then & can be calculated directly from the
velocity field using Eq. (1.49). To obtain the desired relation, we take the
curl of the Eq. (4.9b). For reasons of clarity, we shall use symbolic notation
here. We assume further that & has a potential (/%a = —V4), and use the
identity (4.11) in Eq. (4.9b). In addition, we make use of (1.78) to obtain the
Navier-Stokes equations in the form

w+5+% AT (4.12)

The operation Vx applied to (4.12), along with the identity (easily verified
in index notation)

Vx(ix@) =& Vi—i-Vo—-&V-d+aV & (4.13)

furnishes the new left-hand side 0&/9t — &- VU + @ -V &, where we have al-
ready noted that the flow is incompressible (V-@ = 0) and that the divergence
of the curl always vanishes:

W -G=V-(Vxil)=0. (4.14)

This can be shown in index notation or simply explained by the fact that the
symbolic vector V is orthogonal to V x @. On the right-hand side of (4.12), the
term in parantheses vanishes, since the symbolic vector V is parallel to the
gradient. The remaining term on the right-hand side —v V x (V x &) is recast
using the identity (4.10), and because V - & = 0 from (4.14) we extract the
new right-hand side v AJ. In this manner we arrive at the vorticity equation:

LA VE=0 - Vi+VAG . (4.15)

Because 0/0t + 1 - V = D/Dt we can shorten this to

Do . . -
Dr =J-Vi+vAG. (4.16)
This equation takes the place of the Navier-Stokes equation, and is often
used as a starting point for, in particular, numerical calculations. Because
2@ = curld, (4.16) represents a differential equation only in @; the pressure
term contained in (4.12) no longer appears. In two-dimensional flow & - Vi
is zero, so that (4.16) can be written as

D&

_— = _»_ 41
Di vVAD (4.17)
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For the time being we shall only treat the case of the inviscid fluid (v = 0),
for which (4.16) takes the form

D3
D—L: =& Vil (4.182)
or in index notation b 5
Wi (7
= . 4.18b
Dt Wk oxy, ( )

After expanding the material derivative, we can consider (4.18) as a differ-
ential equation for the field &(&, t), but also immediately as a differential
equation for the angular velocity 5(5, t) of the material particle E If we view
(4.18) in this way it has a simple solution: instead of the unknown vector
B(E, ), we introduce with (1.5) (z; = z;(&;, t)) the unknown vector aqEt)
with the mapping

Ox;
W = c;—t 4.19)
J ag] (
The tensor dz;/9¢; is known from (3.43), where it provided the relation
6:101-
dz; = —d¢; 4.20
agj J ( )

between the deformed element dz and dg. This tensor is nonsingular since
the Jacobian J = det(dz;/0¢;) is not equal to zero, a fact which was used
in Sect. 1.2 and in the discussion of the Bingham material in Chap. 3. The
material derivative of (4.19) leads to the relation

Dw; . DCj ox; D [8!171]

Dt Di 0, 7 Dilog, (4:21)

whose final term we transform by interchanging the order of differentiation:

i— = =c¢ = . 4.22
K Dt[[)&j} ¢, (4.22)
Here Ou,;/0¢; is the velocity gradient in the material description @ =
@€, t). We take the velocity in material coordinates as given by (1.9),
thus @ = w{ F(&, t), t}, so that after using the chain rule on (4.22), we obtain
the equation

[ — - 4.2
K Dt[@@l I Dy, 0€; (4.23)
or, with (4.19) also
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Then by (4.21), instead of (4.18) we can finally write

De,
D_t] =0, or c¢j=c¢(§). (4.25)
This means that for a material particle (5 = const) the vector ¢; does not
change. We fix this still unknown vector from the initial condition for :

ox;

wi(t = O) = Wo; = Cj a—gz
I li=0

=y (Sij = C; (426)

since Z;(t = 0) = & and thus also obtain from (4.19) the desired solution

8:1:1-

Wi :Woja_é )
J

(4.27)

which, compared to (4.20), shows us that the vector & obeys the same
mapping as dZ. If we choose the vector dg to be tangential to o, so that
dg is simultaneously a vector element on the vorticity line, this compari-
son shows that the same material elements at the time ¢, denoted dZ, are
still tangential to the vector of the angular velocity &, and thus vorticity
lines are material lines. Since the vector of the angular velocity & changes
in exactly the same manner as the material line element dZ, the magni-
tude of the angular velocity must get larger when |dZ| increases, i.e. when
the material line element is stretched. Thus we deduce the following conclu-
sion which is also important for the behavior of turbulent flows:

“The angular velocity of a vortex filament increases when it is
stretched and decreases when it is compressed.”

We shall go into this aspect of inviscid flow in more detail in connection with
Helmholtz’s vortex theorems, and shall infer from (4.27) the important fact
that the angular velocity of a material particle remains zero for all times if
it is zero at time ¢t = 0. An inviscid flow thus remains (if k has a potential)
irrotational for all times if it is irrotational at the reference time. We could
also reach this conclusion from (4.18) together with the initial condition,
but (4.27) shows us clearly that the deformation gradient 0z;/0¢; also must
remain finite. A flow which develops discontinuities is in general no longer
irrotational.

4.1.3 Effect of Reynolds’ Number

In viscous flow, the term, v A& represents the change in the angular velocity
of a material particle which is due to its neighboring particles. Clearly, the
particle is set into rotation by its neighbors via viscous torques, and it itself
exerts torques on other neighboring particles, thus setting these into rotation.
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The particle only passes on the vector of angular velocity & on to the next
one, just as temperature is passed on by heat conduction, or concentration by
diffusion. Thus we speak of the “diffusion” of the angular velocity vector & or
of the vorticity vector curld = V x ¢ = 24J. From what we have said before,
we conclude that angular velocity cannot be produced within the interior of
an incompressible fluid, but gets there by diffusion from the boundaries of
the fluid region. Flow regions where the diffusion of the vorticity vector is
negligible can be treated according to the rules of inviscid and irrotational
fluids.

As we know, equations which express physical relationships and which are
dimensionally homogeneous (only these are of interest in engineering) must
be reducible to relations between dimensionless quantities. Using the typical
velocity U of the problem, the typical length L and the density g, constant
in incompressible flow, we introduce the dimensionless dependent variables

=7 (4.28)
pt = QZ . (4.29)
and the independent variables
of = “% (4.30)
th = t% (4.31)

ouS ouS op* 0%uf
e ST i 4.32
R (4.52)

where Re is the already known Reynolds’ number

UL

14

Re

Together with the dimensionless form of the continuity equation for incom-

pressible flow

ou;
=0 (4.33)

2

and the dimensionless quantities which determine the shape of the flow
boundary (for example, an airfoil), the problem is formulated in a mathe-
matically proper way. The solutions found, the dimensionless velocity field
u:r and the dimensionless pressure field p™ say, will then not be changed when
the body exposed to the stream is enlarged in a geometrically similar manner,
and the kinematic viscosity v or the velocity U are simultaneously changed so
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that the Reynolds’ number stays the same. As long as the Reynolds’ number
remains constant, nothing changes in the mathematical formulation. Thus
the quantities calculated from the solution (for example the dimensionless
drag c¢p), do not change either. The coefficient of drag only changes if the
Reynolds’ number is changed in accordance with the law (3.12) obtained by
dimensional considerations alone.

An important and largely unsolved problem of fluid mechanics is the
dependency of the solution of the Navier-Stokes equations (4.32) and the
continuity equation (4.33) on the Reynolds’ number which only appears as
a parameter. This difficulty is already evident in such simple flows as uni-
directional flows to be discussed in Chap. 6. The laminar flows given there
are only realized below a certain critical Reynolds’ number. If this Reynolds’
number is exceeded, for example by decreasing the viscosity, a completely
different flow ensues. This flow is always unsteady, three-dimensional and ro-
tational. If we measure the velocity at a fixed position, we observe that it
varies irregularly about an average value: velocity and pressure are random
quantities. We refer to such flows as turbulent. The calculation of turbu-
lent flows has until now only been achieved using numerical integration of
geometrically simple flows. The results of these numerical simulations allow
important insights into the structure of turbulence. However for flows ap-
pearing in applications, the methods are computationally too difficult, and
because of this we shall remain dependent on semi-empirical approximation
methods for the conceivable future. These furnish only average flow quantities
though these are the ones which are technically important.

We have introduced the Reynolds’ number by way of dimensional con-
sideration. But it can also be interpreted as the ratio of the typical inertial
force to the typical viscous force. The typical inertial force is the (nega-
tive) product of the mass (per unit volume) and the acceleration, and so is
the first term in the Navier-Stokes equation (4.1). The typical inertial term
ouy Ouy/dzy is of the order of magnitude of o U?/L; the characteristic vis-
cosity term n0?ui/0z% has the order of magnitude of nU/L?. The ratio of
the two orders of magnitude is the Reynolds’ number:

(oU?/L)/ (nU/L?) = oUL/n=UL/Jv=Re. (4.34)

The Reynolds’ number may also be interpreted as the ratio of the charac-
teristic length L to the wviscous length v/U; this is an interpretation which
is particularly useful if the inertia forces vanish identically, as is the case in
steady unidirectional flow.

If the Reynolds’ number tends to infinity or to zero, simplifications arise
in the Navier-Stokes equations, and these are often the only way to make the
solution of a problem possible. However these limiting cases are never reached
in reality but lead to approximate solutions which are better the larger (or
smaller) the Reynolds’ number becomes (asymptotic solutions).
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First we shall discuss the limiting case Re — 0, which is realized

a) if U is very small,

b) if o is very small (for example, flow of gases in evacuated tubes),

¢) if n is very large (thus generally in flows of very viscous fluids), or
d) if the typical length is very small (flow past very small bodies, for
example dust or fog particles. Such flows appear also in two phase
flows if one phase is gaseous, and the other liquid or solid, but also
if small solid particles are suspended in liquid. Flows through porous
media, for example ground water flows, also fall into this category.)

From (4.34), Re — 0 characterizes the dominance of the viscous forces over
the inertial forces. The limit Re — 0 in (4.32) shows this formally: the whole
left-hand side of this equation can be ignored compared to the term Re ™! A,
The pressure gradient Vp may not be neglected in general, because along
with the velocity vector , it is the other variable present in the differential
equations (4.32) and (4.33). Only the solution for given boundary conditions
resolves the relative role of the pressure, or more exactly the pressure differ-
ence because the pressure is determined by (4.32) and (4.33) only up to an
additive constant. We also see directly from (4.29) that the pressure gradient
tends to infinity as Re™!, if the limit Re — 0 is realized by ¢ — 0.

Ignoring the inertia terms leads to an enormous simplification in the math-
ematical treatment, since these are the nonlinear terms in the equations. The
equation arising from taking the limit in (4.32) is therefore linear, and reads
in dimensional form

8p - 82ui
6:101- =" 6:cj8:vj ’

(4.35)

For the second limiting case Re — 00, the viscous terms in (4.32) vanish. The
resulting equation is known as Euler’s equation, and it describes the inviscid
flow. Later we shall discuss this equation in more detail (Sect. 4.2.1). If it
were not for the experimental fact that a Newtonian fluid adheres to a wall,
inviscid flow and flow at large Reynolds’ numbers would be identical. If we
assume at the outset that the flow be inviscid (v = 0), then in general the
flow will be different from a viscous flow in the limit ¥ — 0. The reason
for this singular behavior is that, mathematically, the highest derivative in
Eq. (4.32) is lost for v = 0. We shall not go into the pure mathematical
side of this problem here, but look at this condition through the following
example. In simple shearing flow (or another steady unidirectional flow), the
velocity field shown in Fig. 1.11 is entirely independent of the Reynolds’
number (assuming we hold U constant, and the laminar flow does not change
into turbulent flow). Theoretically this velocity distribution is maintained for
Re — oo0. Had we set v = 0, the shearing stress on the upper wall would
be zero, and the flow could not be set into motion at all, i.e. the velocity
of the fluid would be identically zero. Thus it remains to be clarified under
which conditions a flow with large Reynolds’ number corresponds to the flow
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calculated under the assumption of a completely inviscid fluid. The answer
to this question depends on the given problem, and a generally valid answer
cannot be given.

The influence of viscosity at large Reynolds’ numbers is made clear by
another simple example: a very thin plate coinciding with the positive z;
axis is exposed to a steady uniform stream in the x; direction with velocity
U. The material particles in the incident flow are taken as being irrotational,
so that they remain so in inviscid flow (cf. (4.27)). Under the condition of
zero viscosity, the plate does not impede the flow, although it does in viscous
flow. The no-slip boundary condition leads to large velocity gradients near
the wall and we expect the material particles to be set into rotation even
if the viscosity is very small. From the discussion of the vorticity transport
equation (4.16), we know that in viscous flow this can occur only through
diffusion of the angular velocity & from the wall. The order of magnitude of
the typical time 7 for the diffusion of the angular velocity from the surface
of the plate to a point at distance d(z1) can be estimated from (4.17):

w w
—~ vV

T 62(xq)

or, solving for 7:
8% (x1)

v

(4.36)

T ~

A particle not yet affected by the diffusion process that arrives exactly at the
position d(z1) after this time, has covered the distance U T = x;1 (Fig. 4.1).
We extract the order of magnitude of the distance to which the diffusion
can advance for a given z; from the equation
0%(x1)

CC1:UTNUT, (437)

or solving for §(x1)/x1:

§(z1)/z1 ~ Vv/(Uz1) =/1/Re . (4.38)

T2

o,=UT

6(z1)

plate

Fig. 4.1. Explanation of the boundary layer thickness
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Thus the effect of diffusion remains limited to a region whose extent grows
as \/x1, but which becomes very narrow for large Reynolds’ numbers. Apart
from within this boundary layer, 2& = curl @ is zero, and thus by (4.11), the
viscous forces make no contribution to the acceleration, so that we might
as well assume the flow to be inviscid potential flow. If we calculate the
external flow under this assumption (leading us here to the trivial result
u(z1, x2) = U = const), we incur a small error which vanishes with increasing
Reynolds’ number, because in reality the flow does not “feel” an infinitesimally
thin plate but senses the boundary layer as a very slender obstacle by which
it is somewhat deflected. In order to calculate the flow inside this boundary
layer the viscosity certainly has to be taken into account.

It is of course possible that the outer flow may already be rotational for
another reason, for example if the fluid particles in hypersonic flow are set
into rotation by passing through a “curved shock”. Also if the fluid has been
set into rotation before reaching the body, the assumption of inviscid flow
can often be made, but the flow is no longer a potential flow.

The statements made for the example of the flow over a plane plate hold
qualitatively for the flow past general bodies (and also in compressible flow),
although here only under the assumption that the flow does not become
separated from the body. If separation occurs, the effect of the viscosity does
not in general remain limited to a thin boundary layer. With separation an
increase in the drag, along with its associated losses ensues. One therefore
strives to avoid separation by suitable profiling. As already mentioned in
Sect. 2.5, if this is properly done we may calculate the viscous flow at large
Reynolds’ numbers by assuming inviscid flow, in particular inviscid potential
flow.

We are now in a position to give a more exact explanation of why with
simple shearing flow (Fig. 1.11), even in the limiting case Re — oo, inviscid
flow is not realized: at a distance x5 from the lower plate the angular velocity
of all the particles is the same, since the field only depends on x5. The particle
at the position (z1, x2) at the given instant in time thus carries as much
angular velocity with it downstream as the particle which replaces it at this
position has. The vorticity diffusing from the upper moving plate to the line
X9 is thus not carried (convected) downstream as in the case of the boundary
layer flow, but permeates cross-stream to the lower wall, so that the flow in
the whole gap is to be treated as a viscous flow, even for Re — oco.

Besides unidirectional flow, we could bring up many other examples which
all would show that inviscid flow does not always correspond with viscous
flow at large Reynolds’ numbers. In every situation it is therefore necessary
to check carefully whether a flow calculated under the assumption of zero
viscosity is actually realized. On the other hand, the discussion here has
shown that the assumption of inviscid flow often allows a realistic description
of the flow field around a body.
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4.2 Inviscid Fluids

4.2.1 Euler’s Equations

As we have already seen in Sect. 4.1.3, Euler’s equation emerges from the
Navier-Stokes equation (4.8) for Re = co. However Euler’s equation is also
a special case of Cauchy’s equation (2.38) if we use the particular constitutive
relation for inviscid fluids (3.9). Euler’s equation then reads

=ok;+ — (—p 51]) (439)

e Dt 8:1:j

o D 0
U; D
=ok;— , 4.40
¢ Dt ¢ ox; ( 2)

and it holds without restriction for all inviscid flows. In symbolic notation we
write

g% =ok—Vp. (4.40D)
We derive Euler’s equations in natural coordinates from (4.40b) by inserting
the acceleration in the form (1.24). Relative to the basis vectors  in the
direction of the pathline, 7, in the principle normal direction and b, in the
binormal direction, the vectors V p and k are

Vp=—t+—1,+ = bs , (4.41)

k= kot+kyito+ kyby (4.42)

and the component form of Euler’s equation in natural coordinates, with
u = ||, becomes

ou ou 1 0p
E‘FU%— U*E%, (443)
u? 1 0p
— =k, — — — 4.44
R o On ( )
1 dp
=k, —— = . 4.4
0=k o b (4.45)

As already noted, ignoring the viscosity is physically akin to ignoring the
heat conduction, so that we write the constitutive relation for the heat flux
vector in the form

7 =0. (4.46)
By doing this we obtain from the energy equation (2.118) the energy equation

of inviscid flow:

D |1 op
= 2w =Py ok 4.4
oy |:2uzuz+h:| g T ok (4.47)
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If, instead of the energy equation, the entropy equation (2.134) is used, this
now reads

Ds

D = 0. (4.48)
That is, the entropy of a material particle does not change in inviscid flow
without heat conduction. (Here, as before, we have excluded other nonequi-
librium processes which might arise through excitation of internal degrees of
freedom of the fluid molecules or through chemical reactions.) The Eq. (4.48)
characterizes an isentropic flow. If the entropy is homogeneous:

Vs=0, (4.49)

we speak of homentropic flow. For the calorically perfect gas, (4.48) is re-
placed by

% (po~ ) =0 (4.50)
and (4.49) by
Vpe")=0. (4.51)

4.2.2 Bernoulli’s Equation

Under mildly restricting assumptions it is possible to find so-called first inte-
grals of Euler’s equations, which then represent conservation laws. The most
important first integral of Euler’s equations is Bernoulli’s equation. We as-
sume that the mass body force has a potential (E =—-V), ie ¢ = —g;z;
for the gravitational force. We multiply Euler’s equation (4.40a) by w;, thus
forming the inner product with #, and obtain the relation

ou; ou; 1 op oY
v ot T Ui O0x; Qu o0x; b ox; ( )
After transforming the second term on the left-hand side and relabelling the
dummy indices, this becomes

_Buj 0 [M}:fl dp 6_1/1

- i —Uj— — U . 4.
K T Ox; L 2 0 K Oz K O0x; (4.53)

ot

We could, in principle, integrate this equation along an arbitrary smooth
curve, but we arrive at a particularly simple and important result if we inte-
grate along a streamline. With u = |4, from the differential equation for the
streamline (1.11), we have

uj = udz;/ds , (4.54)

so that
w2, 4% 0 _ d (4.55)
]&’cj_ ds &’cj_ ds '
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holds, and because u; Ou;/0t = u du/0t we can write for (4.53)

ou d [u? 1dp doy
E+£|:?:|______' (4.56)

Integration along the arc length of the streamline leads us to Bernoulli’s
equation in the form

ou u? dp
—ds + — = = 4.
ats+2+/g+1/1 C, (4.57)
or integrating from the initial point A to the final point B we get the definite
integral
i 0 i d
U 1 1dp 1
— ds + ~u? -—d = —u? . 4.58
ot S+2uB+/gds s+ vs 2UA+1/1A ( )
A A

In order to evaluate the integrals, the integrands must in general appear as
functions of the arc length s unless the integrand is a total differential. How-
ever, the first integral cannot be written as the integral of a total differential.
Obviously, in incompressible flow of homogeneous density, dp/o is a total
differential. But this is also the case in barotropic flow, where the density is
only a function of the pressure:

o=o(p) . (4.59)

Then dP = dp/o(p) is a total differential, and the pressure function

Po) = [ (4.60)

o(p)

can be calculated once and for all (if necessary, numerically). Clearly
barotropic flows occur if the equation of state is given in the form ¢ = o(p, T')
and the temperature field is homogeneous, or if we have the technically im-
portant case where the equation of state ¢ = o(p, s) is given and the flow is
homentropic.

If gravity is the only mass body force appearing, Bernoulli’s equation for
incompressible flow of homogeneous density reads

Ju u?
Q/—ds+9—+p+99w3=0, (4.61)
ot 2
where we have assumed that the x3 direction is antiparallel to the gravity
vector ¢. For steady, incompressible flow Bernoulli’s equation reduces to
u2

97+p+gg:c3:C. (4.62)
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Since for steady flows, streamlines and pathlines coincide, g is constant along
the streamline, even for inhomogeneous density fields (V o # 0); this is be-
cause Dp/Dt = 0. Equation (4.62) therefore also holds for steady, incom-
pressible flows when the density is inhomogeneous.

In compressible flows, the velocities are in general so large that the po-
tential of the gravity force 1) = g x3 only has to be taken into account if very
large differences in altitude appear in the flow (meteorology). In technical
applications, ¢ in (4.57) can normally be neglected, and for barotropic flow
this equation takes the form

ou 2

u
—~d —_ 4+ P=C. 4.
/615 s+ +P=C (4.63)

If, in addition, the flow is steady, (4.63) can be simplified further to

u2

-5 +P=C. (4.64)
In general, the constant of integration C differs from streamline to stream-
line. Therefore Bernoulli’s equation only represents a relation between the
flow quantities at position B on the streamline, and at position A on the
same streamline. In order to apply Bernoulli’s equation the streamline ac-
tually has to be known. Its calculation requires in general the knowledge of
the velocity field, and this problem must be solved before Bernoulli’s equa-
tion can be applied. Of course this restricts the application of Bernoulli’s
equation drastically. However this restriction vanishes in two technically very
important cases:

The first case is the application of Bernoulli’s equation to stream filament
theory (see discussion in connection with Fig. 1.7). In this theory, the “repre-
sentative” streamline is fixed by the shape of the streamtube which does not
change in time. Therefore the streamline is known, and will be fixed in space
even for unsteady flow (cf. (1.13)).

The second case is the application of Bernoulli’s equation to potential flow.
From the discussion in connection with the vorticity equation we have seen
that in many practically important problems, inviscid flow is also irrotational.
However in inviscid potential flows Bernoulli’s constant has the same value
on all streamlines: Bernoulli’s equation (4.57) therefore holds between two
arbitrary points A and B in the flow field. For the irrotational field we have

curlé =20 =0, (4.65)
or because of (1.46)
1 aui 6’11,]‘
= — = 4.
Ql] 2 [8:03 8:1:1} 0 ’ ( 66)
and so
aui - auj . (467)

aCCj n 8:01 '
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it follows that Euler’s equation (4.40a) becomes

ou; 0 {M} 1 dp oY

R ~0. (4.68)

o Ox; Ox;
After introducing the velocity potential @ according to (1.50)

0P
6:101- ’

U; =

Eq. (4.68) yields

2 1
0P a[ oP aqﬁ} laeraw:O. (4.69)

Ox;0t + ox; 2 8_563 8_:17J o Ox;  Ox;
In barotropic flow, the whole left-hand side of this equation can be represented

as the gradient of a scalar function

o [0 1 0P 843 af
— - — — 4.70
oz, [815—'—28 oz, +¢] Fr (4.70)
and the expression
of
df = dx; 4.71
f =gt da (471)
is a total differential. Therefore the line integral
845 1 00 09
P de; = [ d 4.72
/8:0Z { 2 8:03 817J + +1/’] . / ! ( )
is path independent, and we immediately obtain Bernoulli’s equation for po-
tential flow 96 180 96
— P 4.
8t+2(9xi81+ +p=C(1) . (4.73)

Bernoulli’s “constant” can, as pointed out, be a function of time. However
this is unimportant since without loss of generahty it can be incorporated

into the potential:
/ O (4.74)
Then u; = 09*/0z; holds and from (4.73) we obtain
oP* 1 09* 0P*
+P+¢v=0. (4.75)

ot 2 9z, o

Incidentally the Eq. (4.73) (or (4.75)) is also a first integral in viscous in-
compressible potential flow, since then, because of (4.12), the equation to be
integrated corresponds with (4.68).

The progress achieved with Eq. (4.73) cannot be emphasized highly
enough. In the theory of potential flow Bernoulli’s equation takes the place of
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Euler’s three nonlinear equations. Moreover in steady flow this even gives rise
to a pure algebraic relationship between the velocity, the potential of the mass
body force and the pressure function (in incompressible flow, the pressure).
In order to apply Bernoulli’s equation in potential theory, the streamlines do
not need to be known. The simplifications thus found in the mathematical
treatment and the practical significance of potential flows have made this an
important area in fluid mechanics.

We have already seen that in technical applications, in particular in turbo-
machinery, reference frames rotating uniformly with @ are often introduced.
We reach Euler’s equation for these reference frames by inserting the con-
stitutive relation for inviscid fluids (3.9) into Cauchy’s equation (2.68), and
expressing the relative acceleration using (1.78):

Ow w-wl  [Vp =
{E—wx(wa)—i—V[ 5 }}— [g — k42 Gxw+02x (3xT)| . (4.76)

Instead of following the derivation of Bernoulli’s equation as in (4.52), we
immediately form the line integral along a streamline. If dZ is a vectorial line
element along the streamline, {1 x (V x@)}-dZ = 0 holds, and {202 x @} -d% =
0, since @ x (V x &) and 2 x o are orthogonal to @ and thus orthogonal
to dZ. Therefore, the Coriolis force in particular has no component in the
direction of the streamline. Using the relation

—

G x (Fxi)= v[ (Qxx)], (4.77)

(which may be proved using index notation), the centrifugal force can be
written as the gradient of the scalar function 1 (£2 x #)? and thus has a po-
tential. If we assume, as before, barotropy and a potential for the mass body
force, the line integral of Euler’s equation then reads

ow wew 1,5, Vp L
B dx+/{V{T—§(Qxx) —i-w}—i-?}-dx—o. (4.78)

With |dZ| = ds and |@] = w we obtain Bernoulli’s equation for a uniformly
rotating reference frame:
ow w? 1 =

_ PR _'2:
Srds+ v+ P - (@x3)’=C. (4.79)

A special form of this equation for incompressible flow arises if the mass
body force is the gravitational force, the unit vector €3 is in the x3 direction
antiparallel to ¢, and the reference frame rotates about the z3 axis with
2 = const (Fig. 4.2). With r? = 2% + 23, the square of the cross product
then reads

(@ xB)?=(Ra18 — Ray&r)? = 2272, (4.80)
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z

Fig. 4.2. Bernoulli’s equation in a rotating reference frame

and (4.79) reduces to

B 2
—wds—i-w—

p L 2 o
+ =+ — =10 =C. 4.81
ot 2 0 g3 " ( )

2

Additionally, we note that a flow which is a potential flow in the inertial refer-
ence frame is no longer a potential flow in the rotating frame. The advantages
connected with treating the flow using potential theory may outweigh those
connected with choosing a rotating reference frame, and it can sometimes be
more useful to retain the inertial frame.

4.2.3 Vortex Theorems

We shall now consider the circulation of a closed material line as it was
introduced by (1.105):

()

Its rate of change is calculated using (1.101) to give

DI D Du
- = i-d7 = -dZ i - dd . 4.82
Dr = Di j{ a - dT dZ+ ¢ @-du (4.82)
() (©) (@)

The last closed integral vanishes, since @-da = d(@-%/2) is a total differential
of a single valued function, and the starting point of integration coincides with
the end point.

We now follow on with the discussion in connection with Eq. (1.102), and
seek the conditions for the time derivative of the circulation to vanish. It
has already been shown that in these circumstances the acceleration Di/Dt
must have a potential I, but this is not the central point of our current
discussion.
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Using Euler’s equation (4.40) we acquire the rate of change of the line
integral over the velocity vector in the form

D‘F:]{E-df—f@-df (4.83)
0

Dt
(©) (©)

and conclude from this that DI"/D¢ vanishes if k- dZ and Vp/o-d¥ can be

written as total differentials. If the mass body force k has a potential the first
closed integral is zero because

k-di = -V di = —dy . (4.84)
In a homogeneous density field or in barotropic flow, because of

VP i _gp (4.85)
0 o(p)

the second integral also vanishes. The last three equations form the content
of Thomson’s vortex theorem or Kelvin’s circulation theorem:

DI
— =0. 4.86

In words:

“In an inviscid and barotropic fluid, the circulation of a closed ma-
terial line remains constant for all times if the mass body force has
a potential.”

We use this theorem as a starting point for the explanation of the famous
Helmholtz’s vortex theorems which allow a vivid interpretation of vortex mo-
tions and in addition are of fundamental importance in aerodynamics.

Before we do this, we shall consider the origin of the circulation about an
airfoil in two-dimensional inviscid potential flow, because Kelvin’s circulation
theorem seems to contradict the formation of this circulation.

In connection with Eq. (2.91) we have already referred to the fact that
the force on an airfoil in two-dimensional potential flow is proportional to the
circulation. We gain an insight into the relation between circulation and lift
(force perpendicular to the undisturbed incident flow direction) by comparing
a symmetric airfoil with an asymmetric airfoil (or a symmetric airfoil at an
angle of attack) in plane two-dimensional flow. In the first case the flow is
likewise symmetric, and for this reason we expect no force perpendicular to
the incident flow direction. The contribution of the line integral about the
upper half of the airfoil to the circulation has exactly the same size as the
contribution about the lower half, but with opposite sign, that is, the total
circulation about the symmetric airfoil is zero.

For the asymmetric airfoil shown in Fig. 4.3 the flow is likewise asymmet-
ric, the contribution of the line integral about the upper half has an absolute
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Fig. 4.3. Explanation of the circulation about an airfoil

value larger than that of the contribution about the lower half and therefore
the circulation is nonzero. The velocity along a streamline which runs along
the upper side of the airfoil is then larger on the whole than the velocity on
the lower side. According to Bernoulli’s equation (4.62), the pressure on the
upper side is on the whole smaller than on the lower side (the term og s
is of no importance for the dynamic lift), so that in total a force upwards
results.

If we first consider an airfoil in a fluid at rest, the circulation of a closed
curve about the airfoil is clearly zero because the velocity is zero.

The circulation of this curve, which always consists of the same material
particles, must remain zero by Kelvin’s circulation theorem, even if the in-
viscid fluid is set into motion. Experience has shown us, however, that a lift
acts on the airfoil. How can the airfoil acquire lift without Kelvin’s law being
contradicted? To answer this question, consider the airfoil in Fig. 4.4, a series
of closed curves layed down in the fluid which is at rest.

|

-
O /

Fig. 4.4. Material curves for an airfoil at rest
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Fig. 4.5. Material curves after setting the airfoil into motion

The circulation is zero for all curves, and also for the surrounding line. We
set the fluid into motion and, since all the curves are material lines, we obtain
the configuration shown in Fig. 4.5. The airfoil “cuts through” the flow, and
a dividing surface forms from the trailing edge as the fluid from the upper
and lower sides flow together. For asymmetric airfoils the velocity above and
below this dividing surface is different. A discontinuity appears, as sketched
in Fig. 4.6.

The discontinuity surface is only possible in the limiting case of vanishing
viscosity (n = 0). Even if there is only a small amount of viscosity, this dis-
continuity becomes evened out. In this region the rotation is nonzero. This
does not contradict Kelvin’s circulation theorem since the discontinuity sur-
face or the wake are not part of the closed material curves. The discontinuity
surface is in principle unstable: it rolls up into a vortex which keeps getting
larger until the velocities at the trailing edge are equal; then the process of
start-up is finished.

The formation of the discontinuity surface hinders the flow around the
sharp edge which in real inviscid flow (7 = 0) would produce infinitely large
velocities.

In the first instant of start-up, the flow a round the trailing edge is indeed
at very high velocities, but it becomes separated from the upper side. Later

=0 n#0

% ) )
?”;’__

Fig. 4.6. Separation surfaces behind the airfoil
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we shall see that this is caused by the very large deceleration of the flow from
the trailing edge (high velocity) to the stagnation point (zero velocity) which
will be formed on the upper surface in the as yet circulation free flow. This
flow separates from the upper surface even with very little viscosity (n — 0)
and forms the wake, which becomes the discontinuity surface in the limiting
case n = 0. Apart from inside this wake, the flow is irrotational. Fig. 4.7
shows the different phases of start-up.

A closed curve which surrounds the airfoil and vortex (Fig. 4.8) still has,
by Kelvin’s circulation theorem, a circulation of zero. A closed line which only
surrounds the vortex has a certain circulation and must necessarily cross the
discontinuity surface.

Therefore Kelvin’s circulation theorem does not hold for this line. A curve
which only surrounds the airfoil has the same circulation as the vortex, only
with opposite sign, and therefore the airfoil experiences a lift. The vortex is
called the starting vortex, and we associate the circulation about the airfoil
with a vortex lying inside the airfoil, and call this vortex the bound vortex.
(The seat of the circulation is actually the boundary layer but in the limit
17 — 0 the thickness tends to zero while the vorticity in the layer tends to
infinity.)

In addition we note that with every change in velocity the lift changes
likewise, and consequentially a free vortex must form. (In a fluid with vis-
cosity, circulation and vortices can arise in many ways, for example through
boundary layer separation, without a sharp edge being necessary.)

Incidentally in the above discussion we have also used the obvious law
that the circulation of a closed line is equal to the sum of the circulation of

—— Pz s —
e
_%

Fig. 4.7. Start-up
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bound vortex free vortex

Fig. 4.8. The circulation of the starting vortex and the bound vortex are of equal

AN
R

Fig. 4.9. Circulation of a meshed network

the meshed network bounded by the curve (Fig. 4.9):

Fclosed = Z Fi7 (487)

or else
I = /d[‘ . (4.88)

In order to discuss Helmholtz’s vortex theorems, we need to make use of
Stokes’ integral theorem. Let S be a simply connected surface which is other-
wise of arbitrary shape (i.e. any arbitrary closed curve on the surface can be
shrunk to a single point), whose boundary is C, and let @ be any arbitrary
vector.
Stokes’ theorem then reads:

The line integral [« -dZ about the closed curve C' is equal to the surface
integral [[(V x @) 7 dS over any surface of arbitrary shape which has C' as

its boundary, therefore
?{ﬁ-df: // (curl@) - dS . (4.89)
() (5)

Stokes’ theorem allows a line integral to be changed into a surface integral.
The direction of integration is positive anticlockwise as seen from the positive
side of the surface (Fig. 4.10).

Helmholtz’s first vortex theorem reads:

“The circulation of a vortex-tube is constant along this tube.”
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line of sight

S

L]

Fig. 4.10. Assigning the direction of integration in Stokes’ integral theorem

curl @

Ty

Fig. 4.11. Vortex-tube

In complete analogy to streamtubes, we shall form vortex-tubes from
vortex-lines, which are tangential lines to the vorticity vector field curl
(or @) (Fig. 4.11). The vortex-lines which pass through a closed curve form
a vortex-tube. According to Stokes’ theorem, the line integral over the closed
curve in Fig. 4.12 vanishes, because the integrand on the right-hand side of
(4.89) is zero, since curl @ is by definition perpendicular to 7.

The contributions to the integral from the infinitely close pieces C5 and
Cjy of the curve cancel each other and we are led to the equation

/ﬁ-df+/ﬁ-df=0. (4.90)
C1 Ca

Because of the infinitesimally small distance between the curves C5 and Cy,
we can consider C7 and Cs to be closed curves. If we change the direction of
integration over Cy, thus changing the sign of the second integral, we obtain
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St

Fig. 4.12. Proof of Helmholtz’s first vortex theorem

Helmholtz’s first vortex theorem:

j{ﬁ-df:fﬁ-df. (4.91)

Cq Ca

From this derivation the kinematic nature of this theorem is obvious. An-
other approach to this important theorem starts from equation (4.14) which
shows that the divergence of the vorticity vector vanishes. We can therefore
consider the vorticity vector field curl ¢ as the velocity field of a new incom-
pressible flow, i.e. the vortex-tube becomes the streamtube of the new field.
We apply the equation of continuity in its integral form (2.8) to a part of
this streamtube, and at the same time replace @ by curl. Since the flow is
incompressible, quite generally

// (curl@) - 7dS =0, (4.92)
(S)

i.e. for every closed surface S, the flux of the vorticity vector is zero. We
apply (4.92) to a part of the vortex-tube whose closed surface consists of the
surface of the tube and two arbitrarily orientated cross-sections A; and As,

and find
// (curl@) - dS + // (curl@) - 7dS =0, (4.93)
(A1)

(A2)

since the integral over the tube surface vanishes. The integral [[(curl@) -7 dS
is often called the vortex strength. It is clearly identical to the circulation,
and in words the Eq. (4.93) reads:

“The vortex strength of a vortex-tube is constant”.
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Noting the sense of integration of the line integral, Stokes’ theorem transforms
equation (4.93) into Helmholtz’s first theorem (4.91). We conclude from this
representation that just like the streamtube, the vortex tube cannot come to
an end within the fluid, since the amount of fluid which flows through the
tube in unit time cannot simply vanish at the end of the tube. Either the
tube must reach out to infinity, or end at the boundaries of the fluid, or else
close around into itself and, in the case of a vortex-tube, form a vortex ring.

Vortez filaments are of particular importance in aerodynamics. By a vor-
tex filament we understand a very thin vortex-tube. For a vortex filament
the integrand of the surface integral in Stokes’ theorem (4.89)

%ﬁ~df:// (curld) -7dS =TI (4.94)
C AS

can be taken in front of the integral and we get
(cwrl®@) - AS =T (4.95)

or

20 -1 AS =2wAS = const , (4.96)

from which we conclude that the angular velocity increases with decreasing
cross-section of the vortex filament.

We shall see later from Helmholtz’s second vortex theorem that vortex-
tubes are material tubes. If we make use of this fact, then (4.96) leads to the
same statement as (4.27): if the vortex filament is stretched, its cross-section
becomes smaller and the angular velocity increases. The expression (4.27)
was according to its derivation restricted to incompressible flow, while the
conclusion we have drawn here (by using Helmholtz’s second vortex theorem)
holds in general for barotropic flow.

A frequently used idealized picture of a vortex filament is a vortex-
tube with infinitesimally small cross-section, whose angular velocity then,
by (4.96), becomes infinitely large:

wAS = const (4.97)

for AS—0 and w— 0.

Outside the vortex filament, the field is irrotational. Therefore if the position
of a vortex filament and its strength I" are known, the spatial distribution
of curl@ is fixed. In addition, if div« is given (e.g. divd = 0 in incompress-
ible flow), according to the already mentioned fundamental theorem of vector
analysis, the velocity field @ (which may extend to infinity) is uniquely de-
termined if we further require that the normal component of the velocity
vanishes asymptotically sufficiently fast at infinity and no internal bound-
aries exist. (On internal boundaries conditions have to be satisfied, and we
will wait to Sect. 4.3 to introduce these.)
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i

Fig. 4.13. Vortex filament

The assertion of the fundamental theorem of vector analysis is also purely
kinematic in nature, and is therefore not restricted to inviscid fluids.
We split the vector « up into two parts:

U =1Up+Ur , (4.98)
of which the first is an irrotational field, i.e.
curliip =V xip =0, (4.99)
and the second is a solenoidal field, thus
diviip =V -igp=0. (4.100)
The combined field is therefore in general neither irrotational nor solenoidal.
The field @p is a potential flow, and thus by (1.50) we have @p = V. We

form the divergence of @ and consider it to be a given function ¢(Z). Because
of (4.100), we obtain

divid =V - ip = q(&) (4.101)

or else 92
. — = g(7) . 4.102
V-V 0202, q(Z) (4.102)

(4.102) is an inhomogeneous Laplace’s equation also called Poisson’s equa-
tion. The theory of both these partial differential equations is the subject
of potential theory which is as important in many branches of physics as in
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fluid mechanics. If we refer back to the results of this theory, the solution of

(4.102) is given by
. 1 q(T')
D(T) = —— d 4.1
(o0)

where 7 is the place where the potential & is calculated, and 7’ is the abbre-
viation for the integration variables x}, x5 and x4 (dV’ = daf da), daf). The
domain (0o) implies that the integration is to be carried out over all space.
We shall briefly sketch the manner of solution at the end of our consideration,
but here we shall take the solution as given.

In order to calculate @r we note that (4.100) is certainly satisfied if we
represent i r as the curl of a new, yet unknown, vector field a:

up=curla=V xa, (4.104)
because, from Eq. (4.14), we have
V. (Vxd)=V-ip=0. (4.105)
We form the curl of @ and, from (4.99), extract the equation
Vxua=Vx(Vxa), (4.106)
which by (4.10) is rewritten as
Vxu=V(V-ad)— Ad . (4.107)

Up to now we have only required that the vector @ satisfy (4.104). However
this does not uniquely determine this vector, because we could always add
the gradient of some other function f to @ without changing (4.104) (since
V x V f = 0). If, in addition, we require that the divergence of @ vanishes
(V-a=0), we obtain from (4.107) the simpler equation

V x il = —Ad . (4.108)

In (4.108) we consider V x @ as a given vector function b(Z), which is de-
termined by the choice of the vortex filament and its strength (circulation).
Thus the Cartesian component form of the vector equation (4.108) leads to
three Poisson’s equations, namely:

Aai = —bi . (4109)
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For each of the component equations, we can apply the solution (4.103) of
Poisson’s equation. We combine the results again vectorially, and write the
solution from (4.108) in short form as

—»

/// o dV’ (4.110)

By doing this, the calculation of the velocity field @(Z) for a given distribution

q(Z) = divd and g(f) = curl# is reduced to integration processes, which may
have to be done numerically:

i(7) = div (& , curld(& ,
(@) - 4W/// v b v x /// e av

(4.111)

For completeness, we shall sketch the path of solution for equation (4.103).
Starting from Gauss’ theorem (1.94)

/// aafl = //‘P”ids (4.112)

we write, for the general function ¢

(4.113)

where U and V are arbitrary functions which we only assume to be continuous
to the degree which is necessary for the application of Gauss’ theorem. Gauss’
theorem then leads to the relation known as Green’s second formula:

oV ou 0%V 0*U
() (V)

For U we now choose the potential function @, and for V

1 1
“FF (4.115)

The function 1/r is a fundamental solution of Laplace’s equation. It is so
called because, as already shown by (4.103), with its help we can form gen-
eral solutions through integration processes. The fundamental solution is also
known as the singular solution, since it satisfies Laplace’s equation every-
where except at a singularity, here for example at r = 0, where 1/7 is discon-
tinuous. Later we shall give the function 1/r an obvious meaning, and shall
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proceed to show by formal calculation that Laplace’s equation is satisfied ev-
erywhere except at & = &', (r = 0). Because 1/r is not continuous for r = 0,
we have to exclude this point from the domain (V'), as Gauss’ theorem is only
valid for continuous integrands.

As shown in Fig. 4.14, we surround the singular point with a small sphere
(radius a) so that the surface domain of integration (S) consists of a very
large sphere (radius — oo) and a very small sphere which surrounds the
singularity. Now the integrand on the right-hand side of (4.114) is regular, and
the first term vanishes everywhere in the domain of integration, since V.= 1/r
satisfies Laplace’s equation. In the second term, we replace AU = A® by ¢(Z)
(because of (4.102)), so that the right-hand side now consists of the integral

-Jlf |fq@3?/| v
(00)

On the left-hand side we shall first perform the integration over the large
sphere and note that (0V/0x;)n; is the derivative of V in the direction of
the normal vector n; of the sphere. Therefore we have

][5 -e [ e

and this vanishes as 1/72. However the surface of integration increases as 72,

so that the dependency on r drops out. By assumption, U = & vanishes at
infinity, and therefore there is no contribution from the first term on the left-
hand side. The second term vanishes too because (0®/Jz;) n; (the component
of the vector ¥ normal to the surface) die away fast enough for the second
term to vanishes also. Therefore all that remains is the integral over the small
sphere. However the normal vector of the small sphere points in the negative
radial direction, giving us

oV B vy
|:6_(EZ TLZ:| . = |: —:|a = +CL 5 (4117)

Fig. 4.14. Domain of integration
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0P 0P
[8_:171 nz} . = |:— E:|a . (4118)

We write a? d{2 for the surface element, where d{2 is the surface element of
the unit sphere. Then the left-hand side of (4.114) is

// ba?a*dn + // a*lgaz’drz. (4.119)

(sphere) (sphere)

and

The second integral vanishes for a — 0, the first yields 47 @(#), and then

from (4.114), we extract
L 1 q(7)
N=—-— dv . 4.12
= 120)

V)

If we further replace & by &' which does not change the function

1 1

Gz, 1) =———=——= 4.121
() ir|E—a]’ (4.121)
we obtain the solution (4.103). We call G(Z, &) the Green’s function, which
appears here in the special form for infinite, unbounded space. In two-

dimensional problems, the free space Green’s function reads

1
GZ, 7)) = o In|Z— 7] . (4.122)
T

We now return to Eq. (4.111), and calculate the solenoidal term of the velocity
#pr. This is the only term in incompressible flow without internal bound-
aries. Since we are considering a field which is irrotational outside the vortex
filament (Fig. 4.15), the velocity field outside the filament is given by

Tr(T) = V x E /// Cgl_uw av’l . (4.123)

(filament)

By assumption, the integration is only carried out over the volume of the
vortex filament, whose volume element is

=dS#n-da, (4.124)

with dZ’ = fids’ as the vectorial element of the vortex filament.
By simple manipulation and using

—

7i = curld/|curl @]
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Fig. 4.15. Vortex filament

we obtain .
AV’ = ds ——2 . fds’ (4.125)
|curl
therefore also 4
s
dv’ = 1%) -7 dS 4.126
(curl @) - 7 |curl | ( )

and this leads to the expression for (4.123):

oL (curl @) ndS
ur(Z) = /// 77 ——da7| . (4.127)

(ﬁlament)

Here we have set ~
curl @ ds’

——— =qids =d7’ . 4.12
|curl 4 nes . (4.128)

First we integrate over the small cross-sectional surface AS and, for AS — 0,
ignore the change of the vector & over this surface thus taking 1/|Z — Z’| in
front of the surface integral to obtain

o)~V { [ | [femn o ard .

From Stokes’ theorem, the surface integral is equal to the circulation I,
and from Helmholtz’s first vortex theorem this is constant along the vortex
filament, and is therefore independent of Z’. From (4.129) we then find

r A&
Up(T) = — —_— . 4.130
TR (T) 47rvx/|ff:z?’| (4.130)

The following calculation is more simply done in index notation, in which the
right-hand side of (4.130) is written as

r 0 1
— €k =— | —dx},.
47T€Jk8:cj/r Tk



4.2 Inviscid Fluids 127

We now see directly that the operator €;;,0/0x; can be taken into the inte-
gral.
The term d(r—')/dxz; (with r; = x; — z} and r = |F]) becomes

o(r—1t 1 or 1 1 -
T L e LR sy
J J

If we replace (4.131) by the above expression in vector form, (4.130) finally
leads to the famous Biot-Savart law:

Lo r d¥ x 7
URr(Z) = y / o (4.132)
(filament)

with 7= # — 7/, which finds applications particularly in aerodynamics.

The Biot-Savart law is a pure kinematic law, which was originally dis-
covered through experiments in electrodynamics. The vortex filament corre-
sponds there to a conducting wire, the vortex strength to the current, and the
velocity field to the magnetic field. The origin of this law also explains the ter-
minology used in aerodynamics, that the vortex filament “induces” a velocity
u. As an illustration, we shall calculate the induced velocity from a straight
infinitely long vortex filament, at a distance a from the vortex filament. The
velocity i is always orthogonal to the plane spanned by dZ’ and 7, and is
therefore tangential to the circle with radius a in the plane orthogonal to the
vortex filament. The magnitude of the induced velocity is found from (4.132),
using the notation in Fig. 4.16 as being

—+oo
N I sin
jir| = — / T;P ds’ . (4.133)

From Fig. 4.16 we deduce the relation

s’ =—acoty, (4.134)
so that s = —oo correspond to ¢ = 0 and s’ = 400 to ¢ = 7, and ds’
becomes “

ds' =+——do. (4.135)
sin® ¢
With r = a/ sin ¢ follows
rof r o
|GR|:—/sing0dg0:—— cosp| = —. (4.136)
4dra 4ma 0 2ma
0

This result holds in all planes perpendicular to the vortex filament. The two-
dimensional flow with this velocity field is called a potential vortex, and we
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curl @

|

s'=—a cotp
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Fig. 4.16. Velocity induced by a straight vortex filament

shall discuss this more fully later. Clearly (4.136) corresponds with (2.97)
which is a consequence of the angular momentum balance. We could have
found the same result using the plausible assumption of constant velocity at
radius a, and by calculating the circulation:

27
F:fﬁR-df:G-é}aa/dcp:|GR|a27T. (4.137)
a 0

We shall now calculate the contribution of a straight vortex filament of finite
length to the induced velocity at the point P whose position is determined
by the displacement a and the angles 1 and @9 (Fig. 4.17). After integrating
from ¢1 to 2 we find from (4.136)

r
lir| = = (cos 1 — cos pa) . (4.138)
For ¢1 = 0 and ¢9 = /2 (semi-infinite vortex filament) the induced velocity
in the orthogonal plane is given by

r
UR| = —, 4.139
itn] = (1139)
and it amounts to precisely half of the value for the infinitely long vortex
filament, as we would expect for reasons of symmetry.
Such finite or semi-infinitely long pieces of a vortex filament cannot, by
Helmholtz’s first vortex theorem, exist alone, but must be parts of a vortex
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®2

curl @

Fig. 4.17. Vortex filament of finite length

filament which is closed into itself, or which reaches to infinity on both sides.
We saw in the discussion of Fig. 4.8 that the circulation about an airfoil
in two-dimensional flow can be represented by using a bound vortex. We
can imagine these bound vortices as straight, infinitely-long vortex filaments
(potential vortices). As far as the lift is concerned we can think of the whole
airfoil as being replaced by the straight vortex filament. The velocity field
close to the airfoil is of course different from the field about a vortex filament
in cross flow, but both fields become more similar the larger the distance
from the airfoil.

In the same way, the starting vortex can be idealized as a straight vortex
filament which is attached to the bound vortex at plus and minus infinity. The
circulation of the vortex determines the lift, and the lift formula which gives
the relation between circulation and lift per unit width in inviscid potential
flow is the Kutta-Joukowski theorem

A=—pI'Us , (4.140)

where Uy, is the so-called “undisturbed” approach velocity, i.e. the velocity
which would appear if the body were removed. (By width or span of a wing
we mean the extension normal to the plane drawn in Fig. 4.3, while the
depth of the wing section is the chord of the wing section. The negative sign
in all lift formulae arises since circulation is here defined as positive as in
the mathematical sense.) The Kutta-Joukowski theorem can be derived from
the momentum balance and Bernoulli’s equation, in the same manner as was
used to calculate the force on a blade in a cascade. Here we refrain from doing
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Fig. 4.18. Simplified vortex system of a finite airfoil

this since we wish to derive the Kutta-Joukowski formula by different means
later.

In this connection we expressly mention that the force on a single wing
section in inviscid potential flow is perpendicular to the direction of the undis-
turbed stream and thus the airfoil experiences only lift and no drag. This
result is of course contrary to our experience, and is due to ignoring the vis-
cosity. The Kutta-Joukowski theorem in the form (4.140) with constant I"
only holds for wing sections in two-dimensional plane flow. All real wings
are of finite span, but as long as the span is much larger than the chord of
the wing section, the lift can be estimated using the assumption of constant
circulation along the span. Approximately the lift of the whole wing with
width b is given by

A=—9oI'Uxb. (4.141)

In reality however there is flow past the tips of the wing, because the pressure
on the lower side of the wing is larger than that on the upper side, so that by
Euler’s equation the fluid flows under the influence of the pressure gradient
from the lower to the upper side to even out the pressure difference. In this
way the value of the circulation on the wing tips tends to zero, the circulation
therefore varies over the span of the wing, and the lift is calculated by

1b/2
A=—pUsx /F(:C) dz | (4.142)

—b/2

if the origin is in the middle of the wing and x is measured along the span. Yet
even when we assume that " is constant over the span of the wing, difficulties
soon arise, because as far as the lift is concerned a wing cannot be replaced
by a finite piece of a vortex filament.

According to Helmholtz’s first vortex theorem, which being purely kine-
matic and therefore also holding for the bound vortex, isolated pieces of
a vortex filament cannot exist. Neither can it be continued straight along
into infinity, where the wing has not cut through the fluid and thus no dis-
continuity surface has been generated as is necessary for the formation of
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circulation. Therefore free vortices which are carried away by the flow must
be attached at the wing tips. Together with the bound vortex and the starting
vortex, these free vortices form a closed vortex ring which frame the fluid
region cut by the wing. If a long time has passed since start-up, the starting
vortex is at infinity, and the bound vortex and the tip vortices together form
a horseshoe vortex, which, although it only represents a very rough model of
a finite wing, can already provide a qualitative explanation for how a wing
experiences a drag in inviscid flow, as already mentioned. The velocity w
(induced downwash) induced in the middle of the wing by the two tip vortices
amounts to double the velocity induced by a semi-infinite vortex filament at
distance b/2. Therefore by (4.139) we have

W= 4—F—7=

r 1r
47 (b/2) b T

(4.143)

and w is directed downwards. Thus the middle of the wing “experiences”
not only the undisturbed velocity Us,, but a velocity which arises from the
superposition Uy and w (Fig. 4.19). In inviscid flow, the force vector is
perpendicular to the actual approach direction of the stream, and therefore
has a component parallel to the undisturbed flow, which manifests itself as
the induced drag D;pq:

Dipg = A—— . (4.144)

Uso

But (4.144) only holds if the induced downwash from both vortices is constant
over the span of the wing. However the downwash does change, because, at
a distance = from the wing center, one vortex induces a downwash

r
A (b2 +z)

the other
r

A7 (b/2 —x) ’

Dind

Fig. 4.19. Explanation of induced drag
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and together
I b

T 4m (b/2)2 — a2

from which we conclude that the downwash is smallest in the center of the
wing (so we underestimate the drag with (4.144)) and tends to infinity at the
wing tips. The unrealistic value there does not appear if the circulation dis-
tribution decreases towards the ends, as indeed it has to. For a semi-elliptical
circulation distribution over the span of the wing, one finds a constant down-
wash distribution, and (4.144) is applicable. Helmholtz’s first vortex theorem
further demands that, for an infinitesimal change in the circulation in the z
direction

w

dr
dI' = —d
dx o

a free vortex of the same infinitesimal strength must leave the trailing edge.
In this way we are led to the improved vortex system of Fig. 4.20. The free
vortices form a discontinuity surface in the velocity components parallel to
the trailing edge, which rolls them into the vortices sketched in Fig. 4.21.

These vortices must be continually renewed as the wing moves forward, so
that the kinetic energy in the vortices continually has to be newly delivered
to them. The power needed to do this is the work done per unit time by the
induced drag.

We can often see manifestations of Helmholtz’s first vortex theorem in

daily life. Recall the dimples seen on the free surface of coffee when the coffee
spoon is suddenly moved forwards and then taken out (Fig. 4.22).
As the fluid flows together from the front and back, a surface of discontinuity
forms along the rim of the spoon. The discontinuity surface rolls itself into
a bow shaped vortex whose endpoints form the dimples on the free surface.
Since the flow outside the vortex filament is a potential flow, Bernoulli’s
equation holds (4.62)

1
§9u2+p+99w3=0-

=N

Fig. 4.20. Simplified vortex system of an airfoil
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Fig. 4.21. The discontinuity surface rolls itself into vortices

surface

N
Y

Fig. 4.22. Vortex on a coffee spoon

This is valid not just along a streamline, but between any two points in
the field. Everywhere on the free surface the pressure is equal to the ambient
pressure pg. At some distance from the vortex the velocity is zero and the free
surface is not yet depressed and corresponds to x3 = 0, say. Then Bernoulli’s
constant is equal to the ambient pressure (C' = pyp), and we obtain

%gu2+gg:173:0.
Near the endpoints of the vortex the velocity increases by the formula (4.139),
and therefore x3 must become negative, i.e. a depression of the free surface.
The cross-sectional surface of the vortex filament is in reality not infinites-
imally small, so that we cannot take the limit ¢ — 0 in (4.139), for which
the velocity becomes infinite. However the induced velocity from the vortex
filament is so large that it leads to the noticeable formation of dimples.

In this connection we note that an infinitesimally thin vortex filament can-
not appear in actual flow because the velocity gradient of the potential vortex
tends to infinity for a — 0, so that the viscous stresses cannot be ignored
any longer, even for very small viscosity. As we know from (4.11), viscous
stresses make no contribution to particle acceleration in incompressible po-
tential flow, but they do deformation work and thus provide a contribution to
the dissipation. The energy dissipated in heat stems from the kinetic energy
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of the vortex. The idealization of a real vortex filament as a filament with an
infinitesimally small cross-section is of course still useful.
We shall now consider Helmholtz’s second vortex theorem:

“A vortex-tube is always made up of the same fluid particles.”

A vortex-tube is therefore a material tube. This has already been proved
for material coordinates by equation (4.27), but here we wish to represent it
as a direct consequence of Kelvin’s circulation theorem. We consider a vortex-
tube and an arbitrary closed curve on its surface at time ¢, (Fig. 4.23). By
Stokes’ integral theorem, the circulation of the closed curve is zero. The cir-
culation of the curve, which is made up of the same material particles, still
has the same value of zero at a later instant in time, by Kelvin’s circula-
tion theorem (DI'/Dt = 0). By inverting the above reasoning it follows from
Stokes’ theorem that these material particles must be on the outer surface of
the vortex-tube.

If we consider smoke rings, the fact that vortex-tubes are material tubes
becomes obvious: the smoke clearly remains in the vortex ring and is trans-
ported with it, so that it is the smoke itself which carries the vorticity. This
statement only holds under the restrictions of barotropy and zero viscosity.
The slow disintegration seen in smoke rings is due to friction and diffusion.
A vortex ring which consists of an infinitesimally thin vortex filament induces
an infinitely large velocity on itself (similar to the horseshoe vortex already
seen), so that the ring would move forward with infinitely large velocity. The
induced velocity in the center of the ring remains finite (just as with the
horseshoe vortex), and it is found from the Biotx-Savart law (4.132) as

2
1] I’/a2d<p r
i=— [ —/—— = —.
47 a3 2a
0

Fig. 4.23. Helmholtz’s second vortex theorem
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It is the assumption of an infinitesimally small cross-section that leads to
the unrealistic infinitely large velocity on the vortex. If we assume a finite
cross-section, then the velocity induced on itself, i.e. the velocity with which
the ring moves forwards, remains finite. However the actual cross-section of
the ring is not known, and probably depends on how the ring was formed.
In practice we notice that the ring moves forward with a velocity which is
slower than the induced velocity in the center. It is well known that two
rings moving in the same direction continually overtake each other whereby
one slips through the one in front. This behavior, sketched in Fig. 4.24, is
explained by the mutually induced velocities on the rings and the formula
given above for the velocity in the center of the ring.

In the same manner it can be explained why a vortex ring moving towards
a wall gets larger in diameter and at the same time reduces its velocity, while
one moving away from the wall contracts and increases its velocity (Fig. 4.25).

The motion cannot be worked out without knowing the vortex cross-
section, and the calculation for infinitesimally thin rings fails, because rings,
like all curved vortex filaments, induce infinitely large velocities on them-
selves. For straight vortex filaments, i.e. for two-dimensional flow, a sim-
ple description of the “vortex dynamics” for infinitesimally thin filaments is
possible, since here the self induced translation velocity vanishes. Because
vortex filaments are material lines, it is sufficient to calculate the paths of
the fluid particles which carry the rotation in the z-y-plane perpendicular
to the filaments using (1.10); that is, to determine the paths of the vortex
centers.

The magnitude of the velocity which a straight vortex filament at position
Z(;) induces at position # is known from (4.136). As explained there, the
induced velocity is perpendicular to the vector d(;) = I — Z(;), and therefore

U
]

Fig. 4.24. Two vortex rings passing through one another
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mirror image mirror image

Fig. 4.25. Vortex ring at a wall

has the direction €, x d;)/|d(;|, so that the vectorial form of (4.136) reads:

. . T — T

U = €y X ———"= .
B on 27 i

For ¥ — ¥(;) the velocity tends to infinity, but for reasons of symmetry the

vortex cannot be moved by its own velocity field; the induced translational

velocity is, as mentioned, zero. The induced velocity of n vortices with the

circulation I';) (i = 1...n) is

1 S o
57 2 T & x ==
™ < |7 — 2 )

If there are no internal boundaries, or if the boundary conditions are satisfied
by reflection, as in Fig. 4.25, the last equation describes the entire velocity
field, and using (1.10), the “equation of motion” of the kth vortex reads:

dZg) Ty — (i)

Tyyé, x 0 4.145

dt 27T Z REETEE )
VA

ik

For the reasons given above, the vortex ¢ = k is excluded from the summation.
With (4.145) the 2n equations for the path coordinates are given.

The dynamics of the vortex motion has invariants which are analogous
to the invariants of a point mass system on which no external forces act. To
start with, the conservation of the strengths of the vortices by Helmholtz’s
laws (3 I'x) = const) corresponds to the conservation of the total mass of
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the point mass system. If we multiply the equation of motion (4.145) by Iy,
sum over k and expand, we obtain

d7, dz d7, d7,
Z F(k) (k) F(l) dil) + F(Q) d(t2) + F(g) d(tg) +...=

.1 Ty —Z(9) Ty — Z()
Cy X — I I — 5 + I F —++
QW{ I F ", P 0T F ) o P

L) — T

T2) — T(3)
Jr11(2) F(l) |$(2) _ $(1)|2

S+
T(2) — T(3)]

+ F<2>F<3>|

T(3) — T

T3) — T2
+F(3)F(1)| —$1)|2 + Z—‘(3)[‘(2)| +}

-~
We can see directly that the terms on the right-hand side cancel out in pairs,
so that the equation
> ri S =0
(k) dt

k

remains, which, when integrated, leads to
Z L) Try = Ty Z Iy - (4.146)
k k

For dimensional reasons, we have written the integration constants like a “cen-
ter of gravity coordinate” Z,. We interpret this result as

“The center of gravity of the strengths of the vortices is conserved.”

The corresponding law (conservation of momentum) for a system of mass
points leads to the statement that the velocity of the center of gravity is a con-
served quantity in the absence of external forces. For 3 I') = 0 the center
of gravity lies at infinity, so that, for example, two vortices with Iy = —I2)
must move along straight parallel paths (i.e. they turn about an infinitely
distant point). If Iy + I{2) # 0, the vortices turn about a center of gravity
which is at a finite distance (Fig. 4.26).

Here the overtaking process of two straight vortex pairs is similar to the
overtaking process of two vortex rings explained in Fig. 4.24. The paths of
the vortex pairs are determined by numerical integration of (4.145) and are
shown in Fig. 4.27.

The analogy of (4.146) is continued in the “balance of angular momentum of
vortex systems” and can be carried over to a continuous vortex distribution.
However we do not wish to go into this, but shall note the difference from the
mechanics of mass points: (1.10) is the equation for the motion of a vortex
under the influence of the remaining vortices of the system. The motion of
a mass point under the influence of the rest of the system, that is, under the
influence of the internal forces, is instead described by Newton’s second law.
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Fig. 4.26. Possible pathlines of a pair of straight vortices
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Fig. 4.27. Pathlines of two straight vortex pairs

Helmholtz’s third vortex theorem reads:
“The circulation of a vortex-tube remains constant in time.”

This follows immediately from Helmholtz’s second law together with Kelvin’s
circulation theorem: a closed line generating the vortex-tube (Fig. 4.11) is,
by Helmholtz’s second law, a material line whose circulation, by Kelvin’s law,
remains constant.

Helmholtz’s second and third laws hold only for barotropic and inviscid
fluids. The statements of these laws are also in Eq. (4.27), but there under
the more restricting assumption of incompressible flow.

4.2.4 Integration of the Energy Equation

In steady and inviscid flow, when heat conduction can be ignored, an integral
of the energy equation which is very useful may be found. We assume that k;
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has a time independent potential, for example the mass body force of gravity.
Then, since

Dy N
At
Dt ! 6:101-

the work of the mass body force (per unit time) can also be written as the
material derivative of the potential and, using u = ||, we obtain the energy
equation (4.47) in the form

D [u?
— |—+h =0. 4.14
@Dtb + +w] 0 (4.148)

From this we conclude that the sum of the terms in brackets is a conserved
quantity for a material particle, and therefore

u2
5 th+v=C (4.149)

along a pathline. Because of our restriction to steady flows this also holds
along a streamline. The constant of integration which appears differs in gen-
eral from streamline to streamline. The value of this constant depends on
how this flow arose, and is clearly the same for all streamlines if the energy is
homogeneous at infinity. In most technically interesting flows this constant is
equal for all streamlines, and these flows are thus called homenergic. In par-
ticular, homenergic flows do not have to be irrotational, and therefore they
are kinematically not as restricted. On the other hand, as already mentioned,
Bernoulli’s constant is the same on every streamline only in irrotational fields
(and also in fields where & x @ = 0, but these do not have the same technical
importance as irrotational flows).

Equation (4.149) is mainly used in gas dynamics where the potential of
the mass body force can often be ignored, and the energy equation assumes

the form )

% Yh=h. (4.150)

This establishes an algebraic relation between velocity and enthalpy which
always, independent of the specific problem, holds in steady and inviscid flow,
and therefore in flows with chemical reactions where we have Ds/Dt # 0. If
the enthalpy field is known the magnitude of the velocity in the field follows
directly, and vice versa.

To find another form of the energy equation in which the dependency of
the enthalpy does not expressly appear, the assumption of isentropic flow
must be made explicitly. From Gibbs’ relation (2.133) we find

De p Do
— —=—=0 4.151
Dt 02Dt ( )
or, using (4.3), also
Dh 1D
=P _q. (4.152)

Dt oDt
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Equations (4.152) and (4.148) then yield the energy equation in the form

D [u? 1Dp
— = -—=0. 4.1
Dt[2+w}+gm 0 (4.153)

In steady flow, we can replace the operator D/Dt by |d|d/do or |i|d/0s
(because of (1.23)). Integrating (4.153) along the pathline or streamline leads
us again to Bernoulli’s equation (4.57) in the form valid for steady flow

2
it [P (4.154)
2 0

In doing this we see that Bernoulli’s equation is an energy equation. Indeed in
the derivation of Bernoulli’s equation (4.57) the inner product of the veloci-
ty @ with the equation of motion was formed, thus making it a “mechanical
energy equation”. (The integral is to be taken along the streamline or pathline;
if it is path independent (4.154) is called the “strong form” of Bernoulli’s
equation.) Incidentally, using the same assumptions, the “entropy equations”
(4.151) and (4.152) are often used instead of the energy equation, although
the kinetic energy does not appear explicitly in these formulae.

In order to clarify the relation between homenergic and irrotational flow
mentioned above we shall need to use Crocco’s relation, which only holds in
steady flow. We can reach it by forming from the canonical equation of state
h = h(s, p) the gradient

oh oh| Os oh| Op
e o 41
Ox; {(Q)SL Ox; [ap} s Oz (4.155)
and using Eqs. (2.154) and (2.155) to get
716p7 0s oh (4.156)

We introduce the formula into Euler’s equation (4.40a), express the acceler-
ation term there by (1.77), and extract the equation for steady flow known
as Crocco’s relation

Os
aCCZ' '

W]

P
o [ 3 (4.157)

-2 €ijk Uj Wk +
Here we have assumed that the mass body force has a potential. In home-
nergic flow the constant of integration C' appearing in (4.149) has the same
value on all streamlines, thus the gradient of C' vanishes, and for this class of
flows the following holds:

oC 0 [u?
a—xi—axi |:?+h+¢:| =0. (4.158)
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Fig. 4.28. Curved shock

Then for these flows it follows from Crocco’s relation that irrotational flows
must be homentropic. On the other hand we see that flows which are not
homentropic but are homenergic must be rotational.

This case has already been discussed in 4.1.3 (curved shock) and is interesting
because vorticity arises inside the flow field and not, as in incompressible flow,
by diffusion from the boundaries inwards. By passing through a curved shock
(Fig. 4.28), as in hypersonic flow, the entropy increases by a different amount
on different streamlines. Therefore behind the shock surface the entropy is no
longer homogeneous, and because of Crocco’s relation, the flow can no longer
be irrotational.

We also conclude from Crocco’s relation that a two-dimensional hom-
entropic (and homenergic) flow must necessarily be irrotational, because in
two-dimensional flow & is always perpendicular to @. Then the first term in
(4.157) cannot vanish as it would if & and @ were parallel vectors.

4.3 Initial and Boundary Conditions

Up until now in Chap. 4 we have made general statements as they apply
for every flow problem of Newtonian or inviscid fluids. Further progress in
a given problem now demands that we make assertions about the shape of the
flow boundary and about the conditions which the flow must satisfy at this
boundary. Mathematically we shall deal here with the boundary conditions.
In addition in unsteady flow problems the initial conditions are needed, i.e.
the field quantities at the start of the time period of interest.

We shall first consider flow boundaries for the case of the impermeable
wall (which we can generalize if necessary to permeable walls) and for the
case of the free surface. Boundaries which are surfaces of discontinuity are
also important. The best known example for this are shock surfaces, which we
can only go into fully when the concept of a “shock” has itself been clarified.



142 4 Equations of Motion for Particular Fluids

We know from experience that Newtonian fluids adhere to walls. For an
impermeable wall this means that both the tangential and the normal veloc-
ities of the fluid and of the wall must correspond at every point on the wall.
The velocity vector « of the fluid at the wall must be equal to the vector of
the wall velocity y,:

U =1, (atthe wall) . (4.159)

The boundary condition when the wall is at rest (@, = 0) is
i=0 (4.160)

at the wall, or alternatively
Uy =us =0 (4.161)

at the wall. Here the index n denotes the normal component and the index ¢
denotes the tangential components of the velocity.

In inviscid flow it is in general no longer possible to prescribe both the
normal and the tangential velocity at the wall. Since at an impermeable wall
the normal component of wall and fluid velocities must always correspond
(otherwise the wall would be permeable), we retain this boundary condition
and have then for inviscid flow

U-T = Uy T (4.162a)
at the wall, or
(@ —ty) -1=0, (4.162b)
in index notation
(i — Ui(wy) ni = 0 (4.162¢)

at the wall. We call this condition the kinematic boundary condition, while
(4.159) is called the dynamic or physical boundary condition. In inviscid flow
we relax the dynamic boundary condition, since the derivatives in Euler’s
equation are of a lower order than in the Navier-Stokes equations. In Euler’s
equation the second order terms (1 A« in the incompressible case) are missing.
It is known from the theory of ordinary differential equations that the order of
the differential equation determines the number of boundary conditions which
can be satisfied. In exactly the same way the order of a partial differential
equation fixes how many functions can be satisfied on the boundary. Since
only the boundary condition of the normal component of the velocity can be
assigned in inviscid flow, in general different tangential components of the
wall and fluid velocities arise: the dynamic boundary condition is therefore
violated. Now we also understand why the viscous flow for v — 0 does not
turn into the solution with v = 0: both flows satisfy different boundary
conditions in which the viscosity v does not appear explicitly and therefore
are not affected by taking the limit ¥ — 0. In this connection we mention
again that even in cases where the inviscid solution is a good approximation
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for the viscous flow at large Reynolds’ numbers, this solution breaks down
right next to the wall (in the boundary layer).

If the flow field around a finite sized body extends to infinity, the distur-
bances which originate from the body must die away at infinity. The degree
to which the disturbances vanish depends on the given problem, and will be
discussed only in connection with the specific problem (see Sect. 10.3).

The normal component of the wall velocity is required in the kinematic
boundary condition. To find it consider the surface of the body given in
implicit form by

F(Z,t) =0, (4.163)

where ¥ is the position vector of a general point of the surface. The normal
vector to the surface is (up to the sign)

VF
P —— 4.164
"TIVED (4.164)
so that we can write the kinematic boundary condition in the form
u-VF =1, -VF (at F(Z,t)=0). (4.165)

By definition a point on the surface with position vector & satisfies the
Eq. (4.163) for all times. For an observer on the surface whose position vector
is & (4.163) does not change, so it follows that

dr
dt
This time derivative is the general time derivative introduced with equation
(1.19), since the observer on the surface moves with velocity ,, which is not
equal to the velocity of a material particle at the same place. By (4.162a)
only the normal components are equal. From
dFr  OF
— =—+1U, -VF=0 4.167
a o Tt ( )
we first extract, by division with |[VF|, a convenient formula for the calcula-
tion of the normal velocity of a body:

0. (4.166)

VF 1 OF
By —— =y 1= ——— — . 4.168
wvE| - T T vE ot (4.168)
In index notation this is
—0F /0t
Wi(w)Ni = / (4.168b)

(0F 0x; OF 0x;)"*

We are led to a particularly revealing form of the kinematic boundary con-
dition if we insert (4.167) into (4.165):
oF

i@ VF=——- (at F(Z, 1) =0). (4.169)
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Fig. 4.29. Stress vector at an interface

Using the definition of the material derivative (1.20) we then obtain

oF DF

— 4 u-VF=—=0 t F(Z,t)=0) . 4.170

i =0 (a F(, 1) =0) (4.170)
This final equation yields the following interpretation: the position vector &
of a fluid particle on the surface of a body satisfies the Eq. (4.163) for the
surface at all times, thus the material particle always remains on the surface.

This is Lagrange’s theorem:
“The surface is always made up of the same fluid particles.”

This at first surprising statement is the logical consequence of the condition
that the normal components of the surface velocity and the fluid velocity at
the surface be the same.

The kinematic boundary condition also holds at the free surface and at
interfaces between two fluids or more generally on material discontinuity
surfaces.

Since the shape of the free surface is unknown beforehand, problems with
free surfaces are mostly difficult to solve. Apart from the kinematic boundary
condition, a dynamic boundary condition which expresses the continuity of
the stress vector must be satisfied.

The stress vectors f(l) and 1?(2) at the same point of the interface with the
normals 7y = 7 in fluid (1) and 75y = —7 in fluid (2) must satisfy (2.23):

0y =ty (4.171)
Because of 71y = 7l = —1i(2) and using (2.29b) we also have
i-Tqy=1-Twg (at F(Z,t)=0). (4.172)
In inviscid fluid (T = —pI) we extract from (4.172) a condition for the
pressure on the interface:
Py =P (at F(Z,t)=0). (4.173)

Since we cannot fix a boundary condition for the tangential component of
the velocity in inviscid flow, a jump in the tangential velocity generally arises
at an interface and we speak of a “tangential discontinuity surface”. The dis-
continuity surface behind an airfoil which we discussed earlier is of this kind.
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4.4 Simplification of the Equations of Motion

Previously in this chapter we have stated the equations and boundary condi-
tions with which the flow of a Newtonian fluid can, in principle, be calculated
for general geometries of the flow boundary. The Egs. (4.1), (4.2) and (2.3)
represent a system of coupled partial differential equations whose solution in
general turns out to be a very difficult problem. The difficulties in the integra-
tion are based, firstly, on the fact that these equations, unlike most partial
differential equations in physics, are nonlinear. This means that solutions
which have been found cannot be “superimposed” to form a new solution, as
is possible with linear systems and as we have already seen in the example of
Poisson’s equation. Secondly the system is of a very high order, arising from
the coupling of the equations and from the high derivatives which appear in
the viscous terms. Therefore it is desirable to simplify a given problem so
that a solution is possible and at the same time so that the essential aspect
of the problem is preserved. This is possible to a greater or lesser extent in
most technical fluid mechanics problems. If, for example, the assumption of
incompressible and isothermal flow is approximately justified, the coupling
of the Navier-Stokes equations and the energy equation is lifted. In this case
(equation system (4.9) and (2.5)) a class of exact solutions is known, and
some of these are of fundamental importance in technical applications. Exact
solutions arise either if the nonlinear terms identically vanish for kinematic
reasons, as happens in unidirectional flow or if because of symmetry in the
problem, the independent variables always appear in one combination which
can then be written as a new independent variable, allowing the system of
partial differential equations to become a system of ordinary differential equa-
tions (similarity solution). However the number of exact solutions is small,
and we should not anticipate that future developments will increase the num-
ber of exact solutions significantly.

An essentially different situation appears when we consider numerical
methods. Here we can expect that through the rapidly progressive develop-
ments very efficient methods of solution will appear, often making restric-
tive simplifications of the problem unnecessary. Indeed this development also
justifies the detailed account of the general principles in the previous chap-
ters.

We do not wish to go any further into numerical methods but shall note
that the numerical solution of these equations also gives rise to substantial
difficulties and certainly does not represent a “solved problem”; even if all
the complications involved with turbulent flows are excluded. Even if stable
algorithms for numerical calculations do exist, for time and financial reasons
all the simplifications which the problem allows should be exploited. Finally,
the processes of simplification, abstraction and concentration on essential
aspects of a problem are prerequisites for the understanding of every physical
process.
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In the following chapters flows will be considered which have all been ide-
alized or specialized in certain ways, and we shall only consider the most im-
portant aspects of the flow in the given circumstances. The idealizations arise
from the simplifying assumptions from the equations (4.1), (4.2) and (2.3)
for Newtonian fluids, or also from the more general Egs. (2.38), (2.119), (2.3)
and the corresponding constitutive relations in the case of non-Newtonian
fluids.

The “theories” of fluid mechanics emerge from such simplifying assump-
tions. In this way, ignoring the viscosity and the heat conduction leads to the
“theory of inviscid flows” which is described by Euler’s equations (Sect. 4.2).
Further simplifications divide this theory into incompressible and compress-
ible inviscid flows. Finally, depending on the ratio of the typical flow velocity
U to the speed of sound a, flows can be classified as subsonic, transonic and
supersonic flows.

It is desirable to fit possible simplifications into some order, which both
allows a classification of the given problem as well as giving an indication of
the allowable and suitable simplifications for the problem. Such a scheme can
follow from simplifications in

a) the constitutive relation,
b) the dynamics, or
¢) the kinematics.

Included in class a) is ignoring the viscosity and the heat conduction as
discussed already, as well as the assumptions of incompressible flow (which
obeys the particular equations of state Dp/Dt = 0), barotropy and isentropy.

To b) belong the simplifications which arise from the assumption of steady
flow and the limiting cases of Re — oo or Re — 0. In addition the assump-
tions leading to subsonic, transonic, supersonic and hypersonic flows all fit
in here.

In ¢) we have, for example, irrotationality curl @ = 0. Additional kinematic
simplifications arise from symmetry properties: in rotational symmetry the
number of necessary spatial coordinates can be reduced using the cylindrical
coordinate system to two (r = (27 + 23)'/2, x3), so that it can be treated
as a two-dimensional problem. Steady spherically symmetric problems are
one-dimensional, since in a spherical coordinate system we only have one
independent coordinate (r = (x; z;)/?).

Flows which are independent of one coordinate in a Cartesian coordinate
system and whose velocity component in this direction vanishes are particu-
larly important in applications. In the above sense they are two-dimensional
flows but they are additionally plane flows. In a suitable coordinate system
the same flow quantities are met in all planes, say 3 = const. Although two-
dimensional flows never appear in nature, they are often good approximations
to physical problems.

Belonging to ¢) are also the simplifying assumptions of stream filament
theory, which leads to a quasi-one-dimensional description, as well as the
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theory of thin bodies, in which the ratio of typical lengths (for example, the
thickness ratio D/L of a body, or the inclination « of the streamlines) is
very small. Of course combinations of these various criteria also appear: the
Mach number M = U/a > 1 characterizes for example a supersonic flow,
D/L <« 1 a thin body, and M D/L < 1 a linear supersonic flow. The lim-
iting value a Re — 0 denotes the simplification which leads to hydrodynamic
lubrication theory.

Now this is not a comprehensive list of examples, nor is the classification
into these three groups unique. For instance the case of incompressible flow
with the equation of state Do/Dt = 0 can be classified under a), but because
of the kinematic restrictions given by div# = 0, also under ¢). In the same
manner the incompressibility can be grouped under b), because the limiting
case U/a — 0 in steady flow corresponds with, as we shall see, the case of
incompressible flow.

Many of the possible simplifications are immediately obvious, while oth-
ers, for example the assumption of inviscid fluid, need careful justification.
Apart from the assumption that the flow be inviscid the most incisive simpli-
fication is the assumption of incompressibility, because even for liquids, this
assumption is not justified in certain circumstances; the examples in connec-
tion with equation (2.5) show this. We are lead to criteria for the admissibility
of this simplification if we first form from the equation of state p = p(p, s)
the expression

bp _ 2D [@] Ds (4.174)

Dt Dt asgﬁ’

where it is known from thermodynamics that the state variable (Op/0p)s is
equal to the square of the speed of sound a:

[2—5] =a?. (4.175)

S
We bring (4.174) to a dimensionless form by multiplying with the typical
convection time L/U and then dividing by o to get

1LDe L 1 Dp L 1 D
°_ b [gﬂ = (4.176)

oUDt Upa?2Dt U oa? QDt'
We see that the relative change in the density of a fluid particle can be ignored
if the right-hand side vanishes. Unless by some chance both terms cancel out,
in general each term on the right-hand side must vanish by itself. First we
note that in the case of strong external heating, the internal irreversible
production of entropy according to (2.137) is unimportant, and the change
in entropy here is given by (2.138). This term alone is then so large that the
relative change in density can not be ignored.
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If the heating is by dissipation the irreversible production of entropy
(2.137) becomes significant, and we estimate the final term in (4.176) us-
ing the assumption of the calorically perfect gas. By simple calculation, the

relation 5 R
[—p] =271y (4.177)
Js 0 G

follows. For gases the dimensionless number
Pr= % (4.178)

(the Prandtl number) is approximately equal to one. For Pr a 1 the terms
@/ T and T2 q; 0T /Ox; in (2.137) are of the same order of magnitude, and
we look at the term @/ T'. (In liquids which are not liquid metals Pr > 1, and
the second term on the right-hand side of (2.137) is correspondingly small
compared to the first one.) Using (4.177) we extract the equation

Ll[@]Ds L R &

- - — === 4.179
U oa? |0s o, Dt Ucy 0a? ( )

If L is the characteristic length of the problem then from O(®) = O(nU?/L?)
we estimate

L R @ L vU? M 2

U ¢, gaQNULQQQ_ Re ’
where M is the Mach number M = U/a formed with the typical flow velocity
and the speed of sound. In real flows M?/Re is usually very small, and this
term can be neglected. (If the typical length in the dissipation function @ is
the boundary layer thickness ¢, the term in question in this equation is of the
order M?, as shall be shown later in Chap. 12.)

Since Dp/Dt is the change in pressure experienced by the material particle,
the remaining term on the right-hand side can in general only vanish if a2
becomes suitably large. To estimate this term qualitatively, we do not need
to take the viscosity into account. We then assume irrotational flow and
calculate p~! Dp/ Dt = DP/ Dt from Bernoulli’s equation in the form (4.75).
First the term D/ Dt arises, which we estimate for the most important case
of the mass body force of gravity. The change in the quantity v = —g; x;
experienced by a material particle only originates from the convection of the
particle, since the gravity field is time independent. Therefore the typical time
of the change is the convection time L/U. Accounting for the factor L/U in
Eq. (4.176) we are led to the following relation between orders of magnitude

(4.180)

L 1Dy LUgL gL
i S S S 4.181
U a? Dt UL a? a? ( )
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Therefore a necessary condition for this contribution to vanish is

L
1—2 <1, (4.182)

This condition is satisfied if the typical length L in the problem is much
smaller than a?/g. For air under standard atmospheric conditions we have
a?/g = 11500 m, and (4.182) is satisfied for all flows in technical applications,
but not for problems which might arise in meteorology.

The next contribution to ¢~! Dp/Dt from Bernoulli’s equation is the term

1D [86°]® 1 Du?

2Dt |Oz; | 2 Dt

In steady flow the typical time of the change is again the convection time

L/U, so that we estimate the contribution of this term to the first term on

the right-hand side of (4.176) as having the order of magnitude
L11DW?) L1U_, U?

U = — . 4.183
Ua?2 Dt Ua? L a? ( )

From this the second necessary condition for ignoring compressibility follows:

U2
¥:M2 <1. (4.184)

In unsteady flow, besides the convection time L/U a further typical time
generally appears as a measure of the rate of change, for example f~! if f
is the typical frequency of the motion. The restrictions arising from this are
dealt with by the third contribution to ¢o~! Dp/Dt from Bernoulli’s equation,
that is D(9¢* /0t)/Dt. From

P :/w* -df:/ﬁ-df (4.185)

®* has an order of magnitude U L, and if the typical time is given by the
convection time L/U, using the estimation

L 1 DO /ot) LU*UL U?

Ua2 Dt UL a2 a2’ (4.186)

the same restrictions arise as from (4.184). However if the typical time is f 1,
using
L 1 D(99*/0ot)
Ua® Dt
a third necessary condition arises:

L2 f2

a2

L ,UL
~ T f? — "~ (4.187)

L2 f2
a2

<1. (4.188)
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In general all three necessary conditions must be satisfied if the assumption
of incompressible flow is to be justified. Most important is the condition
(4.184), which for steady flows, encountered in technical applications, is also
sufficient. After this the Mach number of the flow must be small enough so
that the compressibility effects can be ignored. We note that the condition
(4.188) is not satisfied in acoustics. In sound waves the typical length L is
equal to the wave length A and we have

A

a

1. (4.189)

Therefore acoustics belongs to the area of compressible flow.
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5.1 Hydrostatic Pressure Distribution

Hydrostatics is concerned with the behavior of fluids at rest. The state of rest
is kinematically the most restricted state and problems in hydrostatics are
among the simplest in fluid mechanics. We can obtain the laws of hydrostatics
by setting

u=0 (5.1)

into the balance laws. From mass conservation it then follows directly that

90 _

5 =0 (5.2)

that is, the density must be constant in time, as is made particularly clear if
we consider the integral form of mass conservation (2.7). Instead of using the
balance laws we could go directly to the first integrals of Chap. 4. The velocity
field in hydrostatics in trivially irrotational, so that Bernoulli’s constant has
the same value everywhere in the field, and directly from (4.79) we infer the
fundamental general relation between pressure function and potential of the
mass body force in a rotating reference frame in which the fluid is at rest:

w—i—P—%(ﬁx:ﬁ)Q:C. (5.3)

This relation can easily be generalized for the case in which the origin of the
reference frame moves with acceleration d. To do this consider the potential
@ - Z of the mass body force —d (an apparent force which has a potential
because curl@ = 0) added to 1). We note that (5.3) is only valid under the as-
sumptions which also led to (4.79): the total mass body force has a potential,
and the pressure p is a unique function of the density p = p(g) (barotropy).
This means that lines of equal pressure are also lines of constant density,
or expressed differently, that pressure and density gradients are parallel. As
a consequence of the thermal equation of state (e.g. p = ¢ RT for a thermally
perfect gas), lines of equal pressure are then also lines of equal temperature.
It is only under these conditions that hydrostatic equilibrium can exist. If
these conditions are not satisfied then the fluid is necessarily set in motion.
We deduce this important statement from the corresponding differential
form of (5.3), which results from Cauchy’s equation (2.38) together with the
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spherically symmetric stress state (2.33), or straight from the Navier-Stokes
equations (4.1) or Euler’s equations (4.40) when we set @ = 0:

Vp=ok . (5.4)

If we take the curl of (5.4) the left-hand side vanishes and we are led to the
condition . . B

VX (0k)=Voxk+oVxk=0. (5.5)
As noted in connection with (2.42), this is a necessary and sufficient condition
for the existence of a potential {2 of the volume body force (f: 0 k= -VN).
Clearly (5.5) is satisfied if the mass body force k has a potential (/%a =-V)
and if Vo is parallel to k (or is zero). Because of (5.4) Vo is then parallel to
Vp and we have again reached the above statement.

An example of this is the natural convection from a radiator. The air
close to the vertical surface of the radiator is warmed by heat conduction.
Temperature and density gradients are then perpendicular to the radiator
surface, and therefore perpendicular to the force of gravity. The hydrostatic
equilibrium condition is then violated, and the air is set into motion. (The
motion of the air improves heat transfer, and it is only because of this that
rooms can be heated at all in this manner.)

In applying Eq. (5.3) to the pressure distribution in the atmosphere, we
first note that the centrifugal force is already included in the gravity force
(cf. Sect. 2.4). We choose a Cartesian coordinate system (thus ignoring the
curvature of the earth) whose z3-axis is directed away from the surface of
the earth. We shall often denote the Cartesian coordinates z; (i = 1, 2, 3) as
x, y and z, so that the potential of the force of gravity is ¥ = g z. Equation
(5.3) then reads

P2
1 dp

g 0
p1

(5.6)

zZoQ — 21 = —

Let us consider the case where the barotropy is a consequence of a homoge-
neous temperature distribution, so for thermally perfect gases we have

p1

RT d RT
22_21:_/_]?:_11112, (5.7)
g p g p2
D2
or .
P2 = p1 exp {—ﬁ hg} ; (5.8)

where the altitude difference z2 — z; is denoted by h. Equation (5.8) is known
as the barometric altitude formula. If the barotropy is a consequence of the
homentropy (4.49), then since

n_ [@]7 (5.9)
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the formula corresponding to (5.7) reads

P1
RT, —(:=
20 — 21 = 7 “py 45 )/pl/'y dp (5.10)
P2
or
RT (3;1)
¥
sy — = — Ly {@} : (5.11)
T-1 g p1
where we have also made use of the thermal equation of state. With
(54
p2 | ip
—= = —= 5.12
[Pl] Ty (5.12)

we can also express (5.11) with the temperature difference made explicit:

v R
— = —— L~ (T5 =1 X 1
z9 Z1 ~ 1 g ( 2 1) (5 3)

Not all density distributions in the atmosphere which are statically possible
are also stable. A necessary condition for stability is that the density decrease
with increasing height. However this condition is not sufficient: the density
must also decrease at least as strongly as in homentropic density stratifica-
tion. This constitutes a neutral stratification: if, by some disturbance, a parcel
of air is raised (friction and heat conduction being negligible), this air expands
to the new pressure, its density decreases at constant entropy just so that the
density and the temperature correspond to the new ambient pressure. If the
density in the new position is lower, then the air parcel moves up further and
the stratification is unstable. If, however, the density is higher the air parcel
sinks down again and the stratification is stable. From (5.13) we calculate
the temperature gradient of the neutral stratification to be

dr y—-1lyg -3
P TR 9.95-107°K/m (5.14)
(for air with R ~ 287J/(kgK), v ~ 1.4), that is, the temperature decreases
about 1K per 100m. The stratification is unstable if the temperature de-
creases faster and is stable if it decreases slower. If the temperature increases
with increasing height, as happens for example if a warm mass of air moves
over colder ground air, we have inversion. This represents a particularly
stable atmospheric stratification and has the consequence that polluted air
remains close to the ground.
In what follows we restrict ourselves to homogeneous density fields and in
particular to liquids. In the coordinate system of Fig. 4.2 Bernoulli’s equation
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is applicable in the form (4.81), from which we conclude that for w = 0 the
hydrostatic pressure distribution in a fluid of homogeneous density is

1
P gz =cC. (5.15)
0 2
In the inertial system here (£2 = 0) the pressure distribution therefore reads

pP=po—09%, (5.16)

where pg is the pressure at height z = 0. We see that the pressure linearly
increases with increasing depth (z < 0).

At points of equal height the pressure is the same. From this follows the
law of communicating tubes: in communicating tubes (Fig. 5.1) the level of
the fluid is the same everywhere because the pressure is equal to the ambient
pressure po everywhere on the surface of the fluid.

Pascal’s paradoz is a further consequence of (5.16). The bases of the ves-
sels shown in Fig. 5.2 are at equal pressure. If the bases are of equal size, then
so are the forces, independent of the total weight of the fluid in the vessels.
Equation (5.16) also explains how the often used U-tube manometer works
(Fig. 5.3). The pressure pc in the container is found by first determining the
intermediate pressure pz in the manometer fluid at depth Ah from pg:

Pz = Do+ om g Ah . (5.17)

Then the pressure directly under the left-hand level is also known, because
the pressure in the same fluid at the same heights is equal. From here on the
pressure in the fluid decreases to the pressure pc, giving us

pc=pz—ocgH. (5.18)

Fig. 5.1. Communicating tubes
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Fig. 5.2. Pascal’s paradox

Ah

Fig. 5.3. U-tube manometer

By (5.17) the pressure can be calculated from the lengths Ah and H as

H
pc =po+omgAh [1_9_0_]

A (5.19)

Often the density of the manometer fluid gy (e.g. mercury) is much larger
than the density of the fluid in the container pc (e.g. air). If H is then not
much larger than Ah, we ignore the second term in the brackets in (5.19),
and read the pressure difference directly from the deflection of the manom-
eter Ah:

pe —po = om g Ah . (5.20)

This also explains why millimeters of water (1mmH;O = 9.81Pa =
9.81N/m?) or millimeters of mercury (1mmHg = 1Torr = 133.3Pa) are
often used as units of pressure.

We shall now consider the pressure distribution relative to a reference
frame rotating about the z-axis (e.g. the container in Fig. 5.4 which rotates
about the z-axis but which does not have to be rotationally symmetrical).

Equation (5.15) shows that at constant distance from the axis of rotation,
the pressure increases linearly with depth, and that at constant height it
increases quadratically with increasing radius r. We dispose of the constant
of integration in (5.15), by putting the pressure p = pg at z = 0, r = 0, and
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Fig. 5.4. Free surface on a rotating container

then write )
p:po—ggz+§gﬁ2r2. (5.21)

The surfaces of constant pressure (p = C) are paraboloids of rotation:
c= (o Ot 022 (5.22)
09 2 ’

and since they are always surfaces of equal pressure, the free surface also
forms a paraboloid of revolution where C' = py:

1
z=—0%r. (5.23)
29

5.2 Hydrostatic Lift, Force on Walls

In liquids, in particular in water, the density is so high that the loads on
container walls, dams, etc. from the hydrostatic pressure distribution become
important. Using the pressure distribution (5.15), the force on a surface S

can be calculated from
F=— //pﬁdS : (5.24)

(5)

if necessary numerically, by adding the vectors —p 7 dS until the whole sur-
face is exhausted. However using Gauss’ theorem, the calculation of forces
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on surfaces (particularly on curved surfaces) can be reduced to finding the
buoyancy force, which is given by Archimedes principle:

“A body in a fluid experiences an apparent reduction in weight (lift)
equal to the weight of the displaced fluid.”

This important law follows directly from Gauss’ theorem and the Eq. (5.4): if
the body is fully immersed then S is a closed surface and the total hydrostatic
force is given by (5.24). Instead of calculating the surface integral directly,
we transform it to a volume integral using Gauss’ theorem. Now we consider
the immersed body to be replaced by fluid which is of course in balance with
its surroundings. Then, using (5.4) we replace the pressure gradients in the
volume integral by the volume body force of gravity, and extract

ﬁ:_//pﬁdsz_// vpdvz_///ggdvz—ggv. (5.25)
V) V)

(S)

The term on the far right is the weight of the displaced fluid. The minus sign
shows that this force is directed upwardly and is therefore a lift force. Since
the weight acts through the center of gravity, the buoyancy force also acts
through the center of gravity of the displaced fluid.

If the surface S on which the force is to be calculated is not the entire
surface of the body, this surface can be made part of the surface of a replace-
ment body by using other, arbitrary, surfaces. From knowing the lift of this
replacement body and the forces on the supplementary surfaces, the force on
the surface S can be calculated. We choose flat surfaces as supplementary
surfaces and calculate the forces on the flat surfaces before beginning the
general problem.

To do this we consider an arbitrarily bounded and arbitrarily orientated
plane surface A which is fully wetted (Fig. 5.5). We choose a coordinate
system ', ', 2’ originating at the centroid of the surface, whose 2’ axis is
normal to the surface, whose 3y’ axis lying in the surface runs parallel to

Po

.||Q

hce

S

@

N
centroid of area CG
A

Fig. 5.5. The force on a plane surface
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the free surface (and is therefore perpendicular to the mass body force), and
whose x’ axis is chosen so that 2/, 3’ and 2’ form a right-handed coordinate
system. In this primed coordinate system the potential of the mass body force
reads:

b=-g-7=—(g,2" +9g.2), (5.26)

since ¢ has no component in the 3" direction. As earlier, we obtain the hydro-
static pressure distribution from Bernoulli’s equation where we set the veloc-
ity to zero. Beginning from (4.57), for an incompressible fluid, we obtain

ptop=0C, (5.27)

or
p—o(g,2" +9.2') =pcc , (5.28)

where pog is the pressure at the centroid of the plane (z/ =y = 2’ = 0),
which, by (5.16) is
pcc =po+oghca . (5.29)

The component of § in the 2’ direction is g/, = g sin and the pressure on
the plane A (z/ = 0) is then

p=pcc—ogsinpa’; (5.30)

therefore the force is

ﬁ:—//pﬁdsz—ﬁ //(pcc:—gg sinp z’) dA (5.31)

(s (4)

pcg A —o0gsing // ' dA

(4)

=

or

F=—i : (5.32)

Since the origin of the coordinate system lies on the centroid of the plane
surface (2o = Yoo = 0) and the centroid coordinates are, by definition,
given by

Azpg = // ' dA (5.33)
(4)

Ayea = // y'dA, (5.34)
(4)
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the integral in (5.32) vanishes and for the force we extract
F=—fipog A ,ie. (5.35)

“The magnitude of force on a plane surface is the product of the
pressure at the centroid of the surface and its area.”

We shall also calculate the moment of the pressure distribution relative to an
arbitrary point P (i}, = v, €' + y, €,) on the surface A:

= // T — ) xnpdA . (5.36)
(4)
Evaluating the cross product and with 77 = €,” we obtain
M, = // a' — - —yy)é'] p(a')dA . (5.37)
(4)

Introducing the pressure distribution from (5.30), and noting the definitions
of the centroid (5.33), (5.34) and zpo = Y = 0 furnishes the equation

M, = lgg sin //:v’y’dA—i—y,’,pch ey +
(4)
—[gg sin // :C'2dA+:v;pch e, . (5.38)

(4)

The area moments of the second order appearing in (5.38) are
(i) the area moment of inertia relative to the y’ axis

I, = // 2% dA ; (5.39)
(4)

(ii) the mixed moment of inertia

Iw’y’ = // LL'/ y/ dA . (540)
(4)

These correspond to the quantities known as polar moment of inertia and
product of inertia from the theory of bending and torsion. Using these defi-
nitions we also write (5.38) as

—

M, = (0g sing Ly +y,poc A) &' — (0g sinp Iy + x,pcg A) €, . (5.41)
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Fig. 5.6. Centroid and pressure point

The moment ]\pr vanishes relative to a particular point called the pressure
point CP (Fig. 5.6), which is the point through which the force F' acts. By
setting the moment to zero we calculate the pressure point’s coordinates as

/ 0gsinply,
T = - 5.42a
cP pCGA ( )
and .
! Qg SULQ Lyry
Yyop = ———F . 5.42b
cP pCGA ( )

In order to now calculate the force on a general curved surface S, we complete
S to a closed surface, by dropping perpendicular lines from every point on
the boundary C of S to the fluid surface (Fig. 5.7). We now use the result
(5.25); there S corresponds to the entire surface which here is made up of the

Q

Fig. 5.7. The force on a curved surface
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general curved surface and the supplementary surfaces M and A,. M is the
surface generated by dropping the perpendicular, and A, on the free surface
closes the replacement volume. From (5.25) we have then

— // pﬁdS:f//pﬁde //pﬁdAf//pﬁdS:fgg?V.

(S+M+A.) (S) (Az) (M)
(5.43)

From (5.43) we obtain the component of the force on S in the positive z
direction as

Fzzf//pﬁ-€zdS: // pﬁ-ész+// pii-e,dS—pg-e,V . (5.44)

() (A2) (M)

On A,, n=¢€, and p=py; on M, i -€, =0, since 7 is perpendicular to €,.
We also have —g - €, = g, and are led directly to the component of the force
in the z direction:

F,=poA,+09gV . (5.45)

For the component of the force in the z-direction we obtain

sz—//pﬁ-é’wdSz—sgn(ﬁ-é'w) // pdA , (5.46)
(Az)

(S)

where A, is the projection of the surface S in the z-direction and the signum
function determines the sign of the force. (If the sign of €, - 7 changes on
the surface, the surface is to be cut along the line €, - 7 = 0 in two surfaces,
which are treated separately.)

But the problem to calculate the force on a plane surface has already been
done through Egs. (5.35) and (5.42). Analogously the component of the force
in the y direction follows:

Fy:_//pﬁ.gydsz_sgn(ﬁ.gy) // pdA . (5.47)
(43)

(5)

The force components F,, and F), do not appear in the second law of equilib-
rium (that the sum of the moments is zero) on the replacement body, since
they are balanced by the corresponding force components on the surface M.
The weight 0 gV, the force py A, and F, all lie in a vertical plane since they
must balance separately.

The line of action of the buoyancy force (through the center of grav-
ity of the displaced fluid) and the force pg A, (through the centroid of the
surface A.) determines this plane. Taking moments, for example about the
center of gravity, we obtain the line of action of F,. The lines of action of the
two horizontal components F,, and F), are to be calculated using the corre-
sponding projections A, and A, from (5.42). These three lines of action do
not in general meet at the same point.
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5.3 Free Surfaces

Liquids form free surfaces, and these exhibit the phenomenon of surface or
capillary tension. This surface tension can be important in technical problems
under circumstances to be described presently.

From a microscopic standpoint this phenomenon is due to the fact that
molecules on the free surface, or on an interface between two different fluids
are in a different environment than those molecules within a fluid. The forces
between the molecules are attractive forces at the average distances we are
dealing with (cf. Sect. 1.1), (but can in certain circumstances be repulsive).
A molecule within the fluid experiences the same attraction on all sides from
its neighboring molecules. On the free surface, a molecule is pulled inwards in
the same manner by its neighbors because the forces of attraction on the free
side are missing, or at least are different. Therefore there are only as many
molecules on the free surface as are absolutely necessary for its formation,
and the free surface is always trying to contract.

Macroscopically, this manifests itself as if a tension were acting in the free
surface, very much like the stress in a soap bubble. The capillary force on
a line element is

AF =& Al (5.48)
where & is the stress vector of the surface tension, defined by
AF  dF
7= lim — = — . 4
7T A% Al T dl (5.49)

In general, the stress vector lying in the surface has components both normal
and tangential to the line element (Fig. 5.8). If the fluid particles which form
the free surface are at rest, the tangential component vanishes and we have

G=Cm, (5.50)

where 1 is the vector normal to the line element dl lying in the free surface.
The magnitude of the surface tension vector, the capillary constant C' is
independent of m, but dependent on the pairing liquid-gas, or in the case of
an interface, liquid-liquid.

Fig. 5.8. Explanation of surface tension
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The best known manifestation of surface tension is the spherical shape of
small drops. If we consider the surface of the drop to be a soap bubble under
internal pressure p;, then on one hand we have the force due to the pressure
difference p; — pg acting on one half of the surface and on the other hand the
force due to the surface tension acting on the circumferential cut (Fig. 5.9).
The force due to the surface tension is 27 r C'm and the equilibrium condition
furnishes

271'7"(7771—// (po —pi)ndS=0. (5.51)
(8)
If we form the component equation in the direction of m (for symmetry
reasons this is the only nonzero component), with 7 -7 dS = —dA we obtain
217 C + (po —pi)mr? =0 (5.52)
or
Ap=p; —po=2C/r. (5.53)

For very small drops the pressure drop over the surface can be quite con-
siderable. For a general surface it is readily shown that the pressure drop is
given by
AC¢L+L] (5.54)
P="1R "R, '

where R; and Rs are the principal radii of curvature, i.e. the extrema of
the radii curvature at a point on the surface. The quantity (1/R; + 1/Rz)
is called the mean curvature and is a scalar, contrary to the curvature itself.
For a plane surface, (R; = Ry — 00) the pressure drop vanishes. Therefore
capillarity effects appear only if the surfaces are curved.

Curvature of the free surface often appears on boundaries if three different
fluids meet, or if two fluids and a solid wall meet, as in Fig. 5.10, where the
interface between fluids (1) and (2) touches a wall. We write

2 = 2z, y) (5.55)

—poit dS

AN

ds

2
-,

i=Cm

Fig. 5.9. Balance on the free surface of a drop
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Fig. 5.10. Surface of a heavy fluid

for the explicit representation of the interface, and for the pressure drop
across the surface we obtain

p2 —p1 = (01— 02) g2(w, y) . (5.56)

Using (5.54) we also write this as

1 1
Cl—+—|= — . 5.57
| - e (5:57)
We shall restrict ourselves to the plane case, that is z = z(y), R1 — oo,
Rs = R and we further assume that fluid (2) is a gas, i.e. ¢ = g1 > 2. Then
(5.57) simplifies to

C/R=0g2(y) . (5.58)

From this equation we extract a quantity a with the dimension of length:

C
a=/—. 5.59
20 (5.59)

Therefore we can expect that the capillarity effects are particularly noticeable
when the typical size of the flow region is of the order of this length. The
quantity a, called Laplace’s length, has a value for water of about 0.3 cm.
This explains why water flows straight out of a garden hose held high, while
it cannot flow freely under the influence of gravity if the diameter of the hose
is comparable to Laplace’s length. The water then remains in the tube in the
form of plugs. With the known expression

R 1=(2"%41)7%2" (5.60)

for the curvature R~! of a curve z(y), where the dash above z means the
derivative with respect to y, we obtain from (5.58) an ordinary differential
equation of the second order for the unknown shape z(y) of the surface:

(22 41)732" —a722=0. (5.61)
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The particular integral of this equation requires two boundary conditions.
Integrating once brings us to the equation

1
(22 4+1)712 ¢ 3 a?=1, (5.62)

where we have set the constant of integration on the right-hand side to 1 using
the boundary condition z(co) = 0. Integrating again requires knowledge of
the angle of contact o as the boundary condition. This is determined from
the equilibrium of the capillary stresses on the boundary. As well as the
surface tension of the liquid-gas pair C12, two further surface tensions appear
due to the pairing liquid-wall (C13) and gas-wall (Cs3). Equilibrium normal
to the wall is not of interest since the wall can take up arbitrary stresses.
Equilibrium in the direction of the wall (cf. Fig. 5.11) leads to

Co3 = C13 + C1a cosa (5.63a)

or

cosa = O — Chs . (5.63b)

Ci2

The fluid climbs or slides down the wall until the condition (5.63a) is satisfied.
However if Cy3 — Cy3 is larger than C19, equilibrium cannot be satisfied, and
the fluid coats the whole wall (e.g. petrol in metal containers). With the
boundary condition z’(y = 0) = — cot « the solution of (5.62) then reads in
implicit form

y/a = arccosh (2a/z) —arccosh (2a/h)++/4 — (h/a)2 —\/4 — (z/a)? , (5.64)

where the square of the height climbed h = z(y = 0) is to be taken from
(5.62) as h? = 2a% (1 — sin ).

Another phenomenon often seen is the capillary rise in small tubes
(Fig. 5.12). Obviously the pressure drop Ap over the surface must be equal

C23

NANNNNN

[0

Ci2

Fig. 5.11. Angle of contact
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Fig. 5.12. Capillary rise in a small tube

to pgh. If we take the shape of the surface to be spherical, because of
R; = Ry = R we have from (5.54)

C
2—=pg9gh. 5.65
7 =09 (5.65)
For a known angle of contact «, the radius of curvature R can be replaced
by r/ cos a, so that for the height climbed we obtain

_ 2C cosa

h = 5.66
reg ( )

For very small r the height climbed can become very large and this explains
why moisture rises so high in a porous wall. If we have o > /2, the capillary
rise becomes negative, so that the fluid slides downwards. The best known
example of this action is mercury.
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Quite important simplifications in the equations of motion arise for the class
of unidirectional flows and these allow closed form solutions even for non-
Newtonian fluids. As has already been discussed in Sect. 4.4, this solvability
rests on the particularly simple kinematics of these flows.

Here we shall restrict ourselves to incompressible flows for which only
pressure differences can be calculated unless there is a boundary condition
on the pressure, e.g. the presence of a free surface. On a free surface the abso-
lute value of the pressure enters the problem through the boundary condition
(4.171) for the stress vector. Without free surfaces the influence of the mass
body force can be removed from the problem if we limit ourselves to calcu-
lating pressure differences relative to the hydrostatic pressure distribution.
We shall demonstrate this by way of the Navier-Stokes equations, and shall
set the pressure as

P = Pst + Pdyn (61)

where the hydrostatic pressure p,; satisfies the hydrostatic relation (5.4). By
(4.9b) we then have

Du

0D = 0k — Vpst — Vpayn +n AT, (6.2)

which, because of (5.4), becomes

Du

0 ﬁ = —Vpdyn + 7’]A’l_i . (63)

The mass body force no longer appears in this equation. pgy, is the pressure
difference p — ps; and originates only from the motion of the fluid. From
here on we shall write p in place of pgyy, and shall understand that in all
problems without free surfaces, p means the pressure difference p — pg . If
the problem being dealt with does contain free surfaces, we shall, without
further explanation, make use of the equations of motion in which the mass
body force, if present, appears explicitly.
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6.1 Steady Unidirectional Flow

6.1.1 Couette Flow

Simple shearing flow or Couette flow is a two-dimensional flow whose velocity
field has already been commented on several times. The velocity components
u, v, w in a Cartesian coordinate system with axes x, y, z read (cf. Fig. 6.1a)

U
U=y v=0, w=0. (6.4)

Therefore the flow field is identical in all planes (z = const). The property
common to all unidirectional flows, that the only nonvanishing velocity com-
ponent (in this case u) only varies perpendicular to the flow direction, is
a consequence of the continuity equation (2.5)
ou OJv Ow
Vid=—+—+—-—=0. 6.5
or 0Oy 0z (6:5)
From this, because v = w = 0, we obtain

ou

%:0 or u=f(y), (6.6)

of which (6.4) is a special case. The z component of the Navier-Stokes equa-~
tions reads
ou N ou N ou 1 dp N 0%u N 0%u N 0%u 67)
U—F+rv—Fw—=—-"—4V |5+ S+ —| - .
ox Ay 0z 0 Ox 0x?  Oy? 022
Because of (6.4), all the convective (nonlinear) terms on the left-hand side
vanish. This is the case in all unidirectional flows. Of course since we are
dealing with a two-dimensional flow we could have set all derivatives with
respect to z equal to zero, and indeed we shall want to do this in the future.

U

//TV//////// oy 27
u(y)
- h Unnas K<0 "
uv) K>0
AT T IRy
a) Couette flow b) Poiseuille flow c) Couette-Poiseuille flow

Fig. 6.1. Plane unidirectional flow
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Since in this special case of Couette flow u is a linear function of y, all
the terms in the brackets on the right-hand side of (6.7) vanish and we are
led to the equation

L0 or p=fl). (6.8)
The component of the Navier-Stokes equations in the y direction

v dv  10p v 0%

directly leads us to

op
9 =0 (6.10)

which, together with (6.8), furnishes the final result
p = const . (6.11)

The field (6.4) satisfies the boundary condition (4.159), and therefore we
have found the most simple nontrivial exact solution of the Navier-Stokes
equations.

6.1.2 Couette-Poiseuille Flow

A generalization of simple shearing flow is suggested by (6.6): we consider
the velocity field
u=f(y), v=w=0. (6.12)

The & component of the Navier-Stokes equations then reduces to

dp 0%u
— =n— 6.13
9z~ "o (6.13)
and the y component reads
1 0p
=—— . 6.14
2 9 (6.14)

A consequence of the last equation is that p can only be a function of z.
However since by assumption the right-hand side of (6.13) is not a function
of x, neither is the left-hand side, i.e. dp/dx is not a function of x. Therefore
Op/0x is a constant which we shall call —K. From (6.13) we then extract
a differential equation of the second order for the desired function u(y):

d?u

v 1
Ureye (6.15)
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Integrating (6.15) twice leads us to the general solution

K
u(y) = —ﬂy2+c1y+C2 . (6.16)

We specialize the general solution to flow through a plane channel whose
upper wall moves with velocity U in the positive x—direction. The function
we are looking for, u(y), must by (4.159), satisfy the two boundary conditions

u(0) =0, (6.17a)

and
u(h)=U, (6.17b)

so that we determine the constants of integration as

U K
Cr=g+g hy Ca=0 (6.18)

Thus the solution of the boundary value problem is

u(y)

y
v —n o

K h? Y1y
[1 h} 2 (6.19)
For K = 0 we get the simple shearing flow again; for U = 0 and K # 0 we
obtain a parabolic velocity distribution (two-dimensional Poiseuille flow); the
general case (U # 0, K # 0) yields the Couette-Poiseuille flow (Fig. 6.1).
As is directly obvious from (6.19), the general case is a superposition of
Couette flow and Poiseuille flow. Since the unidirectional flows are described
by linear differential equations, the superposition of other unidirectional flows
is also possible.

The volume flux per unit depth is

h
V= u(y) dy , (6.20)
/

so that the average velocity defined by the equation

— v
U=— 6.21
a (6.21)
for the Couette-Poiseuille flow is
7-Y + Kn (6.22)
2 129 '
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The maximum velocity for pure pressure driven flow is calculated from (6.19)
as: )
Kh”_ 35

8n 2
Since these flows extend to infinity in the x direction and are two-dimen-
sional, they are never actually realized in applications, but they can often be
used as good approximations. Thus we encounter simple shearing flow in the
flow between two “infinitely” long cylinders as we take the limit h/R — 0.
Although the flow in Fig. 6.2 may be determined without taking the limit
h/R — 0 since it is also a unidirectional flow, the shearing flow is consid-
erably easier to calculate. Incidentally this flow is approximately realized in
journal bearings where the condition h/R — 0 is well satisfied. The friction
torque and the friction power per unit bearing depth can then be immediately
estimated:

Umaz =

d U 0
Thriction ~ 21 B2 d—;‘ =Ry =2 RO (6.23)

Pf’r‘iction R 2m R3 n QQ/h . (624)

However Fig. 6.2 is not the correct depiction of a bearing. Since the journal
here rotates concentrically, for symmetry reasons it can support no load.
Equation (6.8) states that the pressure in the x direction (circumferential
direction) is constant, and so no net force can act on the journal. Under
a load the journal takes on an eccentric position in the bush (Fig. 6.3). The
flow in the “lubricant film” is locally a Couette-Poiseuille flow, as we shall
show in Chap. 8. The pressure distribution in this case gives rise to a net
force which is in balance with the load on the bearing.

6.1.3 Flow Down an Inclined Plane

Closely related to Couette-Poiseuille flow is flow down an inclined plane,
although in this case we deal with a free surface (Fig. 6.4). Here the volume

R>h

II:;

[/
o/
[/

4

Fig. 6.2. Concentrically rotating journal
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S

Fig. 6.3. Eccentrically rotating journal

Fig. 6.4. Flow down an inclined plane

body force plays the same role as the pressure gradient dp/dx in Couette-
Poiseuille flow, which as we shall see is here zero. The flow is not driven by the
pressure gradient but by the volume body force of gravity, whose components
are

fo =0ks =0gsing, (6.25a)
fy=0ky=—0gcosp3. (6.25b)

Because of (6.6) and v = 0 the Navier-Stokes equations (4.9b) are simplified

to
op . R
e ogsinf=mng _8y2 (6.26)

and

Ip

— = —pgcosf. 6.27
gy — 0908l (6.27)
Therefore we obtain two differential equations for the unknown functions

and p. The no slip condition
u(0) =0 (6.28)
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is to be satisfied at the wall (y = 0), while the condition (4.172) is to be
satisfied at the free surface, which we write in index notation as

M Tji(1) = MTji(2) - (6.29)

From (3.1) with n; = (0, 1, 0) the boundary condition follows in the form
—po2i+2 z} :{— d2; + 2 i:| , 6.30
[p2+n62<1> pout e, (6:30)

where the index (2) stands for the fluid and the index (1) for the air. The
component of the Navier-Stokes equations in the y direction leads us to the
boundary condition

P(1) =P(2) = Po , (6.31)
and the component equation in the = direction furnishes
ou ou
Yla Y1

If we ignore the effect of the friction in the air, the left-hand side of (6.32)
vanishes and this boundary condition reads

0
0=n2s| . (6.33)
oy y=h
From integrating (6.27) we obtain
p=—ogycosf+Cz), (6.34)
and with the boundary condition (6.31) p(2) = p(y = h) = po also
p=po+egcosf(h—y). (6.35)
Therefore p is not a function of x, and equation (6.26) simplifies to
. 0%u
—og smﬁ:na—y2 . (6.36)

This is the same differential equation as (6.13), if we replace dp/dx by
—og sin . Therefore we read the general solution off from (6.16) (with
K =pgsinp):

u:nyQwLCﬁerCQ (6.37)
and determine the constants from the boundary conditions (6.28) and (6.33)
as

Co=0., € =298, (6.38)
n
The solution of the boundary value problem is therefore
ogsinf o { y} Y
=——"h" 12— =. 6.39
u(y) = 247 v) 4 (6:39)
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6.1.4 Flow Between Rotating Concentric Cylinders

A cylindrical coordinate system r, ¢, z with the velocity components u,.,
Uy, U, is most suitable for this flow because the boundaries of the flow field
are then given by the coordinate surfaces r = R; and » = Rp. In the axial
direction the flow extends to infinity. Changes in flow quantities in the axial
direction must therefore vanish or be periodic so that these quantities do not
take on infinite values at infinity. We shall exclude the case of periodicity
here, and shall set 9/9z = 0 and u, = 0. At all planes z = const the flow
is identical. Since the normal component of the velocity (i.e. u, at r = Ry
and r = Rp) must vanish because of the kinematic boundary condition, we
set u, = 0 everywhere. Also the change in the circumferential direction must
either vanish or be periodic: again we shall restrict ourselves to the first case.
Because of 9/0z = /0 = 0 and u, = u, = 0 we obtain from the Navier-
Stokes equations in cylindrical coordinates (see Appendix B) the following
for the r component

u? dp
_® = — 4
L or’ (6.40)

and for the ¢ component

Puy,  10uy,  uy
“TUe  Ue 41
or? + r Or r2 |’ (6.41)

0=n

while the z component vanishes identically. The term u?/r in (6.40) arises
from the material change of the component u, and corresponds to the cen-
tripetal acceleration. Clearly the pressure distribution p(r) develops so that
the centripetal force is balanced. Equation (6.40) is coupled with (6.41): if
the velocity distribution is given by (6.41), then the pressure distribution
corresponding to it follows from (6.40). Equation (6.41) is a linear ordinary
differential equation with variable coefficients of the Eulerian type. It is solved
by the substitution
Up =T

From (6.41) we then have n = £1, so that the general solution reads
C
u, =Crr+ = (6.42)
r

The inner cylinder rotates with angular velocity §2;, the outer with 2o
(Fig. 6.5). Then, from the no slip condition

UW(R[) = Q] R[ 5 ug,(Ro) = QO Ro (6.43)

the constants are determined as

Q0 R — 2 R?

o (£ — £0) R RS,
'Y RL R} '

C =
’ R} — R

(6.44)
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Fig. 6.5. Flow between rotating concentric cylinders

For the special case C7 =0, i.e.
20/921 = (Rr/Ro)?, (6.45)

the velocity distribution from (6.42) is that of a potential vortex. Thus the
angular velocities of the inner and outer cylinders must have a particular
relation to one another in order that the flow in the gap be irrotational.

Another important special case for applications, namely the problem of
the rotating cylinder with infinite gap height, arises if we allow Ro to go to
infinity in (6.45); 2o then tends to zero. In these cases the potential vortex
satisfies not only the Navier-Stokes equations (this is so for all incompressible
potential flows), but also the no slip condition at the wall. Therefore we are
dealing with an exact solution of the flow problem: boundary layers where
the velocity distribution differs from the value given by potential theory do
not arise. For 2y =0, r = Ry +y and y/R; — 0 we obtain, from (6.42) and
(6.44) the Couette flow (6.4).

6.1.5 Hagen-Poiseuille Flow

The flow through a straight circular pipe or Hagen-Poiseuille flow is the
most important of all unidirectional flows and it is the rotationally symmetric
counterpart to channel flow. Again cylindrical coordinates are suited to this
problem where they describe the wall of the circular pipe by the coordinate
surface = R (Fig. 6.6). At the wall u, = u, = 0, and we set u, and u,
identically to zero in the whole flow field; moreover the flow is rotationally
symmetric (0/d¢ = 0). The continuity equation in cylindrical coordinates
(see Appendix B) then gives

Oou,
0z

=0 or wu,=u,(r). (6.46)
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Fig. 6.6. Flow in a straight circular pipe

The r component of the Navier-Stokes equations leads us to

_%

O_Br

or p=p(z). (6.47)
All terms of the Navier-Stokes equation in the ¢ direction vanish identically,
while the z component equation becomes

0 Ou, 1 Ou,
Pl

0:782 or? r or

(6.48)

We see directly from (6.48) that dp/dz does not depend on z and therefore
the pressure p is a linear function of z. As before we set dp/0z = —K and
write (6.48) in the form

K 1d du,
== 6.49
n r dr [T dr} ’ ( )
which, integrated twice, gives
Kr?
ux(r) = — 1 +Cy Inr+Cy . (6.50)
n

Since u,(0) is finite, C; = 0 immediately follows. The no slip condition implies

u,(R)=0, (6.51)
thus KR
Cy Iy (6.52)

Dropping the index z, the solution reads

K

=5 (B ). (6.53)

u(r)
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The maximum velocity is reached at » = 0, and therefore we write

u(r) = Uz {1 — (r/R)Q} .

(6.54)
With the volume flux V/ through the pipe we introduce the average velocity
through the pipe . .
-V %
U=—=—= 6.55
iy (6.55)
and because
2r R
. R2
V= //u(r) rdrdp =27 Upae = (6.56)
00
we also find that )
U= 5 Umaz (6.57)
ie. )
— KR
U= . 6.58
5 (6.58)
Since the pressure gradient is constant, we may write
A _
K = Tp = w (6.59)

and mean by Ap the pressure drop in the pipe over the length [ . The pressure

drop is positive if the pressure gradient dp/9dz is negative. It is appropriate
to represent this pressure drop in a dimensionless form:

— - (6.60)
2T
2
Using (6.58), the so-called loss factor ¢, can also be written in the form

161 I
(= —1 _ (6.61)
R2oU d pdU

where d = 2R and we have set the dimensional quantities into two dimen-
sionless groups [/d and pdU/n = Re . In particular, in pipe flows the friction
factor is often introduced

d
A=(—
T
so that the dimensionless form of the resistance law of a straight circular pipe
arises: ! 64 "
= - — A
=dRe *

== (6.62)
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The Hagen-Poiseuille equation follows from (6.55), (6.58) and (6.59):

T R* Ap

THE (6.63)

The proportionality of the volume flux to the fourth power of the radius has
been experimentally confirmed to a high degree of accuracy which serves as
a confirmation of the no slip condition (4.160). The Hagen-Poiseuille equation
(6.63) is also the basis for measuring the shear viscosity 7.

We are led to a generalized Hagen-Poiseuille flow if we subject the general
solution (6.50) to the boundary conditions (Fig. 6.7)

u(Ro) =0, (6.64a)

and
u(Rp)=U . (6.64b)

The resulting flow is clearly the Couette-Poiseuille flow in a ring gap, and is
given by

u(r) = % {R% 7 {R?) ~ R~ 4}7([]} hlfzgj/ﬁgo)) } . (6.65)

This can be superimposed with the velocity field (6.42) and then describes
the case in which the cylinder is also rotating.

We could convince ourselves that with Ro — Ry = hand Rop —r =y
and in the limit h/Ro — 0, two-dimensional Couette-Poiseuille flow (6.19)
results. For pure pressure driven flow (U = 0), by (6.55) we find the average
velocity
1

1D(R]/Ro) ’
which, for Ry — 0 agrees with the known result (6.58).

- K
U= — |R:5+ R?+(R% — R?)

5 (6.66)

K=0
<0 KX>0

Fig. 6.7. Generalized Hagen-Poiseuille flow
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For conduits which do not have a circular cross-section, we introduce the
equivalent or hydraulic diameter dy,

4A
dp, = — , (6.67)
s
where A is the cross-sectional area and s is the wetted circumference of the
cross-section. dp, = d for the circular cross-section, and for the ring cross-
section we have

_ 47 (RS — RY)

dp = —————=%=do —d; . 6.68
"Tor(Ro+ Ry ¢ (6.68)
We first write the loss factor ¢ in the form
Ap (do — dp)?
¢ = Apldo —di)” (6.69)

into which we replace one U by (6.66) (from (6.59)) and extract

o 21 di
_Grp e
64 n 1 do do

= — . 6.70
C QU dh dh . d] 2 | dl . d] 2 ( )
- % + In % + %
Using the Reynolds’ number Re = oU dj,/n this becomes
64 1
= - — . . 1
¢= e 7 Inldi/do) (6.71)

The dimensionless factor fn(d;/do) is a measure of the deviation of the loss
factor of a noncircular conduit from the friction factor of the circular pipe,
if the hydraulic diameter is used as the reference length. For dy/do = 0 we
have fn(dy/do) = 1, and for d;/do = 1, corresponding to channel flow,
we extract fn(d;/do) = 1.5 after repeated application of I’'Hépital’s rule.
This result can be easily confirmed if, starting with (6.22) we construct the
formula (6.71).

As can be seen, the pressure drop for the circular tube is very different
from the pressure drop for the ring gap, even when the hydraulic diameter
is used as the reference length. This is not the case for turbulent flows: the
loss factor of the ring gap is practically identical to that of the circular pipe.
This also holds for conduits with rectangular cross-sections and for most
other technically interesting cross-sectional shapes, such as triangular cross-
sections, if the angles are not too small.
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6.1.6 Flow Through Noncircular Conduits

In the treatment of laminar flows in infinitely long straight conduits with
noncircular cross-sections, the same kinematic simplifications as in Hagen-
Poiseuille flows arise. The only nonvanishing velocity component is the one
in the axial direction. This component is independent of the coordinate in this
direction, so that the nonlinear terms drop out in the equations of motion.
Since a locally valid coordinate system where the stress tensor has the form
(3.35) can be given for every point in the cross-section, we find ourselves
dealing with a unidirectional flow. In a coordinate system whose z axis runs
parallel to the axis of the conduit, Poisson’s equation

Au=—— 6.72
; (6.72)

follows from (6.3) for the only nonvanishing velocity component (which we
shall denote by ) in steady flow. Since K = —9p/dz = const, the inhomoge-
neous term here is again a constant. This form of Poisson’s equation appears
in many technical problems, among these in the torsion of straight rods and in
loaded membranes. Thus we can directly transfer results known from the the-
ory of elasticity. Solutions of this equation in the form of polynomials describe,
among others the torsion of rods with triangular cross-sections, and these cor-
respond therefore to flows through pipes with triangular cross-sections. Using
elementary integration methods, cross-sections whose boundaries are coordi-
nate surfaces can be dealt with if Poisson’s equation is separable in these
coordinate systems.

As a typical example, we shall sketch the path of a solution for the techni-
cally important case of a conduit with a rectangular cross-section (Fig. 6.8).
With wu,(x, y) = u(z, y) we get from (6.72) the differential equation

%u  0%u K
@ﬁLa—?ﬂ—*ﬁ, (6.73)

609

[Nl

-—2h/\/§——

e —

Fig. 6.8. Channels with rectangular and triangular cross-section
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with the boundary conditions

b
u(:|:§, y) =0, (6.74a)
and .
u(z, :lzé) =0. (6.74b)

To solve the linear equation (6.73) we set
u=up-+uy , (6.75)

where uy satisfies the homogeneous equation and up is a particular solution.
If we set, for example u = up(y), the solution follows directly from (6.73)

K
up:—ﬂyhclyﬂ}g, (6.76)

into which we introduce the boundary condition (6.74b), so that

K |1, 9
up = T [40 y} (6.77)

arises. Using a separation of variables solution of the form

upg = X(x)Y(y) (6.78)
yields the solution
ug = Dy (e™® + e ™) cos(my) = 2Dy, cosh(mz) cos(my) , (6.79)
with -
m= - (2n—-1), (6.80)

where the symmetry properties of the problem have been exploited and which
satisfies the boundary condition (6.74b) for n =1,2,3,.... Because (6.73) is
linear, the general solution is

u= Z 2D,, cosh(mx) cos(my) + up(y) . (6.81)
n=1
The boundary conditions (6.74a) lead to the equation

> 2D, cosh(mb/2) cos(my) + up(y) =0 . (6.82)

n=1
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In order to determine the coefficients D,,, up must also be represented as

a Fourier series, whose coefficients are given by

2 K |1
a, = - / o7 {Z 2 — yQ} cos(my) dy .

—c/2

Integrating leads to the Fourier expansion

2K 2
up = - 2 [% cos(me/2) — —3 sin(m 0/2)] cos(my) .
Because me -
2 2

the first term in brackets in (6.84) vanishes, and the second reads
—2m 3 sin(mc/2) = 2m =3 (—=1)" .
A comparison between (6.84) and (6.82) furnishes

2K (="

D, = )
7 c¢m3 cosh(mb/2)

and therefore the solution is
K 8 cosh(m x)
u—%{—y +EZ:: coshmb/2) cos(my)} ’
from which we find the average velocity, according to (6.55), as

— K& |1 co64 OOtanhmb/Q)
U= 477{ 5_52 2n —1)° '

The loss factor based on the hydraulic diameter

2bc
b+c

is
64 [
Ciﬁd_hf(c/b)v

{54 S e}

with

(6.83)

(6.84)

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

(6.90)

(6.91)

(6.92)



6.2 Unsteady Unidirectional Flows 183

Two-dimensional channel flow corresponds to ¢/b = 0, and we have
f(e/b) =3/2. For ¢/b =1 we obtain f(c¢/b) = 0.89.

For an equilateral triangle of height h (Fig. 6.8), the velocity distribu-
tion is

K 1
=— —(y—h)(32* —¢? 6.93
U= Ih (y —h) B3z —y7) (6.93)
and the average velocity
— 1 Kh?
U=— 6.94
Using the hydraulic diameter
2
dp,==h (6.95)
3
we obtain the loss factor 64 1 5
=—— ——. 6.96
Re dh 6 ( )

The velocity distribution in an elliptic pipe whose cross-section is given by
the equation of the ellipse

[zr n [gr 1 (6.97)

reads

K 2b2 2 2
a { LY } (6.98)

U= — ——- - <

2n a? + b2 a? b2

From this equation we can see directly that the no slip condition is satisfied
at the wall. The average velocity here is

K a?b?

g @b
4n a2+ b2

(6.99)
Since the perimeter of the ellipse cannot be represented in a closed form
(elliptic integral) we do not introduce the hydraulic diameter. Instead it is
recommended that the pressure drop be calculated directly from (6.99).

6.2 Unsteady Unidirectional Flows

6.2.1 Flow Due to a Wall Which Oscillates in its Own Plane

The solutions so far can be extended to the unsteady case. First of all we
shall consider harmonic time functions. From these we can build general
time functions using a Fourier representation. The simple shear flow then
corresponds to the flow between two plane infinitely extending plates (with
separation distance h), one of which (the lower) is set into oscillation in its
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plane. The wall velocity is given by
Uy = U(t) = U cos(wt) . (6.100)
Using complex notation the wall velocity reads
Uy = U(t) = Ue“! | (6.101)

where only the real part R(e!“!) has physical meaning. Instead of (6.12) we
now have

u=f(y,t), v=0 (6.102)

and instead of (6.13):
ou 1 0p 0%u
—=————+4v—.
ot 0 Ox oy?
We set dp/dz = 0, i.e. the flow is only kept in motion by the wall velocity
through the no slip condition

(6.103)

w(0, t) =y = U et (6.104a)
On the upper wall the no slip condition reads
u(h, t) =0 (6.104b)

We shall only be interested in the steady state oscillation after the initial
transients have died away, so that the initial condition u(y, 0) is superfluous.
The boundary condition (6.104a) suggests that the solution is of the form:

u(y, t) = Ue“ g(y) , (6.105)
where g(y) satisfies the boundary conditions

g(0) =1, and (6.106a)
g(h)=0. (6.106b)

Using the form (6.105), the partial differential equation (6.103) reduces to an
ordinary differential equation with constant (complex) coefficients

g’ - — 9= 0, (6.107)

where ¢ = d2g/dy?. From the solution g = e*¥ we obtain the characteristic
polynomial
9 lw
N (6.108)

v
with the roots

A=Vi w/z/:j:(l—i—i)\/g. (6.109)
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The general solution can then be written in the form

g(y) = Asinh{ (1 4+ 1) \/w/2vy} + Beosh{ (1 +1i)y/w/2vy}, (6.110)

from which, using the boundary condition (6.106), we find the special solution

sinh{ (1 +1) y/w/2v(h —y)}
(y) = — : ; (6.111)
sinh{ (1+41) /w/2vh}
and finally by (6.105) the velocity distribution
A . i i) \/wh? 1—
u(y, t) =UR ewt Slnh{ (1 + 1) wh /QV( y/h) } . (6112)
sinh{ (1 +1) \/wh?/2v}
We discuss the two limiting cases:

wh?/v <1, (6.113)
wh/v>1 (6.114)

and note that h%/v is the typical time for the diffusion of the rotation across
the channel height h. In the first case this time is much smaller than the
typical oscillation time 1/w, i.e. the diffusion process adjusts at every instant
the velocity field to the steady shearing flow with the instantaneous wall
velocity wu,,(t). This is what is called quasi-steady flow.

Using the first term of the expansion of the hyperbolic sine function for
small arguments we have

u=UR {eiwt Vwh?/2v (1 1) (1_y/h)}, (6.115)

Vwh?/2v (1 41)
and deduce that
uw="U cos(wt) (1 —y/h) =U (1 —y/h) . (6.116)

Equation (6.116) corresponds to (6.4) where the upper plate represents the
moving wall. We also obtain this limiting case if the kinematic viscosity v
tends to infinity. As is clear from (6.103), the unsteady term then vanishes.
This limiting case v — oo for fixed n also corresponds to taking the limit
o — 0, thus ignoring the inertia terms, and therefore falls into group b) of
the classification discussed in Sect. 4.4.

In the limit wh?/v > 1 we use the asymptotic form of the hyperbolic sine
function and write (6.112) in the form

uw=UR [e*vw/”y e“wt*vw/z’”y)} , (6.117)
or X
uw=Ue VeV cos(wt — \/w/2vy) . (6.118)

The separation h no longer appears in (6.118). Measured in units A = 1/2v/w
the upper wall is at infinity. Relative to the variable y the solutions also have
a wave form; we call these shearing waves of wavelength A (Fig. 6.9).
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Vauy

10

9 r 4

8 r i

R

Uy = Ucos(wt) wt =k

Fig. 6.9. Velocity distribution above the oscillating wall

6.2.2 Flow Due to a Wall Which is Suddenly Set in Motion

Using (6.118), we could in principle form the solution for the wall which is
suddenly accelerated to velocity U. However it is more instructive to take
a different path which starts directly with the partial differential equation

ou 0%u

gu_,2. 11
at " ay? (6.119)

This differential equation also describes the unsteady one-dimensional heat
conduction (where v is then replaced by the coefficient of heat conduction a),
and so the desired solution also appears in heat conduction problems. The
no slip condition at the wall furnishes

u(,t)=U for t>0. (6.120)
The second boundary condition is replaced by the condition

u(y,t) =0 for y—oo. (6.121)
In addition we have the initial condition

u(y,t) =0 for t<0. (6.122)
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Equation (6.119) is a linear equation and since U enters the problem only
linearly from the boundary condition (6.120), the field u(y, t) must be pro-
portional to U, so that the solution has to be of the form

u/U=f(y, t,v). (6.123)

Since the function on the left-hand side is dimensionless, f must also be
dimensionless, which is only possible if the argument of the function is di-
mensionless. However the only linearly independent dimensionless quantity
is the combination y2/(vt). We set

n= (6.124)

DN | =
g
~

and are now dealing with a similarity variable n, because the solution cannot
change if y and t are changed such that 7 remains constant. Instead of (6.123)
we now write

u/U = f(n), (6.125)
and from (6.119) we obtain the ordinary differential equation
—2nf'=f" (6.126)

with f' = df/dn. Integrating twice gives the general solution
n
2
f=C /ei77 dn+Cs . (6.127)
0

For y = 0 we have n = 0, and the boundary condition (6.120) becomes
F0)=1, (6.128)

and therefore it follows that Cy = 1. If we subject (6.127) with C5 = 1 to the
“poundary condition” (6.121),

o0

1/Cy = — /wz2 dn (6.129)
0

must hold. The improper integral has the value % /7, and therefore
C,=—-2/J7; (6.130)

thus the solution reads

n
u/U:1—2/ﬁ/e7’72 dy for t>0. (6.131)
0
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The integral
n
orf () = 2/v/7 / e dy (6.132)
0

is the error function. For t = 0 we have  — oo and u/U = 0; thus the initial
condition is satisfied.

6.3 Unidirectional Flows of Non-Newtonian Fluids

6.3.1 Steady Flow Through a Circular Pipe

In order to calculate the flow of non-Newtonian fluids we shall return to
Cauchy’s equations. As with the flow of Newtonian fluids, for kinematic rea-
sons the only nonvanishing velocity component is that in the axial direction
and this only depends on r. Therefore we are dealing with a unidirectional
flow, and the stress tensor has the form (3.35) in cylindrical coordinates,
where the index 1 corresponds to the z direction, the index 2 to the r direc-
tion and the index 3 to the ¢ direction. Since the tensor valued function ;;
in (3.35) corresponds to the friction stress tensor P;; (which only depends on
4 = du/dr, that is, on r), we write the stress tensor in the following matrix
form:

Pzz —p Prz 0
M | P, P.—p 0 . (6.133)
0 0 P,,—p

The material derivative Du/Dt vanishes and if by p we mean only the pressure
relative to the hydrostatic pressure distribution, we extract from (2.38b)

0=V -T. (6.134)

In component representation (see Appendix B) and noting P;;(r) we find for
the r component

op 1[0
E = ; E (7’ PT’r‘) - P@W 5 (6135)
for the ¢ component
Ip
0 = 0, (6.136)
12
and for the z component
op 1 0

The right-hand sides of (6.135) and (6.137) are functions of r only. From
(6.136) and (6.137) we conclude p = zg(r) + h(r) and from (6.135) then
g'(r) = 0. This means that because of the arbitrary function hA(r), p is not
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necessarily independent of r, although dp/0z = —K = Ap/l is a constant.
From integration of the equation (6.137) we obtain the distribution
Kr C

rz:Prz:__ — 6.138
7 2 +T ( )

where we set C' = 0, since the friction stresses in the center of the pipe cannot
become infinite. Using

KR
Tra(R) = =T = =~ (6.139)
instead of K we introduce the shear stress at the pipe wall, and write (6.138)

in the form
r

R )
from which we find the statement valid for all constitutive relations that the
shear stress 7., is a linear function of ». Now we could have obtained this
statement more easily from the balance of momentum in integral form, but
it has arisen here from the exemplary application of Cauchy’s equation.

We shall now specifically use the power law (3.17), and assume that
4 = du/dr is everywhere less than zero. This is not exactly true since, for
symmetry reasons, 7 is equal to zero in the center of the tube. Using (3.13)
we extract from (6.140) the equation

(6.140)

Trz = —Tw

n—1
- [j—i‘] % =7 % . (6.141)
We find the velocity distribution to be
1
w=R / (/)™ (1) R)Y™ d(r/R) | (6.142)

r/R

or, after integrating

1 [1} nTl] . (6.143)

The volume flux is

n 1/n 3
= R 144
T (Tw/m)" (6.144)
and therefore the average velocity
=V 2y _" 1/n 14
U /(m R?) 3n+1(7'w/m) R. (6.145)

Finally, from (6.144) and (6.139) the pressure drop follows:

n

V 3n+1
TR3 n

l
Ap:p1*p2:2m§

(6.146)
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6.3.2 Steady Flow Between a Rotating Disk and a Fixed Wall
We consider the flow with the velocity field
u, =712(2), u.=u, =0, (6.147)

of Fig. 6.10 whose form is suggested by the no slip condition on the rotating
plate:
up(h) =7 02g . (6.148)

We shall first ask under which conditions the field satisfies Cauchy’s equa-
tions. The flow shown in Fig. 6.10 occurs in some forms of viscometers which
is why these flows are named viscometric flows. The calculation of the rate
of deformation tensor (see Appendix B) leads to the matrix representation

Cop Cpz Cor 1 1 0 4 0
[E}: Crp €2 Car _{iA(l)}_g 40 0], (6.149)
00 0

€ro  Erz  Epr
with 4 = 2e,, = rdf2/dz, so that the first Rivlin-Ericksen tensor indeed has
the same form as in a unidirectional flow.
Therefore the stress tensor has the form (3.35), where here €; points in the
@ direction, € in the z direction and €5 in the 7 direction. Using this stress

tensor and the symmetry condition 9/0¢ = 0, the components of Cauchy’s
equations in cylindrical coordinates are

19p 10P, 1

e —02%(2) = s T +T—2(PTT—PW), (6.150)
OP,
@ 0=—~ and (6.151)
Op 0P,
.. 0=——"+—7—" (6.152)

From (3.35) the friction stresses only depend on 4. But from (6.151) we
see that P,, = 7., is not a function of z and for symmetry reasons not

%QR
i © N \
h - —

7 Z

Fig. 6.10. Shearing flow between a rotating disk and a fixed wall
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a function of ¢ either. Therefore the shear stress 7., is only a function of r,
asis y =rdf2/dz:

ds
T g(r); (6.153)
integration of (6.153) gives
u, =7102(2)=29(r)+C . (6.154)

The no slip condition on the fixed wall implies
u,(0) =7 2(0) =0, (6.155)
therefore C'= 0. From (6.148) it follows that
Up(h) =rRp=hg(r), (6.156)
and therefore g(r) = 2r r/h, so that the solution is
u, =rRrz/h. (6.157)

By comparing this solution with that of simple shearing flow (6.4) we see that
at radius r with wall velocity U = r {2 the simple shearing flow appears.
Integration of (6.152) leads us to

p= Pzz + O(T) y (6158)

where the arbitrary function is, for symmetry reasons, not a function of .
Therefore the pressure is only a function of r» and thus the whole right-hand
side of the Eq. (6.150) is only a function of . On the left-hand side however
there is a function of z. This means that the calculated velocity field can only
exist in the limit p — 0, that is, by ignoring the inertia terms.

If the inertia of the fluid cannot be ignored, secondary flows form and the
form of solution (6.147) is not permissible. As well as the kinematic restriction
(class ¢) in Sect. 4.4), a dynamic restriction also arises (class b) in Sect. 4.4),
while no restrictions of any kind were necessary as far as the constitutive
relation is concerned. If we introduce (6.158) into (6.150), then C(r) can be
expressed through the normal stress differences. Incidentally, by measuring
the force on the plate with radius R and the pressure at r = 0, the normal
stresses of a fluid can be determined by a viscometer which is built according
to the principles in Fig. 6.10.

6.3.3 Unsteady Unidirectional Flows of a Second Order Fluid

We extend the velocity field given in (6.147) to the case where the disk carries
out a rotational oscillation

¢r = Pre" (6.159)
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and instead of (6.147) we now write
uy =1 Q2(z) et . (6.160)

(As in (6.101) we shall use complex notation and allot physical meaning to
the real part only.) The component of Cauchy’s equation (6.151) in the ¢
direction, with the unsteady flow now considered additionally, contains the
inertia term pdu,/0t on the left-hand side. Since we are ignoring inertia
terms, this term also vanishes in the limiting case ¢ — 0. The Egs. (6.150)
to (6.157) are therefore still valid since no restriction has been made relative
to the constitutive relation. Since the inertia terms have been ignored, the
problem is unsteady only because of the boundary condition. With

Qp=¢r=iwpre"! (6.161)

we extract directly from (6.157) the unsteady (more exactly the quasi-steady)
velocity field as

uq,:riwgbR%ei‘”t . (6.162)
By comparing this with (6.160) we get
- z

Q) =iwpry . (6.163)

We now calculate the torque acting on the oscillating disk with radius R due
to the shear stress 7,:

R
M =2rm /Tw r2dr . (6.164)
0

Since the flow is a simple shearing flow at fixed r (cf. (6.4)), where the z
direction corresponds to the zo direction and the ¢ direction to the x; direc-
tion, to calculate 7., it is enough to determine 7q2 in simple shearing flow of
a second order fluid