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Summary. 

A detailed description is given of the development of a computer program for analysing the flow 
through axial, radial and mixed-flow turbomachines. The theory is based on the through-flow analysis 
given by Wu l'z and the equation for the stream function is solved by a matrix method. The theoretical 
predictions are compared with experiments reported by Jeffs 3 for a low-speed axial-flow compressor 
and it is shown that the theory gives a good estimate for the axial velocity profile. 
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1. Introduction. 
There are several methods for estimating the flow through a turbomachine and the through-flow 

analysis is an attempt to obtain information about the overall flow pattern without including the effects 
of viscosity or time-dependent flows. The theory is based on the earlier work of Wu 1"2 and the through- 
flow analysis can be regarded as a simplified form of the general theory for the flow through an arbitrary 
turbomachine. 

In the general theory 2, the equations of fluid motion are satisfied on two intersecting families of stream 
surfaces, the complete solution for the three-dimensional flow field being obtained by an iterative 
process between the flows on the two sets of surfaces. In all of the analysis, it is assumed that the flow 
relative to each blade row is steady. However, the flow and gas state at exit from a blade row vary 
circumferentially and the following blade row is then subject to a time-dependent inlet flow. The general 
method of analysis is therefore only applicable to the flow through an isolated blade row, or impeller 
channel, and even for these simple examples, the flow within the blade passage can only be estimated 
after specifying either the flow direction far downstream, or details of the flow at the trailing edge of the 
blades. The theory is general in the mathematical sense that it is a general method for estimating a steady 
three-dimensional flow by calculating the flow on the two sets of stream surfaces. In order to apply the 
general theory to estimate the flow through a multi-stage turbomachine, it would be necessary to remove 
the time dependence by circumferentially averaging the flow and the gas state between each pair of 
blade rows. 

The through-flow theory is similar to the general theory, but the equations of fluid motion are only 
solved for the steady inviscid flow on a mean stream surface, and the blade thickness is still taken account 
of in that it affects the 'thickness' of this surface. The flow and gas state on this surface may be regarded 
as average values for the flow within the blade passage, a reasonable approximation when there are 
many blades. For a multi-stage turbomachine, the time dependence of the flow is removed by treating 
the through-flow solution as an axially symmetric flow for the duct region between each pair of blade 
rOWS. 

The through-flow analysis for an isolated blade row does not require an assumption of axial symmetry. 
However, if axial symmetry is assumed, then the predicted flow pattern is the same as that which is 
obtained from the through-flow analysis for the flow on the mean stream surface. This point is discussed 
in more detail in Section 2.2. The advantage in not assuming axial symmetry is that the through-flow 
analysis can then be seen to  be the first stage in the general theory and for an isolated blade row, or 
impeller, it is possible to continue the calculation to obtain the full three-dimensional flow field predicted 
by the general theory. 

A computer program has been written to calculate the through-flow solution for a turbomachine of 
arbitrary shape. The program is sufficiently general to allow the flow pattern to be estimated for axial, 
radial and mixed-flow turbomachines and to demonstrate the use of the program, an example is given 
where the predictions of the theory can be compared with experimental results reported by Jeffs 3. The 
current program is restricted to subsonic relative flow within blade passages, though this does not 
represent a limitation in principle to the method. 

2, The Through-flow Analysis. 

When analysing the flow through a turbomachine, it is convenient to express the equations in terms 
of the following quantities, 

I 

/-/ 

r, z, 

S 

T 

relative stagnation enthalpy, I = H-a~rV,,, 

stagnation enthalpy per unit mass, 

radial, axial and circumferential co-ordinates, 

entropy per unit mass, 

static temperature, 



v~,Vz, Vo 

P 

O) 

radial, axial and circumferential velocity components, 

velocity components relative to a blade, W~ = V,., W~ = V~ and W,, = V,,-mr, 

static density, 

angular velocity of a blade row. 

The stagnation enthalpy H is measured in the fixed co-ordinate system, neglecting the gravitational 
force field, whereas I is the stagnation enthalpy measured by an observer in a co-ordinate system rotating 
with the blade row. In the rotating co-ordinate system there is a force field due to the rotation and this 
must not be neglected. The quantity l is the enthalpy of the fluid when brought to rest on the axis of 
rotation by a reversible adiabatic process. For an adiabatic flow, I remains constant along the stream- 
lines in the rotating co-ordinate system, so that for any blade row, 

/ in  = lout 

o r  H i .  - -  Hou  , = ( o ) r V u ) i n - ( ( o r V u ) o u  t 

This definition of the relative stagnation enthalpy is thus seen to be consistent with the Euler turbine 
equation. However, if To~ is defined as the temperature of a perfect gas when brought to rest relative 
to the rotating co-ordinate system without any change in radial position by a reversible adiabatic 
process, then 

where cp is the specific heat of the gas at constant pressure. In the presence of a radial force field, the 
product cpToR is not the relative stagnation enthalpy. 

2.1. The Derivation (if'the Principal Equation. 

In a co-ordinate system rotating with the blade at an angular velocity o~, any steady reversible, inviscid 
flow is governed by the equation of motion 2 

2 N x W - W x ( V x W ) =  - V I + T V s  (I) 

where W is the relative velocity vector. In the r, z, q5 co-ordinate system, the equations of continuity, 
motion, energy and state are 

(a) Continuity 

(pr~) (pW.) (pwz) = o r r +~z " (2) 

(b) Motion 

r LN(rv")-V$ ] + %  L 
OW~ -I OI Os 
Or J = -0-~ + T a~ (3) 

r ~r (r V.) - - . . . . . . .  ~ wz r aq~ az r a¢ ~-r a ¢  (4) 

- W~ 0z •r "J r 0~b 0z  = - 0~ + T ~z" (5) 

4 



(c) Energy 

~3I I/V. ~I aI DI 
W~ a r + T -  ~-¢ + W~ ~z - Dt - Q 

where Q is the rate of heat addition per unit mass, 

(6) 

(d) State (perfect gas) 

,!1 (-~) 
p = f ( h , s )  = A h e (7) 

where h is the static enthalpy per unit mass. 
A further equation for the entropy change along the streamlines can be obtained from Equations (3) 

to (6), 

F w. 3S I/V. Os Os l = T Ds 
T:iii!Li, " -~r + -7- - ~  + W~ ~z J Dt = Q" (83 

These Equations, together with their boundary conditions, define the steady flow through any blade 
row or duct. 

In general, these Equations have no simple solution and in the through-flow analysis, they are only 
solved for the flow on the mean stream surface. If this surface is defined as 

S(r, z, ~b) = 0 (9) 

and ~ is the unit vector normal to the surface, then 

n r 1% ~z  

OS 1 0 S  OS" 

ar r 04 az 

(10) 

For simplicity, it is assumed that the surface is single valued in ¢, 

¢ : ¢(r, z) (11) 

so that the two co-ordinates r and z are sufficient to define any point on the surface, the co-ordinate ¢ 
being obtained from Equation (11). 

Oq 
If ~ and Oz are partial derivatives taken along the stream surface, then 

and 
} aq Oq n~ Oq 
Or Or rn, c3¢ 

Oq _ Oq nz aq 
az Oz rn, Oc~ 

(12) 



These special derivatives are taken on the stream surface and must be distinguished from the ordinary 

~q 
partial derivatives. The special derivative 3rr is the rate of change of q with r on the stream surface at a 

given value of z, whereas 0q. the rate of change of q with r at given values of z and ~b. It is only for an ~?r is 

axially symmetric flow that the special derivatives become ordinary partial derivatives. 
The equations governing the flow may now be expressed in terms of the special derivatives for the 

flow on the stream surface, 

(a) Continuity 

r c~r(prW~)+~zz (pW:) - n r +n,  

= p C(r, z). (13) 

(b) Motion 

t aw~ aG ] a-7 as W,, -3 (rV.)+ Wo - (14) 
r a r  " #z ~ J (?r ~- T ~r+ F" 

r ~r(rV")+--r O(rV") = F. (15) 

where 

_ W ~ [ O ~  ~V¢~] W. O(rV.)= M ~s 
?z 0~ r az - ~ z +  T ~z + F~ 

p _  1 Op ft. 
rpn, Oct" 

(16) 

(c) Energy 

For an adiabatic flow Equations (6) and (8) become 

57 
W~rr + Wz ~zz = 0 (17) 

and 
L a,~7 

T ~ + w ~ L j - - 0 .  (is) 

In an inviscid flow, the force vector F is normal to the mean stream surface S and is therefore normal 
to the relative velocity vector, 

~ F ~ + ~ F , + ~ F z = O .  (19) 



It is then convenient to introduce two angles 2' and #' which define the local form of the stream surface, 

and 

T a n 2 ' - n ' - F r  "l 
nu Fu 

Tan# '  = nz _ Fz. 
n. Fu 

The three velocity components are then related by the Equation, 

(20) 

Wu = - IV, Tan 2 ' -  Wz Tan ,u' (21) 

which is the geometrical condition that the flow follows the mean stream surface. 
In order to obtain an equation for a stream function, Wu 2 introduces an integrating factor B, such 

that the equation of continuity becomes 

~r (rBpWr)+~z (rBpW~) = O. (22) 

The factor B is then related to C(r, z) by 

m 

W~ OB W~ OB 
- C(r ,  z ) .  

B Or B Oz 

A stream function ~ may now be defined where 

and 1 Or 

0 ~  _ r B p W ,  . 
Oz 

(23) 

The equations indicate that B is proportional to the local angular thickness of the stream surface and in 
the through-flow analysis, the thickness of the stream surface is assumed to be proportional to the width 
of the blade passage, 

circumferential width of the blade passage 
B = blade pitch 

For  flow in a duct region, where there are no blades, the parameter B is taken as unity. 
If Equations (23) are substituted into the radial Equation of motion (14) then an equation for the 

stream function ~ is obtained, 

02~ . 02~ 0~ i ln(rpB) + In(rpB) + 
Or 2 I--~z2 = O--r" " Oz 

rpB [ aI T Os Wu -0 rl 
+ - ~  Or- Or r Or (rV")-F (24) 



A similar equation can be obtained by substituting into the axial equation of motion, 

~0-Uz ~ - ~-7  ~ az & 

W~ ~ z - T o z  r ~z (r V ' ) -  Fz " (25) 

The blade force components F~ and F~ are zero for a duct region, and within a blade row, they can be 
expressed as 

F~ = F.  Tan 2' 

and Fz = F.  Tan #' 

where F, is given by Equation (15). 

The two forms of Wu's principal Equation, (24) and (25), have solutions which satisfy the equation of 
continuity, two of the three equations of motion and the energy Equation (17). If in addition, the entropy 
change is given by Equation (18), then this implies that the solution for the stream function satisfies all 
three equations of motion. It is therefore possible to use either form of the principal equation to obtain 
a solution for the stream function which satisfies the full set of equations governing the reversible flow 
on the mean stream surface. 

The analysis has so far been confined to a system of axial and radial co-ordinates, but for some 
problems, it is convenient to rotate the axes through an angle 0, as shown in Figure 1. The two forms of 
the principal equation are then 

E ] ~?x2 ~ - . ln(rpB) ln(rpB) ~y2 & & ~ . ~  + 

r ( r V . ) - F ,  (26) 

and 
~x2x 2 + O~- - a x  c~x c~y" 03, 

rpB r ~  Os W~ ~ ] 
IVy L ~ x - T o x  r ~ ( rV , , ) -Fx j  (27) 

This rotation of the axes allows the through-flow analysis to be extended to a wide range of turbomachines. 
Within a blade row, the geometry of the mean stream surface is defined in the x y  co-ordinate system 

by the two angles 2 and/~, where 

and 

"3  

Tan 2 = F~ ] 
F,  

Fx 
Tan # ~ .  

(28) 



The three components of the relative velocity are related by 

W~ = - VVy Tan 2 -  W x Tan # (29) 

which corresponds to Equation (21). 

The angle 0 through which the axes are rotated is chosen to ensure that W~ > 0 throughout the region 
of flow and Equation (26) is expressed as 

~2¢ a2~p 
ax ~ ~-a-7 = q(x, y) I30) 

where ~ -~ "Iln(rp/3) l . 0¢ O q(x, Y) - ~x . ~- x +-~yy .-~-y Iln(rp/3) l + 

+rp/3 I-O-~ TOS W u - ] 

and e,/3 and ~ have the following meanings, 

(a) Duct flow 

(b) Flow through a stator row 

(c) Flow through a rotor row 

~ = H  

/ 3 = 1  

= 0 (no blades). 

~ = H  

/3 = B 

= Fy = F u T a n 2 .  

= I = H-corV, 

/ 3 = B  

7 = Fr = F u T a n 2 .  

The principal Equation (26) is non-linear, but it can be solved by the repeated solution and correction 
of the quasi-linear Equation (30). A solution for ~b is obtained from Equation (30) for a given distribution 
q(x, y), the function q(x, y) is then corrected using the improved solution for ~ and the process is repeated 
until a convergence criterion is satisfied. 



2.2. The Assumption of Axial Symmetry. 
The through-flow analysis has been presented for the flow on the mean stream surface without assuming 

axial symmetry, so that this can be seen to be the first stage in applying the general theory 2. However, 
if axial symmetry were assumed and a distributed body force introduced to represent the blade force, 
then the resulting principal equation for the stream function is of the same form as Equation (24), but 
with the special derivatives replaced by ordinary partial derivatives. It follows that the same flow pattern 
is obtained by assuming axial symmetry, or by solving for the flow on the mean stream surface and then 
treating this as an axially symmetric solution. The same solution is obtained irrespective of whether the 
assumption of axial symmetry is made before or after the equations are solved. 

There is, however, an important difference between the through-flow and axially symmetric solutions. 
l/~ l has pointed out that if axial symmetry is assumed and a body force introduced, then differentiating 
and combining the velocity components does not give the true vorticity. A close examination of the 
assumption of axial symmetry shows that this is equivalent to replacing the blade row by an 'actuator 
duct' where there are no blades, but the fluid is made to follow a certain surface by the application of a 
distributed body force. For a conducting fluid, this body force could be obtained by a magnetic field 
acting on a current flowing in the fluid. The assumption of axial symmetry is equivalent to forming an 
actuator duct model for the blade row and the inconsistency in calculating the vorticity arises from the 
use of the actuator duct model to represent the flow within the blade row. The through-flow analysis 
avoids this inconsistency by solving for the flow bn the mean stream surface and by not assuming axial 
symmetry. The through-flow analysis only estimates the flow on the mean stream surface and the 
inconsistency in the calculation of vorticity is introduced by interpreting the solution as if it were axially 
symmetric. 

2.3. The Finite Dfference Approximation. 
Many finite difference approximations use a rectangular grid of points, since this leads to simple 

expressions for the inter-dependence of the function values at neighbouring grid points. However, for 
calculating the flow through a turbomachine of arbitrary shape, a more suitable form of grid is a distorted, 
or non-rectangular mesh which is straight in only one direction. Figure 2 shows two types of distorted 
grid. In the quasiorthogonal grid the straight lines are chosen to lie approximately normal to the local 
direction of flow, while in the parallel grid, the straight lines are all parallel to the y axis. The quasi- 
orthogonal grid is well suited for calculating the flow through a turbomachine, but the parallel grid is 
adequate ['or many problems and requires less computer storage. The parallel grid was therefore chosen 
for the computer program to calculate the through-flow solution. 

The distorted grid consists of m lines parallel to the y axis, each line having n equally spaced grid 
points between the inner and outer casings. By definition, the machine casings form curved grid lines so 
that there are no additional difficulties for grid points which lie close to the boundaries. The spacing of 
the parallel lines need not be uniform and where necessary, it can be varied locally. In the y direction, 
there is an automatic refining of the grid when the channel width is reduced. 

The analysis has been presented in terms of Wu's special derivatives for the flow on the mean stream 
surface. The distorted grid also lies on this surface, but in solving the principal Equation (30), the special 
derivatives do not introduce any additional complication and may be treated as normal partial derivatives. 

The derivatives with respect to x and y at the mesh point (i,j) of Figure 3 can be expressed in terms 
of the function values at the neighbouring grid points, together with a truncation, or error, term which 

Of must be small. There is clearly no difficulty in forming the finite difference approximation for ~--, 
oy 

(~ff ) f(i,j+ 1)--f(i,j- 1) 
~-0 [ko 2 ] 

0Y i,j 2k0 " 
(31) 
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There are no simple general expressions for the derivatives in the x direction, but these can be formed 
in the following manner. A function e can be defined as 

o~ = ~ apq f(p,  q) (32) 
P,q 

wheref(p, q) is the function value at the grid point (p, q) which lies close to (i,j) and the coefficients apq 
are chosen so that ~ approximates the required derivatives to a suitable order of accuracy. 

The principal Equation (30) is 

a20. 020 
aX E t-~y z = q(x, y) 

and the finite difference approximation for the Laplacian operator is obtained by choosing the coefficients 
apq such that 

2 2 £30 £30 =~+7+uEkg] 

where ko is the local spacing of the grid points in the y direction. When the Taylor series are substituted 

£30 £30 a20 a30 
into Equation (32), there are ten conditions to be satisfied; the coefficients of 0, 

£3x' Oy' £3x@' ~X 3 '  

£330 £330// and £331// (~20 £320// 
Ox2£3y, £3xay~ 2 ~ must all be zero and the coefficients of ~-~x 2 and --£3y2 must be unity. In general, 

the Laplacian operator can be approximated by the function values at the ten points shown in Figures 
3a and 3b. However, for certain conditions, there is more than one solution for apq and the method of 
solving for apq becomes ill-conditioned with singular matrices. This difficulty can be overcome by taking 
a different set of grid points on four grid lines, but this would increase the amount of computer storage 

required for the problem. An alternative solution is to relax the condition that the coefficient of ~-~-~ 
£3x 

_ £340 
must be zero and to replace this by setting the coefficient o t ~  to zero. This is equivalent to expressing 

the principal equation in the form, 

m 
a~0 £320 £30 £30 
¢3x2 t-~yz + E-~x = q(x, y)+ E £3--x 

= Q(x, y) (33) 

where 1 1 1 
E = 2 (Xi+l-Xi)  (xi---xi-i i  

By using this form of the principal equation, there can never be any difficulty in evaluating the coefficients 
apq and the width of the resulting band matrix is minimised. 

i1 



For most grid points, the function E is small, but it can be of the order 1/l. In order to maintain an 
overall accuracy of the order, k20, or l~, or higher, it is necessary to develop a finiie-difference approximation 

for 90 g0 (?x such that E (q~ is calculated with sufficient accuracy. This approximation can be obtained by using 

the function values at the ten points shown in Figure 4 and choosing the coefficients a~q so that 

c~ = 0 ~ + 0  11 

The finite-difference approximation for E ~ is then obtained to an accuracy 0 [/~], or higher. The first 

derivative with respect to x is required many times in the calculation and the coefficients %,1 are therefore 

stored for use with an Algol procedure which calculates Of for any function f which is defined at the 
c~x 

grid points. This procedure is used later in the program for calculating the function Q(x, y). 

2.4. The Boundary Conditions. 

At inlet to the turbomachine, the three velocity components are given along with the stagnation 
enthalpy and density. The stream function is therefore defined for the first straight line of the grid, the 
upstream boundary. Since the inner and outer casings of the machine are also the limiting streamlines, 

0(i, 1) = 0(I, 1) 

and 0(i, n) = 0(1, n). 

there being n grid points on each line. The downstream boundary condition is not easily defined when 
the flow is neither axial nor radial and for simplicity, it is assumed that the shape of the exit duct is such 
that the stream-function distribution is the same on the last two lines of the grid 

O(m,j) = O(m- 1,j) 

there being m lines in the grid. For  an axial flow machine, the exit duct should therefore have a constant 
hub to tip ratio and the grid should extend sufficiently far downstream for the flow to be almost axial. 

2.5. The Band Matrix Equation. 

The finite difference approximation for the principal Equation (33) and its boundary conditions can 
be written in the matrix form 

[M] .  [0]  = [Q] (34) 

where [0]  and [Q] are the column vectors formed by O(i,j) and Q(i,j) and M is a band matrix. If the 
grid consists of m straight lines and n points per line, then the matrix [M] has ( m - 2 ) ( n - 2 )  rows and 
columns and the width of the band is (2n-1) .  Only the band of non-zero elements is formed and stored 
in the computer. Equation (34) is solved by calculating the band triangular factors [L] and [U] where 

[L] .  [M] = [ u ]  

12 



and then solving the Equation 

[U]  [#J] = [L ] .  [Q] (35) 

The matrices [U] and [L] are an upper band matrix and a lower triangular matrix respectively, but 
the information contained in [L] is stored in the computer as a lower band matrix. The matrices [U] 
and ILl remain unchanged throughout the calculation. The subroutines for solving the band matrix 
equation were available as user-code subroutines for the KDF9 computer at the National Physical 
Laboratory. 

2.6. Limitations on the Grid Shape. 

It is difficult to give a general formula for the dependence of the truncation error on the local shape 
of the grid. However, it is clear that this error will increase as the grid is distorted from a square shape. 
The form of the grid suggests that the following limitations should be specified, 

y ( i - 1 , j +  1) > y(i,j) > y ( i - 1 , j - 1 )  

and y(i+ 1,j+ 1) > y(i,j) > y(i+ 1 , j -1) .  

In practice, these conditions can always be satisfied by reducing the local spacing of the grid lines. 

2.7. Irreversible Flow. 

There are several methods for introducing the effects of irreversibility into the flow calculation. One 
simple method is to define two local polytropic efficiencies, 

Ahis 
tlc = ~ for compression 

and Ah for qT = ~ i s  expansion 

where Ah~s is the change in enthalpy for an isentropic process having the same initial state as the actual 
process. The changes of entropy and enthalpy are then related by 

and As 7 ( 1 I~  ( _ ~ )  . . . . .  ~ In 
R 7 - 1  q 

(36) 

For tlc ~ 1 and rLr ~< 1, one of these entropy changes is positive and the other is negative. But in an 
adiabatic flow, the entropy can only increase or remain constant in the direction of flow. The computer 
program is therefore made to examine the local change of enthalpy along the streamline and to take 
the appropriate positive increase in entropy. 

The local polytropic efficiencies are used as a simple method for relating the local changes of enthalpy 
and entropy and they are not used elsewhere in the calculation. The procedure for calculating the entropy 
is a self-contined section of the program and it can easily be replaced by an alternative method for 
estimating the entropy change. 

13 



This method of introducing the effect of irreversibility is basically inconsistent in that the equations 
of motion remain those for a reversible flow. It is possible to avoid this inconsistency by including small 
frictional forces in the equations of motion, but at present, there is no reliable method for estimating 
these forces. 

3. The Method of Solution. 

The method of solving the modified principal Equation (34) for the stream function ~ is to solve for 
a given vector [Q], to correct [Q] using the new flow pattern and then to repeat the cycle of calculation 
until a criterion of convergence is satisfied. Whilst this is an accurate description of the overall method 
of solution, there are several points of detail which require further explanation and these Will now be 
considered. 

3.1. The Calculation of the Gas State. 

The variations of the velocity componeiats and the gas state through the machine are obtained by 
tracing the local streamline pattern. The solution for the stream function 0 defines the streamline pattern 
and by differentiating 0 with respect to x and y, it is possible to calculate the products pVy and pV x at 
each grid point. The flow and the gas state are defined at the upstream boundary, the first line of the 
grid, and the solution for the gas state and flow may be extended line by line through the grid. The 
streamline passing through the grid point C on the grid line i of Figure 5a is traced back to the point A 
on the previous grid line, where the flow and the gas state are already known. The method for calculating 
the flow at C is dependent on the location of C and takes one of the following forms : 

(a) Duct flow 

If the point C lies in a duct region, then there is no change of stagnation enthalpy or angular momentum 
along the streamline AC, 

" C  ~ HA 

and (rVu)c = (rVu)a. 

Equation (7) for the density can be expressed in the form 

= ( h 
po 

(37) 

where the subscript 0 refers to the stagnation state far upstream of the machine. Equation (37) can be 
arranged as 

(38) 

where 2; = p [ H° \ ~ e (~~)  
- - /  V2) (39) Po H -  

and 0 = 
- + ( p V , )  

2p 2 H o 
e , ,  (40) 

14 



For  a given value of q), the solution of Equation (38) for E is obtained by referring to a table of 
corresponding values of q5 and Y. which is stored in the computer. This is far simpler and quicker than 
solving Equation (38) by a Newton-Raphson process and it avoids any difficulty with convergence. 
When E is known then the density can be calculated from Equation (39), it being assumed that the 
entropy is already known, or can be estimated. 

It is possible that on an early iteration, q) > q~m~, at some point, which indicates that the solution 
for @ has not yet converged. For this condition, there is no real value of 5'. to satisfy Equation (38) and 
the computer program sets q) = • . . . .  prints out a warning message and continues with the calculation. 

(b) Stator  row 

If C lies within a stator row, then there is no change of stagnation enthalpy between the points A and 
C. 

H c = H a 

At C the flow must lie on the mean stream surface and the velocity component V, is given by 

V~ = - Vy Tan 2 -  V x Tan # 

or . (pV,) = - (pVy) Tan 2 - ( p V j  Tan/~. (41) 

The equation for the density can again be expressed in the form 

but the definitions of q~ and Z are now 

m= p__(Ho] "y-.1 e ~ g ., 

-~P~-~o J e ~ g ) .  (43) 

(42) 

For  a given value of ~, the corresponding value of Z is obtained from the ~, E table and the density 
may then be calculated from Equation (42). When the density is known, then it is possible to calculate 
the three velocity ' components fit C. The method of calculation assumes that the entropy is already 
known and this will be discussed later in more detail. 

(c) Ro tor  row 

If C lies within a rotor row, then the relative stagnation enthalpy I remains constant along the stream- 
line A C ,  

n c  = HA + [(rV.)c--  ( r < h ]  • (44) 

Since C lies within a blade row, the flow at C must lie on the mean stream surface and the product p W ,  is 
given by 

pW, = - (pVy) Tan 2 - ( p V j  Tan/~. (45) 
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As before the density Equation can be written in the form 

where Z and • are now given by 

and ~ = 

__Ho 

- (p vx) ~ + (p v~) ~ + (p w.)  ~- 

2p 2 H o 
Ho 

(46) 

(47) 

It is thus seen that the q), E table can be used again to obtain the value of Z and the density can then be 
calculated from Equation (46). When the density is known then the three velocity components and the 
stagnation enthalpy can be calculated at the point C. 

The use of the q), E table for calculating the density was described by Wu z and it is an important feature 
of this computer program. The solution of the density equation is required several thousand times in a 
single problem and it is therefore important to have a method of solution which is fast and cannot diverge. 
The tabular method meets these requirements. The q~, Z table is formed by the program using the formula 

q) = Z 2 - Z ~  +1 

where i' is the ratio of the specific heats for the gas. If the fluid is incompressible, then the density is set 
to Po at all points in the grid. 

When calculating the density at the point C, it is assumed that the entropy at C is known. It is possible 
to calculate the density and enthalpy for a given value of entropy and then to correct the entropy and to 
repeat the cycle of calculation until the process converges. In practice this is not necessary and the method 
for estimating the density can be based on the entropy field calculated on the previous iteration. When 
the flow and the gas state at C are known, then a value is calculated for the entropy at C and this is used on 
the next iteration. The calculation of the entropy therefore lags one iteration behind the main calculation, 
but as the solution for ~9 converges the error due to this lag disappears. 

3.2. The Trailing Edge. 

In general, the trailing edge of a blade row does not coincide with a grid line and it is then difficult 
to estimate the flow downstream of the blade row. In Figure 5b the streamline passing through the grid 
point C is traced back to the point A on the previous grid line and B is the intersection of the streamline 
with the trailing edge. It is assumed that the gas state and the derivatives of the stream function are 
locally linear, so that 

BC AB 
PB = ~ Pa + ~  PC. (48) 

Since it is necessary to specify the position of B before the streamline pattern is known, it is assumed 
that 

AB DE 

AC DC 
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where DC is the curved grid line which intersets the trailing edge at E. This is a simple method for 
estimating the flow at the trailing edge, which need not be straight, and it allows the calculation of the 
gas state to pass from a blade row to a duct region. 

When estimating the flow at the trailing edge, there is a further difficulty in that the gas state at C 
is not yet known for the current iteration. The program therefore uses the gas state at C from the previous 
iteration when calculating the flow at the trailing edge. The error due to this approximation is reduced 
as the solution for ~9 converges. 

3.3. The Mach Number Limitations. 
Wu 2 has shown that the condition for the principal equation to remain elliptic is 

(a) if the angular momentum is specified, 

rV. = G(x, y),  

then Mm < 1 

where Mm is the meridional Mach number, 

M . =  + 
c 

c being the local velocity of sound in the gas, 

(b) if the velocity components are related by 

then 

where M~,~ is the relative Mach number, 

W~ = - V r Tan 2 - V~, Tan/~ 

= g(v~,  v~) 

M r e  1 < 1 

= Vy + W u M,~I ~ /V~+ 2 2 

It can also be shown that the equation used for calculating the density 

has two solutions for Z, one for M m < 1, or Mre~ < 1, and the other for M m > 1, o r  Mre 1 > 1, To avoid 
ambiguity and to ensure that the principal equation remains elliptic, the computer program is restricted 
to flows where at each grid point 

(a) if G(x, y) is given, then Mm < 1 

(b) ifg(V x, Vy) is given, then Mre 1 < 1. 
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It should be noted that the Mach number limitation is determined by the method of calculating the 
circumferential velocity component rather than by the physical location of the grid point. If the grid 
point lies immediately downstream of the trailing edge and 9(V x, Vy) is given as though the point lay at 
the trailing edge then Mre 1 must be less than unity, even though the grid point lies within a duct region. 

3.4. The Relaxation Factor and Convergence. 

When Equation (35) has been solved for ~, the new stream function for the k th iteration is defined by 
= 

The parameter ~ is a relaxation factor which is chosen to improve the stability of the iterative process, 
or to improve the convergence. The stability can be further improved by limiting the maximum change 
in the local value of the stream function on successive iterations, 

and 

O(1, n) being a boundary condition. The through-flow analysis is based on the assumption that there 
are no regions of reverse flow and the two limitations on ]~k-~k-1] do not add any further restriction 
to the analysis. A typical value for fl is 0.1 and c~ normally lies in the range 0"25 to 1'0. The local value 
of the effective relaxation factor is always less than, or equal to ~, but it becomes equal to c~ as the solution 
for ~ converges. The criterion for convergence is that 

at all points in the grid, typical values for 7 being 0.001 or 0"0001. This order of accuracy is normally 
obtained within 10 to 20 iterations. 

4. The Computer Program. 

The computer program is written in two parts with a private magnetic tape being used to transfer 
information to the second program. The first program forms the distorted grid, the finite difference 
approximations, the band matrix [M] and the band triangular factors [U] and [L] .  The grid data, 
the band matrices [U] and ILl and the coefficients for calculating the first derivative with respect to 
x are then stored on the magnetic tape. The second program reads back this information from the 
magnetic tape and then calculates the flow through the turbomachine. The use of magnetic tape allows 
the second program to be used separately, the basic data for a given turbomachine remaining stored 
on the magnetic tape. The second program performs the remaining calculations for any given set of 
boundary conditions. 

The programs are written in Algol for an English Electric KDF9 computer having a high speed store 
of 32K words. The programs each have a typical operating time of 3 to 7 minutes and the size of problem 
which can be analysed is limited to 

mn(3n+21) < 21,000 approx. 

where the grid consists of m straight lines with n points per line. Recent developments in the use of 
magnetic tape storage when solving band matrix equations should allow the program to be extended 
to deal with larger problems. 

In the following example m = 38 and n = 7 making mn (3n+21) = 11,172 which is about half the 
maximum value quoted for a 32K word store. 
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5. A Comparison between Theroy and Experiment. 
A detailed description of the full range of problems which has been investigated using this program, 

is beyond the scope of this Report. Instead one example is given where there is sufficient experimental 
data to permit a detailed comparison with the theoretical predictions. The experiments, which have 
been reported by Jeffs a, were perforfned on a low speed single stage axial flow compressor of constant 
hub to tip ratio. The overall layout of the compressor is shown in Figure 6, the axial velocity profile being 
measured at the planes A, B, C and D. Full details of the blading are given in Reference 3 and this is 
summarised in Table I. The hub radius of the machine was 5 in., the tip radius was 10 in. and the rota- 
tional speed was 1,375 rev/min. The comparison between theory and experiment is made for three mass 
flow rates corresponding to 

m 

v. 
- -  = 0"58 (surge point) 
U,, 

V .  = 0"65 (design value is 0.62) 
Um 

m 

V, = 0-75, 
U,, 

these being the values reported by Jeffs 3. 

The theoretical predictions were made for a grid consisting of 38 radial straight lines with 7 equally 
spaced points on each line, there being 10 lines upstream of the inlet guide vanes, 3 lines within each blade 
row, 3 lines between each pair of blade rows and 13 lines in the downstream duct. The grid extended 
from 2.1 blade heights ahead of the inlet guide vanes, to 2.9 blade heights downstream of the stator row, 
as shown in Figure 6. The calculations were made for a compressible flow using the design air angles 
given by Jeffs. The flow pattern was estimated for a reversible flow, t/c = t/r = 1 at all points, and also 
for an irreversible flow, qc = t/r = 0"9 at all points, these being arbitrary values for the polytropic effici- 
encies which were chosen to show the overall effect of irreversibility. It is difficult to estimate the correct 
values for the local polytropic efficiencies, since the analysis requires information about the local changes 
in entropy within the blade row, whereas all the experimental data relate to the behaviour of complete 
blade rows. 

The experimental and theoretical axial velocity profiles are compared in Figures 7 to 18 for the three 
mass flow rates. In all three examples, there is good agreement between the experimental results and the 
predictions for the reversible flow through the inlet guide vanes and the rotor row and the agreement 
is improved by introducing the effect of irreversibility. At exit from the stator and far downstream, good 
agreement between the reVersible flow and the experiments is only obtained at the highest mass flow rate, 

Va = 0.75. At the lowest mass flow rate, the agreement with the reversible flow calculation is only fair, 
U,, 
but again the introduction of irreversibility is seen to improve the agreement. According to Jeffs 3, the 
lowest mass flow rate corresponds to the onset of surge and the stator blades are probably stalled at the 
tip section. 

It is clear from the comparisons that the effect of irreversibility becomes more important as the flow 
passes through more blade rows; this is a cumulative effect. There is little difference between the reversible 
and irreversible flows through the inlet guide vanes, but on passing through the rotor and stator rows, 
the entropies at the hub and tip radii increase rapidly and there is a large difference in the velocity profiles 
at the downstream position. 
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The comparisons show that the through-flow analysis can give a good estimate for the flow in an axial- 
flow compressor. The agreement between the theoretical and experimental profiles is good, but it should 
not be difficult to improve on these results, particularly at the hub and tip sections, by allowing for the 
variation of loss and air exit angle with incidence and by including the effect of secondary flow. The 
comparisons have been made for a compressor which was designed for a radially constant axial velocity at 

v. 
- 0.62. Since this condition was not obtained, the comparisons are therefore made for 'off-design' 

U,, 
operation and better agreement would probably be obtained for a machine which was designed on the 
basis of the through-flow analysis. 

6. Conclusions. 

The matrix through-flow analysis has been known for many years, but the lack of suitable large com- 
puters has prevented the application of the theory. Wu 2 described the method for developing a computer 
program and in this Report a detailed description has been given of a program which can be used to 
analyse the flow through a wide range of turbomachines. The present work makes several contributions 
to the general problem of estimating the flow in a turbomachine. There are few restrictions on the shape 
of the inner and outer casings ; the calculations are now extended to the flow within the blade rows and the 
effects of blade thickness and taper have both been included in the theory. No simplifying assumptions 
have been made about the magnitude of the radial blade force component and the program can be used 
to analyse machines with blades which are not radial. 

The comparisons with the experimental results of Jells 3 show that the through-flow analysis can give 
a good estimate for the axial velocity profile in an axial flow compressor. The use of two polytropic 
efficiencies allows the overall effect of irreversibility to be demonstrated and it is hoped that further 
work may lead to better methods for introducing and distributing the losses which occur in turbomachines. 
Previous methods of analysis have been able to use experimental data on the behaviour of complete 
blade rows, but with the through-flow method detailed information is now required about the flow within 
the blade rows. 

The through-flow program requires a computer with a large high speed store which may prevent a 
wider application of this method of analysis. It may be necessary to develop an alternative method for 
solving the through-flow equations which does not require such a large computer. However, the project 
has shown that this is a useful method of analysis, that the flow can be calculated within the blade rows 
and that a general program can be written to analyse the flow in axial, radial and mixed-flow turbomachines. 
It will be recalled that a Mach number limitation exists in the current program which is mentioned in 
Sections 1 and 3.3. 
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LIST OF SYMBOLS 

Integrating factor, or surface thickness parameter 

Local velocity of sound 

Function defined by Equation (13) 

Specific heat by constant pressure 

Function defined by Equation (33) 

Force vector 

Functions apparent from the text 

Static enthalpy per unit mass 

Stagnation enthalpy per unit mass 

Relative stagnation enthalpy per unit mass I = H -  o)rV. 

Local spacing of the grid points in the y direction 

Local spacing of the grid lines in the x direction 

Lower band matrix 

Number of straight lines in the grid 

Band matrix 

Meridional Mach number 

Relative Mach number 

Number of points on each grid line 

Vector normal to the mean stream surface 

Function defined by Equation (30) 

Function defined by Equation (33) 

Column vector formed by Q(i.'~/) 

Radius 

Gas constant 

Entropy per unit mass 

Mean stream surface, S(r, z, 4)) = 0 

Time 

Temperature 

Blade speed at the mean radius 

Upper band matrix 

Velocity vector 

Axial velocity 
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Mean axial velocity 

Relative velocity vector 

co-ordinates with tilted axes 

Axial distance 

Ratio of specific heats 

Polytropic efficiency for compression 

Polytropic efficiency for expansion 

Angle between the zr and xy co-ordinate systems 

Angles which define the local shape of the mean stream surface 

Density 

Variable used in calculating the density 

Circumferential co-ordinate 

Variable used in calculating the density 

Stream function 

Column vector formed by O(i,j) 

Angular velocity of the blade 

Stagnation state far upstream 

Radial 

Circumferential 

x component 

y component 

z component 

derivatives taken along the mean stream surface 
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TABLE I 

C.123 compressor 

Relative-air Angles at Blade Exit (degrees) 

Radius (in.) 

I.G.V. 

Rotor 

Stator 

5"0 5"8) 6"66 

8"5 16'5 21 "6 

- 3"7 7"0 16"7 

8'5 16"5 21"6 

f 
7"5 

25"6 

25"6 

25"6 

i 

8.3) 

28.5 

33-4 

28.5 

9.1~i 

30.8 

40.1 

30.8 

(all angles measured relative to the axial direction) 

10.0 

32.2 

45.5 

32.2 
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