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Unit-I 
Primes in Certain Arithmetical 
Progressions and System of Congruences 
 
Primes in certain arithmetical progressions.  

Peano Axioms are    

(1) 1∈N where N is the set of natural numbers  

(2) For every natural number n there exists its successor number (n+1)∈N  

(3) 1 is not the successor of any natural number i.e. o ∉ N.  

(4) Principle of mathematical Induction : If p(n) is a mathematical statement 
which is true for n = 1 and p(n) is true for n = m + 1 whenever it is true for 
n = m then p(n) is true for all natural numbers.  

Law of well ordering  :- Every subset of N has a least element.   
Theorem 1.1 Every natural number n > 1 has a prime divisor (factor) 
Proof :- We shall prove the lemma by induction on n.  
For n = 2, lemma is true (Θ 2 > 1, 2 has a prime divisor 2) 

Suppose lemma is true for all natural number <n.  Now consider n.  If n is 
prime.  Then the lemma is true because it has a prime divisor n itself.  So 
assume ‘n’ to be composite.  Then n has a positive divisor n1, 1 < n, < n such 
that n = n1.n2 where 1 < n2 < n 

Since n1 < n by induction hypothesis n1 has a prime divisor say p.  Then p | n1 
and n1 | n  

�  p | n.  This proves the theorem. 

Theorem 1.2 (Euclid) :- The number of primes are infinite 

Proof :- If possible, suppose number of primes are finite.  Let these be p1,          
p2,…pr. 

Consider N = p1 p2…pr +1 

Now N > 1, by above theorem N has a prime divisor say p>1.  But only 
primes are p1, p2,…,pr so  p = pi for some i  

Then p | p1 p2…pr, Also p | N  �  p | (N − p1. p2…pr) or p | 1, which is a 
contradiction.   

Hence number of primes are infinite 

Note :- Let P = {2, 3, 5, 7, 11, 13,…} be the set of all primes and let S = {3, 5, 
7,…} be the set of odd primes.  Then S can be divided into two mutually 



                                                             ANALYTICAL NUMBER THEORY  6 

disjoint subsets having primes of the form 4n+1, 4n+3 and the set {5, 7, 11, 
13; 17,…} can also be divided into two subsets having prime numbers of the 
form 6n+1 and 6n+5, n = 0, 1, 2,… 

Theorem 1.3 The primes of the form (4n+3) are infinite in number. 

Proof :- If possible, suppose primes of the form 4n+3 are finite and let they be 
p1 . p2,…pr 

Consider N = 4 p1.p2…pr−1.  Then N > 1 

So N can be written as the product of primes.  Now N is odd, N ≠ 2.   

Thus N can be written as a product of odd primes, so N can be written as a 
product of primes of the form (4n+1) and (4n+3).  But if N were divisible by 
primes of the form (4n+1) then N would also be of the form (4n+1).  But N is 
of the form (4n+3), so N is divisible by atleast one prime of the form (4n+3) 
say p.  But only primes of form (4n+3) are p1, p2,…, pr,  Then p = pi for            
some i  

Now p | N and p | p1…pr  � p | [4(p1⋅ p2…pr) − N]  � p | 1, which is a 
contradiction 

Hence, Number of primes of the form (4n+3) are infinite in number.  

Theorem 1.4  The number of primes of the form (6n+5) are infinite in 
number. 

Proof :- If possible, let number of primes of the form (6n+5) are finite and let 
these be p1, p2…pr. 

Let N = 6(p1…pr) −1.  Then N > 1 so N can be written as a product of primes.  

∴ N can be written as a product of primes of the form (6n+1) and (6n+5).  If 
N were divisible by primes of the form (6n+1) only, then N would be of the 
form (6n+1), so N is divisible by atleast one prime of the form (6n+5) say p.  

But only primes of the form (6n+5) are p1, p2,…, pr,  so p = pi for some i  

Now p | N and p | pi p2…pr,  so  p | [6(p1 ⋅ p2…pr) − N]  � p | 1, which is a 
contradiction  

Hence number of primes of the form (6n+5) are infinite in number.  

Note :- If gcd(a, b) = 1 Then every odd prime factor of a2 + b2 must be of the 
form 4n + 1.  

For example gcd (4, 3) = 1, 42 + 32 = 25 has an odd prime factor say 5 of the 
form 4n+1 

Theorem 1.5 Primes of the type (4n+1) are infinite in number. 

Proof :- If possible let p1, p2,…pr be the only primes of the type (4n+1).  

Consider N = (2p1 p2…pr)2+1 
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Now N is of the type a2 + b2 and gcd(a, b) = 1.  Also N is odd so 2     N and all 
the prime factors of N are odd, so all the odd prime factors of N must be of the 
form (4n+1) Let p | N.  Then p will be of the form (4n+1)  But the only primes 
of the form (4n+1) are p1, p2,…,pr, p = pi for some i  

Then p | N and p | (2p1…pr)2 i.e. p | 1, which is a contradiction.  Hence 
number of primes of the form (4n+1) are infinite in number.    

Theorem 1.6 Primes of the type 8n+5 are infinite in number  

Proof :- If possible, let p1, p2,…, pr be the only primes of the form (8n+5)  

Consider N = (p1 p2…pr)2 +4 = (p1 p2…pr)2 + 22  

Then N is of the form a2 + b2 and 2   p1⋅ p2…pr implies g.c.d(a, b) = 1.  Also N 
is odd, every prime factor of N must be of the form 4n+1.  Now we know that 
square of every odd number is of the type 8n+1.  Since (2n+1)2 = 4n2 + 4n+1 
= 4n(n+1)+1 = 8k + 1, and so N is of the form 8k +5.    

Now if every prime factor of N is of the type 8n+1 then their product N will 
also be of the form 8n+1 since [(8n1 + 1) (8n2+1) = 64n1n2 + 8(n1 + n2) +1= 
8[8n1n2 + (n1 + n2)] + 1 = 8k + 1 

But N is of the form 8n+5 and so atleast one factor of  N must be of the type 
8n+5 say p. Therefore      p = p1 for some i. Now p | N and p | (p1⋅p2…Pr )2 

� p | [N- (p1⋅p2… p r )2 ] 

� p | 4 � p ≤ 4. 

But the smallest prime of the form 8n+5. So this is a contradiction and 
therefore primes of the type 8n+5 are infinite in  number. 

Fermat numbers  

 A French mathematician Fermat conjectured that Fn = 
n22 +1 

represents primes for all values of n ≥ 0 

Note that  F0 = 
022 +1 = 3 

  F1 = 
122 +1 = 5,  F2 = 

222 +1 = 17 

  F3 = 
322 +1 = 257,      F4 = 65537 are all primes. These 

numbers are called Fermat numbers. A Fermat number which is a prime is 
called a Fermat prime.  However no Fermat primes are known beyond F4.  In 
1732, Euler proved that F5 is composite.  However his proof was very 
complicated.  We give an easy proof due to Burmet.  

Theorem 1.7 F5 = 
522 +1 is composite  

Proof :- Let a = 27 = 128 and b = 5 

then  a = b3 + 3 or a−b3 = 3 
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Now   1 + ab −b4 = 1+b(a−b3) 

       = 1 + 3b = 16 = 24 

and   F5 = 1)2(1)2(12 48223252 +=+=+  

       = (21 ⋅ 27)4 + 1 = (2a)4 + 1 = 16a4 + 1 = (1+ ab−b4) a4 + 1 

       = (1+ab) a4 + (1−a4 b4) 

       = (1+ab) a4 + (1 +ab) (1−ab) (1+a2b2) 

       = (1 +ab) [a4 + (1−ab) (1+a2 b2)] 

Thus 1 + ab = 1+128⋅5 = 641 is a divisor of F5.  Clearly f5 > 641 and so F5 is 
composite.    

Remark :- We have not been able to find any Fermat prime number beyond 
F4 and research is still on.  However it is conjectured that Fn is not a prime for 
n > 4.  But Fermat’s number have very interesting properties. 

Theorem 1.8 All Fermat numbers are relatively prime to each other i.e., 

  gcd(Fm, Fn) = 1 for m ≠ n 

Proof :- W. L. O. G., we assume that m > n 

Let m = n + k where k ≥ 1 

Now  Fm = Fn+k = 1)2(12
k2n2kn2 +=+

+
 

Set   x = 
n22  

Then   Fm = 1)x(
k2 +  

Now  
1x

21)x(
F

2F
k2

n

m

+
−+=

−
 

    = 
1x

1x
k2

+
−

 

    = 
1x

)1x()1x(
1k21k2

+
−+

−−

 

    = 
1x

)1x)(1x)...(1x)(1x)(1x(
3k22k21k2

+
+−+++

−−−

 

�  Fn | (Fm−2) 

Let gcd (Fm, Fn) = d, then d | Fm , d | Fn  and Fn | (Fm−2) 

�  d | (Fm−2) and therefore d | [Fm − (Fm−2)] i.e., d | 2 
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� d = 1 or 2.  But d ≠ 2 since all Fermat’s number are odd.  

Hence d = 1 and this proves the theorem.  

Corollary 1 (Euclid) :- The number of primes is infinite.  

Proof :- Let n be any natural number.  Consider F1, F2,…Fn.  Each of Fi > 1 
and so each Fi has a prime factor.  Let p1 | F1, p2 | F2,…pn | Fn ,  where p1, 
p2…pn are primes. 

Since all Fermat numbers are relatively prime i.e., (Fi , Fj) = 1 so pi ≠ pi            
for i ≠ j 

So all the pi’s are distinct primes.  Thus given any natural number n, there 
exists at least n different primes and so the number of primes is infinite.  

Corollary 2 :-  pn+1 ≤ 
n22 +1 = Fn, where pi denotes the i th prime in 

ascending order 

Proof :- Since each Fi is divisible by a different prime and F1 < F2 < F3 <…< 
Fn, so there exists at least n primes ≤ Fn. 

But all Fermat numbers are odd and prime 2 is less than all odd primes so at 
least (n+1) primes are less than Fn,  i.e., pn+1 ≤ Fn 

Example :- Prove that for n ≥ 2, 10 | Fn−7  

or    Fn ≡ 7 (mod 10) 

Solution :- We shall prove the exercise by induction on n. 

For n = 2, F2 = 
222 +1 = 17 

and  10 | (17−7) 

∴   exercise is true for n = 2 

Assume that exercise is true for n = k  

i.e.,   10 | (Fk−7) 

i.e.,  10 | )712(
k2 −+  

i.e.,  10 | )62(
k2 −  

i.e.,  
k22 −6 = 10r,       for r∈Z     

  …(1) 

Now   2k21k2 )2(2 =
+

= (10r + 6)2 

   = 100 r2 + 120r + 36. 

   = 10(10r2 + 12r + 3) + 6 
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   = 10r1 + 6 where r1 = 10r2 + 12r + 3 

∴  
1k22

+
−6 = 10r1    � 10 | (

1k22
+

−6) 

� 10 | [
1k22

+
+ 1 − 7] 

� 10 | (Fk+1 −7) 

Thus by mathematical induction exercise is true for all natural numbers n. 

Mersenne Numbers  

Let p be any prime then number of the form  

 Mp = 2p−1 are called Mersenne numbers.  A Mersenne number which 
is also a prime is called a Mersenne prime. 

Theorem 1.9 Let a ≥ 2 and n ≥ 2 be natural number.  Let an−1 be a prime.  
Then a = 2 and n = p for some prime number p    or   Any prime number of the 
type an−1 must be a Mersenne prime 

Proof :- Since an−1 = r is a prime so it cannot have any factor q such that 1 < 
q < r 

Now an−1 = (a−1) (an−1 + an−2 +…+ a2 + a +1) 

i.e.,  (a−1) | (an−1) 

But a ≥ 2, n ≥ 2 

If a > 2 then a −1 >1 is a factor of an−1 giving a contradiction  

�  a = 2 

Again suppose n is composite 

� there exists p, q with 1 < p < n, 1 < q < n such that n = pq  

Now   an−1 = apq−1 = (aq)p−1p 

          = (aq−1) [(aq)p−1 + (aq)p−2 + …+ a+1) 

Now since a = 2, 1 < q < n 

∴  1 < aq−1 < an−1,  is a factor of an−1 

This implies that an−1 is composite which is a contradiction. So n must be 
prime. 

Remark :- Converse of above theorem need not be true  

For example. 

  211−1 is not a prime.  So 2p−1 need not be a prime for all 
primes p  
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Remark :- In 1644, Mersenne conjectured that Mp is prime for  

  p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 

and composite for all other primes up to 257 

 Later on it was discovered that he has made some mistakes.  In fact, 
today, we know that Mp is prime for  

  p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 257, 521, 607, 1279, 
2281. 

as and so on and composite for all other primes ≤ 2281 

Thus he had made five mistakes i.e., for  

  p = 61, 67, 89, 107 and 257, i.e., Mp is prime for  

  61, 89, 107 but composite for  

  p = 67, 257. 

Theorem 1.10 If a ≥ 2 and n ≥ 2 and an + 1 is a prime, then n = 2k for some k 
≥ 1 and a is even. 

Proof :- If a is odd then a ≥ 2 � a ≥ 3 and so an +1 is an even number which 
is greater than or equal to 4 and so can not be a prime number. So for an + 1 to 
be a prime, a must be even.  

Next we claim that no odd prime divides n, if possible, let an odd prime p 
divides n, then n = pq where 1 < q < n and p is an odd prime.  Therefore an+1 
= apq +1 = (aq)p +1p.   

∴    = (aq+1) (a(p−1) − a(p−2) +…−1) 

Also  1 < aq +1 < an +1, so that aq +1 is a proper divisor of an +1 

�  an + 1 can not be a prime which is a contradiction.  

∴ n must be a power of 2. [no odd prime divides n   � only 2 | n   � n = 2k] 

Theorem 1.11 Let n >1 be a natural number, then n is composite iff n 
contains a prime factor           p ≤ n  

Proof :- Let n be composite and p be the smallest prime divisor of n where n 
= pq. Then q ≥ p  Therefore n = pq ≥ p2      
     [Θ q ≥ p]  

�  p2 ≤ n   �  p ≤ n  

 Thus to determine whether n is a prime number or not, it is sufficient 
to find out all primes ≤ n  and check whether any one of these primes 
divides n or not. If there is no divisor among these primes then n must be a 
prime number itself.  In this sieve it is essential to find out all primes ≤ n .  
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Farey Series  

Let n ≥ 1 be any natural number.  For every n, the set of fractions h/k such that 
0 ≤ h/k ≤ 1, 1 ≤ k ≤ n written in ascending order of magnitude is called Farey 
series of order n and will be denoted by Fn.  

Construction of Farey Series :- 

F1 
1
0

     
1
1

 

F2 
1
0

  
2
1

   
1
1

 

F3 
1
0

 
3
1

 
2
1

 
3
2

  
1
1

 

F4 
1
0

 
4
1

 
3
1

 
2
1

 
3
2

 
4
3

 
1
1

 

Theorem 1.12 If 
©k
©h

,
k
h

 are two consecutive members of Fn then  

(a) (k + k′) > n 

(b) k ≠ k′ if n > 1 

Proof :- W.L.O.G. we assume that  

  
©k
©h

k
h <  

We claim  
©k
©h

©kk
©hh

k
h <

+
+<       

  …(1) 

Now  
©kk
©hh

k
h

+
+<  ⇔ h k′ < kh′ ⇔ 

©k
©h

k
h <  

and the last inequality is true by assumption.  In a similar way,  

  
©k
©h

©kk
©hh <

+
+

 

so that the inequalities (1) are satisfied.   

Proof (a) :- If possible, let (k + k′) ≤ n. Since h ≤ k and h′ ≤ k′  ⇔ h + h′ ≤ k + 
k′ 

�  �
�

�
�
�

�

+
+

©kk
©hh ∈ Fn 
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� A fraction 
©kk
©hh

+
+

 lies between  two consecutive fractions
©k
©h

,
k
h

 of Fn 

which is a contradiction  

So  (k + k′) > n 

Proof (b) :- If possible, let k = k′ where h/k and h′/k′ are two consecutive 

fractions of Fn for some n.  We note that 
1
1

and
1
0

 are the only two fractions 

with denominator 1. 

Then 
k
©h

©k
©h

1
k
h =≠≠  

∴  h < h′ < k 

But h, h′, k are integers, so h + 1 ≤ h′ ≤ k −1 < k    
  …(II) 

Now we claim  

  
k
©h

k
1h

1k
h

k
h ≤+<

−
<      

  …(III) 

To prove this we note 
1k

h
k
h

−
<  and 

k
©h

k
1h ≤+

 are clear 

So it remains to prove that 
k

1h
1k

h +<
−

 

or  hk < (h+1) (k−1) 

or  hk < hk + k−h−1 

i.e.,  (k−h−1) > 0. i.e., k > h +1 which is true by (II)  

 All the inequality in (III) are proved thus we have a fraction 
1k

h
−

 in 

Fn which lies between two consecutive fractions 
k
h

 and 
k
©h
, which is a 

contradiction.  So, we can not have k = k′ if n > 1 

Theorem 1.13 Let h/k and h′/k′ be two successive members of Fn 

  
©k
©h

k
h <  

Then   h′k − h k′ = 1      …(I) 

Proof :- Since h/k < h′/k′   � 
k
h

 is not the last function of fn    
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�  0 ≤ 1
k
h <       …(II) 

Also   g.c.d.(h, k) = 1 

� ∃ integers x & y such that  

  kx − hy = 1      …(III) 

Now let (x0, y0) be a solution of (III).  Then clearly (x0 + rh, y0 + rk) is also a 
solution of (III) for every integer r.  Then taking different values of r, the 
entire real line is divided into intervals of length k each  

 

Choose a value of r such that  

  0 ≤ n − k < y = y0 + rk ≤ n    …(IV) 

and such that  

  (x = x0 + rh, y = y0 + rk) is a solution of (III) 

Now dividing (III) by k, we get  

  x = 
k
h

k
1 + y so that 0 <

k
1

 ≤ x < 1+y 

Thus   1 ≤ x ≤ y ≤ n 

Further from (III), g.c.d (x, y) = 1 so that  

  
y
x ∈ Fn 

Now dividing by ky in (III), we get 

  
k
h

ky
1

k
h

y
x >+=  

∴ In Fn, 
y
x

occur after h/k  

We claim, 
©k
©h

y
x =  

 Suppose it is not true.  Then x/y must occur after h′/k′, as h/k and h′/k′ 
are consecutive fraction of Fn.  So that we must have x/y > h′/k′ > h/k  

Now  
y©k

1
y©k

y©hx©k
©k
©h

y
x ≥−=−     …(V) 

as x/y > h′/k′ and so the numerator must be positive  

Similarly, h′/k′ − h/k = 
©kk

1
©kk

©hkk©h ≥−
    …(VI) 

× × × ×       × 
y0−rk y0−k y0 y0+k y0+rk 
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Adding (V) & (VI) we get 

  
y©kk

n
y©kk
yk

©kk
1

y©k
1

k
h

y
x >+=+≥−     [ By (IV)] 

          > 
yk

1
    (Θ k′ ≤ n) 

But by (III), ,
yk

1
k
h

y
x =−  which is a contradiction  

So, we must have 
©k
©h

y
x =  

Since y > 0, k′ > 0, gcd(x,y) = 1, gcd (h′, k′) = 1 

So, we must have  

  x = h′. y = k′ 

But (x, y) satisfies (III). So we must have k h′ − hk′ = 1, which proves (I) 

Remark :- 1. The chice of r gives us an actual method to find next fraction 
h′/k′ of Fn, if fraction h/k is given  

2. h/k < h′/k′ ⇔ 1−h′/k′ < 1−h/k 

Further h/k and h′/k′ are consecutive fraction of Fn.  So 1−h′/k′ and 1−h/k are 
also consecutive fraction of Fn, in reverse order.  

Theorem 1.14 Let 
©k
©h

,
k
h

be two consecutive terms of Fn such that 
©k
©h

,
©©k
©©h

,
k
h

be 

consecutive terms of Fr such that r > n.  Then  

  
©kk
©hh

©©k
©©h

+
+=   

Proof :- Since 
©©k

©©h
,

k

h
 are consecutive terms of Fr with 

©©k

©©h

k

h
<  and so 

 h′′k − hk′′ = 1      …(I) 

Also 
©k

©h
,

©©k

©©h
 are consecutive terms of Fr and 

©k

©h

©©k

©©h
<   

 and so h′ k′′ − h′′ k′ = 1      …(II) 

From (I) and (II), we get 

  h′′k − hk′′ = h′k′′ − h′′k′ 

� h′′(k + k′) = k′′(h + h′) 
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� 
©kk

©hh

©©k

©©h

+
+

=  

Now consider (h + h′)k − (k + k′)h = hk + h′k − kh − k′h  

        = h′k − k′h = 1   …(III) 

From (III) we conclude that gcd(h + h′, k + k′) = 1 

Also gcd(h′′, k′′) = 1 as 
©©k

©©h
∈ Fr and so 

  
©kk

©hh

©©k

©©h

+
+

=  � h′′ = h + h′ and k′′ = k + k′. 

Theorem 1.15 Let 
©k
©h

and
k
h

be two consecutive Farey fractions with 
©k
©h

k
h < ,  

then 
©kk

©hh

+
+

 is the unique fraction with the smallest denominator among all 

fractions between .
©k

©h
and

k

h
 

Proof :- Let 
y
x

 be any fraction such that  

   
©k
©h

y
x

k
h <<  

Then   ��
�

�
��
�

�
−+��

�

�
��
�

�
−=−

k
h

y
x

y
x

©k
©h

k
h

©k
©h

 

   = �
	



�
�


 −+�
	



�
�


 −
ky

hykx
y©k

x©ky©h
 

Since 
©k
©h

y
x <  , ��

�

�
��
�

�
−

y
x

©k
©h

>0 and so (h′y − k′x) ≥ 1 as h′, k′, x, y are all integers. 

Similarly (kx − hy) ≥1 

∴  
y©kk

©kk

ky

1

y©k

1

k

h

©k

©h +
=+≥      …(1) 

But 
©kk

1
©kk

h©kk©h
k
h

©k
©h =−=− , since 

k
h

and
©k
©h

 are consecutive Farey 

fractions,        …(2) 

From (1) and (2) 
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  �
+≥

y©kk
©kk

©kk
1

 y ≥ (k + k′)    …(3) 

Since we know  

  
©k
©h

©kk
©kh

k
h <

+
+< , so 

there exist a fraction lying with 
k
h

 and 
©k
©h
 whose denominator is k + k′ 

So if x/y is a fraction lying between 
©k
©h

and
k
h

, we should not have y > (k+k′).   

So we must have, y = k + k′ in (3).  But the equality in (3) will hold only when 
equality holds in (I) through out.  �  We have  

  h′y − k′x = 1   and kx − hy = 1 

or  h′y − k′x = kx − hy � (k + k′)x = (h + h′)y 

�  y = k + k′ 

Theorem 1.16    If Fn = 
�
�
�

�
�
�

r

r

2

2

1

1

b
a

,...,
b
a

,
b
a

 

Then (i) r = 1 + �
=

n

1j
φ(j) 

(ii)  � �
�
�

�
�
�
�

�
�+=

= =

r

1i

n

1ji

i )j(�1
2
1

b
a

 and 

(iii)   �
−

=

1r

1j
(bj × bj+1)−1 = 1 

Proof :- (i) r = 1+ �
=

n

1j
φ(j) 

We shall prove the result by induction on n and we know that 
1
1

and
1
0

 are the 

only terms in F1 so that the result is true for n = 1.  Assume that the result is 
true for all natural number <n. 

Consider Fn.  Now Fn contains all terms of Fn−1 plus those fractions h/k such 
that gcd(h,n)=1,   

∴ By definition the number of extra terms is φ(n)  

∴ Total number of terms on Fn = the number of terms in Fn−1 + φ(n) 
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   = 1 + �
−

=

1n

1j
φ(j) + φ(n) 

   = 1 + �
=

n

1j
φ(j) 

(ii)   
�
�
�

�
�
�

�+=�
==

n

1ji

ir

1i
)j(�1

2
1

b
a

  

We know 
k
h ∈ Fn ⇔ �

�

�
�
�

� −
k
h

1 ∈ Fn 

 So, we write the terms 
i

i

b
a

(i = 1, 2,…,r) in a row  

r

r

3

3

2

2

1

1

b
a

,...,
b
a

,
b
a

,
b
a

 and 

1− 
r

r

2

2

1

1

b
a

1,...,
b
a

1,
b
a

−− , in the second row, we write 1−
i

i

b
a

 underneath 
i

i

b
a

 

As 
i

i

b
a

 runs over terms of Fn, 1−
i

i

b
a

 must also run over terms of Fn in the 

opposite order.  Now adding the two rows horizontally. 

 So if  S = �
=

r

1i i

i

b
a

 then 2S = r � S = r
2
1

 = 
�
�
�

�
�
�

�φ+
=

n

1j
)j(1

2

1
 

(iii) We know that the last term of function is 
1

1
 and the first term is 

1
0

 so that  

0
b
a

and1
b
a

1

1

r

r ==  

 Now 1 = ��
�

�
��
�

�
−+��

�

�
��
�

�
−=

−

−

−

−

−

−

2r

2r

1r

1r

1r

1r

r

r

r

r

b
a

b
a

b
a

b
a

b
a

 

   + ��
�

�
��
�

�

−
−

++��
�

�
��
�

�

−
−

−−

−−

12

12

3r2r

3r2r

bb
aa

...
bb
ba

+ 
1

1

b
a

      

 But we know that if 
©k
©h

,
k
h

 are consecutive terms with 
©k
©h

k
h < , then h′ 

k− hk′ = 1 

Let us calculate, 
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1ii

i1i1ii

1i

1i

i

i

bb
baba

b
a

b
a

−

−−

−

− −
=−  

   = =
−1iibb

1
(bi bi−1)−1 

Therefore, 1 = � +
−

=

−
+

1r

1j 1

11
1jj b

a
)bb(     

 �
	



�
�



= 0

b
a

1

1Θ  

     = �
−

=

1r

1j
(bj bj+1)−1 

Definition :- Let 
©k
©h

&
k
h

 be two consecutive Farey fractions of function such 

that 
©k
©h

k
h <  

Then 
©kk
©hh

+
+

 is called a mediant of order n.  

Note that g.c.d. (h + h′, k + k′) = 1 and (k + k′) ≥ n + 1 

so the mediant of order n does not belong to Fn.  

Further, we know 

  
©kk
©hh

k
h

+
+< <

©k
©h
 

The mediant 
n1
10

1n
1

+
+=

+
 lying between 

n
1

and
1
0

 is called the first mediant 

of order n and the mediant  

  
1
1

&
n

1n
betweenlying

1n
1)1n(

1n
n −

+
+−=

+
 

is called the last mediant of order n.  If we represent all Farey fractions of 
order n on the unit circle, the totally of all these points on the unit circle is 
called Farey Dissection of the unit circle of order n.  

Definition :- The arc of the unit circle bounded by mediant of order n of next 
mediant of order n is called a Farey arc of order n.  

Remark :- Let 
4

4

3

3

2

2

1

1

b
a

,
b
a

,
b
a

,
b
a

 be consecutive Farey fractions of order n. 
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Then   
3

3

32

32

2

2

21

21

1

1

b
a

bb
aa

b
a

bb
aa

b
a

<
+
+

<<
+
+

< < 
4

4

43

43

b
a

bb
aa

<
+
+

 

Then the Farey arc bounded by 
32

32

21

21

bb
aa

&
bb
aa

+
+

+
+

 contains a Farey fraction 

2

2

b
a

 and the Farey arc bounded by 
43

43

32

32

bb
aa

&
bb
aa

+
+

+
+

contains the Farey 

fraction 
3

3

b
a

and so on.  

Thus each Farey arc contains one & only one Farey fraction. 

The Farey arc bounded by the last mediant n/n+1 and the first mediant 1/n+1 

contains by convention the Farey fraction 
1
0

  

Theorem 1.17 Let x =
k
h ∈ Fn (n > 1) 

Let x be represented by the point Px on the unit circle.  Suppose Px lies on the 
Farey arc bounded by the points Pµ, Pµ′, where µ and µ′ are the mediants.  
Then the length of each of the arcs Pµ Px and Pµ′ Px lies between  

  
)1n(k

1
&

)1n2(k
1

+−
 

Proof :- We shall distinguish two cases  

Case I :-  x = 
1
1

or
1
0

 

Then x lies on the Farey are bounded by .
1n

1
&

1n
n

++
  and the length of  

Pµ Px =
1n

1
+

 = length of Px Pµ′ 

Case II  x ≠ 
1
0

 & x ≠ 
1
1

 

Then x = 
k
h

 is neither the first fraction nor the last fraction of Fn.  So ∃ Farey 

fractions 
2

2

1

1

k
h

&
k
h

 such that  

  
2

2

1

1

k
h

k
h

k
h

<<  
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Then 
k
h

 lies on the Farey arc bounded by  

  µ = 
2

2

1

1

kk
hh

and
kk
hh

+
+

+
+

 = µ′ 

Thus   PµPx = 
)kk(k

)hh(k)kk(h
kk
hh

k
h

1

11

1

1

+
+−+

=
+
+

−  

            = 
)kk(k

1
)kk(k

hkkh

11

11

+
=

+
−

 

Since 
k
h

&
k
h

1

1  are consecutive fraction of function with  

  
k
h

k
h

1

1 <  and k ≠ k. 

� maximum value of k + k1 is 2n−1 and (k + k1) ≥ n + 1 

� 
)1n2(k

1
−

 ≤ PµPx ≤ 
)1n(k

1
+

 

Similarly, 
)1n2(k

1
−

 ≤ Px Pµ′ ≤ 
)1n(k

1
+

. 

Remark :- We have already proved that given any real number α and an 
integer t ≥ 1, there exists integers x & y such that  

  | αx −y| < 
t
1

 & 0 < x ≤ t. 

Theorem 1.18 Given any real number α and an integer t ≥ 1, ∃ integers x & y 
such that 0 ≤ x < t and |αx −y| ≤ 1/t+1 

Proof :- Theorem is obvious if 
1t

1
+

≥ |αx−y| 

   = |(α+n)x − (nx+y)| 

So if theorem is true for α, the above expression shows that it is also true for 
all real number α + n, where n is any integer. 

So w.l.o.g. assume 0 < α < 1.  i.e., we shall consider only the fractional part of 
α if 0 < α < 1 is not satisfied.  Since t ≥ 1, we consider Farey series Ft.  For        
t = 1, theorem is obvious. 
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Now assume t > 1.  Since 0 < α < 1, there are two Farey fractions 
2

2

1

1

k
h

&
k
h

 

such that 
2

2

1

1

k
h

�
k
h

<< , and ∃ mediants µ such that either α ∈ 
1k
1hP Pµ or  

  α ∈ Pµ 
2k
2hP  

where   Pµ, 
1k
1hP , 

2k
2hP  

represent the points on the unit circle respectively 

 If α ∈
1k
1hP Pµ, then 

1k
1hP  Pµ ≤ 

)1t(k
1

1 +
 and 1 ≤ k1 ≤ t 

Since 
1

1

k
h

 is a Farey fraction of order t. 

Then  
)1t(k

1
k
h

�
11

1

+
≤−  

or  |α k1 − h1| ≤ 
1t

1
+

 

Similarly, if α ∈ Pµ

2k
2hP , we can show 

  | α k2 − h2| ≤ 
1t

1
+

 

Hence the theorem. 

Approximation of Irrational numbers by rationals. 

Pigeon hole Principle :- This principle states that if (n+1) objects are to be 
divided into n classes (may be empty) then at least one class will contain at 
least two objects 

Definition :- Let α be any real number.  Then we define  

  {α} = Fractional part of α 

          = α − [α] 

where [α] is greatest integer ≤ α .  Then by definition  

  0 ≤ {α} < 1  ∀ α 

Theorem 1.19 Let α be any given real number, then for every integer t > 0, 
there exists integer x, y such that  
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  |αx−y| < 
t
1

 and 0 < x ≤ t 

Proof :- Take the interval [0, 1). Divide this interval into t subintervals i.e.  

 �
�



�
�



�
�

�−
�
�

�
�
�



�
�

� .1,
t

1t
...

t
2

,
t
1

,
t
1

,0   All these subintervals are mutually 

disjoint.  

Consider the real numbers,  

  {0 ⋅α}, {1, α},… {t⋅α}    …(∗) 

 These are (t +1) real numbers and we have only t sub-intervals.  So at 
least one sub-interval consists at least two of (t + 1) real nos given in (∗) 

 So there exists two distinct integers i & j such that 

  |{j ⋅α} − {i ⋅ α}| < 1/t and  0 ≤ i < j ≤ t 

Now by definition {j ⋅α} = j α −y1 for some integer y1 and {i ⋅ α} = iα − y2 
for some integer y2 

∴  
t
1

>|{j ⋅ α} − {i ⋅ α}| = |(j α−y1) − (iα−y2)| 

   = |(j − i)α − (y1 − y2)| 

Set x = j − i and y = y1−y2  Since 0 ≤ i < j ≤ t, so 0 < j −i ≤ t i.e. 0 < x ≤ t 

and 

  |αx −y| < 1/t 

Remark :- Given real α and integer t > 0, we can find integers x & y such that 

  |αx−y| < 1/t,     g.c.d. (x, y) = 1 & 0 < x ≤ t 

Proof :- By the theorem, we can find integers x1 & y1 such that  

  |α x1 −y1| < 
t
1

 and 0 < x1 ≤ t 

If g c d (x1, y1) = 1, we are through, so let  gcd (x1, y1) = d > 1 and  let  x1 = dx 
& y1 = dy 

Then   gcd (x, y) = 1 
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Now  |αx−y| = 
dt
1

|yx�|
d
1

11 <− < 1/t. 

Combining above theorem with remarks, we have  

Theorem 1.20 Let α be any given real number and t > 0 be any given integer.  
Then there exists integers x and y such that gcd (x, y) = 1, 0 < x ≤ t and  

  |αx−y| < 1/t 

Corollary :- Given any ∈>0, however small, there exists integers x  and y 
such that x > 0 

and   
x
y

� − < ∈ 

(i.e. real number s are dense in rationals) 

Proof :- Since ∈ > 0 is given choose an integer t such that t > 1/∈ Now there 
exists integers x & y,   x > 0 such that  

 

  |αx − y| < 1/t < ∈ 

�  
x
y

� − < ∈/x < ∈ 

Theorem 1.21 Given α > 0, there exists integers x and y such that  

  
x
y

� − < 
2x

1
 & gcd (x, y) = 1 

Proof :- We know that we can find integers x and y such that gcd(x, y) = 1, 0 
< x ≤ t (where t > 0 is any integer) and 

  |αx−y| < 1/t 

Then  
x
y

� − < 
tx
1

 ≤ 
2x

1
 since x ≤ t 

Theorem 1.22 Let α be any rational number then ∃ only a finite number of 
pairs of integers (x, y) such that    

x > 0, gcd(x, y) = 1. 

and              
x
y

� −  < 1/x2 

Proof :- Since α is rational, let α = h/k where k > 0 & gcd (h, k) = 1 then  



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES 25

0 = |αk−h | < 1/x2 

Thus there exists at least one pair (h, k) satisfying the given condition. 

Let   
x
y

� − < 1/x2 such that x > 0 & (x, y) = 1   

  …(1) 

Then   |αx−y| < 1/x 

�  αx −
x
1

< y < αx + 1/x 

Here y lies in an interval of length 
x
2 ≤ 2, and so given x, y can take at most 3 

values. 

Further, setting α = 
k
h

 in (1) we get 

  
kx

|kyhx|
x
y

k
h

x

1
2

−=−>  

If hx − ky ≠ 0, then |hx − ky| ≥ 1 

∴  
kx
1

x

1
2

>  � k > x 

Also,  x > 0 

�  0 < x < k 

and so x can take at most (k−1) values. 

 Thus the pair (x, y) can take at most 3(k−1) values  

Theorem 1.23 Let α be any irrational number. Then ∃ infinitely many pairs 
(x, y) satisfying  

  
x
y

� − <
2x

1
, x > 0 and gcd (x, y) = 1  …(1) 

Proof :- We know that there exists at least one pair (x, y) satisfying (1) 

If possible, let there be only a finite number of pairs (x, y) satisfying (1) Let 
these pairs be  

 (x1, y1), (x2, y2),…,(xr, yr) 

Let  ∈i > |αxi − yi|           (i = 1, 2,… ,r)  
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Then each ∈i > 0 since α is irrational.  Let ∈ < min (∈1, ∈2…∈r). Take t > 
1/∈.  Then there exists integers x, y such that  

  0 < x ≤ t, gcd (x, y) = 1 & |αx−y| < 1/t < ∈ 

Also  
x
y

� − < 
2x

1
tx
1 <     (Θ 0 < x ≤ t) 

∴ This pair (x, y) also satisfies (1)  But |αx − y| < ∈ and so this pair (x, y) ≠ 
(xi, yi) for any i which is a contradiction  

 Combining all these results we get the following theorem    

Theorem 1.24 Let α be any given real number then  

(1) Given integer t > 0, there exists a pair of integers (x, y) such that 0 < x ≤ t, 
gcd(x, y) = 1 and  

  |αx −y| ≤ 1/t 

(2) Let α be any given real no. then ∃ pairs (x, y) such that x > 0, gcd (x, y) = 

1 & 
x
y

� −  < 1/x2.  Further  the number of above pairs is finite if α i rational 

and the number of pairs is infinite if α is irrational.  

Hurwitz’s Theorem  

Theorem 1.25  Given any irrational number ξ, there exist infinitely many 
pairs (h, k) of integers such that  

  
2k5

1
k
h

� <−      …(I) 

Proof :- Since 
2k5

1
k
h

� <− ,  ⇔ 
2k5

1
k

hnk
)n�( <�

�

�
�
�

� +−+  

So w.l.o.g. we assume that 0 ≤ ξ < 1.  Further ξ is irrational, so ξ ≠ 0, so we 
assume 0 < ξ < 1 

Let n∈N.  Consider Farey series of order n. 

Since ξ is irrational, ∃ two consecutive Farey fraction 
d
c

&
b
a

 of order n such 

that  

  
d
c

�
b
a <<  

Then either ξ < 
db
ca

+
+
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or  ξ > 
db
ca

+
+

 

First we shall prove that in either case at least one fraction out of a/b, 
d
c

 & 

cb
ca

+
+

 satisfy (1) 

 Suppose none of these fraction satisfy (1).  Now to prove Hurtwitz 
theorem, we first prove a Lemma.  

Lemma :- If x and y are positive integers then the following two inequalities  

  �
�

�

�

�
�

�

�
+≥

22 y

1

x

1
5

1
xy
1

     …(2)  

and   �
�

�

�

�
�

�

�

+
+≥

+ 22 )yx(

1

x

1
5

1
)yx(x

1
   …(3)  

can not hold simultaneously.  

Proof of Lemma :- If possible, let both the inequalities (2) and (3) hold. 

Then, we get 

  5  xy ≥ x2 +y2     …(4) 

and  5  x(x +y) ≥ x2 +(x +y)2    …(5) 

Adding (4) and (5) we get 

  5 (x2 +2xy) ≥ 3x2 + 2y2 + 2xy 

or  (3− 5 ) x2 + 2y2 −2(−1 + 5 ) xy ≤ 0 

Multiplying by 2, we get 

  (6−2 5 ) x2 + 4y2 −4( 5 −1)xy ≤ 0 

�  (( 5 −1) x−2y)2 ≤ 0 

But a square quantity can not be less than zero i.e. 

�  (( 5 −1)x −2y)2  = 0 
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�  ( 5 −1)x −2y =0 

�  5  is a rational number which is not so. Thus (2) and (3) can 
not hold simultaneously.  Hence the lemma. 

Now to prove the theorem, we shall distinguish two cases  

Case I   ξ < 
db
ca

+
+

 

Then we get 
2b5

1
b
a

� ≥−  

But   
2b5

1
b
a

�
b
a

��
b
a ≥−=−�<    …(6) 

Also  ξ <
2)db(5

1

db

ca

db

ca

db

ca

+
≥ξ−

+
+

=
+
+

−ξ�
+
+

 …(7) 

and  ξ < 
2d5

1
�

d
c

d
c

�
d
c ≥−=−�    …(8) 

Adding (6) and (8) we get 

  
bd
1

bd
adbc

b
a

d
c

d

1

b

1

5

1
22

=−=−≤�
�

�
�
�

� +   …(9) 

    (Θ 
d
c

&
b
a

are consecutive 

Farey fractions) 

Adding (6) and (7) we get 

  
)db(b

)db(a)ca(b

b

a

db

ca

)db(

1

b

1

5

1
22 +

+−+
=

+
+

≤��
�

�
�
�
�

�

+
+  

   = 
)db(b

1

)db(b

adbc

+
=

+
−

    …(10) 

But we have already proved that not both of the inequalities  

  �
�

�

�

�
�

�

�
+≥

22 y

1

x

1
5

1
xy
1

. 

and  �
�

�

�

�
�

�

�

+
+≥

+ 22 )yx(

1

x

1
5

1
)yx(x

1
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can hold simultaneously.  So (9) and (10) violate the above Lemma and so in 

this case at least  one of 
db
ca

,
d
c

,
b
a

+
+

 must satisfy (1) 

Case II 
db
ca

+
+  <     ξ 

Since 
d
c

�
b
a << .  So (6), (8) and (9) also holds in this case 

However  <
+
+

db
ca

 ξ, so  

  
2)db(5

1
db
ca

�
db
ca

�
+

≥
+
+−=

+
+−    …(11)  

Adding (8) and (11) we get 

  
db
ca

d
c

)db(

1

d

1
5

1
22 +

+−≤�
�

�

�

�
�

�

�

+
+  

   = 
)db(d

adbc
)db(d

)ca(d)db(c
+

−=
+

+−+
 

   = 
)db(d

1
+

     …(12) 

 Now (9) and (12) violate the condition of the Lemma, so at least one 

of 
db
ca

,
d
c

,
b
a

+
+

 must satisfy (1) in this case also. 

Thus ∃ at least one fraction 
k
h

 satisfying (1) and 
k
h

 is either equal to 

db
ca

or
d
c

or
b
a

+
+

 

Since ,
d
c

�
b
a <<  so 

  �
�

�
�
�

� −
+
++�

�

�
�
�

�

+
+−=−<−

b
a

db
ca

db
ca

d
c

b
a

d
c

k
h

�  

   = 
)db(b

1
)db(d

1
b
a

db
ca

db
ca

d
c

+
+

+
=−

+
++

+
+−  

But (b + d) ≥ n +1, since 
d
c

&
b
a

 are consecutive Farey fractions. 
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∴  
1n

2
)1n(b

1
)1n(d

1
k
h

�
+

≤
+

+
+

≤−    (Θ b ≥ 1, d ≥ 1) 

Now to establish that (1) is satisfied by infinitely many rationals 
k
h

, suppose 

there are only a finite number of 
k
h

 satisfying (1) 

Let  ε = min
k
h

� − ,  where minimum ranges over the finitely many 

rational numbers satisfying (1).  Since ξ is irrational this minimum must be 
bigger than zero, i.e. ε > 0.  Choose a rational number n such that  

  (n+1) > 
�

2
. 

For this number n, as shown above ∃ a rational number 
1

1

k
h

 satisfying (1) such 

that  

  
1n

2
k
h

�
1

1

+
≤− < ε 

and so 
1

1

k
h

 must be different from the finitely many rational number 

considered above, which is a contradiction and so there must exist infinitely 
many rational number h/k satisfying (1) 

 This proves Hurwitz’s theorem. 

Theorem 1.26 Prove that 5  occurring in the statement of Hurwitz’s theorem 
is best possible in the sense that if 5  is replaced by any larger real number 
say m then ∃ an irrational number ξ such that  

  
2km

1
k
h

� <−         …(1) 

does not hold for infinitely many rational number h/k. 

Proof :- Take ξ = 
2

51+
 

then ξ > 1 and 5�
2

51
� −=−=  



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES 31

We shall prove that if m is any real number with ξ = 
2

51+
 and (1) is 

satisfied by infinitely many rational numbers ,
k
h

 the m ≤ 5  

So we assume that (1) is satisfied by infinitely many rational numbers 
k
h

 

Now (x−ξ) (x− � ) = (x−ξ) (x−ξ+ 5 ) = x2−x −1   …(2) 

Now for all integers h, k,       k > 0 

  
22

2

k

1
1

k
h

k

h
5�

k
h

.�
k
h ≥−−=+−−  | h2 −hk−k2| 

Now, since any rational number h/k is not a root of x2−x−1 = 0 so |h2 − hk −k2| 
≥ 1 

∴  
2k

1
5�

k
h

�
k
h ≥+−−     …(3) 

Since ∃ infinitely many rational numbers 
k
h

 satisfying (1), ∃ sequence 

�
�
�

�
�
�

= ,...3,2,1i,
k

h

i

i  

of rational numbers satisfying (1) 

Then   
2
ii

i

km

1
�

k
h <−  

or  |hi − ξ ki| < 
ikm

1
  

But we know 

  |x−a| < ε  � a − ε<x < a + ε 

∴  ξ ki −
imk

1
< hi < ξ ki +

ikm
1

 

Then for each value of ki, there exists a finite number of hi’s 

Since (1) is satisfied by all s©
k
h

i

i ,   so  ki →∞ as i→∞. 

Further  5�
k
h

�
k
h

k

1

i

i

i

i
2
i

+−−≤  
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         ≤ 5
k

h

k

h

i

i

i

i +ξ−ξ−  

         ≤ 
�
�

�

�

�
�

�

�
+ 5

mk

1

km

1
2
i

2
i

    

 (Θ
i

i

k
h

 satisfy (1)) 

Multiply by mki
2 

�  m ≤ 5
mk

1
2
i

+    � m ≤ 5 , for all i large enough. 

Theorem 1.27               e is irrational 

Proof :- By definition  

  e = 1 +
3|

1
2|

1
1|

1 ++ +….. 

If possible let e be rational and let e = ,
b
a

 b > 0 ad g.c.d. (a, b) = 1.  Now 

consider  
�
�
	




�
�
�




�
�

�

�

�
�

�

�
++++−

b|

1
...

2|

1
1
1

1eb| = α 

then α is an integer since,  e = a/b is rational  

Also by definition of e, α > 0. 

  α = 
�
�
	




�
�
�



+

+
+

+
.....

2b|

1
1b|

1
b|   

   = ...
)2b)(1b(

1

1b

1
+

++
+

+
  

      < 
2)1b(

1
1b

1

+
+

+
 

      = 1
b

1

1b

1
1

)1b(1
<=

+
−

+
     [Θ b ≥ 1] 

Thus 0 < α < 1 is a contradiction since no integer lies between 0 and 1, so e is 
irrational.  
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Theorem 1.28  π is irrational  

Let us first prove the following lemma  

Lemma :- Let f(x) = 
n|

)x1(x nn −
 

then f(0), f(1) and f(i)(0), f(i)(1) are all integers for all i ≥ 0.  Also 0 < f(x) < 
n|1  whenever x∈(0, 1). 

Proof of Lemma :- Clearly f(0) = f(1) = 0 (By definition of f(x)) 

We can rewrite f(x) as  

  f(x) = �
�

�
�
�

�
�
=

n2

ni

i
i xc

n|

1
 

Let i ≥ 1.  Now in f(i)(x), for i < n, we do not have any constant degree term 
and so  

  f(i)(0) = 0 for i < n 

Further f(x) is of degree 2n, so 

  f(i)(x) = 0 for i > 2n 

So let   n ≤ i ≤ 2n 

Then   f(i)(0) = 
n|

i|n2

ni
�
=

ci 

which is an integer since n ≤ i ≤ 2n 

∴ f(i)(0) is an integer for all integers i ≥ 0 

Also by definition,  f(x) = f(1−x)      
   

∴ f(i)(1 is also an integer ∀ i ≥ 0. 

Proof of Theorem :- To prove the theorem, it is enough to prove that π2 is 
irrational for if π2 is irrational then π can not be rational.  If possible, let π2 = 

b
a

 where g.c.d. (a, b) = 1, b > 0 

Define a function  

G(x) = bn{π2n  f(x) − π2n−2 f′′(x) + π2n−4 f(IV)(x) +…+  (−1)n f(2n)(x)} 
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Then by lemma fm(0) & fm(1) are integers ∀ m ≥ 0, so G(0) and G(1) are 
integers.  Now consider 

 
dx
d

(G′(x) sin π x−π G(x) cos πx) 

 = G′′(x) sin πx + π G′(x) cos πx, − πG′(x) cos π x + π2 G(x) sin πx 

 = (G′′(x) + π2 G(x)) sin πx     …(1) 

Now   

       G′′(x) = bn {π2n f′′(x) −π2n−2 f(IV)(x) + π2n−4 f(VI)(x) +…+ (−1)n f(2n+2)(x)) 

Also 

π2G(x) = bn{π2n+2 f(x) −π2n f′′(x) + π2n−2 f(IV)(x) +…+(−1)n π2 f(2n)(x)} 

Adding we get 

  G′′(x) + π2 G(x) = bn {π2n+2 f(x) + (−1)n f(2n+2)(x)} 

But f(x) is of degree 2n, so f(2n+2)(x) = 0 and so  

  GII(x) + π2G(x) = π2n+2 bn f(x)    …(2) 

But   π2 = 
b
a

 

�  π2n+2 bn = an π2      …(3) 

∴ From (1), (2) and (3) we get  

  
dx
d

(G′(x) sin πx − π G(x) cos π x) 

   = an π2 f(x) sin πx 

∴  anπ2 �
1

0
)x(f sin πx dx 

   = [G′(x) sin πx − πG(x) cos πx 1
0]   

              = πG(1) cos π + π G(0) cos 0 

   = −π (G(0) + G(1)) 

∴  G(0) + G(1) = πan
�
1

0
)x(f sin πx dx   …(4) 

Now 
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 sin πx is positive in (0, 1) and 0 < f(x) < n|1  in (0, 1) 

 So by First mean value theorem of integral calculus, we have  

  0 < anπ �
1

0
)x(f  sin πx < �

1

0

n
�sin

n|

�a
x dx 

   =
n|

a n
[− cos π x 1

0]  

   = 2
n|

a n
< 1 

for n large enough since �
∞

=0n n|

a n
 converges to ea and to its nth term must tend 

to zero.  But L.H.S. of (4) is an integer and so we get contradiction. ∴ π2 must 
be irrational. 

Fibonacci Sequence 

Definition :-    A sequence in which first two terms are unity and then each 
term is the sum of the two that immediately precede it, is called Fibonacci 
sequence.  Mathematically, this sequence can be formulated as 

  u1 = u2 = 1 ; un = un−1 + un−2  for ≥ 3.  Some initial terms of this 
sequence are  

  1, 1, 2, 3, 5, 8, 13, 21,……………….  

Lucas Sequence 

Definition :- A sequence in which first two terms are 1 and 3 respectively 
and then each term is the sum of the two that immediately precede it, is called 
Lucas sequence. Mathematically, this sequence may be formulated as : 

  L1 = 1, L2 = 3, Ln = Ln−1 + Ln−2 for n ≥ 3  

i.e. Lucus sequence is, 

  1, 3, 4, 7, 11, 18, 29, 47,……….. 

Note 1. Fibonacci numbers are sometimes denoted by Fn instead of un etc. 

Note 2. Some authors use the term Fibonacci series and Lucas series in place 
of Fibonacci sequence and Lucas sequence.  One should not get confused in 
two.  

Some identities on Fibonacci and Lucas sequences :-  

(I) u1 + u3 + u5 +… + u2n−1 = u2n 

(II) u2 + u4 + u6 +…+ u2n = u2n+1−1 
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(III) L1 + L2 + L3 +…+ Ln = Ln+2 −3, n ≥ 1 

(IV) L1 + L3 + L5 +…+ L2n−1 = L2n − 2, n ≥ 1 

(V) L2 + L4  +  L6 +…+ L2n = L2n+1 −1, n ≥ 1 

(VI) Ln = un+1 + un−1 = un + 2un−1, n ≥ 2 

(VII) Ln = un+2 − un−2, n ≥ 3 

Proof :- (1) We have 

  u1 = u2    (both are 1) 

Also,  u3 = u4−u2   (Θ u4 = u3 + u2) 

Similarly, u5 = u6 − u4 

  u7 = u8 − u6 

  …………… 

  …………… 

  u2n−3 = u2n−2 − u2n−4  

  u2n−1 = u2n − u2n−2 

Adding all these equations, we get 

  u1 + u3 + u5 +…+ u2n−1 = u2n (all other terms cancel) 

(II) We have  

  u2 = u2 

Also,  u4 = u5 − u3   (Θ u5 = u4 + u3) 

Similarly, u6 = u7 − u5 

  u8 = u9 − u7 

  ………….. 

  ………….. 

  u2n−2 = u2n−1 − u2n−3 

  u2n = u2n+1 − u2n−1 

Adding all these equation, we get 
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  u2 + u4 + u6 +…+  u2n = u2+ u3 + u2n+1 

�  u2 + u4 + u6 +…+  u2n = 1 −2 + u2n+1 

     = u2n+1 −1. 

(III) We shall prove the result by induction on n.  For n = 1,  

  L.H.S. = L1 = 1 

and  R.H.S. = L3 −3 = 4−3 = 1 

Thus, the identity holds for n = 1. 

Let us assume that, the identity holds for n = k i.e.  

  L1 + L2 +…+ Lk = Lk+2 −3    …(∗) 

Now for n = k + 1, we have 

  L1 + L2 +…+ Lk + Lk+1 = Lk+2−3 + Lk+1  [By (∗)]  

or  L1 + L2 +…+ Lk + Lk+1 = Lk+3−3 

or  L1 + L2 +…+ Lk + Lk+1 = L(k+1)+2−3 

Thus, the identity holds for n = k + 1.  Hence by Principle of mathematical 
induction, the identity holds for all natural numbers n.  

(IV) We have 

  L1 = L1  

Also,  L3 = L4 − L2     (Θ L4 = L3 + L2) 

Similarly, L5 = L6 − L4 

  L7 = L8 − L6 

  …………… 

  …………… 

  L2n−3 = L2n−2 − L2n−4 

  L2n−1 = L2n − L2n−2 

Adding all these equations we get  

  L1 + L3 + L5 +…+ L2n−1 = L1 − L2 + L2n 

         = 1 − 3 + L2n 
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         = L2n −2 

(V) We have L2 = L2 

Also,  L4 = L5 − L3    (Θ L5 = L4 + L3) 

Similarly, L6 = L7 − L5 

  L8 = L9 − L7 

  …………… 

  L2n−2 = L2n−1 − L2n−3 

  L2n = L2n+1 − L2n−1 

Adding all these equations, we get 

  L2 + L4 +…+ L2n = L2 − L3 + L2n+1 

         = 3−4 + L2n+1 = L2n+1 −1. 

(VI) we shall prove the identity by induction on n. 

For n = 2,  L. H. S. = L2 = 3 

and  R. H. S. = u3 + u1 = 2+1 = 3 

Thus, the identity holds for n = 2 

Let us assume that the identity holds for all natural numbers k < n  

i.e.  Lk = uk+1 + uk−1 ∀ k < n 

Now consider,  

  Ln = Ln−1 + Ln−2    (by definition) 

       = (un + un−2) + (un−1 + un−3) 

    (by induction hypothesis for n − 1 and n −2) 

�  Ln = (un + un−1) + (un−2 + un−3) 

       = un+1 + un−1 = (un + un−1) + un−1 = un + 2 un−1 
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Hence the identity is established. 

(VII) We shall prove the identity by induction on n. 

For n = 3, L. H. S. = L3 = 4 

 R. H. S. = u5 − u1 = 5−1 = 4 

Thus, the identity holds for n = 3 

Let us assume, that the identity holds for all natural numbers k < n. 

i.e. Lk = uk+2 − uk−2 ∀ k < n 

Now, consider,  

  Ln = Ln−1 + Ln−2 = (un+1 − un−3) + (un − un−4) 

    (by induction hypothesis, for n − 1, n − 2) 

       = (un+1 + un) − (un−3 + un−4) 

       = un+2 − un − 2 

     Hence the identity is established.  

Theorem 1.29.  Prove that for the Fibonacci sequence,  

  gcd (un, un+1) = 1 for every n ≥ 1 

Proof :- Let, if possible, gcd (un, un+1) = d > 1 

�  d | un, d | un+1  � d | (un+1 − un) 

            � d | un−1 

Again, d | un, d | un−1  � d | (un − un−1) 

          � d | un−2 

Continuing like this, we can show that  

  d | un−3, d | un−4,… and finally d | u1 

But u1 = 1 which is certainly not divisible by any d > 1. 
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Thus d = 1 and the proof is completed.  

Lemma :- Prove that  

  um+n = um−1 un + um un+1     
  …(1) 

Proof :- For fixed m, we shall prove the result (1) by induction on n.  

For n = 1, (1) becomes, um+1 = um−1 u1 + um u2 

             = um−1 + um     (Θ u1 = u2 = 1) 

which is true by definition and the result is true for n = 1.  Let us assume that 
result is true for n = 1, 2,…, k and now we shall prove it for n = k + 1. 

By induction hypothesis, we have  

  um+k = um−1 uk + um uk+1 

and  um +(k−1) = um−1 uk−1 + um uk 

Adding these two, we get. 

  um+k + um + (k−1) = um−1 (uk + uk−1) + um (uk+1 + uk) 

         = um−1 uk+1 + um uk+2 

So that the result holds for n = k + 1 

Hence by induction principle the result is true for all the integers n.  Now by 
changing m and by the above discussion, we conclude that the result (1) holds 
for all positive integers m and n. 

Remark 1. If b | c, then gcd (a +c, b) = gcd (a, b) 

Remark 2. If gcd (a, c) = 1, then gcd (a, b c) = gcd (a, b) 

Theorem 1.30   Prove that for m ≥ 1, n ≥ 1, umn is divisible by um. 

Proof :- We shall prove the result by induction on n.  The result is trivial for n 
= 1.  Let us assume, that the result is true for n = 1, 2,…, k i.e. umn is divisible 
by um for         n = 1, 2,…k.  Now we shall prove that um(k+1) is divisible by um. 

We have, 

  um (k+1) = umk+m = umk−1 um + umk um+1   …(1) 

Now, by induction hypothesis, umk is divisible by um, so that R.H.S. of (1) and 
hence L.H.S. of (1) is divisible by um i.e. um(k+1) is divisible by um.  The proof 
is thus completed using principle of mathematical induction.  

Lemma :- If m = qn+r, then prove that  

  gcd (um, un) = gcd (ur, un) 

Proof :- We have  

  gcd(um, un) = gcd (uqn+r, un) 
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          = gcd(uqn−1 ur + uqn ur+1, un)   
  …(1) 

Now by above theorem un | uqn  � un | uqn ur+1, 

so that by remark 1 stated above, we have  

  gcd(uqn−1 ur + uqn ur+1, un) = gcd(uqn−1 ur, un) 

So that (1) becomes : 

  gcd (um, un) = gcd (uqn−1 ur, un)    
  …(2) 

Now, we claim that,  

  gcd(uqn−1, un) =1. 

Let gcd (uqn−1, un) = d  � d | uqn−1 and d | un 

Now, d | un and un | uqn  � d | uqn i.e. d is a common divisor of two successive 
Fibonacci numbers namely, uqn and uqn−1 but successive Fibonacci number are 
coprime. So d = 1, the claim is thus completed.  Hence using remark (2) stated 
above, we have 

  gcd(uqn−1 ur, un) = gcd (ur, un) 

So that (2) becomes : 

  gcd(um, un) = gcd (ur, un) and proof is completed.  

Theorem 1.31 The greatest common divisor of two Fibonacci numbers is 
again a Fibonacci number.  More specifically,  

  gcd(um, un) = ud where d = gcd(m, n) 

Proof :- W.L.O.G let us assume that m ≥ n.  Applying the division algorithm 
to m and n, we get the following system of equations.  

  m = q1n + r1  0 < r1 < n   

  n = q2 r1 + r2  0 < r2 < r1 

  r1 = q3 r2 + r3  0 < r3 < r2 

  …………….  ………… 

  …………….  ………… 

  rn−2 = qn rn−1 + rn 0 < rn < rn−1 

  rn−1 = qn+1 rn + 0  
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Now, by above lemma, we have  

 gcd(um, un) = gcd )u,ugcd()u,u(
2r1rn1r

=  

 …, = gcd )u,u(
nr1nr −    …(1) 

Now from the last equation of above system, we have  

  rn | rn−1 i.e. rn−1 is an integral multiple of rn and hence
1nr

u −  is 

divisible by 
nr

u  (we have proved the theorem that umn is divisible by um ∀ m 

≥ 1, n ≥ 1) 

Hence gcd )u,u(
nr1nr −  = 

nr
u  

So that (1) implies that gcd(um, un) = 
nr

u     …(2) 

But it should be noted that in above system of equations rn is the last non zero 
remainder in the division algorithm for m and n so that  

  gcd(m, n) = rn 

Hence (2) provides that gcd(um, un) = ugcd(m, n) 

This completes the proof. 

Corollary (1) :- Prove that if gcd(m, n) = 1, then gcd (um, un) = 1 

Proof :- Taking d = 1 in the above theorem and noting that  

  u1 = 1, we get the result.    

Corollary (2) :- In the Fibonacci sequence, um | un if and only if m | n. 

Proof :- Firstly, let m | n, then n = mk for any integers k.  But we know that 
um | umk   � um | un. 

Conversely, let um | un then gcd(um, un) = um.  But by above theorem, gcd(um, 
un) = ugcd(m, n) 

� gcd(m, n) = m � m | n. 

Theorem 1.32 Prove that every positive integer can be represented as a finite 
sum of Fibonacci numbers, none used more than once.  Or Prove that every 
positive integer can be written as a sum of distinct Fibonacci numbers. 

Proof :- Clearly, we have  

  1 = u1 ; 2 = u3 ; 3 = 1 + 2 = u1 + u3 etc. 
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To prove the result for every natural number, we shall show that each of the 
integers 1, 2, 3,…, un −1 is a sum of numbers from the set {u1, u2,…, un−2} and 
we shall prove this by induction on n.  

 Let us assume that the result holds for n = k i.e. each of the integers 1, 
2, 3,…, uk−1 is a sum of numbers from the set {u1, u2… uk−2} Now choose N 
such that  

  uk−1 < N < uk+1 

From this, we have N − uk−1 < uk+1 − uk−1 = uk 

� N − uk−1 < uk 

� N − uk−1 ≤ uk −1 

So by induction hypothesis N − uk−1 is representable as a sum of distinct 
numbers from the set  {u1, u2,…, uk−2}.  This implies that N is representable as 
a sum of distinct numbers from the set   {u1, u2,…, uk−2}.  This implies that N 
is representable as a sum of distinct numbers from the set  {u1, u2,…, uk−2, 
uk−1}.  Consequently each of the integers 1, 2, 3,… uk+1 −1 can be expressed 
as a sum of numbers from the set {u1, u2, …, uk−2, uk−1}.  This completes the 
induction step and hence the theorem. 

System of Linear Congruences 

Definition :- Let m be a fixed positive integer.  Two integers a and b are said 
to be congruent modulo m denoted by a ≡ b (mod m) if m divides a−b i.e. a − 
b = km for some integer k. 

Theorem 1.33 Let a, b, c, d, m be integers (m > 0), then  

(i) If a ≡ b (mod m), b ≡ c(mod m), then a ≡ c(mod m) 

(ii) If a ≡ b (mod m), c ≡ d(mod m), then a + c ≡ b + d (mod m) 

(iii) If a ≡ b (mod m), c ≡ d(mod m), then ac ≡ bd (mod m) 

(iv) If a ≡ b(mod m), d | m (d > 0), then a ≡ b (mod d) 

(v) If a ≡ b(mod m), then ac ≡ bc(mod cm), c > 0 

Proof :- (i) Given that a ≡ b(mod m)  � m | (a−b) 

   b ≡ c (mod m)  � m | (b−c) 

�  m | [(a−b) + (b−c)]  � m | (a−c) 

         � a ≡ c(mod m) 

(ii)  a ≡ b(mod m)  � m | (a−b) 

  c ≡ d(mod m)  � m | (c − d) 

�  m | [(a−b) + (c−d)]  � m | [(a+c) − (b+d)] 
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� (a + c) ≡ (b + d) (mod m) 

(iii)  a ≡ b (mod m)  � m | (a−b) 

 c ≡ d(mod m)  � m | (c-d) 

� a − b = mk and c−d = mk′ for some integers k, k′  

� a = b + mk and c = d + mk′ 

Multiplying these two, 

  ac = bd + bm k1 + dmk + m2 kk′ 

� ac = bd + m(bk′ + dk + mkk′) 

� ac − bd = mk′′ where k′′ = bk′ + dk + mkk′ is an integer. 

� m | (ac − bd) 

� ac ≡ bd(mod m) 

(iv) a ≡ b(mod m)  � m | (a−b) 

Also d | m and m | (a−b)  � d | (a−b) 

Hence a ≡ b(mod d) 

(v)  a ≡ b(mod m) 

� m | (a−b)  � mc | (a−b) c  � mc | (ac−bc) 

� ac ≡ bc(mod mc) 

Theorem 1.34 Let f(x) be a polynomial with integral coefficients and a ≡ b 
(mod m), then  

f(a) ≡ f(b) (mod m) 

Proof :- Let f(x) = a0 xn + a1 xn−1 +…+ anx,  where a0, a1,…, an are integers. 

Since  a ≡ b(mod m), so we must have    …(1) 

 

  a2 ≡ b2(mod m)     …(2) 

  a3 ≡ b3(mod m)     …(3) 

  ……………… 

  ……………… 

  an ≡ bn(mod m)     

 …(n) 

Multiplying equation (1) by an−1, (2) by an−2,…, (n) by a0 we get 

  an−1 a ≡ an−1 b(mod m) 

  an−2 a2 ≡ an−2 b2(mod m) 
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  an−3 a3 ≡ an−3 b3(mod m)    …(∗) 

  ……………………….. 

  ……………………….. 

  a0 an ≡ a0 bn (mod m)   

Also, we know that  

  an ≡ an(mod m) 

Adding this with all the congruences in (∗), we get 

  an + an−1 a +…+ a0 an ≡ an + an−1 b +…+ a0 bn (mod m) 

� f(a) ≡ f(b) (mod m) 

Theorem 1.35 Prove that  

(i)  ax ≡ ay(mod m)     ⇔ x ≡ y mod ��
�

�
��
�

�

)m,agcd(

m
   

(ii) If ax ≡ ay(mod m) and (a, m) = 1 then x ≡ y (mod m) 

(iii)  x ≡ y (mod mi) for i = 1, 2,…, r iff,  x ≡ y(mod [m1, m2,…, mr]) 

where [m1, m2,…, mr] denotes the λ cm of m1, m2,…, mr. 

Proof :- (i) Given that, ax ≡ ay (mod m)  � m | (ax−ay) 

� ax − ay = mz for some integer z 

� z
)m,agcd(

m
)yx(

)m,agcd(

a
=−  

So that, we get that  

  )yx(
)m,agcd(

a

)m,agcd(

m
−     …(1) 

But we know that, gcd ��
�

�
��
�

�

)m,agcd(

m
,

)m,agcd(

a
 = 1 

∴ (1) implies that, 

  )yx(
)m,agcd(

m
−     (Using the result that if a | bc and 

(a, b) = 1 then a | c) 

�  x ≡ y mod ��
�

�
��
�

�

)m,agcd(

m
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Conversely, let x ≡ y ��
�

�
��
�

�

)m,agcd(

m
mod  

� )yx(
)m,agcd(

m
−  

� m | gcd(a, m) (x−y) 

� m | a(x−y)   (Θ gcd(a, m) | a) 

� ax ≡ ay(mod m) 

(ii) This is a special case of part (i), by taking gcd(a, m) = 1, we get the result 

(iii) Let x ≡ y(mod mi) for i = 1, 2,…, r 

� mi | (x−y) for i = 1, 2,…, r 

i.e., x−y is a common multiple of m1, m2,…, mr but [m1, m2,…, mr] is least 
common multiple of m1, m2,.., mr so by definition of λcm, [m1, m2,…, mr] is a 
divisor of (x−y) 

i.e.  x ≡ y(mod [m1, m2,…, mr]) 

Conversely, let x ≡ y (mod [m1, m2,…, mr]) 

Now mi | [m1, m2,…, mr] 

So  x ≡ y(mod mi)   

This completes the proof. 

Definition :- (Complete Residue System) 

 A set {a1, a2,…, am} of integers is said to be complete residue system 
mod m if  

(i) ai ≡/  aj(mod m) for i ≠ j 

(ii) For each integer n, there exists a unique ai such that n ≡ ai (mod m) 

For example,  

 The set {1, 2,…, m−1, m} is a complete residue system mod m. 

Definition :- (Reduced Residue System)  

 A set {b1, b2,…, bk} of integers is said to be reduced residue system 
mod m if  

(i) (bi, m) = 1, i = 1, 2, …, k 

(ii) bi ≡/  bj (mod m) for i ≠ j 

(iii) If n is any integer which is coprime to m, then there exists a unique bi 
such that                            n ≡ bi(mod m) 



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES 47

Remark :- It is clear from the two definitions that a reduced residue system 
mod m can be obtained by deleting those members from a complete residue 
system mod m which are not relatively prime to m. 

Theorem 1.36 Let {r1, r2,…, rn} be a complete (or reduced) residue system 
mod m and let (a, m) = 1 then (ar1, ar2,…, arn} is a complete (or reduced) 
residue system mod m. 

Proof :- If (ri, m) = 1, then (ari, m) = 1 

Clearly, the number of ar1, ar2,…, arn and of r1 r2,…, rn is same.  Thus, we 
need only to show that ari ≡/  arj (mod m) if i ≠ j. 

Let, if possible, ari ≡ arj (mod m), i ≠ j 

then  ri ≡ rj(mod m), i ≠ j  (Θ (a, m) = 1) 

a contradiction, since {r1, r2,…, rn} is a complete (or reduced) residue system.  
This completes the proof  

Remark :- In the case of complete residue system, we also have the following 
result.  

 Let {r1, r2,…, rn} be a complete residue system mod m and let (a, m) = 
1, then for any integer b, the set {ar1 + b, ar2 + b,…, arn+b} is also a completes 
residue system.  This result does not hold in case of reduced residue system.  

Definition :- (Euler’s φ-Function) 

Let m be any positive integer, then Euler’s φ function is defined as : 

φ(1) = 1 and     

φ(m) = number of natural number less than m which are relatively 
prime to m.  

For example,  

  φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(10) = 4 etc.  

Remark :- From the definitions of Euler’s φ-function and reduced residue 
system, it is clear that reduced residue system mod m contains always φ(m) 
elements. 

Theorem 1.37 (Euler’s theorem)  Prove that if (a, m) = 1 

then  aφ(m) ≡ 1 (mod m) 

Proof :- Let r1, r2,…, rφ(m) be reduced residue system mod m.  Since (a, m) = 
1.  So ar1, ar2,…, arφ(m)

 is also a reduced residue system mod m.  Hence, by 
definition, corresponding to each ri, there is one and only one arj such that  

  ri ≡ arj(mod m) 

Further, different ri will have different corresponding arj.  This implies that the 
numbers ar1, ar2,…, arφ(m) are just the residue modulo m of r1, r2,…, rφ(m) but 
not necessarily in the same order.  Thus multiplying these, we obtain : 
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  ∏
φ

=

)m(

1j
(arj) ≡ ∏

φ

=

)m(

1i
ri (mod m)   

This implies that  

  aφ(m) ∏
φ

=

)m(

1j
rj ≡ ∏

φ

=

)m(

1j
rj (mod m) 

Now (rj, m) = 1, so cancelling rj, we get 

  aφ(m)  ≡ 1 (mod m) 

This completes the proof. 

Corollary (Fermat’s theorem) :- Let p be a prime such that p |/ a, then prove 
that,  

  ap−1 ≡ 1(mod p) 

Proof :- Since p is prime, so every natural number less than p is coprime to p 
so that φ(p) = p−1.  Now given that p is prime and p |  a    �  (p, a)  = 1 

Hence by Euler’s theorem,  

  aφ(p) ≡ 1(mod p) 

� ap−1 ≡ 1 (mod p) 

This completes the proof 

Remark :- Some time Fermat’s theorem is stated as “Let p be a prime such 
that p |/ a, then                 ap ≡ a (mod p)” which is a trivial conclusion of above. 

Theorem 1.38 If (a, m) = 1, then there is an x such that  

ax ≡ 1 (mod m) and conversely.  Further this x is unique upto congruence i.e. 
any two such x are congruent (mod m). 

Proof :- If (a, m) = 1, then there exists x and y such that  

ax + my = 1  � m | (ax−1)  � ax ≡ 1(mod m) 

Conversely, let ax ≡ 1(mod m), the there is a y such that ax + my = 1 so that 
(a, m) = 1 

Now let ax1 ≡ 1(mod m) and ax2 ≡ 1(mod m)  

� ax1 ≡ ax2(mod m) 

But (a, m) = 1, so it follows that  

  x1 ≡ x2(mod m) 

This completes the proof. 

Theorem 1.39 (The Chinese Remainder Theorem). Let m1, m2,…, mr 
denote r positive integers that are relatively prime in pairs i.e. (mi, mj) = 1, i ≠ 
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j and let a1, a2,…, ar denote any r integers.  Consider the following 
congruences : 

  x ≡ a1 (mod m1) 

  x ≡ a2(mod m2)      
  …(∗) 

  ……………… 

  x ≡ ar(mod mr) 

then the congruences in (∗) have a common solution.  Further if x0 and x1 are 
two common solutions then x0 ≡ x1(mod m) where m = m1 m2…mr or we can 
say that if x0 and x1 are two common solutions, then x1 = x0 + km for some 
integer k. 

Proof :- Let m = m1 m2…mr 

then clearly, 
jm

m
is an integer and 

�
�

�

�

�
�

�

�
j

j

m,
m

m
 = 1 

Also, we observe that 
jm

m
is divisible by mi for i ≠ j 

Now, since 
�
�

�

�

�
�

�

�
j

j

m,
m

m
= 1. So by last theorem, for each j there exists an 

integer bj 

such that  
jm

m
bj ≡ 1(mod mj) 

�  
jm

m
 bj aj ≡ aj(mod mj)     …(1) 

Also, since 
jm

m
 is divisibly by mi (i ≠ j), so we must have 

  
�
�

�

�

�
�

�

�

jm

m
bj = 0 (mod mi) for i ≠ j   …(2) 

Now, Put x0 = �
=

r

1j
jj

j

ab
m

m
 

         = 
1m

m
b1 a1 + 

r
22

2 m

m
...ab

m

m
++ br ar 

then clearly we must have 
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  x0 ≡ 
1m

m
b1 a1(mod m1)    …(3) 

   (Θ all other terms of x0 are 
divisible by m1 by (2)   

Putting j = 1 in (1), 

  
1m

m
b1 a1 ≡ a1(mod m1)    …(4) 

Combining (3) and (4), we get that 

  x0 ≡ a1(mod m1) i.e. x0 is the solution of first congruence in (∗) 

Again, we must have  

  x0 ≡ 
2m

m
b2 a2(mod m2)    …(5) 

  (Θ all other terms of x0 ax 
divisible by m2 by (2)) 

Putting j = 2 in (1) and combining with (5), we get 

 x0 ≡ a2(mod m2) i.e. x0 is the solution of second congruence in (∗) 

Continuing like this, we obtain that  

  x0 ≡ ai(mod mi) for i = 1, 2,.., r. 

So that x0 is common solution of congruences in (∗).  Now, let x0 and x1 be 
two solutions of congruences in (∗), then,  

  x0 ≡ ai(mod mi)  for i = 1, 2,…, r 

and  x1 ≡ ai(mod mi)  for i = 1, 2,…, r 

combining, x0 ≡ x1(mod mi) 

� m1 | (x0−x1), m2 | (x0−x1),…, mr | (x0−x1) 

But (mi, mj) = 1 for i ≠ j so 

  m1 m2…mr | (x0− x1)     [Θ If a | c, b | c and (a, b) 
= 1 then ab | c] 

� m | (x0−x1) 

� x0 ≡ x1(mod m) 

This completes the proof.  

Remark :- Converse of Fermat’s theorem need not be true. 

The converse of Fermat’s theorem is not true i.e. if m   a and am−1 ≡1(mod m), 
the m is not necessarily a prime. 
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For example, let m = 561 = 3.11.17 so m is not a prime.  Now, let a be any 
integer such that gcd (a, 561) = 1  

�  gcd (a, 3) = 1, gcd(a, 11) = 1, gcd(a, 13) = 1 

i.e. 3   a. 11    a. 13   a, so by Fermat’s theorem,  

  a2 ≡ 1(mod 3)    (Θ φ(3) = 2) 

�  (a2)280 = a560 ≡ 1 (mod 3) 

Similarly, a10 ≡ 1(mod 11)    (Θ φ(11) = 10) 

� a560 ≡ 1 (mod 11) 

and  a16 ≡ 1 (mod 17) 

� a560 ≡ 1 (mod 17) 

using Chinese Remainder Theorem 

  A560 ≡ 1 (mod 561) 

Thus, the converse of Fermat’s theorem is not true.  In this regard, we prove 
the following theorem. 

Theorem 1.40 For every odd a > 1, there exists infinitely many composite m 
satisfying,  

  am−1 ≡ 1 (mod m) 

Proof :- Let a > 1 be given odd number, choose an odd prime which does not 
divide a(a2−1) [we note that there are many such primes] 

Take,  m = 
1a

1a
.

1a

1a

1a

1a pp

2

p2

+
+

−
−

==
−

−
 

So that m is clearly composite. 

Now,   m−1 = 
1a

aa
1

1a

1a
2

2p2

2

p2

−

−
=−

−

−
 

�  (a2−1) (m−1) = a2p − a2 = a(ap−1−1) (ap + a)   
  …(1) 

Since a and ap are both odd so ap + a is even.  

Also,  p | (ap−1−1)    (by Fermat’s theorem) 

and   a2−1 | (ap−1−1)    (Θ p − 1 is even) 

Further, by choice of p, gcd (p, a2−1) = 1 

� p (a2−1) | (ap−1−1)  � 2p (a2−1) | (ap−1−1) (ap + a)  (Θ ap + a is even) 

� 2p (a2−1) | (a2−1) (m−1)     [By (1)] 
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� 2p | (m−1)   � ∃ an integer µ such that m = 1 + 2p µ.  Now from (1), 
we have 

   a2p = (a2−1) (m−1) + a2 

         = (a2−1)m − (a2−1) + a2 

         ≡ 1 (mod m) 

� a2pµ ≡ 1 (mod m) 

� am−1 ≡ 1 (mod m) 

This is true for every choice of p and hence theorem is proved. 

Remark :- The following theorem gives the correct converse of Fermat 
theorem., and is known as “Limited Converse of Fermat theorem”, or 
“Modified Converse of Fermat theorem”.  But before that, we make a 
definition.  

Definition (order of a mod m) 

Let m ≥ 2 be an integer and let (a, m) = 1, then by Euler’s theorem we have 
aφ(m) ≡ 1 (mod m). 

Now, let S = {n∈N, an ≡ 1(mod m)}, then S ≠ φ, since φ(m) ∈S.  So by Law 
of well ordering S has a smallest element, say d.  Then we say d is the order of 
a mod m and we write a

mord = d. 

Theorem 1.41 (Limit converse or Modified converse of Fermat theorem) 

If m ≥ 2, am−1 ≡ 1 (mod m) and ax ≡/  1 (mod m) for any proper divisor x of 
m−1, then m is prime. 

Proof :- Since am−1 ≡ 1(mod m)  � (a, m) = 1 

Now, let a
mord = d, then d | (m−1) and ad ≡ 1(mod m).  But no proper divisor x 

of m−1 satisfies ax ≡ 1(mod m)  �  d = m −1 

Also, by Euler theorem, aφ(m) ≡ 1 (mod m) 

� d | φ(m)  � (m−1) | φ(m)  � m−1 ≤ φ(m) 

Also for m ≥ 2, φ(m)  ≤ m−1 

�  φ(m) = m−1  � m is a prime.  

Here, we give some examples based on Chinese Remainder Theorem 

Example :- Find the least positive integer x such that  

  x ≡ 5(mod 7), x ≡ 7(mod 11), x ≡ 3 (mod 13) 

Solution :- We have by comparing with Chinese remainder theorem  

  a1 = 5, a2 = 7, a3 = 3 

  m1 = 7, m2 = 11, m3 = 13 
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Clearly m1, m2, m3 are pairwise coprime and  

  m = 7.11.13 = 1001 

Now, we find the values of b1, b2, b3 using  

  
jm

m
bj ≡ 1(mod mj) 

For j = 1, 
1m

m
b1 ≡ 1(mod m1) 

� 
7

1001
b1 ≡ 1(mod 7) 

� 143 b1 ≡ 1(mod 7) 

�   3b1 ≡ 1(mod 7) 

which gives b1 = 5 

For j = 2, 
2m

m
b2 ≡ 1(mod m2) 

� 91 b2 ≡ 1(mod 11) 

� 3 b2 ≡ 1(mod 11)      

which gives  b2 = 4 

For j = 3,  
3m

m
b3 ≡ 1(mod m3) 

� 77 b3 ≡ 1(mod 13) 

� −b3 ≡ 1 (mod 13) 

which gives b3 = 12 

Hence the common solution is 

  x0 = 
3

22
2

11
1 m

m
ab

m

m
ab

m

m
++  b3 a3 

      = 143.5.5 + 91.4.7 + 77.12.3 = 8895 

If x is another solution of given system of congruences then we must have : 

        x ≡ 8895(mod 1001) 

Also  8895 ≡ 887(mod 1001)    

This gives x ≡ 887 (mod 1001) 
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Hence the required solution is 887. 

Remark :- 1. In the Chinese Remainder Theorem, the hypothesis that mj’s 
should be pairwise coprime is absolutely essential.  When this hypothesis 
fails, the existence of a solution x of the simultaneous system is no longer 
guaranteed.  Further if such an x does exist, then it is unique modulo [m1, 
m2,…, mr] and not modulo m, where [m1, m2,…, mr] denotes the λcm of m1, 
m2,…, mr 2. In case of no solution of given system, we call the system is 
inconsistent. 

Example :- Show that there is no x for which both  

  x ≡ 29(mod 52) and x ≡ 19(mod 72) hold simultaneously. 

Solution :- We have that, 52 = λcm [13, 4] 

Thus the congruence x = 29(mod 52) is equivalent to the simultaneous 
congruences, 

  x ≡ 29(mod 4) and x ≡ 29(mod 13)  

which reduces to : x ≡ 1(mod 4) and x ≡ 3 (mod 13) 

Also, we have that, 72 = λcm [9, 8] 

Thus the congruence x ≡ 19 (mod 72) is equivalent to  

  x ≡ 19(mod 9) and x ≡ 19(mod 8) 

By the Chinese Remainder theorem, we know that the constraints (mod 13) 
and (mod 9) are independent of those (mod 8), since 8, 9, 13 are pairwise 
coprime.  We observe that there is no x for which both x ≡ 1(mod 4) and x ≡ 
3(mod 8) holds.  Thus the given system is inconsistent. 

Example :- Determine whether the system  

  x ≡ 3 (mod 10), x ≡ 8(mod 15), x ≡ 5(mod 84) 

has a solution and find the solution if exists.  

Solution :- We have that the congruence, x ≡ 3 (mod 10) is equivalent to  

  x ≡ 3(mod 5) and x ≡ 3 (mod 2) 

which give  x ≡ 3 (mod 5) and x ≡ 1(mod 2)   …(1) 

Again, the congruence, x ≡ 8(mod 15) is equivalent to  

  x ≡ 8 (mod 5) and x ≡ 8(mod 3) 

which give : x ≡ 3(mod 5) and x ≡ 2(mod 3)   …(2) 

Also we have that the congreunce x ≡ 5 (mod 84) is equivalent to  

  x ≡ 5 (mod 4), x ≡ 5 (mod 3), x ≡ 5(mod 7) 

which give  x ≡ 1(mod 4), x ≡ 2(mod 3), x ≡ 5 (mod 7)   …(3) 
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Thus, the given system is equivalent to a system of seven congruences given 
by (1), (2) and (3). 

 Now, we observe that the congruence x ≡ 1 (mod 2) in (1) and the 
congruence x ≡ 1(mod 4) in (3) are consistent but the second one implies the 
first so that the first one may be dropped.  Further, we see that the congruence 
x ≡ 3 (mod 5) is common in (1) and (2) and the congruence x ≡ 2 (mod 3) is 
common in (2) and (3) so we take them once 

Hence, we conclude that the system of seven congruences reduces to system 
of four congruences given by  

  x ≡ 1 (mod 4),  x ≡ 2(mod 3) 

  x ≡ 3(mod 5),   x ≡ 5(mod 7)    …(∗) 

Since the moduli 3, 4, 5, 7 are pairwise coprime so by Chinese Remainder 
theorem the given system is consistent.  The solution is calculated as follows : 

From (∗), we have  a1 = 1,  a2 = 2, a3 = 3,  a4 = 5 

   m1 = 4, m2 = 3, m3 = 5, m4 = 7 

So m = 4.3.5.7 = 420 

Now, we find the values of b1, b2, b3, b4 as under.  

We know that 
jm

m
bj ≡ 1(mod mj) 

�  
1m

m
b1 ≡ 1 (mod m1)  � 105 b, ≡ 1 (mod 4) 

or  b1 ≡ 1 (mod 4) 

which gives b1 = 5 

Again 
2m

m
b2 ≡ 1 (mod m2)  � 140 b2 ≡ 1 (mod 3) 

            � 2 b2 ≡ 1 (mod 3) 

which gives, b2 = 2 

Similarly we find b3 = 4, b4 = 2 

Hence the solution is 

  x0 = 
4

33
3

22
2

11
1 m

m
ab

m

m
ab

m

m
ab

m

m
+++  b4a4 

      = 105.5.1 + 140.2.2 + 84.4.3 + 60.2.5 = 2693 

Let x be the another solution then  

  x ≡ 2693 (mod 420) 
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which gives x = 173    

This completes the solution.  

Congruences with prime power moduli 

Theorem 1.42 Let f be a polynomial with integer coefficients, let m1, m2,…, 
mr be positive integers relatively prime in pairs, and let m = m1m2…mr. 

Then the congruence 

  f(x) ≡ 0 (mod m)     …(1) 

has a solution if, and only if, each of the congruences 

  f(x) ≡ 0 (mod mi) (i = 1, 2,…, r)   …(2) 

has a solution. Moreover, if v(m) and v(mi) denote the number of solutions of 
(1) and (2), respectively, then  

  v(m) = v(m1) v(m2)…v(mr).    …(3) 

Proof :- If f(a) ≡ 0 (mod m) then f(a) ≡ 0 (mod mi) for each i.  Hence every 
solution of (1) is also a solution of (2). 

 Conversely, let ai be a solution of (2).  Then by the Chinese remainder 
theorem there exists an integer a such that  

  a ≡ ai (mod mi) for i = 1, 2,…, r   …(4) 

so 

  f(a) ≡ f(ai) ≡ 0 (mod mi). 

Since the moduli are relatively prime in pairs we also have f(a) ≡ 0 (mod m).  
Therefore if each of the congruences in (2) gives rise to a unique integer a 
mod m satisfying (4).  As each ai runs through the v(mi) solutions of (2) the 
number of integers a which satisfy (4) and hence (2) is v(m1)…v(mr).  This 
proves the theorem. 

Theorem 1.42 shows that the problem of solving a polynomial congruence 

  f(x) ≡ 0(mod m) 

can be reduced to that of solving a system of congruences 

  f(x) ≡ 0 )p(mod i
i
α    (i = 1, 2,…, r), 

where m = r
r

1
1 p...p αα .  Now we show that the problem can be further reduced 

to congruences with prime moduli plus a set of linear congruences.  

Let f be a polynomial with integer coefficients, and suppose that for some 
prime p and some α ≥ 2 the congruence 

  f(x) ≡ 0(mod pα)     …(1) 

has a solution, say x = a, where a is chosen so that it lies in the interval 
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  0 ≤ a < pα. 

This solution also satisfies each of the congruences f(x) ≡ 0 (mod pβ) for each 
β < α.  In particular, a satisfies the congruence 

  f(x) ≡ 0 (mod pα−1).     …(2) 

Now divide a by pα−1 and write 

  a = qpα−1 + r, where 0 ≤ r < pα−1.   …(3) 

The remainder r determined by (3) is said to be generated by a.  Since r ≡ a 
(mod pα−1) the number r is also a solution of (2).  In other words, every 
solution a of congruence (1) in the interval 0 ≤ a < pα generates a solution r of 
congruence (2) in the interval 0 ≤ r < pα−1. 

Now suppose we start with a solution r of (2) in the interval 0 ≤ r < pα−1 and 
ask whether there is a solution a of (1) in the interval 0 ≤ a < pα which 
generates r.  If so, we say that r can be lifted from pα−1 to pα.  The next 
theorem shows that the possibility of r being lifted depends on f(r) mod  pα on 
the derivative f ′(r) mod p. 

Theorem 1.43 Assume α ≥ 2 and let r be a solution of the congruence 

  f(x) ≡ 0 (mod pα−1)     …(4) 

lying in the interval 0 ≤ r < pα−1. 

(a) Assume f′(r) ≡/  0 (mod p).  Then r can be lifted in a unique way from pα−1 
to pα.  That is, there is a unique a in the interval 0 ≤ a < pα which generates r 
and which satisfies the congruence 

  f(x) ≡ 0 (mod pα).     …(5) 

(b) Assume f′(r) ≡ 0 (mod p).  Then we have two possibilities :  

If f(r) ≡ 0 (mod pα), r can be lifted from pα−1 to pα in p distinct ways. 

If f(r) ≡/  0 (mod pα), r cannot be lifted from pα−1 to pα. 

Proof :- If n is the degree of f we have the identity (Taylor’s formula) 

   f(x + h) = f(x) + f′(x)h + n
)n(

2 h
!n

)x(f
...h

!2

)x(©©f
++  …(6) 

for every x and h.  We note that each polynomial f(k)(x)/k ! has integer 
coefficients. Now take x = r in (6), where r is a solution of (4) in the interval 0 
≤ r < pα−1, and let h = qpα−1 where q is an integer to be specified presently.  
Since α ≥ 2 the terms in (6) involving h2 and higher powers of h are integer 
multiples of pα.  Therefore (6) gives us the congruence  

  f(r + qpα−1) ≡ f(r) + f′(r) qpα−1 (mod pα). 
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Since r satisfies (4) we can write f(r) = kpα−1 for some integer k, and the last 
congruence becomes 

  f(r + qpα−1) ≡ {qf′(r) + k}pα−1 (mod pα). 

Now let 

  a = r + qpα−1.      …(7) 

Then a satisfies congruence (5) if,  and only if, q satisfies the linear 
congruence  

  qf ′ (r) + k ≡ 0 (mod p).    …(8) 

If f ′(r) ≡/  0 (mod p) this congruence has a unique solution q mod p, and if we 
choose q in the interval 0 ≤ q < p then the number  a given by (7) will satisfy 
(5) and will lie in the interval 0 ≤ a < pα. 

On the other hand, if f ′(r) ≡ 0 (mod p) then (8) has a solution q if, and only if, 
p|k, that is, if and only if f(r) ≡ 0 (mod pα).  If p |/  k there is no choice of q to 
make a satisfy (5).  But if p | k then the p values q = 0, 1…, p − 1 give p 
solutions a of (5) which generate r and lie in the interval 0 ≤ a < pα.  This 
completes the proof.  
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Unit-2 
 

Quadratic Residues and Non-Residues  
 
 
Definition :- Let p be an odd prime and let (a, p) = 1.  Then a is said to be a 

quadratic residue (mod p) if ∃ an integer x such that  

  x2 ≡ a (mod p) 

otherwise we say that a is a quadratic non-residue (mod p). 

Remark :- If a is a quadratic residue (mod p) ∃ x (1 ≤ x ≤ p−1) such that x2 ≡ 
a(mod p) 

Definition :- (Legendre symbol) 

The Legendre Symbol denoted by ��
�

�
��
�

�

p
a

, where (a, p) = 1 is defined as  

��
�

�
��
�

�

p
a  = 1 if a is a quadratic residue (mod p) and  

   ��
�

�
��
�

�

p
a

= −1, if a is a quadratic non-residue (mod p).   

Remark :- If a ≡ b (mod p), clearly ��
�

�
��
�

�
=��

�

�
��
�

�

p
b

p
a

 provided (a, b) = 1 

Theorem 2.1 Let p be an odd prime and let gcd (a, p) = 1 then  

  
)1p(

2
1

a.
p
a

1p|
−

��
�

�
��
�

�
−=− (mod p) 

Proof :- Let S = {1, 2,…, p−1} is a reduced set of residues (mod p). 

Consider any x such that  

  1 ≤ x ≤ p−1 then  

 xS = {x, 2x,…, (p−1)x} 

is also a reduced set of residues (mod p) 

 So there exists y in S such that xy ≡ a (mod p) 

 Now distinguish two cases 
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Case I :- ��
�

�
��
�

�

p
a

= 1 then ∃ x such that 1 ≤ x ≤ p−1 such that  

  x2 ≡ a (mod p) 

Let us find out all the solutions of the quadratic congruence 

  X2 ≡ a (mod p)       
  …(I) 

 Then (I) has at least one solution X = x.  We know two solutions x1 
and x2 are said to be same if x1 ≡ x2 (mod p).  Let x1 & x2 be two solutions of 
(I) then 

  x1
2 ≡ a (mod p) 

and  x2
2 ≡ a (mod p) 

�  x1
2 ≡ x2

2 (mod p) 

�  p divides (x1
2 − x2

2) 

�  p | (x1 + x2) (x1 −x2) 

Then   p | (x1 + x2)  or p | (x1−x2)  (Θ p is a prime) 

� either x1 + x2 ≡ 0 (mod p) 

or  x1 − x2 ≡ 0 (mod p) 

Further  x2 ≡ −x1 ≡ p−x1 (mod p) 

or  x2 ≡ x1 (mod p) 

 Thus x and p−x are two solutions of (1) (mod p) since x is a solutions 
of (1) (mod p) 

Further  x ≠ p−x       
 | Θ p is odd 

So (I) has exactly two solutions (mod p) 

 Let us take y1 in S such that y1 ≠ x & y1 ≠ (p−x) 

Now consider the set y1 S.  Then y1 S is also a reduced residue system            
(mod p).  So ∃ y2 in S such that 

  y1 y2 ≡ a(mod p) 

and further y1 ≠ y2 since otherwise y1 will also be a solution of (1).  Thus for 

y1 ≠ x, y1 ≠ p−x, the remaining (p−3) elements in S can be divided into 
2

3p −
 

pairs (y1, y2) such that  

  y1 y2 ≡ a(mod p) 

So 
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  1.2.3………(p−1) = x. (p−x) (y1, y2)  

   ≡ −x2. 2

3p

a
−

(mod p) 

   ≡ −
)1p(

2
1

a
−

 (mod p)  (Θ x2 ≡ a(mod p)) 

   ≡ − ��
�

�
��
�

�

p
a 2

1p

a
−

 (mod p)   �
�
�

�
�
�
�

�
=��

�

�
��
�

�
1

p
aΘ  

Case II ��
�

�
��
�

�

p
a

= −1 

Then the congruence (1) has no solutions.  So if we take y1∈S, we know ∃ y2 

∈ S such that  

  y1 y2 ≡ a(mod p) amd y1 ≠ y2 

Thus we divide S into (p−1)/2 pairs (y1, y2) such that y1 y2 ≡ a(mod p) 

∴  )1p(| −  ≡ 2

1p

a
−

 (mod p)  ≡ − 2

1p

a
p

a −

��
�

�
��
�

�
(mod p) �

�
�

�
�
�
�

�
−=��

�

�
��
�

�
∴ 1

p
a

 

Thus theorem is proved completely. 

Wilson’s Theorem  

Theorem 2.2 If p is any prime, then 1p| −  ≡ −1(mod p) 

Proof :- If p = 2 or p = 3; theorem is clearly true. 

 So let p ≥ 5.  Taking a = 1 in the last theorem we note 1
p
1 =��
�

�
��
�

�
 for all 

prime p.   

Then we get  

  1p| −  ≡ −1 (mod p) 

Converse of Wilson’s Theorem :- The converse of Wilson’s theorem is also 
true.  Given that 1n| − ≡ −1 (mod n), they must be a prime. 

Proof :- If possible, suppose n is not a prime.  Then there exists a divisor d of 
n such that  

  1 < d < n,  then d | 1n| −  

∴  1n| −  ≡ 0 (mod d) 

On the other hand 
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  1n| −  ≡ −1 (mod n) 

�  1n| −  ≡ −1 (mod d) 

�  −1 ≡ 0 (mod d)  � d | 1 which contradicts that d>1. 

 So n must be a prime number. 

Theorem 2.3 (Euler’s Criterion) :- Let p be an odd prime and let gcd (a, p) ≡ 
1.  Then 

  
)1p(

2
1

a
p
a −

≡��
�

�
��
�

�
 (mod p). 

Proof :- We know  

  
)1p(

2
1

a
p
a

1p|
−

��
�

�
��
�

�
−≡− (mod p) 

We also know )1p(| −  ≡ −1 (mod p)  

�  −1 ≡ −
)1p(

2
1

a
p
a −

��
�

�
��
�

�
(mod p) 

Multiplying by ��
�

�
��
�

�

p
a

 we get 

  
)1p(

2
1

)1p(
2
12

aa
p
a

p
a −−

≡��
�

�
��
�

�
≡��

�

�
��
�

�
 (mod p) 

Theorem 2.4 −1 is a quad reside of primes of the form 4k + 1 & a quad non-
residue of primes of the form 4 k + 3. 

Proof :- By Euler’s Criterion 

  
)1p(

2
1

)1(
p
1 −

−≡��
�

�
��
�

� −
 (mod p) 

�  
�
�

	




�
�

�



−−��

�

�
��
�

� − − )1p(
2

1

)1(
p

1
p  

The value of the quantity in brackets is either 0 or −2.  But p is an odd prime 
and it divides the quantity in brackets, so we must have 

  0)1(
p
1 )1p(

2
1

=−−��
�

�
��
�

�
−

−
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�  
)1p(

2
1

)1(
p
1 −

−=��
�

�
��
�

�
−  

When p = 4k+1, 1)1()1(
p
1 k22

k4

=−=−=��
�

�
��
�

�
−  

and when p = 4k + 3,  

  1k22
2k4

)1()1(
p
1 +

+

−=−=��
�

�
��
�

�
− = −1 

Theorem 2.5 Let a & b be integers such that gcd (ab, p) =1, then  

  ��
�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�

p
b

p
a

p
ab

 

Proof :- By Euler’s criterian,  

  
)1b(

2

1
)1p(

2

1
)1p(

2

1

ba)ab(
p

ab −−−
≡≡��

�

�
��
�

�
(mod p)  …(1) 

But gcd (ab, p) = 1  � p |/ (a b) 

�  b |/ a and p |/ b. 

�  g c d(a, p) = 1 = gcd(b, p) 

By Euler’s criterion,  

  )1p(2/1a
p

a −≡��
�

�
��
�

�
(mod p)    …(2) 

and  
)1p(

2

1

b
p

b −
≡��

�

�
��
�

�
(mod p)     …(3) 

From (2), (3), we get  

  ��
�

�
��
�

�
≡��

�

�
��
�

�
��
�

�
��
�

�

p
ab

p
b

p
a

 (mod p) 
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�  �
�

�

�

�
�

�

�
��
�

�
��
�

�
−��
�

�
��
�

�
��
�

�
��
�

�

p

ab

p

b

p

a
p  

�  ��
�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�

p
b

p
a

p
ab

   ( Θ p is an odd prime) 

Corollary :- The product of two quadratic residues (mod p) or two quadratic 
non-residues (mod p) is a quadratic residues (mod p) where as the product of a 
quadratic residue (mod p) and a quadratic non-residue (mod p) is quadratic 
non-residue (mod p) 

Theorem 2.6 Let p be an odd prime and let p does not divide product ab 

where a & b are integers.  Then   ��
�

�
��
�

�
=�

�

�

�

�
�

�

�

p
a

p
ab2

 

 

Proof :- Since p |/ ab � b |/ a & p |/ b 

�  p |/  b2, 

  
�
�

�

�

�
�

�

�
��
�

�
��
�

�
=�

�

�

�

�
�

�

�

p
b

p
a

p
ab 22

 

              = ��
�

�
��
�

�

p
a

       

 [ Θ ( + 1)2 = 1 

Theorem 2.7 Given any odd prime p, there are 
2
1

(p−1)quadratic residue & 

2
1

(p−1) quadratic non-residues. 

Proof :- Let a be any quadratic residue then ∃ x (1 ≤ x ≤ p−1) such that  

  x2 ≡ a (mod p) 

But   x2 ≡ (p−x)2 (mod p) 

Therefore  12 ≡ (p−1)2 (mod p) 

  22 ≡ (p−2)2 (mod p) 
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  …………………… 

  …………………… 
222

2

1p

2

1p
p

2

1p
��
�

�
��
�

� +
=��

�

�
��
�

� −
−≡��

�

�
��
�

� −
 (mod p) 

Thus there are a maximum of 
2

1p −
quadratic residue (mod p) 

But for 1 ≤ i, j ≤ ,
2

1p −
i ≠ j 

  i2 ≡ j2 (mod p) 

since if i2 ≡ j2 (mod p)  � p | (i2 − j2) 

�  p | (i+j)(i−j)  � p | (i+j)  or p | (i−j) 

which is not possible under the given condition.  So there are exactly 
2

1
 (p−1) 

quadratic residues.  

The remaining 
2

1p −
 numbers must be quadratic non−residues 

Theorem 2.8 Given any prime p of the for 4k+1, ∃ x and on integers m such 
that  

  1 + x2 = mp where 1 ≤ m < p 

Proof :- Since −1 is a quadratic residue of primes of the form 4k+1, ∃ x such 
that  

  x2 ≡ −1 (mod p) 

∴ W.L.O.G, we can assume 1 ≤ x ≤ 
2

1p −
. 

Then ∃ an integer m such that  

  mp = x2 +1 ≤ 1 +
2

2
1p
�
�

�
�
�

� −
< p2 

�  m < p 

Clearly  m > 0 

�  1 ≤ m < p 

Theorem 2.9 Given any prime p, there exist x ≥ 0, y ≥ 0 and m (1 ≤ m < p) 
such that 1 + x2 + y2 = mp 
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Proof :- If p = 2, theorem is trivially true  

Θ 1 + 12 = 2 = 1. 2 

So let p be an odd prime. 

Consider S = 
�
�
�

�
�
� −=−

2
1p

,........,2,1,0x;x 2  

  T = 
�
�
�

�
�
� −=+

2
1p

....,,2,1,0y;y1 2  

Here elements of S are mutually incongruent (mod p). 

Similarly elements of T are mutually incongruent. S contains 
2

1p +
 elements 

and T also contain 
2

1p +
 elements.  

∴ SUT contains p + 1 district element .  But there are only p residue classes 
(mod p) 

Therefore at least two elements of SUT must be congruent to each other               
(mod p).  However, no element of S is congruent to another element of S and 
no element of T is congruent to another element of T.   So atleast one element 
of S must be congruent to an element of T i.e., 

  ∃ x, y such that 0 ≤ x ≤ p−1/2  and  0 ≤ y ≤ p−1/2 such that  

  −x2 ≡ 1 + y2 (mod p) 

or  1 + x2 + y2 ≡ 0 (mod p) 

So, ∃ an integer m such that  

  1 + x2 + y2 = mp 

Clearly m > p 

Now  mp = 1+x2+ y2 ≤ 1 +
22

2
1p

2
1p

�
�

�
�
�

� −+�
�

�
�
�

� −
 

   < 1 + 2
22

p
4

p
4

p <+  

�  m< p  and so 1 ≤ m < p which proves the theorem  

Definition :- Let m ≥ 2 be any given integer and let gcd (a, m) = 1 for some 
integer a.  Then by Euler Fermat theorem,  

  aφ(m) ≡ 1 (mod m) 
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Now take S = {n∈N; an ≡ 1 (mod m)} 

then  S ≠ φ since φ(m)∈S. So by L. W. O., S has a smallest element say ‘d’.  
Then we say d is the order of a (mod m) and we write d = a

mord   (order a mod 
m) 

Theorem 2.10 Let a
mord  = d then 

  an ≡ 1 (mod m) 

⇔  d | n.  In particular d | φ(m) 

Proof :- Since aφ ≡ 1 (mod m), so if d | n, then 

  an ≡ 1 (mod m) 

Now let an ≡ 1 (mod m).  By division algorithm theorem, write  

  n = dq + r,   0 ≤ r < d 

then  

   1 ≡ an = adq+r = adq − ar 

              = (ad)q . ar 

   ≡ ar (mod m)  (Θ ad ≡ 1 (mod m)) 

So if r ≠ 0, then we get a number r < d such that ar ≡ 1 (mod m) which 
contradicts the definition of d 

�  r = 0 � d | n 

Theorem 2.11 Let a
mord = d.  Then for any positive integer k,  

  
)k,dgcd(

d
ord

ka
m =  

Proof :- Let gcd (d, k) = g and rord
ka

m =  

Then  1 ≡ (ak)r ≡ akr (mod m) 

�  d | kr        
  

�  r
g

k

g

d
��
�

�
��
�

�
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But   gcd ��
�

�
��
�

�

g
k

,
g
d

= 1 

� �r|
q

d
  

q

d
≤ r.  Now since gcd (d, k) = q 

� q | d, q | k 

Let k = qk1 

Now  1kdd1kq/d1qkq

d

k )a(a)a()a( ===  

            ≡ 1 (mod m) 

�  r ≤ 
g
d

   [By definition of order] 

So   r
g
d =  

or   r = 
q
d

 

Hence the theorem. 

Gauss’s Lemma 2.12 Let p be an odd prime and let gcd (a, p) = 1. 

Let  S = 
�
�
�

�
�
� −

2
1p

...,,2,1  

Let µ be the number of elements in the set S such that least positive residue of 
aS > p/2.   

Then  ��
�

�
��
�

�

p
a

= (−1)µ 

Proof :- Consider any integer n where gcd (n, p) = 1 Apply division algorithm 
to n & p, ∃ q & r such that n = qp + r where 0 ≤ r ≤ (p−1).  Since gcd (n, p) = 1 
� p |/ n � r ≠ 0 

�  1 ≤ r ≤ p−1 

Since p is odd, p/2 is not an integer.  So either r < p/2 or r > p/2.  If r < p/2, we 
leave it as it is  If r > p/2, write r = p−r′ where 1 ≤ r′ < p/2, 

Thus  n = qp + (p−r′) = (q+1) p−r′ ≡ −r′ (mod p). 
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Now we consider least positive residues of every element of aS.  We are given 
that µ of those elements have least positive residues > p/2.  Let k be the 
elements of aS with least positive residues < p/2. 

Then  k + µ =
2

1p −
 

If the least positive residues <p/2 are r1, r2,…, rk and the least positive residues 

> p/2 are 
2

1p
r1thatsuchr,...,r,r ©©1

2
©

1

−
≤≤−−− µµ  then 

  { }©©
2

©
1k1 r,...,rr,r,...,r µ−−−  

are the residues of elements of aS in some order such that 

  1 ≤ r ≤ 
2

1p −
and 1 ≤ r′ ≤ 

2
1p −

. 

Since S is a subset of a reduced residue set {1, 2,…, p−1} and gcd (a, p) = 1, 
so {a, 2a,…, (p−1)a} is also a reduced residue set.  Then first of all  

  ri ≠ ©
jr  for i ≠ j 

If possible, let ri = ©
jr  for some pair (i, j) 

Then ∃ xi ∈S and xj ∈S such that  

  axi ≡ ri (mod p) & axj ≡ − ©
jr  (mod p) 

But  ri = ©
jr  

�  axi ≡ − axj (mod p) 

This means a(xi + xj) ≡ 0(mod p) 

�  p | a(xi + xj) 

But  gcd (a, p) = 1 

�  p | (xi + xj)   

But   1 < xi ≤ 
2

1p −
   

and  1 ≤ xj ≤ 
2

1p −
 

�  2 ≤ xi + xj ≤ p−1 
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�  p |/  (xi + xj) 

which is a contradiction and so {r1, r2,…, rk, ©
�

©
2

©
1 r,...,r,r } are all distinct.  

But  µ + k =
2

1p −
 

So there are 
2

1p −
 distinct numbers lying between 1 & 

2
1p −

 

So   r1,…, rk, ©
�

©
1 r,...,r  

are the natural numbers 1 to 
2

1p −
 in some order.  Therefore 

  
2

1p −  = r1,…rk, ©
�

©
1 r,...,r (mod p) 

Then by definition of r1,…, rk, ©
�

©
1 r,...,r  

  
2

1p −  ≡ a⋅ 2a…
2

1p −
. a(−1)µ (mod p) 

             = (−1)µ 2
1p

a
2

1p
−

�
�

�

�

�
�

�

� − (mod p) 

But   gcd 1p,
2

1p =
�
�

�

�

�
�

�

� −  

�  (−1)µ
�
�

�
�
�

� −
2

1p

a ≡ 1 (mod p) 

But by Euler’s criterion, 

  ��
�

�
��
�

�
≡

−

p
a

a 2
1p

mod p) 

�  (−1)µ 1
p
a ≡��
�

�
��
�

�
(mod p) 

�  ��
�

�
��
�

�

p
a ≡ (−1)µ (mod p) 
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But the value of ��
�

�
��
�

�

p
a − (−1)µ is either 2 or 0 or −2 and p is an odd prime 

�  ��
�

�
��
�

�

p
a

= (−1)µ 

Application of Gauss’s Lemma :- 

Theorem 2.13 For every odd prime p, 

  ��
�

�
��
�

�

p
2

= (−1)[1/4(p+1)] 

where [x] means greatest integer  

Proof :- Let S = 
�
�
�

�
�
� −

2
1p

,...,2,1  

Then   2S = {2, 4,…, p−1}   

Let x∈S, then the number of elements of 2S with least positive value <
2

p
 is x 

<
4

p
. 

But x is an integer � x =[p/4] 

∴ The number of elements of 2S with least positive value > p/2 is �
	



�
�



−

−
4

p

2

1p
 

(i) If p is of the form 4k+1, then  

  µ = �	



��


−�
�

�
�
�

� −
4
p

2
1p

 

     = �	



��


 +−−+
4

1k4
2

11k4
 

     = 2k − k = k = �
	



�
�


 +
=�

	



�
�


 −
4

1p

4

1p
 

(ii) If p is of the form, 4k + 3 then  

  µ = �	



��


 +−−+=�	



��


−−
4

3k4
2

13k4
4
p

2
1p
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     = 2k + 1 − k = k + 1= �	



��


 +
4

1k
 

Thus in both cases, µ = �
	



�
�


 +
4

)1p(
 

So by Gauss’s Lemma 

  
�
	



�
�


 +
−=−=��

�

�
��
�

� )1p(
4
1

� )1()1(
p
2

 

Corollary :- 2 is a quadratic residue of primes of the form 8k + 1 and 
quadratic non residues of primes of the form 8k ± 3. 

Proof :- Let p = 8k + 1 

 

Then   ( )( )�
	



�
�



+±=�

	



�
�



+ 11k8

4

1
)1k(

4

1
 = 2k 

Therefore, in these two cases 

  
�
	



�
�



�
�

�
�
�

� +

−=��
�

�
��
�

� 4
1p

)1(
p
2

 = (−1)2k =1 

Let   p = 8k± 3 

Then   �	



��


 +=�	



��


 + )4k8(
4
1

)1p(
4
1

 = 2k+1 

and if p = 8k−3 

Then  �
	



�
�



+−=�

	



�
�



+ 13k8(

4

1
)1p(

4

1
 

         = �	



��


 − )2k8(
4
1

 = 2k−1 

Therefore in these two cases 
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  1
p
2 −=��
�

�
��
�

�
 

Therefore 2 is a quadratic non−residue. 

Corollary 2:- For every odd prime p 

  
�
�

�

�

�
�

�

� −

−=��
�

�
��
�

� 8
12p

)1(
p
2

 

Proof :- We know 2 is a quadratic residue of primes of the form 8k ± 1 & a 
quadratic non-residue of primes of the form 8k ± 3. 

 

Let  p = 8k ± 1 

Then  
8

11k16k64
8

1)1k8(
8

1p 222 −+±=−±=−
 

    = 8k2 ± 2k 

   = an even number 

�  8
12p

)1(
−

− = 1 = ��
�

�
��
�

�

p
2

 

Let              p = ⋅8k ± 3 

Then   
8

1)3k8(
8

1p 22 −±=−
 

   = 
8

19k48k64 2 −+±
 

   = 
8

8k48k64 2 +±
 

   = 8k2 ± 6k + 1 

   = An odd number. 
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Therefore ��
�

�
��
�

�
=−=−

−

p
2

1)1( 8
12p

 

Thus in all cases 

  8
12p

)1(
p
2

−

−=��
�

�
��
�

�
 

Quadratic Law of Reciprocity :- For Legendre Symbols  

Statement :- Let p & q be distinct odd primes then 

  ©q©p2
1q

2
1p

)1()1(
p
q

q
p −=−=��

�

�
��
�

�
��
�

�
��
�

�
−−

 

where   p′ = 
2

1q
©q,

2

1p −
=

−
   

Alternative statements :- 

(i) Let p or q be a prime of the form 4k + 1.  Then either p′ is even or q′ is 
even  

� p′q′ is even 

 

∴  ��
�

�
��
�

�
=��

�

�
��
�

�
�=��

�

�
��
�

�
��
�

�
��
�

�

p
q

q
p

1
p
q

q
p

 

(ii) If both p & q are of the form 4k + 3 then both p′ & q′ are odd.   

Therefore 1
p
q

q
p −=��

�

�
��
�

�
��
�

�
��
�

�
 

�  ��
�

�
��
�

�
−=��

�

�
��
�

�

p
q

q
p

 

So sometimes Quadratic Law of Reciprocity is also asked in the following 
form. 

Theorem 2.14 Let p & q be two distinct odd primes.  Then  
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  ��
�

�
��
�

�
=��

�

�
��
�

�

p
q

q
p

 if either of p & q is of the form 4k + 1 

 

and  ��
�

�
��
�

�
−=��

�

�
��
�

�

p
q

q
p

 if both of p & q are of the form 4k + 3. 

Proof :- By Gauss’s Lemma 

  v)1(
p

q
−=��

�

�
��
�

�
 

where v is the number of integers x �
�

�
�
�

� −≤≤
2

1p
x1  such that  

  qx = py + r where 
q
p−  < r < 0 

Since q > 0, x > 0 and r < 0 

�  (p y) > 0  � y ≥ 1 

Further 

  p y = qx − r <
2
p

2
p

q
2

1p <+−
 (q + 1) 

�  y < 
2

1q +
 

�  y ≤ 
2

1q −
 

Similarly ��
�

�
��
�

�

q
p

= (−1)µ where µ is the number of integers y �
�

�
�
�

� −≤≤
2

1q
y1   

such that py = qx + s where −
2
q

< s < 0 

Therefore ��
�

�
��
�

�
��
�

�
��
�

�

p
q

q
p

= (−1)µ+v     …(1) 

where µ + v is the number of pairs of integers (x, y) such that 1 ≤ x ≤ 
2

1p −
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  1 ≤ y ≤ 
2

1q −
 

and  −
2

q
spyqxr

2

p
<−=−=<  

Now, let us consider the following sets of pairs of integers (x, y) 

  S = 
�
�
�

�
�
� −

≤≤
−

≤≤
2

1q
y1;

2

1p
x1:)y,x(  

  S1 = 
�
�
�

�
�
� −≤−∈

2
p

)pyqx;S)y,x(  

  S2 = 
�
�
�

�
�
� <−<−∈

2
q

pyqx
2
p

;S)y,x(  

  
�
�
�

�
�
� ≥−∈=

2
q

)pyqx(;S)y,x(S©
1  

Then  #(S) = #(S1) + #(S2) + # )S( ©
1     …(II) 

Consider a mapping θ from S defined by  

  θ((x, y)) = �
�

�
�
�

� −+−+
y

2
1q

,x
2

1p
 

Since  1 ≤ x ≤ 
2

1q
y1&

2
1p −≤≤−

 

�  1 ≤ 
2

1p
x

2
1p −≤−+

 

and  1 ≤ 
2

1q
y

2
1q −≤−+

 

 So that θ is a mapping from S to S.  Now, let  (x, y) ∈ S1 

Then, by definition  

  θ((x, y)) = �
�

�
�
�

� −+−+
y

2
1q

,x
2

1p
= (x′, y′) (say) 
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Now  qx′ − py′ = q �
�

�
�
�

� −+−�
�

�
�
�

� −+
y

2
1q

px
2

1p
 

      = 
2
p

2
q − − (qx − py) 

      ≥ �
�

�
�
�

�−−−
2
p

2
p

2
q

 ( Θ (x, y) ∈ S1) 

      = q/2 

�  (x′, y′) ∈ ©
1S  

This means  

  # (S1) ≤ #( ©
1S )      …(III) 

Now, let  (x, y) ∈ ©
1S  

then   qx′ − py′ = q �
�

�
�
�

� −+−�
�

�
�
�

� −+
y

2
1q

px
2

1p
  

      = 
2
p

2
q − − (qx − py) 

      ≤ 
2
q

2
p

2
q −−    [ Θ (x, y) ∈ ©

1S  

      = −p/2 

�  (x′, y′) ∈ S1 

�  # ( ©
1S ) ≤ # (S1)      …(IV) 

From (III) & (IV) we get 
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  # (S1) = #( ©
1S )      …(V) 

Therefore from (II) & (V) we get 

  #(S) ≡ #(S2) (mod 2) 

But   #(S) = p′. q′ 

�  # (S2) = µ + v 

           ≡ p′ q′ (mod 2) 

∴ From (I); ��
�

�
��
�

�
��
�

�
��
�

�

p
q

q
p

 = (−1)p′q′ 

Example :- Evaluate 

  �
�

�
�
�

�

257
202

 

or   Determine whether 202 is a quadratic residue of 257 or not? or 
Determine 

  x2 ≡ 202 (mod 257) is solvable or not. 

Solution :- 202 = 2×101 

  �
�

�
�
�

�
�
�

�
�
�

�=�
�

�
�
�

�

257
101

257
2

257
202

 

  1
257

2 =�
�

�
�
�

�  since 

  257 ≡ 1 (mod 8) 
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∴  �
�

�
�
�

�=�
�

�
�
�

�=�
�

�
�
�

�

101
257

257
101

257
202

    

 ��
�

�
��
�

�
=��

�

�
��
�

�

p
q

q
pΘ  

   = �
�

�
�
�

�

101
55

 

   = �
�

�
�
�

�
�
�

�
�
�

�

101
11

101
5

 

But    1
5
1

5
101

101
5 =�

�

�
�
�

�=�
�

�
�
�

�=�
�

�
�
�

�  

and   �
�

�
�
�

�=�
�

�
�
�

�

11
101

101
11

      [ 

By Reciprocity law 

    = �
�

�
�
�

�

11
2

 

   = −1 

∴  �
�

�
�
�

�

257
202

= −1 

Alternative �
�

�
�
�

� −=�
�

�
�
�

�

257
55

257
202

 

   = �
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

� −
257
11

257
5

257
1

 

� 

 1
5
2

5
257

257
5

1
257

1 −=�
�

�
�
�

�−�
�

�
�
�

�=�
�

�
�
�

�=�
�

�
�
�

� −
1

11
4

11
257

257
11 =�

�

�
�
�

�=�
�

�
�
�

�=�
�

�
�
�

�  
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∴  �
�

�
�
�

�

257
202

= (1) (−1) (1) = −1 

Example :- �
�

�
�
�

�
�
�

�
�
�

�=�
�

�
�
�

�

401
25

401
26

401
650

 

   = ��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�

401

13

401

2

401

25
 

   = �
�

�
�
�

�

401
13

 

   = �
�

�
�
�

�=�
�

�
�
�

�=�
�

�
�
�

�

11
13

13
11

13
401

 

   = 1
11
2 −=�
�

�
�
�

�  

Theorem 2.15 If p is an odd prime & gcd (a, 2p) = 1 

then  ��
�

�
��
�

�

p
a

= (−1)t 

where  t = �
	



�
�



�
−

= p
aj1p

1j
 

Also  8
12p

)1(
p
2

−

−=��
�

�
��
�

�
 

Proof :- Let S =
�
�
�

�
�
� −

2
1p

...,,2,1  

Let   r1,…, rλ and ©
�

©
1 r...,r  
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be the least positive remainders of the elements of the set aS, which are < p/2 
and > p/2 respectively. 

Then as shown in the proof of Gauss’s Lemma  

  r1,…, rλ, p− ©
�

©
1 rp,...,r −  

are all distinct.  

Since  λ + µ = 
2

1p −
.  Therefore r1,…, rλ, p− 1

�
©

1 rp...r −  are the integers 

1, 2,…, 
2

1p −
 in some order so that  

  �

−

=

2
1p

1j
j    = r1 + r2 +…+ rλ + �

=

�

1s
(p − ©

jr ) 

   = µp + � �−
= =

�

1i

�

1j

©
ji rr     …(I) 

Further by definition of r1, … rλ, ©
�

©
1 r,...,r  

  � �+�+�
	



�
�



=�

−

= ==

−

=

2
1p

1j

�

1j

©
j

�

1i
i

2
1p

1j
rr

p
aj

p)aj(    …(II)   

Subtracting (I) from (II), we get 

  (a−1) � � −+=

−

= =

2
1p

1j

�

1j

©
j p�r2tpj  where t = � �

	



�
�



−

=

2

1p

1j p

aj
  …(III) 

But  �
−=

−

=

2
1p

1j

2

8
1p

j  

∴  (a−1) �+−=�
�

�

�

�
�

�

� −
=

�

1j

©
j

2
r2)�t(p

8
1p

   …(IV) 

Since g.c.d. (a, 2p) = 1 



ANALYTICAL NUMBER THEORY  82

�  a is odd. 

�  (a −1) is even.  Also 
8

1p2 −
 is an integers as p is odd 

∴ From (IV), we get 

  t − µ ≡ 0 (mod 2) as p is odd  

�  µ ≡ t (mod 2) 

By Gauss’s Lemma 

  �)1(
p
a −=��
�

�
��
�

�
 

Therefore  t)1(
p
a −=��
�

�
��
�

�
 

Now set a = 2 in (II) Since for j = 1, 2,…, 
2

1p −
 

  0
p
ji =�
	



�
�



 for all j  � t = 0 

∴ From (III), e get �=� +
=

−

=

�

1j

2
1b

1j
ji2p�j   

∴  �

−

=

2
1p

1j
j≡ −µ p (mod 2) 2\ RHS ∴  2\LHS 

But    p ≡ −1 (mod 2) 

∴  µ ≡ �
−≡

−

=

2
1p

1j

2

8
1p

j  (mod 2) 

∴ By Gauss’s Lemma  

  2
12p

� )1()1(
p
2

−

−=−=��
�

�
��
�

�
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The Jacobi Symbol :- Let Q > 1 be an odd integer and Q = q1 q2…qs its 
prime factorization where q1, q2,…, qs are odd primes, not necessarily distinct.  

Then the Jacobi symbol, denoted by ��
�

�
��
�

�

Q

P
, is defined as : 

  ∏ ��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�
=��

�

�
��
�

�

=

s

1j s21i q

P
...

q

P

q

P

q

P

Q

P
 

where 
�
�

�

�

�
�

�

�

jq

P
 is the Legendre symbol. 

Remarks 1. If Q itself is an odd prime then the Jacob symbol and Legendre 
symbol are same  

(2) If gcd(P, Q) > 1, then 0
Q

P
=��

�

�
��
�

�
 

For,  gcd(P, Q) > 1  � qi | P for some i (1 ≤ i ≤ j) 

The corresponding Legendre symbol ��
�

�
��
�

�

iq

P
 = 0 and hence ��

�

�
��
�

�

Q

P
 = 0 

(3) If gcd(P, Q) = 1, then ��
�

�
��
�

�

Q

P
 = ± 1 

(4) If P is a quadratic residue mod Q, then P is a quadratic residue mod each 

prime qj dividing Q, so that 1
q

P

j

=
�
�

�

�

�
�

�

�
 for each j and hence ��

�

�
��
�

�

Q

P
 = 1.  

However ��
�

�
��
�

�

Q

P
= 1 does not imply that P is a quadratic residue of Q. 

Theorem 2.16 Let Q and Q′ be odd and positive, then  

(1) ��
�

�
��
�

�

Q

P
��
�

�
��
�

�
=��

�

�
��
�

�

©QQ

P

©Q

P
 

(2) ��
�

�
��
�

�
=��

�

�
��
�

�
��
�

�
��
�

�

Q

©PP

Q

©P

Q

P
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(3) If gcd(P, Q) = 1, then 1
Q

P

Q

P
2

2

=��
�

�
��
�

�
=

�
�

�

�

�
�

�

�
 

(4) If gcd(PP′, QQ′) = 1, then ��
�

�
��
�

�
=

�
�

�

�

�
�

�

�

©Q

©P

QQ

PP
21

21

 

(5) P′ ≡ P (mod Q)  � ��
�

�
��
�

�
=��

�

�
��
�

�

Q

P

Q

©P
 

Proof :- (1) Since Q and Q′ are odd, so QQ′ is odd.  Let Q = q1 q2…qr and Q′ 
= q′1 q′2…q′s where q1, q2…, qr, q′1…, q′s are all odd primes, not necessarily 
distinction then, we have, 

  QQ′ = q1 q2…qr q1′ q2′…qs′ 

Hence, by definition  

  ��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�

©q

P
...

©q

P

©q

P

q

P
...

q

P

q

P

©QQ

P

s21r21

 

              = ∏ �
�

�

�

�
�

�

�
∏ ��

�

�
��
�

�

==

s

1j j

r

1i i ©q

P

q

P
 

              = ��
�

�
��
�

�
��
�

�
��
�

�

©Q

P

Q

P
 

(2) we have : 

  ��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�

r21 q

©PP
...

q

©PP

q

©PP

Q

©PP
 

              = ��
�

�
��
�

�
∏ ��

�

�
��
�

�
=∏ ��

�

�
��
�

�

== i

r

1i i

r

1i i q

©P

q

P

q

©PP
  

             �
�

�

�

�
�

�

�
��
�

�
��
�

�
=��

�

�
��
�

�
��
�

�
��
�

�

p

ab

p

b

p

a
,symbolLegendreinΘ  
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              = ∏ ��
�

�
��
�

�
∏ ��

�

�
��
�

�

==

r

1i i

r

1i i q

©P

q

P
 

              = ��
�

�
��
�

�
��
�

�
��
�

�

Q

©P

Q

P
 

(3) We have  

��
�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�
=

�
�

�

�

�
�

�

�

Q

P

Q

P

Q

PP

Q

P2

  [By part (2)] 

               = 1  

 �
�

�

�

�
�

�

�
±=��

�

�
��
�

�
�= 1

Q

P
1)Q,P(Θ  

Similarly 1
Q

P

Q

P

Q

P
2

=��
�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�
 

(4) we have 

  
�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
=

�
�

�

�

�
�

�

�

21

2

21

1

21

21

QQ

P

QQ

P

QQ

PP
   [By part (2)] 

      = 
�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�
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�

�
�

�
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2

2

1

2

2

1

1

1

Q

P

Q

P

Q

P

Q

P
  [By part (1)] 

      = ��
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�
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�
��
�

�
��
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�
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�
�

�
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�
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�

�
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221

2

2

1

1

1

Q

P

Q

P

Q

P

Q

P

Q

P
 [By part (2)] 

      = 
�
�

�

�

�
�

�

�
=��

�

�
��
�

�
1

1

Q

P
1.1.1.1.

©Q

©P
  [By part (3)] 

(5) We have 

  P′ ≡ P (mod Q) and Q = q1 q2…qr 

�  P′ ≡ P(mod qi) ∀ i = 1, 2,…, r 

But in the case of Legendre symbol, we know that  
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if   a ≡ b (mod p), then ��
�

�
��
�

�
=��

�

�
��
�

�

p

b

p

a
 

Hence,  ��
�

�
��
�

�
=��

�

�
��
�

�

ii q

P

q

©P
 for i = 1, 2,…, r 

� ��
�

�
��
�

�
=��

�

�
��
�

�
�∏ ��

�

�
��
�

�
=∏ ��

�

�
��
�

�

== Q

P

Q

©P

q

P

q

©P r

1i i

r

1i i

 

This completes the proof.  

Theorem 2.17 If Q is positive and odd, then  

(1)   ��
�

�
��
�

� −
Q

1
= (−1)(Q−1)/2 and 

(2)   ��
�

�
��
�

�

Q

2
= 8)12Q()1( −−  

Proof :- We have 

  ∏ �
�

�

�

�
�

�

� −
=��

�

�
��
�

� −
=

s

1j jq

1

Q

1
     …(1) 

where Q = q1 q2…qs,       qi′s are prime, not necessarily distinct.  

Now in the case of Legendre’s symbol, we had proved that,  

��
�

�
��
�

� −
p

1
= (−1)(p−1)/2 

� 
�
�

�

�

�
�

�

� −

jq

1
= 2)1jq()1( −−  1 ≤ i ≤ s 

Hence, (1) becomes:  

  
�

−=−∏=��
�

�
��
�

� − =
−

−

=

s

1j
2/)1jq(

2/)1jq(s

1j
)1()1(

Q

1
  …(2) 
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Now, if a and b are odd, then  

  
2

)1b)(1a(

2

1b

2

1a

2

1ab −−
=�

	



�
�


 −
+

−
−

−
 

Since a and b are odd, so (a−1) and (b−1) are even, hence 
2

)1b)(1a( −−
 is a 

multiple of 2.  This implies that 

  ��
�

�
��
�

� −
+

−
≡

−
2

1b

2

1a

2

1ab
 (mod 2) 

Applying this repeatedly, we obtain  

  
2

1q...qq

2

1q
...

2

1q

2

1q s21s21 −
≡

−
++

−
+

−
 (mod 2) 

� 
2

1Q

2

1qs

1j

j −
≡�

−
=

(mod 2) 

� �
−

=
−

=

s

1j

i

2

1Q

2

1q
+ 2 λ for some integer λ. 

Putting in (2), we obtain  

  2

1Q
2

2

1Q

)1()1(
Q

1 −
λ+

−

−=−=��
�

�
��
�

� −
 

     This proves part (1) 

(2) we have 

  
�
�

�

�

�
�

�

�
∏=��

�

�
��
�

�

= j

s

1j q

2

Q

2
     …(1) 

But in the case of Legendre’s symbol, we had proved that 

  8)12p()1(
p

2 −−=��
�

�
��
�

�
 

�  
8)12

jq(

j

)1(
q

2 −
−=

�
�

�

�

�
�

�

�
  1 ≤ j ≤ s 
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so that (1) becomes :  

  
�

−=−∏=��
�

�
��
�

� =
−

−

=

s

1i
8/)12

jq(
8/)12

jq(s

1j
)1()1(

Q

2
  …(2) 

Now, if a and b are odd, then  

8

)1b)(1b)(1a)(1a(

8

)1b)(1a(

8

1b

8

1a

8

1ba 222222 +−+−
=

−−
=

�
�
	




�
�
�


 −
+

−
−

−
 

Since a, b are odd, so a−1, a + 1, b−1, b + 1 are all even and hence 

8

)1b)(1a( 22 −−
 is a multiple of 2 

� 
8

1ba

8

1b

8

1a 2222 −
≡

−
+

−
(mod 2) 

Applying this repeatedly, we obtain  

  
8

1q...qq

8

1q 2
s

2
2

2
1s

1j

2
j −

≡�
−

=
(mod 2) 

� �
−

≡
−

=

s

1j

22
j

8

1Q

8

1q
 (mod 2) 

�  �
−

=
−

=

s

1j

22
j

8

1Q

8

1q
+ 2λ for some integer λ. 

Hence, (2) yields : 

  8

12Q
2

8

12Q

)1()1(
Q

2 −
λ+

−

−=−=��
�

�
��
�

�
 and the proof is completed.  

Theorem 2.18 If P and Q are odd and positive and if gcd(P, Q) = 1, then : 

  2

1Q
.

2

1P

)1(
P

Q

Q

P
−−

−=��
�

�
��
�

�
��
�

�
��
�

�
 

(This is quadratic law of reciprocity for Jacobi symbol) 
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Proof :- Writing  P = ∏=∏
==

s

1j
i

r

1i
i qQandp , we have  

  ∏ ∏ �
�

�

�

�
�

�

�
∏ =

�
�

�

�

�
�

�

�
=��

�

�
��
�

�

= ==

s

1j

r

1i j

is

1j j q

p

q

P

Q

P
    …(1) 

By quadratic Law of reciprocity for Legendre Symbol we have 
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�
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�
�
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�
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�
�
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�
�
�

�
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�
�
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j
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�
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�
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�
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�
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1ip

i

j

j

i )1(
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q
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Putting this value in (1), we have : 
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�
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�

� −

==
−�

�
�

�
�
�
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1iq
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1ip
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1i
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1j)1(
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But, we have  

  
2

1p

2

1p

2

1q

2

1p is

1j
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1i

jir

1i

s

1j

−
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−
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and we had earlier proved  

  
2

1P

2

1p ir

1i

−
≡

−
�
=

(mod 2) 

and  
2

1Q

2

1q js

1j

−
≡

−
�
=

 (mod 2) 

which yields that 
2

1P

2

1p ir

1i

−
=

−
�
=

+ 2λ 
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and  
2

1Q

2

1q js

1j

−
=

−
�
=

 + 2λ′ 

For some integers λ and λ′ 

Putting these in (2), we obtain : 

  2

1Q
.

2

1P

)1(
P

Q

Q
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−��
�

�
��
�

�
=��
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�

�
 

or we can write 

  2

1Q
.

2

1P

)1(
P

Q

Q

P −−
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�

�
��
�

�
��
�

�
 

This completes the proof 

Example :- Find the value of ��
�

�
��
�

�
−

61

42
 or 

Check whether −42 is a quadratic residue or quadratic no-residue mod 61. 

Solution :- We have 
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 …(∗) 

Now, we have 
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and finally,    
��
�

�
��
�

�
��
�

�
��
�

�

−��
�

�
��
�

�
=��

�

�
��
�

� 2

60
.

2

6

)1(
7

61

61

7
 

          = ��
�

�
��
�

�
=��

�

�
��
�

� +
=��

�

�
��
�

�

7

5

7

556

7

61
 

          = ��
�

�
��
�

� +
=��

�

�
��
�

�
=−��

�

�
��
�

�

5

25

5

7
)1(

5

7
2

6
.

2

4

 

          = 1)1(
5

2
8

125

−=−=��
�

�
��
�

�
−

 

Putting all these in (∗), we have 

  ��
�

�
��
�

�
−

61

42
= (1) (−1) (1) (−1) = 1 

Hence −42 is quadratic residue mod 61. 

Alternatively, 
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  ��
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Since 19 and 61 are odd primes and 61 is of the form 4k + 1, so by quadratic 

Law of recipricity,  
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�
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4
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2
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�
��
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�
 

                      = 1 

Hence ,1
61

42
=��

�

�
��
�

� −
 so −42 is quadratic residue mod 61. 

The arithmetic in Zp 

We know that a linear congruence ax ≡ b mod (n) has a unique solution mod 
(n) if gcd(a, n) = 1.  Now if n is a prime p, then gcd(a, n) = gcd (a, p) is either 
1 or p; in the first case, we have a unique solution mod (p), while in the 
second case (where p | a), either every x is a solution (when p | b) or no x is a 
solution (when p |/ b). 

One can view this elementary result as saying that if the polynomial ax − b 
has degree d = 1 over Zp (that is, if a ≡/ 0 mod (p)), then it has at most one root 
in Zp.  Now in algebra we learn that a non-trivial polynomial of degree d, with 
real or complex coefficients, has at most  d distinct roots in R or C; it is 
reasonable to ask whether this is also true for the number system Zp, since we 
have just seen that it is true when d = 1.  Our first main theorem, due to 
Lagrange, states that this is indeed the case.  

Theorem 2.19 Let p be prime, and let f(x) = adxd +…+ a1x + a0 be a 
polynomial with integer coefficients, where ai ≡/  0 mod (p) for some i.  Then 
the congruence f(x) ≡ 0 mod (p) is satisfied by at most d congruence classes 
[x] ∈ Zp. 

Proof :-We use induction on d.  If d = 0 then f(x) = a0 with p not dividing a0, 
so there are no solutions of f(x) ≡ 0, as required.  For the inductive step, we 
now assume that d ≥ 1, and that all polynomials g(x) = bd−1 xd−1 +…+ b0 with 
some bi ≡ 0 have at most d−1 roots [x] ∈ Zp. 
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 If the congruence f(x) ≡ 0 has no solutions, there is nothing left to 
prove, so suppose that [a] is a solution; thus f(a) ≡ 0, so p divides f(a).  Now  

  f(x)−f(a) = � −=� −=�−�
====

d

0i

ii
i

d

0i

ii
i

d

0i

i
i

d

0i

i
i )ax(a)ax(aaaxa . 

For each i = 1,…, d we can put  

  xi − ai = (x −a) (xi−1 + axi−2 +…+ ai−2 x + ai−1), 

so that by taking out the common factor x−a we have 

  f(x) − f(a) = (x−a)g(x) 

for some polynomial g(x) with integer coefficients, of degree at most d−1.  
Now p cannot divide all the coefficients of g(x) : if it did, then since it also 
divides f(a), it would have to divide all the coefficients of f(x) = f(a) + (x−a) 
g(x), against our assumption.  We may therefore apply the induction 
hypothesis to g(x), so that at most d−1 classes [x] satisfy g(x) ≡ 0.  We now 
count classes [x] satisfying f(x) ≡ 0 : if any class [x] = [b] satisfies f(b) ≡ 0, 
then p divides both f(a) and f(b), so it divides f(b) − f(a) = (b−a) g(b); since p 
is prime, Lemma 2.1(b) implies that p divides b−a or g(b), so either [b] = [a] 
or g(b) ≡ 0.  There are at most d−1 classes [b] satisfying g(b) ≡ 0, and hence at 
most 1 + (d−1) = d satisfying f(b) ≡ 0, as required. 

Remarks :- 

1. Note that this theorem allows the possibility that ad = 0, so that f(x) has 
degree less than d; if so, then by deleting adxd we see that there are strictly 
fewer than d classes [x] satisfying f(x) ≡ 0.  The same argument applies if 
we merely have ad ≡ 0 mod (p). 

2. Even if ad ≡/  0, f(x) may still have fewer than d roots in Zp : for instance 
f(x) = x2 + 1 has only one root in Z2, namely the class [1], and it has no 
roots in Z3. 

3. The condition that ai ≡/  0 for some i ensures that f(x) yields a non-trivial 
polynomial when we reduce it mod (p).  If ai ≡ 0 for all i then all p classes 
[x] ∈ Zp satisfy f(x) ≡ 0, so the result will fail if d < p. 

4. In the theorem, it is essential to assume that the modulus is prime : for 
example, the polynomial f(x) = x2 − 1, of degree d = 2, has four roots in 
Z8, namely the classes [1], [3], [5] and [7].  

A useful equivalent version of Lagrange’s Theorem is the contrapositive : 

Let f(x) = adxd +…+ a1x + a0 be a polynomial with integer coefficients, and let 
p be prime.  If f(x) has more than d roots in Zp, then p divides each of its 
coefficients ai. 
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Lagrange’s Theorem tells us nothing new about polynomials f(x) of degree d 
≥ p : there are only p classes in Zp, so it is trivial that at most d classes satisfy 
f(x) ≡ 0.  The following result, useful in studying polynomials of high degree, 
is known as Fermat’s Little Theorem though it was also known to Leibniz, 
and the first published proof was given by Euler.  

Theorem 2.20 If p is prime and a ≡/  0 mod (p), then ap−1 ≡ 1 (mod p). 

Proof :- The integers 1, 2,…, p−1 form a complete set of non-zero residues 
(mod p).   

If a ≡/  0 (mod p) then xa ≡ ya implies x ≡ y, so that the integers a, 2a,…, 
(p−1)a lie in distinct classes (mod p).  None of these integers is divisible by p, 
so they also form a complete set of non-zero residues.  It follows that a, 2a,…, 
(p−1)a are congruent to 1, 2,…, p−1 in some order. (For instance, if p = 5 and 
a = 3 then multiplying the residues 1, 2, 3, 4 by 3 we get 3, 6, 9, 12, which are 
respectively congruent to 3, 1, 4, 2.)  The products of these two sets of 
integers must therefore lie in the same class, that is,  

 1 × 2 × … × (p−1) ≡ a × 2a ×…×(p−1)a (mod p), 

or equivalently  

  (p−1)! ≡ (p−1)! ap−1 (mod p). 

Since (p−1)! is coprime to p, divide through by (p−1)! and deduce that ap−1 ≡ 1 
mod (p). 

This theorem states that all the classes in Zp except [0] are roots of the 
polynomial xp−1 −1.  For a polynomial satisfied by all the classes in Zp, we 
simply multiply by x, to get xp−x : 

 Corollary :- It p is prime then ap ≡ a mod(p) for every integer a. 

Proof :- If a ≡/  0 then by above theorem ap−1 ≡ 1, so multiplying each side by 
a gives the result.  If a ≡ 0 then ap ≡ 0 also, so the result is again true. 

Note :- This corollary shows that if f(x) is any polynomial of degree d ≥ p, 
then by repeatedly replacing any occurrence of xp with x we can find a 
polynomial g(x) of degree less than p with the property that f(x) ≡ g(x) for all 
integers x.  In other words, when considering polynomials (mod p), it is 
sufficient to restrict attention to those of degree d < p.  Similarly, the 
coefficients can also be simplified by reducing them (mod p). 

These two results are very useful in dealing with large powers of integers.  

Example :- Let us find the least non-negative residue of 268 (mod 19).  Since 
19 is prime and 2 is not divisible by 19, we have p = 19 and a = 2, so that 218 
≡ 1 (mod 19).  Now 68 = 18 × 3 + 14, so 

  268 = (218)3 × 214 ≡ 13 × 214 ≡ 214 (mod 19). 
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Since 24 = 16 ≡ −3 (mod 19), we can write 14 = 4 × 3 + 2 and deduce that  

  214 = (24)3 × 22 ≡ (−3)3 × 22 ≡ −27 × 4 ≡ −8 × 4 ≡ −32 ≡ 6 
mod(19), so that 268 ≡ 6 (mod 19).  

Example :- We will show that a25 − a is divisible by 30 for every integer a.  
By factorising 30, we see that it is sufficient to prove that a25 − a is divisible 
by each of the primes p = 2, 3 and 5. Let us deal with p = 5 first,  applying 
abve Corollary twice, we have 

  a25 = (a5)5 ≡ a5 ≡ a (mod 5), 

so 5 divides a25 − a for all a.  Similarly a3 ≡ a (mod 3), so 

  a25 = (a3)8 a = a8 a = a9 = (a3)3 ≡ a3 ≡ a (mod 3), 

as required.  For p = 2 a2 ≡ a (mod 2)  

∴  a25 = (a2)12 a ≡ a12 a = (a2)6 a ≡ a6 a = (a2)3a 

            ≡ a3a = a4 = (a2)2 

            ≡ a2 ≡ a (mod 2). 

Example :- Let us find all the roots of the congruence 

  f(x) = x17 + 6x14 + 2x5 + 1 ≡ 0 (mod 5). 

Here p = 5, so by replacing x5 with x we can replace the leading term x17 = 
(x5)3 x2 with x3x2 = x5, and hence with x.  Similarly x14 is replaced with x2, 
and x5 with x, so giving the polynomial x + 6x2 + 2x + 1.  Reducing the 
coefficients (mod 5) gives x2 + 3x + 1.  Thus f(x) ≡ 0 is equivalent to the 
much simpler congruence  

  g(x) = x2 + 3x + 1 ≡ 0 (mod 5). 

Here we can simply try all five classes [x] ∈ Z5, or else note that g(x) ≡ 
(x−1)2; either way, we find that [x] = [1] is the only root of g(x) ≡ 0, so this 
class is the only root of f(x) ≡ 0. 

As another application of Fermat’s Little Theorem, we prove a result known 
as Wilson’s Theorem, though it was first proved by Lagrange in 1770 : 

Corollary :- An integer n is prime if and only if (n−1)! ≡ −1 (mod n) 

Proof :- Suppose that n is a prime p.  If p = 2 then (p−1)! = 1 ≡ −1 (mod p), as 
required, so we may assume that p is odd.  Define 
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  f(x) = (1−x) (2−x)…(p−1−x) + 1 −xp−1, 

a polynomial with integer coefficients.  This has degree d < p −1, since when 
the product is expanded, the two terms in f(x) involving xp−1 cancel.  If a = 1, 
2, …, p−1 then f(a) ≡ 0 mod (p): the product (1−a) (2−a)…(p−1−a) vanishes 
since it has a factor equal to 0, and 1−ap−1 ≡ 0 by Fermat’s Little Theorem.  
Thus f(x) has more than d roots (mod p), so its coefficients are all divisible by 
p.  In particular, p divides the constant term (p−1)! + 1, so (p−1)! ≡ −1.  

For the converse, suppose that (n−1)! ≡ −1 (mod n).  We then have (n−1)! ≡ 
−1 (mod m) for any factor m of n.  If m < n then m appears as a factor of 
(n−1)!, so (n−1)! ≡ 0 (mod m) and hence −1≡ 0 (mod m).  This implies that m 
= 1, so we conclude that n has no proper factors and is therefore prime.  

Theorem 2.21 Let p be an odd prime.  Then the quadratic congruence x2 + 1 ≡ 
0 (mod p) has a solution if and only if p ≡ 1 (mod 4). 

Proof :- Suppose that p is an odd prime, and let k = (p−1)/2.  In the product 

  (p−1)! = 1 × 2 ×…× k × (k + 1) ×…×(p−2) × (p−1), 

we have p−1 ≡ −1, p−2 ≡ −2,…, k + 1 = p − k ≡ −k (mod p), so by replacing 
each of the k factors          p − i with −i for i = 1, …, k we see that 

  (p−1)! ≡ (−1)k.(k!)2 (mod p). 

Now Wilson’s Theorem gives (p−1)! ≡ −1, so (−1)k (k!)2 ≡ −1 and hence (k!)2 
≡ (−1)k+1.                        If p ≡ 1 (mod 4) then k is even, so (k!)2 ≡ −1 and 
hence x = k! is a solution of x2 + 1 ≡ 0 (mod p). 

On the other hand, suppose that p ≡ 3 (mod p), so that k = (p−1)/2 is odd.  If x 
is any solution of x2 + 1 ≡ 0 (mod p), then x is coprime to p, so Fermat’s Little 
Theorem gives xp−1 ≡ 1 (mod p).  Thus 1 ≡ (x2)k ≡ (−1)k ≡ −1 (mod p), which 
is impossible since p is odd, so there can be no solution. 

Units in Zn 

Definition :- A multiplicative inverse for a class [a] ∈ Zn is a class [b] ∈ Zn 
such that [a] [b] = [1].  A class [a] ∈ Zn is a unit if it has a multiplicative 
inverse in Zn.  (In this case, we sometimes say that the integer a is a unit (mod 
n), meaning that ab ≡ 1 (mod n) for some integer b.) 

Lemma :-[a] is a unit in Zn if and only if gcd(a, n) = 1. 

Proof :- If [a] is a unit then ab = 1 + qn for some integers b and q; any 
common factor of a and n would therefore divide 1, so gcd(a, n) = 1.  
Conversely, if gcd(a, n) = 1 then 1 = au + nv for some u and v, so [u] is a 
multiplicative inverse of [a]. 

Example :- The units in Z8 are [1], [3], [5] and [7] : in fact [1] [1] = [3] [3] = 
[5] [5] = [7] [7] = [1], so each of these units is its own multiplicative inverse.  
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In Z9, the units are [1], [2], [4], [5], [7] and [8]: for instance [2] [5] = [1], so 
[2] and [5] are inverses of each other.  

The group of units of Un 
Theorem 2.22 For each integer n ≥ 1, the set Un forms a group under 
multiplication mod (n), with identity element [1]. 

Proof :- We have to show that Un satisfies the group axioms, namely closure, 
associativity, existence of an identity and of inverses.  To prove closure, we 
have to show that the product [a] [b] = [ab] of two units [a] and [b] is also a 
unit.  If [a] and [b] are units, they have inverses [u] and [v] such that [a] [u] = 
[au] = [1] and [b] [v] = [bv] = [1]; then [ab] [uv] = [aubv] = [au] [bv] = [1]2 = 
[1], so [ab] has inverse [uv], and is therefor a unit.  This proves closure.  
Associativity asserts that [a] ([b][c]) = ([a] [b]) [c] for all units [a], [b] and [c]; 
the left-and right-hand sides are the classes [a(bc)] and [(ab)c], so this follows 
from the associativity property a(bc) = (ab)c in Z.  The identity element  of Un 
is [1], since [a][1] = [a] = [1][a] for all [a] ∈ Un.  Finally, if [a] ∈ Un then by 
definition there exists [u] ∈ Zn such that [a] [u] = [1]; now [u] ∈ Un (because 
the class [a] satisfies [u][a] = [1]), so [u] is the inverse of [a] in Un. 

Definition :- We say that a group G is abelian if its elements commute, that is, 
gh = hg for all g, h ∈ G.  

Lemma :- Un is an abelian group under multiplication mod (n). 

Proof of Lemma :-Let [a], [b] ∈Zn, then we have to prove that [a] [b] = [b] 
[a]  

Now  [a] [b] = [a b] = [b a]   (by commutativity in Z)  

             = [b] [a] 

          

Definition :- If G is a finite group with an identity element e, the order of an 
element g∈G is the least integer k > 0 such that gk = e; then the integers l such 
that gl = e are the multiples of k. 

Example :- In U5 the element 2 has order 4: its powers are 21 ≡ 2, 22 ≡ 4, 23 ≡ 
3 and 24 ≡ 1 (mod 5), so k = 4 is the least positive exponent such that 2k = 
1(the identity element) in U5.  Similarly, the element 1 has order 1, while the 
elements 3 and 4 have orders 4 and 2 respectively. 

Example :- In U8, the elements, 1, 3, 5, 7 have orders 1, 2, 2, 2 respectively.  

Lemma :- If l and m are coprime positive integers, then 2l
 − 1 and 2m −1 are 

coprime. 

Proof :- Let n be the highest common factor of 2l −1 and 2m −1.  Clearly n is 
odd, so 2 is a unit  (mod n).  Let k be the order of the element 2 in the group 
Un.  Since n divides 2l −1 we have 2l = 1 in Un, so k divides l.  Similarly k 
divides m, so k divides gcd(l, m) = 1.  Thus k = 1, so the element 2 has order 1 
in Un.  This means that 21 ≡ 1 mod(n), so n = 1, as required.  
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Corollary :- Distinct Mersenne numbers are coprime. 

Proof :- In above lemma if we take l and m to be distinct primes we see that 
Ml = 2l−1 and            Mm = 2m−1  are coprime.  

Primitive roots  

Definition :- If Un is cyclic then any generator g for Un is called a primitive 
root (mod n).  This means that g has order equal to the order φ(n) of Un, so 
that the powers of g yield all the elements of Un.  For instance, 2 and 3 are 
primitive roots (mod 5), but there are no primitive roots (mod 8) since U8 is 
not cyclic.  

Finding primitive roots in Un (if they exist) is a non-trivial problem, and there 
is no simple solution.  One obvious but tedious method is to try each of then 
φ(n) units a ∈ Un in turn, each time computing powers ai (mod n) to find the 
order of a in Un; if we find an element a of order φ(n) then we know that this 
must be a primitive root.  The following result is a rather more efficient test 
for primitive roots : 

Theorem 2.23 An element a ∈ Un is a primitive root if and only if aφ(n)/q ≠ 1 in 
Un for each prime q dividing φ(n). 

Proof :- If a is a primitive root, then it has order |Un| = φ(n), so ai ≠ 1 for all i 
such that 1 ≤ i < φ(n); in particular, this applies to i = φ(n)/q for each prime q 
dividing n. 

Conversly, if a is not a primitive root, then its order k must be a proper factor 
of φ(n), so φ(n)/k > 1.  If q is any prime factor of φ(n)/k, then k divides φ(n)/q, 
so that aφ(n)/q = 1 in Un, against our hypothesis.  Thus a must be a primitive 
root. 

Example :- Let n = 11, and let us see whether a = 2 is a primitive root (mod 
11).  Now φ(11) = 11−1 = 10, which is divisible by the primes q = 2 and q = 5, 
so we take φ(n)/q to be 5 and 2 respectively.  Now 25, 22 ≡/  1 (mod 11), so 
above theorem implies that 2 is a primitive root (mod 11).  To verify this, note 
that in U11 we have 

  21 = 2, 22 = 4, 23 = 8, 24 = 5, 25 = 10,       

  26 = 9, 27 = 7, 28 = 3, 29 = 6, 210 = 1; 

thus 2 has order 10, and its powers give all the elements of U11.  If we apply 
above theorem with  a = 3, however, we find that 35 = 243 ≡ 1 (mod 11), so 3 
is not a primitive root (mod 11): its powers are 3, 9, 5, 4 and 1. 

Example :- Let us find a primitive root (mod 17).  We have φ(17) = 16, which 
has only q = 2 as a prime factor.  Above theorem therefore implies that an 
element a ∈ U17 is a primitive root if and only if a8 ≠ 1 in U17.  Trying a = 2 
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first, we have 28 = 256 ≡ 1 (mod 17), so 2 is not a primitive root.  However, 38 
= (34)2 ≡ (−4)2 = 16 ≡/ 1 (mod 17), so 3 is a primitive root. 

Example :- To demonstrate the above theorem  also applies when n is 
composite, let us take n = 9.  We have φ(9) = 6, which is divisible by the 
primes q = 2 and q = 3, so that φ(n)/q is 3 and 2 respectively.  Thus an element 
a ∈ U9 is a primitive root if and only if a2, a3 ≠ 1 in U9.  Since 22,  23 ≡/  1 
(mod 9), we see that 2 is a primitive root. 

Theorem 2.24 If p is prime, then the group Up has φ(d) elements of order d 
for each d dividing p−1.  Before proving this, we deduce. 

Proof of the Theorem :- For each d dividing p−1 let us define 

  Ωd = {a ∈ Up| a has order d} and ω(d) = |Ωd|, 

the number of elements of order d in Up.  Our aim is to prove that ω(d) = φ(d) 
for all such d.  The order of each element of Up divides p−1, so the sets Ωd 
form a partition of Up and hence  
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ω(d) = p−1. 

Also  �
−1| pd

φ(d) = p−1, 

so  �
−1| pd

(φ(d) − ω(d)) = 0. 

If we can show that ω(d) ≤ φ(d) for all d dividing p−1, then each summand in 
this expression is non-negative; since their sum is 0, the summands must all be 
0, so ω(d) = φ(d), as required.  

The inequality ω(d) ≤ φ(d) is obvious if Ωd is empty, so assume that Ωd 
contains an element a.  By the definition of Ωd, the powers ai = a, a2,…, ad (= 
1) are all distinct, and they satisfy (ai)d = 1, so they are d distinct roots of the 
polynomial f(x) = xd −1 in Zp; But f(x) has at most deg(f) = d roots in Zp, so 
these are a complete set of roots of f(x).  We shall show that Ωd consists of 
those roots ai with gcd(i, d) = 1.  If b ∈ Ωd then b is a root of f(x). so b = ai for 
some i = 1, 2,…, d.  If we let j denote gcd(i, d), then  

  bd/j  = aid/j = (ad)i/j = 1i/j = 1 

in Up; but d is the order of b, so no lower positive power of b than bd can be 
equal to 1, and hence j = 1.  Thus every element b of order d has the form ai 
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where 1 ≤ i ≤ d and i is coprime to d.  The number of such integers i is φ(d), so 
the number ω(d) of such elements b is at most φ(d), and the proof is complete.       

Corollary :- If p is prime then the group Up is cyclic. 

Proof :- Putting d = p −1 in above therorem we see that there are φ(p−1) 
elements of order p−1 in Up.  Since φ(p−1) ≥ 1, the group contains at least one 
element of this order.  Now Up has order φ(p) = p−1, so such an element is a 
generator for Up, and hence this group is cyclic.  

Example :- Let p = 7, so Up = U7 = {1, 2 3, 4, 5, 6}.  The divisors of p−1 = 6 
are d = 1, 2, 3 and 6, and the sets of elements of order d in U7 are respectively 
{1}, {6}, {2, 4} and {3, 5}; thus the numbers of elements of order d are 1, 1, 2 
and 2 respectively, agreeing with the values of φ(d).  To verify that 3 is a 
generator, note that 

  31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 

in U7, so every element of U7 is a power of 3. 

The group ��
� , where p is an odd prime  

Theorem 2.25 If p is an odd prime, then ep
U  is cyclic for all e ≥ 1.  

Proof :- We have already proved the case e = 1, so we may assume that e ≥ 2.  
We use the following strategy to find a primitive root mod pe: 

(a) first we pick a primitive root g (mod p)  

(b) next we show that either g or g + p is a primitive root mod (p2); 

(c) finally we show that if h is any primitive root mod p2, then h is a primitive 
root mod pe for all     e ≥ 2. 

Since p is prime, so we have a primitive root g (mod p).  Thus gp−1 ≡ 1 (mod 
p), but gi ≡/ 1 (mod p) for 1 ≤ i < p −1.  We now proceed to step (b). 

Since gcd(g, p) = 1 we have gcd (g, p2) = 1, so we can consider g as an 
element of 2p

U .  If d denotes the order of g (mod p2), then Euler’s theorem 

implies that d divides φ(p2) = p(p−1).  By definition of d, we have gd ≡ 1 (mod 
p2), so gd ≡ 1 (mod p); but g has order p−1 (mod p), so p−1 divides d.  Since p 
is prime, these two facts imply that either d = p(p−1) or d = p −1.  If d = 
p(p−1) then g is a primitive root (mod p2), as required, so assume that d = p 
−1.  Let  h = g + q.  Since h ≡ g (mod p), h is a primitive root (mod p), so 
arguing as before we see that h has order p(p−1) or p−1 in 2p

U .  Since gp−1 ≡ 

1 (mod p2), the Binomial Theorem gives 

hp−1 = (g + p)p−1 = gp−1 + (p−1) gp−2p +… ≡ 1−pgp−2 (mod p2), 
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where the dots represent terms divisible by p2.  Since g is coprime to p, we 
have pgp−2 ≡/  0 (mod p2) and hence hp−1 ≡/ 1 (mod p2).  Thus h does not have 
ord a p − 1 in 2p

U so it must have order p(p−1)  and is therefore a primitive 

root.   This completes step (b).   

Now we consider step (c).  Let h be any primitive root (mod p2).  We will 
show, by induction on e, that h is a primitive root mod (pe) for all e ≥ 2.  
Suppose, then, that h is a primitive root mod (pe) for some e ≥ 2, and let d be 
the order of h (mod pe+1).  An argument similar to that at the beginning of step 
(b) shows that d divides φ(pe+1) = pe ((p−1) and is divisible by φ(pe) = pe−1 
(p−1), so d = pe (p−1) or d = pe−1 (p−1).  In the first case, h is a primitive root 
(mod pe+1), as required, so it is sufficient to eliminate the second case by 

showing that )1p(1eph −−
≡/  1 (mod pe+1). 

Since h is a primitive root mod (pe), it has order φ(pe) = pe−1 (p−1) in ep
U , so 

)1p(2eph −−
 ≡/  1 (mod pe).  However pe−2 (p−1) = φ(pe−1), so )1p(2eph −−

≡ 1 (mod 
pe−1) by Euler’s Theorem.  Combining these two results, we see that 

)1p(2eph −−
= 1 + kpe−1 where k is coprime to p, so the Binomial Theorem gives  

  )1p(1eph −−
 = (1 + kpe−1)p 

       = 1 + ( )p
1  kpe−1 + ( )p

2 (kpe−1)2 +… 

       = 1 + kpe + 
2

1
k2 p2e−1 (p−1) +… 

The dots here represent terms divisible by (pe−1)3 and hence by pe+1, since 3(e 
−1) ≥ e + 1 for e ≥ 2, so 

  )1p(1eph −−
≡ 1 + kp3 + 

2

1
k2p2e−1 (p−1) (mod pe+1). 

Now p is odd, so the third term k2 p2e−1(p−1)/2 is also divisible by pe+1, since 
2e − 1 ≥ e + 1 for e ≥ 2.  Thus 

  )1p(1eph −−
≡ 1 + kpe mod (pe+1). 

Since p does not divide k, we therefore have )1p(1eph −−
≡/  1 mod (pe+1), so step 

(c) is complete.  (Notice where we need p to be od: if p = 2 then the third term 
k2 p2e−1(p−1)/2 = k222e−2 is not divisible by 2e+1 when e = 2, so the first step of 
the induction argument fails.) 

Example :- Let p = 5.  We have seen that g = 2 is a primitive root (mod 5), 
since it has order  φ(5) = 4 as an element of U5. If we regard g = 2 as an 
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element of 2p
U  = U25, then by the above argument its order d in U25 must be 

either p(p−1) = 20 or p−1 = 4.  Now 24 = 16 ≡/ 1 (mod 25), so d ≠ 4 and hence 
d = 20.  Thus g = 2 is a primitive root (mod 25).  (One can check this directly 
by computing the powers 2, 22,…, 220 (mod 25), using 210 = 1024 ≡ −1 (mod 
25) to simplify the calculations.)  Suppose instead that we had chosen g = 7; 
this is also a primitive root (mod 5), since  7 ≡ 2 (mod 5), but it is not a 
primitive root (mod 25): we have 72 = 49 ≡ −1 (mod 25), so 74 ≡ 1 and hence 
7 has order 4 in U25.  Step (b) guarantees that in this case, g + p = 12 must be a 
primitive root.   

The group e2
U  

Theorem 2.26 The group e2
U is cyclic if and only if e = 1 or e = 2.  

Proof :- The groups U2 = {1} and U4 = {1, 3} are cyclic, generated by 1 and 
by 3, so it is sufficient to show that e2

U  has no elements of order φ(2e)  = 2e−1 

by showing that  

  
2e2a

−
 ≡ 1 (mod 2e)      

  …(1) 

for all odd a.  We prove this by induction on e.  For the lowest value e = 3, by 
(1) we have that                 a2 ≡ 1 (mod 8) for all odd a, and this is true since if 
a = 2b + 1 then a2 = 4b(b+1) +1 ≡1 (mod 8).  If we assume (1) for some 
exponent e ≥ 3, then for each odd a we have  

  
2e2a

−
 = 1 + 2ek 

for some integer k.  Squaring, we get 

  
2)1e(2a

−+
= (1 + 2ek)2 = 1 + 2e+1 k + 22e k2 = 1 + 2e+1(k + 2e−1 k2) 

≡ 1 (mod 2e+1),  

which is the required form of (1) for exponent  e + 1.  Thus (1) is true for all 
integers e ≥ 3, and the proof is complete.  

Lemma :-  2n+2 
n25(| −1) for all n ≥ 0. 

Proof :- We use induction on n.  The result is trivial for n = 0.  Suppose it is 
true for some n ≥ 0.  Now 

  
1n25

+
−1 = ),15)(15(1)5(

n2n22n2 +−=−  
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with 2n+2 | (
n25 −1) by the induction hypothesis, and with 2 | (

n25  + 1) since 
n25  ≡ 1 (mod 4).  Combining the powers of 2 we get 2n+3 | (

1n25
+

−1) as 
required. 

Theorem 2.27 If e ≥ 3 then e2
U  = { µ  5i | 0 ≤ i < 2e−2}. 

Proof :- Let m be the order of the element 5 in e2
U .  By Euler’s Theorem, m 

divides φ(2e) = 2e−1, so m = 2k for some k ≤ e −1.  Above theorem  implies that 
e2

U  has no elements of order   2e−1 so k ≤ n−2.  Putting n = e−3 in the above 

theorem we see that 2e−1 | (
3e25

−
−1), so ≡/

−3e25  1 (mod 2e) and hence k > e − 
3.  Thus k = e −2, so m = 2e−2.  This means that 5 has 2e−2 distinct powers 5i (0 
≤ i < 2e−2) in e2

U .  Since 5 ≡ 1 (mod 4), these are all represented by integers 

congruent to 1 mod (4). This accounts for exactly half of the 2e−1 elements 1, 
3, 5,…,  2e −1 of e2

U , and the other half, represented by integers congruent to 

−1 (mod 4), must be the elements of the form −5i.  This shows that every 
element has the form ± 5i for some i = 0, 1,…, 2e−2−1, as required.  

The existence of primitive roots 

Lemma :- If n = rs where r and s are coprime and are both greater than 2, then 
Un is not cyclic.  

Proof of Lemma :- Since gcd(r, s) = 1 we have φ(n) = φ(r) φ(s) .  Since r, s > 
2, both φ(r) and φ(s) are even.  So φ(n) is divisible by 4.  It follows that the 
integer e = φ(n)/2 is divisible by both φ(r) and φ(s).  If a is a unit (mod n), then 
a is a unit (mod r) and also a unit (mod s), so aφ(r) ≡ 1 (mod r) and aφ(s) ≡ 1 
(mod s) by Euler’s Theorem.  Since φ(r) and φ(s) divide e, we therefore have 
ae ≡ 1 (mod r), that is ae ≡ 1 (mod s).  Since r and s are coprime, this implies 
that ae ≡ 1 (mod rs), that is ae ≡ 1 (mod n).  Thus every element of Un has 
order dividing e, and since e < φ(n), this means that there is no primitive root 
(mod n).   

Theorem 2.28 The group Un is cyclic if and only if  

  n = 1, 2, 4, pe or 2pe, 

where p is an odd prime.     

Proof :- The cases n = 1, 2 and 4 are trivial, and we have dealt with the odd 
prime-powers, so we may assume that n = 2pe where p is an odd prime.  Now 
φ(n) = φ(2) φ(pe) = φ(pe).  Therefore there is a primitive root g (mod pe).  Then 
g + pe is also a primitive root (mod pe), and one of g and g + pe is odd, so there 
is an odd primitive root h (mod pe).  We will show that h is a primitive root 
(mod 2pe).  By its construction, h is coprime to both 2 and pe, so h is a unit 
(mod 2pe).  If hi ≡ 1 (mod 2pe), then certainly hi ≡ 1 (mod pe); since h is a 
primitive root (mod pe), this implies that φ(pe) divides i.  Since φ(pe) = φ(2pe), 
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this shows that φ(2pe) divides i, so h has order φ(2pe) in ep
U

2
 and is therefore 

a primitive root.   

Conversely, if n ≠1, 2, 4, pe or 2pe, then either  

(a) n = 2e where e ≥ 3, or  

(b) n = 2e pf where e ≥ 2, f ≥ 1 and p is an odd prime, or  

(c) n is divisible by at least two odd primes. 

We have already proved that in case (a), Un is not cyclic.   

In case (b), in the above lemma,  we can take r = 2e and s = pf, while in 
case (c) we can take r = pe | n for some odd prime p dividing n, and s = n/r.  In 
either case, n = rs where r and s are coprime and greater than 2, so above 
lemma shows that Un is not cyclic.   

Example :- We know that g = 2 is a primitive root (mod 5e) for all e ≥ 1.  
Now g is even, so   h = 2 + 5e is an odd primitive root (mod 5e).  Using the 
above theorem we see that h is also a primitive root (mod 2.5e).  For instance, 
7 is a primitive root (mod 10), and 27 is a primitive root (mod 50). 

The group of quadratic residues  

Definition :- An element a ∈ Un is a quadratic residue (mod n) if a = s2 for 
some s ∈ Un; the set of such quadratic residues is denoted by Qn.  For small n 
one can determine Qn simply by squaring all the elements s ∈ Un. 

Example 7.1 Q7 = {1, 2, 4} ⊂⊂⊂⊂ U7, while Q8 = {1} ⊂⊂⊂⊂ U8. 
Theorem 2.29 Let n = n1…nk where the integers ni are mutually coprime, and 
let f(x) be a polynomaial with integer coefficients.  Supose that for each i = 
1,…, k there are Ni congruence classes x ∈ Zn, such f(x) ≡ 0 (mod ni).  Then 
there are N = N1…Nk classes x ∈ Zn such that f(x) ≡ 0 (mod n). 

Proof :- Since the moduli ni are mutually coprime, we have f(x) ≡ 0 (mod n) if 
and only if f(x) ≡ 0 (mod ni) for all i.  Thus each class of solutions x ∈ Zn of 
f(x) ≡ 0 (mod n) determines a class of solutions x = xi ∈ 

inZ  of f(xi) ≡ 0 (mod 

ni) for each i.  Conversely, if for each i we have a cass of solutions xi ∈ inZ  of 

f(xi) ≡ 0 (mod ni), then by the Chinese Remainder Theorem there is a unique 
class x ∈ Zn satisfying x = xi (mod ni) for all i, and this class satisfies f(x) ≡ 0 
(mod n).  Thus there is a one-to-one correspondence between classes x ∈ Zn 
satisfying f(x) ≡ 0 (mod n), and k-tuples of classes xi ∈ 

inZ  satisfying               

f(xi) ≡ 0 (mod ni) for all i.  For each i there are Ni choices for the class xi ∈ 

inZ , so there are N1…Nk such k-tuples and hence this is the number of classes 

x ∈ Zn satisfying f(x) ≡ 0 (mod n). 

Example :- Putting f(x) = x2−1, let us find the number N of classes x ∈ Zn 
satisfying x2 ≡ 1 (mod n).  We first count solutions of x2 ≡ 1 (mod pe), where p 
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is prime.  If p is odd, then there are just two classes of solutions: clearly the 
classes x ≡ ± 1 both satisfy x2 ≡ 1, and conversely if x2 ≡ 1 then pe divides            
x2 − 1 = (x−1) (x+1) and hence (since p > 2) it divides x −1 or x+1, giving           
x ≡ ±1.  If pe = 2 or 4 then there are easily seen to be one or two classes of 
solutions, but if pe = 2e ≥ 8 then a similar argument shows that there are four, 
given by x ≡ ± 1 and x ≡ 2e−1 ±1; for any solution x, one of the factors x ± 1 
must be congruent to 2 (mod 4), so the other factor must be divisible by 2e−1.  
Now in general let n have prime-power factorization n1…nk, where ni = ie

ip  
and each ei ≥ 1.  We have just seen that for each odd pi there are Ni = 2 classes 
in 

inZ  of solutions of x2 ≡ 1 (mod ni) whereas if  pi = 2 we may have Ni = 1, 

2, or 4, depending on ei.  By above theorem there are  N = N1…Nk classes in 
Zn of solutions of x2 ≡ 1 (mod n), found by solving the simultaneous 
congruences x2 ≡ 1 (mod ni).  Substiutiting the values we have obtained for Ni, 
we therefore have   

  ( )
�
�
�

��
�

�

≡

≡

= −

+

.otherwise2

4mod2nif2

),8(mod0nif2

N
k

1k

1k

 

where k is the number of distinct primes dividing n.  For instance, if n = 60 = 
22.3.5 then k = 3 and there are 2k = 8 classes of solutions, namely x ≡ ± 1, ±11, 
±19, ±29 (mod 60). 

Theorem 2.30 Let k denote the number of distinct primes dividing n.  If a ∈ 
Qn, then the number N of elements t ∈ Un such that t2 = a is given by  

  ( )
�
�
�

��
�

�

≡

≡

= −

+

.otherwise2

4mod2nif2

),8(mod0nif2

N
k

1k

1k

 

Proof :- If a ∈ Qn then s2 = a for some s ∈ Un.  Any element t ∈ Un has the 
form t = sx for some unique x ∈ Un, and we have t2 = a if and only if x2 = 1 in 
Un.  Thus N is the number of solutions of x2 = 1 in Un, the above example 
gives the required formula for N. 

Theorem 2.31 Qn is a subgroup of Un. 

Proof :- We need to show that Qn contains the identity element of Un, and is 
closed under taking products and inverses.  Firstly, 1 ∈ Qn since 1 = 12 with 1 
∈ Un.  If a, b ∈ Qn then a = s2 and b = t2 for some s, t ∈ Un, so ab = (st)2 with 
st ∈ Un, giving ab ∈ Qn.  Finally, if a ∈ Qn then a = s2 for some s ∈ Un; since 
a and s are units (mod n) they have inverses a−1 and s−1 in Un, and                       
a−1 = (s−1)2so that a−1 ∈ Qn. 
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Theorem 2.32 Let n > 2, and suppose that there is a primitive root g (mod n); 
then Qn is a cyclic group of order φ(n)/2, generated by g2, consisting of the 
even powers of g. 

Proof :- Since n > 2, φ(n) is even.  The elements a ∈ Un are the powers gi for i 
= 1,…, φ(n), with gφ(n) = 1.  If i is even, then a = gi = (gi/2)2 ∈ Qn.  Conversely, 
if a ∈ Qn then a = (gj)2 for some j, so i ≡ 2j (mod φ(n)) for some j; since φ(n) is 
even, this implies that i is even.  Thus Qn consists of the even powers of g, so 
it is the cyclic group of order φ(n)/2 generated by g2. 

 

Quadratic residues for prime-power moduli 

Theorem 2.33 Let p be an odd prime, let e ≥ 1, and let a ∈ Z. Then a ∈ ep
Q if 

and only if a ∈ Qp. 

Proof :- We know that there is a primitive root g (mod pe), so with n = pe we 
see that ep

Q  consists of the even powers of g.  Now g, regarded as an element 

of Up, is also a primitive root (mod p), and with n = p we know that Qp also 
consists of the even powers of g.  Thus a ∈ ep

Q  if and only if  a ∈ ep
Q .  This 

completes the proof. 

Note :- For odd primes p, we can find square roots in ep
U  for e ≥ 2 by 

applying the iterative method to the polynomial f(x) = x2 − a: we use a square 
root of a mod (pi) to find the square roots mod (pi+1).  Suppose that a ∈ Qp, 
and r is a square root of a mod (pi) for some i ≥ 1; thus r2 ≡ a  mod (pi), say r2 
= a + piq.  If we put s = r + pik, where k is as yet unknown, then s2 = r2 +2rpik 
+ p2ik2 ≡ a + (q + 2rk) pi mod (pi+1), since 2i ≥ i + 1.  Now gcd (2r, p) = 1, so 
we can choose k to satisfy the linear congruence q + 2rk ≡ 0 (mod p), giving s2 
≡ a (mod pi+1) as required.  An element a ∈ 1ip

Q +  has just two square roots in 

1ip
U +  for odd p, so these must be ±s. It follows that if we have a square root 

for a in Up, then we can iterate this process to find its square roots in ep
U  for 

all e. 

Example :- Let us take a = 6 and pe = 52.  In U5 we have a = 1 = 12, so we can 
take r = 1 as a square root (mod 5).  Then r2 = 1 = 6 + 5.(−1), so q = −1 and we 
need to solve the linear congruence −1 + 2k ≡ 0 (mod 5).  This has solution k 
≡ 3 (mod 5), so we take s = r + pik = 1 + 5.3 = 16, and the square roots of 6 in 

25
Z  are given by ±16, or equivalently ±9 (mod 52).  If we want the square 

roots of 6 in 35
Z  we repeat the process: we can take r = 9 as a square root 

(mod 52), with r2 = 81 = 6 + 52.3, so q = 3; solving 3 + 18k ≡ 0 (mod 5) we 
have k ≡ −1, so s = 9 + 52.  (−1) = −16, giving square roots ±16 (mod 53). 
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Theorem 2.34 Let a be an odd integer.  Then  

(a) a ∈ Q2; 

(b) a ∈ Q4 if and only if a ≡ 1 (mod 4); 

(c) if e ≥ 3, then a ∈ e2
Q  if and only if a ≡ 1 (mod 8). 

Proof :- Parts (a) and (b) are obvious: squaring the elements of U2 = {1} ⊂ Z2 
and of U4 = {1, 3} ⊂ Z4, we see that Q2 = {1} and Q4 = {1}.  For part (c) we 
use the theorem which states that the elements of e2

U  all have the form ±5i 

for some i; squaring, we see that the quadratic residues are the even powers of 
5.  Since 52 ≡ 1 (mod 8), these are all represented by integers a ≡ 1 (mod 8).  
Now both the even powers of 5 and the elements a ≡ 1 (mod 8) account for 
exactly one quarter of the classes in e2

Q ; since the first set is contained in the 

second, these two sets are equal. 

Example :- Q8 = {1}, Q16 = {1, 9}, Q32 = {1, 9, 17, 25}, and so on. 

Note :-  One can find square roots in e2
Q  by adapting the iterative algorithm 

given earlier for odd prime-powers.  Suppose that a ∈ i2
Q  for some i ≥ 3, say 

r2 = a + 2iq.  If we put s = r + 2i−1k, then s2 = r2 + 2irk + 22(i−1)k2 ≡ a + (q + rk) 
2i (mod 2i+1), since 2(i−1) ≥ i + 1.  Now r is odd, so we can choose k = 0 or 1 
to make q + rk even, giving s2 ≡ a (mod 2i+1).  Thus s is a square root of a in 

1i2
U + .  There are four square roots of a in 1i2

U + , and these have the form t = 

sx, where x = ±1 or 2i ± 1 is a square root of 1.  Since a ≡ 1 (mod 8), we can 
start with a square root r = 1 for a in 32

U , and then by iterating this process 

we can find the square roots of a in e2
U  for any e.  

Example :- Let us find the square roots of a = 17 (mod 25); these exist since 
17 ≡ 1 (mod 8).  First we find a square root (mod 24).  Taking r = 1 we have r2 
= 12 = 17 + 23. (−2), so q = −2; taking k = 0 makes q + rk = −2 even, so s = r + 
22k = 1 is a square root of 17 (mod 24).  Now we repeat this process, using r = 
1 as a square root (mod 24) to find a square root s (mod 25).  We have r2 = 1 = 
17 + 24. (−1), so now q = −1; taking k = 1 makes q + rk = 0 even, so s = r + 
23k = 9 is a square root of 17 mod (25).  The remaining square roots t are 
found by multiplying s = 9 by −1 and by 24 ± 1 = ± 15, so we have ±7, ±9 as 
the complete set of square roots of 17 (mod 25). 

Quadratic residues for arbitrary moduli 

Theorem 2.35 Let n = n1n2…nk, where the integers ni are mutually coprime.  
Then a ∈ Qn if and only if a ∈ 

inQ  for each i. 

Proof :- If a ∈ Qn then a ≡ s2 (mod n) for some s ∈ Un.  Clearly a ≡ s2 (mod 
ni) for each i, with s coprime to ni, so a ∈

inQ .  Conversely, if a ∈ 
inQ  for 
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each i then there exist elements si ∈ 
inU  such that a = ≡ 2

is (mod ni).  By the 

Chinese Remainder Theorem there is an element s ∈ Zn such that  s ≡ si                
(mod ni) for all i.  Then s2 ≡ 2

is  ≡ a (mod ni) for all i, and hence s2 ≡ a (mod n) 
since the moduli ni are comprime, so a ∈ Qn. 

We can now answer the questionof whether a ∈ Qn for arbitrary moduli n: 

Theorem 2.36 Let a ∈ Un.  Then a ∈ Qn if and only if  

(1) a ∈ Qp for each odd prime p dividing n, and  

(2) a ≡ 1 (mod 4) if 22 | n, and a ≡ 1 (mod 8) if 23 | n. 

(Note that condition (2) is relevant only when n is divisible by 4; in all other 
cases we can ignore it.) 

Proof :- By Theorem 2.36, a ∈ Qn if and only if a ∈ ep
Q  for each prime-

power pe in the factorisation of n.  For odd primes p this is equivalent to              
a ∈ Qp, by Theorem 2.33, giving condition (1); for p = 2 it is equivalent to 
condition (2), by Theorem 2.34. 

Example :- Let n = 144 = 24.32.  An element a ∈ U144 is a quadratic residue if 
and only if a ∈ Q3 and a ≡ 1 (mod 8); since Q3 = {1} ⊂ Z3, this is equivalent 
to a ≡ 1 (mod 24), so Q144 = {1, 25, 49, 73, 97, 121} ⊂ U144.  Any a ∈ Q144 
must have N = 8 square roots.  To find these, we first find its four square roots 
(mod 24) and its two square roots (mod 32) by the methods described earlier, 
and then we use the Chinese Remainder Theorem to covert each of these eight 
pairs of roots into a square root (mod 144).  For instance, let a = 73; then a ≡ 9 
(mod 24), with square roots s ≡ ±3, ±5 (mod 24), and similarly a ≡ 1 (mod 32), 
with square roots s ≡ ± 1 (mod 32); solving these eight pairs of simultaneous 
congruences for s, we get the square roots s ≡ ±19, ±35, ±37, ±53 (mod 144). 
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Unit-3 
 

Riemann Zeta Function and Dirichlet’s Series  
 
Riemann Zeta Function ξξξξ(s) and its convergence  
Definition :- The Riemann zeta function denoted by ξ(s), is defined as  

ξ(s) = 1
n

1
s1n

=�
∞

=
 +++

ss 3

1

2

1
….      where s > 1.   

   

Theorem 3.1 Prove that the function  

  ξ(s) = 1
n

1
s1n

=�
∞

=
 +++

ss 3

1

2

1
…..   …(1) 

converges for all real s > 1 and diverges for all real s ≤ 1. 

Proof :- Suppose first that s > 1.  We group the terms together in blocks of 
length, 1, 2, 4, 8,…, giving  

 ξ(s) = 1 + �
�

�
�
�

� +++�
�

�
�
�

� +++�
�

�
�
�

� +
ssssss 15

1
...

8

1

7

1
...

4

1

3

1

2

1
+… 

Now  
ss 3

1

2

1 + ≤ ,2
2

2

2

1

2

1 s1
sss

−==+  

  ,)2(
4

4

4

1
...

4

1

7

1
...

4

1 2s1
sssss

−===++≤++  

  ,)2(
8

8

8

1
...

8

1

15

1
...

8

1 3s1
sssss

−===++≤++  and so on. 

So we can compare (1) with the geometric series 

1 + 21−s + (21−s)2 + (21−s)3 +…i.e. 1+ ≤++ ...
3

1

2

1
ss

1 + 21−s +
2)s1(2 − +……….. 
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This converges since 0 < 21−s < 1 and hence so does (1) by the comparison 
test.  In fact, this argument shows that 1 ≤ ξ(s) ≤ f(s) for all s > 1, where 

  f(s) = .
21

1
)2(

s10n

ns1
−

∞

=

−

−
=�  

If s → +∞ then 21−s→0 and so f(s) → 1, giving 
+∞→s

lim ξ(s) = 1. 

We now show that (1) diverges for s ≤ 1.  This is obvious if s ≤ 0, since than 

sn

1 →0 as n→∞, so let us assume that s > 0.  By grouping the terms of (1) in 

blocks of length 1, 1, 2, 4,…, we have  

  ξ(s) = 1 + �
�

�
�
�

� +++�
�

�
�
�

� ++
sssss 8

1
...

5

1

4

1

3

1

2

1
+… 

If s ≤ 1, then  
2

1

4

1

4

1

4

1

3

1
,

2

1

2

1
sss =+≥+≥ , 

  
2
1

8
1

...
8
1

8

1
...

5

1
ss

=++≥++ , and so on, so (1) diverges by 

comparison with the divergent series 1 + 
2
1

+ 
2
1

+… In particular, by taking s 

= 1, we see that the harmonic series  

�
n
1

 diverges. 

Application to prime numbers.  

Theorem 3.2  Using Riemann zeta function, prove that are infinitely many 
primes.  

Proof :- Suppose there are only finitely many primes, say p1, p2,…pk.  For 

each prime p = pi, we have 
p
1

 < 1, so there is a convergent geometric series  

  1 + 
132 p1

1
...

p

1

p

1
p
1

−−
=+++ . 

If follows that if we multiply these k different series together, their product  
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ii
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1i 1
ip1

1
   …(1) 



RIEMANN ZETA FUNCTION AND DIRICHLET’S SERIES  

 

111

is finite.  Now there convergent series all consist of positive terms, so they are 
absolutely convergent.  It follows that we can multiply out the series in (1) 
and rearrange the terms, without changing the product.  If we take a typical 

term 
1e

1p

1
from the first series, 

2e
2p

1
 from the 2nd series, and so on, where 

each ei ≥ 0, then their product 

  
1e

1p

1
. 

ke
k

2e
2

1e
1

ke
k

2e
2 p...pp

1

p

1
...

p

1 =  

will represent a typical term in the expansion of (1).  By the fundamental 
theorem of arithmetic, every integer n ≥ 1 has a unique expansion n = 

ke
k

2e
2

1e
1 p...pp (ei ≥ 0) as a product of powers of the primes pi.  Since we are 

assuming that these are the only primes; notice that we allow ei = 0, in case n 
is not divisible by a particular prime pi.  This uniqueness implies that each n 

contributes exactly one term 
n
1

 to (1), so the expansion takes the form  

  �=∏ �
�

�

�

�
�

�

�
+++

∞

== 1n

k

1i 2
ii n

1
...

p

1
p
1

1     …(2) 

The right hand side is the harmonic series, which is divergent.  However the 
LHS is finite, so this contradiction proves that there must be infinitely many 
primes.  

ξξξξ(s) as Euler’s product 
Theorem 3.3  If s > 1, then  

  ξ(s) = ∏ �
�

�

�

�
�

�

�

− −p sp1

1
, where the product is over all primes p. 

This is, infact, representation of Riemann zeta function as Euler’s product. 

Proof :- The method is to consider the product pk(s) of the factors 
corresponding to the first k primes, and to show that Pk(s) → ξ(s) as k→∞.  
Let p1, p2…pk be the first k primes.  Now if s > 0 (so that the geometric series 
all converge) then  

 

  Pk(s) = ∏ ∏ �
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If we expand this product, the general term in the resulting series is 

ke
k

2e
2

1e
1s p...ppnwhere

n

1
=  and each ei ≥ 0.  The Fundamental Theorem of 

Arithmetic implies that each such n contributes just one term to Pk(s), so 

  Pk(s) = �
∈ kAn sn

1
, 

where   Ak = { }0e,p...ppn:n i
ke

k
2e

2
1e

1 ≥=  is the set of integers n whose 
prime factor are among p1, p2…pk. Each n ∉Ak is divisible by same prime p > 
pk, and so n > pk.  It follows that if s > 1 Then  

  |Pk(s) − ξ(s)| = .
n

1
)s(�

n

1

n

1

xpn s
kpn s

kAn s �−=�≤�
≤>∉

 

Since s > 1, the partial sum of the series �
sn

1
 converges to ξ(s), so in 

particular s
kpn n

1
�
≤

→ξ(s) as k→∞.  Thus |Pk(s) − ξ(s)|→0 as x→∞, so 

Pk(s)→ξ(s) as required. 

Evaluation of ξξξξ(2) and ξξξξ(2k).  

Theorem 3.4  If ξ(s) is Riemann zeta function, then ξ(2) = 
6
�2

 

Proof :- We know that the function sin z  can be expanded as  

  sin z = z �
�
�

�
�
�
�

�

π
−∏=�

�

�
�
�

�

π
−∏

≥≠ 22

2

1n0n n
z

1z
n
z

1   …(1) 

The first product in (1) is over all non zero integers n, and the second product 
is obtained from the first by pairing the factors corresponding to ±n. 

Also the Taylor series expansion of sin z is  

  sin z = z−
5|

z

3|

z 53

+ …     …(2) 

Comparing the coefficients of z3 in (1) and (2), we see that  
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  − �
≥1n 22�n

1
= −

3|

1
 

Multiplying by −π2, we get 

  ξ(2) = 
6
�2

. 

Theorem 3.5  If ξ(s) is a Riemann zeta function, then evaluate ξ(2k) where k 
≥ 1. 

Proof :- We know that sin z can be written as  

  sin z = z �
�
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�
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22

2
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z
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Taking log . of (1), we have 

  log sin z = log z + �
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1log   

and differentiating term by term  
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and then collect powers of z, we get 

 cot z = k2k2

1k2

1k 1n n
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which is the Laurent series for cot z 
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We will now compare (2) with a second expansion of cot z.  The exponential 
series 

  et = 1 + t +
3|

t
2|

t 32
+  

implies that  

  ...
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t
2|

t
1

t
1e 2t
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and the reciprocal of this has a Taylor series expansion which can be written 
in the form  
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for certain constants B0, B1… known as the Bernoulli numbers.  

Now  
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 where i = 1− .  Putting z = it/2, we get 

  
i

z
zcotz
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t
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= z cot z + iz. 

Dividing by z and using (3), we have 

  cot z = −i + 1m
m

0m

mm

0m

m z
i
2

m|

B
it

m|

B
z
1 −

≥≥
�
�

�
�
�

�
�+−=�  

By comparing the coefficients of (2), we see that if m = 2k ≥ 2, 

then   −2 ,
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so that   ξ(2k) = 
k2|

B�2)1( k2
k21k21k −−−

   …(4) 

Thus  ξ(2) = π2 B2, ξ(4) = −
45

B�2
)6(�,

3
B� 6

6
4

4
=  and so on. 

We know that B0 = 1,  B1 = 0B,
6

1
B,

2

1
32 ==

−
 

  B4 = 
42

1
B,0B,

30

1
65 ==

−
 and so on. 

Thus  ξ(2) = 
945
�

)6(�,
90
�

)4(�,
6
� 642

== etc.  

Dirichlet’s Series with simple properties :-  

Definition :- If f is an arithmetic function, then its Dirichlet series is the series  

  F(s) = �
∞

=1n sn

)n(f
 

Example :- If f(n) = u(n), then F(s) = � =sn

)n(u
� )s(�

n

1
s

=  where u(n) = 1           

∀ n∈N is the unit function. 

Example :- If f(n) = N(n) then F(s) = �
sn

)n(N
= � =

sn

n
�

1sn

1
− = ξ(s−1) 

where N(n) = n for all n. 

Example :- If f(n) = µ(n), then  

  F(s) = �
)s(�

1

n

)n(�
s

= where µ(n) is Mobius function.  

Notation.    Following Riemann, we let s be a complex variable and write  

   s  =  σ + it,  

where σ and t are real.  Then ns = es log n =  e(σ + it)log n .   This shows that                  
| ns | = nσ since | eiθ| =  1 for real  θ .  

The set of points s =  σ + it such that σ > a is called a half-plane.  We will 
show that for each Dirichlet series there is a half-plane σ > σc in which the 
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series converges, and another half-plane σ > σa in which it converges 
absolutely.  We will also show that in the half-plane of convergence the series 
represents an analytic function of the complex variable s.   

The half-plane of absolute convergence of a Dirichlet series  

First we note that if  σ ≥ a we have |ns| =  nσ ≥ na hence  

   
sn
)n(f

 ≤ 
an

|)n(f|
 .  

Therefore, if a Dirichlet series Σ f(n)n−s converges absolutely for s = a + ib, 
then by the comparison test it also converges absolutely for all s with σ ≥ a.   

Theorem  3.6  Suppose the series Σ | f(n)n−s | does not converge for all s or 
diverge for all s.  Then there exists  a real number σa, called the abscissa of 
absolute convergence, such that the series Σ f(n)n−s converges absolutely if σ 
> σa but does not converge absolutely if σ < σa .   

Proof.  Let D be the set of all real σ such that Σ |f(n)n−s | diverges.  D is not 
empty because the series does not converge for all s, and D is bounded above 
because the series does not diverge for all s.   Therefore D has a least upper 
bound which we call σa .  If σ < σa then σ ∈ D , otherwise σ would be an 
upper bound for D smaller than the least upper bound.  If σ > σa then σ ∈/  D 
since σa is an upper bound for D .  This proves the theorem.  

Note :   If Σ |f(n)n−s | converges everywhere we define σa =  −∞ .   If the series 
Σ | f(n)n−s | converges nowhere we define σa =  + ∞ .  

Example.    Riemann zeta function.   The Dirichlet series �
∞

=

−

1n

sn converges 

absolutely for σ > 1.  When s = 1 the series diverges, so σa = 1.  The sum of 
this series is denoted by ζ(s) and is called the Riemann zeta function.   

Example.  If f is bounded, say  | f(n) | ≤ M for all n ≥ 1, then Σ f(n)n−s  
converges absolutely for         σ > 1 ,  so σa ≤ 1.   In particular if χ is a 
Dirichlet character the L-series L(s, χ) =  Σ χ(n)n−s converges absolutely for σ 
> 1 .   

Example.    The series Σ nnn−s diverges for every s so σa = + ∞ .   

Example.    The series Σ n−n n−s converges absolutely for every s so σa = −∞ .   

The Function Defined by a Dirichlet  series 

Assume that Σ f(n)n−s converges absolutely for σ > σa and let F(s) denote the 

sum function  
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 F(s) =  �
∞

=1n
sn
)n(f

  for σ > σa .  

This section derives some properties of F(s).  First we prove the following 

lemma :  

Lemma 1.  If N ≥ 1 and σ ≥ c > σa  we have  

  �
∞

=

−

Nn

sn)n(f  ≤ N−(σ−c)  �
∞

=Nn
| f(n) | n− c .  

Proof.  We have  

 �
∞

=

−

Nn

sn)n(f ≤ �
∞

=Nn
| f(n)| n−σ  = �

∞

=Nn
| f(n) | n−c n−(σ−c)  

          ≤ N−(σ−c) �
∞

=Nn
| f(n) | n−c  .  

The next theorem describes the behaviour of F(s) as σ → + ∞ .  

Theorem 3.7    If F(s) = �
∞

=1n
sn
)n(f

  for σ > σa, then   

    
+∞→σ

lim  F(σ + it) = f(1)  

uniformly for −∞ < t < + ∞ .  

Proof.   Since F(s) = f(1) + �
∞

=2n
f(n)n−s we need only prove that the second 

term tends to 0 as           σ → + ∞ .  Choose c > σa .   Then for σ ≥ c  the 
lemma implies  

 

  �
∞

=2n
sn
)n(f

 ≤ 2−(σ−c) �
∞

=2n
|f(n)| n−c =  σ2

A
 

where A is independent of σ and t .  Since A/2σ → 0 as a σ → + ∞ this proves 

the theorem.  

Examples.  ζ (σ + it) → 1 and L( σ + it,  χ ) → 1 as σ → + ∞ .  
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We prove next that  all the coefficients are uniquely determined by  the sum 

function.  

Theorem 3.8   Uniqueness theorem.  Given two Dirichlet series  

  F(s) =  �
∞

=1n
sn
)n(f

  and G(s) =  �
∞

=1n
sn
)n(g

 ,  

both absolutely convergent for σ > σa .  If F(s) = G(s) for each s in an infinite 
sequence {sk} such that σk → + ∞ as k →∞ , then f(n) =  g(n) for every n .   

Proof.   Let h(n) =  f(n) − g(n) and let H(s) =  F(s) − G(s).  Then H(sk) = 0 for 
each k.  To prove that h(n) =  0 for all n we assume that h(n) ≠ 0 for some no 
and obtain a contradiction.  

Let N be the smallest integer for which h(n) ≠ 0 .  Then  

  H(s) =  �
∞

=Nn
sn
)n(h

 =  
sN
)N(h

 + �
∞

+= 1Nn
sn
)n(h

 .  

Hence  

  h(N) =  NsH(s) − Ns  �
∞

+= 1Nn
sn
)n(h

.  

Putting s = sk we have H(sk) = 0  hence  

  h(N) = − ksN �
∞

+=

−

1Nn

ksn)n(h  .  

Choose k so that σk > c where c > σa .  Then Lemma 1 implies  

 | h(N)| ≤  kNσ )ck()1N( −σ−+  �
∞

+=

−

1Nn

cn|)n(h|  =  
k

1N
N σ

�
�

�
�
�

�

+
A 

where A is independent of  k .  Letting k → ∞ we find k))1N/(N( α+  → 0 so 
h(N) = 0, a contradiction.  

The uniqueness theorem implies the existence of a half-plane in which a 
Dirichlet series does not vanish (unless, of course, the series vanishes 
identically).  

Theorem 3.9   Let F(s) =  Σ f(n)n−s and assume that F(s)  ≠ 0 for some s with 
σ > σa .   Then there is a half-plane σ > c ≥ σa in which F(s) is never zero.  

Proof.   Assume no such half-plane exists.  Then for every k =  1,2,… there is 
a point sk with                 σk > k such that F(sk) = 0 .  Since σk → + ∞ as k → 
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∞ the uniqueness theorem shows that f(n) = 0 for all n, contradicting the 
hypothesis that F(s) ≠ 0 for some s .  

The half-plane of convergence of a Dirichlet series   

To prove the existence of a half-plane of convergence we use the following 

lemma :  

Lemma 2.  Let s0 = σ0 + it0  and assume that the Dirichlet series Σ f(n) 0sn −  
has bounded partial sums, say  

  �
≤

−

xn

0sn)n(f  ≤ M  

for all x ≥ 1 .  Then for each s with σ > σ0 we have  

�
≤<

−

xna

sn)n(f  ≤ 2M σ−σ0a  ��
�

�
��
�

�

σ−σ
−

+
0

0 |ss|
1   …(1) 

Proof.   Let a(n) =  f(n) 0sn −  and let A(x) = �
≤xn

).n(a   Then f(n)n−s =  a(n) s0sn −  

so we can apply Abel’s identity (to be proved in unit v) : For any arithmetical 
function a(n) and let 

A(x) = �
≤ xn

a(n), 

Where A(x) = 0 if x < 1.  Assume f has a continuous derivative on the interval 
[y, x], where 0 < y < x.  Then we have  

  �
≤< xny

a(n) f(n) = A(x) f(x) − A(y) f(y) − )t(A
x

y
� f ′(t)dt    

Theorem   (with f(x) = s0sx − ) to obtain 

 �
≤<

−

bna

sn)n(f   = A(b) s0sb −  − A(a) s0sa − (s−s0) �
−−

b

a

1s0st)t(A  dt .  

Since | A(x)| ≤ M this gives us  

 �
≤<

−

bna

sn)n(f  ≤ M σ−σ0b  + M σ−σ0a  + |s − s0| M  �
−σ−σ

b

a

10t  dt 
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   ≤ 2M σ−σ0a + |s − s0| M 
σ−σ

− −σ−σσ−σ

0

100 ab
 

   ≤ 2M σ−σ0a  ��
�

�
��
�

�

σ−σ
−

+
0

0 |ss|
1  .  

Examples.   If the partial sums �
≤ xn

f(n) are bounded, above Lemma 2 implies 

that Σ f(n)n−s converges for σ > 0 .  In fact, if we take s0 = σ0 = 0 in (1)  we 
obtain, for σ > 0 ,  

  �
≤<

−

bna

sn)n(f  ≤ σ−Ka   

where K is independent of a .  Let a → +∞ we find that Σ f(n)n−s converges if 
σ > 0 .  In particular, this shows that the Dirichlet series  

  �
−∞

=1n
s

n

n
)1(

 

converges for σ > 0  since � −
≤xn

n)1(  ≤ 1 .   

Theorem 3.10  If the series Σ f(n)n−s converges for s = σ0 + it0 then it also 
converges for all s with           σ > σ0 .  If it diverges for s  = σ0 + it0 then it 
diverges for all s with σ < σ0 .   

   

Proof :-  The second statement follows from the first.  To prove the first 
statement, choose any s with σ > σ0.Above  Lemma  shows that  

  s

bna
n)n(f −

≤<
�  ≤ 

σ−σ0Ka  

where K is independent of a.  Since 
σ−σ0a → 0 as α → + ∞,  the Cauchy 

condition shows that         � f(n) n−s converges. 

Theorem 3.11 If the series � f(n)n−s does not converge every where or 
diverge everywhere, then there exists a real number σc, called the abscissa of 
convergence, such that the series converges for all s in the half-plane σ > σc 
and diverges for all s in the half-plane σ < σc. 

Proof :- We argue as in the proof of Theorem 3.6, taking σc to be the least 
upper bound of all σ for which � f(n)n−s diverges. 
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Note. If the series converges everywhere we define σc = −∞, and if it 
converges nowhere we define σc = + ∞. 

Theorem 3.12  For any Dirichlet series with σc finite we have 

  0 ≤ σa − σc ≤ 1.  

Proof :- It suffices to show that if � f(n) 0sn −  converges for some s0 then it 
converges absolutely for all s with σ > σ0 + 1.  Let A be an upper bound for 
the number | f(n) 0sn − |.  Then 

  
00ss0ss n

A

n

1

n

)n(f
n

)n(f
σ−σ− ≤=  

so � | f(n)n−s | converges by comparison with � σ−σ0n . 

Example The series  

  �
∞

=

−

1n
s

n

n
)1(

 

converges if σ > 0, but the convergence is absolute only if σ > 1.  Therefore in 
this example σc = 0 and σa = 1. 

Definition :- If f and g are arithmetic functions, then their Dirichlet product or 
convolution, is the arithmetic function f ∗ g given by  

  (f ∗ g)(n) = � �
�

�
�
�

�

n/d
;

d
n

g)d(f  

equivalently, putting e = ,
d
n

 we have 

  (f ∗ g) (n) = �
=nde

f(d) g(e)]. 

Theorem 3.13  Suppose that  

F(s) = �� =
∞

=

∞

= 1n s1n s n

)n(g
)s(G,

n

)n(f
 and  

H(s) = �
∞

=1n sn

)n(h
 where h = f ∗ g.  Then H(s) = F(s)⋅G(s) for all s such that F(s) 

and G(s) both average absolutely. 

Proof :- If F(s) and G(s) both converge absolutely, then we can multiply these 
series and re arrange their terms to give   
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  F(g) G(s) = �⋅�
∞

=

∞

= 1n s1n s n

)n(g

n

)n(f
 

       = � �=� �
∞

= =

∞

=

∞

= 1k skmn1m 1n s k

)n(g)m(f

)mn(

)n(g)m(f
 

       = )s(H
k

)k(h

k

)k)(gf(
s1ks1k

=�=∗
�

∞

=

∞

=
 

Example :- If we take f = µ, g = u, then  

  h = f ∗ g = µ ∗ u = I.  where I = identity function and I(1) = 1, 
I(n) = 0 ∀ n > 1. 

Now I(1) = 1 and I(n) = 0 for all n > 1 

so  H(s) = �
sn

)n(I
 = 1 for all s. 

We have  F(s) = �
sn

)n(�
 and 

  G(s) = �
sn

)n(u
= �

sn

1
 = ξ(s), both absolutely convergent for s 

> 1. 

Using above theorem, we have 

  �
∞

=1n sn

)n(� ξ(s) = 1, so that 

  �
∞

=1n sn

)n(�
= 

)s(�
1

 for all s > 1. 

Example :- Let f = φ and g = u.  Then G(s) = ξ(s) is absolutely convergent for 

s > 1.                                    Now 1 ≤ φ(n) ≤ n for all n, so F(s) = �
sn

)n(�
 is 

absolutely convergent by comparison with  �
sn

n
 = ξ(s−1) for s −1 > 1, that is, 

for s > 2 

Also  φ ∗ u = N, so  

  � ��
∞

=

∞

=

∞

=

==ξφ

1n 1n
ss

1n
s n

n

n

)n(N
)s(

n

)n(
= ξ(s−1) 
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and hence 
)s(

)1s(
n

)n(

1n
s ξ

−ξ=φ�
∞

=

 for all s > 2.  

 

Analytic properties of Dircichlet series  

Convergence properties of Dirichlet series can be compared with those of 
power series.  Every power series has a disk of convergence, whereas every 
Dirichlet series has a half-plane of convergence.  For power series the interior 
of the disk of convergence is also the domain of absolute convergence.  For 
Dirichlet series the domain of absolute convergence may be a proper subset of 
the domain of convergence.  A power series represents an analytic function 
inside its disk of convergence.  We show next that a Dirichlet series represents 
an analytic function inside its half-plane of convergence. 

 Analytic properties of Dirichlet series will be deduced from the following 
general theorem of complex function theory which we state as a lemma.  

Lemma 3. Let {fn} be a sequence of functions analytic on an open subset S of 
the complex plane, and assume that {fn} converges uniformly on every 
compact subset of S to a limit function f.  Then f is analytic on S and the 
sequence of derivatives {f ′n} converges uniformly on every compact subset 
of S to be derivative f ′. 

Proof :- Since fn is analytic on S we have Cauchy’s integral formula  

  fn(a) = dz
az
)z(f

i2
1 n

D −π �∂
 

where D is any compact disk in S, ∂D is its positively oriented boundary, and 
a is any interior point of D.  Because of uniform convergence we can pass to 
the limit under the integral sign and obtain  

  f(a) = dz
az
)z(f

i2
1

D −π �∂
 

which implies that f is analytic inside D.  For the derivatives we have 

  dz
)az(

)z(f
i2

1
)a(f

2
n

D

©
n −π

= �∂  and

 dz
)az(
)z(f

i2
1

)a(©f
2D −π

= �∂   

from which it follows easily that )a(©f)a(f ©
n →  uniformly on every compact 

subset of S as n→∞. 
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 To apply the lemma to Dirichlet series we show first that we have 
uniform convergence on compact subsets of the half-plane of convergence. 

Theorem 3.14 A Dirichlet series � f(n)n−s converges uniformly on every 
compact subset lying interior to the half plane of convergence α > σc. 

Proof:    It is suffice to show that  � f(n)n−s converges uniformly on every 
compact rectangle           R = [α, β] × [c, d] with α > σc.  To do this we use the 
estimate , 

  ��
�

�
��
�

�

σ−σ
−

+≤�
σ−σ−

≤< 0

00s

bna

|ss|
1Ma2n)n(f   …(1) 

where s0 = σ0 + it0 is any point in the half-plane σ > σc and s is any point with 
σ > σ0.  We choose          s0 = σ0 where σc < σ0 < α. 

Then if s ∈ R we have σ −σ0 ≥ α − σ0 and |s0 − s| < C, where C is a constant 
depending on s0 and R but not on s.  Then (1) implies 

  α−σα−σ−

≤<
=��

�

�
��
�

�

σ−α
+≤� 0

0

0s

bna
Ba

C
1Ma2n)n(f  

where B is independent of s.  Since α−σα 0 → 0 as a → +∞ the Cauchy 
condition for uniform convergence is satisfied.  

Theorem 3.15 The sum function F(s) = �f(n)n−s of a Dirichlet series is 
analytic in its half-plane of convergence σ > σc, and its derivative F ′(s) is 
represented in this half-plane by the Dirichlet series  

  F ′(s) = −
s

1n n

nlog)n(f
�
∞

=
,    …(1) 

obtained by differentiating term by term. 

Proof :- We apply above theorem 3.14 and Lemma 3 to the sequence of 
partial sums. 

Notes :- The derived series in (1) has the same abscissa of convergence and 
the same abscissa of absolute convergence as the series for F(s). 

 Applying Theorem 3.15 repeatedly we find that the kth derivative is 
given by  

  F(k)(s) = (−1)k 
s

k

1n n
)n)(logn(f

�
∞

=
 for σ > σc. 

Examples For σ > 1 we have  

  ζ ′(s) = −
s

1n n
nlog

�
∞

=
     …(2) 
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and 

  s
1n n

)n(
)s(
)s(© Λ

�=
ζ
ζ−

∞

= .     …(3) 

Equation (2) follows by differentiating the series for the zeta function term by 
term, and (3) is obtained by multiplying the two Dirichlet series � Λ(n) n−s 
and � n−s and using the identity  �d | n

 Λ(d) = log n. 

Dirichlet series with nonnegative coefficients  

          Some functions which are defined by Dirichlet series in their half-plane 
of convergence          σ > σc can be continued analytically beyond the line σ = 
σc.  For example, Riemann zeta function ζ(s) can be continued analytically 
beyond the line σ = 1 to a function which is analytic for all s except for a 
simple pole at s = 1.   The singularity for the zeta function is explained by the 
following theorem of Landau which deals with Dirichlet series having 
nonnegative coefficients. 

Theorem 3.16  Let F(s) be represented in the half-plane σ > c by the Dirichlet 
series  

  F(s) = 
s

1n n
)n(f

�
∞

=
,     …(1) 

where c is finite, and assume that f(n) ≥ 0 for all n ≥ n0.  If F(s) is analytic in 
some disk about the point s = c, then the Dirichlet series converges in the half-
plane σ > c − ε  for some ε > 0.  Consequently, if the Dirichlet series has a 
finite abscissa of convergence σc, then F(s) has a singularity on the real axis at 
the point s = σc. 

Proof :- Let a = 1 + c.  Since F is analytic at a it can be represented by an 
absolutely convergent power series expansion about a, 

  F(s) = 
!k

)a(F )k(

0k
�
∞

=
(s−a)k,    …(2) 

and the radius of convergence of this power series exceeds 1 since F is 
analytic at c, (see the figure 3.1 below).  By theorem 3.16 the derivatives 
F(k)(a) can be determined by repeated differentiation of (1).  This gives us  

  F(k)(a) = (−1)k
�
∞

= 1n
f(n) (log n)k n−a, 

So (2) can be rewritten as  

  F(s) = �
∞

= 0k
�
∞

= 1n !k
)sa( k−

f(n) (log n)k n−a.  …(3) 
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Since the radius of convergence exceeds 1, this formula is valid for some real 
s = c − ε where ε > 0 (see figure below). Then a −s = 1 + ε for this s and the 
double series in (3) has nonnegative terms for n ≥ n0.  Therefore we can 
interchange the order of summation to obtain  

  F(c−ε) = �
∞

= 1n
an
)n(f

!k
}nlog)1{( k

0k

ε+
�
∞

=
 = �

∞

= 1n
an
)n(f

e(1+ε)l og n  = 

�
∞

= 1n
ε−cn
)n(f

. 

In other words, the Dirchlet series � f(n)n−s converges for s = c − ε, hence it 
also converges in the half-plane σ > c − ε. 

 

 

 

 

 

 

 
   

Definition :- An arithmetic function f is called multiplicative if f(mn) = f(m) 
f(n) where                      gcd (m, n) = 1. 

Definition :- An arithmetic function f is completely multiplicative if f(mn) = 
f(m) f(n) for all positive integers m and n.  

Euler Products  

The product expansions of a function in which the factors are indexed by the 

primes are called Euler products.  For example ξ(s) = ∏ �
�

�

�

�
�

�

�

− −p sp1

1 ∀ s > 1, 

where the product is over all primes. 

Theorem 3.17 (a) If f(n) is multiplicative and �
∞

=1n
)n(f  is absolutely 

convergent, then 

  ∏ +++=�
∞

= p

2

1n
....))p(f)p(f1()n(f  

(b) If f(n) is completely multiplicative, and �
∞

=1n
)n(f  is absolutely convergent, 

then  

c−ε c    a = 1 + c 

Figure 3.1 
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  �
=1n

)n(f = ∏ ��
�

�
��
�

�

−p )p(f1
1

. 

Proof :- (a) Let p1, p2,…, pk be the first k primes, and let 

  Pk = ∏
=

k

1i
( 1 + f(pi) + f(pi

2) +…) 

The general term in the expansion of Pk(s) is  

  )p...p(f)p(f)...p(f ke
k

1e
1

ke
k

1e
1 = , because f(n) is multiplicative  

Thus   Pk = �
∈ kAn

)n(f  

where   Ak = {n : n = }0e,p...p i
ke

k
1e

1 ≥ . 

We have �≤�=�−
∉∉

∞

= kAnkAn1n
k |)n(f|)n(f)n(fP  

              ≤ �
> kpn

|)n(f| , since n > pk for each n ∉ Ak. 

Now |)n(f|
1n

�
∞

=
 converges, so as k→∞ we have �

> kpn
|)n(f| →0 and hence  

  �−
∞

=1n
k )n(fP →0; thus Pk → �

∞

=1n
)n(f  as k→∞. 

(b) If f(n) is completely multiplicative, then 

  f(pe) = f(p)e for each prime power pe, so part (a) gives 

  �
∞

=1n
)n(f  = ∏

p
(1 + f(p) + f(p2) +…) 

    = ∏
p

 (1 + f(p) + f(p)2+…) 

    = ∏ ��
�

�
��
�

�

−p )p(f1
1

. 

Applying Theorem 3.17, to absolutely convergent Dirichlet series we 
immediately obtain :  



                                                           ANALYTICAL NUMBER THEORY  128

Theorem 3.18  Assume Σ f(n)n−s converges absolutely for σ > σa .  If f is 

multiplicative we have  

 �
∞

=1n
sn
)n(f

 = ∏
	


�

�


�

+++
p

s2

2

s
...

p
)p(f

p
)p(f

1   if σ > σa ,   …(1) 

and if f is completely multiplicative we have  

  �
∞

=1n
sn
)n(f

 = ∏
− −

p
sp)p(f1

1
  if σ > σa  .    …(2) 

It should be noted that the general term of the product in (1)  is the Bells series 
fp(x) of the function f with x =  p−s .  

Examples.    Taking f(n) =  1,  µ(n), φ(n), σα(n), respectively, we obtain the 
following Euler products :  

  ζ(s) =  ∏
−

=� −

∞

= p
s

1n
s p1

1
n
1

   if σ > 1 .  

  �
µ

ζ
∞

=1n
sn
)n(

)s(
1

 =  ∏ − −

p

sp1( )    if σ > 1 .  

   �
φ=

ζ
−ζ ∞

=1n
sn
)n(

)s(
)1s(

 = ∏
−
−

−

−

p
s1

s

p1
p1

  if σ > 2 .  

         ζ(s) ζ(s−α) = �
σ∞

=

α

1n
sn

)n(
  = ∏

−−− −−
p

sas )p1()p1(
1

 if σ > max {1, 

1+ Re(α)} 

Example :- The mobius function µ(n) is multiplicative, with µ(p) = −1 and 

µ(pe) = 0 for all e ≥ 2, so  

� ∏
��
�

�

�

��
�

�

�
+++=

∞

=1n p s2

2

ss
...

p

)p(�

p

)p(�
1

n

)n(�
= ∏

p
(1−p−s) = 

)s(�
1

. for all s > 1.  
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Unit-IV 
 
Diophantine Equations and Quadratic Fields 
 

Diophantine equations 
Definition :- A Diaphantine equation is an equation in more than one 
variables and with integral coefficients such as  

  ax + by = c,    x3 + y3 = z3,       x2 + y2 = z2 

Our problem is to find all the integral solutions of a given Diophantine 
equation. 

To find solutions of diaphantine equation  

 x2 + y2 = z2      …(1) 

Let x = 0, then the equation becomes y2 = z2  � y = ± z 

Similarly if y = 0, then x2 = z2 and x = ± z.  Let z = 0  � x2 + y2 = 0  � x = 0 
= y 

Thus all the solutions are known if either x = 0 or y = 0 or z = 0 

So we assume neither of x, y, z is equal to zero. 

 Further if (x, y, z) is a solution of (1), (± x, ± y, ± z) is also a solution 
of (1) for all combinations.  So we assume x > 0, y > 0, z > 0.  Again if (x, y, 
z) is a solution of (1), (dx, dy, dz) is also a solution of (1) for all d.  So W. L. 
O. G. we assume gcd (x, y, z) = 1 

 Let gcd(x, y) = d > 1 

then  d | x, d | y  � d2 | x2,  d2 | y2 

�  d2 | x2 + y2   � d2 | z2  � d | z 

�  gcd (x, y, z) ≥ d > 1   

Similarly if gcd (x, z) = d > 1 then gcd(x, y, z) ≥ d > 1 and same holds if gcd 
(x, z) > 1 

So to consider solutions where gcd(x, y, z) = 1, it is enough to assume that 
gcd(x, y) = 1 

Now since gcd(x, y) = 1, so both of x & y can not be even. 

Let both x & y be odd, then  
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  x2 = 1 (mod 8), y2 ≡ 1 (mod 8) 

�  z2 = x2 + y2 ≡ 2 (mod 8) 

But there is no integer z with 

  z2 ≡ 2 (mod 8) 

So if (x, y, z) satisfies (1) and gcd(x, y) = 1 then one of x & y must be odd and 
other must be even.  

 W. L. O. G. we assume that x is even and y is odd  

Definition :- A solution (x, y, z) satisfying a Diaphantine equation is called a 
primitive solution if gcd(x, y, z) = 1 

Theorem 4.1 All the positive primitive solutions of  

  x2 + y2 = z2      …(1) 

where x is even, y is odd, is given  

by   x = 2ab, y = a2 − b2, z = a2 + b2   …(2) 

where a > b > 0 and a and b are of opposite parity and gcd (a, b ) = 1 

Proof :-  Suppose (x, y, z) are given by (2) where a & b satisfy given 
conditions.  Then we shall prove x, y, z are positive primitive solutions of (1) 

Clearly x > 0, y > 0, z > 0 since a > b > 0  

Setting x = 2ab, y = a2 − b2 we get 

  x2 + y2 = (2ab)2 + (a2−b2)2 = (a2 + b2)2 = z2  

Thus (x, y, z) satisfy (1) 

To prove gcd (x, y, z) = 1, it is enough to prove that gcd (y, z) = 1 where y & 
z are given by (2).  Let  d = gcd (a2 − b2, a2 + b2) 

Then   d | (a2 − b2) & d | (a2 + b2) 

�  d | (a2 + b2) ± (a2 − b2) 

� d | 2a2 & d | 2b2 
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� d | gcd (2a2, 2b2) 

� d | 2 gcd (a2, b2) 

But gcd (a, b) = 1  � gcd (a2, b2) = 1    � d | 2  � d= 1 or 2 

Since a & b are of opposite parity, both of a2 − b2 & a2 + b2 are odd  

� d ≠ 2       � d = 1 

Thus if (x, y, z) are given by (2) (x, y, z) is a primitive solution of (1) 

Now let (x, y, z) be any positive primitive solution of (1).  Then we know  

  gcd(x, y) = 1 gcd(y, z) = 1 and gcd (x, z) = 1 

Now from (1), x2 = z2 − y2 = (z + y) (z − y)    …(3) 

Since, x is even, y is odd, so from (1) z is also odd 

�  z + y & z−y are both even  

�  
2

yz
&

2
yz −+

 are natural numbers. (Note that z > y) 

Writing (3) as  

  ��
�

�
��
�

� −
��
�

�
��
�

� +
=��

�

�
��
�

�

2

yz

2

yz

2

x 2

    …(4) 

Now we claim gcd �
�

�
�
�

� −+
2

yz
,

2
yz

= d = 1 

Now  ��
�

�
��
�

� −
+

+
�

−+
2

yz

2

yz
d

2

yz
d&

2

yz
d  

�  d | z & d | y  � d = 1 since gcd(y, z) = 1 

Since x is even  � 
2
x

 is a integer 

So from (4) we see that product of two coprime natural numbers 
2

yz +
 & 

2
yz −

 is the square of an integer. 
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� Both of 
2

yz
&

2
yz −+

 are squares uof integers.  

Let   
2

yz
&a

2
yz 2 −=+

= b2     where a > 0 & b > 0 …(5) 

Since y > 0  � a > b > 0 

Also gcd �
�

�
�
�

� −+
2

yz
,

2
yz

 = 1  � gcd (a2, b2) = 1 

�  gcd(a, b) = 1 

Now from (5) we get z = a2 + b2 & y = a2−b2    …(6) 

Substituting these values in (1) and noting that x > 0, we get x = 2ab. 

Since y is odd so from (6) we get a & b are of opposite parity.  

This proves the theorem. 

Example :- Find all the solutions of  

  x2 + y2 = z2  where  0 < z ≤ 30    ...(I) 

Solution :- First we assume x > 0, y > 0, z > 0, gcd(x, y) = 1 and 2 | x 

then we know that all the solution of (I) are given by  

  x = 2ab, y = a2 − b2, z = a2 + b2   …(II) 

where a > b > 0, gcd(a, b) = 1 and a & b are of opposite parity 

Now consider 

  0 < a2 + b2 ≤ 30 

Then a = 1 is not possible since a > b > 0.  Let a = 2, Then b = 1,  since  

 a > b > 0 

Then   x = 4, y = 3, z = 5 i.e. (4, 3, 5) is the solution  

Let a = 3 then b = 2 since a > b > 0 and a & b are of opposite parity 

Then  x = 2⋅3⋅2 = 12,  y = 5 

Then z = 13 i.e., (12, 5, 13) is the solution  

Let a = 4 then b = 1 or 3, then for b = 1, x = 8, y = 15, z = 17 
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So (8, 15, 7) is the required solution  

Now  a = 4, b = 3 

Then  x = 24, y = 7, z = 25 

i.e.  (24, 7, 25) is the solution  

Now, take a = 5 then b = 2 since a > b, 0, a & b are of opposite parity  

and  (a2 + b2) ≤ 30 

Therefore x = 20, y = 21, z = 29 i.e.,   ∴     (20, 21, 29) is a solution  

So, all solutions with x > 0, y > 0, z > 0, x, even and gcd (x, y) = 1 are  

  (4, 3, 5), (12, 5, 13), (8, 15, 17), (24, 7, 25), (20, 21, 29) 

So all solutions of the required type are  

  (± 4, ± 3, 5), (± 12, ± 5, 13), (± 8, ± 15, 17), (± 24, ± 17, 25), (± 

20, ±21, 29), (±3, ±4, 5), (±5, ±12, 13), (±15, ±8, 17), (±7, ±24, 25), (±21, 

±20, 29), (±16, 8, 10), (±8, ±16, 10), (±9, ±12, 15), (±12, ±9, 15), (±12, ±16, 

20), (±16, ±12, 20), (±15, ±20, 25), (±20, ±15, 25), (±18, ±24, 30), (±24, ±18, 

30), (±24, ±10, 26), (±10, ±24, 26) 

Example :- Prove that if x, y, z satisfy  

  x2 + y2 = z2 

then (i) xyz ≡ 0 (mod 60)     …(I) 

 (ii) xy (x2 − y2) ≡ 0(mod 84)    …(II)  

Solution :- W. L. O. G., we assume  

  x > 0, y > 0, z > 0; gcd (x, y) = 1 and 2 | x 

Then we assume know  

x = 2ab, y = a2 − b2, z = a2 + b2 

where   a > b > 0; gcd (a, b) = 1 & a, b are opposite parity 



DIOPHANTINE EQUATIONS AND QUADRATIC FIELDS  

 

 

133

 

Then setting x = 2ab, y = a2 − b2, we get 

  xy = 2ab(a2 − b2)     …(III) 

Since a & b are of opposite parity, one of a & b must be even and other must 
be odd 

Therefore xy ≡ 0 (mod 4)    {from (III)}  …(IV) 

If 3 | a or 3 | b then from (III) 

  xy ≡ 0(mod 3) 

So, assume 3 |/ a and 3 |/ b 

Then by Fermat’s theorem  

  a2 ≡ 1 ≡ b2(mod 3) 

�  a2 − b2 ≡ 0 (mod 3) 

So in this case also xy ≡ 0 (mod 3) So in all cases,  

xy ≡ 0 (mod 3)      …(V) 

From (IV) & (V), we get 

  xy  ≡ 0 (mod 12)     …(VI) 

in all cases 

Now  xyz = 2ab (a2 − b2) (a2 + b2) 

        = 2ab (a4 − b4)     …(VII) 

If 5/a or 5/b then from (VII) 

  xyz ≡ 0 (mod 5)        …(VIII) 

Then from (VI) & (VIII), we get 

  xyz ≡ 0 (mod 60) in this case 

So let  5×a and 5×b 

By Fermat’s theorem  

  a4 ≡ 1 ≡ b4(mod 5) 

From (VII) xyz ≡ 0(mod 5)     …(IX) 
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and in this case also from (VI) and (IX) 

  xyz ≡ 0(mod 60) 

This proves (i) 

(ii)    xy(x2 − y2) ≡ 0(mod 84)  

As in (i), take  x = 2ab, y = a2 − b2 

∴         xy ≡ 0(mod 12)     …(∗) 

Now xy(x2−y) = 2ab (a2 − b2) ((2ab)2 − (a2 − b2)2) 

   = 2ab (a2 − b2) (4a2b2 − a4 − b4 + 2a2b2) 

   = 2ab (a2−b2) (6a2 b2 − a4 − b4) 

   ≡ 2ab (a2 − b2) (−a2 b2 − a4 − b4)(mod 7) 

   ≡ −2ab(a2 − b2) (a4 + b4 + a2 b2) (mod 7) 

   ≡ − 2ab(a6 − b6) ≡ 2ab (b6 − a6) (mod 7) …(∗∗)  

If 7 | a or 7 | b, thus from (∗∗) and (∗)  

  xy(x2 − y2) ≡ 0(mod 84) 

If 7 |/ a and 7 |/ b then by Fermat’s theorem  

  b6 ≡ a6 ≡ 1(mod 7) 

and again from (∗∗),  

  xy(x2 − y2) ≡ 0 (mod 84) 

Hence the result 

Fermat’s Last Theorem :- This states that xn + yn = zn (n ≥ 3) has no 
solutions for which (x,y,z) ≠ 0  

We shall give the proof of the result that  

  x4 + y4 = z4 
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has no solution for which (x, y, z) ≠ 0.  In fact we shall prove a little more we 

shall prove 

Theorem 4.2  x4 + y4 = u2 has no non-trivial solutions.  …(1) 

Proof :- If possible suppose the given equation has solutions.  

W. L. O. G assume x > 0, y > 0, u > 0 

Let  S = {u∈N; x4 + y4 = u2 for x, y∈N} 

Then by assumption S ≠ φ.  So by law of well ordering, S has a least element.  
Let u0 be the least element of S.   

Then   ∃ x0 ∈ N, y0∈N, such that x0
4 + y0

4 = u0
2  …(2) 

Then first we claim that gcd(x0, y0, u0 = 1  

Let   gcd(x0, y0, u0) = d > 1.  Then d | x0 & d | y0 

� d4 | x0
4 & d4 | y0

4  � d4 | x0
4 + y0

4 

� d4 | u0
2  � d2 | u0 

Then  
2

2
0

4
0

4
0

d

u
d

y
d

x
�
�

�
�
�

�=�
�

�
�
�

�+�
�

�
�
�

�  

i.e., ��
�

�
��
�

�
2
000

d

u
,

d
y

,
y

x
 satisfies (1) and so 

2
0

d

u
∈S 

�  
2
0

d

u
≥ u0 � 1 ≥ d2 

� d = 1.  So gcd(x0, y0, u0) = 1 

Then x0, y0 can not be both even, since then u0 is also even & gcd (x0, y0, u0) ≥ 
2. 

But x0 & y0 can not be both odd either since in that case  

  u0
2 = x0

4 + y0
4 ≡ 1 + 1 = 2(mod 8) 

which has no solution.  So one of x0, y0 is odd & other is even.  W.L.O.G. 
assume x0 is even.  Then y0 must be odd.  Also 

  2
0

22
0

22
0 u)y()x( =+  and  gcd ,y,x( 2

0
2
0 u0) = 1 

Then by previous theorem there exists positive integers a & b such that  
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2
0

2
0 y,ab2x − = a2 − b2, u0 = a2 + b2 where a > b > 0, gcd(a, b) = 1. …(3) 

and a & b are of opposite parity. 

 If possible let a be even then b must be odd.  

Then from (3) 

  2
0y  = a2 − b2 ≡ −1 (mod 4) 

but there does not exist any integer n such that n2 ≡ −1 (mod 4) 

Then a must be odd & b must be even.  Let b = 2c.  Then from (3) 

  
4

x
ac4ab2x

2
02

0 �==  = ac 

�  
2

0

2
x

�
�

�
�
�

� = ac      …(4) 

Since   gcd(a, b) = 1 & b = 2c 

�  gcd(a, c) = 1 

Now (4) gives us that square of an integer is equal to product of two positive 
integer where both are relatively prime So both a & c must be square of 
integers. 

Let  a = f2 & c = g2 

Since gcd(a, b) = 1  � gcd (f2, 2g2) = 1.  Again from (3) 

  2
0y = a2 − b2 = a2 − 4c2 = (f2)2 − 4(g2)2 = f4 − 4g4 

�  2
0y + 4g4 = f4      …(5) 

But   gcd(f2, 2g2) = 1 

�  gcd(y0, 2g2) = 1 

because a & b are of opposite parity, then from (3), y0 must be odd. 

Now (5) can be written as  

  22
0 )y(  + (2g2)2 = (f2)2 
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where gcd(2g2, y0) = 1, y0 is odd, 2g2 is even.  They by previous theorem, 
there exists integer r, s, such that 2g2 = 2rs, y0 = r2 − s2 f2 = r2 + s2  
     …(6) 

where r > s > 0, gcd(r, s) = 1 & r, s are of opposite parity 

Now from (6), 2g2 = 2rs     �  g2 = rs 

But gcd(r, s) = 1, so we have product of two relatively prime integers is the 
square of an integer. � r & s must themselves be squares.  

Let r = v2 & s = w2 where v > 0, w > 0  

Now from (6), f2 = r2 + s2 = (v2)2 + (w2)2 = v4 + w4. 

Then (v, w, f)0 is a solution of (1).  So f∈S.  

�  f ≥ u0 

But   f ≤ f2 = a ≤ a2 < a2 + b2 = u0 which is a contradiction and 
contradiction arose because we assume (1) has a solution.  So (1) has no 
solution. 

The represent of number by two or four squares. 

Theorem 4.3 Let n be a natural number of the form 4k+3, then n cannot be 
written as a sum of 2 squares.  

Proof :- If possible let n = x2 + y2.  Then 

  x2 ≡ 0 or 1(mod 4) and y2 ≡ 0 or 1 (mod 4) 

Then n = x2 + y2 ≡ 0 or 1 or 2(mod 4) 

Thus if n ≡ 3(mod 4), it cannot be written as a sum of two squares. 

Theorem 4.4 Let n = x2 + y2.  Then primes of the type 4k + 3 can occur in the 
prime factorization of n to an even degree only.  

In other words if a prime of the type 4k + 3 occurs to an odd degree in the 
prime factorization of a natural number n then n can not be written as a sum of 
squares of 2 numbers.  

Proof :- Let p be a prime of the type 4k + 3. 

Let n = p2k+1n, where k ≥ 0 and gcd(n1, p) = 1 

and let  n = p2k+1n1 = x2 + y2 

Then   n = x2 + y2 ≡ 0 (mod p) 

Let p   x.  Then gcd (p, x) = 1 
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Now  gcd(p, x) = 1 

� ∃ an integer q such that x q ≡ 1(mod p) 

Now  y2 ≡ −x2(mod p) 

� q2 y2 ≡−q2 x2 ≡ −1(mod p) 

� (qy)2 ≡ −1(mod p) 

� −1 is a quadratic residues of p.  

But p is a prime of the type 4k + 3 and so −1 must be a quadratic non-residue 
of p, which is a contradiction.  So p must divide x.  Then p must also divide y, 
since x2 + y2 = 0(mod p) 

Let  x = px1 & y = py1 

Then  n = x2 + y2 = p2 (x1
2 + y1

2) \= p2k+1 n1 

� x1
2 + y1

2 = p2k−1 n1 

If p |/  x1, we have contradiction as before. 

So if  x1 = px2, y1 = py2, then 2
2

2
2 yx + = p2k−3 n1 proceeding as before. 

Proceeding like this and decreasing the power of p by 2 at a time, we get 

2
k

2
k yx + = pn1 for some positive integers xk & yk 

Also gcd(n1, p) = 1, proceeding as before we get p2 | pn1 

 

�  p | n1, which contradicts gcd(p, n1) = 1 

Thus n can not be written as a sum of 2 squares.  

Theorem 4.5 If all primes of the type 4k + 3 occur to an even degree in the 
prime factorization of a natural number n, then n can be written as a sum of 2 
squares. 

To prove Theorem, we first shall prove the following lemmas 

Lemma 1 :- If n1 & n2 are representable as a sum of 2 squares, then n1 n2 is 
also representable as a sum of 2 squares.  

Proof :- Let  n1 = a2 + b2 and n2 = c2 + d2 

Then  n1 n2 = (a2 + b2) (c2 + d2) 
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          = (ac + bd)2 + (ad − bc)2 

and this proves Lemma 1 

Lemma 2 :- Given any prime p of the type 4k + 1, ∃ natural numbers x & m 
such that  

  x2 + 1 = mp where 0 < m < p 

Proof :- Since p is a prime of the type 4k + 1, −1 is a quadratic residue of p.  

So ∃ a natural number x such that x2 ≡ −1 (mod p) W. L. O. G. we may 
assume 0 < x < p.                    If p/2 x < p, we note (p−x)2 ≡ x2 ≡ −1 (mod p) 
and 0 < p −x < p/2.  So W. L. O. G. we assume           0 < x < p/2.  Then ∃ an 
integer m such that      m > 0 

and  mp = x2 + 1 < 1 +
2

2
p
�
�

�
�
�

� < p2,       �  m < p. 

Proof of Theorem :- Let m be the least positive integer such that, a2 + b2 = 
mp for some positive integer a & b. 

By Lemma 2, such an m exists & 0 < m < p.  If m = 1, 

Then p can be written as a sum of 2 squares.  Now we can write n as 

  n = p1 p2…pk m2 

where each pi is a prime of the form 4k + 1 and m is a product of primes of the 
type 4k + 3.   If each pi can be written as a sum of 2 squares, then theorem 
follows from Lemma 1.  So assume  ∃ at least one prime p of the form 4k + 1, 
such that p can not be written as a sum of 2 squares. 

Then ∃ integers m, x, y such that x2 + y2 = mp 

We take 2 ≤ m < p and m is the least positive integer 

Now  mp = x2 + y2 ≡ 0(mod m)     
  

Take integers u & v such that 

  x ≡ u (mod m), y ≡ v(mod m)    …(1) 

and  |u| ≤ m/2, |v| ≤ m/2 

Then   u2 + v2 = x2 + y2 ≡ 0 (mod m)    …(2) 

Let   mr = u2 + v2 ≤ 
2

m
4

m
4

m 222
=+ < m2 
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Then   mr < m2  � 0 ≤ r < m 

Let r = 0.  Then u2 + v2 = 0    � u = 0, v = 0 

Then   x ≡ u ≡ 0 (mod m) 

  y ≡ v ≡ 0 (mod m) 

�  m | x, m | y.  Then m2 | x2, m2 | y2 

� m2 | (x2 + y2)  � m2 | mp  � m | p. 

But 2 ≤ m < p, so m | p is not possible 

�  r ≠ 0 

Now  mp = x2 + y2  and mr = u2 + v2 

�  m2 rp = (x2 + y2) (u2 + v2) = (xu + yv)2 + (xv − yu)2 …(3) 

Now   xu + yv ≡ u2 + v2 ≡ mr ≡ 0 (mod m) 

and   xv − yu ≡ uv − uv ≡ 0 (mod m). 

�  m | (xu + yv) and m | (xv − yu) 

� 
m

yuxv
&

m
yvxu −+

 are integers 

Dividing on both sides by m2 in (3) we get 

  rp = 
22

m
yuxv

m
yvxu

�
�

�
�
�

� −+�
�

�
�
�

� +
 

i.e., rp can be written as a sum of 2 squares. 

But 0 < r < m and this contradicts the minimality of m. So 2 ≤ m < p is not 
possible 

�  m = 1. 

i.e., every prime of the form 4k + 1 can be written as a sum of 2 squares.  
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Remark :- Combining Theorem 1 with Theorem 2 we get that a natural 
number n can be written as a sum of 2 square iff all the primes of the type 4k 
+ 3 occur to an even degree in the prime factorization of n.  

Theorem 4.6 If a prime p = x2 + y2, then apart from changes of signs and 
interchange of x & y, this representation of p as sum of two squares is unique. 

Proof :- If p = 2, then 2 = (± 1)2 + (± 1)2 is the only representation of 2 as sum 
of two squares. 

Let p be an odd prime.  Since no number of the form 4k + 3 can be written as 
sum of 2 squares  so p ≠ 3 (mod 4).  So p ≡ 1(mod 4) 

Let  p = x2 + y2 & p = X2 + Y2 

Since p is of the form 4k + 1, −1 is a quadratic residue of p. 

So ∃ an integer h such that h2 ≡ −1 (mod p) 

Now p = x2 + y2  � x2 + y2 ≡ 0 (mod p) 

�  x2 ≡ −y2 (mod p) 

Since h2 ≡ −1 (mod p)  � x2 ≡ h2 y2 (mod p) 

�  x ≡ ± hy (mod p) 

By changing the signs of y if necessary, we can assume  

  x ≡ hy (mod p) 

Similarly we assume X = hY (mod p) 

Now  p2 = (x2 + y2) (X2 + Y2) 

       = (xX + yY)2 + (xY − yX)2   …(1) 

Now   xY − yX ≡ hyY−yhY ≡ 0 (mod p) 

�  p | (xY−yX).  Then from (1), p | (xX + yY) 

Dividing both sides of (1) by p2, we get 

  1 = 
22

p
yXxY

p
yYxX

��
�

�
��
�

� −+��
�

�
��
�

� +
   …(2) 

The only representation of (2) as sum of two squares are  
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  1 = (±1)2 + 02 = 02 + (± 1)2 

So from (2) either xX + yY = 0     …(3) 

or  xY − yX = 0      …(4) 

Case I  xY − yX = 0 

�  xY = yX      …(5) 

Now p = x2 + y2  � gcd(x, y) = 1,  and   p = X2 + Y2  � gcd (X, Y) = 1 

From (5), x | (yX), but gcd (x, y) = 1 � x | X   …(6) 

Again from (5), X | (xY), but gcd (X, Y) = 1  � X | x  …(7) 

Using (6) and (7)        

   x = ± X. 

But x2 + y2 = X2 + Y2 = p 

�  y2 = Y2 � y = ± Y 

So in this case theorem is true. 

Case II   xX + yY = 0 

In this case, we check that  

  x = ± Y & y = ± X. 

  xX = − yY 

�  x | −yY  � x | Y 

and  Y | −xX   � Y | −x  

�  x = ± Y 

Similarly y = ± X.   
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Four Square Theorem  

Theorem 4.7 Every natural number n can be written as a sum of four squares. 

Proof :- If n = 1, then 1 = 12 + 02 + 02 + 02 

So let n > 1 

Let  n = k�
k

2�
2

1�
1 p...pp      …(1) 

be the prime factorization of n. 

If every prime p can be written as a sum of four squares then the above 
theorem will follow from (1), if we are able to prove 

Lemma 1 :- Product of two numbers, which can be written as sum of 4 
squares, is also repreentable as sum of 4 squares.  

Proof :- Let 

  n1 = a2 + b2 + c2 + d2 

and   n2 = x2 + y2 + z2 + u2 

The        n1n2 = (a2 + b2 + c2 + d2) (x2 + y2 + z2 + u2) = (ax + by + cz + du)2 

   + (bx−ay +cu −dz)2 + (cx + dy − az − bu)2 

   + (dx − cy + bz − au)2 

Thus after Lemma 1, it is enough to prove  

Lemma 2 :- If p is an odd prime then ∃ integers x, y, m such that  

  1 + x2 + y2 = mp where 1 ≤ m < p. 

Proof of Lemma 2:-  Let 

  S = 
�
	



�
�

 −=+

2
1p

,...,2,1,0x;x1 2  

and  T =
�
	



�
�

 −=−

2
1p

,...,2,01y,y2  

Then each of S & T contains 
2

1p +
elements. First we claim that elements of S 

are mutually incongruent (mod p) 

If possible, let  
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  1 + 2
2

2
1 x1x +≡ (mod p) 

where  0 ≤ x1 < x2 ≤ 
2

1p −
. 

Then  2
1

2
2 xx −  ≡ 0 (mod p) 

� )xx(p 2
1

2
2 −       �    p | (x2 + x1) (x2−x1) 

But  1 ≤ x1 + x2 ≤ (p−1) 

and   1 ≤ x2 − x1 ≥ 
2

1p −
 

�  p |/ (x1 + x2)  and p |/  (x2 − x1) 

So p does not divide 2
1

2
2 xx − .  So elements of S are mutually incongruent 

(mod p) 

Similarly elements of T are mutually incongruent (mod p). 

Now consider SUT.  SUT contains (p+1) distinct elements.  But there are only 
(p−1) residue classes (mod p).  So two elements of SUT must be congruent to 
each other (mod p).  Since elements of S as well as elements of T are mutually 
incongruent (mod p), so there must exist an element of S which is congruent 
to an element of T 

i.e. ∃ integers x, y; 0 ≤ x ≤ 
2

1p −
, 0 ≤ y ≤ 

2
1p −

 such that  

  1 + x2 ≡ −y2(mod p) 

i.e.   1 + x2 + y2 ≡ 0 (mod p) i.e. there exists an integer m such that  

  1 + x2 + y2 = mp 

Then  mp = 1 + x2 + y2 ≤ 1 +
22

2
1p

2
1p

�
�

�
�
�

� −+�
�

�
�
�

� −
 < p2 

�  m < p. 

Proof of Theorem :- Every prime can be written as four squares. 

If p = 2, then 2 = 12 + 12 + 02 + 02 and we are through. 
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By Lemma 2, given any odd prime p, ∃ integers a, b, c, d, m such that a2 + b2 
+ c2 + d2 = mp where 1 ≤ m < p, for we can take a = 1, b = x; c = y, d = 0.   

Let m be the smallest positive integers such that  

  a2 + b2 + c2 + d2 = mp     …(1) 

Then   a2 + b2 + c2 + d2 ≡ 0(mod m) 

Now choose x, y, z , u such that 

  x ≡ a(mod m) 

  y ≡ b(mod m) 

  z ≡ c(mod m) 

  u ≡ d(mod m) 

where  − 
2
m ≤ x, y, z, u ≤

2
m

 

Then  x2 + y2 + z2 + u2 ≡ a2 + b2 + c2 + d2 ≡ 0(mod m) 

This is ∃ an integer r such that 

  x2 + y2 + z2 + u2 = mr     …(2) 

Now   mr = x2 + y2 + z2 + u2 ≤ 
2222

2
m

2
m

2
m

2
m

�
�

�
�
�

�+�
�

�
�
�

�+�
�

�
�
�

�+�
�

�
�
�

�  

       = m2  � r ≤ m 

Let     r = 0  

�  x2 + y2 + z2 + u2 = 0 

�  x = y = z = u = 0 

Then mp = a2 + b2 + c2 + d2 ≡ 0 (mod m2), since m/a, m/b, m/c and m/d 

�  m2 | mp  � m | p    

�  either m = 1 or m = p  

Now m ≠p, since m < p.  If m = 1, then  

  a2 + b2 + c2 + d2 = p and p is representable as a sum of 4 
squares.  So we assume r ≠ 0 

Then   1≤ r ≤ m and 1 < m < p 

Let  r = m 
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Then  x2 + y2 + z2 + u2 = m2.     …(3) 

Since  −
2
m

<x, y, z, u ≤ 
2
m

 

(3) is  possible only if x = y = z = u = 
2
m

. 

Then  a ≡
2
m

, b ≡
2
m

, c ≡
2
m

, d ≡
2
m

 (mod m) 

�  ∃ integers a1, a2, a3, a4 such that  

  a = 
2
m

 + a1m, b = 
2
m

 +a2m, c = 
2
m

 + a3m, d = 
2
m

 + a4m 

Now          mp = a2 + b2 + c2 + d2 

    = 
2

2

2

1 ma
2
m

ma
2
m

�
�

�
�
�

� ++�
�

�
�
�

� + +
2

4

2

3 ma
2
m

ma
2
m

�
�

�
�
�

� ++�
�

�
�
�

� +  

    = 22
2

2
2

2
22

1
2

1

2

mama
4

m
mama

4

m
+++++  

      + 22
4

2
4

2
22

3
2

3

2

mama
4

m
mama

4

m
+++++     

      = m2 (1+ a1 + a2 + a3 + a4 + 2
4

2
3

2
2

2
1 aaaa +++ ) 

      ≡ 0 (mod m2) 

�  m2 | mp  � m | p 

which is not possible since 1 < m < p. 

Now multiplying (1) & (2) we get 

 m2rp = (a2 + b2 + c2 + d2) (x2 + y2 + z2 + u2)   

          = (ax + by + cz + du)2 + (bx − ay + cu −dz)2 

 + (cx + dy − az − bu)2  

+ (dx − cy + bz − au)2  (By Lemma 1)  …(4) 

But   ax + by + cz + du ≡ a2 + b2 + c2 + d2 ≡ 0 (mod m) 
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  bx − ay + cu −dz ≡ ba − ab + cd − dc ≡ 0 (mod m) 

  cx + dy − az − bu ≡ ca +db − ac − bd ≡ 0(mod m) 

  dx −cy + bz −au ≡ da −cb + bc − ad ≡ 0(mod m) 

∴ Dividing (4) by m2 we get 

  rp = 
22

m
dzcuaybx

m
duczbyax

�
�

�
�
�

� −+−+�
�

�
�
�

� +++
 

      + 
22

m
aubzcydx

m
buazdycx

�
�

�
�
�

� −+−+�
�

�
�
�

� −−+
 …(5) 

where the expression in the R.H.S. of (5) are integers. 

So we can write rp as a sum of 4 squares.  

But 1 < r < m and this contradicts the minimality of m. 

So m > 1 is impossible  

�  m = 1 

Hence the theorem  

(It is called Langranges theorem) 

Waring Problem :- Waring problem is about the representation of a natural 
numbers as a sum of fixed number of squares or cubes, or 4-th powers and so 
on. 

In 1970, Waring stated without proof that a natural number can be written as a 
sum of 4 squares, 9 cubes, 19 biquradratics & 37 5-th powers & on.  In 1909, 
Hilbert proved that given any natural number n and k ≥ 2, ∃ a fixed number 
s(k) = s(say) such that n can be written as sum of s k-th powers. 

The Waring problem has been established for all k ≠ 5 

The numbers g(k) and G(k)  

Connected with Waring problem we define natural nos g(k) & G(k) in the 
following way: 

g(k) : is defined as the smallest nos such that every natural number can be 
written as the sum of g(k) k-th power.  

G(k) : is defined to be as the smallest natural number such that every natural 
number (except a finite number) can be written as a sum of G(k) k-th powers. 

Theorem 4.8  g(2) = 4 

Proof ;- By Lagrange Theorem, g(2) ≤ 4 
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Now the most economical representation of 4 as a sum of 4 squares is  

  4 = 12 + 12 + 12 + 12 

�  g(2) ≥ 4  � g(2) = 4 

Hence the theorem  

Theorem 4.9 G(2) = 4 

Proof :- We know  

  G(2) ≤ g(2) = 4        …(I) 

By definition G(k) is the smallest natural numbers except a finite number that 
can be written as a sum of G(k) k-th powers.  So to prove G(2) = 4, it is 
enough to prove that an infinite number of natural numbers can not be written 
as a sum of 3 squares.  

For this, we shall prove that no natural number of the form 8k + 7 can be 
written as a sum of 3 square.  

Let  n = a2 + b2 + c2     …(II) 

Then we distinguish following cases  

(a) All the natural numbers a, b, c, are even then  

  a2 ≡ 0 or 4(mod 8) 

  b2 ≡ 0 or 4(mod 8)  

and  c2 ≡ 0 or 4(mod 8) 

∴  n = a2 + b2 + c2 ≡ 0 or 4 (mod 8) 

(b) Two of the numbers a, b, c are even and one is odd.  To be specific let a & 
b be even and c be odd. 

Then  a2 ≡ 0 or 4 (mod 8) 

  b2 ≡ 0 or 4(mod 8) 

  c2 ≡ 1 (mod 8) 

∴  n = a2 + b2 + c2 ≡ 1 or 5 (mod 8) 

(c) Two of a, b, c are odd and third is even  

 Let ‘a’ be even and b, c be odd. 

then  a2 ≡ 0 or 4(mod 8), b2 ≡ 1 ≡ c2 (mod 8) 
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∴ n ≡ a2 + b2 + c2 ≡ 2 or 6(mod 8) 

(d) All of a, b, c are odd 

then  a2 ≡ b2 ≡ c2 = 1(mod 8) 

∴  n = a2 + b2 + c2 ≡ 3 (mod 8)  

Therefore, for no choice of a, b, c 

  n ≡ 7(mod 8) 

∴ No number of the form 8k + 7 can be written as a sum of 3 square  

�  G(2) > 3      …(III) 

� G(2) ≥ 4 

From (1) & (III) we get G(2) =4 

Remarks:- It is clear from the proof that 

if   n ≡ 0 (mod 4) and 

  n ≡ a2 + b2 + c2   , then a, b, c must be all even. 

Example :-  Prove that no number of the form 4m (8k + 7); (m ≥ 0), (k ≥ 0) 
can be written as a sum of 3-squares. 

Proof:- First we prove, no number of form 8k +7 can be written as a sum of 3 
squares. 

We shall prove the result by induction on m. 

If m = 0, then n = 4m  (8k + 7) = 8k + 7 and we have proved that no number of 
the form 8k+7 can be written as a sum of 3- squares.  So assume that no 
number of the form 4m-1 (8k + 7)  (m ≥ 1) can be written as a sum of 3 squares 

Now let n = 4m (8k + 7) when m ≥ 1 

Then  n ≡ 0 (mod 4) 

If possible, let ∃ numbers a, b, c such that n = a2 + b2 + c2 then by the remark 
made earlier a, b, c, must be all even. 

Therefore 
4

c
4

b
4

a
4
n 222

++=  

      =
222

2
c

2
b

2
a

�
�

�
�
�

�+�
�

�
�
�

�+�
�

�
�
�

�  
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i.e. 
4
n

 can also be written as a sum of 3-squares.  

But  
4
n

= 4m−1 (8k + 7) 

and this contradicts the assumption that no number of the form 4m−1(8k + 7) 
can be written as a sum of 3-squares which proves the exercise.  

 

Lower bounds for g(k) and G(k) 

Theorem 4.10 g(k) ≥ 22
2

3 k
k

−+
�
�

�

�

�
�

�

�

��
�

�
��
�

�
 

Proof :- Let q = 
�
�

�

�

�
�

�

�

��
�

�
��
�

�
k

2

3
.  

Let N = 2k q−1, then by definition, N < 3k. 

So if we want to represent N as a sum of kth powers, the 3k cannot occur in 
this representation.  Further N < 2kq.  So for the most economical 
representation of N as a sum of kth powers we must take q−1 powers of 2k in 
its representation.  

∴  N = 2k q−1 = 2k q−1 + 2k − 2k 

          = 2k(q−1) + 2k −1 

          = (q−1) 2k + (2k−1). 1k 

Thus we need exactly q−1 + 2k−1 = q + 2k−2 kth powers to represent N as a 
sum of k-th powers in the most economical representation.  

∴ g(k) ≥ q + 2k −2 = 22
2

3 k
k

−+
�
�

�

�

�
�

�

�

��
�

�
��
�

�
 

Theorem 4.11 G(k) ≥ k + 1 

Proof :- To prove the theorem we first prove a lemma. 

Lemma :- For every integer k ≥ 1 and r ≥ 1 
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 �
−

−+++
=

b

0a 1r||
)1ra)...(2a)(1a(

 =  
r|

)rb)...(2b)(1b( +++
 …(1) 

Proof :- We shall prove the lemma by induction on b.  However first we note 
that )n|(  divides the product of n consecutive integers.  So fractions 
appearing on both sides of (1) are integers. 

Take b = 1, then L.H.S. of (1) for b = 1, is equal to  

  
r|

1r|
r1

1r|

r|
1r|

1r|
1r|

r|1r| +
=+=

−
+

−
−

=
−
+−

 

So assume that (1) holds for (b−1), where b ≥ 2 and we shall prove its for b.  
Now L.H.S. of (1) is equal to  

  �
−

−+++
=

b

0a 1r|

)1ra)...(2a)(1a(
 

 

   = 

�
−

−+++
+

−
−+++−

=

1b

0a 1r|

)1rb)...(2b)(1b(

1r|

)1ra)...(2a)(1a(
  

   = 
1r|

)1rb)...(2b)(1b(

r|

)1rb)...(1b(b

−
−+++

+
−++

  

   = 
r|

)rb)(1rb)...(2b)(1b( +−+++
= R.H.S. of (1) 

Thus lemma is true for b. 

So by induction principle, lemma is true for every b ≥ 1. 

Proof of theorem :- For any given natural number N, let A(N) be the number 
of those natural numbers n such that 0 ≤ n ≤ N and n can be written as sum of 
k k-th powers i.e. A(N) is the number of natural numbers n such that  

  n = x1
k +…+ xk

k and 0 ≤ n ≤ N   …(1)  

is solvable  

By interchanging x1, x2,…, xk if necessary, we assume 0 ≤ x1 ≤  x2 ≤…≤ xk 
and xk ≤ N1/k        …(2) 

Since n ≤ N, then to every solution of (1), we must have a solution of (2), so 
that  
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  A(N) ≤ B(N)      …(3) 

where B(N) is the number of solutions of (2).  Now, we have 

  B(N) = 1...
2x

01x

3x

02x

4x

03x

kx

01kx

k/1N

0kx
�����

====−

��
�

��
�

=
 

          = ����
===−

��
�

��
�

=

3x

02x

4x

03x

kx

01kx

k/1N

0kx
... (x2+1) 

Now applying the above lemma with a = x2, b = x3 and r = 2,  

  B(N) =
2|

)2x)(1x(
... 334x

03x

kx

01kx

k/1N

0kx

++
���

==−

��
�

��
�

=
 

Again, applying the Lemma with a = x3, b = x4, r = 3 and then continuing like 
this we obtain  

  B(N) =
1k|

)1kx)...(2x)(1x( kkk

k/1N

0kx −
−+++

�
��
�

��
�

=
 

           = 
( ) ( ) ( )

k|

k]N[...2]N[1]N[ k/1k/1k/1 +++
  …(4) 

Now, if possible, let G(k) ≤ k, so that all but a finite number can be written as 
a sum of k kth powers, so there exists a finite number C such that 

  A(N) ≥ N−C 

But we have 

  A(N) ≤ B(N) 

Combining, we have 

  A−C ≤ A(N) ≤ B(N)     …(5) 

Now we know that 

  N1/k−1 ≤ [N1lk] ≤ N1/k 

So that, we have from (4), 
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k|

)kN)...(2N)(1N(
)N(B

k|

)1kN)...(1N(N k/1k/1k/1k/1k/1k/1 +++
≤≤

−++
  

(6) 

Then, we observe that for large N, L.H.S and R.H.S. of (6) tend to k|/N .  

Hence for large N,  B(N) ~ k|/N .  Thus it follows that from (5), we have for 
sufficiently large N, 

  N ≤ k|/N , a contradiction for k ≥ 2.  

Thus, our assumption that G(l) ≤ k is not possible and hence, we must have : 

  G(k) ≥ k + 1. 

Theorem 4.12 Prove that, 

  G(2θ) ≥ 2θ+2 for θ ≥ 2 

Proof :- Firstly, let θ = 2, then we have to show that  

  G(4) ≥ 16 

Let x be any integer, then    

  x4 ≡ 0 or 1(mod 16)     …(1)  

Thus, if we consider the numbers of the form 16m + 15, then any such number 
require at least 15 biquadrates.  It follows that,  

  G(4) ≥ 15 

From (1), it follows that if 16n is the sum of 15 or fewer biquadrates, then 
each biquadrate must be a multiple of 16.  Hence, we can write : 

  16n = �=�
==

15

1i

4
i

15

1i

4
i )y2(x  

so that  

  n = �
=

15

1i

4
iy  

Hence, if 16n is the sum of 15 or fewer biquadrates, so is n.  But, we observe 
that 31 is not the sum of 15 or fewer biquadrates.  In fact the most economical 
representation contains 16 biquadrates given by, 31 = 24 + 15.14. 

So we must have 
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  G(4) ≥ 16 

Now, let θ > 2, then we have k = 2θ > θ + 2 

If x is even, then 
θθθθ

== 2222 y2)y2(x  

Since, θ + 2 < 2θ, so 2θ+2 | 
θ22  

So that we must have  

  
θ2x ≡ 0 (mod 2θ+2). 

If x is odd, then 
θθ

+= 22 )1m2(x  

�  
θθ

+= 22 )m21(x ≡ 1 + 2θ+1 m + 2θ+1 (2θ −1) m2 

        ≡ 1 + 2θ+1m + 22θ+1 m2 − 2θ+1 m2 

                   ≡ 1 + 2θ+1 m−2θ+1 m2 

        ≡ 1 − 2θ+1 m(m−1) ≡ 1 (mod 2θ+2) 

Thus, we have obtained that, 

  
θ2x ≡ 0 or 1(mod 2θ+2)    …(2) 

Now, let n be any odd number and suppose that 2θ+2 n is written as a sum of 
2θ+1−1 or fewer k th powers where k = 2 

  2θ+2. N = xi
k + x2

k +…+ k
122

x
−+θ . 

then from (2), we get that each xi must be even and hence divisible by 2k.  
Hence, we obtain that 2k−θ−2 | n which implies that n is even, a contradiction.  

Hence, we must have  

  G(2θ) ≥ 2θ+2 for θ ≥ 2. 

This completes the proof  

Theorem 4.13 Let p be a prime such that p > 2 (i.e. p is an odd prime), then  

  G[pθ (p−1)] ≥ pθ+1 

Proof :- Let k = pθ(p−1). 

Since p > 2, so we have θ + 1 ≤ 3θ < k 

Hence, if p | x, then we have 
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  xk ≡ 0(mod pθ+1) 

and if p    x, then we have 

  xk = )1p(px −θ
≡ 1 (mod pθ+1) 

[Using the fact that φ(pθ+1) = pθ(p−1) and applying Euler’s theorem] 

Thus we obtain that  

  xk ≡ 0 or 1(mod pθ+1) 

Let n be a natural number such that (p, n) = 1 and suppose that pθ+1.n is the 
sum of pθ+1−1 or fewer kth powers i.e. 

  pθ+1.n = x1
k + x2

k +…+ k
11p

x
−+θ  

then each xi must be divisible by p and hence each factor on R.H.S. must be 
divisible by pk which implies that 

  pk | pθ+1.n,  

a contradiction, since k > θ + 1 and (p, n) = 1 

Hence, we must have  

  G(k) ≥ pθ+1 

i.e. G(pθ(p−1)) ≥ pθ+1 

This completes the proof. 

Theorem 4.14 Let p be a prime such that p > 2 and θ ≥ 0 then  

  G )1p(
2

1
)1p(p

2

1 1 −≥
�
	



�
�



− +θθ  

Proof :- Let 

  k = 
2

1
pθ(p−1) 

then we have θ + 1 < pθ ≤ 
2

1
pθ(p−1) = k (except in the trivial case, p = 3, θ = 

0 and k = 1) 

Hence we must have if p/x, then xk ≡ 0 (mod pθ+1) 

and if p    x, then we have  

  x2k ≡ )1p(px −θ
≡ 1 (mod pθ+1)   (By Euler’s theorem) 
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Hence,  pθ+1 | (x2k−1) 

�   pθ+1 | (xk+1) (xk−1). 

Since p > 2, so p can not divide both xk +1 and xk−1 and so one of xk−1 and 
xk+1 is divisible by pθ+1.  Thus, we have : 

  xk ≡ 0, 1 or −1(mod pθ+1) 

If follows that number of the form pθ+1m ± 
2

1
(pθ+1−1), requires at least 

2

1
(pθ+1−1) k th powers 

� G(k) ≥ 
2

1
(pθ+1−1) and the proof is completed.  

Theorem 4.15 If θ ≥ 2, the n,  

  G(3.2θ) ≥ 2θ+2 

Proof :- We have that, G(3.2θ) ≥ G(2θ) 

      ≥ 2θ+2 (proved earlier) 

This completes the proof. 

Algebraic Number and integers  

Definition :- (Rational Integers) 

The numbers …, −3, −2, −1, 0, 1, 2, 3,… are called the “rational integers” or 
simply the “integers”.  The set of rational integers {…, −3, −2, −1, 0, 1, 2, 
3,…} is denoted by Q(1). 

Definition :- An algebraic number is a number x which satisfies an algebraic 
equation, i.e. an equation  

  a0 xn + a1 xn−1 +…+ an = 0, an ≠ 0, where a0, a1,…, are integers 

If x = 
b
a

, then bx − a = 0, so that any rational x is algebraic.  Any quadratic 

surd is algebraic; thus i = 1−  is algebraic.  

Definition :- If a0 = 1 in the above definition, then x is called an algebraic 
integer . 

Definition (Gaussian Integers) 

Gaussian integer (or complex integer) is the number of the form, ξ = a + bi, 
where a and b are rational integers.  The set of Gaussian integers, namely 
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  {a + bi : a, b are rational integers} 

is denoted by Q(i) and Gaussian integers are also called as integers of Q(i) 

Definition :- (Divisibility in Q(i)) 

An Gaussian integer ξ is said to be divisible by an Gaussian integer η(≠ 0) if 
there exists an Gaussian integer σ such that ξ = η σ.  Then, we say that η is a 
divisor of ξ and write η | ξ. 

Remark :- 1. Any Gaussian integer ξ has eight trivial divisors namely, 1, −1, 
i, −i, ξ, −ξ, iξ and −iξ. 

2.  Basic properties of divisibility are satisfied in k(i), such as 

  α | β, β | γ   � α | γ 

α | γ1, α | γ2,…, α | γn � α | (β1γ1 + β2γ2 +…+ βnγn) for all Gaussian integers.  

Definition :- (Unity) 

The integer ∈ in Q(i) is said to be unity of Q(i) if ∈ | ξ for every ξ of Q(i) 

Alternatively, we may define a unity of Q(i) as any Gaussian integer which is 
a divisor of 1.  The two definitions are equivalent, since 1 is a divisor of every 
Gaussian integer and ∈|1, 1 | ξ   � ∈ | ξ. 

Definition (Norm of an Gaussian integer) 

Let ξ = a + ib is an Gaussian integer.  The norm of ξ is defined as : 

  N(ξ) = N(a + ib) = a2 + b2 

Remark :- It can be easily verified that N(ξ) N(η) = N(ξη) for all Gaussian 
integers ξ and η. 

Theorem 4.16 In Q(i), the norm of a unity is 1 and any integer whose norm is 
1 is a unity. 

Proof :- If ∈ is a unity, then, by definition, ∈ | 1 

� there exists an Gaussian integer η such that  

  1 = ∈η 

� N(1) = N(∈η) = N(∈) N(η) 

� 1 = N(∈) N(η)  � N(∈) | 1  � N(∈) = 1 

On the other hand, 

Let  N(a + ib) = 1 

� a2 + b2 = 1  � (a + ib) (a−ib) = 1 
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� (a + ib) | 1 

� a + ib is a unity and proof is completed.  

Theorem 4.17 The unities of Q(i) are ∈ = is where S = 0, 1, 2, 3   or 

Show that ± 1 and ± i are the only unities of Q(i). 

Proof :- Let ∈ = a + ib be a unity of Q(i), then by above theorem,  

  N(∈) = a2 + b2 = 1 

But the only solutions of a2 + b2 = 1 are 

  a = ± 1, b = 0 and a = 0, b = ± 1 

So that, only choices of ∈ are 1, −1, i, −i 

Hence the unities of Q(i) are of the form is (s = 0, 1, 2, 3) 

Definition (Associate) 

Let ξ be any Gaussian integer and ∈ be unity of Q(i), then ∈ξ is said to be 
associate of ξ, or we say that ∈ξ is associated with ξ. 

Remark :- (I) By above theorem, it is clear that the associates of ξ are ξ, iξ, 
−ξ, −iξ. 

(II) The associates of 1 are the unities. 

Definition (Primes in Q(i))  

An integer in Q(i), neither zero nor unity, is said to be a prime in Q(i) if it is 
divisible only by associates of itself or by associates of I i.e. if π is a prime in 
Q(i), then it has no divisors except the eight trivial divisors 1, −1, i, −i, π, iπ, 
−iπ, −π. 

Theorem 4.18 A Gaussian integer whose norm is a rational prime (2, 3, 5, 7, 
11…) is a prime in Q(i). 

Proof :- Let ξ be any Gaussian integer such that  

N(ξ) = p where p is any rational prime.  We have to show that ξ is a prime in 
Q(i).   

Let  ξ = ησ  where η, σ ∈ Q(i) then N(ησ) = N(ξ) = p 

� N(η) N(σ) = p 

But p is a prime so either N(η) = 1 or N(η) = 1.  Hence either η or σ is a unity 
and therefore ξ is a prime in Q(i). 
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Remark :- Converse of above theorem is not true i.e. norm of a prime of Q(i) 
may not be a rational prime.  For example, 3 = 3 + 0i, ∈k(i) such that N(3) = 9 
i.e. Norm of 3 is not a rational prime, but we show that 3 is a prime of Q(i) 

Let 3 = (a + bi) (c + id) 

� N(3) = N(a + bi) N(c + id) 

� 9 = (a2 + b2) (c2 + d2) 

But, it is impossible that, a2 + b2 = c2 + d2 = 3 (since 31 is not the sum of two 
squares) and hence either a2 + b2 = 1 or c2 + d2 = 1 i.e. either a + ib or c + id is 
a unity. It follows that 3 is a prime of Q(i).  

Theorem 4.19 Any Gaussian integer, neither zero nor unity, is divisible by a 
prime of Q(i) 

Proof :- Let ξ be any Gaussian integer which is not equal to zero or unity.  If  
ξ is a prime in Q(i), we have nothing to prove. 

Let ξ be not a prime, then we must have ξ = α1β1 for some α1 β1 ∈ Q(i) such 
that, N (α1) > 1 and N(β1) > 1 and so we have  

  1 < N (α1) < N(ξ)     …(I) 

If α1 (or β1) is a prime, the proof is completed.  If α1 is not a prime, then  

  α1 = α2 β2 for some α2, β2 ∈ Q(i) such that,  

  N(α2) > 1 an N(β2) > 1 

then we have  

  1 < N(α2) < N(α1)     …(II) 

Combining (1) and (II), we obtain  

  1 < N(α2) < N(α1) < N(ξ). 

We may continue this process as long as αr is not a prime.  Since, N(ξ) > 
N(α1) > N(α2)… is a decreasing sequence of positive rational integers, we 
must come to a prime αr and then we have 

  ξ = α1 β1 = α2 β2 β1 = … = αr βr…β1 

Thus, αr is a divisors of ξ and αr is a prime in Q(i). 

Theorem 4.20 Any Gaussian integer, neither zero nor unity, can be written as 
product of finite number of primes of Q(i) 
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Proof :- Let ξ be any Gaussian integer, not equal to zero or unity.  If ξ itself is 
a prime, then the result is true. 

We shall prove the result by induction on norm.  We assume that result is true 
for all Gaussian integers (neither zero nor unity) with norm < N(ξ). 

Now, if ξ is not a prime, then, by last theorem, there exists a prime π such that  
π | ξ 

or  ξ = πα for some α∈ Q(i)    …(1) 

and we have N(α) < N(ξ) 

Now if N(α) = 1, then α is a unity and hence ξ is an associate of a prime π and 
hence, itself, is a prime, a contradiction.  So N(α) > 1, i.e. we have obtained 
N(α) < N(ξ) and α is neither zero nor unity.  So by induction hypothesis, α 
can be written as a, product of primes of Q(i), say π1, π2,…, πr. 

i.e.  α = π1 π2…πr 

Hence, from (1), we obtain  

  ξ = π π1 π2…πr where π, π1, π2,…, πr are primes of Q(i) 

Theorem 4.21 Given any two integers γ, γ1 (γ1 ≠ 0) of Q(i), there exists 
integers ρ and γ2 such that 

  γ = ργ1 γ2 where N(γ2) < N(γ1) 

Proof :- Since γ1 ≠ 0, we have : 

  
1γ
γ

= R + Si where R and S are real (in fact R and S are 

rational).  Then, we can find two rational integers x and y such that    

  |xR| − ≤ 
2

1
 and |S−y| ≤ 

2

1
 

and then we have 

  )iyx(
1

+−
γ
γ

 = |R + iS) − x + iy| 

    = | (R−x) + i(S −y)| = [(R−x)2 + (S−y)2]1/2 ≤ 
2

1
 

Now, if we take 

  ρ = x + iy and γ2 = γ − ργ1 
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Thus, we have 

  |γ − ργ1| = |γ1| ρ−
γ
γ

1

 ≤ 
2

1
 |γ1| 

This implies that  

  N(γ2) = N(γ − ργ1) = | γ − ργ1|2 ≤ 
2

1
|γ1|2 = 

2

1
N(γ1) < N(γ1) 

Thus, we have obtained that  

  γ = ργ1 + (γ −ργ1) 

     = ρ γ1 + γ2 where N(γ2) < N(γ1)  

Remark :- (I) The above theorem is known as “Division Algorithm in Q(i)”. 

(II) Like the rational integers, the following result holds in Q(i). 

“Let β and γ be Gaussian integers and π be prime of Q(i) such that π | βγ, then 
π | β or π | γ. 

The Fundamental Theorem of Arithmetic in Q(i)  

Theorem 4.22  Every Gaussian integer (neither zero nor unity) is expressible 
as a product of finite numbers of primes of Q(i).  This representation is unique 
apart from the order of the primes, the presence of unities and ambiguities 
between associated primes. 

Proof :- Let ξ be any Gaussian integer, then ξ can be expressed as product of 
finite number of primes of Q(i).   

Let ξ = π1 π2…πr = γ1 γ2…γs      …(1) 

be two representations of ξ where π1, π2…, πr, γ1, γ2,…, γs are all primes of 
Q(i). 

Now, by (1), we have 

  π1 | γ1 γ2…γs 

Since π1 is a prime element of Q(i), so π, must divide some γi (1 ≤ i ≤ s).  
Since γi is also a prime of Q(i), so we can say that π1 and γ1 are associates of 
each other 

∴ γi = ∈1π1 for some unity ∈1 ∈ Q(i) 

Thus, (1) becomes : 

  π1 π2…πr = γ1 γ2…γi−1 (∈1 π1) γi+1…γs 

which implies that  
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  π1 (π2…πr − γ1 γ2…γi−1 ∈1 γi+1…γs) = 0 

But π1 is a prime, so π1 ≠ 0 

� π2…πr = ∈1 γ1 γ2…γi−1 γi+1…γs 

Let, if possible, r < s, then continuing like above r times, we get : 

  1 = ∈1 ∈2..∈r γj1 γj2…γji 

Since γji is a prime and we get γji | 1 which is a contradiction.  Thus our 
supposition r < s is wrong.  Thus r </  s.  Similarly, we can prove that s </  r. So 
we have r = s 

By the process, we adopted, it also follows that πi is associate of some γj and 
conversely. 

Integers and fundamental Theorem in Q(w) where w3 = 1. 

Definition :- 

 The number of the form 

  ξ = a + bw where a and b are rational integers and w is given 
by  

  w = 
2

i31

3

2
sini

3

2
cose

i
3

2 +−
=

π
+

π
=

π
 

are called integers of Q(w). 

Remark :- (1) If w = 
i

3

2

e
π

= cos 2π/3 + i sin 2π/3 

         = 
2

i31+−
 

then, we have 

  w2 = 
2

i31−−
 

(II)    w + w2 = −1 and ww2 = 1 

i.e.  1 + w + w2 = 0 and w3 = 1 

Definition :- (Norm in Q(w)). 

Let ξ = a + bw be any integer in Q(w), then norm of ξ is defined as : 

  N(ξ) = (a + bw) (a + bw2) = a2 − ab + b2 

Note  (1) we have N(ξ) = a2−ab + b2 = 2
2

b
4

3

2

b
a +��

�

�
��
�

�
−  

� N(ξ) = 0 for ξ = 0 and N(ξ) > 0 otherwise 
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(II) We have : 

N(a + bw) = a2 −ab + b2 = |a + bw|2 

(III) It can be easily verified that  

  N(αβ) = N(α) N(β) 

For all α, β ∈ Q(w). 

Remark :- Definitions of divisor, unity, associate and prime in Q(w) are same 
as those in k(i). 

Theorem 4.23 The unities of Q(w) are given by ±1, ±w, ±w2 

Proof :- Let a + bw be any unity of Q(w), hen  

  N(a + bw) = 1 

� a2 − ab + b2 = 1 

� (2a−b)2 + 3b2 = 4 

The only solutions of this equation are  

  a = ±1, b = 0; a = 0, b = ±1; a = 1, b = 1; a = −1, b = −1 

so that the unities are  

  ± 1, ± w, ±(1 + w) 

or  ±1, ±w, ±w2 

Theorem 4.24 (1) The norm of a unity in Q(w) is 1 and any integer of Q(w) 
whose norm is 1 is unity.   

(2) An integer whose norm is a rational prime is a prime in Q(w). 

(3) Any integer in Q(w), not zero or a unity s divisible by a prime of Q(w). 

(4) Any integer in Q(w), not zero or a unity, is a product of primes in Q(w). 

Proof :- The proofs of these theorems are same as those given in the case of 
k(i), except for the difference in the form of the norm.  

Remark :- Consider 1−w ∈Q(w) 

then by definition of norm, N(1−w) = 3 

So by theorem (2) given above, 1−w is a prime of Q(w) 
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2. Converse of theorem (2) may not be true i.e. norm of a prime of Q(w) may 
not be rational prime.  For example, consider 2 = 2 + 0.w ∈ Q(w) then N(2) = 
3 which is not a rational prime. 

But, we show that 2 is a prime of Q(w) 

Let   2 = (a + bw) (c + dw) 

�  N(a + bw). N(c + dw) = 4     

Let, if possible 

  N (a + bw) = ± 2 

� a2 − ab + b2 =  ± 2  � (2a − b)2 + 3b2 = ± 8 

which is impossible i.e N(a + bw) ≠ ± 2 

Similarly  N(c + dw) ≠ ±2 

Hence one of these must be 1 and other is 4 i.e. one of (a + bw) and (c + dw) 
is unity and hence 2 is a prime of Q(w). 

Theorem 4.25 Given any two integers γ, γ1 of Q(w) and γ1 ≠ 0, there exists 
two integers K and γ2 in Q(w) such that  

  γ = Kγ1 + γ2 where N(γ2) < N(γ1) 

(This is known as Division Algorith in Q(w)) 

Proof :- Let γ = a + bw and γ1 = c + dw then consider, 

  
)dwc)(dwc(

)dwc)(bwa(

dwc

bwa
2

2

1 ++

++
=

+
+

=
γ
γ

 

           = SwR
dcdc

w)adbc(adbdac
22

+=
+−

−+−+
(s & y) 

where,  R = 
22 dcdc

adbdac

+−

−+
 and S =

22 dcdc

adbc

+−

−
 

� R and S are rational numbers.  

We can find two rational integers x and y such that   

  |R−x| ≤ ½ and |S−y| ≤ ½ 

and then, we have 
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2

1

)ywx( +−
γ
γ

 = |(R−x) + (S−y)w|2 

         = N[(R−x) + (s−y) w] 

       = (R−x)2 − (R−x) (S−y) + (S−y)2 ≤ 
4

3
 

Hence, if we take 

  K = x + yw and γ2 = γ − K γ1 

then we obtain  

  γ = Kγ1 + γ2 

where N(γ2) = N (γ − K γ1) ≤ 
4

3
 N(γ1) < N(γ1) 

This completes the proof.  

Fundamental Theorem of arithmetic in Q(w) :- The integer of Q(w) can be 
expressed as a product of primes of Q(w) and this expression is unique apart 
from the order of the primes, the presence of unities and ambiguities between 
associated primes. 

Proof :- Same as given in the case of k(i) 

Theorem 4.26 Show that λ = 1−w is a prime and 3 is associated with λ2 

Proof :- It has been already proved (in a remark) that λ = 1−w is a prime of 
Q(w). 

Now   λ2 = (1−w)2 = 1−2w + w2 

          = 1−2w + (−1 −w) 

          = −3w 

Hence 3 is associated with λ2. 

Algebraic fields 

An algebraic field is the aggregate of al numbers  

  R(ϑ) = ,
)(©P
)(P

ϑ
ϑ

 

Where ϑ is a given algebraic number, P(ϑ) and P′(ϑ) are polynomials in ϑ 
with rational coefficients, and P′(ϑ) ≠ 0.  We denote this field by Q(ϑ). It is 
plain that sums and products of numbers of Q(ϑ) belong to Q(ϑ) and that α/β 
belongs to Q(ϑ) if α and β belong to Q(ϑ) and β ≠ 0. 
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 We defined an algebraic number ξ as any root of an algebraic equation  

  a0 xn + a1 xn−1 +…+ an = 0, 

where a0, a1,… are rational integers, not all zero.  If ξ satisfies an algebraic 
equation of degree n, but none of lower degree, we say that ξ is of degree n. 

If n = 1, then ξ is rational and Q(ξ) is the aggregate of rationals.  Hence, for 
every rational ξ, Q(ξ) denotes the same aggregate, the field of rationals, which 
we denote by Q(1).  This field is part of every algebraic field. 

If n = 2, we say that ξ is ‘quadratic’.  Then ξ is a root of a quadratic equation  

  a0 x2 + a1 x + a2 = 0 

and so  ξ = 
c

mba √+
,   √m = 

b
ac −ξ

 

for some rational integers a, b, c, m.  Without loss of generality we may take 
m to have no squared factor.  It is then easily verified that the field Q(ξ) is the 
same aggregate as Q (√m).  Hence it will be enough for us to consider the 
quadratic fields Q(√m) for every  rational integer m, positive or negative 
(apart from m = 1). 

Any member ξ of Q(√m) has the form  

  ξ = 
c

mba
mwv

)mwv)(mut(
mwv
mut

)m(©P
)m(P

22

√+=
−

√−√+=
√+
√+=

√
√

 

for rational integers t, u, v, w, a, b, c.  We have (cξ −a)2 = mb2, and so ξ is a 

root of  

 c2x2 − 2acx + a2 − mb2 = 0.                                    (1) 

Hence ξ is either rational or quadratic; i.e. every member of a quadratic field 
is either a rational or a quadratic number. 

The field Q(√m) includes a sub-class formed by all the algebraic integers of 
the field.  We defined an algebraic integer as any root of an equation  

xj + c1 xj−1+…+ cj = 0,            (2) 

where c1,…,cj are rational integers.  We appear then to have a choice in 
defining the integers of Q(√m).  We may say that a number ξ of Q(√m) is an 
integer of Q(√m) (i) if ξ satisfies an equation of the form (2) for some j, or (ii) 
if ξ satisfies an equation of the form (2) with j = 2.  

Primitive polynomials 
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We say that the integral polynomial 

  f(x) = a0 xn + a1 xn−1 +…+ an  

is a primitive polynomial if  

  a0 > 0, gcd(a0, a1,…, an) = 1 

Theorem 4.27 An algebraic number ξ of degree n satisfies a unique primitive 
equation of degree n.  If ξ is an algebraic integer, the coefficient of xn in this 
primitive equation is unity. 

We first prove the following theorem :  

Theorem 4.28  Let ξ be an algebraic number of degree n and let f(x) = 0 be a 
primitive equation of degree n satisfied by ξ.  Let g(x) = 0 be any primitive 
equation satisfied by ξ.  Then g(x) = f(x) h(x) for some primitive polynomial 
h(x) and all x. 

By the definition of ξ and n there must be at least one polynomial f(x) of 
degree n such that f(ξ) = 0.  We may clearly suppose f(x) primitive.  Again the 
degree of g(x) cannot be less than n.  Hence we can divide g(x) by f(x) by 
means of the division algorithm of elementary algebra and obtain a quotient 
H(x) and a remainder K(x), such that  

  g(x) = f(x) H(x) + K(x),    …(1) 

H(x) and K(x) are polynomials with rational coefficients, and K(x) is of 
degree less than n. 

If we put x = ξ in (1), we have K(ξ) = 0.  But this is impossible, since ξ is of 
degree n, unless K(x) has all its coefficients zero.  Hence 

  g(x) = f(x) H(x). 

If we multiply this throughout by an appropriate rational integer, we obtain  

  cg(x) = f(x)h(x),     …(2) 

where c is a positive integer and h(x) is an integral polynomial.  Let d be the 
highest common divisor  of the coefficients of h(x).  Since g is primitive, we 
must have d | c.  Hence, if d > 1, we may remove the factor d; that is, we may 
take h(x) primitive in (2).  Now suppose that p | c, where p is prime.  It 
follows that f(x) h(x) ≡ 0(mod p) and so, either f(x) ≡ 0 or h(x) ≡ 0 (mod p).  
Both are impossible for primitive f and h and so c = 1.  This proves the 
theorem. 

Proof of the theorem 4.27 The proof of Theorem 4.27 is now simple.  If g(x) 
= 0 is a primitive equation of degree n satisfied by ξ, then h(x) is a primitive 
polynomial of degree 0; i.e. h(x) = 1 and g(x) = f(x) for all x.  Hence f(x) is 
unique.   
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If ξ is an algebraic integer, then ξ satisfies an equation of the form  

xj + c1 xj−1 +…+ cj = 0,     …(1) 

where c1 c2…cj are rational integers, for some j ≥ n.  We write g(x) for the 
left-hand side of (1) and, by Theorem 4.28, we have 

  g(x) = f(x) h(x), 

where h(x) is of degree j−n.  If f(x) = a0 xn +… and h(x) = h0 xj−n + …, we 
have 1 = a0 h0, and so a0 = 1.  This completes the proof of Theorem 4.27. 

Definition :- A complex number α is called an algebraic number if ∃ integers 
a0, a1,…an (an ≠ 0)  such that α satisfies a polynomial of the form  

  f(x) = an x′′ + an−1 xn−1 +…+ a1x + a0 

Further if an = 1 in above, then α is called on algebraic integer  

Definition :- A monic polynomial p(x) in Q[x] is called a minimal polynomial 
of α if p(x) is a polynomial of minimal degree which is satisfied by α.  

Remark :- In modern algebra we have proved that if α is an algebraic integer 
then Q[α] = Q(α) where Q[α] is the set of all polynomials in α with 
coefficient, from Q and Q(α) is the smallest field containing Q & α. 

Remark :- We know Q(α) is a vector space over Q and degree [Q(α). Q] is 
the degree of minimal polynomial satisfied by α.  

Theorem 4.29 Given an algebraic number α, ∃ a non-zero integer t such that t 
α is an algebraic integer. 

Proof :- Since α is an algebraic number, ∃ integers an, an−1,…, a1, a0, an ≠ 0 
such that  

  an αn + an−1 αn−1 +…+ a1 α + a0 = 0   …(1) 

Multiplying (1) by 1n
na − , we get 

  1n
n0

1n
n1

1n
n

1n
1n

nn
n aaa�a...a�a�a −−−−

− ++++  = 0 

Then (an α) satisfies  

  f(x) = xn + an−1 xn +…+ a1 1n
n0

2n
n aaxa −− +  

� (an α) is an algebraic integer.  If we take t = an, we get the result. 

The general quadratic field 

Definition :- A field k of complex number is called a quadratic field if  

  [ K : Q] = 2 and K is a vector space over Q. 
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Theorem 4.30 If K is a quadratic field, ∃ a non-zero square free integer m 
such that  

  K = Q( m ) 

Proof :- Since [K : Q] = 2, take any c ∈K, c ∉ Q.  Now consider 1, c, c2.  
These are three elements of K, so these must be linearly dependent over Q.  
So. ∃ a0, a1, a2 in Q, not all zero, such that  

  a0 c2 + a1c + a2 = 0 

Now a0 can not be equal to zero since otherwise c∈Q 

� c2 + 
0

2

0

1

a
a

c
a
a

+ = 0 

� c2 + 
0

2

0

1

a
a

c
a
a

−=  

Completing squares we get 

  c2 + 
0

2
2
0

2
1

2
0

2
1

0

1

a
a

a4

a

a4

a
c

a
a

−=+ = 
2
0

20
2
1

a4

aa4a −
 

Then  
2
0

20
2
1

2

0

1

a4

aa4a

a2

a
c

−
=��

�

�
��
�

�
+  

Taking the square root we get 

  c +
0

20
2
1

0

1

a2

aa4a

a2
a −

±=  

i.e.  c = −
0

20
2
11

a2

aa4aa −±
 

Then  Q(c) = Q
��
�

�

�

��
�

�

� −±−

0

20
2
11

a2

aa4aa
 

But   2a0 ∈Q 

∴  Q(c) = Q(−a1 ± 20
2
1 aa4a − ) 

          = Q (± 20
2
1 aa4a − ) 
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          = Q ( 20
2
1 aa4a − ) 

          = Q )m(Q)mb( =  

where m is a square free integer. 

Now we claim K = Q m( ) = Q(c) 

 Suppose K ≠ Q m( ) 

Then ∃ a ∈K, a∉ Q m( ).  Then 1, m , a are linearly dependent over Q since 

[K : Q] = 2 and so a∈Q m( ). 

Remark :- Since m is square free  

  m ≡/ 0 (mod 4) 

 So either m ≡ 1 (mod 4) or m ≡ 2 (mod 4) 

or  m ≡ 3(mod 4). 

Theorem 4.31 Let K = Q m( ) be a quadratic field and let α∈K.  Then α is 
an algebraic integer of K.  

⇔ α can be written as  

  α = a + b τ 

where   a, b ∈ Z 

and   τ = m  if m ≡ 2 or 3 (mod 4) 

and  τ = 
2

m1+
if m ≡ 1(mod 4) 

Proof :- Let α = a + bτ, where τ is given as above  

Let  m ≡ 2 or 3(mod 4) 

Then  α = a + b m  

�  α − a = b m  

� (α−a)2 = b2m 

� α2 − 2aα + a2 − b2m = 0 
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� α satisfies x2 − 2ax + a2 − b2 m = 0 

∴ α is an algebraic integer by definition.  Now let m ≡ 1(mod 4).  Then  

  α = a + b �
�
�

�
�
�
�

� +
2

m1
 

i.e.  α = a +
2
mb

2
b +  

�  α −
2
mb

2
ba2 =�
�

�
�
�

� +
 

Squaring, we get 

  α2 −α(2a +b) + a2 + ab + =
4

b2

4
b2

m 

or  α2 −(2a +b)α + a2 + ab −
4

b2
(m−1) = 0 

Thus α satisfies 

  x2−x(2a +b) + a2 + ab −
4

b2
(m−1) = 0 

which has integral coefficients since 
4

1m − ∈Z 

� α is a algebraic integer. 

Conversely, let α be an algebraic integer.  Since α∈K = Q( m ) then we can 
write 

  α = 
c

mba +
, where a, b, c ∈Z, c ≠ 0 

W. L. O. G. we assume  

  c > 0 and gcd(a, b, c) = 1 

Now  α = 
c

mba +
 

�  cα − a = b m  
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Squaring we get 

  (cα−a)2 = b2m 

  c2α2 − 2acα + a2 − b2m = 0 

�  α2 − 0
c

mba
�

c
a2

2

22
=−+  

Then α satisfies  

  x2 − 0
c

mba
x

c
a2

2

22
=−+     …(1) 

Since α is an algebraic integer, so the coefficient in (1) must be integers.  

Then  

(i)  c | 2a and c2 | (a2−b2m)    …(2) 

If b = 0 then c2 | a2  � c | a 

In this case (1) becomes  

  x2
 − 0

c

a
x

c
a2

2

2
=+  

�  
2

c
a

x �
�

�
�
�

� − = 0  � x = 
c
a

 

i.e.  α = a/c 

But  c | a  �
c
a

 is an integer 

Then α = 
c
a

 and it is of the required form.  i.e. α = 
c

m.0a +
 

So let  b ≠ 0 

let   gcd(a, c) = d 

Then  d |a , d | c  � d2 | a2, d2 | c2 

But  c2 | (a2−b2m) and d2 | c2 

�  d2 | (a2 − b2m) 
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But  d2 | a2  � d2 | b2m 

�  d2 | b2     (Θ m is square free) 

�  d | b 

Also d | a, d | b, d | c  � d | gcd(a, b, c) = 1 

�  d = 1 

�  gcd(a, c) = 1 

But   c | (2a)  � c | 2  � c = 1 or 2 

If c = 1, then α = a + b m  where a, b ∈Z. 

  m ≡ 2 or m ≡ 3 (mod 4) 

Then α is of the required form  

Now let  c = 2 

Then  α = 
2

mba +
 

Since gcd (a, c) = 1 & c = 2 

�  a must be odd. 

From (2), c2 | (a2 − b2m) 

�  a2 − b2m ≡ 0(mod 4) 

Then   a2 ≡ b2m (mod 4)     …(3) 

But a is odd and m ≡ 1 (mod 4) 

� b2 ≡ 1 (mod 4) 

� b is odd. 

The b can not be even.  

�  d = 1 

�  bdc (a, c) = 1 
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But c/(2a) � c/2 � c = 1 or 2 

If c = 1, then α = a + b m  where a, b ∈ Z 

and  m ≡ 2 or m ≡ 3 (mod 4) 

Then α of the required form  

Now let  c = 2 

Then   α = 
2

mba +
 

Since gcd(a, c) = 1 & c = 2 

�  a must be odd. 

From (2), c2/c2−b2m) 

�  a2 − b2 ≡ 0(mod 4) 

Then   a2 ≡ b2m (mod 4)     …(4) 

But a is odd and m ≡ 1(mod 4) 

� b2 ≡ 1(mod 4) 

� b is odd.  

Then b can not be even. 

Now  α = 
2

ba
2

m1
b

2
mba −+��

�

�
�
�
�

� +=+
 

Then α is of the form x + y τ where x, y ∈Z & τ = 
2

1m +
 since 

2

ba −
 is an 

integer.  

Hence, this proves the theorem 

Remark :- If m ≡ 1(mod 4), then α is an algebraic integer of Q )m(  

⇔ α = 
2

mba +
, where a, b ∈ Z and of same parity.  

Proof of remark :- If both a & b are even then 

  α = x + y m  where x, y∈Z 
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      = 2y �
�
�

�
�
�
�

� +
2

m1
 + x−y, 

and if both a & b are odd,  

  α = 
2

ba
2

)m1(b
2

mba −++=+
 

and in either case, they can be written as a + bτ, where a, b are integers and so 
they are algebraic integers 

Conversely, if α is an algebraic integer  

Let  α = a + b τ = a + b �
�
�

�
�
�
�

� +
2

m1
 

     = 
2

mb)ba2( ++
 

Then b & 2a + b are of the same parity and this prove the result. 

Theorem 4.32 The algebraic integers of a quadratic field form a ring.  

To prove this we shall prove that the product of two algebraic integers is an 
algebraic integer.  

Proof :- If m ≡ 2 (mod 4) or m ≡ 3 (mod 4), the result is trivially true. 

So let m = 1 (mod 4). 

Let   x1 = a1 + b1 τ and x2 = a2 + b2 τ 

where    τ = 
2

1m +
 

Now  x1 x2 = (a1 + b1 τ) (a2 + b2 τ) 

          = a1 a2 + τ (a1 b2 + a2 b1) 

    + b1 b2 τ2 

But  τ = 
2

1m +
   � τ −

2
m

2
1 =  

�  τ2 −τ + 
4
m

4
1 =   � τ2 = τ +

4
1m −
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Then x1 x2 = a1 a2 + τ(a1 b2 + a2b1) 

   + b1 b2 �
�

�
�
�

� −+
4

1m
�   

   = τ(a1 b2 + a2 b1 + b1b2) 

   + a1a2 + b1b2 
4

1m −
 

which is of the form x + y τ where x, y∈Z. 

� x1 x2 is an algebraic integer. 

Definition :- Let α and β be two algebraic integers, β ≠ 0.  We say β | α if ∃ 
an algebraic integer γ such that α = βγ 

Definition :- An algebraic integer α ≠ 0 is said to be a unity if α |1  i.e. if ∃ an 
algebraic integer β such that αβ = 1. 

Theorem 4.33 The product of two unities is a unity 

Proof :- Let α, and α2 be two unities, then ∃ algebraic integers β1 & β2 such 
that α1 β1 = α2 β2 = 1  Then (α1 β1) (α2 β2) = 1 i.e. (α1 α2) (β1 β2) = 1 

Also β1 β2 is an algebraic integer (since β1 & β2 are algebraic integer)   

� α1 α2 is a unity 

Theorem 4.34 The inverse of a unity is a unity  

Proof :-  αβ = 1  � βα = 1  � β is also a unity 

Remark :- The above two theorems prove that the unities of a quadratic field 
form a multiplicative group. 

Definition :- Let α = x + y m  ∈K = Q( m ). 

Then  x, y ∈Q. 

We define norm of α as N(α) = N(x + y m ) = x2 − my2 

Clearly if m < 0; (x2 − my2) ≥ 0 

Remark :- Also N(α) , ≠ 0 if(x, y) ≠(0, 0),  i.e. if  α ≠ 0 

Proof :- If possible, let N(α) = 0 

� x2 − my2 = 0 

� x2 = my2      …(1) 
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If (x, y) ≠ (0, 0) then (1) is not possible since m is square free.  

Theorem 4.35 Norm is multiplicative i.e. if α, β∈K; N(αβ) = N(α) ⋅ N(β) 

Proof :- Let α, β ∈K 

Let α = x1 + y1 m  and β = x2 + y2 m  

Then           N(α) = 2
1x −m 2

1y  and N(β) = 2
2

2
2 myx −  

Now  αβ = (x1 + y1 m ) (x2 + y2 m ) 

            = (x1 x2 + my1 y2 + m  (x1 y2 + x2 y1)) and 

               N(αβ) = (x1 x2 + my1 y2)2 − m(x1 y2 + x2 y1)2 

  = 1
2
2

2
1

22
2

2
1 xm2yymxx ++ x2 y1 y2 − m 2

2
2
1 yx − m 2

1
2
2 yx  

 − 2m x1 x2 y1 y2 

   = 2
1

2
2

2
2

2
1

2
2

2
1

22
2

2
1 ymxymxyymxx −−+  

  = )myx)(myx( 2
2

2
2

2
1

2
1 −−  = N(α)⋅ N(β) 

Theorem 4.36 The norm of a algebraic integer is an integer 

Proof :- To prove this we have to distinguish two cases when K = Q( m ) 

Case I :- m ≡ 2 or m ≡ 3 (mod 4) 

Let α be an algebraic integer of K.  Then ∃ integers x & y such that α = x + 
y m  

Then   N(α) = x2 −my2 is clearly an integer since x, y, m are integers 

Case II :-  m ≡ 1(mod 4) 

 If α is an algebraic integer, then ∃ integers x and y such that 

 α = x + y �
�
�

�
�
�
�

� +
2

m1
 

      = x + m
2
y

2
y +  

∴    N(α) = m
4

y
2
y

x
22

−�
�

�
�
�

� +  
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      = x2 + m
4

y
xy

4
y 22

−+  

     = x2 + xy − y2 �
�

�
�
�

� −
4

1m
 which is clearly an integer since 

4

1m −
∈ Z 

Theorem 4.37 The norm of a unity is ± 1 

Proof :- Let α be a unity.  Then ∃ an algebraic integer β such that 1 = αβ 

Then  1 = N(1) = N(α β) = N(α) N(β) 

But  N(α) and N(β) are integers  � N(α) | 1 

�  N(α) = ± 1. 

Definition :- Let α & β be algebraic integers.  We say α is an associate of β if 
∃ a unity ∈ of K such that β = ∈α. 

Remark :- We can check that the relation of associate ship is an equivalence 
relation in the set of all algebraic integers.  

Definition :- An algebraic integer α is a said to be a prime of K if only divisor 
of α are associates                of α.  

Theorem 4.38 If |N(α)| = p where p is a prime no, then α is a prime of K. 

Proof :- If possible let α be not a prime element of K.  Then ∃ algebraic 
integers β, γ such that α = βγ and β, γ are not unities of K.  

Now N(α) = N(βγ) = N(β) ⋅ N(γ) 

∴  p = |N(α)| = |N(β) ⋅ N(γ)| = |N(β)| ⋅ |N(γ)| 

But both of β & γ are not unities of K. 

Then  |N(β)| > 1, |N(γ)| > 1 

But only positive divisors of p are 1 & p 

�     |N(β)| = p = |N(γ)|  �  p = p⋅p  � p = 1, which is not possible, since p is 

a prime number 

� Either β or γ must be a unity  �  Divisors of α are associates of α.  �
 α is a prime element of K. 

Theorem 4.39 If |N(α)| = 1; then α must be a unity. 

Proof :- We know if α = x + y m  

Then  N(α) = x2 − my2 = ((x + y m ) (x −y m ) = α �   
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where �  denotes the algebraic conjugate of α. 

Note that if α is an algebraic integer then �  is also an algebraic integer since 
α & �  are roots of same polynomial.  

Now  |N(α)| = 1  � N(α) = ± 1, then  ± 1 = N(α) = α �   � α | 1 

� α is a unity . 

Theorem 4.40 Every non-zero non-unity algebraic integer of K can be written 
as product of prime elements of K. 

Proof :- Let α be a non-zero, non-unity algebraic integer of K.  Then |N(α)| > 
1 

Now we shall prove the theorem by induction of |N(α)| 

If |N(α)| = 2, then |N(α)| is a prime number and so α is a prime number of K.  

Now assume the theorem is true for all α where |N(α)| < n where n ∈N, n > 2. 

Now let |N(α)| = n.  If α is a prime element of K, we are through. 

So let α be not a prime element of K 

Then ∃ algebraic integer β & γ of K such that.  α = βγ where β & γ are not 

unities of K. 

Then  |N(β)| > 1, |N(γ)| > 1. But |N(α)| = |N(β)| ⋅ |N(γ)| �|N(β)| < |N(α)| = n. 

and   |N(γ)| < |N(α)| = n 

Then by induction hypothesis, both β & γ can be written as product of prime 
elements of K. 

� α = βγ can be written as product of prime elements of K. 

Theorem 4.41 Prove that the unities of the field K = Q( 2 ) are                       
± ∈± n (n = 0, 1, 2,…) and  ∈ = 1+ 2 . 

Proof :- Let ∈ be a unity of K = Q( 2 ).  Now the algebraic integers of K are 
of the form x + y 2  where x, y ∈Z 

Since ∈ is a unity of K, N(∈) = ± 1,  i.e.  x2 − 2y2 = ±1  …(1) 

Now by inspection, x = 1, y = 1 is a solution of (1) 

i.e., ∈ = 1 + 2  is a solution of (1).  Since product of two unities is a unity 
and inverse of a unity is a unity and negative of a unity is a unity, so ± ∈± n (n 
= 0, 1, 2,…) are all unities of K.  

Let η be any unity of K.  By taking −η, if necessary , we assume η > 0.  
Further by taking η−1, if necessary, we assume η > 1. 
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Then we first find all unities of K, which are bigger than 1. 

First we shall prove that there exists no unity η of K such that  

  1 < η < 1 + 2  

Let  η = x + y 2 ,  then  −1 ≤ x2 − 2y2 ≤ 1 

But  1 < x + y 2  < 1 + 2     …(2) 

So  −1< x − y 2  < 1     …(3) 

Adding (2) & (3), we get 

  0 < 2x < 2 + 2  

�  0 < x < 1 +
2

1
< 2  � x = 1 

Now from (2), 1 < 1 + y 2  < 1 + 2 and this has no solutions in y. 

So ∃ no unity η such that 1 < η < 1 + 2 .  Thus if η is any unity such that η > 
1, then η ≥ ∈.  

Let η ≠ ∈n for any n.  Since ∈n→∞ as n→∞, ∃ a unique natural number n 
such that  

  ∈n < η < ∈η+1    �  1 < ∈−η n < ∈   …(4) 

Since ε is a unity & η is a unity, ε−ηη is also a unity. 

Thus we have a unity of K lying between 1 & ε, which is a contradiction.  So 
we must have 

η = εn for some < n. 

By taking negative or inverse we see that all unities of K are of the form ± ε±n 

Remark :- Similarly we can proves that unities of Q( 3 ) are infinite in 
number.  

4.42 Fields in which the fundamental theorem is false.  The fundamental 
theorem of arithmetic is true in Q(1), Q(i),Q(ρ), and in Q(√2).  It is important 
to show by examples, that it is not true in every Q(√m).  The simplest 
examples are m = −5 and (among real fields) m = 10. 

(i) Since −5 ≡ 3(mod 4), the integers of Q{√(−5)} are a + b √(−5).   

Now the four numbers 

  2, 3, 1 + √(−5), 1−√(−5) 
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are prime.  Thus 

  1 + √(−5) = {a + b√(−5)} {c + d√(−5)} 

implies    6 = (a2 + 5b2) (c2 + 5d2); 

and a2 + 5b2 must be 2 or 3, if neither factor is a unity.  Since neither 2 nor 3 is 
of this form,                     1 + √(−5) is prime; and the other numbers may be 
proved prime similar.  But 

  6 = 2.3 = {1+√(−5)} {1−√(−5)}, 

and 6 has two distinct decompositions into primes. 

(ii) Since 10 ≡ 2 (mod 4), the integers of Q(√10) are a + b√10.  In this case 

  6 = 2.3 = (4+√10) (4− √10), 

and it is again easy to prove that all four factors are prime.  Thus, for example, 

  2 = (a +b √10) (c + d√10) 

implies  4 = (a2 −10b2)(c2−10d2), 

and a2 − 10b2 must be ± 2 if neither factor is a unity.  This is impossible 
because neither of ±2 is a quadratic residue of 10. 

Real and complex Euclidean fields  

Let us find the unities of a quadratic field. 

Theorem 4.43  Let K = Q( m ) be a quadratic field & let m < 0.  Then the 
number of unities of K is  

  4  if m = −1 

  4  if m = −3 

  2  if m ≠ −1, m ≠ −3. 

Proof :- we shall distinguish two cases  

Case I :-  m ≡ 2 or m ≡ 3 (mod 4) 

Let ∈ be any unity of K.  Then ∈ is also an algebraic integer of K. So ∈ = x + 
y m  for some integers x and y. 

Since m < 0, norm of every norm-zero element of K is positive. 

Since ∈ is a unity, so N(∈) = 1,  or 1 = N(∈) = N(x + y m ) = x2 −my2  …(1) 

Let   m ≠ −1 
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Then   | − my2| ≥ 2 if y ≠ 0 

So for (1) to hold we must have y = 0 � x2 = 1 �  x = ± 1 

∴ ∈ = x + y m  = ± 1 

So for m ≠ −1, m ≡ 2 or 3(mod 4), ± 1 are the only unities of K.   

Now let m = −1.  Then from (1), x2 + y2 = 1 

But its only solutions are x = ±1, y = 0 & x = 0, y = ±1 

So for m = −1, ±1 & 1− = ± i are the only unities of K. 

Case II :-  m ≡ 1(mod 4) 

Let ∈ be any unity of K.  Then as above N(∈) = 1 

Also, ∃ integers x & y such that 

  ∈ = x + y
2
my

2
y

x
2

m1 ++=��
�

�
�
�
�

� +
 

Then 1 = N(∈) = N �
�
�

�
�
�
�

�
++

2
my

2
y

x  

              = 
4

my
2
y

x
22

−�
�

�
�
�

� +      …(2) 

Since m < 0 and m ≡  1 (mod 4)   �  m = −3, −7, −11,…… 

For  m < −3, 
�
�

�

�

�
�

�

� −
4

my2

> 1 for y ≠ 0 

So for (2) to hold, we must have y = 0 and then as before  

  x = ± 1 

Now let m = −3  Then (2) becomes 1 = 
4
y3

2
y

x
22

+�
�

�
�
�

� +   …(3) 

If  |y| ≥ 2, 
4
y3 2

≥ 3, so for (3) to hold, we must have  

  |y| ≤ 1.  
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If y = 0, then as before x = ±1 

If y = 1, then from (3), 1 = 
4
3

2
1

x
2

+�
�

�
�
�

� + = x2 + x + 1 

�   x2 + x = 0  � x = 0 or −1      …(4) 

If y = −1, then from (3),  x2 − x = 0  � x = 0 or 1   …(5) 

Thus in this case there are six unities of K 

These unities are ± 1, 
2

31 −+
, ,

2

31
,

2

31 −+
−

−−−
  

2
31 −−

, 

If we set  w = 
2

31 −+−
 

Then these unities are ±1, ± w, ± w2 

In all the cases the unities form a cyclic group.   

Remark :- The above theorem shows that the number of unities in all 
complex quadratic fields is finite.  However this is not true for real quadratic 
fields.  In fact the number of unities in each real quadratic field is infinite.  

Definition :- A quadratic field is called a simple quadratic field if every 
algebraic integer can be expressed as a product of prime element uniquely up 
to change of order and multiplication by units.   

Definition :- We say Euclidean Algorithm holds in a quadratic field K if 
given α, β in K, β ≠ 0, ∃ integers γ and δ such that  

  α = βγ + δ   where either   δ = 0 or |N(δ)| < |N(β)| 

Definition :- Let α, β be algebraic integers of a quadratic field K and                  
(α, β) ≠ (0, 0), 

an algebraic integer γ is said to be greatest common divisor of α and β if  

(i) γ | α, γ | β in K 

(ii) If γ1 | α and γ1 | β in K then γ1 | γ in K where γ1 is any algebraic integer 
of K.  

Theorem 4.44 If Euclidean algorithm holds in a quadratic field K then it must 
be a simple field.  

Proof :- To prove the theorem, we first prove  

Lemma 1 :- If ξ is greatest common divisor of two algebraic integer γ and γ1 
then ∃ algebraic integers η and η1 such that  

  ξ = γη + γ1η1 ; (γ, γ1) ≠ (0, 0)   
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where γ and γ1 are algebraic integers of quadratic field in which Euclidean 
algorithm holds. 

Proof :- W. L. O. G. take γ1 ≠ 0.  Given γ and γ1 ∈K and γ1 ≠ 0 and Euclidean 
algorithm holds in K, there exists algebraic integers k1 and γ2 such that 

  γ = k1 γ1 + γ2 where either γ2 ≡ 0 or  |N(γ2)| < |N(γ1)| 

If γ2 = 0, Y = k1 γ1 and γ1 is gcd of γ and γ1 

If γ2 ≠ 0 we apply Euclidean condition to γ1 and γ2 and we get 

  γ1 = k2 γ2 + γ3 

for some algebraic integers k2 and γ3 and either γ3 = 0 or 

  |N(γ3)| < |N(γ2)| 

If γ3 ≠ 0, we continue as before and get a decreasing sequence  

  |N(γ4)| < |N(γ3)| <…< |N(γ1)| 

But we can not get an infinite bounded sequence of positive integers and so 
the sequence of γ’s must stop at some point say γn+1 = 1.  Then as in the 
corresponding proof for natural numbers, we can show that γn is the gcd of γ 
and γ1. 

Proof of Theorem :- Proceeding in the some manner as for natural numbers 
we can establish that the decomposition as a product of prime elements of K is 
unique up to change of order and multiplication by unities.  

Theorem 4.45 The Euclidean algorithm is equivalent to the following 
hypothesis.  Given any element δ of Q( m ), there is an algebraic integer k of 
Q( m ) such that 

  |N(δ−k)| < 1 

Proof :- Suppose, given hypothesis hold’s i.e. let γ and γ1 be two algebraic 
integers of Q( m ) and let γ1 ≠ 0.  Take δ∈Q ( m ) 

Then by hypothesis ∃ an algebraic integer k such that  

  1
k

N.,e.i1kN
1

1

1

<��
�

�
��
�

�

γ
γ−γ

<��
�

�
��
�

�
−

γ
γ

 

Multiply both sides by |N(γ1)|, then  
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  |N(γ1)| ��
�

�
��
�

�

γ
γ−γ

1

1k
N < |N(γ1)| 

But norm is multiplicative and so,  |N(γ − γ1k)| < |N(γ1)| 

Take, η = γ − γ1k,  then  γ = η + γ1k where |N(η)| < |N(γ1)| and so Euclidean 
algorithm holds. 

Now conversely suppose Euclidean algorithm holds.  Let δ be any element of 
Q( m ).  If δ = 0, take k = 0 and we are through.  So let δ ≠ 0 then we know 
that δ is an algebraic number of Q( m ).  Then ∃ a non-zero integer t such 
that t δ is an algebraic integer.  

Now t δ and t are two algebraic integers of Q( m ) where t ≠ 0 

By Euclidean algorithm, ∃ an algebraic integer k & γ such that  

  t δ = tk + γ where γ = 0 or |N(γ)| < |N(t)| 

Then   ��
�

�
��
�

� γ
t

N  | N(t)| = |N(γ)| < |N(δ)| 

�  ��
�

�
��
�

� γ
t

N  < 1 

Now  t δ = tk + γ, δ = k + 
t

γ
  � δ−k = 

t

γ
 

and  |N(δ−k)| = ��
�

�
��
�

� γ
t

N  < 1, this proves equivalence.  

Remark :- Thus to prove that a quadratic field is a simple field it is enough to 
prove that given any element δ of the field ∃ an algebraic integer k such that 

  | N(δ−k) | < 1  

Theorem 4.46.  Euclidean algorithm holds in the quadratic field                            
K =  Q( m  ) where  

  m = −1, −2, −3, −7, −11, 2, 3, 5, 13.  

Proof.  Now any element δ of K = ( m  ) can be written as  

δ = r+s m   where r∈Q,  s∈Q. 

Let m ≡/ 1 (mod 4).  Then any algebraic integer of K = Q( m ) can be written 
as x + y m  where x, y∈Z 
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Now given s as above, select integers x & y such that | r − x| ≤ 
2
1

,                         

|s−y| ≤ 
2
1

 

Let   k = x + y m  

Then  δ − k = (r−x) + (s −y) m  

∴ N (δ−k) = (r−x)2 + (−m) (s−y)2 

First let m = −1 or m = −2 

Now (r − x)2 ≤ 
4
1

, (s−y)2 ≤ 
4
1

 

Then  |N(δ−k)| < 1. Now if m = 2 or 3, again we have,  |N(δ−k)| < 1 

Now let m ≡1(mod 4)      

Then we know that algebraic integers of K can be written as a + b τ where a, b 
∈Z  

and   τ = 
2

1m +
 

In this case select y such that 

  | 2s − y| ≤ 
2
1

 

Having selected y, select an integer x such that  

  xy
2
1

r −−  ≤ 
2

1
 

Now consider k = x + y + 
2
1

y ( m −1) 

    = x + my
2
1

y
2
1 +  

Then k is an algebraic integer of K and 

  δ − k = �
�

�
�
�

� −+�
�

�
�
�

� −− y
2
1

smy
2
1

xr  

For m<0, |N(δ−k)| = 
22

y
2

1
s)m(

2

y
xr ��

�

�
��
�

�
−−+��

�

�
��
�

�
−−  

                 ≤ 1
16
m

4
1 < ,  for m = −3, −3, −11, 
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for m > 0,  |N(δ−k)| ≤ 
16
m−  < 1 for m = 5 and 13.  

Remark :- There are exactly nine imaginary quadratic fields in which 
Euclidean algorithm holds  

  (m = −1, −2, −3, −7, −11,  −19, −43, −67 and −163) 

Theorem 4.47 The number of real Euclidean fields Q( m ) where m ≡ 2 or m 
≡ 3 (mod 4) is finite. 

Proof :- Let us suppose that Q( m ) is Euclidean and let m ≡ 2 or 3(mod 4).  
The algebraic integers of K are of the form x + y m  where x, y∈Z 

Take care, α = 
m
t

m , then α∈Q( m ) 

Since the field is Euclidean, there exists  

  k = x + y m  such that |N(α−k)| < 1 

But  α−k = −x + �
�

�
�
�

� − y
m
t

m  

∴  |N(α−k)| < 1  � 1
m
t

ymx
2

2 <�
�

�
�
�

� −−  

� 1
m

)tmy(
x

2
2 <−−   �    |mx2 − (my−t)2| < m,  �  |(my − t)2 − mx2| < m 

But  (my −t)2 − mx2 ≡ t2(mod m), 

So ∃ integers x & z such that  

  z2 − mx2 ≡ t2 (mod m)     …(1) 

and  |z2 − m x2| < m      …(2) 

Now let m ≡ 3 (mod 4). 

It possible suppose ∃ infinitely many reals quadratic fields for which 
Euclidean algorithm holds in K.  

 Now select an odd integer t such that  5m < t2 < 6m, such a choice if t 
is possible. 

But  z2 − mx2 ≡ t2(mod m) 

and  |z2 − mx2| < m 

� Either |z2 − mx2| − t2 = −5m 

or  z2 − mx2 − t2 = −6m 
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�  t2 − 5m = z2 − mx2 

or  t2 − 6m = z2 − mx2 

�  t2 − z2 = m(5−x2)     …(3) 

or  t2 − z2
 = m(6−x2)     …(4) 

But t is odd � t2 ≡ 1 (mod 8) and x2 ≡ 0 or 1 or 4(mod 8)  and z2 ≡ 0 or 1 or 
4(mod 8) 

�  t2 − z2 ≡ 0 or 1 or 5 (mod 8) 

and  5−x2 ≡ 1 or 4 or 5 (mod 8) 

and  6−x2 ≡ 2 or 5 or 6 (mod 8) 

∴  m(5−x2) ≡ 3 or 4 or 7(mod 8)     (Θ 
m ≡ 3(mod 8) 

and  m(6−x2) ≡ 2 or 6 or 7 (mod 8) 

∴ Neither (3) nor (4) can hold. 

 Now let m ≡ 2(mod 4).  If possible suppose there are infinitely many 
real quadratic fields for which Euclidean algorithm holds.  In this case, choose 
an odd integer t such that 2m < t2 < 3m 

Then t2 ≡ 1(mod 8) and m ≡ 2 or 6(mod 8) 

Further  t2 − 2m = z2 − mx2     …(5) 

or  t2 − 3m = z2 − mx2     …(6) 

i.e.  t2 − z2 = m(2−x2) or t2 − z2 = m(3−x2) 

Now  m(2−x2) ≡ 2 or 4 or 6(mod 8) 

and  m(3−x2) ≡ 2 or 4 or 6(mod 8) 

whereas t2 − z2 = 0 or 1 or 5 (mod 8) 

so neither (5) or (6) can hold 

Theorem 4.48 Let K = Q( m ) be a simple field and let π be a prime of K 
then π divides one and only one rational prime 

Proof :- Let |N(π)| = n  � N(π) = ± n 

But N(π) = π �  where �  denotes the algebraic conjugate of π. 

Since π is a prime � n > 1.  Let n = p1 p2…pr be the decomposition of n into 
primes. 

Then π �  = ± p1 p2…pr 

But K is a simple field and so π must occur when we decompose n into prime 
elements of K and so π must divide at least one of p1, p2,…, pr. 
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If possible let π divides two different rational primes say p and q.  Now in Z, 
gcd (p, q) = 1 

� ∃ integers x & y such that  

  px + qy = 1 

But  π | p and π/q in K. 

�  π | 1 in K  � π is a unit  which contradicts that π is a prime so 
π divides exactly one of p & q. 

Theorem 4.49 The primes in Q(i) = K can be divided into 3 classes 

(1) The prime 1 + i and its associates  

(2) The rational primes of the form 4n+3 and their associates 

(3) The prime factors a + bi of the rational primes of the form 4n+1 and their 
associates.  

 Proof :- Let π be any prime element of K.  Then π divides exactly one 
rational prime say π | p.  

 Then we distinguish the following cases  

Case I.  p = 2 

 We know 2 = (1 + i) (1−i) 

Further we know 1, −1, i, −i are unities of K and  

 (1−i) = −i(1+i) and 1 + i is not a unity of K 

So 2 = −i(1 + i)2 

 Since we know that every rational prime can decomposed into at least 
of most 2 primes of a quadratic field and so 1 + i must be a prime number.  So 
we get π = 1+i or an associate of 1 + i 

Case II :-  p ≡ 3(mod 4) 

 Since π is an element of K so π is an algebraic integer of K i.e. π = x + 
yi for some integers x and y. 

 Now π divides p � p = (x + yi)α for some algebraic integer α of K. 

i.e. p = (x + yi) (a + bi) for some integers a & b. 

Further  gcd (a, b) = 1 = gcd (x, y) 

But the product of two complex numbers is a real number 

�  a + bi = x − yi 

�  p = (x +yi) (x−yi) = x2 + y2 

But   p ≡ 3(mod 4) 

�  x2 + y2 ≡ 3(mod 4) 
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which is not possible as no number of the form 4n + 3 can be written as a sum 
of 2 squares.   

 So either π = p or π is an associate of p. 

Case III :- p ≡ 1 (mod 4) 

 Now we know −1 is a quadratic residue of primes of the form 4n +1, 
so ∃ an integer x such that 

  x2 ≡ −1(mod p) or p | (x2 + 1) 

 If possible, let π be an associate of p.  Then p is also a prime element 
of K.   

But x2 +1 =  (x + i) (x−i) and both x + i and x−i are algebraic integers of K.  

Now K is a simple field and p | (x + i)  or   p | (x − i) 

� i
p
1

p
x

ori
p
i

p
x −+  must be on algebraic integer of K, which is not so 

since algebraic integers of K are of the form a + bi where a, b ∈Z. 

So p can not be a prime element of K and so π must be a divisor of p.  This 
gives rise to 3 classes of primes in K according to the nature of rational prime 
which they divide. 

Definition :- Let α β, γ be algebraic integer in Q( m ), where m is square 
free.  Then we say  

α ≡ β(mod γ) if γ | (α−β) in Q( m ) 

 

Fermat’s theorem in the ring of Gaussian integers Q(i).  

Theorem 4.50  Let π be a prime in Q(i) such that π is not an associate of 1 + i.  
Let α be an algebraic integer of Q(i) such that gcd(α, π) = 1, Then 

  αφ(π) ≡ 1 (mod π) 

Proof :- since π is not an associate of 1 + i so either π | p, where p is a rational 
prime of the form  

4n + 1 or π = q where q is a rational prime of the form 4n + 3. 

 Since α is an algebraic integer of Q(i), 

  α = λ + im, where λ ∈Z, m∈Z. 

Now suppose π | p 

Then  (λ + im)p ≡ λb + (i m)p (mod p) 
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         ≡ λ + ip m(mod p) 

But  ip = (i)4n+1 = i4n i = (i4)n i = i 

Therefore, (λ + im)p ≡ (λ + im)(mod p) 

�  αp ≡ α(mod p) in Q(i) 

But  π | p  � απ ≡ α(mod π) 

But Q(i) is a simple field and  gcd(α, π) = 1 

�  απ−1 ≡ 1 (mod π),  i.e.,  αφ(π) ≡1(mod π) in this case  

Let  π = q, then φ(π) = φ(q) | (g2−1) 

Now  αq ≡ (λ + im)q = λq + iq mq(mod q) 

But  iq = i4n+3 = i4n+1 i2 = −i 

∴  αq = λ − im(mod q) = �  

Then  qq2q )�(� =  = ( � )q = )�( = α(mod q) 

But gcd (α, q) = 1 & Q(i) is a simple field,  � 12q
�

− ≡ 1(mod q) 

i.e.,  αφ(π) ≡ 1(mod π) in this are also      

Remark :- Q ( 3− ) = Q(w) since w = 
2

31 −+−
 and the algebraic integers 

of Q( 3− ) are of the form a + bω since a, b ∈Z the units of Q(ω) are ±1, ±ω, 
±ω2. 

Note :- −3 is a quadratic residue of primes of the form 6n + 1 and quadratic 
non-residue of primes of the form 6n−1 

Theorem 4.51 The primes of Q(w) can be decomposed into 3 classes. 

(1) 1 − w and its associates 

(2) The rational primes of the form 3n + 2 and their associates.  

(3) The prime factor of the rational primes of the form 3n + 1 and their 
associates. 

Proof :- Let π be prime of Q(w) 

Since Q(w) = Q( 3 ) is a simple field, π divides exactly one rational prime 
(say p) 
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Then we distinguish the following cases  

Case I :-  p = 3 

Now we know 1 + w + w2 = 0 

So  3 = (1−w) (1−w2) = (1−w − w2 + w3) 

But  w3 = 1 and −w −w2 = 1, so 

  3 = (1−w) (1−w2) 

     = (1 + w) (1−w)2 

     = −w2 (1−w)2 

 Since Q(w) is a simple field, every rational prime can be decomposed 
into at most two primes of Q(w) 

 Now −w2 is a unity and (1−w) is not a unity.  So (1−w) must be prime 
of Q(w). 

Case II :-  p ≡ 2(mod 3) 

If possible, let p be not a prime of Q(w) 

Since every rational prime in Q(w) can be decomposed into atmost two primes 
in Q(w). 

∃ primes π & η of Q(w) such that  

  p = πη 

Then  p2 = N(p) = N(π η) 

       = N(π) N(η) 

Consider N(π) 

 Now, only positive factor of p2 are 1, p, p2 

�  N(π) = 1 or p or p2 

 If N(π) = 1 then π is a unity of Q(w), contradicting π is a prime of 
Q(w) 

 If N(π) = p2 then N(η) = 1,  then η is a unity of Q(w), contradicting η 
is a prime of Q(w).  So we must have 

  N(π) = p 

Let  π = a + bw = a + b �
�
�

�
�
�
�

� −−
2

13
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     = �
�
�

�
�
�
�

� −+�
�

�
�
�

� −
2

3
b

2
b

a  

Then  p = N(π) = 
4

b
3

2
b

a
22

+�
�

�
�
�

� −  

�  4p = (2a − b)2 + 3b2 ≡ (2a −b)2(mod 3)  …(1) 

Since  p ≡ 2(mod 3) 

�  4p ≡ 2(mod 3) 

But   (2a −b)2 ≡ 0 or 1(mod 3) 

So (1) is not possible for any value of a and b, which is a contradiction. So p 
must be prime of Q(w). 

Case III :- p ≡ 1(mod 3) 

Here we claim that p can not be a prime of Q(w).  If possible let p be a prime 

of Q(w) 

Let  p = 3n+1 

 If n is odd then p becomes an even number, greater than equal to 4.  

∴  p can not be a prime 

So n must be even 

�  p = 6m + 1 for some m > 0,   m ∈Z 

Then −3 is a quadratic residue of p. 

� ∃ an integer x such that 

  x2 ≡ −3(mod p) 

or  p | (x2 + 3) 

But in Q(w), x2 + 3 − (x + 3 ) (x− 3− ) 

�  p | (x + 3− ) (x− 3− ) in Q(w) 

But Q(w) is a simple field 

�  p | (x + 3− ) or (x− 3− ) in Q(w) 
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� Either  3
p
1

p
x

or3
p
1

p
x −−−+  

must be an algebraic integer of Q(w), which is not so.  So p can not be a prime 
of Q(w).  So p must be divisible by a prime of Q(w). 

Primes of Q( 2 ) 

Theorem 4.52 The prime of Q( 2 ) can be divided into 3 classes  

(1) The prime 2  and its associates  

(2) The rational primes of the form 8n ± 3 and their associates 

(3) The prime factor a + h 2 of the rational primes of the form 8n ± 1 and 
their associates. 

Proof :- Let π be any prime of Q( 2 ).  Since, Q( 2 ) is a simple field, π 
divides exactly one prime say p. 

 Now we distinguish the three classes 

Case I :-  p = 2 

Now 2 = ( 2 )2 and 2  is an algebraic integer of Q( 2 ).  But 2  is not a 
unity of Q( 2 ) and every rational prime can be decomposed into at most 2 
primes of Q( 2 ) 

 So 2  must be a prime of Q( 2 ). 

Case II :- p is a rational prime of the form 8n ± 3.  Then we claim that p must 
also be a prime of Q( 2 ).  If possible, let p be not a prime of Q( 2 ), then 
we know that there exists a prime π of Q( 2 ) such that  

  N(π) = p 

Since π is a prime of Q( 2 ), it is also an algebraic integer of Q( 2 ) 

So    π = a + b 2 , for some integer a, b ∈ Z 

Then  p = N(π) = N(a + b 2 ) = a2 − 2b2   …(1) 

Now   a2 ≡ 0 or 1 or 4(mod 8) 

and  b2 ≡ 0 or 1 or 4(mod 8)  

∴  p ≡ 0 or 1 or 2 or 4 or 6 or 7(mod 8) 

But  p ≡ 3 or 5(mod 8) 

So (1) does not hold for any value of a and b.  So p must be a prime of Q( 2 ) 
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Case III :- p is a rational prime of the form 8n ±1. 

We know 2 is a quadratic residue of primes of the form 8n ± 1.  So there 
exists an integer x such that  

  x2 ≡ 2(mod p) 

i.e.  p | (x2 − 2),  or p | (x − 2 ) (x + 2 ) 

 If p were a prime of Q( 2 ), then since Q( 2 ) is a simple field, p 
would divide either              x − 2  or x + 2 . 

i.e. either  2
p
1

p
x

or2
p
1

p
x +−  must be an algebraic integer of Q( 2 ), 

which is a contradiction since algebraic integer of Q( 2 ) are of the form 

a+bρ where a,b ∈Z, ρ = 
2

15 −
 . 

Theorem 4.53 5 is a quadratic residue of prime of the form 5n ± 1 & a 
quadratic non-residue of primes of the form 5n ± 2. 

Proof :- Let p = 5n ±1.  Then ��
�

�
��
�

� ±
=��

�

�
��
�

�
=��

�

�
��
�

�

5

1

5

p

p

5
 = 1 . 

If   p = 5n ± 2 then �
�

�
�
�

�=�
�

�
�
�

� ±=�
�

�
�
�

�=��
�

�
��
�

�

5
2

5
2

5
p

p
5

= −1 

Prime in Q( 5 ) 

Theorem 4.54 The primes of Q( 5 ) can be divided into three classes 

(1) 5  and its associates 

(2) The rational primes of the form 5n ± 2 & their associates 

(3) The prime factors a + h λ of rational primes of the form 5n ± 1. 

Proof :- Let π be a prime of Q( 5 ).  Since Q( 5 ) is a simple field, π divides 
exactly one prime of Q( 5 ) say p.  Then we distinguish three cases  

Case I :- p = 5 

Now 5 = ( 5 )2 and 5  is algebraic integer of Q( 5 ) and it is not a unity of 
Q( 5 ).  But every rational prime can be written as a product of at most two 
primes of Q( 5 ) so 5  must be a prime of Q( 5 ) 

Case :-  p = 5n ± 2  

 If possible, suppose p is not a prime of Q( 5 ) 
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 Then there must exist a prime  

  π = a + bλ of Q( 5 ), a, b ∈Z 

such that p = N(π) = N(a + bλ) 

     = N �
�
�

�
�
�
�

� ++
2

15
ba  = a2 + ab − b2 

Then  4p = 4a2 + 4ab − 4b2 

       = (2a + b)2 − 5b2 ≡ (2a + b)2 (mod 5)  …(1) 

But   p = 5n ± 2 

�  4p ≡ ±3(mod 5) 

where as (2a + b)2 ≡ 0 or 1 or 4(mod 5) So (1) is not possible for any value a 
and b. 

∴ p must be a prime of Q( 5 ). 

Case III :-  p = 5n ± 1 . 

Then proceeding as in the last theorem, we can check that p is not a prime of 
Q( 5 ) and so its factors a + b λ must be primes of Q( 5 ). 

Notation :- Let p denote a rational primes of the form 5n ± 1 and q denote a 
rational prime of the form 5n ± 2. 

Let π be any prime of Q( 5 ) such that π is not an associate of 5 . 

Then  φ(π) = p−1    if π | p 

and  φ(π) = q2−1  if π = q 

Theorem 4.55 Let p and q be as denoted.  Let π be any prime of Q( 5 ), π is 
not an associate of 5  and let α be any algebra integer of Q( 5 ) such that 
gcd(α π) = 1.  Then  

  αφ(π) ≡ 1(mod π)     …(1) 

  αp−1 ≡ 1 (mod π) if π | p    …(2) 

  αq+1 ≡ N(α) (mod q)     …(3) 

Further if �  denotes the conjugate of π and 
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  g.c.d. (α, � ) = 1 then αp−1 ≡ 1(mod p)  …(4) 

Proof :- Since α is a algebraic integer of Q( 5 ), 

let   α = 
2

5dc +
 where c & d are integers of the same parity. 

Now α = 
2

)5(dc +
  � 2α = c + d 5  

� 2αp ≡ (2α)p = (c +d 5 )p = cp + dp( 5 )p(mod p) (Θ(a + b)p = ab + 
bp(mod p).)  

   = cp + dp
)1p(

2
1

5
−

5  (mod p)   …(5) 

Since p is of the form 5n ± 1, 5 is a quadratic residue of p. 

By Euler’s criterion  

   
)1p(

2
1

5
−

 ≡ ��
�

�
��
�

�

p
5

 ≡ 1(mod p) 

∴  2αp ≡ cp + 5 dp(mod p)    …(6) 

But   cp ≡ c (mod p) and dp ≡ d(mod p) 

� 2αp ≡ c + d 5 ≡ 2α(mod p) 

� αp ≡ α(mod p), since gcd(2, p) = 1 

But π | p  � αp ≡ α(mod π) 

�  αp−1 ≡ 1(mod π) as gcd (α, π) = 1 

Now let gcd(α � ) = 1 then (α, p) = 1 since π �  = p 

∴ From (6), αp−1 ≡ 1(mod p), which proves (4) 

Now let  π = q where q is a rational prime of the form 5n ± 2. 

First let q > 2 

Now  2α = c + d 5  

∴  (2α)q = (c +d 5 )q 

               ≡ cq + dq( 5 )q(mod q)    …(7) 
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Now  2q ≡ 2(mod q), 

  cq ≡ c(mod q), dq ≡ d(mod q) 

and  ( 5 )q = 
)1p(

2
1

5
−

5      …(8) 

But 5 is a quadratic non –residue of primes of the form 5n ± 2, so 

  −1 = ��
�

�
��
�

�

q
5 ≡

)1p(
2
1

5
−

(mod q)    …(9) 

Using (8) and (9) in (7)we get 

  2αq ≡ c−d 5 (mod q) 

But  c − d 5  = 2 � , since α = 
2

5dc +
 

∴  2αq ≡ 2 � (mod q) 

But gcd (q, 2) = 1 since q is odd 

�  αq ≡ � (mod q)     …(10) 

�  αq+1 ≡ α � (mod q) 

But α �  = N(α)  � αq+1 ≡ N(α)(mod q) which proves (3) for q > 2 

From (10) we get 

  
2q

� ≡ ( α )q ≡ α  ≡ α(mod q) 

But gcd(α, q) = 1 and so  

  12q
�

−  ≡ 1(mod q) 

i.e.  αφ(q) ≡ 1(mod q) 

which proves (1) for  q > 2. 

Now let π = 2.  Then we write  

  α = e + f λ when e, f∈Z 

and we are given that gcd (α, π) = 1.  Then one of e and f must be odd.  

Now  α2 = λ2 + f2 ρ2 = e + fe2(mod q)   …(11) 

Now  ρ = 2/5
2
1

�
2

15 =+�
−
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�  ρ2 + ρ + 
4
1

= 
4
5

   � ρ2 + ρ − 1= 0 

�  ρ2 = 1 −ρ 

Then form (11) we get 

  α2 ≡ e + f(1−λ)(mod 2) 

Now but 1−λ = 1 − λ=−−=−=
−

)2(mod
2

5

2

1

2

5

2

3

2

15
 

∴  α2 = e + f(1−λ) ≡ e + f λ(mod 2) = �  

� α3 = α �  ≡ N(α)(mod 2) 

This proves (3) for q = 2. 

But  N(α) = N(a + bλ) = N �
�
�

�
�
�
�

� −+
2

15
ba  

           = a2 − ab − b2 ≡ 1(mod 2)    [Θ 
one of a & b is odd] 

This proves (2) for q = 2  

Definition :- Let 

  w =
2

15 +
, 

then  w −
2
5

2
1 =  

�  w2 − w −1 = 0 i.e. w2 = w + 1 

Let its roots be w and w . 

Define  rm = 
m2m2 ww +  

Since rm is a symmetric function in the roots of the polynomial, w2 − w −1 = 
0, rm’s are integers. 

In fact  rm = {3, 7, …….}. 

Further  w
w
1

w1w −=�−=  

∴  
1m21m22m2m22

m ww)ww(r
++

+=+= + 2(w w )2m 

        = rm+1 + 2       [Θ 

w w  = −1] 
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�  rm+1 = 2
mr −2 

Lucas Test for Primality of the Mersenne Number :- 

Theorem 4.56 Let p = 4n + 3 be a prime and Let M = Mp = 2p−1 be the 
corresponding Mersenne number. 

Then M is prime   ⇔ rp−1 ≡ 0(mod M) 

Proof :- Suppose M is prime.  

Now  M = 2p−1 = 24n+3−1 = 8⋅16n −1 = 2(mod 5) 

Then M is a prime of the form 5n + 2  

Now  w = 
2

15 +
  � N(w) = −1 

� w is a unity of Q( 5 ). So if α is any algebraic integer of Q( 5 ) then  

  gcd(α, w) = 1 

Now we apply the last theorem with  α = w, q = M 

Then  wM+1 ≡ N(w)(mod M) 

But  M = 2p−1 

Therefore w2p = −1(mod M)     …(1) 

By definition rp−1 =
1p21p2 ww

−−
+  

         = 
�
�

�

�

�
�

�

�
+�

�

�
�
�

�
−−

1
w
w

w
1p2)1p(2  

But  
w
1

w −=  

�  rp−1 = )1)w((w
1p221p2 +−

−−
 

         = )w1(w
p21p2 +

−
 ≡ 0(mod M) [From (1)] 

Conversely  

let rp−1 ≡ 0(mod M) 

Now  
1p2p2 w1w

−
=+ . rp−1 ≡ 0(mod M)  

i.e.,  
p2w ≡ −1(mod M)     …(2) 
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�  
1p2w

+
≡ 1(mod M)     …(3) 

Let τ be any divisor of M then (2) and (3) are also true for γ instead of M. 

Now by definition,  M ≡ 2(mod 5)  �  5 |/ M 

So if M is composite then only divisor of M are either of the form 5k ± 1 or 5k 
± 2. 

But M is of the form 5n + 2 so M must have at least one prime divisor of the 
form 5k ± 2 say k. 

Let  M = p1 p2…q1 q2….. 

where pi’s are primes of the form 5k + 1 and qj’s are prime divisor of the form 
5k ± 2. 

Let τ be any divisor of M.  

Consider  S = {x∈N; wx ≡ 1(mod τ)} 

Then S ≠ φ since on the observation made above 2p+1∈S. 

Now divisor of 2p+1 are 2p, 2p−1, 2, 1 and since, 
p2w ≡ −1(mod τ) 

so  2p∉S 

�  2
�ord  = 2p+1 

By last theorem,  

  1ipw − ≡ 1(mod pi) 

and  
1jq

w
+ ≡ N(w) ≡ −1(mod qj)    

�  
)1jq(2

w
+

 ≡ 1(mod qj) 

� pi − 1 and 2(qj + 1) are multiplies of 2p+1 since, 2
�ord  = 2p+1  � 

pi = 2p+1 hi + 1 

and   qj = 2p hj − 1 

for some hi & hj.  The first hypothesis is impossible since  

  pi > M = 2p −1 and the second hypothesis is possible only if kj 
= 1 

�  M = qj is prime.  
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Unit-V 
 
Arithmetical Functions and Prime Number 
Theory 
 

Arithmatical Functions :- 

Definition :- A function f defined for all natural numbers n is called an 
arithmetic function and generally we shall write an arithmatical function as 
f(n). 

Definition :- An arithmatical function f(n) is called a multiplicative function 
if  

  f(n1 n2) = f(n1) f(n2) for  n1, n2∈N & gcd (n1, n2) = 1 

Definition :- An arithmatical function is called strongly multiplicative if  

  f(n1 n2) = f(n1) f(n2) ∀ n1, n2∈N. 

Mobius Function  

Mobius function denoted by µ(n) is defined as 

     1 if  n = 1 

  µ(n) =    (−1)r if n = p1p2…pr where pi’s are distinct primes  

      0      otherwise, In this case n will be divisible by 
square of a prime number 

For example 

  µ(1) = 1, µ(2) = µ(3) = −1, µ(4) = 0, µ(5) = −1 µ(6) = 1 

Theorem 5.1 µ(n) is a multiplicative function  

Proof :- Let n1, n2∈N, gcd (n1, n2) = 1 

It either n1 = 1 or n2 = 1, clearlyµ(n1 n2) = µ(n1) µ(n2)   

 So let n1 > 1 & n2 > 1       

If any one of n1, n2 is not-square free then n1 n2 is also not square and then
 µ(n1 n2) = 0 = µ(n1)⋅µ(n2) 

So assume both n1 & n2 are square free.  

Let n1 = p1 p2…pr, where p1, p2,…pr are distinct primes 

&  n2 = q1⋅q2… qs where q1, q2,…,qs are distinct primes.  
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Then by definition  

  µ(n1) = (−1)r & µ(n2) = (−1)s 

Since gcd(n1, n2) = 1, so no pi is equal to a qj or vice-versa 

Now  n1 n2 = p1 p2…pr q1⋅q2…qs 

and  p1, p2,…, pr, q1, q2,…,qs are distinct primes 

�  µ(n1 n2) = −1)r+s = (−1)r⋅ (−1)s = µ(n1) ⋅ µ(n2) 

Thus in all cases  

  µ(n1 n2) = µ(n1)⋅ µ(n2) 

whenever gcd(n1, n2) = 1 

� µ is multiplicative 

Theorem 5.2 If f(n) is a multiplicative function & f ≡ 0.  Then f(1) = 1 

Proof :- Since f ≡ 0, ∃ n∈N such that f(n) ≠ 0. 

Now  f(n) = f(n⋅1) 

         = f(n) ⋅ f(1), since gcd(n, 1) = 1 

�  f(1) = 1 since f(n) ≠ 0. 

Theorem 5.3 If f(n) is a multiplicative function so is �
n|d

)d(f  

Proof :- Set g(n) = �
n|d

)d(f  

If f ≡ 0 then so is g and so g(n) is multiplicative  

Let f ≡/  0.  Then f(1) = 1.  So by definition g(1) = f(1) = 1.  Let n1, n2∈N, gcd 
(n1, n2) = 1 

If n1 = 1 or n2 = 1.  Then clearly g(n1 n2) = g(n1)⋅ g(n2) 

So let n1 > 1, n2 > 1 

Let d | (n1 n2).  Then we can write d = d1 d2 where d1/n1 & d2/n2 

If d1 ≠ 1 or d2 ≠ 1 then d1 ≠ d2 since (n1, n2) = 1. Now by definition  

  g(n1, n2) = )d(f
)2n.1n(|d

�  

     = �

2n|2d
1n|1d

f(d1 d2) 
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     = �

2n|2d
1n|1d

f(d1) f(d2) [f is multiplicative] 

Since (n1, n2) = 1  � gcd(d1, d2) = 1. 

�  g(n1 n2) = �

2n|2d
1n|1d

f(d1) f(d2) 

    = ��
�

�
��
�

�
��

�

�

�

�
�

�

�
�

2n|2d
2

1n|1d
1 )d(f)d(f  

    = g(n1) g(n2) 

Hence g(n) is multiplicative 

Theorem 5.4 �
n|d

φ(d) = n 

Proof :- Set g(n) = �
n|d

φ(d) 

Since φ(n) is a multiplicative function of n, so by previous theorem g(n) is 
also multiplicative. If            n = 1  the d = 1,    ∴ g(1) = φ(1) = 1 

So let n > 1 

Let  n = rr
r

2�
2

1�
1 p...pp  be the prime factorization of n. …(1) 

 

Then  g(n) = g( rr
r

2�
2

1�
1 p...pp ) 

         = g )p(g)...p(g)p( 2�
2

2�
2

1�
1    …(2) 

since g(n) is multiplicative. 

If we are able to prove g(pα) = pα for every prime p & α ≥ 1.  Then clearly 
using (1) & (2), we are through. 

Now only divisors of pα are 1, p, p2,…,pα 

∴ By definition  g(pα) = �
αp|d

φ(d) 

            = φ(1) + φ(p) +…+φ(pα) 

            = 1  (p−1) + (p2−p)+…+ (pα − pα−1) 

            = pα  (Θ φ(pn) = pn − pn−1)  
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Hence the theorem.  

 

Theorem 5.5 �
	


�

�


�

>
=

=µ
n|d 1nif0

1nif1
)d(  

Proof :- Clearly for n = 1, we have 

  � =
1/d

1)d(�  

So let n > 1 

Let n = rr
r

2�
2

1�
1 p...pp be the prime factorization of n.  

Let   g(n) = �
n/d

)d(�  

Now divisors of n are of the form  

  r
r

2
2

1
1 p,...p,p βββ  where 0 ≤ βi ≤ αi 

If any βi ≥ 2, µ( r�
r

2�
2

1�
1 p...pp ) = 0, since in this case r�

r
2�

2
1�

1 p...pp  is not 
square free.  So while considering the divisors of n we leave out all those 
divisors which are divisible by a square.  

 So the only divisors to be considered are  1, p1, p2,…, pr,  p1 p2, p1 
p3,… p1 pr,   p1 p2 p3…         p1 p2 p3 pr 

∴  g(n) = µ(1) + �+�

≠
≤≤=
ji

rj,i1

r

1i
i )p(� µ(pi pj) +…+µ(p1 p2…pr) 

         = 1 − rc1 + rc2 − rc3…+ (−1)r 

         = (1−1)r = 0.  Hence Proved. 

Example :- Let n>1 & let n have r distinct prime divisors. Then � µ
n|d

|)d(|  = 2r 

Proof :- From above theorem, we see that  

 � µ
n|d

|)d(| = µ(1) + � µ+� µ
≤≤= rj,ii

ji

r

1i
i |)p,p(||)p(| +…+ |µ(p1 p2…pr)| 

       = 1 + rc1 + rc2 +…+ rc3 

       = (1+1)r = 2r     Hence Proved.  
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Divisor Function :- d(n) 

Definition :- Let n ≥ 1.  We define divisor function of n(to be denoted by 
d(n)) as  

  �
n|d
1= Number of divisors of n (including 1 & n) 

Clearly d(1) = 1 & d(p) = 2 for every prime p.  

Theorem 5.6 Prove that d(n) is a multiplicative function.  Find a formula for 
d(n) 

Proof :- The function f(n) ≡ 1 is a multiplicative function and so  

  )n(d1)d(f
n|dn|d

=�=�  is a multiplicative function. 

If n = 1,  Clearly d(1) = 1.  So let n > 1.  

Let  n = k�
k

2�
2

1�
1 p...pp  be the prime power decomposition of n.  

Since d is a multiplicative function, so  

 d(n) = d( )p(d)...p(d)p(d)p...p k�
k

2�
2

1�
1

k�
k

1�
1 =  

So to find d(n), it is enough to find d(pα) where p is any prime & α ≥ 1  

By definition  

 d(pα) = �
αp|d

1 

 Now only divisors of pα are 1, p, p2,…pα which are α + 1 in number 

∴ d(pα) = α + 1 

d(n) = ∏
=

k

1i
(αi +1)  

Sum function :- σσσσ(n) 

Definition :- Let n ≥ 1 be any natural number we define  

  σ(n) = �
n|d

d  = sum of all divisors of n (including 1 & n) 

Clearly  σ(1) = 1 and  σ(p) = p + 1 

Further σ(n) > n ∀ n > 1 since there are at least 2 divisors of n namely 1 and 
n. 

Theorem 5.7 Prove that σ(n) is a multiplicative function of n.  Find a formula 
for σ(n). 
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Proof :- Since f(n) ≡ n is a multiplicative function of n, so  

  �=�
n|dn|d
d)d(f = σ(n) is a multiplicative function.  

To find a formula for σ(n), we not 

  σ(1) = 1.  Let n > 1 

Let n = k�
k

1�
1 p...p  be the prime power decomposition of n.  Since σ is 

multiplicative function, so  

  σ(n) = σ( )p()...p()p()p...p k
k

2
2

1
1

k
k

1
1

ααααα σσσ=  

So to find σ(n) it is enough to find σ(pα) where p is any prime and α ≥ 1,  

Now σ(pα) = �
αp|d

d .  The only divisors of pα an 1, p, … pα 

∴  σ(pα) = 1 + p +…+ pα 

            = 
1p

1p 1�

−
−+

 

∴  σ(n) = ∏
−

−

=

+k

1i i

1i�
i

1p

1p
 

Example :- Evaluate )n|(�
1n

�
∞

=
 

Solution :- �
∞

=1n
)n|(�  = µ(1) + µ )4|(�...)3|(�)2|( +++ +……. 

       = 1 − 1 + 1 + 0 = 1. 

Example :- Prove that µ(n) µ(n+1) µ(n+2) µ(n+3) = 0 ∀ n ≥ 1 

Solution :- Since n, n +1, n + 2, n + 3 are four consecutive integers and so at 
least one of them is divisible by 4 and consequently µ of that number is equal 
to zero and so  

  µ(n) (n+1) µ(n+2) µ(n+3) = 0.  Definition Euler function φ(n) 

Theorem 5.8 Prove that φ(n) is a multiplicative function of n.  

i.e. φ(m n) = φ(m) φ(n) whenever gcd (m, n) = 1 

Proof :- If m = 1 or n = 1, clearly  

  φ(m n) = φ(m)⋅φ(n) 
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So let m > 1, n > 1 

Now φ(n) by definition is the number of natural numbers which are ≤ n and 
coprime to n.  So to find out φ(m n), we write first mn natural numbers in n 
rows and m columns as  

     1      2      3….…………….m 

 m + 1  m + 2  m + 3……………..2m 

 ……………………………………………………… 

 ……………………………………………………… 

 (n−1)m+1 (n−1)m+2 (n−1)m+3…………nm   

Now consider any natural number ‘a’ such that 1 ≤ a ≤ mn 

Now gcd (a, mn) = 1  ⇔  gcd (a, m) = 1 = gcd(a, n) 

So let (a, m) = 1,  Then there exists  r (1 ≤ r < m) such that gcd(r, m) = 1  & a 
≡ r(mod m), with 1 ≤ r < m. Then this r is in the first row of the configuration 
such that gcd(r, m) = 1. 

But {1, 2,…,m} is the set of all natural numbers ≤ m and so by definition, the 
first row contains φ(m) natural numbers which are coprime to m.    

So by what we have proved above, ‘a’ can occur in those and only columns 
which are headed by a natural number  r (1 ≤ r < m) such that gcd(r, m) = 1 

Now consider r where a ≡ r(mod m) gcd(r, m) = 1 & 1 ≤ r < m.  

Consider all the natural numbers headed by r.  These are of the form mx + r 
where 0 ≤ x ≤ n−1. Now the set {0, 1, 2, …, n−1} is a complete set of residues 
(mod n) and so {mx + r; 0 ≤ x ≤ n−1} is also a complete and so it contains a 
reduced set of residues (mod n) which contains exactly φ(n) numbers and all 
these numbers are co-prime to n.  

But these are also coprime to m.  So these φ(n) numbers are coprime to mn.  
But there are φ(m) choices for r and so there are φ(m) φ(n) elements in this 
configuration which are relatively coprime to mn and so by definition  

  φ(m n) = φ(m) ⋅ φ(n). 

Mobius Inversion Formula  

Theorem 5.9 Let F(n) = �
n|d

)d(f  

Then  f(n) = � ��
�

�
��
�

�
µ�=��

�

�
��
�

�
µ

n|d n|d d

n
F)d(

d

n
)d(F  
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Also prove its converse. 

Proof :- Clearly � ��
�

�
��
�

�
µ

n|d d

n
)d(F  

        = � ��
�

�
��
�

�
µ

n|d d

n
F)d(  since d | n  ⇔ n|

d

n
 

So let us prove 

  f(n) = � ��
�

�
��
�

�
µ

n|d d

n
F)d(  

By definition, F �=��
�

�
��
�

�

d

n
c

)c(f
d

n
     

∴  � � �µ=��
�

�
��
�

�
µ

n|d n|d

d

n
c

)c(f)d(
d

n
F)d( = 

�
�
�
�

�

�

�
�
�
�

�

�

�µ�

c

n
d

n|c
)d()c(f  

   = f(n)
�
�
�

�

�

�
�
�

�

�

�µ�+��
�

�
��
�

�
�µ

< c

n
|dnc

n|c1|d
)d()c(f)d(      

Now  �

c

n
|d

µ(d) = 0 if n > c 

and  �

c

n
|d

µ(d) = 1  ⇔ 1
c
n =   ⇔ n = c 

So inner sum �

c

n
|d

µ(d) vanishes unless n = c and in case n = c, �

c

n
|d

µ(d) = 1 

∴  � =��
�

�
��
�

�
µ

n|d
)n(f

d

n
F)d(  

Conversely  

Let   f(n) = � ��
�

�
��
�

�
µ

n|d d

n
F).d( ∀n 
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Now  � �
�
�

�
�
�
�

�
� ��

�

�
��
�

�

δ
δµ�=

δn|d d|n|d

d
F)()d(f   (By definition)  

    = ��
�

�
��
�

�

δ
δµ��

δ

d
F)(

n|n|d
 

    = ��
�

�
��
�

�
γ=

δ
γ��

�

�
��
�

�

γ
µ��

γ

d
Set)(F

d

n|n|d
 

Since  γ | d, set d = β γ, So 

  ��=�
βγγ n|n|n|d

)d(f µ(β) F(γ) 

     = 
��
�
�

�

�

��
�
�

�

�

βµ�γ�

γ
β

γ
)()(F

n
|

n|
 

     = F(n) 

since 
γ

=βµ�

γ
β

n
for0)(

n
|

> 1 

Theorem 5.10  Prove that 
n

)n(

d

)d(

n|d

φ
=

µ
�  

Proof :- We know �
n|d

φ(d) = n 

Then  φ(n) = 
d

n
).d(

n|d
µ�   (By Mobius Inversion formula) 

i.e.  �
µ

=
φ

n|d d

)d(

n

)n(
 

For n = 1 exercise is true.  So let  n > 1 

and  
d

)d(

n|d

µ
�  = f(n) 
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Since µ(n) is a multiplicative function of n. 

�  �
µ

n|d d

)d(
= f(n) is a multiplicative function of n.  

Let n = k�
k

2�
2

1�
1 p...p.p  be the prime power factorization of n.  

then   f(n) = f( k�
k

2�
2

1�
1 p...p.p ) 

   = f )p(f)...p(f)p( k�
k

2�
2

1�
1 . 

Let us compute f(pα) where p is any prime & α ≥ 1 

Now only divisors of pα are 1, p, p2,..,pα 

∴  f(pα) = �
µ

αp|d d

)d(
 

          = µ(1) + 
p

)p(�
+ 0 (Θ µ(pi) = 0 for i ≥ 2) 

          = 
p

1p
p
1

1
−=��

�

�
��
�

�
−  

          = 
�

1��

�

1�

p

pp
)1p(

p

p −− −=−  

          = 
�

�

p

)p(�
 

∴  f(n)  = ∏
=

k

1i i�
i

i�
i

p

)p(
�  

          =
n

)n(�

p...p.p

)p...pp(�
k�

k
2�

2
1�

1

k�
k

2�
2

1�
1 =  

Hence the result. 

Example :- prove 

  
2

)n(�n
i

n

1)n,igcd(
1i

=�

=
=
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Solution :- Let S = �

=
=

n

1)n,igcd(
1i
i = a1 + a2 +…+ aφ(n) where 1 ≤ ai ≤ n, gcd(ai, n) = 1 

But   gcd(ai, n) = 1  ⇔ gcd(n−ai, n) = 1 

∴  S = (n−a1) + (n−a2) +…+ (n−aφ(n)) 

and  2S = n φ(n)  � S =
2

)n(�n
 (n > 1) 

Now  
2

)n(�n
 is always an integer ∀ n > 1 

� φ(n) is even for all odd n⋅ > 1 

A General Principle :- Let there be N objects.  Suppose Nα of these have 
property α, Nβ have property β …. Suppose Nαβ have both of these property α 
& β; …Nαβγ have the property α, β, γ… and so on.  Then the number of 
objects which do not have any of the properties α, β, γ;……. is 

  N − Nα + � Nαβ − �Nαβγ +…..   …(1) 

and consequently the number of objects having at least one property is  

  �Nα − �Nαβ + �Nα β γ……..    …(2) 

Proof :- If is enough to prove (1) since (2) can be obtained by subtracting (1) 
from N.  Let A be any one of these N objects.  Then A contributes 1 to the 
term N of (1).  Let A possess exactly k of these properties.  If k = 0, then A 
does not contribute to any of the terms �Nα, �Nαβ, �Nαβγ,…and so A 
contributes exactly one 1 to (1).  Now let k ≥ 1(k is finite). 

Then A contributes 1 to N, 1 to exactly k of the terms in �Nα, 1 to exactly k/2 
of the terms �Nαβ and so on. 

So the total contribution of A to (1) is  

  1 − k+ ��
�

�
��
�

�
−��
�

�
��
�

�

3
k

2
k

+…. 

   = (1−1)k = 0 

and this proves the theorem. 

Application of General Principle    

Theorem 5.11  Let n > 1 and let n = k�
k

2�
2

1�
1 p...p.p  where p1, p2,…,pk are 

distinct prime then  
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  φ(n) = n ��
�

�
��
�

�
−��

�

�
��
�

�
−��

�

�
��
�

�
−

k21 p
1

1...
p
1

1
p
1

1  

Proof :- To find out φ(n), by definition, we have to find the natural numbers ≤ 
n which are not divisible by any of p1, p2,…, pk. 

Let Nαi(i = 1, 2,…k) be the number of integers ≤ n divisible by pi(i = 1, 2, 
…k) j�i�N  be the number of natural numbers ≤ n divisible by pi pj (1 ≤ i, j ≤ 

k, i ≠ j) and so on.   

Clearly  

Nαi =
ip

n
.  Infact the natural numbers ≤ n divisible by pi are 

	


�

�


�

i
i

ii p
p

n
,..,p2,p .   

Similarly  
ji

ji pp
n

��N =  and so on  

∴ By General principle number of natural numbers ≤ n and not divisible by 
any of p1, p2,…, pk is  

  φ(n) = n −� +
ip

n
�

jipp
n

… 

         = n ∏ ��
�

�
��
�

�
−

=

k

1i ip
1

1  

Example :- The sum of the squares of the integers which are ≤ n and 

relatively coprime to n is 2n
3
1 φ(n) +

6
1

n (1−p1) (1−p2)…(1−pk) where n > 1 

and p1, p2,…,pk are the only distinct prime dividing n.  

Solution :- To find out the required sum we shall find the sum of squares ≤ n 
and not coprime to n i.e. sum of squares ≤ n of those natural numbers which 
are divisible by at least one pi.  

By General principle, this sum is equal to  

  �Nα − �Nαβ + �Nαβγ     …(1) 

Now sum of squares of numbers ≤ n and divisible by pi is  

  (pi)2 + (2pi)2 +…+
2

i
i

p.
p
n

��
�

�
��
�

�
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 The sum of squares of numbers ≤ n and divisible by pi pj is  

  (pi pj)2 + (2pi pj)2 +…+
2

ji
ji

pp.
pp
n

�
�

�

�

�
�

�

�
 

and so on 

So the sum (1) is equal to  

�
�
�

�

�

�
�

�

�

��
�

�
��
�

�
⋅+++

=

k

1i

2

i
i

2
i

2
i p

p
n

...)p2()p(  

− �

≠
≤≤

ji
kj,i1

.....pp
pp

n
...)pp2()pp(

2

ji
ji

2
ji

2
ji +

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
+++  

+ (−1)k−1 
�
�

�

�

�
�

�

�

��
�

�
��
�

�
⋅+++

2

k21
k21

2
k2i

2
k2i p...pp

p...pp

n
...)p...pp2()p...pp( …(2)  

Now let d be any divisor of n.  Then the sum of squares of natural numbers ≤ 
n & divisible by d is 

  d2 + (2d)2 +…+
�
�
�

�

�
�
�

�
�
�

�
�
�

�+++=�
�

�
�
�

� ⋅
2

222
2

d
n

...21dd
d
n

 

   = d2⋅ ��
�

�
��
�

�
+��

�

�
��
�

�
+⋅ 1

d

n2
1

d

n

d

n

6

1
 

   = 
6

nd

2

n

d3

n 23

++     …(3) 

From (3), sum (2) is equal to  

  
�
�
�

�

�

�
�
�

�

�

−++�−Σ −

≠
≤≤ k21

1k

ji
ji
kj,i1i

3

p...pp
1

)1(...
pp
1

p
1

3
n

 

       + 
�
�
�

�

�

�
�
�

�

�

−++�−�
−

≠
≤≤=

1k

ji
kj,i1

k

1i

2

)1(...11
2

n
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       + 
6
n

[� pi − � pi pj +…+ (−1)k−1 p1 p2…pk] …(4) 

But the sum of squares of natural numbers ≤ n is  

  
6
1

n (n + 1) (2n + 1) = 
6
n

2
n

3
n 23

++  

∴ Sum of squares of natural numbers ≤ n & coprime to n is  

  
�
�
�

�

�
�
�

�
−++Σ+Σ−

k21

k

jii

3

p...pp
1

)1(...
pp

1
p
1

1
3

n
 

      + �
�

�
�
�

�
−−φ+��

�

�
��
�

�
+− k

2

)1((.....
2
k

k1
2

n
 

      + 
6
n

[1−� pi + � pi pj …+ (−1)k p1 p2…pk] 

      = ∏ −+−+��
�

�
��
�

�
−Π

=

k

1i
i

k
2

i

3
)p1(

6
n

)11(
2

n
p
1

1
3

n
 

    = 2n
3
1 φ(n) + ∏ −

=

k

1i
i )p1(

6
n

   ∏ ��
�

�
��
�

�
−⋅

=

k

1i ip

1
1n = φ(n) 

Example :- Find the sum of the cubes of the integers ≤ n and relatively 
coprime to n. (n > 1) 

Solution :- Let x be any natural number ≤ n and coprime to n. 

Let  S = �x3 = �(n−x)3 

     = �(n3 − 3n2x + 3nx2 − x3) 

  2S = 2�x3 = �n3 − 3n2 �x + 3n �x2 = n3φ(n) − 3n2 
2

)n(�n
  

   + 3n �
�

�
�
�

� −Π+ )p1(
6
n

)n(�n
3
1

i
2  

   = n3 φ(n) −
2
3

n3 φ(n) + n3 φ(n) + 
2
1

n2 Π (1−pi) 
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   = 3n
2
1 φ(n) +

2
1

n2 Π (1−pi) 

Perfect Numbers 

Definition :- A natural number n is called a perfect number if σ(n) = 2n 

For example  6 & 28 are perfect numbers. 

as  σ(6) = 1+ 2 + 3 + 6 = 12 = 2.6 

  σ(28) = 1+ 2 + 4+ 7+ 14 + 28 = 56 = 2.28 

Theorem 5.12  If 2n+1−1 is a prime number then  

  m = 2n(2n+1−1) is perfect. 

Proof :- we have 

σ(2n (2n+1−1)   = σ(2n) σ(2n+1−1) 

  = (1 + 2 +…+ 2n) (1+2n+1−1)    [ Θ gcd(2n, 2n+1−1) = 1] 

  = (2n+1−1) 2n+1 

  = 2 ⋅ 2n.(2n+1−1) = 2m 

Remark :- All the known perfect numbers are even.  We don’t know any odd 
perfect number and neither it has been proved that all perfect numbers. must 
be even. 

Theorem 5.13  Every even perfect number must be of the form 2n(2n+1−1) 
where 2n+1−1 is a prime number.   

Proof :- To prove the theorem, we first prove a lemma. 

Lemma :- let  σ(m) = m λ where 1 ≤ λ < m & λ | m.  Then λ = 1 and m is a 
prime number. 

Proof of Lemma :- If possible, let λ > 1, then since λ | m & 1 < λ < m, so m 
has at least three divisors 1, λ & m 

∴ σ(m) ≥ λ + m + 1, which contradicts the hypothesis that σ(m) = λ + m 

 So λ = 1, then σ(m) = m + 1.  Then m can have only two divisors 1 & 
m and so m must be a prime number. 

Proof of Theorem :- Let k be a given even perfect number.  Then k is of the 
form  

     k = 2n. m where n ≥ 1 & m is odd (we can not have k = 2n since σ(2n) = 
2n+1−1 ≠ 2.2n)        …(1) 
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Let σ(m) = m + λ where λ ≥ 1 

Now k is perfect, so  

  2n+1⋅ m = 2⋅(2nm) = 2k = σ(k) 

   = σ(2n⋅m) = σ(2n) σ(m) 

   = (2n+1−1) (m + λ) 

   = 2n+1 m − m + λ (2n+1−1). 

�  m = λ(2n+1−1)      …(2) 

�  λ = 
12

m
1n −+  � λ | m 

Also n ≥ 1  � λ < m  � 1 ≤ λ < m & λ | m. 

So by the lemma, λ = 1 & m is a prime number.  Setting λ = 1 in (2) we get 

  m = 2n+1−1 

and from (1) 

  k = 2n(2n+1−1) 

Example :- Prove that ⋅(24m−1) = 0 (mod 24) ∀ m ≥ 1 

Solution :- we know  24 = 3⋅8 

To prove the result, we shall in fact prove a little more.  To be precise, we 
shall prove 

(i) σ(3m−1) ≡ 0 (mod 3) 

(ii) σ(8m−1) ≡ 0 (mod 8). 

(i) Let n = 3m−1.  Then n ≡ −1 ≡ 2(mod 3)  

So n can not be a perfect square since k2≡ 0 or 1(mod 3) for any natural 
number k. 

So d | n ⇔ 
d

n
d&n|

d

n
≠  

Also  3 |/ n 

∴ We write  
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  σ(3m−1) = 
�
�

�

�

�
�

�

� +
�=��

�

�
��
�

�
+�

≠

<≤

<≤

≠

d

nd

d

n
d

2

d

n
d

nd1
n|d

nd1
d

n
d

n|d
  

Since 3 |/ n  � 3 |/ d  � d2 ≡ 1(mod 3) 

�  d2 + n ≡ 0(mod 3) 

Since 3 |/ d, ��
�

�
��
�

�
+

d

n
d  ≡ 0 (mod 3) � 

d
nd2 +

 ≡ 0 (mod 3) for every divisor d of 

n, where 1 ≤ d < n  

�  σ3m−1) ≡ 0(mod 3) 

(ii) Let n = 8m −1  � n ≡ −1 ≡ 7 (mod 8) 

Then 2 |/ n and so every divisor d of n must be odd 

� d2 ≡ 1(mod 8) for every divisor d of n.  Further n is not a perfect square 
since every odd square number must be ≡ 1(mod 8) 

Now  σ(n) = σ(8m−1) =
d

nd

d

n
d

2

nd1
n/d

nd1
d

n
d

n|d

+
�=��

�

�
��
�

�
+�

<≤

<≤

≠

 

Since 2 |/ d  � d2 ≡1(mod 8) 

�   d2 + n ≡ 0 (mod 8) and 
d

nd2 +
 ≡ 0 (mod 8) 

�  σ(n) ≡ 0 (mod 8) 

Combining (i) & (ii) we get 

  σ(24m−1) ≡ 0 (mod 24) 

By similar methods we can prove  

  σ(4m−1) ≡ 0(mod 4) 

and  σ(12m−1) ≡ 0 (mod 12) 

i.e.  σ(48m−1) ≡ 0(mod 48) 

Example :- � �
�

�
�
�

�
�=

n|m

2

n|m

3 )m(d)m(d  
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Solution :- Let f(n) = �
n|m

3 )m(d  

and  g(n) = 
2

n|m
)m(d �
�

�
�
�

�
�  

Clearly exercise is true for n = 1. So let n > 1 

Let   n = k�
k

2�
2

1�
1 p...pp  be the prime power decomposition of n.  

Since d(n) is a multiplicative function of n. 

So  d3(n) = (d(n))3 is also a multiplicative function of n and so  

f(n) = �
n|m

d3(m) is also a multiplicative function. 

Further �
n|m

)m(d is also a multiplicative function since d(n) is a multiplicative 

function and so 

  g(n) = 
2

n|m
)m(d �
�

�
�
�

�
�  

is also a multiplicative function of n 

So to prove f(n) = g(n), it is enough to prove 

  f(pα) = g(pα) for every prime p & α ≥ 1 

Now f(pα) = �
αp|m

3 )m(d  

The only divisors of pα are 1, p, p2,…, pα 

∴ f(pα) = d3(1) + d3(p) + d3(p2)+…+d3(pα) 

                 = 13 + 23 + 33 +…+ (α+1)3    (Θ d(i) = i + 1 

          = 
2

2
)2�)(1�(
��

�
��

� ++
 

          = square of the sum of first (α + 1) natural numbers  

i.e.  [1 + 2 +…+ (α+1)]2 

          = [d(1) + d(p) +…+ d(pα)]2 

          = g(pα). 

Example :- For every natural number n > 1,  
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where p1, p2,…, pk are the only prime divisors of n and f(n) is a multiplicative 
function of n.  

Solution :- Let n = k�
k

2�
2

1�
1 p...pp be the prime power decomposition of n 

Since µ(n) is a multiplication of n and f(n) is a multiplicative function of n  

� µ(n) f(n) is a multiplicative function of n. 

� )d(f)d(
n|d

µ� is a multiplicative function of n 

So to evaluate )d(f)d(
n|d

µ� , we evaluate )d(f)d(
p|d

µ�
α

where p is a prime & 

α ≥ 1 

Now only divisors of pα are 1, p, p2,…, pα 

∴ )d(f)d(�
�p/d

� = µ(1) f(1) + µ(p) f(p) + µ(p2) f(p2) +…+ µ(pα) & (pα) 

     = 1 − f(p)   (Θ µ(pi) = 0 ∀ i ≥ 2) 

∴ )d(f)d(
n|d

µ� = ∏ −
=

k

1i
i ))p(f1(  

Corollary :- If f(n) = d(n).  Then d(pi) = 2 

�  )d()d(
n|d

τµ� = (−1)k 

 ∏=σµ�
=

k

1in|d
)d()d( (1 − σ(pi)) 

             = (−1)k p1 p2…pk. 

Example :- Prove that σ(n) is odd ⇔ n = m2 or 2m2 

Proof :- Let n = 1.  Then σ(1) = 1 

Let n > 1 and n = 2r k�
k

2�
2

1�
1 p...pp  where r > 0 & p1, p2,…, pk are distinct odd 

primes. 

Now σ(n) = σ(2r) σ )p(�)...p(�)p( k�
k

2�
2

1�
1  

         = (2r+1−1) (1 + p1 + 1�
1

2
1 p...p ++ ) …( 1+ pk + k�

k
2
k p...p ++ ) …(1) 

Now σ(n) is odd ⇔ Each factor on R.H. S of (1) is odd.  But (2r+1−1) is odd ∀ 
r ≥ 0 
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However if αi is odd for some i (1 ≤ i ≤ k) then 1 + pi + i�
i

2
i p...p ++  is even, 

since number of terms in the sum is even while each term is odd.  

∴ σ(n) is odd ⇔ each αi is even. If r is also even, n = m2 for some m and 
r is odd n = 2m2 for some m. 

Example :- Prove that � ��
�

�
��
�

�
φ− −

n|d

1d

d

n
)1(  = n or 0 according as n is odd or n is 

even. 

Solution :- Let n be odd.  Then each divisor d of n is odd and so d−1 is even  

�  (−1)d−1 = 1 and � ��
�

�
��
�

�
φ− −

n|d

1d

d

n
)1( = n)d(

d

n

n|dn|d
=�φ=� ��

�

�
��
�

�
φ  

So let n be even and n = 2r k�
k

2�
2

1�
1 p...pp  be the prime power decomposition of 

n.  

∴ � ��
�

�
��
�

�
φ− −

n|d

1d

d

n
)1( = ( ) ( )�φ� −φ=� ��

�

�
��
�

�
φ� −��

�

�
��
�

�
φ

evend
n|d

oddd
n|d

evenisd
n|d

oddisd
n|d

dd
d

n

d

n
 = n − n = 0 

Order of Magnitude and Average Order :-  d(n), σ(n) & φ(n). 

Order of magnitude is simply how Large or how small is the magnitude of the 
function  

We know d(1) = 1 & d(n) ≥ 2 ∀ n ≥ 2. 

Further d(p) = 2 for all primes p 

Definition :- Let f(n) & g(n) be two functions of n.  

(1) We say f(n) = o(g(n)) 

if  
)n(g
)n(f

lim
n ∞→

= 0 

(2) We say f(n) = O (g(n)) 

if ∃ a positive constant A such that |f(n)| < A g(n) 

(3) We say f(n) ~ g(n) 

if  
)n(g
)n(f

lim
n ∞→

 = 1 

Remark :- If f(n) = o (g(n)) 

then  f(n) = O (g(n)) 

and if f(n) ~ g(n) even then  
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  f(n) = O(g(n)) 

Some rules for addition  

(1) o (n) + o (n) = o (n) 

(2) O(n) + O(n) = O(n) 

(3) o (n) + O(n) = O(n) 

(4) O(f(n)) + O(g(n)) = O[f(n) + g(n)] 

Theorem 5.14  d(n) = O(ns) for all positive δ, (δ however small) 

Proof :- We know if  n = k�
k

2�
2

1�
1 p...pp  

Then  d(n) = ∏
=

k

1i
(ai + 1) 

∴  ∏ �
�

�

�

�
�

�

� +
=

= δδ

r

1i ia
i

i

p

1a

d

)n(d
 

           = ∏ ∏ �
�

�

�

�
�

�

� +
�
�

�

�

�
�

�

� +
δ

<
δ≥

δδ/12ip /12ip
ia

i

i

ia
i

i

p

1a

p

1a
 

Now for p ≥ 21/s, pδ ≥ 2, so 

  
aaa 2

1a

)p(

1a

p

1a +
≤

+
=

+
δδ ≤  1     ∀ a 

Also for all p,  

  a δ log 2 ≤ 2logae δ = 2aδ ≤ paδ  (Θ 2 ≤ p) 

∴  
2log

1
1

p

a

p

1

p

1a
aaa δ

+≤+=
+

δδδ  

        ≤ exp ��
�

�
��
�

�

δ 2log

1
 

Using the above estimate for pi < 21/δ, 

We get  ∏ ∏ ��
�

�
��
�

�

δ
≤

+
≤

δ
<

δ<
δδ /12ip /12ip

ia
i

i

2log

1
exp

p

1a

n

)n(d
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   < exp 
�
�

�

�

�
�

�

�

δ

δ

2log

2 /1

 = O(1) 

∴  d(n) = O(nδ). 

Definition :- If f(n) and g(n) are two arithmetic functions of n, then we say 
f(n) is a average order of g(n) if   f(1) + f(2) +…+ f(n) ~ g(1) + g(2) +…+g(n) 

Example :- Let us see when f(n) is of average order of n. 

Now 1 + 2 + 3 +…n = 2n
2
1

~
2

)1n(n +
 

Thus if f(n) ~ 2n
2
1

, then f(n) is of average order of n 

Theorem 5.15  d(n) is of average order of log n. In fact d(1) + d(2) +…+ d(n) 
~ n log n 

Proof :- First we prove  

 log (1) + log (2) +…+ log n ~ n log n 

Now  log (1) + log (2) +…+ log n 

   = 1⋅ log 1 + 1 ⋅ log 2 +…+ 1⋅ log n 

~ � �++� +
+3

2

1n

n

2

1
dttlog...dttlogdttlog  

  = [ ]� −=
+ +1n

1

1n
1ttlogtdttlog  

  = (n + 1) log (n+1) − n 

  ~ n log n  

Now to prove the theorem it is enough to prove  

 d(1) + d(2) +…+d(n) ~ n log n.  

 

 

 

 

 

 

xy = n 

Y 

X 

D 
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Consider the lattice whose vertices (x, y) are the points in the xy-plane with 
integral co-ordinates.  Denote by D the region in the upper right hand corner 
contained between the rectangular axes & the rectangular hyperbola  

xy = n leaving out the coordinate axes and counting the lattice points on the 
rectangular hyperbola.  

We count the lattice point in this region in two different ways. 

Let (x, y) be any lattice point in this region.  Then x y ≤ n and xy is a natural 
number and so this lattice point lies on one of the rectangular hyperbolas xy = 
δ, where 1 ≤ δ ≤ n.  Then total number of lattice points in this region will be 

  d(1) + d(2) +…+d(n) 

Also the number of lattice points in this region with x-coordinate equal to 1 

will be a = ��

�
��

�

1
n

,  

         the number of lattice points in this region with x-coordinate equal to 2 

will be a = ��

�
��

�

2
n

 

         
………………………………………………………………………………         
……………………………………………………………………………… 

∴ Total number of lattice points in this region will be 

  [n] + ��

�
��

�++��
�

��

�+��
�

��

�

n
n

...
3
n

2
n

 

∴ d(1) + d(2) +…+ d(n) 

  = [n] + ��

�
��

�++��
�

��

�

n
n

...
2
n

 

  = n + 
n

n
...)1(

3

n
)1(

2

n
+++++ OO + O(1) 

  = n �
�

�
�
�

� ++++
n
1

...
3
1

2
1

1 + O(n) 

  = �
�

�

�
�
�

�

�
��
�

�
��
�

�
+γ+

n

1
nlogn O + O(n)  (by Sterling formula) 
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  = n log n + nγ + O(1) + O(n) 

  = n log n + O(n) ~ n log n  

Theorem 5.16  Prove that  

  d(1) + d(2) +…+ d(n) = n log n + (2γ −1) n + O( n ) 

where γ is the Sterlings constant. 

Proof :- Let D denote the region as defined in the previous theorem.  Then we 
have already prove in previous then that the number of lattice points in this 
region is    

  d(1) + d(2) +…+ d(n) 

Set   u = [ n ] = n  + O(1) 

∴     u2 = ( n  + O (1))2 = n + O ( n ) + O (1) = n + O ( n ) 

                 = n + O (u) 

So  log u = log ( n  + O (1) = log
�
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
��
�

�
��
�

�
+

n

1
1n O  

         = log( n ) + log �
�

�

�

�
�

�

�
��
�

�
��
�

�
+

n

1
1 O  

         = log ( n ) + O �
�

�
�
�

�

n

1
 

         = ��
�

�
��
�

�
+=��

�

�
��
�

�
+

u

1
ulog

n

1
nlog

2

1
OO  

We know that the lattice points (x, y) with x ≠ 0 & y ≠ 0 is equal to  

  d(1) + d(2) +…+ d(n) 

Since x ≠ 0 and y ≠ 0, the lattice points (x, y) be on the line x = 1, x = 2,… 
and y = 1, y = 2,…. 

Let A B C D be the square determined by the vertices (1, 1), (1, u), (u, u) & 
(u, 1).  By symmetry the number of lattice points in the region ABCHGDA = 
number of lattice points in the region ADEFGBA 

Since [ n ] = u, there is no lattice point in the small triangle FGH. 
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Further (square ABCD) ≤ Region (ABCHGDA) and Square                         
(ABCD) ≤ Region (ABEFGDA). 

∴ If we count the points on the lines x = 1, x = 2,… & y = 1, y = 2,…, the 
lattice points in the square ABCD are counted twice.  

The number of lattice points in the square ABCD including on the boundary is 
equal to u2 

∴ Number of lattice points in the region under consideration = 2(number of 
Lattice points in the region ABCHGDA)− u2 

But as in the first part of the proof number of Lattice points in the region 
ABCHGDA 

 

 

 

 

 

 

 

 

 

 

    = ��

�
��

�++��
�

��

�+��
�

��

�

u
n

...
2
n

1
n

 

∴  �
=

n

1i
)i(d  = 2 �

�
�

�
�
�
�

�
�
�

�
�
�

�
++�

�

�
�
�

�
+�

�

�
�
�

�

4

n
...

2

n

1

n
 − u2.     

But  ��

�
��

�++��
�

��

�+��
�

��

�

u
n

...
2
n

1
n

 = 
u
n

...
2
n

1
n +++ + O(u) 

∴    �
=

n

1i
)i(d = 2n 2u

u

1
...

2

1
1 −��

�

�
��
�

�
+++  

    = 2n 2u
u

1
ulog −��

�

�
�
�

�

�
��
�

�
��
�

�
+γ+ O  

    = 2n log u + 2n γ + O(u) −n + O(u) 

    = 2n �
�
�

�

�
�

�

�
��
�

�
��
�

�
+

u

1
nlog

2

1
O + (2γ−1)n + O(u) 

A 

B C H 
G 

F 
E 

D 

xy = n 
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    = n log n + O(u) + (2γ−1)n + O(u) 

    = n log n + (2γ−1) n + O( n ) 

Magnitude and average order of σσσσ(n). 

We know σ(p) = p+1 and number of primes is infinite so all we can say about 
magnitude of σ(n) is σ(n) > n for n ≥ 2. 

Theorem 5.17  The average order of σ(n) is 
6
1 π2n,   More precisely  

σ(1) + σ(2) +…+ σ(n) = 
12
1 π2n2 + O(n log n) 

Proof :- Let as before, D be the region bounded by x-axis, y-axis & the 
rectangular hyperbola xy =n. 

If x is a divisor of n, then ∃ a lattice point (x, y) lying in this region.  Then this 
point will lie on one of the lines y = 1, y = 2, and xy ≤ n.  

∴   ��=�σ
�
�

�
�
�

�
≤≤

==

n

x

n
y1

n

1x

n

1i
)i( y 

     = � ��
�

�
��
�

� +��
�

��

�
��

�
��

�

=

n

1x
1

x
n

x
n

2
1

 

But  
x
n

x
n =��
�

��

� + O(1 

∴   � � ��
�

�
��
�

�
+��

�

�
��
�

�
+=σ

= =

n

1i

n

1x
)1(

x

n
)1(

x

n

2

1
)i( OO  

   = �
�
�

�

�

�
�

�

�
+��
�

�
��
�

�
+

=

n

1x
2

2

)1(
x

n

x

n

2

1
OO  

   = � ��
�

�
��
�

�
�+

= =

n

1x

n

1x
2

2

x

1
n

x

1
n

2

1
O + O(n) 

But  ��
�

�
��
�

�
+

π
=��

�

�
��
�

�
� +� =
∞

== n

1

6n

1

x

1

x

1 2

1x
2

n

1x
2

OO  

and  � �
�

�
�
�

�+=
=

n

1x n
1

0nlog
x
1

. 
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∴  )n(
n

1
nlogn

n

1

6
n

2

1
)i(

2
2n

1i
OOOO +

�
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
��
�

�
��
�

�
++

�
�

�

�

�
�

�

�

��
�

�
��
�

�
+

π
=�σ

=
 

             = 
12
1 π2 n2 + O(n) + O(n log n) + O(n) 

             = 
12
1 π2 n2 + O(n log n) 

Magnitude and Average order of φφφφ(n). 

We know if n > 1, φ(n) < n On the other hand if n = pm and p > 1/ε where ε > 
0 is given 

then   φ(n) = n n
p
1

1 >��
�

�
��
�

�
− (1−ε) 

∴  1
n

)n(�
lim�1

n
)n(� =�−>  

Theorem 5.18  There exists a constant A, such that  

  A <
2n

)n(�)n(�
< 1 for all n > 1 

Proof :- Let n = ∏
p

�p , then we know  

  σ(n) = ∏ ∏
−

−
=

��
�

�
��
�

�
−

�
�
�

�
�
�
�

�
−

=∏
−

−
−

−α−α+α
+α

+α

n|p n|p
1

11
1

n|p

1

)p1(

)p1(p

p

1
1p

p

1
1p

1p

1p
 

          = n ∏
−

−
−

−α

n|p
1

1

p1

p1
 

Also we know φ(n) = n ∏ − −

n|p

1)p1(  

  σ(n) φ(n) = n2 ∏
n|p

1−p−α−1 

∴  ∏=
φσ

n|p
2n

)n()n(
(1−p−α−1) < 1. 
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Now for α ≥ 1, p2 ≤ pα+1 

� 
21� p

1

p

1 ≤+  

� 1−
21� p

1
1

p

1 −≥+  

∴  ∏=
φσ

n|p
2n

)n()n(
(1−p−α−1) ≥ ∏ �

�
�

�
�
�
�

�
−

n|p
2p

1
1  

        ≥ ∏ �
�

�

�

�
�

�

�
−

p 2p

1
1  

        ≥ ∏ �
�

�
�
�

� −
∞

=1k 2k

1
1  

We know that the series � an and the infinite product Π(1−an) converge or 
diverge together 

But �
2k

1
 is convergent     �  ∏ �

�

�
�
�

� −
∞

=1k 2k

1
1  is also convergent] 

So there exists a constant A such that 

  A < .1
n

)n(�)n(�
2

<  

Theorem 5.19  The average order of φ(n) is 
2�

n6
 

In fact  Φ(n) = φ(1) + φ(2) +…+φ(n) = 
2

2

�

n3
+ O(n log n) 

Proof :- We have already prove �
n|d

φ(d) = n 

So by Mobius inversion formula, 

  Φ(n) = � �=
= ≤

n

1m n©dd
)m(� d′ µ(d) 

          = � �⋅µ
=

�
�

�
�
�

�

=

n

1d

d

n

1©d
©d)d(  
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           = 

� �=
�
�

�

�

�
�

�

�

��

�
��

�+��

�
��

�

= =

n

1d

n

1d

2

)d(�
2
1

d
n

d
n

)d(�
2
1

�
�

�

�

�
�

�

�
�
�

�
�
�

�
+��

�

�
��
�

�
+

d

n
)1(O

d

n 2

 

           = �
�
�
�

�

�
�
�

�

��
�

�
��
�

�
+µ

=

n

1d
2

2

d

n
O

d

n
)d(

2

1
 

           = � ��
�

�
��
�

�
�+

µ
= =

n

1d

n

1d
2

2

d

1
nO

d

)d(
n

2

1
 

But we know that  

  �
∞

=1d 2d

)d(�
converges to 6/π2 

∴ Φ(n) = �
∞

=1d 2
2

d

)d(�
n

2
1

+ O �
�

�
�
�

�
�
=

n

1d d
1

n  = 
�
�
�

�

�
�
�

�
��
�

�
��
�

�
+

π n

1
O

6
n

2

1
2

2 O(n log n) 

         = +
2

2

�

n3
 O(n log n) 

Remark :- We know that the number of terms in Farey series function of 
order n is  

  1 + �
=

n

1i
φ(i) = 1+Φ(n) 

∴ We get the number of terms in the Farey series of order n is 

approximately 
2

2

�

n3
 for large n. 

Thus an alternative statement of the last theorem is that the number of terms in 
Farey series of order n is approximately 3n2/π2. 

Theorem 5.20  The probability that the two given integers should be coprime 

to each other is 
2�

6
. 

Proof :- Consider the pair of integers (p, q).  Let 1 ≤ p ≤ q ≤ n. 

Now also consider the corresponding fraction 
q
p

.  For every n, there are 

almost n fractions. 
q
p

 with 1 ≤ p ≤ q ≤ n. 
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∴  Total number of such fractions with all 
q
p

(1 ≤ p ≤ q ≤ n) is 

� +=
=

n

1i
n

2
1

~)1n(n
2
1

i   

But the number of fractions 
q
p

, where 1 ≤ p ≤ q ≤ n and gcd(p, q) = 1 is 3n2 | 

π2 for large n.  

∴ Probability = 
22

22

�

6

n
2
1
�n3 = . 

The Mangoldt function ΛΛΛΛ(n) 

We introduce next Mangoldt’s function Λ which plays a central role in the 
distribution of primes. 

Definition :- For every integer n ≥ 1 we define 

  Λ(n) = 
��

�


� ≥=

otherwise0
.1msomeandpprimesomefopnifplog m
 

Here is a short table of values of Λ(n) : 

n: 1 2 3 4 5 6 7 8 9 10 

Λ(n): 0 log2 log3 log2 log5 0 log7 log2 log3 0 

Theorem 5.21  If n ≥ 1 we have 

  log n = �
nd |

Λ(d).     …(1) 

Proof :- The theorem is true if n = 1 since both members are 0.  Therefore, 
assume that n > 1 and write  

  ∏=
=

r

1k

ka
k .pn  

Taking logarithms we have 

  log n = .ploga k
r

1k
k�

=
 

Now consider the sum on the right of (1).  The only nonzero terms in the sum 
come from those divisors d of the form pk

m for m = 1, 2,…, ak and k = 1, 2,…, 
r.  Hence 
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 � ����� ===Λ=Λ
=====n|d

k

r

1k
k

ka

1m
k

r

1k

ka

1m

m
k

r

1k

,nlogplogaplog)p()d(  

which proves (1). 

Now we use Mobius inversion to express Λ(n) in terms of the logarithm. 

Theorem 5.22 If n ≥ 1 we have 

  Λ(n) = .dlog)d(
d
n

log)d(
n|dn|d

µ−=µ ��  

Proof :- We know logn = �
n|d

Λ(d)     …(1) 

Inverting (1) by the Mobius inversion formula we obtain  

  Λ(n) = dlog)d()d(nlog
d
n

log)d(
n|dn|dn|d

µ−µ=µ ���  

          = ��

�
��

�

n
1

 log n− �
n/d

µ(d) log d. 

Since ��

�
��

�

n
1

 log n = 0 for all n the proof is complete.  

Chebyshev’s functions ψψψψ(x) and ϑϑϑϑ (x) 

Definition :- For x > 0 we define Chebyshev’s ψ-function by the formula  

  ψ(x) = �
≤ xn

Λ(n). 

Since Λ(n) = 0 unless n is a prime power we can write the definition of ψ(x) 
as follows : 

 ψ(x) = ��=Λ��=Λ�
≤

∞

=

∞

≤
=≤ m/1xp1m

m

p
xmp

1mxn
.plog)p()n(  

The sum on m is actually a finite sum.  In fact, the sum on p is empty if x1/m < 
2, that is, if  

(1/m)log x < log 2, or if 

  m > 
2log
xlog

= log2 x. 

Therefore we have 
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  ψ(x) = ��
≤≤ m/1xpx2logm

log p. 

This can be written in a slightly different form by introducing another function 
of Chebyshev. 

Definition :- If x > 0 we define Chebyshev’s ϑ-function by the equation 

  ϑ(x) = �
≤ xp

log p, 

where p runs over all primes ≤ x. 

The last formula for ψ(x) can now be restated as follows : 

  ψ(x) = �
≤ x2logm

ϑ(x1/m). 

The next theorem relates the two quotients ψ(x)/x and ϑ(x)/x. 

Theorem 5.23  For x > 0 we have 

  0 ≤ 
2

2

logx2

)x(log
x

)x(
x

)x(� ≤ϑ−   

Note :- This inequality implies that 

  0
x

)x(
x

)x(�
lim
x

=�
�

�
�
�

� ϑ−
∞→

. 

In other words, if one of ψ(x)/x or ϑ(x)/x tends to a limit then so does the 
other, and the two limits are equal. 

Proof :- we have ψ(x) = �
≤ x2logm

ϑ(x1/m), so 

  0 ≤ ψ(x) −ϑ(x) = �
≤≤ x2logm2

ϑ(x1/m). 

But from the definition of ϑ(x) we have the trivial inequality 

  ϑ(x) ≤ �
≤ xp

log x ≤ x log x 

so   

  0 ≤ ψ(x) −ϑ(x) ≤ xlogx)x(log)xlog(x 2
m/1m/1

x2logm2

≤�
≤≤

 

    = 
2log2

)x(logx
xlog

2
x

.
2log
xlog 2

= . 

Now divide by x to obtain the theorem. 
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Relations connecting ϑϑϑϑ(x) and ππππ(x) 

In this section we obtain two formulas relating ϑ(x) and π(x).  where π (x) is 
the number of primes   ≤ x.   These will be used to show that the prime 
number theorem is equivalent to the limit relation  

  .1
x

)x(
lim
x

=ϑ
∞→

 

Both functions π(x) and ϑ(x) are step functions with jumps at the primes; π(x) 
has a jump 1 at each prime p, whereas ϑ(x) has a jump of log p at p. Sums 
involving step functions of this type can be expressed as integrals by means of 
the following theorem. 

Theorem 5.24  Abel’s identity.  For any arithmetical function a(n) let 

  A(x) = �
≤ xn

a(n), 

Where A(x) = 0 if x < 1.  Assume f has a continuous derivative on the interval 
[y, x], where                      0 < y < x.  Then we have 

   �
≤< xny

a(n) f(n) = A(x) f(x) − A(y) f(y) − �
x

y
A(t) f ′(t) dt. …(1) 

Proof :- Let k = [x] and m = [y], so that A(x) = A(k) and A(y) = A(m). 

Then  �=�=�
+=+=≤<

k

1mn

k

1mnxny
)n(f)n(a)n(f)n(a {A(n) −A(n−1)} f(n) 

     = �−�
−

=+=

1k

mn

k

1mn
)n(f)n(A A(n)f(n+1) 

     = �
−

+=

1k

1mn

A(n) {f(n) −f(n+1)} + A(k) f(k) 

−A(m)f(m +1) 

   = − ��
+−

+=

1n

n

1k

1mn
)n(A f ′(t)dt + A(k) f(k) −A(m)f(m + 1) 

   = − ��
+−

+=

1n

n

1k

1mn
A(t) f ′ (t) dt + A(k) f(k) − A(m) f(m + 1) 

   = − �
+

k

1m
A(t) f ′(t) dt + A(x) f(x)− �

x

k
A(t) f ′ (t) dt 
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        − A(y) f(y) − �
+1m

y
A(t) f ′ (t)dt 

     = A(x) f(x) − A(y) f(y) − �
x

y
A(t) f ′(t)dt. 

Theorem 5.25   For x ≥ 2 we have 

  ϑ(x) = π(x) log x− dt
t

)t(�x

2
�     …(1) 

and 

  π(x) = .dt
tlogt

)t(
xlog
)x(

2

x

2

ϑ
�+ϑ

    …(2) 

Proof :- Let a(n) denote the characteristic function of the primes; that is, 

  a(n) = 
�


�

.otherwise0
,primeisnif1
 

Then we have 

 π(x) = and)n(a1
xn1xp

��
≤<≤

= ϑ(x) = �=�
≤<≤ xn1xp

plog a(n)log n. 

Taking f(x) = log x in Abel’s identity  with y = 1 we obtain 

  ϑ(x) = �
≤< xn1

a(n)log n = π(x)log x − π(1) log 1− �
x

1
,dt

t
)t(�

 

which proves (1) since π(t) = 0 for t < 2. 

Next, let b(n) = a(n) log n and write 

  π(x) = ,
nlog

1
)n(b

xn2/3
�

≤<
    ϑ(x) = )n(b

xn
�
≤

. 

Taking f(x) = 1/log x in Abel’s identity with y = 3/2 we obtain 

  π(x) = ,dt
tlogt

)t(
2/3log
)2/3(

xlog
)x(

2

x

2/3

ϑ+ϑ−ϑ
�  

which proves (2) since ϑ(t) = 0 if t < 2. 

Some equivalent forms of the prime number theorem  

Theorem 5.26  The following relations are logically equivalent : 
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  .1
x

xlog)x(�
lim
x

=
∞→

     …(1) 

.1
x

)x(
lim
x

=ϑ
∞→

      …(2) 

.1
x

)x(�
lim
x

=
∞→

      …(3) 

Proof :- From above theorem  we obtain, respectively, 

  dt
t

)t(�
x
1

x
xlog)x(�

x
)x( x

2
�−=ϑ

 

and 

  .
tlogt

dt)t(
x

xlog
x

)x(
x

xlog)x(�
2

x

2

ϑ
�+ϑ=  

To show that (1) implies (2) we need only show that (1) implies 

  .0dt
t

)t(�
x
1

lim
x

2x
=�

∞→
 

But (1) implies ��
�

�
��
�

�
=π

tlog
1

O
t

)t(
 for t ≥ 2 so 

  .
tlog

dt
x
1

Odt
t

)t(
x
1 x

2

x

2
�
�

�

�

�
�

�

�
=π

��  

Now 

  
xlog

xx
2log

x
tlog

dt
tlog

dt
tlog

dt x

x

x

2

x

2

−+≤�+�=�  

so  
tlog

dt
x
1 x

2
� → 0 as x→∞. 

This shows that (1) implies (2). 

To show that (2) implies (1) we need only show that (2) implies 

  .0
tlogt

dt)t(
x

xlog
lim

2

x

2x
=ϑ

�
∞→
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But (2) implies ϑ(t) = O(t) so 

  �
�

�

�

�
�

�

�
�=ϑ

�
tlog

dt
x

xlog
O

tlogt

dt)t(
x

xlog
2

x

2
2

x

2
. 

Now   

  
xlog

xx

2log

x

tlog

dt

tlog

dt

tlog

dt
222

x

x
2

x

2
2

x

2

−+≤�+�=�  

hence 

  0
tlog

dt
x

xlog
2

x

2
→�  as x → ∞. 

This proves that (2) implies (1), so (1) and (2) are equivalent.  We know 
already, that (2) and (3) are equivalent. 

 

Theorem 5.27  Bertrand’s Postulate.  If x is a real number, x > 1, then there 
exists at least one prime number in the open interval (x, 2x). 

Proof :- Suppose that the interval (x, 2x) contains no prime number.  If p is 
prime then there is at most one value of k for which pk ∈(x, 2x), since pk+1/pk 
= p ≥ 2.  Furthermore, k > 1, since the interval contains no primes.  Hence 

  ψ(2x) − ψ(x) = �
≤< x2kpx

log p ≤ ψ( x2 ) + log 2x. 

Here the last term on the right is required because 2x may be a prime number.  
We use ψ(x) ≥ a0x − 5 log ex for x ≥ 6, to provide a lower bound for ψ(2x), 
and use ψ(x) < b0x + 5 (log ex)2 to provide upper bounds for ψ(x) and 
ψ( x2 ).  Thus we find that 

  (2a0 − b0) x − 5 log 2 ex − 5 (log ex)2 

        ≤ b0 x2  + 5(log e x2 )2 + log 2x.  …(1)   

Here the left side is comparable to x as x →∞, while the right side is 
comparable to x .  Hence the set of x for which this holds is bounded.  In 
fact, we show that if (1) holds then x < 1600.  That is, if x ≥ 1600 hen  

  2a0 − b0 ≥ 5(log 2ex)/x + 5(log ex)2/x 

    + 5(log e x2 )2/x + (log 2x)/x + b0 x/2  …(2) 
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To this end let f(x) be a function of the form f(x) = (log axb)c / x where a, b, c 
are positive real constants.  Then log f(x) = c log log axb − log x, and by 
differentiating it follows that  

  
)x(f
)x(©f

= (bc/(log axb)−1)/x. 

Thus if axb > ebc, then f(x) > 0 and the above expression is negative, so that f 
′(x) < 0.  In other words, f(x) is decreasing in the interval [x0, ∞) where x0 = 
ec/a1/b.  Thus in particular the first term on the right side of (2) is decreasing 
for x ≥ x1 = ½, the second is decreasing for x ≥ x2 = e, the third is decreasing 
for x ≥ x3 = ½, and the fourth is decreasing for x ≥ x4 = e/2.  Since the last 
term on the right side of (2) is decreasing for all positive values of x, we 
conclude that the right side is decreasing for x ≥ x2 = 2.71828⋅⋅⋅.  By direct 
calculation we discover that the right side of (2) is less than 3/8 when x = 
1600, while the left side is > 3/8.  Since the right side is decreasing, it follows 
that (2) holds for all x ≥ 1600. 

 We have shown that Bertrand’s postulate is true for x ≥ 1600.  To 
verify it for 1 < x < 1600 we note that the following thirteen numbers are 
prime : 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503.  As each term of 
this sequence is less than twice the preceding member, Bertrand’s postulate is 
valid for 1 < x < 2503, and the proof is complete.  

An asymptotic formula for the partial sums ����p ≤≤≤≤ x(1/p) 
Theorem 5.28  There is a constant A such that  

  
p
1

xp
�
≤

= log log x + A + O ��
�

�
��
�

�

xlog
1

 for all x ≥ 2 . …(1)  

Proof :- Let 

  A(x) = 
p

plog

xp
�
≤

 

and let 

  a(n) = 
�


�

.otherwise0
,primeisnif1
 

Then 

  .nlog
n

)n(a
)x(Aand

n
)n(a

p
1

xnxnxp
�=�=�
≤≤≤

 

Therefore if we take f(t) = 1/log t in Abel’s identity we find, since A(t) = 0 for 
t < 2, 
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  .dt
tlogt

)t(A
xlog
)x(A

p
1

2

x

2xp
�+=�

≤
   …(2) 

But we know that 
p

plog

xp
�
≤

= log + O(1), so we have A(x) = log x + R(x), 

where R(x) = O(1).  Using this on the right of (2) we find 

  dt
tlogt

)t(Rtlog
log

)1(Oxlog
p
1

2

x

2xp

+
�++=�

≤
 

             = 1 + O .dt
tlogt

)t(R
tlogt

dt
xlog

1
2

x

2

x

2
�+�+��

�

�
��
�

�
 …(3) 

Now 

  
tlogt

dtx

2
� = log log x − log log 2 

and 

  ,dt
tlogt

)t(R
dt

tlogt

)t(R
dt

tlogt

)t(R
2

x
2

2
2

x

2
�−�=�
∞∞

 

the existence of the improper integral being assured by the condition R(t) = 
O(1).  But 

  ��
�

�
��
�

�
=�

�

�

�

�
�

�

�
�=�
∞∞

xlog
1

O
tlogt

dt
Odt

tlogt

)t(R
2

x
2

x
. 

Hence Equation (3) can be written as follow : 

  
p
1

xp
�
≤

= log log x + 1 − log log2 + ��
�

�
��
�

�
+�

∞

xlog
1

Odt
tlogt

)t(R
2

2
. 

This proves the theorem with  

  A = 1 − log log 2 + .dt
tlogt

)t(R
2

2
�
∞

 

Theorem 5.29  For x ≥ 2, 

  � =�
�

�
�
�

�
Λ� =��

�

�
��
�

�
ψ

≤≤ xdxm d

x
)d(

m

x
x log x−x + O(log x). 

Proof :- To prove this theorem, we use the following identity “Let f(n) be an 
arithmetic function and  
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             F(x) = )n(f
xn

�
≤

.  

Then   �
�

�
�
�

�
�

≤ m
x

F
xm

 = ��

�
��

�
�
≤ d

x
)d(f

xd

 

                     = �
≤ xn

)d(f
n|d
� . 

 With f(n) = Λ(n) in Theorem 6.15, we have 

  F(x) = �
≤ xn

Λ(n) = ψ(x), 

and so 

  �
�

�
�
�

�
Λ�=��

�

�
��
�

�
ψ�

≤≤ d

x
)d(

m

x

xdxm
 

         = ��
≤ x|dxn

Λ(d) 

         = �
≤ xn

log n 

         = x log x − x + O(log x). 

The last identity comes from the estimate log
xn

�
≤

n = x log x − x + O(log x) 

Theorem 5.30 (Merten’s formula) There exists a constant γ such that for x ≥ 
2, 

   
1

xp p
1

1
−

≤
��
�

�
��
�

�
−∏ = eγ log x + O(1). 

Proof:- We begin with two observations.  First, the series ��
∞

= 2kp
p−k/k 

converges, since 

 ∞<
−

<
−

=< ������
∞

=

∞

=

∞

= )1n(n
1

)1p(p
1

p
1

kp
1

2np
k

2kp
k

2kp

. 

Let 

  b2 = 0
kp

1
k

2kp

>��
∞

=
. 
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Second, for x ≥ 2, 

  
)1n(n

1
)1p(p

1
kp

1
0

xnxp
k

2kxp −
<

−
<< ����

>>

∞

=>
 

             = 
]x[

1
n
1

1n
1

1]x[n

=�
�

�
�
�

� −
−�

∞

+=
 

             ≤ .
x
2

 

From the Taylor series 

  − log (1−t) = 
k
t k

1k
�
∞

=
for | t | < 1 

and using the estimate of 
p
1

xp
�
≤

  for x ≥ 2, we obtain  

  log 
1

xp

1

xp p
1

1log
p
1

1
−

≤

−

≤
��
�

�
��
�

�
−=��

�

�
��
�

�
− �∏  

             = 
k

1kxp kp
1

��
∞

=≤
 

             = k
2kxpxp kp

1
p
1

���
∞

=≤≤
+  

               = log log x + b1 + O
k

2kxp
2

kp
1

b
xlog

1
��
∞

=>
−+��

�

�
��
�

�
 

            = log log x + b1 + b2 + O ��
�

�
��
�

�

xlog
1

+ O �
�

�
�
�

�

x
1

 

           = log log x + b1 + b2 + O ��
�

�
��
�

�

xlog
1

. 

Let γ = b1 + b2.  Then 

  .
xlog

1
Oexpxloge

p
1

1
1

xp
�
�
�

�
�
�
�

�
��
�

�
��
�

�
=��

�

�
��
�

�
− γ

−

≤
∏  
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Since exp(t) = 1 + O(t) for t in any bounded interval [0, t0], and since O(1/log 
x) is bounded for x ≥2, we have 

   exp .
xlog

1
O1

xlog
1

O ��
�

�
��
�

�
+=��

�

�
�
�
�

�
��
�

�
��
�

�
 

Therefore, 

     
1

xp p
1

1
−

≤
��
�

�
��
�

�
−∏ = eγ log x exp �

�
�

�
�
�
�

�
��
�

�
��
�

�

xlog
1

O  

     = eγ log x �
�
�

�
�
�
�

�
��
�

�
��
�

�
+

xlog
1

O1  

     = eγ log x + O(1). 

This is Merten’s formula. 

 

Theorem 5.31  (Mertens Theorem) For x ≥ 1, 

n
)n(

xn

Λ
�
≤

 = log x + O(1)    …(1) 

and  

  
p

plog

xp
�
≤

= log x + O(1).    …(2) 

Proof :- Since ψ(x) = O(x) by Chebyshev’s theorem, we have 

  x log x −x + O(log x) = �
�

�
�
�

�
Λ�

≤ d

x
)d(

xd
 

               = �
�

�

�

�
�

�

�

	


�

�


�

−Λ�
≤ d

x

d

x
)d(

xd
 

               = x
	


�

�


�

Λ�−
Λ

�
≤≤ d

x
)d(

d

)d(

xdxd
 

               = x
d

)d(

xd

Λ
�
≤

+ O(ψ(x)) 
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               = x
d

)d(

xd

Λ
�
≤

 + O(x). 

We obtain equation (1) by dividing by x. 

Next, we observe that 

   
k

2k
xkpxpxn p

plog
p

plog
n

)n(
���
≥

≤≤≤
=−Λ

 

     ≤ 
k

2kxp p

1
plog ��

∞

=≤
 

     ≤ 
)1p(p

plog

xp −
�
≤

 

                = O (1). 

This proves (1).  

Selberg’s asymptotic formula 

We deduce Selberg’s formula by a method given by Tatuzawa and Iseki.  It is 
based on the following theorem which has the nature of an inversion formula. 

Theorem 5.32  Let F be a real or complex-valued function defined on (0, ∞), 
and let 

  G(x) = log x �
�

�
�
�

�
�
≤ n

x
F

xn
. 

Then  F(x) log x + .
d
x

G)d(�)n(
n
x

F
xdxn

�
�

�
�
�

�
�=Λ�

�

�
�
�

�
�

≤≤
 

Proof :- First we write F(x)log x as a sum, 

  F(x)log x = ).d(�
n
x

log
n
x

F
n
x

log
n
x

F
n
1

n/dxnxn
��

�

�
�
�

�
�=�

�

�
�
�

�
��

�
��

�
�

≤≤
 

Then we use the identity, 

  Λ(n) = 
d
n

log)d(�
n/d
�  

to write 

  .
d
n

log)d(
n
x

F)n(
n
x

F
n|dxnxn

µ�
�

�
�
�

�=Λ�
�

�
�
�

�
���

≤≤
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Adding these equations we find 

F(x)log x + 
	


�

�


� +µ�

�

�
�
�

�=Λ�
�

�
�
�

�
���

≤≤ d
n

log
n
x

log)d(
n
x

F)n(
n
x

F
n|dxnxn

 

           = .
d
x

log)d(
n
x

F
n|dxn

µ�
�

�
�
�

�
��

≤
 

In the last sum we write n = qd to obtain  

 

 

,
d
x

G)d(
qd
x

F
d
x

log)d(
d
x

log)d(
n
x

F
xdd/xqxdn|dxn

�
�

�
�
�

�µ=��
�

�
��
�

�
µ=µ�

�

�
�
�

�
�����
≤≤≤≤

 

which proves the theorem. 

Theorem 5.33  Selberg’s asymptotic formula.  For x > 0 we have 

  ψ(x)log x + +=�
�

�
�
�

�ψΛ�
≤

xlogx2
n
x

)n(
xn

O(x). 

Proof :- We apply above theorem to the function F1(x) = ψ(x) and also to 
F2(x) = x − C − 1, where C is Euler’s constant.  Corresponding to F1 we have 

  G1(x) = log x x
n
x

�
xn

=�
�

�
�
�

�
�
≤

log2 x − x log x + O(log2 x), 

where we have used the relation �
�

�
�
�

�ψ�
≤ n

x

xn

= x log x − x + O(log x).  

Corresponding to F2 we have 

  G2(x) = log x �
�

�
�
�

� −−�=�
�

�
�
�

�
�

≤≤
1C

n
x

xlog
n
x

F
xn

2
xn

 

            = x log x 1xlog)1C(
n
1

xnxn
�+−�
≤≤

 

            = x log x ��
�

�
��
�

�
�
�

�
�
�

�++
x
1

OCxlog − (C+1) log x(x+ O(1)) 

            = x log2 x − x log x + O(log x). 
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Comparing the formulas for G1(x) and G2(x) we see that G1(x) − G2(x) = 
O(log2 x).  Actually, we shall only use the weaker estimate 

  G1(x)  − G2(x) = O( x ). 

Now we apply above Theorem to each of F1 and F2 and subtract the two 
relations so obtained.  The difference of the two right members is  

 

 )x(O
d

1
xO

d
x

O
d
x

G
d
x

G)d(
xdxd

21
xd

=��
�

�
��
�

�
=��

�

�
�
�
�

�
=

	


�

�


�

�
�

�
�
�

�−�
�

�
�
�

�µ ���
≤≤≤

 

Therefore the difference of the two left members is also O(x).  In other words, 

we have 

 {ψ(x) − (x−C−1)} log x + 
	


�

�


�

�
�

�
�
�

� −−−�
�

�
�
�

�
�
≤

1C
n
x

n
x

�
xn

 Λ(n) = O(x). 

Rearranging terms and using 
n

)n(

xn

Λ
�

≤
= log x + O(1) we find that  

  ψ(x)log x + �
�

�
�
�

�
�
≤ n

x
�

xn
 Λ(n) = (x − C − 1)log x 

                   + �
�

�
�
�

� −−�
≤

1C
n
x

xn
Λ(n) + O(x) 

               = 2x log x + O(x). 

The Prime Number Theorem 

The function π(x) counts the number of prime numbers not exceeding x.  The 
prime number theorem (conjectured independently around 1800 by Gauss and 
Legendre), states that π(x) is asymptotic to x/log x, that is, 

  .1
x

xlog)x(
lim
x

=π
∞→

 

We define the remainder term R(x) for Chebyshev’s function ϑ(x) by  

  R(x) = ϑ(x) − x. 

We shall prove the prime number theorem in the form ϑ(x) ~ x, or, 
equivalently, R(x) = o(x) as we have already proved in theorem 5.26 that ϑ(x) 
~ x and π(x) ~x are equivalent.  More precisely, we shall prove that there exist 
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sequences of positive real numbers {δm
∞

=1m}  and {um
∞

=1m}  such that limm→∞ 

δm = 0 and  

  |R(x)| < δmx    for x ≥ um. 

We need the following lemmas [cf: Melvin B. Nathanson, Elementary 
Methods in Number Theory, Springer-Verlag, New York 1999]. 

Lemma 1. For every positive integer n, 

  ∏
≤ np

p < 4n 

Equivalently, for every real number k ≥ 1 

  v(x) < x log 4. 

Lemma 2 :- There exists positive constants A and B such that  

  A(x) ≤ v(x)  ≤ ψ(x) = π(x) log x ≤ B for x ≥ 2. 

Moreover  
x

xlog)x(
inflim

x
)x(

inflim
x

)x(v
inflim

xxx

π=ψ=
∞→∞→∞→

 ≥ 2 

and  

  
x

xlog)x(
suplim

x
)x(

suplim
x

)x(v
suplim

xxx

π=ψ=
∞→∞→∞→

≤ log 4 

 

Lemma 3 For x > e, 

  

��
�

�
��
�

�
+

�
≤

p
x

log1p

plog

xp

 = O (log log x). 

Lemma 4 For x ≥ 1 

   |R(x)| ≤ ��
�

�
��
�

�
+�

�

�
�
�

�
�

≤ xlog
xloglogx

O
n
x

R
xlog

1

xn

 

Lemma 5 Let 0 < δ < 1.  There exist numbers c0 ≥ 1 and x1(δ) ≥ 4 such that if 
x ≥ x1(δ), then there exists an integer n such that  

  x < n ≤ xe /0c δ  

and  |R(n)| < δn. 

The constant c0 does not depend on δ.  
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Lemma 6 Let c0 ≥ 1 be the number constructed in Lemma 3 and let 0 < δ < 1.  
There exists a number x2(δ) such that if x ≥ x2 (δ), then the interval (x, xe /0c δ ] 
contains a subinterval (y, eδ/2y] such that  

  |R(t)| < 4δt 

for all t ∈ (y, eδ/2y]. 

Theorem  5.34  (Prime number theorem) For Chebyshev’s function ϑ(x), 

  ϑ(x) ~ x 

as x → ∞. 

Proof :- By lemma 1, 

  1
x

)x(
suplim

x

)x(R
suplim

xx
−

ϑ
=

∞→∞→
≤ log 4 − 1 < 0.4. 

By lemma 2, 

  1
x

)x(
inflim

x

)x(R
inflim

xx
−

ϑ
=

∞→∞→
≥ log 2 − 1 > −0.4. 

It follows that there exist numbers M and u1 such that 

  |R(x)| < Mx  for all x ≥ 1, 

and  |R(x)| < δ1x  for all x ≥ u1, 

where   δ1 = 0.4. 

 We shall construct sequences of positive real numbers {δm
∞

=1m}  and 

{εm
∞

=1m} , such that  

  δ1 > δ2 > δ3 >…      

and 

  
∞→m

lim εm = 0.      …(1) 

Let m ≥ 1, and suppose that we have constructed the number δm. Let c0 ≥ 1 be 
the number defined in Lemma 5.  Choose εm such that  

  0 < εm < 1/m       
   

and    
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  (1 + εm)
�
�

�

�

�
�

�

� δ
−

0

2
m

c256
1 < 1. 

We define 

  δm+1 = (1 + εm) 
�
�

�

�

�
�

�

� δ
−

0

2
m

c256
1 δm.   …(2) 

Then 0 < δm+1 < δm.  This determines the sequences {δm
∞

=1m}  and {εm
∞

=1m}  
inductively. 

 We shall prove that for every m there exists a number um such that  

  |R(x)| < δmx for all x ≥ um.    (3) 

Let us show that this suffices to prove the prime number theorem.  The 
sequence {δm

∞
=1m}  is a strictly decreasing sequence of positive real numbers, 

so the sequence converges to some non negative number δ < 1.  Then (1) and 
(2) imply that  

  δ = 
�
�

�

�

�
�

�

� δ
−

0

2

c356
1  δ = 0. 

Inequality (3) implies that R(x) = o(x), which is equivalent to the prime 
number theorem. 

 We construct the numbers um inductively.  There exists u1 such that 
|R(x)| < δ1 x for x ≥ u1.  Suppose that um has been determined.  We shall prove 
that there exists a number um+1 such that |R(x)| < δm+1x for all x ≥ um+1. 

Define  δ′m = 
8
mδ

 

and  ρ = .e
©
m/0c δ  

Let x2( ©
mδ ) be the number constructed in Lemma 6, and let 

  x3(m) = max (x2( ©
mδ ), um). 

If 

  x ≥ x3(m) ≥ x2( ©
mδ ), 

then by Lemma 6, every interval (x, ρx] contains a subinterval ]ye,y( 2/©
mδ  

such that  

  |R(t)| < 4 ©
mδ t = 

2

tmδ
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for all t ∈ ]ye,y( 2/©
mδ .  Let k be the greatest integer such that ρk ≤ x/x3(m). 

Then  

  k ≤ 
ρlog

)m(x/xlog 3 < k + 1, 

and so 

  k = 
ρlog

))m(x/xlog( 3  + O(1) 

     = 
0

3
©
m

c
))m(x/xlog(δ

+ O(1) 

     = 
0

m

c8

xlogδ
 + O(1). 

By lemma  4, 

  |R(x)| ≤ ��
�

�
��
�

�
�
≤ n

x
R

xlog

1

xn
 + o(x) 

            = ��
�

�
��
�

�
�+��

�

�
��
�

�
�

≤<ρρ≤ n

x
R

xlog
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1
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since 

  
n
1

n
1

xn))m(3x/(xxnk
��

≤<ρ≤<ρ

≤  = log (ρx3(m)) + O(1/x) = O(1). 

If 1 ≤ n ≤ ρk, then  

  
k

x
n
x

ρ
≥ ≥ x3(m) ≥ um 

and 
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n

x

n

x
R mδ

<��
�

�
��
�

�
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by the definition of um. 

For j = 1,…,k, we have 

  
kj

xx

ρ
≥

ρ
≥ x3(m) ≥ x2( ©

mδ ), 

and so each interval 
�
�

�

�
�
�

�

ρρ −1jj

x
,

x
 contains a subinterval Ij = ]ye,y( j

2/©
m

j
δ  

such that |R(t)| < 4 ©
mδ t = 

2

tmδ
 for all  t ∈ Ij. 

Therefore, 
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Then 
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We have 

  δmx 
�
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�
�

�

�
�
�
�

�
�
�
�

�

ρ
+ρδ=�

ρ≤
km

kn

1
logkx

n

1
O  

             = δmx log x + O(x).  

Moreover, 



ARITHMETICAL FUNCTIONS AND PRIME NUMBER THEORY 

 

 

251

 

  ,
x2y

1

2n

1

n

1 j©
m

j

©
m

]jy2/©
me,jy(njIn �

�

�

�

�
�

�

� ρ
+

δ
=

�
�

�

�

�
�

�

�
+

δ
=�=�

δ∈
∈

OO  

and so  
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�
�
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k

n

1 jk
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©
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�

�
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�

�
+
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)1(

c8
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m
©
m O  + O(1) 

        = 
0

©
m
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xlogδ
+ O(1), 

since 

  
)m(x

2

x

2

)1(x

)1(

x 3

kkjk
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≤

ρ
<

−ρ
−ρρ

=
ρ

�
=

 = O(1). 

Therefore, 

  
0

3
m

jIn

k

1j

m
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xlogx

n

1

2

x δ
=��

δ
∈=

 + O(x). 

Combining these results, we obtain, for x ≥ x3(m), 
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x
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3
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�
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−
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2
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1 δmx log x + O(x), 

and 

  |R(x)| ≤ ��
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x
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+ o(x) 

            = 
�
�
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�
�

�

� δ
−

0

2
m
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1 δmx + o(x). 
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We choose um+1 sufficiently large that for all x ≥ um+1 we have  

o(x) < εm .x
c256

1 m
0

2
m δ

�
�

�

�

�
�

�

� δ
−  

Then  |R(x)| < (1+εm) 
�
�

�

�

�
�

�

� δ
−

0

2
m

c256
1  δmx = δm+1x. 

This completes the proof of the prime number theorem.  
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