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Retrospective verbal protocols collected throughout participants’ performance of 
a multiplication verification task (e.g., “7  3 = 28, true or false?”) documented a 
number of different strategies and changes in strategy use across different prob-
lem categories used for this common experimental task. Correct answer retrieval 
and comparison to the candidate answer was the modal but not the only strategy 
reported. Experiment 1 results supported the use of a calculation algorithm on 
some trials and the use of the difference between the candidate and correct an-
swers (i.e., split) on others. Experiment 2 clearly demonstrated that participants 
sometimes bypassed retrieval by relying on the split information. Implications 
for mental arithmetic theories and the general efficacy of retrospective protocols 
are discussed.

Data relevant to theories of mental arithmetic come from both verifica-
tion and production tasks. In a production task, participants are given 
a problem and asked to write, type, or say the correct answer (e.g., “3  
4 = ?”). In a verification task, participants are given a problem and a can-
didate answer and are asked to indicate whether the candidate answer is 
true or false (e.g., “3  4 = 14, true or false?”). Although the use of both 
of these tasks has been helpful in elucidating the underlying cognitive 
processing (see Ashcraft, 1992, 1995, for an extensive review), specific 
questions regarding the relationship between the tasks still persist. These 
questions are of both methodological and theoretical interest. For ex-
ample, the verification task has been viewed as a four-stage process of 
encoding, memory retrieval, comparison to the presented answer, and 
response execution (see Campbell, 1987b). In contrast, production has 
been thought to entail only encoding, memory retrieval, and response 
execution. It follows from this reasoning that the only theoretical dif-
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ference between the tasks is the comparison process (i.e., verification is 
simply production plus comparison). This framework has provided the 
basis for development of many cognitive models of mental arithmetic in 
general and of verification specifically, and so a finding that there are 
processes used in verification different from those used in production 
would necessitate a reformulation of these models.

Arithmetic verification

 Generally, verification studies show that participants reject incorrect 
answers more slowly than they accept correct answers and that incorrect 
answers that are related to the multiplication table of one of the operands 
are rejected more slowly than those that are not (i.e., relatedness effects). 
Moreover, a greater numerical split between presented false answers and 
the true answer results in faster responses. Using the framework outlined 
earlier, it has been suggested that the split and relatedness properties of 
the presented answer affect the memory retrieval or production process-
ing stage (Stazyk, Ashcraft, & Hamann, 1982; see also Campbell, 1987b, 
1991; Zbrodoff & Logan, 1990). In a model by Campbell (1987a, 1987b), 
the answer relatedness effects were explained as a product of differential 
priming for correct and incorrect answers. For true problems, the given 
answer primes the correct answer, facilitating retrieval. For false problems, 
associative priming from the given answer causes interference that slows 
down the retrieval process. Magnification of this interference for table-
related problems accounts for differences in response times (RTs) between 
the two kinds of incorrect answers. Although this model was the first to 
account for the interfering effects of the presented answer in verification, 
it does not differ from the earlier theory developed by Ashcraft and Batta-
glia (1978) or from similar models proposed by Ashcraft (1982, 1987) in 
assuming that verification consists of production plus comparison.
 In contrast to these production plus comparison analyses of verification, 
Zbrodoff and Logan (1990) speculated that production and verification 
tasks reflect very different underlying retrieval processes. Zbrodoff and 
Logan suggested that in verification formats, participants compare the 
equation with memory of earlier instances of the problem–answer combi-
nation as a whole and use this comparison to evaluate whether problem 
statement is true or false. This theory therefore assumes that participants 
do not retrieve a correct answer in the verification format but only match 
the problem statement as a whole (i.e., retrieve and match the entire 
problem representation).
 Zbrodoff and Logan (1990) explained the differences in RTs for table-
related and table-unrelated problems that they and Campbell (1987a, 
1987b) observed as resulting from differential resonance, or relative 
strength of the equations in memory, indexed by the frequency of expo-
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sure to each equation. Resonance is stronger for true problems than false 
problems because equations are seen more often in all contexts with the 
correct answer. Similarly, RT differences between the different types of 
false problems would result from stronger resonance for table-related than 
for table-unrelated incorrect answers. Evidence supporting this idea was 
presented from experiments manipulating the delay between the onset 
of the problem arguments (i.e., “4  7”) and the onset of the candidate 
answer (i.e., “24”). Zbrodoff and Logan (1990) argued that that if verifi-
cation is production plus comparison, delay between the arguments and 
answer should affect only the production processes of computation or 
retrieval and should not affect comparison processes. The persistence 
of problem difficulty effects at long delays and a decrease in split effects 
across delays was used as evidence that verification does not exclusively 
involve production plus comparison. Zbrodoff and Logan (1990) were 
careful to point out, however, that from their data they could not deter-
mine whether resonance was used on every trial in verification or as an 
occasional strategy used in conjunction with other strategies including 
production plus comparison.
 Campbell and Tarling (1996) presented results that also seem to support 
the existence of resonance or familiarity processes in verification. Taking a 
cue from research on implicit and explicit forms of memory, they argued 
that production is primarily retrieval based (i.e., explicit), whereas verifi-
cation is primarily familiarity based (i.e., implicit). In the Campbell and 
Tarling study, production and verification trials were alternated, and the 
degree to which previous production trials primed subsequent verification 
trial errors and vice versa was measured. The main finding suggested that 
production errors were primed by previous production trials and verifica-
tion errors were primed by previous verification trials, but neither type of 
error was primed by the previous trials with the other task. The findings 
also suggested that the problem difficulty effect was larger for the produc-
tion task than the verification task. Taken together, these results imply that 
verification may reflect processes other than production; namely, it may 
involve Zbrodoff and Logan’s resonance mechanism. One of the goals 
of the present study was to determine the extent to which verification is 
production plus comparison and the extent to which other strategies, 
such as resonance, are involved.

Multiple strategy use in verification

 Although the idea of multiple strategies is not new to the discussion 
of verification task, there have been only limited efforts to formally im-
plement multiple strategies into any of the proposed models of mental 
arithmetic because of a general lack of knowledge about the conditions 
in which each strategy is used. Ashcraft and Battaglia (1978) suggested 
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that retrieval could be “short circuited” by the presentation of a highly 
implausible answer, and Ashcraft and Stazyk (1981) theorized that the 
shorter RTs that they observed for large-split problems indicated that 
split information gave participants a way to bypass normal calculation. 
Another theory, first promoted by Krueger (1986) and more recently 
by Lemaire and Fayol (1995), states that in some cases participants can 
verify whether a given answer is correct by using the odd–even rule for 
multiplication. The odd–even rule states that if both operands of a simple 
multiplication problem are odd, then the product will be odd, and if one 
or both operands are even the product will be even. Because even–odd 
status of the operands determines the odd–even status of the product, 
participants should be, and were shown to be, faster and more accurate 
in rejecting differences between the given and correct answer of 1 or 3 
than in rejecting differences of 2 or 4. Krueger (1986; cf. Ashcraft, 1982; 
Baroody, 1985; Campbell & Graham, 1985; LeFevre, Bisanz, et al., 1996) 
also reported that participants do not use the odd–even rule for equa-
tions with operands of 1, 0, or 5. This finding suggests that other, even 
simpler rules are available to bypass odd–even processing in some cases. 
Together these studies indicate that adults use a variety of strategies in 
verification.

Verbal protocols as data

 Ericsson and Simon (1980, 1993) identified conditions under which 
verbal reports can yield valid data. Since then verbal reports have been 
used with general success throughout psychological research (Ericsson & 
Simon, 1980; for a review of many different areas, see Ericsson & Simon, 
1993). It was not until recently, however, that investigators interested in 
simple numerical processing began to use verbal protocol methods. Two 
studies used verbal protocols to investigate processing in the production 
task, with some controversial results (LeFevre, Sadesky, & Bisanz, 1996; 
LeFevre, Bisanz, et al., 1996). For example, LeFevre, Sadesky, and Bisanz 
examined the problem difficulty effect in a simple addition production 
task. In this study, problem difficulty was more highly correlated with RTs 
on trials when participants reported a nonretrieval strategy than on trials 
when participants reported a retrieval strategy. On the basis of this finding, 
the authors suggested that the problem size effect and its implementation 
into models of simple arithmetic may be overemphasized. If this is true, it 
suggests that one cannot estimate the importance of problem size in any 
arithmetic task or implement it into a model without first determining 
the strategy used.
 The main controversy in these studies pertains to the instructions given 
to participants. In the studies cited earlier the authors made references 
in the participant instructions to the idea that many different strategies 
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could be used to solve the problems. Furthermore, many of these strategies 
were explained to participants in detail. These instructions could have 
given participants insight into the purpose of the experiment and thereby 
increased the frequency of reporting and use of retrieval and nonretrieval 
strategies (or alerted them to strategies they might not otherwise have 
thought of). It is exactly for this reason that Ericsson and Simon (1980, 
1993) discouraged the use of instructions detailing processes that might 
be involved in performing the task.
 In another study, Kirk and Ashcraft (2001) presented data that suggest 
that the instructions used by the LeFevre group caused their participants 
to report and use nonretrieval strategies more often in the study using an 
addition production task (LeFevre, Sadesky, & Bisanz, 1996) and to report 
but not necessarily use this type of strategy more often in the study using 
production in multiplication (LeFevre, Bisanz, et al., 1996). Although 
these findings suggest that there may be a biasing effect of instructions 
in the LeFevre et al. studies, they are not a condemnation of the use of 
verbal protocols in general. In fact, the Ericsson and Simon (1980, 1993) 
framework for collecting verbal reports expects that this type of bias will 
result from suggestive instructions.
 Much of the recent work addressing the use of multiple strategies in 
mental arithmetic have taken one of two tacks for avoiding the problems 
suggested by Kirk and Ashcraft (2001). In recent work Campbell and 
colleagues asked participants to classify their own processing into one of 
a few different categories (i.e., recognition, retrieve and compare, cal-
culate and compare, odd–even rules, or other). This approach seems to 
be less susceptible to instructional biases (Campbell & Timm, 2000) and 
has been used to provide evidence that the greater number of odd op-
erands and problem difficulty lead to decreased use of memory retrieval 
in simple addition production (Campbell, Parker, & Doetzel, 2004) and 
verification (Campbell & Fugelsang, 2001). This method has also been 
used to investigate RT differences in other mathematical operations and 
cultural groups (Campbell & Gunter, 2002; Campbell & Xue, 2001). Other 
researchers have continued to focus on performance measures to indi-
cate the use of different strategies in different experimental situations. 
For example, the difference between RTs for problems that satisfy the 
odd–even rule and those that do not was found to vary with the number 
of odd operands included in a problem (smaller differences with fewer 
odd operands), as a function of the proportion of problems presented 
in a given experiment that violate the odd–even rule (larger differences 
when a majority of problems violate the rule), and as a function of practice 
(larger differences with more practice with a given problem set; Lemaire 
& Reder, 1999). Similarly, solution time differences were found between 
problems with 5 as operand (five-problems) and problems that do not 



92 romero et al.

have 5 as an operand (non–five-problems). Furthermore, the difference 
between five-problems and non–five-problems was larger when the prob-
lem set included a larger proportion of five-problems (Lemaire & Reder, 
1999).
 In the present study we instructed participants to report their thoughts 
retrospectively, after doing the problem without any reference to possible 
strategies. We also instructed them to think of this as playing back a tape 
from the first thought they had at the presentation of the stimulus to the 
last thought they had before entering their response. The instructions 
are presented in Appendix A. As suggested by Ericsson and Simon (1980, 
1993), these instructions should minimize the demand for participants to 
explain their actions, which has been shown to affect cognitive processing 
(Stinessen, 1985) and might have led to the bias in previous studies of 
mental arithmetic.
 To summarize, we are interested in the use of verbal protocols to further 
the understanding of cognitive processes in mental arithmetic. Verifica-
tion may be performed as a combination of production and comparison 
or through the use of completely different processes (i.e., a resonance 
or implicit retrieval process). The use of verbal protocols in verification 
should allow us to illuminate this relationship. Furthermore, the veri-
fication paradigm may allow us to gain insight into processes involved 
in simple arithmetic other than those available in production. Only by 
understanding the relationship between production and verification and 
determining whether the processing in two tasks is identical or overlap-
ping can we develop a general theory of mental calculation.
 In Experiment 1 we used a stimulus set that was used in Campbell’s 
(1987b) primed production study to explore the distribution of strate-
gies reported. It should be noted at the outset that problem difficulty and 
answer split were not orthogonally manipulated, such that, on average, 
hard problems also had small levels of split and easy problems had large 
split values. We used this stimulus set for the initial experiment because 
it was more important to first compare the behavioral effects from this 
study with those of the previous study by Campbell (1987b) to assess any 
change in cognitive processing that may result from collection of the 
verbal protocols.

EXPERIMENT 1

METHOD

Participants

 Twelve students at the University of Colorado received course credit for their 
participation.
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Apparatus and materials

 Participants were seated at a table with a computer and tape recorder in front 
of them. Participants were asked to wear a headset microphone, through which 
their verbal responses during the whole experimental session were recorded. The 
experimenter was seated slightly behind and to one side of the participant.
 Thirty-six single-digit multiplication problems were presented randomly four 
times in a blocked fashion across two experimental sessions. Across the four blocks, 
each problem was presented twice with an incorrect answer and twice with the 
correct answer. One of the incorrect answers was table related, and the other was 
table unrelated. All of the problem and answer combinations were used in an 
earlier study by Campbell (1987b).

Design

 A 2  3 random block design was used. Both factors, problem difficulty and 
answer type, were inherent in the stimulus set (Campbell, 1987b). Problem dif-
ficulty was defined either as an easy or hard median split, based (as in Campbell, 
1987b) on the normative RT data from Campbell and Graham (1985), or by using 
the same data as a continuous covariate. Answer type was defined by three levels: 
true, false and table unrelated, or false and table related.

Procedure

 Participants were run individually in two 1-hr sessions separated by 3 days. In 
the first session, they initially ran through an alphabet verification task in order to 
get comfortable with the way the sessions were to be conducted and with reporting 
their thoughts. Participants were instructed that a pair of letters would appear 
at the center of the computer screen, and their task was to respond by pressing 
the key labeled “true” if the two letters were in alphabetical order. The letters did 
not have to be adjacent to each other in the alphabet; it was only necessary that 
the left-to-right ordering followed the before–after ordering in the alphabet. If 
the letters were determined to violate the before–after ordering of the alphabet, 
participants were instructed to respond by pressing the key labeled “false.” Speed 
and accuracy were stressed equally in the instructions. For half the participants the 
“true” key was on the left, and for the other half the “true” key was on the right.
 After the participants responded, they were prompted by a message on the 
screen to report the thoughts they remembered having while working on the 
problem from the first moment they saw the problem until they pressed the “true” 
or “false” key. Participants were asked to report their thoughts as specifically as 
possible and in the order in which they actually occurred. After the participants 
had reported their thoughts, the experimenter asked for any necessary clarifica-
tion. After it was clear that the participants understood the task, the computer 
program was started, and participants proceeded through 24 trials of the alphabet 
task.
 After completing the alphabet task, participants were given the instructions for 
the multiplication task. This task was similar to the alphabet task with the excep-
tion that multiplication problems were presented with candidate answers, and the 
participants were instructed to decide whether the given answer was true or false 
as quickly and accurately as possible. In both sessions there were two blocks of 36 
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problems in the verification task. The second experimental session was conducted 
exactly like the first except for the omission of the alphabet verification task.

RESULTS AND DISCUSSION

 The results are presented in three main sections. The first two report 
errors and RTs to show that the results of the present study are consistent 
with published findings for verification. The third section is dedicated to 
the protocol analysis. Log base 10 transformations of the RTs were ana-
lyzed to reduce any outlier effects. All RT means are reported as anti-logs 
of the mean log values that were used for analysis (in all figures the log 
coordinates are maintained, but the numerical values are converted to 
anti-logs). In all analyses using the answer type variable, planned compari-
sons were performed between true problems and the average of all types 
of false problems and between table-related and table-unrelated problems. 
In all analyses using the two-level problem difficulty measure, a planned 
comparison between easy and hard problems was performed. These com-
parisons are of interest in comparing the present results with those of 
earlier studies (e.g., Campbell, 1987b; Zbrodoff & Logan, 1990).

Error data

 A 3 (true, false and table unrelated, and false and table related)  2 
(two levels of problem difficulty) repeated-measures analysis of variance 
was performed on the proportion of incorrect responses in all trials. Par-
ticipants made more errors on hard than on easy problems (7% vs. 3%), 
F(1, 11) = 19.83, MSE = 0.0014, p < .01. Planned comparisons for this 
analysis also showed that participants made fewer errors on problems that 
were true than the average of both types of false problems (3% vs. 6%), 
F(1, 11) = 10.57, MSE = 0.0018, p < .01. Furthermore, participants made 
more errors on problems for which the given answer was table related 
than on problems with a table-unrelated false answer (10% vs. 2%), F(1, 
11) = 18.38, MSE = 0.008, p < .01. Finally, a significant interaction was 
found between problem difficulty and table-related and table-unrelated 
answers, such that the difference between the proportion of errors for the 
table-related and table-unrelated conditions was greater for hard problems 
than for easy problems, F(1, 11) = 15.14, MSE = 0.0014, p < .01. Specifically, 
participants averaged 1% and 6% errors for easy problems with table-un-
related and table-related answers, respectively, but averaged 3% and 13% 
errors for hard problems with table-unrelated and table-related answers, 
respectively.

RT data

 The analysis performed for log RTs included only the trials for which 
participants’ responses were correct and used the same design as the er-
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ror analysis reported earlier. Averaged across answer type, participants 
were slower to respond to harder problems (M = 1,638 ms) than on easy 
problems (M = 1,273 ms), F(1, 11) = 42.50, MSE = 0.005, p < .01. Aver-
aged across problem difficulty, participants were faster responding to 
true problems (M = 1,299 ms) than to the average of both types of false 
problems (M = 1,523 ms), F(1, 11) = 40.83, MSE = 0.0037, p < .01. Fur-
thermore, averaged across difficulty, participants were faster responding 
to false problems that were table unrelated (M = 1,455 ms) than to false 
problems that were table related (M = 1,593 ms), F(1, 11) = 19.00, MSE = 
0.0019, p < .01, for log RTs.
 The results of the error and log RT analyses are consistent with Camp-
bell’s (1987b) data obtained in a primed production task and with other 
published studies that have manipulated problem difficulty in the verifica-
tion paradigm (Zbrodoff & Logan 1990) and relatedness in verification 
(Koshmider & Ashcraft, 1991; Stazyk, Ashcraft, & Hamann, 1982). These 
replications suggest that protocols did not affect performance in this task 
in any significant way.

Protocol analyses

 Verbal protocols were coded separately by two different coders. Dis-
agreements between the coders were then resolved through argument, 
and if no agreement could be reached the trial was subsequently coded 
as uninterpretable and not included in further analyses. Thus, the trials 
that were used in the analysis of the protocols were ones in which there 
was 100% agreement between the coders. Each coder placed each trial 
into one of 17 report categories. Some of the categories corresponded to a 
priori theoretical hypotheses based on the literature. These categories in-
cluded retrieve–compare, calculate–compare, pattern match, magnitude 
estimation, and other rules that have been suggested in the mathemati-
cal cognition literature (e.g., five-problem and odd–even rules). Other 
categories were created to group similar protocols together that did not 
fit into any of the a priori categories (e.g., uninterpretable and recency 
effects) or to code for other characteristics of the protocols (e.g., explicit 
no answer generation or operand switch). Trials in which participants 
made references to multiple strategies were coded with multiple codes, 
with the first being the strategy that the coder considered the one most 
likely to lead to the participant’s response (i.e., the dominant mode of 
processing for that trial). Because there were few trials with multiple 
codes, and we were more interested in differentiating between trials that 
used only one particular strategy, multiply coded trials were not further 
analyzed. Appendix B describes all 17 categories.
 Evidence of multiple strategies in verification. Table 1 presents the 
proportion of the trials on which each of the most frequent strategy cat-
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egories was reported and the corresponding mean RT. It is important to 
note that all participants reported a mixture of strategies.
 The proportion of trials on which participants reported the retrieve–
compare strategy was analyzed in a 2 (problem difficulty: easy, hard)  3 
(answer type: true, false related, false unrelated) anova. Strategy reports 
were categorized as “retrieve–compare” when participants stated that they 
had retrieved the correct answer from memory and compared it with the 
presented answer. In replication of previous studies (Campbell & Xue, 
2001; LeFevre, Sadesky, & Bisanz, 1996), participants reported using the 
retrieve–compare strategy more on easy problems than on hard problems 
(72% vs. 63%), F(1, 11) = 4.83, MSE = 0.0283, p = .05. Note that the re-
trieve–compare category is synonymous with production plus comparison. 
Thus, this first analysis of the verbal protocols suggests that production plus 
comparison is the modal strategy, in contrast to the findings of Zbrodoff 
and Logan (1990) and Campbell and Tarling (1996). Verification, how-
ever, is not performed purely through the use of this strategy.

Validation of strategy categories.

 To confirm that the four most frequently reported categories represent 
different strategic processing, the following analyses focused on finding 
specific differences in RTs or some sort of regularity regarding the prob-
lems or conditions to which the strategies were applied. It is important 
to note that although different processing as defined by the strategy cat-
egories might not necessarily mean that the processes themselves take 
different amounts of time, the RT differences we sought were motivated 
by previous research and theory regarding the hypothesized processes 
(Ashcraft & Stazyk, 1981; Campbell & Tarling, 1996; Zbrodoff & Logan, 
1990).
 In the following analyses, Campbell and Graham’s (1985) normative 
data (i.e., adults’ mean correct RT from this study) were used as a continu-
ous measure of problem difficulty to allow the assessment RT differences 
resulting from strategy and answer type while still controlling for problem 
difficulty. Coding problem difficulty as a continuous covariate produced 
a reduction of the design matrix while still allowing statistical control 
of problem difficulty in the analyses. This type of statistical control of 
problem difficulty (as opposed to the two-level variable used in previous 
analyses) was necessary because only participants with trials in each cell of 
the design could be used in these analyses. Therefore, it is important to 
control for problem difficulty in these analyses because we have no control 
over which strategies are used for which problems. One consequence of 
this approach, however, is that main effects and interactions with the con-
tinuous problem difficulty measure might be difficult to interpret. Finally, 
although these analyses were limited to participants who reported each 
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strategy in all cells of the design, it is important to note that the number 
of participants used was not the number of participants who reported a 
particular strategy but of those who reported using the strategy for each 
type of problem (i.e., true, false related, and false unrelated). Indeed, all 
the categories we analyzed were reported at least once by the majority of 
the participants. Finally, with regard to the problem difficulty measure, it 
is important to point out that Campbell and Graham’s study used a pure 
production task, and at least two studies have suggested that the problem 
difficulty effect is greater for production than for verification (Campbell, 
1987b; Campbell & Tarling, 1996). The larger problem difficulty effect for 
production does not, however, invalidate the use of the problem difficulty 
measure in the present study because Campbell (1987b) found the cor-
relation between production and true verification RTs to be quite high.
 A 2 (strategy: calculate–compare or retrieve–compare)  3 (answer 
type: true, false related, or false unrelated) repeated-measures analysis of 
covariance was performed for trials in which participants’ responses were 
categorized as either retrieve–compare or calculate–compare. Trials were 
categorized as calculate–compare when participants stated that they had 
used an intermediate calculating algorithm to produce the correct answer, 
which they compared with the answer given. Because using a calculating 
algorithm implies more processing than simple retrieval, RTs for the cal-
culate trials should be longer than those for the retrieve–compare trials, 
and this difference should be more pronounced for difficult problems. 
Four participants were used in the analysis. The data are presented in 
Figure 1.
 RTs were shorter for true problems than for the average of both types 
of false problems, with problem difficulty controlled, F(1, 3) = 21.73, 
MSE = 0.00144, p = .04, and participants also responded more slowly to 
problems when they reported using calculate–compare, with problem 
difficulty controlled, F(1, 3) = 473.02, MSE = 0.00004, p < .01.1 One pos-
sible reason for this finding is that participants use the calculate–compare 
strategy when they fail to retrieve the correct answer while trying to apply 
the retrieve–compare strategy. In general, however, calculation can be 
expected to be slower than retrieval because calculation usually implies 
more steps to reach a conclusion than does one-step retrieval (Baroody, 
1985; Rickard, 1997). For example, a rule that was commonly reported 
for problems with 9 as one of the operands was to retrieve the answer 
to 10 times the other operand and then subtract that operand from the 
result. This rule entails two steps to ascertain the correct answer before 
comparison to the answer given, which should generally take longer than 
just one retrieval step.
 Trials categorized as magnitude estimation are those for which par-
ticipants reported that the answer was either too large or too small to be 
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correct. On many of these trials participants spontaneously reported that 
they did not know what the correct answer was, but they knew that the 
given answer was either too large or small. The first analysis of these data 
looked for log RT differences between the trials categorized as magnitude 
estimation and those categorized as retrieve–compare while controlling 
for answer type, problem difficulty, and the difference between the cor-
rect answer and the answer given. Welford’s similarity function, defined 
in Campbell and Oliphant (1992),2 was used as the measure of difference 
between the given answer and the correct answer (i.e., split). Because the 
Welford value (i.e., log[larger/(larger  smaller)]) would be undefined 
for all true problems, and the use of the magnitude estimation strategy 

Figure 1. Anti-log mean response times for retrieve–compare and calculate–com-
pare strategies by answer type. Means are adjusted for the problem difficulty 
covariate
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for true problems is highly improbable, correct problems were omitted 
from this analysis. Only the data for the five participants who used the 
magnitude estimation strategy for five or more trials were used for these 
analyses.
 If the magnitude estimation strategy allows participants to bypass nor-
mal (retrieve–compare) processing, then the RTs should be shorter for 
the trials categorized as magnitude trials. In contrast, if the magnitude 
estimation strategy is used in cases where the correct answer is attempted 
but fails, the RTs should be longer for magnitude estimation trials. The 
results of this analysis yielded no significant differences in log RTs.
 Given the outcome of the analysis comparing RTs for the retrieve–com-
pare and magnitude estimation strategy categories, a second analysis was 
performed on the magnitude estimation trials. This analysis focused on 
changes in the proportion of use of the magnitude estimation strategy as 
a function of split. For this analysis trials were grouped into five equally 
spaced levels of split, with “1” indicating small split and “5” indicating 
large split. Linear through quartic components were evaluated on the 
proportion of trials on which participants reported using the magnitude 
estimation strategy. True trials were omitted from this analysis for the same 
reason as in the RT analysis of magnitude estimation trials, and the same 
five participants’ data used in that analysis were included here. Regardless 
of whether the magnitude estimation strategy is used to sidestep answer 
retrieval or as a backup when retrieval fails, the ease or frequency of use 
of the magnitude estimation strategy should increase with split. In fact, 
participants’ reported use of the magnitude estimation strategy increased 
linearly with increasing levels of split (i.e.,. Welford values), F(1, 8) = 9.48, 
MSE = 0.20303, p = .02. This effect is shown in Figure 2.
 The final analyses compared the retrieve–compare and pattern match 
strategies, with problem difficulty as the covariate. For trials coded as 
pattern match, participants stated that the problem just looked right or 
wrong, with no intermediate steps or calculations. We believe that this 
strategy may be synonymous with resonance processing (as described by 
Zbrodoff & Logan, 1990) because participants reported a matching-like 
procedure, often stating that they did not retrieve the correct answer but 
responded based on how the problem looked. This definition is similar to 
the recognition category used by Campbell and colleagues (e.g., Campbell 
& Fugelsang, 2001) and is consistent with the idea that production and 
verification use different memory processes (i.e., Campbell & Tarling, 
1996). Because of the explicit matching procedure we expected that these 
were not just trials in which they had lost access to intermediate processes 
from short-term memory. We also expected that when participants lost 
access to the results in short-term memory, they would report that they 
either did not know how they arrived at the answer or would report that 



verification of multiplication facts 101

they forgot. This analysis, however, yielded no significant results, which is 
inconsistent with Zbrodoff and Logan’s (1990) suggestion that participants 
compare the whole equation with an earlier instance of the problem.

EXPERIMENT 2

 In Experiment 2 we sought to clarify several questions concerning the 
authenticity of calculate–compare, magnitude estimation, retrieve–com-
pare, and pattern match strategies and to further investigate the condi-
tions in which they are applied. First, we sought to replicate findings from 
Experiment 1 concerning the use of the retrieve–compare and calcu-
late–compare strategies. Second, we wanted to investigate RT differences 

Figure 2. Mean proportion of trials using magnitude estimation strategy by level 
of split
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between retrieve–compare and magnitude estimation trials when we or-
thogonally manipulated problem difficulty and split in the stimulus set. 
Also concerning the authentication of the magnitude estimation strategy, 
we wanted to determine whether the pattern of increasing use of the mag-
nitude estimation strategy with larger split would replicate when difficulty 
and split were not confounded. Finally, we expected that Experiment 2 
would give us additional information about the pattern match strategy.
 We made several adjustments in Experiment 2 to increase the number 
of overall observations and to manipulate split and problem difficulty in 
an orthogonal manner. Each problem was presented eight times: four 
times with a correct answer, once each with table-related false answers of 
large and small split, and once each with table-unrelated answers of large 
and small split. In addition, we increased the number of participants in 
Experiment 2.

METHOD

Participants

 Sixteen introductory psychology students at the University of Colorado received 
course credit for their participation.

Apparatus and materials

 Participants were seated at a table with a computer and tape recorder in front 
of them. Participants were asked to wear a headset microphone, and the experi-
menter was seated to one side.
 The problem and answer set was based on that used in Experiment 1, with the 
exception that some easy problems with operands less than 3 and small squares 
up to and including 5  5 were omitted. Two additional types of answer primes 
were also included to balance the difficulty and split features. Specifically, 24 
single-digit multiplication problems were presented eight times over three sessions. 
Four presentations contained the true answer and four contained a false answer. 
One false answer was unrelated to the multiplication table of either operand and 
of small split. A second was unrelated and of large split, and a third and fourth 
were related and of small and large split, respectively (as indicated by Welford’s 
similarity function). The mean Welford values and their standard deviations are 
given in Table 2 for each false answer problem.

Table 2. Mean Welford (i.e., similarity) values and their standard deviations for 
each type of problem

 Table unrelated Table related

 M SD M SD

Small split (i.e., high similarity) 1.32 0.296 0.89 0.088
Large split (i.e., low similarity) 0.32 0.041 0.46 0.076
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Design

 A 3  2  2 random block design was used for this experiment. The first factor, 
answer type, was defined by the properties of the answer prime presented in each 
trial (true, table related, or table unrelated). The second factor, split, was defined 
within the two false answer types such that one of the two presentations of each 
type of false problem included an answer that was a small numerical distance 
from the correct answer (i.e., small split) and one presentation was with an answer 
that was a large numerical distance from the correct answer (i.e., large split). The 
third factor, problem difficulty, consisted of two levels based (as in Experiment 
1) on median split of normative RT data from Campbell and Graham (1985). To 
illustrate this classification, two problems and the five presented answers are listed 
in Table 3. The first problem is an example of a hard problem, and the second 
problem is an example of an easier problem. For the complete problem set, see 
Appendix C. All false answers were nonprime, viable answers to other simple 
multiplication problems. Note that because of this constraint and the need to 
keep split consistent across all problems, the odd–even rule could be applied to 
verify all false problems. Even so, we expected few applications of the odd–even 
rule, given its infrequent reported occurrence in Experiment 1.

Procedure

 The procedure for Experiment 2 was the same as that for Experiment 1 with 
one exception. Participants in Experiment 2 completed three sessions, and the 
third session was conducted exactly like the second.

RESULTS AND DISCUSSION

Error data

 Overall accuracy was high, and on average the participants never made 
more than 10% errors in any condition. Thus, any analysis of the errors is 
not reported because of the possibility of contamination by ceiling effects. 
Errors are reported for completeness in Table 4.

RT data

 The first analysis was a 3 (answer type: true answers, false table-unrelated 
answers, and false table-related answers)  2 (split: high values, indicating 
large differences, and low values, indicating small differences between the 

Table 3. Example problems

  False, False, False False, 
  unrelated, unrelated, related, related, 
Problem True small split large split small split large split

7  9 63 64 32 56 42
3  9 27 28 14 24 36
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given and correct false answers)  2 (problem difficulty: easy and hard) 
repeated-measures anova with log RTs as the dependent variable. The 
anti-log means and standard deviations for each cell in the design are 
presented in Table 4.
 As has been found repeatedly (Experiment 1; Campbell, 1987b; Ko-
shmider & Ashcraft, 1991; Stazyk et al., 1982; Zbrodoff & Logan, 1990), 
participants in Experiment 2 were slower to verify false problems than 
true problems, F(1, 15) = 31.16, MSE = 0.0049, p < .01, and slower to verify 
problems that were presented with table-related false answers than table-
unrelated false answers, F(1, 15) = 25.00, MSE = 0.0007, p < .01. Partici-
pants also were slower to verify hard problems than easy problems, F(1, 
15) = 21.90, MSE = 0.0084, p < .01, and in replication of Campbell and 
Tarling’s (1996) findings, the RT difference between true and the average 
of all types of false problems was smaller for hard problems than for easy 
problems, F(1, 15) = 13.99, MSE = 0.0009, p < .01. As in Experiment 1, the 
replication of these effects suggests that the introduction of retrospective 
protocols to the verification task did not alter it in any substantive way.
 The new and more interesting outcomes of Experiment 2 are that par-
ticipants took longer to verify problems that were presented with small 
split answers than those presented with large split answers, F(1, 15) = 8.02, 
MSE = 0.001, p = .02, and a significant interaction of split and problem 
difficulty was found such that, on average, the RT difference between 
problems presented with small and large split answers was larger for hard 
problems than easy problems, F(1, 15) = 8.81, MSE = 0.001, p < .01. The 
influences of split on the RTs and errors support Ashcraft and Stazyk’s 
(1981) findings and demonstrate the need to control for these effects to 
get the purest picture of the verification task and the factors involved in 
it. Zbrodoff and Logan (1990) used the findings of Ashcraft and Stazyk 
as evidence that production plus comparison is not the sole processing 
in verification. Zbrodoff and Logan suggested that split effects indicate 
that participants may evaluate the equation as a whole and make their 
decision without computing or retrieving an answer. That is, participants 

Table 4. Anti-log response time means (ms), proportion of errors (PE), and their 
respective standard deviations for Experiment 2

 Easy Hard

Problem type RT SD (log) PE SD RT SD (log) PE SD

True 1,051.96 .10 .02 .03 1,336.37 .15 .07 .05
Unrelated, small split 1,289.42 .13 .07 .13 1,543.20 .18 .07 .06
Unrelated, large split 1,284.56 .13 .03 .08 1,408.07 .17 .05 .07
Related, small split 1,355.20 .13 .06 .09 1,625.92 .19 .10 .06
Related, large split 1,370.35 .15 .02 .05 1,499.43 .18 .04 .06
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may determine whether the answer is plausible for the given problem. The 
split effects in the present data support the interpretation that produc-
tion plus comparison is not the unitary verification process. Although, as 
discussed later, they do not necessarily imply the use of resonance.

Protocol analyses

 Each trial in this experiment was categorized by two coders into one 
of the 17 different report types identified in Experiment 1, and the same 
procedures were used to handle disagreements between the coders and 
multiple strategies. Thus, these report categories did not need further 
development for use in Experiment 2 even though they were derived from 
the independent data of Experiment 1. This fact supports the veridical 
nature of the report categories.
 Evidence for multiple strategies in verification. The 17 categories are 
listed in Appendix B. The frequencies of occurrence of the most frequent 
categories, along with the mean RTs and proportion of trials for which 
each strategy was reported for are listed in Table 1. In replication of Ex-
periment 1, the majority of participants reported a mix of strategies.
 The first of the protocol analyses investigated trials on which partici-
pants’ verbal reports were categorized as retrieve–compare. This analysis 
was identical to that used in Experiment 1. Participants reported using 
the retrieve–compare strategy less often for hard problems than for easy 
problems (67% vs. 53%), F(1, 15) = 18.11, MSE = 0.0466, p < .01. Unlike 
in Experiment 1, the difference in the proportion of use of the retrieve–
compare strategy between true and false problems was greater for easy 
problems than for hard problems, F(1, 15) = 8.87, MSE = 0.0116, p < .01. 
This effect is shown in Figure 3. More interesting for current purposes, 
participants reported using the retrieve–compare strategy less often when 
the problems were presented with large-split answers than with small-split 
answers (55% vs. 67%), F(1, 15) = 14.16, MSE = 0.0294, p < .01.
 The results of this analysis provide additional insight into the influences 
of split in verification. In replication of Experiment 1 and previous studies 
(Campbell & Xue, 2001; LeFevre, Sadesky, & Bisanz, 1996), participants 
reported using the retrieve–compare strategy less often for hard problems 
than for easy problems, but in this experiment participants also reported 
this strategy less often for problems that were presented with large-split 
answers. In conjunction with the RT results, the influence of split on the 
proportion of retrieve–compare trials also supports the notion that veri-
fication involves more than production plus comparison.
 The effects of problem difficulty and split on the proportion of trials in 
which participants used the retrieve–compare strategy imply that strategy 
choice in this task is influenced in part by problem structure. Specifically, 
if the difference between a given false answer and the correct answer is 
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large, then participants are more likely to choose a strategy that uses split 
information for verification (e.g., the magnitude estimation strategy). 
If, however, the difference between the given and the correct answers is 
small, participants are less likely to rely on split and more likely to choose 
retrieve–compare, calculate–compare, or some other strategy that is not 
based on the split information (e.g., a 5 rule or a 9 rule, if possible). 
Although participants may choose production-like strategies such as re-
trieve–compare or calculate–compare for problems that are presented 
with small-split answers, they are less likely to use them for difficult prob-
lems. Thus, when hard problems are presented with small-split answers, 
the use of retrieval is also less likely than the use of either calculate–com-
pare or a sidestepping strategy such as the 5 or 9 rules.
 Validation of strategy categories. The proportion of trials in which par-
ticipants reported using the magnitude estimation strategy was analyzed as 

Figure 3. Mean proportion of trials categorized as retrieve–compare for true and 
false problems by level of problem difficulty
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a function of split (measured by Welford’s similarity function). Split values 
were grouped into five equally spaced levels, with “1” indicating small split 
and “5” indicating large split. Linear through quartic trend components 
were evaluated on the proportion of trials in which participants reported 
using these strategies. The data, presented in Figure 4, were derived from 
12 participants who reported using the magnitude estimation strategy on 
five or more trials. In replication of Experiment 1, the prediction that 
participants would use the magnitude estimation strategy more often 
as split got larger was confirmed. Both the linear and quadratic trend 
components were present such that as split became larger, participants 
reported using the magnitude estimation strategy more often, F(1, 11) = 
38.86, MSE = 0.0124, p < .01 for the linear trend and F(1, 11) = 15.82, 
MSE = 0.0106, p < .01 for the quadratic trend.
 A comparison of magnitude estimation trials with retrieve–compare tri-
als in log RTs was the focus of the next analysis. Campbell and Graham’s 
(1985) continuous measure of problem difficulty was used as the covari-
ate. The other factors in the analysis were two levels of answer type (false, 
table related and false, table unrelated), two levels of split and two strategy 
categories. The data from four participants who had observations in each 

Figure 4. Mean proportion of trials categorized as magnitude strategy by level 
of split
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cell of this design were used in the analysis. The magnitude estimation 
strategy could be used in either of two contrasting situations: to bypass nor-
mal (retrieve–compare) processing, which would be indicated by shorter 
RTs for the magnitude estimation trials than for retrieve–compare trials; 
and after retrieval fails, which would be indicated by longer RTs for the 
magnitude estimation trials. The analysis of covariance showed that trials 
categorized as magnitude estimation were faster than retrieve–compare 
trials, with problem difficulty controlled, F(1, 3) = 27.42, MSE = 0.0007, 
p = .03. The RT difference between magnitude and retrieve–compare tri-
als was also greater for large-split problems than for small-split problems, 
controlling for problem difficulty, F(1, 3) = 24.34, MSE = 0.0004, p = .04. 
These effects are shown in Figure 5.3

Figure 5. Anti-log mean response times for trials categorized as retrieve–compare 
and magnitude estimation by level of split. Means are adjusted for the problem 
difficulty covariate
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 It follows from these findings that participants do make plausibility 
judgments based on the answer and operands and that these plausibility 
judgments are used as a way to bypass normal retrieval or calculation of 
the correct answers. This interpretation is also consistent with the fact 
that when reporting magnitude estimation, participants often did not 
think about the correct answer. Furthermore, participants’ ability to bypass 
normal retrieval or calculation processes suggests that retrieval may not 
occur automatically, regardless of the participants’ intentions. Again, the 
existence of sidestepping strategies supports the notion that verification 
involves both production plus comparison and sidestepping operations.
 A comparison of retrieve–compare trials with pattern match trials was 
the focus of the next analyses. A 3 (answer type)  2 (split)  2 (strategy) 
ancova was conducted with the continuous measure of problem diffi-
culty as the covariate. Six participants contributed data for this analysis. 
If the pattern match strategy involves no calculation or retrieval, the RTs 
for those trials should be shorter than for retrieve–compare trials, and 
the difference should be more pronounced for true problems. Although 
participants were faster overall to verify true than false problems (true = 
1,188 ms, false = 1,282 ms), F(1, 5) = 59.03, MSE = 0.0006, p < .01, and 
there was an interaction between the true–false contrast and the paral-
lel coded difficulty contrast, F(1, 5) = 19.59, MSE = 0.0006, p = .01, there 
were no differences in RTs between the two strategy categories and no 
interactions that included the strategy factor. Thus, the hypothesis that 
pattern match and retrieve–compare trials represent quantitatively dif-
ferent strategies or retrieval mechanisms did not find much support in 
the data of Experiment 2. Indeed, the significant effects from this final 
analysis are completely redundant with those of the overall RT analysis 
reported earlier. The consistency of the findings of this analysis with the 
overall RT analysis suggests that the trials categorized as pattern match 
are simply fast retrieve–compare trials.

GENERAL DISCUSSION

 The present study has provided evidence through the use of retrospec-
tive protocols that should help to clarify several issues about tasks com-
monly used in investigations of mental calculation. Our findings support 
participants’ use of multiple strategies in mental multiplication. In the 
present experiments we used instructions that made no explicit refer-
ences to how the task could be performed. In contrast to the LeFevre, 
Bisanz, et al. (1996) study and consistent with the Ericsson and Simon 
(1980, 1993) framework for collecting verbal reports as data, we instructed 
participants to report the thoughts that they remembered having after 
performing each trial of the task. According to studies reviewed by Erics-
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son and Simon, soliciting verbal reports in this manner should preclude 
any demand effects that are similar to those reported by Kirk and Ashcraft 
(2001). As pointed out earlier, the Kirk and Ashcraft findings are not a 
complete condemnation of the use of verbal protocols in the study of 
simple multiplication but rather a cautionary tale regarding how not to 
collect this type of data.
 By adhering to the Ericsson and Simon (1980, 1993) framework for col-
lecting verbal reports, we predicted that the cognitive processes involved in 
these experiments would be unaffected. Our replications of the patterns 
of effects reported previously in the mathematical cognition literature 
support the assertion that fundamental cognitive processes involved in 
mental calculation were unchanged by the requirement that participants 
provide verbal retrospective protocols. The agreement of the behavioral 
measures with reported strategies also supports the validity of these reports 
and of the categories they yield.

Verification and production

 Our evidence suggests that verification is not performed solely through 
production plus comparison but rather that verification is performed 
through a mixture of production plus comparison and sidestepping strate-
gies.
 In contrast to the findings of Campbell and Tarling (1996), the domi-
nance of the production plus comparison strategy suggests that verification 
and production tasks are not based on different processes. Indeed, the 
present data suggest that depending on the makeup of the stimulus set, 
verification can be viewed as primarily production plus comparison in 
some cases. Although many studies have found a larger problem difficulty 
effect for retrieval-based strategies than for procedure-based strategies 
(Campbell et al., 2004; Hecht, 1999; LeFevre & Morris, 1999; Robinson, 
2001), the larger problem difficulty effect for production found in the 
Campbell and Tarling (1996) study may have resulted from the mixture 
of strategies specifically possible in the verification task. The verification 
task enables strategies such as magnitude estimation and 5 or 0 rules that 
do not necessitate any memory retrieval of an answer. Problem difficulty 
might have a smaller effect on these types of sidestepping strategies than 
on retrieve–compare and calculate–compare processing, or even no effect. 
This would decrease the overall problem difficulty effect in verification, 
even with the primary use of production-like processing in the task. This 
interpretation is consistent with previous studies that suggest that the 
problem difficulty effect reflects disruption in the memory retrieval stage 
and not in the encoding or response stages of performance (Campbell & 
Clark, 1992; Campbell & Fugelsang, 2001).
 What are the conditions under which production and verification 
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rely on the same processes? The change in the distribution of strategies 
between the two experiments suggests that the proportion of trials for 
which production plus comparison accounts in verification should depend 
strongly on the features of the problem set. Production plus comparison 
(i.e., retrieve–compare) accounted for a larger proportion of the trials 
in Experiment 1 than in Experiment 2. Similarly, participants’ reported 
use of the pattern match and magnitude estimation strategies increased 
in Experiment 2, and the reported use of the calculate–compare strategy 
declined. Clearly these differences must result from the changes in the 
problem set because all other factors remained the same in Experiments 
1 and 2. One way to interpret these qualitative changes is to suggest that 
verification can be set up so that the processing is very similar to produc-
tion. If we assume for the moment that production is based primarily on 
memory retrieval, these data suggest that verification can be controlled 
to reflect a similar basis. The present data suggest that this can be accom-
plished by using easy problems and false answers with very small splits that 
are related to the correct answers. This interpretation is consistent with 
previous studies that have found increases in use of a particular strategy 
with problem sets that include a larger proportion of a particular type of 
problem (Lemaire & Reder, 1999)

Strategies in verification

 By far the strongest support was for the use of the magnitude estimation 
strategy for certain types of problems. This strategy was reported more 
often as split became larger, and in Experiment 2 magnitude estimation 
trials were faster than retrieve–compare trials. These findings support the 
sidestepping nature of this processing that capitalizes on the availability of 
split information. It may be useful to point out that although there were no 
RT differences between the retrieve–compare and magnitude estimation 
trials in Experiment 1, participants reported the magnitude estimation 
strategy more often as split increased. We can speculate that magnitude 
processing may even be used for smaller splits but that RT measures are 
not sensitive enough to detect it in these cases. The redundancy between 
split and problem difficulty in this stimulus set may have masked any RT 
differences between the strategies because magnitude estimation probably 
would be used only when split is large, which in the case of Experiment 
1 was on easy problems for which retrieval times already were short. In 
this case there might not be a difference between retrieve–compare and 
magnitude estimation trials because the retrieve–compare trials are at the 
fast end of their respective distribution, which may be similar to the times 
necessary to use split information in the magnitude estimation trials. This 
possibility further underscores the value of retrospective reports to study 
mental arithmetic.
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 Another strategy supported by the data is the calculate–compare strat-
egy. In Experiment 1, participants were slower to verify problems when 
they reported the use of a calculation algorithm. This analysis, however, 
was not possible in Experiment 2 for lack of power. The calculate–compare 
strategy was reported for a smaller proportion of the trials in Experiment 
2 than in Experiment 1, which suggests that split and difficulty also are 
involved with the selection of this strategy. Specifically, the use of calcu-
late–compare is facilitated when these factors are manipulated in a man-
ner similar to that in Experiment 1, but when split and problem difficulty 
are balanced, as in Experiment 2, other strategies take precedence. A 
specific hypothesis based on this speculation would predict facilitation of 
the calculate–compare strategy as conditions were constructed to allow 
verification to become more similar to production.
 In the present study, we believe that the pattern match report category 
best resembles the use of resonance or degree of match as described by 
Zbrodoff and Logan (1990). There are several reasons to expect RT dif-
ferences between retrieve–compare and pattern match trials, and so the 
lack of RT difference between these strategies is inconsistent with what 
should be quantitatively different processing. Furthermore, if the overall 
RT analysis is driven by the primary use of retrieve–compare processing 
and there is no difference between the underlying processing involved 
in the retrieve–compare and pattern match strategies, we would expect 
the similar effects for the analysis including these two strategies and the 
overall RT analysis. Based on the lack of differences between these trials 
and the similarity between the analyses noted earlier, we speculate that 
pattern match trials are instances of retrieve–compare trials in which 
processing is too fast for the deposit of any verbalizable results in short-
term memory, or the deposits in short-term memory fade too quickly for 
later report. For whatever reasons this occurs, the absence of information 
in short-term memory results in a lack of cues from which participants 
could reconstruct the processes involved at the time of the verbal report. 
For these reasons we are not optimistic about theories of verification that 
revolve around the use of resonance, but let us consider several other 
points of view.
 Originally, Zbrodoff and Logan (1990) suggested that split effects in 
verification indicate that participants compare the equation as a whole 
without retrieving or computing an answer and that the degree of match 
(resonance) was the criterion for a verification decision. Thus, it could be 
argued that our definition of the pattern match trials does not character-
ize the type of processing that Zbrodoff and Logan (1990) had in mind. 
Furthermore, it could be argued that the processing we have labeled 
as magnitude estimation better characterizes their ideas. We can think 
of one reason why this argument may not be the case. Based on their 
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original description of resonance (Zbrodoff & Logan, 1990), we believed 
that use of this strategy should be accompanied by information in short-
term memory (for later verbal report) about matching the equation as a 
whole without any reference to specific features. In contrast, we expected 
that the use of the magnitude estimation strategy would deposit some 
information (in short-term memory) concerning the size of the answer 
in relation to the operands and that participants would report this infor-
mation in their protocols. This prediction was well supported in all of the 
magnitude estimation protocols because participants always reported that 
the answer was either too small or too large for the problem. It may well 
be that resonance processing is synonymous with what we have labeled 
magnitude estimation, but further study or formal implementation of 
resonance into a working model may be necessary to illuminate any pos-
sible similarities.
 Dual-process memory theories assert that recognition responses can 
be based on recollection (i.e., retrieval of specific information) or fa-
miliarity (for review, see Richardson-Klavehn & Bjork, 1988; Roediger & 
McDermott, 1993). According to this work, recollection is characterized 
as a slow search process relying on associations, attention, and concep-
tual processing. In contrast, familiarity is believed to be a faster process 
(Atkinson & Juola, 1974; Jacoby, 1991; Mandler, 1980) that relies on a 
match of perceptual characteristics (Jacoby & Dallas, 1981) and does not 
require attention (Jacoby, 1991). Campbell and Tarling (1996) discussed 
resonance processing in mental arithmetic in terms of familiarity and sug-
gested that verification is based primarily on familiarity of the candidate 
answer (equation), whereas production is based on retrieval of a candidate 
product. Although such an argument supports our unrealized expecta-
tion of RT differences in the present study, adoption of the methodology 
of recognition memory studies might better illuminate the use of famil-
iarity in mental calculation. More specifically, it may be that our use of 
verbal protocols is not sensitive enough to differentiate familiarity from 
recollective processing. The use of the process dissociation procedure 
(Jacoby, 1991) or remember–know methods (Gardiner, 1988) may allow 
better distinction and understanding of resonance processing in mental 
arithmetic. We suggest that the use of these procedures may be useful in 
future studies of mental arithmetic.
 Explicit reports of other candidate sidestepping strategies could not be 
analyzed because of low frequencies of use (an inspection of Appendix 
A will yield a general description of other candidate sidestepping strate-
gies). Some of these strategies have been investigated in the literature, and 
some appear to be unique to our data. Krueger (1986; see also Lemaire 
& Fayol, 1995) reported evidence of the use of an odd–even rule of mul-
tiplication. Similar to the findings of Campbell and Fugelsang (2001), 
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this sidestepping strategy is not common in our data, even though, as 
previously mentioned, this rule was applicable for every false problem 
in Experiment 2. This outcome suggests that the role of the odd–even 
rule in verification may have been exaggerated by the reliance on RTs or 
other performance measures. The data from this study and three previous 
studies (LeFevre, Sadesky, & Bisanz, 1996; LeFevre, Bisanz, et al. 1996; 
Siegler, 1987) suggest that any examination of a task that relies completely 
on external measures (i.e., RTs and errors) runs the risk of exaggerating 
the importance of some hypothesized strategy.
 It is worthy to note, however, that Campbell, Parker, and Doetzel (2004) 
found that odd–even status did effect RTs for trials in which participants 
reported using retrieval. Combined with the arguments proposed by Lo-
chy, Seron, Delazer, and Butterworth (2000), this finding suggests that 
odd–even status may be a property of the representational relationships 
and not a cognitive strategy per se. These possibilities warrant more in-
vestigation before a complete model of mental multiplication can be 
developed.
 Although the present data suggest that problem difficulty and split 
influence which strategies are used on a specific trial, as suggested by the 
adaptive strategy choice model (Siegler & Shipley, 1995), these factors 
are unlikely to be the only ones. Individual-specific factors, such as the 
participant’s knowledge of or ability to use a given strategy and history 
of success with a strategy, should also help determine which strategy is 
used. Work by Campbell and colleagues (Campbell & Fugelsang, 2001; 
Campbell et al., 2004) also suggests that surface features of the problem 
might also influence strategy choice. Similarly, an 5 or 9 rule would 
not be appropriate for use with a problem that did not have 5 or 9 as an 
operand. Additionally, the properties of the strategy itself could influence 
which strategies are available on a given trial. For example, the work of 
Rickard (1997) suggests that two strategies that entail memory retrieval 
(e.g., retrieve–compare and calculate–compare) cannot be used concur-
rently. Rickard’s theory does not, however, rule out the possibility that a 
strategy that entails memory retrieval (either of intermediate results or 
of a final answer) might be used in parallel with a strategy that does not 
entail factual memory retrieval (i.e., magnitude estimation strategies).
 In summary, the present study provides evidence that arithmetic veri-
fication is performed through a mixture of production plus comparison 
and other sidestepping strategies; researchers’ practice of relying solely 
on performance measures such as latencies or errors may result in conclu-
sions that are incomplete or misleading; and with the right constraints, ret-
rospective reports can be used to gain insight into the processing involved 
in mental arithmetic without significantly altering normal processing or 
other basic results.
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Appendix A. Verification instructions

In this task, you will be participating in a multiplication verification task. You will 
be presented with multiplication problems in the form of two numbers and a 
candidate answer. Your task is to decide if the answer given is true or false for the 
problem and press the appropriate key as quickly and accurately as possible [go 
through examples]. Please place one finger of your _____ [left or right] hand on 
the true key and one finger of your _____ [right or left] hand on the false key. 
Once we start the experiment please leave your hands in this position until we 
are finished. After you press the true or false key you will be prompted to report 
the thoughts you had while doing the problem. At this time, you should report 
everything you remember from the moment the problem was presented on the 
screen until you pressed the true or false key. We are interested only in what you 
actually remember thinking, and everything you can remember is useful to us. 
Thus, you should report your thoughts in as much detail as possible. You should 
also report your thoughts in the order in which they actually occurred, from the 
first thought to the last thought. Think about this as simply playing back a tape of 
your thoughts from the first thought to the last thought. When you have finished 
reporting your thoughts the experimenter will tell you to press the enter key to 
go on to the next trial. Please do not go on to the next trial until you are told to 
do so. Do you have any questions?

Appendix B. Verification strategies

 1. Retrieve–compare: Participant reports retrieving the answer, then comparing it 
with the presented answer. No additional calculation is reported. We will as-
sume that the participant simply retrieved the answer from memory without 
any intermediate computations.

 2. Calculate–compare: Participant reports using some (any) intermediate calcula-
tion to generate the answer and compares the answer with the presented 
answer.

 3. Reverse retrieve–compare: Participant reports thinking of the problem correspond-
ing to the presented answer and then compares the retrieved problem with 
the presented problem.

 4. Pattern match: Participant reports simply that the problem just looked true or 
false, without any intermediate thoughts.

 5. Magnitude estimation: Participant reports simply knowing that the presented an-
swer could not be correct because the answer was much too large (small).

 6. 35 rule: Participant reports knowing that the presented answer was incorrect 
(or correct) because there was a mismatch (match) between the 5 status of 
the problem and the presented answer.

 7. Odd–even rule: Participant reports knowing that the presented answer was cor-
rect (incorrect) based on the odd–even rule for multiplication.

 8. Explicit no-answer-generation: Participant explicitly states that he or she did not 
generate the answer to the problem from memory as a separate step. This 
should be used any time participants report that they did not know the answer 
before pressing the “true” or “false” keys, whether or not they report knowing 
the answer after.
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 9. Interference: Participant reports that the answer first looked correct or incor-
rect, then he or she realized it was incorrect or correct (perhaps using one 
of the other strategies).

10. Switch operands: Participants report switching operands before using any strat-
egy. This should be coded as the final strategy.

11. Multiple strategies: Participant reports using multiple strategies.
12. Uninterpretable.
13. Confusion effects: Participant reports that a different operation could yield a 

true verification of the problem presented (i.e., 4 + 4 = 8, not 4  4; or 8  
4 = 4, not 8  4).

14. 9 rules: Participant explicitly states that he or she used some rule that works 
only with the 9s table.

15. Exact square: Participant reports that he or she knew the answer was either true 
or false because the answer or operands were an exact square or that the use 
of any strategy was facilitated by the fact that the operands, answer, or both 
represented an exact square.

16. Factor or multiple: Participant reports that he or she knew that the answer was 
either true or false because the operands were not factors of the answer or 
because the given answer was a prime number. Participant reports that the 
answer was not a multiple of one or both of the operands or that he or she 
thought of the multiples of one or both of the operands, and the given answer 
did not match any of them.

17. Recency effects: Participant reports that he or she remembered the problem–an-
swer combination or either the problem or answer from the last time he or 
she saw it and used that information to determine whether the answer was 
true or false.

Appendix C. Problem set for Experiment 2

  False, False, False False, 
  unrelated, unrelated, related, related, 
Problem True small split large split small split large split

7  7 49 48 24 56 28
3  9 27 28 14 24 36
4  6 24 25 45 28 36
3  4 12 14 32 9 21
8  8 64 63 35 72 40
4  7 28 27 54 24 40
5  7 35 36 64 40 20
6  7 42 40 72 36 24
6  6 36 35 64 42 54
4  8 32 30 18 28 20
3  8 24 25 45 27 15
5  8 40 42 21 35 25
3  6 18 16 35 21 27

Continued on next page
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Notes
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 1. A significant two-way interaction between strategy and the problem difficulty 
covariate was also found, F(1, 3) = 243.67, MSE = 0.00004, p = .01. Finally, the sig-
nificant triple interaction between the contrast of true versus false, strategy type 
contrast, and problem difficulty covariate was also significant, F(1, 3) = 24.70, 
MSE = 0.00992, p = .04. These effects are included as a footnote for the purpose 
of completeness but are unpredicted or redundant with other effects reported, 
and they are not further interpreted.
 2. Welford’s similarity function is defined as log(larger/[larger  smaller]). 
Larger values constitute more similarity between the given and correct answer and 
therefore smaller difference between them, and smaller values as less similarity 
and therefore larger differences. This function was used because it accounts for 
effects of the numerical distance between two numbers and for the changes in 
these effects that occur as numbers become larger (Dehaene, 1989).
 3. A significant interaction between the strategy contrast and the problem dif-
ficulty covariate was also found, F(1, 3) = 29.17, MSE = 0.0007, p = .03.

Appendix C. Continued

  False, False, False False, 
  unrelated, unrelated, related, related, 
Problem True small split large split small split large split

3  5 15 14 28 12 24
6  9 54 56 28 48 72
4  9 36 35 15 32 48
7  9 63 64 32 56 42
9  9 81 64 42 72 54
5  9 45 48 24 40 30
5  6 30 32 56 35 45
7  8 56 54 30 63 35
3  7 21 20 36 24 12
6  8 48 49 81 54 30
8  9 72 63 35 64 48



118 romero et al.

References

Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric 
approach. Developmental Review, 2, 213–236.

Ashcraft, M. H. (1987). Children’s knowledge of simple arithmetic: A develop-
mental model and simulation. In J. Bisanz, C. J. Brainerd, & R. Kail (Eds.), 
Formal methods in developmental psychology (pp. 302–338). New York: Springer-
Verlag.

Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cogni-
tion, 44, 75–106.

Ashcraft, M. H. (1995). Cognitive psychology and simple arithmetic: A review and 
summary of new directions. Mathematical Cognition, 1, 3–34.

Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: Evidence for retrieval 
and decision processes in mental addition. Journal of Experimental Psychology: 
Human Learning and Memory, 4, 527–538.

Ashcraft, M. H., & Stazyk, E. H. (1981). Mental addition: A test of three verifica-
tion models. Memory & Cognition, 9, 185–196.

Atkinson, R. C., & Juola, J. F. (1974). Search and decision processes in recognition 
memory. In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.), 
Contemporary developments in mathematical psychology (Vol. 1): Learning, memory 
& thinking (pp. 242–293). San Francisco: W.H. Freeman.

Baroody, A. J. (1985). Mastery of basic number combinations: Internalization of re-
lationships or facts? Journal for Research in Mathematics Education, 16, 83–98.

Campbell, J. I. D. (1987a). Network interference and mental multiplication. Journal 
of Experimental Psychology: Learning, Memory, and Cognition, 13, 109–123.

Campbell, J. I. D. (1987b). Production, verification, and priming of multiplication 
facts. Memory & Cognition, 15, 349–364.

Campbell, J. I. D. (1991). Conditions of error priming in number-fact retrieval. 
Memory & Cognition, 19, 197–209.

Campbell, J. I. D., & Clark, J. M. (1992). Cognitive number processing: An encod-
ing complex perspective. In J. I. D. Campbell (Ed.), The nature and origins of 
mathematical skills (pp. 457–492). Amsterdam: Elsevier.

Campbell, J. I. D., & Fugelsang, J. (2001). Strategy choice for arithmetic verifica-
tion: Effects of numerical surface form. Cognition, 80, B21–B30.

Campbell, J. I. D., & Graham, D. J. (1985). Mental multiplication skill: Structure, 
process and acquisition. Canadian Journal of Psychology, 39, 338–366.

Campbell, J. I. D., & Gunter, R. (2002). Calculation, culture and the repeated 
operand effect. Cognition, 86, 71–96.

Campbell, J. I. D., & Oliphant, M. (1992). Representation and retrieval of arithme-
tic facts: A network-interference model and simulation. In J. I. D. Campbell 
(Ed.), The nature and origins of mathematical skills (pp. 3–39). North Holland: 
Elsevier.

Campbell, J. I. D., Parker, H. R., & Doetzel, N. L. (2004). Interactive effects of 
numerical surface form and operand parity in cognitive arithmetic. Journal 
of Experimental Psychology: Learning, Memory, and Cognition, 30, 51–64.

Campbell, J. I. D., & Tarling, D. P. M. (1996). Retrieval processes in arithmetic 
production and verification. Memory & Cognition, 24, 156–172.



verification of multiplication facts 119

Campbell, J. I. D., & Timm, J. C. (2000). Adults’ strategy choices for simple ad-
dition: Effects of retrieval interference. Psychonomic Bulletin & Review, 7, 
692–699.

Campbell, J. I. D., & Xue, Z. (2001). Cognitive arithmetic across cultures. Journal 
of Experimental Psychology: General, 130, 299–315.

Dehaene, S. (1989). The psychophysics of numerical comparison: A reexamination 
of apparently incompatible data. Perception & Psychophysics, 45, 557–566.

Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 
87, 215–251.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. Cam-
bridge, MA: MIT Press.

Gardiner, J. M. (1988). Functional aspects of recollective experience. Memory & 
Cognition, 16, 309–313.

Hecht, S. A. (1999). Individual solution processes while solving addition and 
multiplication math facts in adults. Memory & Cognition, 27, 1097–1107.

Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from 
intentional uses of memory. Journal of Memory and Language, 30, 513–541.

Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobiographical 
memory and perceptual learning. Journal of Experimental Psychology: General, 
110, 306–340.

Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: The perils and promise of 
using verbal reports to study math strategies. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 27, 157–175.

Koshmider, J. W., & Ashcraft, M. H. (1991). The development of children’s mental 
multiplication skills. Journal of Experimental Child Psychology, 51, 53–89.

Krueger, L. E. (1986). Why 2*5 = 5 looks so wrong: On the odd–even rule in 
product verification. Memory & Cognition, 14, 141–149.

LeFevre, J., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S., & Sadesky, G. S. 
(1996). Multiple routes to solution of single-digit multiplication problems. 
Journal of Experimental Psychology: General, 125, 284–306.

LeFevre, J., & Morris, J. (1999). More on the relation between division and mul-
tiplication in simple arithmetic: Evidence for mediation of division solution 
via multiplication. Memory & Cognition, 27, 803–812.

LeFevre, J., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental 
addition: Reassessing the problem size effect in adults. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 22, 216–230.

Lemaire, P., & Fayol, M. (1995). When plausibility judgments supersede fact re-
trieval: The example of the odd–even effect on product verification. Memory 
& Cognition, 23, 34–48.

Lemaire, P., & Reder, L. (1999). What affects strategy selection in arithmetic? 
The example of parity and five effects on product verification. Memory & 
Cognition, 22, 364–382.

Lochy, A., Seron, X., Delazer, M., & Butterworth, B. (2000). The odd–even parity 
effect in multiplication: Parity rule or familiarity with even numbers? Memory 
& Cognition, 28, 358–365.

Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psycho-
logical Review, 87, 252–271.



120 romero et al.

Richardson-Klavehn, A., & Bjork, R. A. (1988). Measures of memory. Annual Review 
of Psychology, 39, 475–543.

Rickard, T. C. (1997). Bending the power law: A CMPL theory of strategy shifts 
and the automatization of cognitive skills. Journal of Experimental Psychology: 
General, 126, 288–311.

Robinson, K. M. (2001). The validity of verbal reports in children’s subtraction. 
Journal of Educational Psychology, 93, 211–222.

Roediger, H. L., & McDermott, K. B. (1993). Implicit memory in normal human 
subjects. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 8, 
pp. 61–131). Amsterdam: Elsevier.

Siegler, R. S. (1987). The perils of averaging data over strategies: An example from 
children’s addition. Journal of Experimental Psychology: General, 116, 250–264.

Siegler, R. S., & Shipley, C. (1995). Variation, selection and cognitive change. In 
G. Halford & T. Simon (Eds.), Developing cognitive competence: New approaches 
to process modeling (pp 31–76). Hillsdale, NJ: Erlbaum.

Stazyk, E. H., Ashcraft, M. H., & Hamann, M. S. (1982). A network approach to 
simple multiplication. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 8, 320–335.

Stinessen, L. (1985). The influence of verbalization on problem solving. Scandi-
navian Journal of Psychology, 26, 342–347.

Zbrodoff, J., & Logan, G. D. (1990). On the relation between production and 
verification tasks in the psychology of simple arithmetic. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 16, 83–97.


