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Abstract

The Multiplication Table Problem and its Generalizations

Alexander (Sacha) Mangerel
Masters of Science
Graduate Department of Mathematics
University of Toronto
2014

Motivated by an old question investigated by Erdds (colloquially referred to as the ” Multiplication Table”
problem) and recent developments in its study by Ford and Tenenbaum, we investigate the fundamental
problem of locating the divisors of "most” integers in certain intervals. We generalize Erdés’ problem
to a certain class of Arithmetical Semigroups using Ford’s techniques. We generalize this problem
in a different direction by providing explicit estimates of ”restricted multiplication tables” in various

interesting cases.
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Notation

The letters x,y, z will denote positive real numbers, assumed large, while k,I,m,n,a,b,d will denote
(usually positive) integers, or elements of an arithmetical semigroup (see Definition 2.6 or Appendix
C). The letters p,q will denote prime numbers or prime elements. The letters C' or C’ will denote
positive, absolute constants, although the identity of these constants may change from line to line.
The letter € will be used to denote an arbitrarily small quantity which also may change from line to
line. A letter written in bold typeface such as a will denote a vector, the number and type of its
components made clear by the context. We use Landau’s standard notations: if f and g are functions
of a complex argument z, then: i)f(z) = O(g(z)) whenever there exists a positive constant C' > 0 such
that |f(2)| < Cg(z) for each z of large enough modulus; ii) f(z) = o(g(z)) if the quotient % -0
as z — oo (assuming ¢g(z) # 0 from some point onwards). We will also use the Vinogradov notational
conventions: f(z) < g(z) if f(2) = O(g(2)), f(z) > g(z) if g(z) < f(2), f(z) ~ g(2) if J;Ez; — 1 as
|z| = oo and f(z) < g(2) if g(2) < f(z) < g(z). The implicit constants will always be independent of

other variables, unless otherwise indicated using subscripts (e.g. f(n) =<y g(n) denotes the dependence
of the implicit constants on the variable M).

In the setting of Algebraic Number Theory, I, J, a, b etc. will always denote generic integral ideals, while
P,p will always denote generic prime ideals.

For d,n € N, we will write d|n if there exists an integer k such that n = kd; by analogy, we will write al¢
if there exists an integral ideal b such that ¢ = ab, noting that this means that ¢ C a. The Galois group
of a number field K/Q will be denoted Gal(K/Q) as is standard, or by G, where the context is clear.
We will write P*(n) and P~ (n) to denote the largest and smallest prime divisors of n, respectively,
and in the general context of arithmetical semigroups (which are defined in Chapter 2 and discussed in
detail in Appendix C), P¥(n) will refer to the largest and smallest prime divisors n according to the size
of their norms. The functions Q(n) := 3_ ., v and w(n) := 3,
factors of n, counted with and without multiplicity, respectively. We will label the arithmetic functions

1 will denote the number of prime

defined on arithmetical semigroups that generalize the classical integer counterparts by labelling the
functions according to the semigroup, e.g. Tx(n) denotes the number of divisors of an element n of an
arithmetical semigroup X.

If a,b € X, we denote by (a,b) € X the greatest common divisor of a and b, i.e., an element d of largest
norm (which is unique up to multiplication by elements with norm 1) such that d|a and d|b. We denote
by [a, b] the least common multiple of a and b, i.e., the element of smallest norm ¢ such that alc and b|c.
When more than one argument is considered, we write (a1,...,ax) and [a1,...,ax] to denote the ged
and lem, respectively, of the k-tuple of elements aq,...,a; € X.

We will use log; n to denote the k-fold iterated natural logarithm, i.e., loge = 1, log; n = logn and
log;, n = log(log,_; n) for each k > 2.

If S is a finite set, then |S| will denote the cardinality of S. Whenever we deal with a sequence of integers

A, we refer to the function A(z) := Y n<. 1 as the counting function of A.
neA



Chapter 1

Introduction

1.1 The Classical Multiplication Table Problem

Much of Analytic Number Theory is concerned with the behaviour of the primes, which generate the
multiplicative semigroup of natural numbers. By studying the nature and size of the prime factors
dividing integers, one can analyze the anatomy of integers. The problem of analyzing the divisors of
an integer, however, is not approachable with these methods. While the distribution and statistics of
prime numbers, described quantitatively by the Prime Number Theorem (PNT) can be used to supply
information regarding the number of integers with prime factors with certain constraints, the analogous
properties relating to divisors of integers in place of primes is much less tractable, as there is no analogue
of the PNT in this scenario.

In the 1930’s, a common investigation in Number Theory concerned the study of integer sequences and
their sets of multiples. Let A C N. The set of multiples of A, written M(A) is the set of all integers
{na : a € A;n € N}. It is not difficult to see that if B C A is the sequence obtained by removing, in
order, the elements of A that are divisible by smaller elements of A then M(B) = M(A) (for if bla then
a € M({b}) and hence M({a,b}) = M({b}); using this observation repeatedly, one arrives at the above
assertion). The sequence B with this property i.e., such that no two of its elements divide one another,

is said to be primitive. The study of such sequences was undertaken by Behrend, Pillai and others [12].
Definition 1.1. Let A C N and set A(z) := > o, ¢
are d(A) := limsup,_, v *A(z) and d(A) = liminf,_, . v A(z), respectively. If d(A) = d(A), their

common value is called the natural density of A and is denoted d(.A). A sequence of natural density

4 1. The upper and lower natural densities of A

zero is called a null sequence.

It was conjectured that dM(A) existed for every primitive sequence A. In 1934, Besicovitch gave the
following counterexample (see Appendix A for a proof): consider intervals of integers of the form (y, 2y]
for y fixed. This is indeed a primitive sequence since 1 < |u/u/| < 2 for any u,u’ € (y,2y]. For any
e > 0, it is possible to choose a sequence {yx}r growing sufficiently quickly that the sets of multiples
M ((yr, 2yx]) exist but vanish as k — oo, and that by taking A := NN UysoWe, 2uk], dM(A)) < e,
while d(M(A)) > 3. Hence, if € € (0, 3), then M(A) does not possess natural density.

A consequence of this result is that the sequence of integers with a divisor in an interval of the form
(y, 2y] becomes null, as y — co (Erdés provided a more precise formulation of the above counterexample,

proving that if ¢ (x) — 0 but z¥®) — oo as  — 0o (e.g. ¥(z) = (loglogz)~!), any interval of the form
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(y,y'T¥®)] also has the property that (y,2y] does [3]). That such a result was surprising suggests that
knowledge regarding the statistics of the divisors was limited.

In a seminal paper [16], Hooley introduced the function A(n) := maxuer 3_gj,.p<a<e, 1 and utilized it
in various applications in Number Theory. In the language of probability theory, A(n) is essentially
a concentration function for the divisor distribution function F,(t) := 7(n)~! > dn,a<¢ 1. From this
perspective, A(n) provides a tool to study the distribution of divisors of n in fixed intervals. In the early
1980’s, Hall (and subsequently Tenenbaum) systematically studied A(n) and its intrinsic connection to
divisor problems [13].

The following problem (colloquially christened ”The Multiplication Table Problem” by Erdds in the
1950s [4]) is relevant to the study of the distribution of divisors of an integer. Given N € N, let A(N)
denote the set of all products ab, where 1 < a,b < N. These are precisely the entries in an N-by-
N multiplication table. How many distinct products occur, i.e., what is |A(N)|? Tt is an elementary
fact that on a sequence of natural density 1, the number of prime factors (counted with multiplicity)
Q(n) ~ logyn, and for the significant (with respect to natural density) set of integers vz < n < z,
Q(n) ~ logyx. Therefore, on one hand \/z < a,b < x implies that z < ab < z? and for most such
products, Q(ab) ~ logyx? ~ logyx. On the other hand, the complete additivity of € implies that
Q(ab) = Q(a) + Q(b) ~ 2log, x. This observation (made by Erdds) therefore suggests that the products
ab are not generally elements of this density 1 sequence (and thus, in the main, belong to a null sequence).
This immediately implies that, at least, |A(N)| = o(N?). Later work, in particular by Tenenbaum, was
done to refine this to a more quantitative statement.

The following device was introduced, both for its independent interest and in order to approach this

problem.

Definition 1.2. Let 2 <y < z < z. The divisor distribution function is
H(z,y,z):={n<z:3dnst. de (y,z]}

In light of the above remarks regarding the distribution of divisors of integers, a systematic investigation
of H(x,y,z) has intrinsic value and lends itself to various applications, among which (Ch. 2 [13], see
Appendix B for proofs):

i) The fundamental identity of the Mobius function is that > djn #(d) = 0 for each n > 2. In sieving
applications, one must often limit the set of divisors of n in this sum to those bounded above by a given
parameter y, and it is natural to ask how much the sum over this truncated set of divisors deviates
from zero in such a case. For y > 1, Erdds and Katai attacked this problem by studying the function
M(n,y) := Z;‘JL p(d). Erdés and Hall showed [5] that limsup, . d{n : M(n,y) # 0} = 0. The

following is a quantitative improvement, derived using knowledge of H(x,y, z).

Theorem (Hall, Tenenbaum). Let €, := d{n : M(n,y) # 0} for y > 1. Then ¢, < (log y)flaﬁ, with

6 > 0 a computable constant.

The idea behind the proof is that the integers with non-zero M (n,y) must have a divisor m < y, such
that ¢gm > y for any prime ¢|n not dividing m (otherwise u(m) + pu(gm) = 0, since p is multiplicative
and p(g) = —1). This means that n is counted by H(x,y/q,y), where q := P~ (n).

ii) One can ask how large the divisors of an integer are in proportion to the integer itself. The following

theorem, whose proof relies on the asymptotics of H(x,y, z), addresses this question.
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Theorem (Hall,Tenenbaum). Let t > 1,u € [0,1]. Then h(u,t) := d{n : n'T < d< nt} is well-
defined.

To prove this, one first replaces the bounds on d in terms of n by bounds in terms of z when z/logz <

1—u

n < x, the remaining values of n being negligible with respect to density. By choosing y := "¢ and
z:= 7, one can use (modulo technical refinements related to sieve methods) H(x,y, z) to count them.
Subject to the precision of the estimates being used for H(x,y,z), one can even provide quantitative
bounds for h(u,t).

The seminal paper [27] by Tenenbaum gave strong upper and lower bounds for H(zx,y, z), according to
the sizes of y and z relative to z. In particular, when (y, z] NN fails to be a primitive set in the sense
given earlier, say for z > 2y, there is increased interdependence among divisors d,d’ € (y, z] of n, and
hence, such n will be overcounted if they are enumerated naively among the L%J integers divisible by
d, necessitating the use of different techniques to count them (we give an indication of these difficulties
in Appendix D). The main heuristic in Tenenbaum’s work is the following: suppose n is squarefree for
simplicity. Since n = Hmnp and any divisor d of n is a product ]_[]DeAp7 where A is a subset of the prime

factors of n, logd is a partial sum of logn = > logp. Relying on ideas that carry over rigorously

n
to the setting of divisors (Ch. 1 of [13]), Tenenbazljl‘m asserted that log d is uniformly distributed in the
logarithmic interval [0,logn] (this is discussed further below).

Tenenbaum’s estimates were later improved to an essentially best possible result by Ford. Using more
elaborate probabilistic arguments regarding so-called order statistics (see [8] for a description) and
ingenious technical manipulations, he removed the uniformity assumption, leading to upper and lower
bounds that are sharp up to multiplicative constants (depending on the values of y and z relative to x).
The main theorem in [9], in the single case z = 2y used in the applications mentioned above and in the

Multiplication Table Problem, is the following:

Theorem (Ford). Let 3 <y < \/z. Then

H(x,y,7) =< a(logy) ~*(loglogy) "2, (1.1)
where § :== 1 — (1 +loglog2)(log2)~* > 0.

(The most general result, valid for all z < /z, is found in [8]; it is worth mentioning that Koukoulopoulos
[20] more recently generalized the Multiplication Table problem to a count of how many distinct products
dy - -~ dj, emerge from multiplying k-tuples of integers (dy,...,d;) € {1,...,N}* for k > 3). One can

deduce from this theorem the following corollary:

Corollary (Ford). Let N > 3. We have

2

|A(N)| < ~(loglog N) 2. (1.2)

(log N)
(The proof uses arguments similar to those in Proposition 2.13).
Ford’s strategy in estimating H(x,y, z) in the context of (rational) integers is to recast the problem in

terms of the clustering of divisors. Define, for a € N,

L(a) := | J(log(d/2),log d], (1.3)

dla
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and let L(a) denote the Lebesgue measure of L(a). It is clear that L(a) < (log2) 3, 1 = 7(a)log2, and
a large deviation from this number suggests that many intersections (log(d’/2),log d’] N (log(d/2),log d]
are non-trivial, and therefore either d < d’ < 2d or d’ < d < 2d’. Occurrences of this kind undermine the
hypothesis that {logd : d|n,d < z} is uniformly distributed in [0,logn]. Indeed, with this hypothesis,

one expects that the interval (logy,log z], of logarithmic length log(z/y) = log 2, in our case, contains a
log 2

proportion of size Toga

of the 7(a) divisors of a over the interval [0,log a]. Thus, the expectation value of
the measure would be 7(a)log 2, which is not the case when many intersections occur. By establishing

estimates for L(a) for appropriate choices of a, he arrives at (1.1).

1.2 A Generalization to Algebraic Number Fields

Algebraic Number Theory demonstrates an analogy between the roles of integral ideals in number fields
and integers. Let K/Q be a number field, i.e., a finite extension field of the field of rational numbers,
and let Ok denote its ring of integers, i.e. the set of all a € K, such that there exists f(X) € Z[X] such
that f(a) = 0. The Krull-Schmidt theorem ([7], Ch. 5.3) asserts that any ideal I C O factors uniquely
(up to a permutation in order) into prime ideals, just as rational integers factor uniquely into rational
primes, as asserted by the Fundamental Theorem of Arithmetic. The statistics of these prime ideals also
follow a Prime Number Theorem of sorts, called the Prime Ideal Theorem (see Chapter 2), proven by
Landau in the early 1900’s [22]. There are, therefore, many generalizations of results in rational Number
Theory to algebraic number fields.

Let K/Q be a number field of degree M with discriminant Ag. For an ideal a, let N(a) = Nk(a) :=
|Ok /a| be its ideal norm (finite because any integral ideal is a torsion-free, finitely generated Z-module
with the same free rank as the O, and thus has finite index), and let B(N) := {a C Ok : Ng(a) < N},
i.e., the set of ideals with norm at most N. Define Ax(N) := {ab: a,b € B(N)}. In analogy to A(N),
one might ask how large Ax (N) is with respect to B(N)?.

A related problem is to consider the set A% (N) := {N(ab) : a,b € B(N)} of integers equal to norms of
products of ideals. In contrast to a study of A (N), studying A% (N) requires, in essence, counting the
products of ideals without accounting for the multiplicity of prime ideals lying above a given rational
prime (as discussed below). To begin a discussion of the strategy behind tackling this problem in the
particular case where K is a Galois extension of the rational numbers, we need some preliminaries from
Algebraic Number Theory and Galois Theory (see, for example, [1]).

Ok is a Dedekind domain and therefore admits unique factorization of integral ideals into prime ideals.
Let p € N be a rational prime. Then the principal ideal pOQ factors in K as a product Pllcl R S
where each P; is a distinct prime ideal of the extension, with P; NZ = (p). Moreover, k; = 1 if and
only if p ¥ Ak, where Ak denotes the discriminant of K. Because Ag € Z, it has only finitely many
prime factors and therefore, with the exception of finitely many rational primes, we need only speak of
unramified primes for which k; = 1 for all j. Let f(P) := [Og /P : Z/pZ] denote the relative degree of the
field extension induced by p for P lying above it. Since K is Galois, Gal(K/Q) acts transitively on the
primes lying above a rational prime, and thus f(P) = f(P’) for each P, P'|pOk. We may therefore refer
to the relative degree of f(P) as a function of the rational prime p above which it lies. The prime ideals
dividing pOp satisfy the relation ) PlpOs f(P) = M, and thus, according to the previous observation,
we may define wk (p) := M/ f(p) to be the number of prime ideals in the factorization of an unramified

prime p.
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Because the extension K/Q is normal, via a projection of the minimal polynomial, implicitly defined for
K, modulo P, the extension of quotient fields (Ox/P)/(Z/pZ) is Galois, and its Galois group is cyclic,
generated by the Frobenius element op of P, which lifts to an element of Gal(K/Q). As mentioned,
the Galois group of K/Q acts transitively on the primes in the factorization of p, and, under the action
of Gal(K/Q) induced on the Frobenius elements of these primes, we have rop7~! = o-(p)- When the
Galois group is Abelian, this implies that op = op/ for every P, P'|pOk. Otherwise, the action of
conjugation of Gal(K/Q) generates a non-trivial conjugacy class Cp containing o p, called the Frobenius
class of P. Because conjugation is an automorphism, all elements of the conjugacy class have the same
group order. Hence, the sizes of Frobenius classes depend on the isomorphism class of the Galois group.
Let D be the union of a set of Frobenius classes. Then (Ch. 3 of [17]):

[D|

Theorem (Chebotarev). With the notation above, |{p < x:0p € D}| ~ TGal(RT0)| Tog 7

The remarks above imply that the set of all primes with a given relative degree form a union of conjugacy
classes, and we may thus partition the set of all prime ideals in K according to these degrees. Let S
denote the set of all rational integers that are admissible as relative degrees of primes. This set is finite
because any s € S divides the degree of the extension [K : Q], which is assumed to be finite. We
can assign a number Cy < |Gal(K/Q)| to the cardinality of the union of conjugacy classes of primes
with relative degree s, and set ps := Cs[K : Q]71, its density relative to the set of all primes in K, as
prescribed by Chebotarev’s theorem.

The ideal norm satisfies the formula Nk (ab) = Nk (a)Ng(b) for any two integral ideals a, b. Further,
the ideal norm of a prime P lying over a rational prime with f(p) = r satisfies Ni (P) = p". Therefore,

one may express the norm of any ideal J as

No =TINc@y =TIl TII »| - (L4)

P|3 s€S Pl3
F(P)=s,PNZ=(p)

Let P denote the set of all rational primes, and for s € S, let P; := {p € P : f(p) = s}. Also, let
Ns:={neN:pln=pe P Itis clear that N(J) = [[,cqm}, where m, € N,. Moreover, because
{Ps : s € S} forms a partition of P, every ideal norm can be written uniquely in the form of (1.4), up

to permutations of divisors. Therefore, the maps

s : N—=N,, n— Hp”

pY|[|n
PEPs

are well-defined for each s. By determining the number of divisors of 7s(n) for each s € S, we can
determine the size of A% (N).

The above technicalities do not, however, factor into a determination of the order of magnitude of
|Ax (N)|. Indeed, it will be apparent that with no more than the Prime Ideal Theorem and |B(N)|,
referred to above, we can solve that problem using Ford’s methodology. In fact, his argument can be
applied to a much broader range of settings, namely a certain class of arithmetical semigroups (for a
discussion, see Appendix C).

We will prove the following results:

Theorem 1.3. Let K/Q be a number field (not necessarily Galois). Then with the notation above, for
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>4 and 3 <y < ./x,

x
Hg(2,y,2y) < —————3- (1.5)
(log y)? (log )2
Therefore, we have the estimate
N2
Ag(N)| =< . 1.6
A= g N0y M1 o

The deduction of the second assertion from the first is made in Chapter 2 (see Proposition 2.13). Note
that this order of magnitude has the same form as that given in (1.2), modulo the dependence of implicit
constants on the choice of the number field K. The proof, as mentioned, follows Ford’s method closely
and is, at the very least, expository of his strategy.

Next, we have the following upper and lower bounds on the divisor distribution functions Hg(x,y, z),

defined for each s € S, when z = 2y.
Theorem 1.4. Let N € N and let K/Q be a Galois number field of degree M = [K : Q]. Let s € S.
Then, uniformly for 2 <y < /z,

T

Hy(x,y,2y) < )
02 = T (log )70 (logy (3)

(1.7)

In the next section, we will deduce the following estimate for |A%-(N)| as a corollary of this last theorem

(which we quote again as Proposition 2.14).

Theorem 1.5. Let K/Q be a Galois number field and let S be the set of all possible relative degrees of
prime ideals of Ok. Set t :=|S| and let A% (N) denote the set of all norms N(ab) for a,b € B(N).

Then ) .
2147 (X jea s; 1)
371

Ay =Nty N

e (1.8)
AC{Tt} (log Z\f)|f“|‘5(log2 N)%\A\

(The leading order term in any such sum depends on the nature of S, so we leave it in this form in
general).

Broadly, the outline of this thesis is as follows. In Chapter 2, we provide lemmata (giving full proofs
wherever necessary) to be used in the development of our main theorems. In particular, we prove that, in
order to study |Ax (N)| in a general number field and | A% (N)| in a Galois number field, it is sufficient to
quantitatively describe the functions Hg (z,y,2y) and Hg(x,y, 2y), respectively. In Chapter 3, we walk
through Ford’s strategy in a general setting which simultaneously addresses the problems of determining
|Ag (V)| and |A% (N)| by providing estimates for Hx and for H,. In Chapter 4, we show how some
of the prior arguments apply in the setting of rational integers, to cases in which the set of products is
restricted to shifted sums of squares, i.e., u? + v? + s = ab for s fixed and a,b < N, as well as shifted
squarefree numbers, i.e., n + s = ab where p?(n) = 1. Chapter 5 is split into four appendices in which,
among other things, we discuss: i) applications of the function H(z,y, z) due to Hall and Tenenbaum;
ii) the subject of Arithmetical Semigroups, the theory of which provides the framework for our general

treatment of the Multiplication Table problem.



Chapter 2

Preliminaries

In this section, we prove (or cite references to proofs of) results that will be useful in Chapters 3 and
4, with a focus on clarity and completeness. Throughout, we assume that K/Q is an arbitrary (unless
otherwise specified to be Galois) number field, with discriminant Ax and degree [K : Q]. All implied
constants, unless otherwise indicated, will depend at most on K.

It will be necessary to estimate the number of ideals with norm bounded by x that satisfy a certain
constraint on their prime ideal factors. To this end, we need an estimate for the number of ideals with

norm bounded by zx.

Theorem 2.1 (Dedekind-Weber). There exists a constant Ax depending only on K such that for any

r>1,
Z 1=Akgx+ Ok (xl_#> ,
N(a)<z

where m := [K : Q.

Proof. See Theorem 11.1.5 of [7] for a guided exposition, and the precise statement of the value of Ag

(the error term here is not best possible, but suffices for our application). O

One relevant constraint is that an integral ideal have a large squarefull part. By a squarefree ideal, we
mean an integral ideal a = plfl --pkm  where each k;j = 1; in contrast, a squarefull ideal has k; > 2
for each 1 < j < m. It is thus clear that we can decompose any integral ideal a as a = bc, where b is
squarefull, ¢ is squarefree and the two parts are coprime, by taking b to be the product of prime divisors
with k; > 2.

Corollary 2.2. For any 3 <y < \/z, the number of integral ideals a with N(a) < x and squarefull part
having norm at least (logy)* is O (m)

Proof. This number is clearly

SR SIS SR

N(be)<w N(0)>(logy)? N(c)<z/N(2)2
N(b)>(logy)*



CHAPTER 2. PRELIMINARIES 8

where 92 = b. Applying Theorem 2.1, we get a bound of

1 o0 du z
< < w2
<24gz Y N(@)?2 ~ QAKZ/< )2 U O ((logy>2> ’

N(0)>(logy)?

as claimed. O

As in many problems in classical multiplicative Number Theory, the statistics of prime ideal divisors are

important to the arithmetic of ideals. We will thus need a description of these statistics.

Theorem 2.3 (Landau’s Prime Ideal Theorem). Let mx (x) denote the counting function of prime ideals

=g 1 +0n ()

Proof. See [23]. O

with norm < x. Then

From Theorem 2.3, we may deduce the following consequences, which shall be play a role in this chapter

and the next.

Corollary 2.4 (Mertens’ Theorems for Ideals). The following holds:

1) There exists a constant cx depending at most on K such that

1 1
Z WzlogQ:r—i—cK—&—OK (loga:>. (2.1)

N(p)<z

Hence, for any u < N(p) <w,

1
[I 0-Ne™H "~
u<N(p)<v &

it) For any a > 1, ZN(p)gz W = Og,a(1).

iii) We have
Z log(N(p)) ==z (1 +0x (10;1:)) ,

N(p)<z

as well as

log N
Z g N(p)

=logz + Ok(1).
N(p)<z ()

Proof. These are standard exercises in partial summation. The details are provided below for the sake
of completeness.

i) From the theory of Stieltjes integration, we can write

N%;xN%p):/mid 2! :/mid{lotgt(l"*‘of((l/logt))}

N(p)<t

_/“ d /ﬂ” o (1
~ Jo- tlogt K 5 t(logt)? K \logz
1

1
=1 —1 2—bg——
062 T — 1082 Klog2 +Ox (logz) ’
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where bg is a constant implied by the error term of Theorem 2.2. This establishes the first claim, where
ck = —logy 2 — bkﬁ.
We prove ii) and use it to show the second part of i). Since t~(1*€) is an integrable function on (1, c0),

letting € := a — 1 > 0 (completely determined by «), we have
1 S| |
N(p)<z N(p)<t
The second statement of i) now follows:

[I a-Ne™H=ep|~ > logl-N@E™|=exp| > No'+ > Zkzv*tmk

u<N(p)<v u<N(p)<v u<p<v u<N(p)<v k>2

— exp <1og (Eii) (1+ 0(1))> ~ logv

logu’

since the double sum in the second last line clearly satisfies

1 1 1 1 1
2 LANGE S 2 NGPioNGT < w0 ()

N(p)<vk>2 u<N(p)<v u<

by ii).

iil) Similarly, we have

N(pZleogN(p)—/Qlogtd doa —/7dt—|—OK (/2 logt>_x+0K (1ogx)’ (2.2)

N(p)<t

T dt

= 2~ £ as © — 00. The second assertion now follows from
1 logt log x

since li(x) :

log N 1
3 ng@()m:/_td 3" logN(p)

N(p)<z N(p)<t

by applying (2.2). O

To evaluate |A% (N)|, i.e. the number of integers representing products of prime ideals, using Ford’s
argument, we will need an effective form (with the error term given below) of Chebotarev’s theorem in

the form of (2.1), valid for each s € S (for the appropriate definitions, see Chapter 1.2).
Lemma 2.5. Let x >3 and s € S. Then

1
Z — = pslogy x + co + Os (e_c”logw)
p

p<z
PEPs

where cg,c1 are constants depending at most on s, and ps is the ratio of the size of the union of all
conjugacy classes containing Frobenius elements of primes of relative degree s to | Gal(K/Q)| (see Chapter
1.2).
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Proof. Define
b= Y log(Ni(p)).

N(p™)<z
ptAg. f(p)=s

Consider the subgroup H = (g) < Gal(K/Q) for g an element of a conjugacy class counted by Cy, and
denote by H its group of its characters. Invoking the exact formula derived by Lagarias and Odlyzko
(Thm 7.1 in [21]), we have for any 2 < T < z,

xf z(log )2
@ =ple-Sae| 2 ooyl +0(“§))7

‘ . P P
xX€H P:ﬁJr‘t;y‘:éIq{(p):U p:ﬁ/ﬁ(ﬁp%:(l
where (x is the Dedekind zeta function for the extension K/Q, and the sum over p includes only non-
trivial zeros, i.e., excluding {—2k : & € N}. The sum over p in brackets will be included in the error
term, and we may therefore ignore the contribution of the various characters of H.
Let € > 0. Heath-Brown’s theorem [15] regarding zeros of Hecke L-functions shows that, uniformly in

the interval o € [3, 1],
N(o,T):={p=B+iv:Cx(p) =0, BEo,1], 7| < T}H < T (log T)*,

where ¢ = ¢(T') > 2 is a positive constant depending at most on 7. By the symmetry of zeros about the

line o = % and about the real axis,
xP x g2
Y. =1 ) > —<dr Y T NO-2ET)
pily|<T p 1<k<logy ® 1-2-k<p<1—2—(k+1) P 1<k<logyz ~
lvI<T
_o—(k+1) 2(c+e)y—2~ (F+D
A T T (ete)27F A (z/T )
L zlog™T Z 1_27kTC€ =zxlog” T Z I
1<k<log, x 1<k<log, =

log 2
log x

logT
< zlog, xlog” T exp ( (logz —2(c+€) logT)> < xlog™ T exp (—2(6’ +€) o8 ) ,

log

where ¢ is chosen slightly smaller than ¢ to compensate for the log, = factor in the previous expression.
Choosing T such that logT = /log z, one arrives at

ps(x) = psx + O (Csx(exp (—c"\/@) (log% z + log? x))) = psx+ O (C’Sx exp (—01 \/@)) i

Note, from the definition of 1, that

Yo(r)= Y log(Nk()+0|[s > logp|= > log(Nk(p)) + Os(w? logz).

Ng (p)<=z pks<az Ng (p)<z
ptAE, f(p)=s k>2 ptARK, f(p)=s
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Thus, by partial summation, we get

1

1 xs 1
Yo Y maw ol mato

p<z 1
pEPs Ng(p)<zs
ptAE, f(p)=s

~ . c1/logt)

P /% tlogt / / lgteXp< °8
1

= pslogy  + ps(log S log, 2) + O (exp (_Cll\/log x)) ;

where xo was chosen as large as possible, such that log zg > exp(c1v/logzg), and ¢} is chosen to bound
(log x)~! exp(—c1v/log ). This completes the proof. O

We note here that the error term in the above is stronger (i.e., smaller) than O <logx), which will be
needed later (see Lemma 2.4).

We have therefore demonstrated that the semigroups of: i) integral ideals of a number field K/Q; and
ii) integers with prime factors constrained to have a fixed relative degree, both have an associated set
of prime elements that are statistically well-described. We may therefore prove sieve estimates in the
following, more general framework, with subsequent application to our problems (for a more detailed

discussion, see Appendix C).

Definition 2.6. An arithmetical semigroup is a triple (X,Px,Nx) where X is a semigroup (i.e. a
multiplicative monoid with identity) generated by a set of elements Px and Ny : X — N is a function
that satisfies the following properties:

a) If 1x denotes the identity element of X then Nx(lyx) = 1;

b) For any M > 0, the set {x € X : Nx(z) < M} has finite cardinality (informally, the ball induced by
Nx of radius z in X is finite).

¢) For any =,y € X, Nx(zy) = Nx(2)Nx(y).

When the generating set and norm function Nx are understood, we abuse notation and say that X is

an arithmetical semigroup.

With this greater level of generality, we will be able to tackle the estimation of both |Ax(N)| in a
general number field K, and |A% (N)| when K is Galois, using a single argument, provided in Chapter
3. We note that by assuming Axiom A (see Definition 5.6), which is the analogue of Theorem 2.1 for
the number of elements of norm Nx(a) < z in a general arithmetical semigroup X, we may prove the
analogues of Corollaries 2.2 and 2.4 in X (see Appendix C for an overview). These results are proven the
same way, using the norm Nx in place of the norm N = Ng. In our subsequent treatment, therefore,
we use the more general language of arithmetical semigroups.

Let (X, Px, Nx) be an arithmetical semigroup. We will need a way to quantify the number of elements
in X whose prime divisors have large norm. This will be shown to be small, and therefore relegated to
the error term. To this end, we use the following analogue of a classical sieve result proven by Halberstam
and Richert. In the statement below, a multiplicative function is a homomorphism f from X into the

unit group of a field, i.e., satisfying f(ab) = f(a)f(b), provided that a and b share no prime divisors .

Lemma 2.7. Suppose f is a real-valued, non-negative, multiplicative function for which there exist
A, B > 0 such that:
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i) ZNX V<z f(p)log Nx(p) < Az

i) ZV>2Z f(P¥)Nx(p)~"log(Nx(p)") < B. Then for any x > 1,

fla)
> fla A+B+1)logx > N (a)

Nx(a)<z Nx(a)<z

Proof. Set S(x) := > n (a)<, f(a) and M(z) := 3N (0)<s % Then we have

x
x)logx = Z f(a)log Nx(a Z f(a logmzsl—i—Sg—i—Sg,

Nx(a)<z Nx(a)<z

where, as a consequence of the equation log Nx(a) = > .|, log Nx (p”), we have set

Sii= Y Y f(mp)logNx(p)

Nx (a)<z 2=7P

(m,p)=1
Nx(p)<zv=2 Nx(m)gw

(m,p¥)=1

S3 1= Z f(a)log N;(a)'

Nx(a)<z

By the trivial inequality logy <y for y > 1, S5 < M (z). Since log(Nx (mp”)) < xlog Nx(p”),

Ss<z S Y J@")10g Nx(®)” ) 1o N (p)) < Bab(a).

vip<erzs X"
Finally,
Si< > fm) >, f(p)logNx(p) < AzM(x)
Nx(m)<z Nx(p)SNX’”(m)
and the lemma follows immediately upon division by log x. O

Using Lemma 2.7, we will be able to provide the upper bound implied by the following statement which

allows us to focus on elements with prime factors of small norm with negligible losses.

Theorem 2.8. Let o € (0,1] and let (X,Px,Nx) be an arithmetical semigroup satisfying an a-prime

element theorem, i.e.,

mx(@) = {Nx(p) <z :p e Pa)] :aé <1+o< ! ))

log x

Write ®x (x,2) := |{Nx(n) < x: Nx(P~(n)) > z}|. Then, uniformly for 2 <y < %

T

o =
x(@2) =a (log z)t—<(log )
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Note that by partial summation (as in Corollary 2.4), the hypothesis on 7x (x) implies the estimates

> Nx(p) ™' =alog,z+0(1) (2.4)
Nx(p)<=
[T a-me = (20 (25)

u<Nx (p)<v
PEPx

Proof. The proof follows a line of argument suggested in Ch. 0 of [13]. Let x(a, z) be the characteristic
function of the set {Nx(n) <z : Nx(P~(n)) > z}, and note that this is a multiplicative function. It is
easy to see that |x(p, z)| < 1, with [x(p, z)| = 1 whenever Nx(p) > z. For any € € (0, 3), and uniformly

for z < /x,

> x(p,2)logNx(p)= > logNx(p) <=
Nx(p)<=z z<Nx(p)<z
—v — —€ —v 1
> X, 2)log Nx (p")Nx (p) ™" <> Nx(p) 29 Nx(p) ™ <) Ny <1
p,v>2 D v>0 p NX(p)

Applying Lemma 2.7 and using (2.4) and (2.5), we have

T 1
= log x Z

N
s<Nx (P~ (@) SN (P (@ <z VX (@)

x PN T loga\“ x
= 1-N h~t : = .
log H ( x(p) )7 < log z (logz) (log z)1==(log z)«

2<Nx (p)<z

~—

x x(a,z
P = E —
x(@2) x(a,2) < log Nx(a
Nx (a)<z

~

a<lzx

This last upper bound holds for all  and z satisfying = > z.
For the lower bound, we consider two cases, according to whether or not i <z < %x In the first case,

the hypothesis on Px implies (counting only prime elements among those with norm > z)

Ox(wz)= Y 1ZWK(x)—WK(Z):/xdWK(t)>>/w it gr=zg r

N logt ~ logz = (logz)t—<(logz)*’
x(@<e

Nx (P~ (a))>z

In the second case, i.e., when 2 < z < z1, let g(a) be a multiplicative function defined by ¢g(p”) =1 or

0 according to whether or not » = 1 and z < Nx(p) < z3. From Corollary 2.4,

Dx(z,2)logx > Z x(a,z)log Nx(a) > Z X(a,z)ZlogNX(pk)

Nx(a)<z Nx (a)<z p*|la
= > logNx(p) >, 1= )Y > log Nx (p)
2<Nx(p)<z Nx (M) 5ty Nx(m<e  2<Nx(p)< w55y

Ny (P (m))>= Nx (P~ (m))>z

1 g(m)
>y (o) 2° > Ny ()’

Nx (m)<e Nx (m)<Vz
Nx (P~=(m))>z

where the last z term has been dropped because it is small compared to x/Nx(m). Since g is supported
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on squarefree elements, we have

1 g(m)
Px(x,2)logz = 1+ _
2<Nx (p)<z3 Nx(m)>Vz
1 1 g(m) log Nx(m)
> L+ -5 . 2.6
H ) NX(P)) 25 Nx(m) logz (2.6)
2<Nx(p)<z3 x(m)=1

This last term is expressible as

log Nx(m d s d _ sk

S gm0 S )| = L | YD S N ()
Nx(m)>1 x(m) 5 \ Ny (m)>1 5 1k>1

X X = z<p<z3 "=
= exp > (=D INx(p) ! > (ogNx(p) D Nx(p)~*F(=1)*"

z<Nx(p)<x3 k2l 2<Nx(p)<a? k21
1 log Nx (p)

_ (1+N 28X 2.7

z<N. T3 2<Nx (p)<z3

where s € C satisfies Re(s) = ¢ > 1. In (2.7), the inner sum is log(z3z~') + O(1) when s = 1, by
Corollary 2.4. In this case, comparing (2.7) to (2.6),

_ log(z32z~1) + O(1)
1 —
Ox(r)logr> ] 1O+Nx@>)<1 L
z<Nx(p)<z3

= (2 +O((logm)_1)> H (1+Nx(p)™).

1
2<Nx(p)<z3

Again using Corollary 2.4, upon dividing by log x we get

I -t I a-as )™

. log .
2<Nx (p)<z3 2<Nx (p)<z3

Dx(z,2) >

log

_ logz\~ x
“logx \logz)  (logz)l—o(logz)®’

and the lower bound implicit in (2.3) holds in the case 2 < z < z3 as well.
The uniformity in z then follows by taking constants for which all of the various upper and lower bounds

apply. O

The special cases which are of relevance to the determination of |Ax (N)| and |A% (N)|, respectively, are
as follows.

Corollary 2.9. a) Set P (z,2) :=[{a C Ok : N(a) <z and N(P~(a)) > z}|. We have, uniformly for
2<z2< dx, Pg(z,2) < ez -

b) For each s €8, set Dy(x,2) == |{n < x:n € Ngand P~(n) > z}|. We have, uniformly for
2<z2< %x, O, (x

- z
’ Z) ™ (log z)1—rs (log z)Ps
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These will be implemented in the deductions of Theorems 1.3 and 1.4 in Chapter 3.

Proof. In part a), take X to be the semigroup of integral ideals of K/Q with norm function a — Nk (a)
and Px to be the set of all prime ideals. By Theorem 2.3, one may take o = 1.

In part b), take X to be the semigroup of positive integers generated by Ps which, by definition, is N ,
and take the trivial norm function, i.e. n — n. By Chebotarev’s theorem and Lemma 2.5, one may take
o= ps.

O

A second sieve bound, necessary for the evaluation of a sum in Chapter 3.2, has the following analogue

in the general setting of arithmetical semigroups.

Proposition 2.10. Let f : X — Ry be an arithmetic function such that there is some C > 0 with
f(pm) < Cf(m) for each (m,p) = 1. Let I, := {a € X : a is squarefree and Nx(P*(a)) < x}. Then
for any real h > 0,

/) oy @)
a;gc Nx(a> logh(NX (P—i— (a)) + x/Nx(a)) <<C7h (log x) h agz:z NX (a) i (28)

Proof. We consider two cases according to whether or not Ny (a) < z2. In the first case, /Nx (a) > 2,
so that, trivially, log” (Nx (P*(a))+2/Nx(a)) > 27" log" 2. This suffices to prove the bound in the first
case.

In the second case, fix € € (0,1). We may restrict ourselves to the event that Nx(P*(a)) < ac.
Otherwise we have, as before, log"(Nx (P*(a)) + #/Nx(a)) > ¢ "log" 2, which again suffices. In the

1

event that Nx(P%(a)) < z¢, by applying the hypothesis on f with p = P*(a), m = ap™! (m and p

being coprime since a is squarefree), we have by partial summation,

fla)
2. Nx(a)log"(Nx(P*(a)) + 2/Nx(a))

a€ly
1
Nx(a)>22 ,Nx (Pt (a))<a*

f(m) 1
=¢ m; N (m) NX(ZP);S Nx (p)log"(Nx (p))

1
Nx (a)>22 "¢ Nx (P+(m))<ae Nx (p)>Nx (P (m)

L b))

1_.
Ny (m)>z2 Ny (Pt(m))<z€

F(m) /I dt
<20’
>~ C(h) MEZIE Nx(m) . t(logt)hﬂ
NX(”m)>w%_F,N}((P-*'(WL))ET6
=2Ce (1 —h f(m) )
¢ "(logw) Z Nx(m)

mETy
1_
Nx(m)>=z?2 e,Nx(P+(m))§$€

the latter being trivially bounded above by the right side of (2.8). Combining the estimates in these
cases finishes the proof. O

Recall the definition (1.3) of the function L(a), which, roughly, measures the amount of clustering of the
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divisors of a. Define the following analogue:

Lk (a) := meas(Lk(a)) := meas U(log(N(D)/2), log N(0)]

dla

Write 7k (a) := Za| o« 1, which is the ideal divisor counting function on K. The following inequalities

readily follow from the definition:

Lemma 2.11. Let a,b be integral ideals in K.
i) We always have Lk (a) < min(7x(a)log2,log N(a) + log2).
ii) If (a,b) = 1 then
L (ab) < min(rx (a)L(b), 7x (b) L(a))-

i) For any k € N,

Li(p1---p) < I;l<i£12kfj(10g2 +1log N(p1---pj))-

Proof. i) For each divisor d of a, the interval (log(N(9)/2),log(N(0))] has length log2 and there are
Ti (a) divisors. Thus, the upper bound Lg(a) < 7x(a)log?2 follows in the case of maximum measure
when all of the intervals are disjoint. The other one, i.e., Lix(a) < log N(a) + log2, follows, since
0 < log N(d) <log N(a) for all 9]a, whence (log(N(9)/2),log N(d)] C (—log2,log N(a)].

ii) By the translation invariance of Lebesgue measure, we have

Ly (ab) = meas U {u+1logN®):u e Lx(a)} | <meas(Lk(a)) Z 1 =7x(b)Lg(a).
206 206

Switching the roles of a and b in the above computation yields Lx (ab) < 7x(b)Lk(a) as well, which
proves the stated upper bound.

iii) We apply i) and ii) with a = py---p; and b = pjiq - pg for any 1 < j < k. Using 7 (b) = 2+7
(as any divisor of b corresponds to a subset of the k — j primes defining it, of which there are 28=7), we

complete the proof. O

When X is a general arithmetical semigroup with norm Nx we can similarly define £x and Lx, changing
the endpoints of the intervals in the definition of Lx to log Nx(a)/2 and log Nx(a), for a € X. The
proof of Lemma 2.11 with Lx in place of Ly is the same.

In his lower bound estimate, Ford considers a specific set of integers A, whose prime factors can be
partitioned into disjoint classes. More precisely, he defines a set B of vectors b with a fixed number of
entries (the sum of which is bounded), and indexes the size of the prime factors of a € A according to
each component of the vector described. The classes that he considers are selected in a manner that
facilitates computation. We will construct these partitions, parametrized by a € (0, 1], in order to treat
all arithmetical semigroups satisfying an a-prime element theorem (see Theorem 2.8).

Let Ao(av) € (0,2) and for each j > 1, select \;(a) > A;_1(a) maximally such that

< log?2. (2.9)

N
Aj—1(@)<Nx (p)<Aj(a) x(P)

Note that {\;(a)};>0 is well-defined by Corollary 2.4, since the sum over norms is indeed divergent.
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Since Aj(«) is chosen to be maximal, if p is the prime element with smallest norm larger than A;(«)
then adding Nx (p)~! to (2.9) makes the sum exceed log2. We now define the sets E; := {p: Nx(p) €
(ANj—1(a), Aj(a)]} and set p = p(a) = 207" > 2 (this should not be confused with the notation p,

associated with A% (N)). These will serve to produce the partition in question,

Lemma 2.12. There exists some constant R > 0 such that p~ T <log A\, (a) < p™ TR for everym > 1.

We henceforth fix R in this context.

Proof. Although this is proven in [20], we give a different proof. By Corollary 2.4 and telescoping, for

any m > 1 we have

m 1 m 1
allog An(a) ~logs do(@) =37 DT st 0|14
I=1 0 (@) <Nx () <hs(a) P oo
s 1
< mlog?2 1 e 21
<mlog2+ 0 +;1OgAj(a) (2.10)

Exponentiating, we have (henceforth omitting the dependence on « for convenience)

o1
log Ay < Cop™exp | C Z
= log A;

Let v; denote the smallest norm of a prime larger than A;, for each 1 < j < m. From (2.10), we have

1 1 noo LA |
a(logy Ap, —logy Ag) > mlog2 — E V+O( >2mlog2 E p72 40 } :
i=1

j=1 J log )\m j=1 10g A_]
>mlog2+ O 1+i ! (2.11)
- = log /\j

The second last inequality above holds because for any j large enough, we trivially have )\i < %a‘l log 2
and hence )
Aj > log Aj > exp(ijafl log2) = p//2.

Exponentiating (2.11), we see that

1

| =g C —J | = ,m
g, | = 7o D p p

log A\, < pMexp | Cy Z
j=1 j=1

uniformly in m. Therefore, there exists a constant R large enough that p™ =% <log A\, () < pm*+. O

We note here the deductions of |Ax (N)| and |A% (N)], i.e., the number of distinct products of integer
ideals, and the number of distinct norms of products of integer ideals, respectively, from the expressions
for Hx and H for each s.
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Proposition 2.13. Let N € N. Then

2 2
0<i< 795

Proof. Suppose a,b are integral ideals with N(a) € (N/4,N/2] and b € B(N), so that N(ab) < N?/2
(every ideal counted by Hy(N?/2,N/4,N/2) has this form). Then trivially, a € B(N) as well; thus,
ab € Ax(N) which, upon taking cardinalities, establishes the lower bound.

For the upper bound, if ab € Ax(N) then N(b) < N and N(a) € (N/2/T1 N/27] for some j > 0. Thus,
ab is counted by Hy(N?2/27, N/27T1 N/27). Tt follows that the set Ag(N) is covered by the union of
all sets counted by Hj(N?/2/, N/29+1 N/27), whose cardinality is bounded above by the sum of these

terms over all j > 0. Note that if ab is counted by a term with j > ;ﬁgNQ, then N2/2/ < N2, which

gives us

> Hg(N?/21 N/2%' N/2T) < N2 log N = o(Hy (N?/2,N/4,N/2)),

log N _ :_log N
210g2<-]7 log 2

log N
2log2

for these and produces the desired upper bound. O

according to Theorem 1.3. Thus, multiplying each of the first

terms by two more than accounts

In light of equation (1.5) in Theorem 1.3 (which is proven in Chapter 3), we have:

N? N?

|Ak (N)| > 7 > 3
2(log N —log4)d(log(log N — log 4))? (log N)4(logy N )2

9

and

N2

Ax(N)| < Y 27 (log N — (j + 1) log 2)% (log(log N — (j + 1) log 2))

0<5<3Ts
N2 . N2

< Y 27 < .
(log N)°(logy N) > “ (log N)?(logy N)>

j=0

whence follows (1.6) in Theorem 1.3.
The next proposition is a more technical analogue of Proposition 2.13 for |A% (N)|. For relevant defini-

tions, see Chapter 1.2.

Proposition 2.14. Let N € N, set t := |S| and let {s1,...,s:} be the ordering of the elements of S

according to size (and thus sy = 1). The following estimates hold:

2 1 1
N2(1—‘A‘) N1 leﬁ NTAs; NTAls;  NTARs;
/
A (N> H51< T e I O e

) jeA
€A AL

1 1
N2 Nl-mm Nl 2 NTAS;  NTAR;
/ TAls; -
AN < > > . Hsl<2ZjEA,j7  EESR T HAH NS e o |-
] i1

ACH{1,...,t} log N
ica’ r€[0’210g2

Note that wherever the sum over components r; produces a power of 2 exceeding N 2(1’|A|_1), it con-

tributes nothing to the upper bound.
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Proof. For the lower bound, suppose that n = mj'm3*---mj* is counted in the sum on the right
2
side, and let A be the set of all j € {1,...,t} with 7, (n) = 1. Write m; = a;b; < N'**, where

1

1 1
aj € (N‘A‘Sj N ] for each j # 1, and a; € (NO=14171 /4, NO=IAI"Y /9] 1t follows that by < ANTAl

1 3
2
for each j € A. Hence, my < A N20=VIAD 'y, < INTAES for j # 1 and n = ab, with

J da
JjEA 2
1
= T05 < T v -
JjEA Jj€EA
J#1

where dy := ZjeA sj > s1 = 1. Thus, a and b both correspond to norms of ideals of the form
sj
a:= H Pl’p(aj) ,
jeA | Pirok
plaj
s;

b= H probs)

jEA \ Plrok
plb;

where v, is the p-adic valuation of a;. Therefore, n is counted as an ideal norm in A% (N).
To prove the upper bound, it should be noted that:
i) In light of Theorem 1.3, for any j # 1 (and hence s; > 2) and r; < 125¥ (and hence smaller than 522

log 2 2log 2
so that v/z < 22777), we have

1 1
1 ysj z 53
H, (x%i

11 1-pe, (L —(rj+1)\yps; \ 6 —(rj+1)yy— 2
@ sy gry) € (- log ) ™ (- log(y2™ 1)) oy, log, (y2~ o))

Sj J
< 227" ((log z)' ~#=1 (log(y2~ "7 H1)) =P ) = (p,, log, (y2~ T+ D))~
< Hsl (1“27” 9 y27(Tj+1)a yzirj )a

because ps, = Mt < ps,; for each s; € S.

ii) If ny,no are integers counted by Hy, (x;,y;,2;) for j = 1,2, respectively, then n; < x; with (at
least one) of its divisors in the interval (y;, z;]. This therefore implies that nine < z122 has a divisor
dyidy € (y1y2, 2122], meaning that Hg, (x1,y1,21)Hs, (X2, Y2, 22) < Hg, (x122, Y1Y2, 2122). Inductively, the
same inequality holds when we replace two factors nq,no by any finite number of such factors.

iii) Next, we note that for any 2 <y < \/z, if k < 1logy (such that y2=% > 1) then

k—1

Hy, (2,927, y) = > H, (2,927 U, y27) < H,, (2,y/2,y).
7=0

We now proceed to prove the upper bound. Suppose n = N(ab) for some a,b € B(N), and write

no=mi---m*. Put A:={j e {l,....t} : 7, (n) # 1} and B := {j € A :m] > N\Tlﬂ} For

j € B, there is a k; < \%\ such that m; € (N(Qki_l)/w,N%i/'A'] and has a proper divisor a; €

kj kj
(N TAT55 2= (ri+1) NTAT55 2-73] for some r; > 0. For j € A\B, there is analogously some r; such that m;
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has a divisor in (N T4 2=+ NTA2-75]. If A = B then

N2>m= Hm?i > NTAT Zjeal = N2,
JEA

a clear contradiction. Thus, |[A\B| > 1. By construction, we have

2log N > logm = Z sjlogm; + Z sjlogm; > 2|A| " log N Z(kj —1).
jEB JEA\B JEB

Therefore, 3. cp
Denote by k the integer vector with components k; for j € A (with the convention that k; = 1 for

(kj —1) < |A| —1, as the left side is an integer strictly smaller than |A|.

j € A\B), and by r the integer vector with components r; for j € A. We then see that n is counted by

kj kj 1 1
= b NTAls NTAls L N N
|Als; - |Als,; -
AC{1,..t}refo, jg N4l k jEB JEA\B

where the asterisk on the sum over k indicates that the condition ), p(k; —1) < |A| — 1 holds.
Suppose 7, (n) = 1. The number of such n is at most N, as all such numbers must be squarefull. Thus,
we may ignore this contribution (since it is negligible with respect to the upper bound being demon-

strated). We may therefore assume that s, (n) # 1.

2k, k. k.,
o . . NTAT;  NTAls; N TAls;
To simplify notation, for k,r and N fixed, we will write H;(k,r, N) to denote H, 5T g 5 .

By applying remarks i), ii) and iii) successively (where k; < |B| for each j) , we have

II & x,N) [] Hikr,N) <[] HKk-1,r,N) [] HQrN)

jEB jEA\B jeB JEAV[1}
Septy-n N LEEG g EeE D
2Xjeplk;—1) [A] TA]
<Hg (N T4 CTTomAl om H H;(1,r,N)
jeEA\{1}
N N AT N AT . NTAS NTAR
2 ; ;
|A\Sj - -
S|BHSl<22j€ATj, et oan ) H Hsj (N Poori+l 7 or; )
jeA\{1}

for every vector k (where 1 := (1,...,1)). Since each k; < |A]/2 < |S|/2, there are only a finite number
of such vectors. In addition, |B| < [K : Q]; thus, the upper bound in the statement of the proposition
holds. O

Using Theorem 1.4, we can deduce the appropriate order of magnitude for |A% (N)| (as we did for
|Ag(N)]). Since x and y are of the same order of magnitude, (logz)!~*(logy)® =< logz. For the lower
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bound in Theorem 1.5,

2

A (N)] > Y v M-
>
® AC{1,...,t} 4(1Og N)é(l_psl)(log N)pslé(logQ N% JEA (IOg N)6(10g2 N)%
- J#1

242/ A7 (T jea 55t —1)
i#1

. N
“ 1 4(log N)!415(log, N) 214

-1 ) sT1_
ey )
B ', 4(log N)1415(log, N) 211"

for the upper bound,

N201-]A]7Y) N2AIT s
Ak (V)] < :
AC%.J} refo 221‘71111"2];\ 22sea s (log N)?(log, N)% jea (log N)? (log, N)%
S Sarm J

21 A7 (X jea sy 1)
J#1

< N? 2~ 2jea’i
2 (log N)1419 (log, N) 3141 2

AC{1,...t} ref0,33855] 141

2147 (X jea sy 1)
J#1

< N? |
Ac{zl’:'"f} (log N)I41 (log, V)14

We have therefore proven the following theorem:

Theorem 2.15. Let K/Q be a Galois number field and let S be the set of all possible relative degrees of
prime ideals of Ok. Sett:=|S| and let A (N) denote the set of all norms N(ab) for N(a), N(b) < N.

Then ) )
2/AI7 (X jea s; 1)
3#1

A (N) = N* Y-

AC{1,..t} (log N)l413(log, N) 2141

This reduces to Ford’s theorem (1.1), as required, when ¢ = 1.

Consider, for instance, the case when K := Q(\/&), where d is a squarefree integer. In this case,
S = {1, 2}, and the sum above contains two terms (as we require all sets A to be non-empty and contain
1). The term corresponding to A = S then yields the correct order of magnitude and we have:

3
N2

Corollary 2.16. If d is a squarefree integer then |A@IQ(\/E)(N)| = oz N)?(log; M)* -



Chapter 3
Bounding Hx(z,y, 2)

We start by adapting Ford’s argument ([9], Section 2) to the setting of arithmetical semigroups (X, Px, Nx)
with an a-prime element theorem, for o € (0,1] (see Definition 2.6 and Theorem 2.8 for definitions).
As discussed in Chapter 2, this more general formalism has applications in the cases where: i) X is the
semigroup of integral ideals, yielding an estimate for the number of distinct products of ideals |Ax (N)|;
ii) X is the set of integers generated by the primes of the class Ps for a given s € S, yielding an estimate
for the number of distinct norms of products of ideals |A% (N)|. We deal with the lower bounds in 3.1
and the upper bounds in 3.2. Throughout Chapter 3, all bounds are dependent at most on X (e.g. via

a dependence on «), unless otherwise indicated.

3.1 Lower Bounds

The proof of the lower bound consists of reducing the estimation of Hx (z,y, 2y) to a combinatorial prob-
lem regarding sets of a partition (see the remarks preceding Lemma 2.12). This interpretation derives
from an analysis of the values of Lx(a) for an appropriate choice of semigroup elements a € X. Some
of Ford’s argument is independent of the setting X, at which point his analysis is sufficient to complete
the argument; therefore we need only make the preparatory steps towards this general combinatorial

interpretation which is dealt with in his paper.

Theorem 3.1. If 3 <y < +/x then for any e > 0,

x Lk(a)
= 5 ) ) 1
x(z,y,2y) > (log y) 1+ (log z) 1~ N%;f N(a) (3.1)

a squarefree

We may clearly assume that y is sufficiently large for the arguments below to make sense. Otherwise, if
y is bounded by some fixed constant g, an inclusion-exclusion argument regarding the divisibility of an
element a by elements b € X with Nx(b) € (y,2y] (a bounded number of elements if we assume Axiom
A as described in Appendix C) akin to (5.1) in Appendix A, gives the lower bound Hx (z,y,2y) > = >
W. For in this case the log' ™ y term and the sum (which has only finitely many bounded terms)

in (3.1) are bounded.

Proof. Consider the set of elements I := apb with Nx (I) < x, where a is squarefree and Nx(a) < y¢, p

22
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satisfies log(y/Nx (p)) € Lx(a), and the prime factors of b have norm either larger than 2y or contained
in the interval (y¢, y* €] (the choice of p makes it possible for b to be trivial if only one of the constraints
on prime factors of b is assumed). We will call I with this form good. By definition, there is some
d|a, such that log(Nx(d)/2) < log(y/Nx(p)) < log(Nx(d)). Thus, exponentiating this inequality and
rearranging, one arrives at y < Nx(pd) < 2y. The divisor pd of I thus belongs to (y, 2y], and hence, any
good element is counted by Hx (z,y,2y). Therefore, counting the set of all good elements I provides a
lower bound for Hx (z,y,2y). By construction, 2y > p > y/Nx(d) > y'~¢; thus, I has only one such
representation, as pb contains only prime divisors that are either smaller than 2y or found in (y¢, y'~¢].
Thus, we may count good ideals according to the elements a,p and b of their unique factorizations.

Let us bound from below the number of such elements I. There are at least as many b with the above
properties as there are elements J with Nx(J) < z/Nx(ap) and Nx(P~(J)) > 2y. Theorem 2.8

demonstrates that there are > Nx

ap)(log Z)O‘(log = of these. Such elements will occur if /Nx (ap) >
4y, for example. If Nx (b) < 2/Nx (ap) < 4y, however, the set of such b is at least as large as the set of

elements with prime divisors > y°. Theorem 2.8 also shows that the number of such b in this case is also

Nx (ap)(logz)'~*(logy)™

>
It therefore follows that

Hx(z,y,2y) > {I € X : I is good}| >

X 1 1
(logz)'~=(logy)* 2 Nx( 2 Nx(p)’

D Logy/NayELx (@)
(3.2)

Finally, note that, using the analogue of Corollary 2.4 for X and Lemma 2.11, the sum over p may be

rewritten as

1 Nx(d
D S TR Vi D VU

2
dla y/Nx (d)<Nx (p)<2y/Nx(d) dla Y y/Nx (d)<Nx (p)<2y/Nx (d)

=5 XD (2N () — x (/N ()

dla 2y
Lx(a)
. 3.3
> logyT(a) > oz y (3.3)
Inserting (3.3) into the lower bound (3.2) for Hx(z,y,2y) yields (3.1). O

At this point, we make use of the partition over prime elements analyzed in Lemma 2.12. Let k,J and
M be parameters to be chosen, assuming for the time being that & > 1 is an integer, 27/2 > J and
2M < J. Also, define

B:={be (NU{0})’ :b; =0fori< M,b; <min(Mj, M(J —j+1)) and by + ...+ by = k}.

For each b € B, define A(b) to be the set of squarefree elements a, such that in the factorization of a
into primes, b; of them belong to the set E; := {p : Nx(p) € (A\j—1,A;]}. An element a € A(b) thus
has no ”small” prime factors and its distribution of prime factors is constrained in a symmetric manner.

The following lemma shows that k can be choen in such a way that a € A(b) contributes to the sum in
(3.1).
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Lemma 3.2. There exists k € N such that for all a € A(b), Nx(a) <, y°.
Proof. Since p € E; implies that Nx(p) < A;,

log Nx(a) = > > logNx(p) <D bilogh; < MpR( > jpl+ > (J—j+1)p))

J<J p@g i<J M<j<J/2 J/2<j<J

J/2—M J/2—M J/2

< MpR(MpM N p M YT G+ "D 1.
j=0 §=0 1=0
Evaluating these geometric series using the elementary identity

o d ; ma™ (x —1) —
Z]szm%ZxJ:x e

js<m j<m

for © = p in the middle sum and z = 1/p in the last sum yields an upper bound
logNX(a) < MpR(MpJ/2 +pM+1(J/2_M)pJ/2—]LI—1 +pJ+1) < MPJ+17

where R is the constant introduced in Lemma 2.12. We fix M to be a large constant and set J+1 = M +k

with k such that Mp’*! < elogy. The choice k := FﬁfTpr - MJ is sufficient, because Mp~—™ < ¢ for

any € > 0 when M is large enough. O

From Theorem 3.1, we derive the following:

Lemma 3.3. Let b € B. Then
2 —1

S wxla) (3.4)

acA(b) Nx(a)

Lx(a)
> w2

acA(b) acA(b)

where
Wi (a) :=[{(d1,d2) : d;j|a and |log(Nx(d1)/Nx(d2))| < log2}|.

Thus, Wx provides the number of intersections of intervals defining £x. The proposition below provides

an upper bound for the second factor in (3.4).

Proposition 3.4. For b as in the Lemma 3.3,

Z Wi (a) < (210g2)k' ipfﬂBJ,

|...
acA(b) Nx(a) = bar!---by! =M

where for each M < j < J, Bj :=by + ...+ b;.

One sees that the upper bound in Proposition 3.4 is dependent only on the entries of the vector b, and

not its association to a set of primes. Defining the quantity

J J
f(b) = Z poar =D+ (b =1) Z pM—1=i+B;
j=M j=M

for each b € B, the upper bound in Proposition 3.4 becomes < (2log2)" (b) (since M is fixed).

bar!---by!
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Proof of Lemma 3.3. For each divisor d|a define 1, to be the characteristic function of (log Nx (d/2),log Nx (d)].

It follows that
log(Nx (d))
TX(a)(10g2):Z/ du_Z/ld
1

dja /1o8(Nx(d)/2)
By construction, Lx (a) = meas ({u € R: 3d|a s.t. 14(u) # 0}). Thus, by the Cauchy-Schwarz inequal-
ity,
2

w2 | 3 ) | X R T w

ac A(b) €A(b aeA(b) d d'|a

1d 1d’

The second sum on the right side has non-zero contributions for a given a if and only if 14(u) = 14 (u) = 1.
This occurs on intervals of length at most log 2 whenever |log(Nx (d)/Nx(d"))| <log2. The cardinality
of the set of such ordered pairs of divisors is precisely Wx (a). It therefore follows upon rearrangement

that
2 -1

CL
> ¥ ’
a

EA(b)

> ¥ <a> > (o) | 3 NX>

acA(b) acA(b)

which implies (3.4). O

Proposition 3.4 provides a bound on the sum over VIK;‘ ((Z)) ; in order to evaluate the lower bound in (3.4)

we will also need a bound for the sum over X,’; ((C;)), which is provided by the following lemma.

Lemma 3.5. For b € B, we have

Z Tx (@) < (2log 2)¥ . (35)

- l... |
ac A(b) NX (a) €b]\/[. bJ.

Proof. Each a is a squarefree product of k distinct prime elements, b; of which come from E; for each
j. As 7x(a) = 2F,

> 3

acA(b)

A S 3 :
NX( ) = Ut L T, Nx(pB,+1) b5y B\ (o pBM_l}NX(pB"“)

(3.6)
where the normalization by b;! is needed since the tuples of distinct primes from E; are permuted (and
thus overcounted) in the above product in b;! ways. In each successive sum, we exclude the primes
selected earlier so that all factors are distinct. From the construction of the sequence {A;};, for each
0<j<J-1and B; +1<1¢ < Bjy1, we have

1 1
> <~ >log2 — (i — Bj —1)— > (log2 — b;/ ;).
) . . NX(pz) )\]
Pi€E\{pB,+1,--pi-1}

Since there are b; factors in (3.6) for each j, we may extract (log2)* from the product to get

Tx (a) 210g2 J bs
3 iz 1L xies)

acA(b)
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. _ No i _ b
For M sufficiently large, b?)\j V< (Mj)?2p=i+E < M*p~M+E < 1 so that 1 — ez 21— bﬂﬁ'

x +— zlog(l —1/z) is a convex function for any = > 1,

J
Tx(a) (2log 2)* 1 (2log 2)* 1
> Tog (1 — > \2085)7 log (1 —
> Nx(a) = bagl-- b1 P D bylog bi1og2) | = burt- 0,10\ Flog % log 2

acA(b) Jj=M
(2log 2)* 1 1 1
> 2 —k
- bM!~--bJ!eXp klog2+ (klog2)?2 1 — (klog2)~!
(2log 2)* i
_b]\/[!"'bJ!e o
which yields (3.5). O

From Lemma 2.4 of [9] and its related comments, it follows that ), _p m > % (the only
change to be made is to substitute z; = p~ TP ~i+1 in place of the same power of 2, as the same equation
Zf:MH (bar—i+1—1) = 0 holds in both places). Thus, assuming the validity of Proposition 3.4, applying

Lemma 3.3 and Stirling’s formula,

beB ac A(b) Nx(a) beB (bar!---bs1)? (2log 2)k f(b) k!

2elog2)* _ (logy)® =9
o (2elog2)®  (logy)

k3 (logy )2
where § ;=1 — 10%02;;1 and p:=2 . Theorem 3.1 then gives
x (logy) =% x
Hx(x,y,2y) > =
K020 > oy eloga) (logy ) (logz)1=o(log y) 1) =(2=0) (log, y) >
x

pr— - ) 3.7
(log z)1 = (log y)!~*(1=9) (log, y) 7 37)

which, as we will see, is of the right form to prove Theorems 1.3 and 1.4. We must now verify Proposition
3.4.

Proof of Proposition 3.4. The set of divisors d, d’'|a counted by Wi are in 1-1 correspondence with tuples
of subsets {Y;(d)} m<j<s, {Y;(d')} m<j<s indexing the primes that divide them, such that

| Y logNx(p)| <log2, (3.8)
PEY;AY]

where AAB denotes the symmetric difference of the sets A and B. Setting Y := Uj: v Yj(d) and
Y = U;‘I:M Y;(d'"), we need to compute the number of pairs of subsets Y, Y’ C {1,...,k} that satisfy
(3.8). If Y =Y, the sum over the symmetric difference is empty and the bound on the sum is vacuous;
thus, any of the 2¥ subsets corresponding to divisors of a satisfy (3.8). If Y # Y’  we can partition the
set of Y into classes C;(Y") according to the first index 0 < j < k — 1 at which py_; € Y differs from
qk—; € Y’ (the primes being ordered according to their norms). Only the last j + 1 elements of the pair
(Y,Y’) differ when Y’ € C;(Y); we can thus choose Y’ in 277! ways for each Y. Allowing Y to vary
over all 2K subsets as before, there are thus 277128 = 2k+i+1 pairs (Y, Y”) that are equal in their first
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k — 7 — 1 elements.

Note that the bound in (3.8) restricts the choice of only one if all others are fixed. Thus, if we allow
p; to vary for Y/ € Cy_;+1(Y), and fix the remaining symmetric difference sum to be logU, then
logU —log2 < log Nx(p;) <logU +1log2, ie., U/2 < Nx(pj) < 2U. Letting u; denote the index [ such
that Nx(p;) € (Mi—1, \i], the a-prime element theorem and the error term in Lemma 2.12 imply that

>

U/2<Nx (p;)<2U

Wx(QU)—Wx(U/2) 1 1 >

< max ( U/2 "Tog A1 | log A,

Nx(pj)

1
< max(log(2U),log A, 1)

< p*l"j‘i’l .

The second last inequality holds because mx is monotone, while the last holds by Lemma 2.12. The
remaining sum over primes will still contribute (log2)*~1 < (log2)*. With all of this data and the fact

that p > 2 whenever a < 1, we have

bj

Wi 1 - / 1 21og 2)* b e,
2 < [ bl > I ZNX(p) < 1+;p3+2“

- l... |
a€A(b) NX(G,) bar VY C{le k) i=M \p€E: bas! bJ.
Y'eC;(Y)

As p; =1 whenever Bi_; + 1 < j < By, the last sum becomes

zk:pj+27uj <4 z]: pfl Z pj < Z] pflﬁLanrerbL7

j=1 I=M Bi_1+1<j<B, I=M
which completes the proof of the proposition. O

When X is the arithmetical semigroup of integral ideals in K and a = 1, the results of this section give
the lower bound for Hg implicit in Theorem 1.3; when X is the arithmetical semigroup of integers with
prime factors belonging to the set P, for a given s € S and a = p;, the above gives the lower bound for

H, implicit in Theorem 1.4.

3.2 Upper Bounds

The above combinatorial interpretation is applicable when z is any constant multiple of y (estimating
Hx (z,y,Cy) instead for Hx(x,y,2y), for any fixed C > 1). In all other cases where y < z < /x, the
lower bound is analyzed using probabilistic methods independent of the setting of the problem. Ford
treats the upper bound in this way in all cases. In this section, we will provide the arguments, in the
context of a general semigroup X as in section 3.1, that lead to the application of these methods. This
also requires estimating H x, this time from above, in relation to the function Lx evaluated at squarefree
arguments, where all prime divisors are distinct. The assumption of Axiom A (see Appendix C) will be

crucial for this.

Theorem 3.6. For 3 <y <./x, we have uniformly

Hx(2,9,2y) € o max ——o Y . (3.9)
(ogay == iite log e 2
m squarefree
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Proof. As suggested by the (3.9), most of the analysis will involve squarefree elements. It will be
convenient to consider a with a squarefull part bounded in norm by (log )7, where v > 2 is a constant

to be chosen. By Corollary 2.2, there are O ( elements with squarefull part not satisfying this.

(logw)’Y
For large enough +, these are negligible in number.

We decompose the remaining elements in the form a = bm, where b is squarefull, m is squarefree and
b, m coprime. If a is counted by Hx, there is some pair of divisors d|b, d’'|m, such that Nx (dd') € (y, 2y].

Hence,

Hy(ry2)= Y ZH;;<x/NX<b>,y/NX<d>,2y/Nx<d>>+o((””)7 (3.10)

Nx (b)<(log z)27 d|b log x)Y

where HY is the analogue of Hx that counts only those squarefree elements with a divisor in a given
interval. To bound each term H¥% here, we will dyadically decompose (z/(logx)?”,z] into a partition
of intervals of the form (u/2,u] and count the number of contributing terms in each interval To do
this, we consider the difference H¥ (u, v1,2v1) — H (u/2,v1, 2v1) for some choice u, v to be determined,
assuming only that 2v? < .

The squarefree elements counted in the above difference are of the form mm’ such that Nx(mm') €
(3u,u] and either Nx (m) € (vy,2v1] or Nx(m') € (v1,2v;1]. We would like to decompose mm’ according
to the size of its prime divisors as we did in 3.1. To this end, we order the prime divisors of mm’
according to norm, writing mm’ = 1513, where P*(I;) < P~ (Ij41) for j = 1,2 and I is prime.
According to whether or not Nx(Plm)) < Nx(P*(m’)), if we choose I to be the largest prime factor
of m or m/ then we have either m|I1 Iy or m/|I;115. If we set wy := 2v1, vg := u/4vy and we := u/vy (4
appears because the product of any two numbers from (v, w;] and (ve,ws] is between u/2 and u), we
have 7(I115,v;,w;) > 1 for either j =1 or 2. In either case, the fact that I I, has a divisor larger than

v; implies trivially that I I, > v;. Thus,
Nx(Pi(Ig)) > Nx(IQ) > ’Uj/Nx(Il).

By Theorem 2.8, the number of I with Nx(I5) < u and smallest prime divisor of norm at least Nx (I2)
is < Nx(Illg)(logu)lu—a(]OgNX(IZ))a. If j = 1, log(2v1/Nx (I2)) is in an interval of Lx(mm'). If j = 2,
then one of ¢ € {1,2}, log(2cva/Nx (I2)) is an interval of Lx (mm'). It follows that

H;((%Uﬁwj)_Hj((u/zvjij)S Z 1
NX(11[213)6(37/2,$]
x 1 1
€T SUNERTY
(logz)! Nx(zh:)gm Nx(I) log(m,j/z\,);;))eﬂk(,l) Nx (I2)(log Nx (I2))

Nx (I2)>Nx (Pt (I1))

where the asterisk on the sum indicates that: i) Nx(P*(I;)) < Nx(P~(Ij41)) for j € {1,2}; ii) I,
is prime. In the second line, c¢ is either 2 or 4. It will be convenient (in order to invoke the estimate
from Proposition 2.10) to bound log Nx (I>) > max(log(Nx (P*(I1))),log(v;/Nx(I1)). The inner sum
of (3.11) becomes a sum over those primes in (cvj/Nx(I1),2cv;j/Nx(I1)] that exceed Nx (P (I1)).

Therefore, by applying the a-prime element theorem as in section 3.1, on each of the < LIIZT(I;) disjoint
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intervals, we have

*

>

I> prime

€ L) e 2y N (1)) = mocen Vo) i 55 —7)

Nx (I2) Nx(P*(I1))’ vj/Nx(I1)

Lk (L)
< Tog(max(Nx (P (1)), v; /Nx (1))

By reinserting this last expression into (3.11), we get

H;((U7Uj7wj) 7H§((u/27vjij) < Z 1
Nx (I1I213)€(u/2,u]
Ly (I
< —— max 3 x (1) . (3.12)

(logu)'=e vy<ise |, L || Nix(I1)log" ™ (max(Nx (P*(11)), v;/Nx (11))

Let b € X be a squarefull element that satisfies Nx (b) < (logx)?" and let d|b. Dyadically decomposing
({Toasy7» @] into subinterval (2= 0+D 2271 with [ < 2ylog, «, as mentioned earlier, and applying this
(3.12) with u = 27!z for each [, we get

Hx (Nf(b)’ @) Niyw)) < 2 <H§‘ (zsi(;)’ ) foéd)) ~Hx (9612%:[(;)) V) fofd)))

1<4log, =
_r max - LX( )
Clonre B 2 T e N og e Nx (P ) /N ()
B — max Lic(m)
< Togn e S8 2o Rl o s (N (PR )

=7 Nx (PH(m))<t

Applying Proposition 2.10 with A = 1 4+ « for each ¢, we can bound (3.10) as

x 1 Lx(m) r
Hy(z,y,2y) < (logz)i—a \/gﬁéx (log t): e Z Nx(m) Z Z ((logx)’7>

Nx (P+(m))<t Nx (b)<(logy)?7 d|b

m squarefree

B T e 1 Lx(m) 7x (D) x
 (loga)t=o yy<i<e (logt)t+e 2 Nx(m) 2 Nx() © ((logl’)”) ’

Nx (PF(m))<t Nx (b)<(log y)2

m squarefree

recalling that each b is a squarefull element. Note that the smallest possible value of the factor
(logz)~ (1= (log t)~(1+) is (logx)~2; we may thus choose v = 2 + ¢ for any ¢ > 0. We will show
that the inner sum over b is then finite, which proves (3.9).

Denoting by x the characteristic function of the set of squarefull elements, it is easy to see that

ar— = ((a)) x(a) is a multiplicative function. We therefore have the Euler product

Tx(a) T
3 Ni(a)s_ I1 1+Z x (P (3.13)

a s.full p prime j>2 p
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for Re(s) > 1. This converges if, and only if,

v+1 1
22 Nl | < 2 NGy <

v>2 p v>2 p

for any € € (0,1) [28]. Corollary 2.2 implies that this also holds for s = 1. Thus, the bound claimed in
our theorem holds uniformly over y < /z. O

In order to apply Ford’s method (which involves statistics regarding the ordering of a fixed number of
random variables distributed in an interval), we need to partition the sum on the right side of (3.9)
according to the number of prime divisors of the element m. Let wx(m) denote the number of prime
divisors of m € X, and suppose wx(m) = k, for some k € N. Let P be a real number with P > e,
such that Nx(P*(m)) < P. Let {p1,...,pr} be an enumeration of the prime divisors of m, such that
Nx(p;) < Nx(pi+1), for each 1 < i < k — 1. Finally, let Z;(m) := %, for 1 < j < k. The
random variables Z1, ..., Z; will be analyzed using Ford’s method.

Set

Ty (P) := 3 Lx(m)

Nx (Pt (m))<P,wyx (m)=k
m squarefree

Let v := {%J for 1 := a~'log?2 and let 3 := 2log 2. Note that if P is fixed and k > Bv = 2alog, P,
we must have 7x (m) = 2 and Lx(m) < 2¥log2. Hence,

1
S nP)< Y 2Flog2 Y N ()

k>pv k>pv Nx (Pt (m)<P
wy (m)=k
k
2k 1 (2alogy, P+ O(1))*
<2 wl X wp) T2 i :
! (p) !
k>pv Nx(p)<P k2pv

Note that

th gt M AT ¢ 1., ¢ 1 #t
— =21 242 <2 |1 2+ ) =2 (14— ) <=
Roallt 2 H( +t> <g(rree+y t!( +1+t—1) <

k>2t k>2t+1 j=1 1>1
(3.14)
Conversely, if 0 < n < 1 and we set m := |nt] + 1,
tk tm t—k ] tm t—k
k<6t k<5t j=1 k<6t j=1
tm (t—k)(t—k+1) tm 1, gmtl
< Z exp (— 57 = Z exp —;k < i (3.15)
k<ot k<6t

For n := @, for instance, m 4+ 1 < t when P is large enough. In this case, which occurs, in particular,

when ¢t = fv, the sum is bounded above by %
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From (3.14), we have the bound

S 1(r) < (2alog, P + O(1))P

W53h (Bv)!
Thus, it remains to bound >, o) o4, Tk(P).
Theorem 3.7. Suppose 1 < k < 2pv. Then
1+ (v—k)?

Ty (P) < (2alog, P)* (3.16)

(k+ )2V +1)°
Let us assume for the moment that this theorem is valid. There is a change in behaviour of (3.16) at
k =wv. For k < v, we have 1 +2%~¥ < 2 and (3.15) (because the sum converges by comparison to the

integral of x2e~%) and (3.16) therefore suggest that

Z Tw(P) < Z (v — k)% + 1)(2alog, P)* < (2c1og, P)’u.

1<k<wv 1<h<v (k+1)! (v+1)!

When v+ 1 < k < 200,

— k)2 +1) (2alogy P)* (2al 2alog, P)Y
Z TW(P) < Z ((v kzv+ ) (2alog, ') S alog, P Z < (2alogy ') .
v+1<k<2Bu v H1<k<260 2 (k+1)! (v +1)! 1°g2 (v+1)!
Hence, by Stirling’s approximation,
2a 1 Py~ 1Hvyv ) v log P P~ (log(2aed))
ZTk P) ( « Og2 v ) v — ( Oée,l/}) ~ (Og ) (3.17)

= (v + 1)v! oW T (log, P)?

Since 1 = a~!log 2, the exponent of log P in (3.17) is

1+ log(2log2)

Oé_llogQ *(1+Oé):a(2*5)7(1+o¢):a(1,5)71

which is clearly negative for any o € (0,1]. Thus, when P is selected from the interval [\/y, z], (3.17) is
maximized at P = ,/y. Therefore,

x 1 z(logt)*(1-9)-1
Hyx(z,y,2y) € ———— —_— Tr( max
x(,9,2y) (log x)t— f<t<m (logt)lte kz>:1 k( \/y<t§w (log )1 (log, t)%

X

<
(log )1~ (log y)1=(1=9)(log, y) >

)

which is equal in magnitude to the lower bound (3.7) from Chapter 3.1. We must now prove Theorem
3.7.

Proof of Theorem 3.7. The theorem is proven by applying Ford’s order statistics method, which is es-
sentially independent of the setting of the problem. We need only provide the setup for this appli-
cation, as follows. Factor m = pi---pg, where Nx(p;) < Nx(pj4+1) for each j and Nx(py) < P.
Let p; denote the index ! of A; such that p; € (N1, N]. Let p := (pa,...,p) and set F(u) =
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min; <j<g 27 (pM + ...+ pH* +1). By Lemma 2.12,

< 1 < : l
Lx(m) < lrgnllélkT(pl p1)(log2 +log Nx(p1) + ... +log Nx(p1)) < 1Ignll£k2 (I+logAy, +...+1logAy)

< 2R min 27N 4+ pMt 4+ .+ pM) < 2FF(p).
< min 27(1+ " + + ") < 2°F(p)

Let J :={j € (NU{0O}*:0<j; <...<jpr <v+R+1}. Sincev+1 > l(l)fg?f and py, log plogy Nx (pp, ) <

log, P, the set J contains all of the vectors p that represent orderings of prime divisors of those m which

are counted by Tj(P). It follows that if b; denotes the number of prime factors in the set E;, we have

1
P) < 2MRN " F(j) >
jeJ Nx(p1)<.é,.E<.Nx(pk) NX(pl) NX(pk)
bj
vEREL 210g2
<y g 1T 4 (2 < 5 i)
- N - |
jeJ j=0 byt peEE; NX b‘ botr1!

since bg + ...+ by+r+1 = k by construction. The remainder of the argument now follows from the end
of Lemma 3.5 and Lemma 3.6 of [9] (the crucial point in the proof of Lemma 3.6 is that the series in the

last line there converges. This is not affected by putting p in place of 2.). O

This concludes the proof of the upper bounds, with the applications to Theorems 1.3 and 1.4 described
at the end of Chapter 3.1. In light of Propositions 2.13 and 2.14, the results of this section and the
previous one are sufficient to prove (1.6) and (1.8).



Chapter 4

Restricted Multiplication Table

Problems

In [8], the classical multiplication table problem for integers, described in chapter 1.1, is generalized to
one in which the resulting products satisfy a particular condition. More precisely, suppose B C N is
an arbitrary sequence of integers. For N € N, let Ag(N) := |BN{ab: a,b < N}|. One now seeks to
estimate |Ag(N)|. Ford considered the particular case B := {s+ p:p € P}, where s is a fixed non-zero
integer (a sequence of shifted primes). He quantitatively described the associated divisor distribution
function H(z,y,z;B) := |BN{n < x : 3d € (y, 2] s.t. d|n}|, making certain assumptions regarding y
and z. The problem was subsequently solved completely by Koukoulopoulos in [19]. He produced sharp
order of magnitude estimates for all values of y and z. Naturally, there are endless ways to choose B.
In [10], for example, the choice of B as an arithmetic progression to a fixed modulus was considered.
In this chapter, we investigate two examples of restricted multiplication table problems. In each case,
we are shifting the sequence by some fixed non-zero integer s. We study: i) the sequence of shifted
sums of squares Ty := {u? + v + s : u,v € N'U{0}}; ii) the sequence of shifted squarefree numbers
Us == {n+ s : p*(n) = 1}. In general, sequences that are equidistributed in residue classes modulo
primes can be evaluated using similar methods to those worked out in the previous chapter, and i) is an

example of this.

4.1 Shifted Sums of Squares

Euler proved that a rational prime p is representable as a? + b? for positive integers a, b if, and only if,
p = 1 (mod 4). From the simple formula (a? + b?)(c? + d?) = (ad — be)? + (ac + bd)? and induction,
it follows that any product of sums of squares is itself a sum of squares. Thus, any squarefree integer

composed of primes congruent to 1 mod 4 is a sum of squares. A converse of this also holds:

Theorem 4.1. Let m € N. Then m = a® + b? for some a,b € NU{0} if, and only if, any prime divisor

p of m which is not congruent to 1 mod 4 satisfies p*|m.

Proof. See [14], Chapter XX. O

Based on this fact and basic techniques in Sieve Theory, we may arrive at a result reminiscent of Theorem
3.1:

33
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Lemma 4.2. If 3 <y < /z then for any € > 0,

x L(a)
(logy) a;ye p(a)’

n2(a)=1

H(x,y,2y;Ts) s
(log z)

Nl=

Proof. Let T := Ty. As before, we choose a set of integers apb such that apb —s € T, a < y° and
qlb = q € (y5,y' 7] or ¢ > 2y, and log(y/p) € L(a). This gives us

H(z,y,5T) > > Y > 1. (4.1)

9<v log(y/p)EL(a)  bSe/ap
pne(a)=1 P~ (b)>2y,apb—s€Ts

The inner sum can be computed as follows. For a and p fixed according to the conditions on the sums
above, let F' € Z[X] denote the integer polynomial F(X) := apX —s. Set A:= {F(k) < z: P~ (k) > 2y}.
Since F' is linear, A is in bijection with the set of k < £-* satisfying P~ (k) > 2y . Hence, |A[ =<

T
aplogy
by Theorem 2.3 in the case X = N with a = 1. Let 2y, D be constants to be chosen momentarily

and let P(zp) := {p < z0 : p = 3 (mod 4)}. We let S(A,P(20)) be the sifting function for A, i.e., the
number of elements of A not divisible by any primes in P(z9). We will show that this is, in fact, a good
approximation for the inner sum in (4.1).

Denote by p(g) the number of solutions of F'(n) = 0 (mod ¢), where ¢ is a prime. Since s has only a
finite number of prime factors, we may safely ignore these primes in what follows (they contribute only
a constant multiplicative factor which, for our purposes is unimportant). The equation apk = s (mod q)

has, at most, one solution, with equality if, and only if, ¢ { ap. Write

OSRGOS

a€P(z0) TN qlap

By the Prime Number Theorem for the arithmetic progression m = 3 (mod 4) (which is, in fact, Theorem

2.3 when K = Q(¢)) and partial summation,

_ap_
dlap)’

Let D > 0 and for each positive integer d < D let Ag := {a € A:a =0 (mod d)}. A result known as
the Fundamental Lemma of Sieve Theory states that (see Corollary 6.10 of [11])

V(20) = (log 9) "2 (4.2)

S(A,P(20)) = | AV (20) (1 +40(9% + e KM) 40 > ||Ad*¥|fm> (4.3)

d<D
pld=peP(20)

log D

where s :=
log zp?

6 €10,1) and k > 0 and K > 1 are at our disposal. Since p(d) = 1 except for a finite
number of d < D, and in other cases, |Aq| = [%J, the terms in (4.3) are less than 1 for all but a finite
number of terms (and when y is larger than s, which we may assume as in Chapter 3.1, these terms
are zero). If we choose zg = x2 7" for 7 > 0, the only elements of S(A, P(z0)) that are not sifted by
P(z0) (i.e., that are, in fact, divisible by primes congruent to 3 mod 4) are the primes in the interval
(20, x], since they can be divisible by at most one of these primes. This represents a remainder term of

O(z2 ") for i/ € (0,7), which is negligible. Moreover, by picking D = zy, the sum over d < D in (4.3)
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also has this order of magnitude.
Suppose m is a composite sum of squares not counted by S(A,P(zp)). Theorem 4.1 implies that it
must be divisible by the square of a prime congruent to 3 mod 4. The size of these primes is at most
vz. By an inclusion-exclusion argument, the number of m € A that are composite and not counted by
S(A,P(20)) is bounded below by

Al I (1—p12> > Al

p<VT
p=3 (mod 4)

Therefore, the sieve estimate derived using (4.3) has the right order of magnitude. Inserting (4.2) and

(4.3) into (4.1) and noting that a and p are coprime by construction,

x 1 1
H(z,y,2y; Ts) > ————— Y >, —
(logz)z (logy) ¢(a) o 1

pu2(a)=1

Lemma 4.1 now follows as in the conclusion of the proof of Theorem 3.1. O

Since the restrictions on a and p are independent of T, in order to bound H(z,y,2y;Ts) from below

one can follow the same route as that used in the course of demonstrating Theorem 1.3. In this case, we

may bound ¢(1a) by é trivially, which will be proven to suffice.

To set up the proof of the upper bounds, we will show an analogue of Theorem 3.6.

Lemma 4.3. For 3 <y < ./z, we have uniformly

x 1 L(m)
H(x,y,2y; Ts) € ——— max —.
(log:c)% vi<t<z (logt)? P+§St (m)

p2(m)=1

In Chapter 3, the inner sum had denominator m (when X = N) and was bounded above on sets of the

k
form {m : w(m) = k}, k > 1 by the products (ZpSP %) with k > 1, estimated using Mertens’ theorem.

k
In this case, the resulting product will be (ZP<P p%l) , and an estimate of the form log, P + O(1),
albeit with a different constant term, occurs as well. Therefore, all subsequent results pertaining to the

upper bounds in Chapter 3 will apply once Lemma 4.3 has been proven.

Proof. We follow the method of proof of Theorem 3.6. Let v > 2 be a parameter to be chosen. By
Corollary 2.2, we can avoid all integers with a squarefull factor in excess of (logz)?” at the cost of a

remainder term O (m) Decomposing the interval (x/(log x)7, ] dyadically as before, we get

H(zy2y:T)= >, > > 1+O<(logxz)7)

b<(logz)?v dlb a<ax/b,u2(a)=1
T(a,y/d,z/d)>1,ba—sETs

< N > 3 3 1+0<<10g“”"$)7). (4.4)

b<(log z)27 d|b r<2log(z/b) 2= (r+) g /b<a<2—"a/b
pu2(a)=1,ba—s€Ts,m(asy/d,z/d)>1

Write a = 11513, where Iy is prime, PV (I;) < I, < P~ (I3), chosen such that I;I5 has a divisor either
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in (y/d,2y/d] or in (Z’—ydb, Z—g] Then the arguments preceding (3.11), applied to (4.4), give

2 2 2 :

11<2=7"ax/b log(cw/Iz)EL(I1) I3<2=Tx/blyIo

p2(11)=1 PT(I1)<Iz,Iz prime pP—(I3)>I5,p2(bI4I5I5—s)=1
Using the method of Lemma 4.2 to derive an upper bound on the set of sums of squares represented by
the polynomial F'(k) := bl1 Ik — s for fixed b, I1, I and k having no small prime divisors, the inner sum
becomes ) )

T
«K—— _— —_—
27p(b) (log z) 2 ¢(11) log(cw) 2 (12 — 1) log(I2)

I1<2= Tz /b log(cw/I2)€L(I1)
p2(I7)=1 P+ (I1)<Iy,I prime

Bounding log(Iz) > max(log(w/I1),log(l1)) as before, we use the same argument as in Theorem 3.6 to

produce the overall estimate (putting m in place of I1, so that m is hence squarefree)

x _ L(m)
H(z,y.2y;Ts) < ma 27"
(log )} vi<i<e b<(§)27 o(b ;M%g . P%ﬂ%ﬁ ¢(m) log” (max(P+(m),y/m))
p2(m)=1
L(m)
L — .
(logx) f<t<x Z ,, 6(b) dzbjpﬂzm m) log® (max(P+(m), y/m))
p2(m)=1

Invoking Proposition 2.10 with the function f(m) = L(m)/(m/¢(m)) (which is submultiplicative since
n — n/¢(n) is multiplicative) and h = 2 and setting v = 2 + € for any e as in Chapter 3.2, we derive

T 1
H(ar,y,2y,7;><<(7l¢m<at§x(10gt) > o) Z Z b(m)

log z)> b<(log z)zw d|b P+(m)<t

x
< (loga)d 5%, 1Ogt Z ¢ ) (4.5)

~1
The last equality follows by recognizing that, in general, b/¢(b) < [],<, (1 — %) < logb for any b.
The Euler product here, analogous to (3.13) above is then

T(b) 3(j +1)(log p)?
2 g1l ”;m L™

b squarefull

+1)
<H 1+ZJ('72 €)j ’

j>2

when s = 2. This is convergent for € small enough, so (4.5) follows. O

From the comments preceding the proof of Lemma 4.2, we see that by carrying out all of the steps in

Chapter 3 for the upper and lower bounds, we arrive at the following:

Theorem 4.4. For 3 <y < ./x, we have

X

(log )2 (log y)° (logy y)?

H(z,y,2y:Ts) <

ol
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4.2 Shifted Squarefree Numbers

We may apply the strategy used in Chapter 4.1 to determine the number of shifted squarefree integers.
We need only change the sifting factors P(zp) in Lemma 4.2. In this case, we seek squarefree values of
the polynomial F(X) = apX — s, where a is squarefree and p is prime. To this end, we must sieve out
any integer with a divisor of the form p?, where p < zp. Using the formalism above, the required sifting
function takes the form
S(A,P(x)) = Al [] (1 - p12) +O(x7e).
p<zo

The product over primes is convergent as 29 — oo (to the value ((2)~!). We thus recover the estimate
S(A,P(20)) = 1555 This has the same order of magnitude as the number of integers with smallest
prime factor strictly larger than y, by Theorem 2.8 when X = N, and this was applied in Chapter 3 in
the determination of |Ax (V). Since the remainder of the argument from Chapter 3.1 is unchanged, we

have:

Lemma 4.5. If 3 <y < /x then for any € > 0,

x L(a)
H x7y72y;us Le T .
( )< lgy 2 B

1?2 (a)=1

By the same token, the upper bounds may also be deduced using this set-up. Since the upper and lower
bounds agree for shifted sums of squares, they will also agree in this case, modulo the factor (log x)% in
the denominator. We therefore derive the same order of magnitude in this problem as in the unrestricted
problem (see (1.1)).

Theorem 4.6. We have, uniformly for 3 <y < /z,

H(z,y,2y;Us) < H(z,y,2y).



Chapter 5

Appendices

5.1 Appendix A: Besicovitch’s Counterexample

(This is a solution to Exercise 111.3.7-8 in [28].)

Let y > 2 and A := NN (y,2y]. Set M, = M(A) and ¢, := dMy. That ¢, exists follows from the
inclusion-exclusion principle. Indeed, set ./\/ly(f) =M{y+1,...,y+ih) M{y+1,...,y+j5—1}) for
each j > 2 (where M(0)) = ). These are disjoint sets of multiples which satisfy M, = U, <;, Mg(/j);

thus, we have

x*121:2x*121

s, e ey
-y ) 2 e :
=Y = |+ (-1) > — :
52, y+il = et e Lem(y + Gy i,y i)
=2 Jlr‘Jr 2 DY) lem(y + j +1i i ) oW
1<y \Y T ki 1<i1 <. < <j—1 Yyrr3yTi,.. YTk

(5.1)

which converges as * — oo, provided y is fixed. Let Q(n,y) := > pejn @, ie., the truncation of Q(n)
Py

> log, y

> ol b, we will

to the set of prime divisors of n less than or equal to y. Setting B, := {n : Q(n,y)
decompose M, according to its intersection with B,. By construction, n € By if, and only if, n = ab

with P*(b) <y < P~(a) and Q(b) > PE22. Tt follows that

O,

'SDIEETE D SIS DI T DR X D)

n<e b<e PHp)<y  a<i b<a, P+ (b)<y
n€By beBy P (a)>y beBy
e _1 . . . . . .
where By(z) == 271}, <, p-(4)>y 1. A similar inclusion-exclusion argument as that in (5.1) shows

that d{n : P~ (n) > y} = Hpgy(l — %) (by excluding multiples of p < y). Applying a discrete form
of the Dominated Convergence Theorem (by defining the sequence of functions {g,(t)}. as gn(t) =

38
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By(n/t)1 »)(t), with Stieltjes integrals

JRTZCITRO T D)

b<t,P~(b)<y

(5.1) converges to

1 1
. —1 _ _ = -
mlgx;ox E 1= I | (1 p) x
m<ax p<y PH(b)<y
meEBy beBy

as ¢ — oo (forcing n to infinity as well).

We bound dB,, as follows, introducing a free parameter z to be optimized. The upper bound

log =

1,(n) < Ln,y)—logy y/log2 _ Zﬂ(n,y)(logy)—m

is valid for each z > 1 and n € N. Thus,

oY 1, () < ot (S o) 30 2000 (5.2)

n<x n<x

Assume now that z € [1,2). Applying Lemma 2.7 to the setting X = N with the function f(n) := 22"
and noting that 22" < 2¥ if p < y and 1 otherwise, we have, by Corollary 2.4,

M(-5) I(-3) =

y<p<z

1
< exp | zlogy y + log 08T (5.3)
log x logy

Inserting (5.3) into (5.2), we find that

_ log z
! Z 15,(n) < (logy)~ Lexp ((—1022 + z) log, y) . (5.4)

n<x

DN TN

p<y y<p<z

<

The critical point of the exponent in (5.4), treated as a function of z, occurs at z = @ (in [1,2), as
required). Inputting this optimal choice into (5.4) and taking = — oo, we get
1+logs 2
dB, < (logy)~ 17 m%) = (logy) . (5.5)
logy y

Consider now the set By, := M,\B,, i.e., those multiples of elements in (y, 2y] such that Q(n,y) < Tog2 -
Since M, and B, both have natural density, M, N B, does as well; hence, dB'(y) = dM, —d (M, N By).

In much the same way as we showed for B,,, the majorization

1, (n) < FHmy)loray/ 10821 5 oy (1)
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holds when 2z € (0,1). Thus, when = > 2y? (so that z/d > y for each d € (y,2y]),

T ) <o T L0 S oo

n<w de(y,2y)] m< g
_losyy 2y Sdyy) o »m,y)
log 2
<z logy Z d dlogx Z m
de(y,2y] Pt(m)<g
1 logg y 1 -2 z -2 1 -t
< (logzlogy) "z Tee? H (1—) H (1—) H (1—)
y<p<2y p p<y p 2y<p<g p
1 1 d
< (logzlogy) texp ( 2zlogy y — log L2828 + log log(w/d) (5.6)
log2 logy
1
< (logy)2exp (logQ Y (22 - 12§2)> (5.7)
The critical point of (5.7), as a function of z, is z = @, which is indeed in (0,1). Inputting this in

(5.7) ad taking  — oo, we get dB; < (log y)~%. Recalling that €, = dM, < dB, + dB,,, the above and
(5.5) imply that €, < (logy)~°. Thus, €, — 0 as y — o0.
Referring to the definitions stated in Chapter 1, we set A := NN J,~q(¥r, 2yx] and choose two infinite

sequences {zy}r and {z} }x with xy := yi and x}, := 2y;. The first satisfies

l‘;l Z 1:y1;1 Z H(ykayj)SQC Z 2_(j+2)§6;

n<ay 0<j<k—1 0<j<k—1
neM(A)

the second satisfies

_ B 1
gt Y 1zt Y 1=3,
n<ay n€ (Y ,2yx]

neM(A)

as any set is a subset of its set of multiples. By definition, the lower and upper densities thus satisfy
dM(A) < e and dM(A) > 5. This establishes the claim asserted in Chapter 1.

5.2 Appendix B: Two Applications of H(zx,y, 2)

Recall the applications cited in Chapter 1 for the divisor distribution function H(x,y, z). We will prove
both (these are elaborations of the proofs given in Ch. 2.3-2.4 of [13]).

Theorem 5.1. Let ¢, :=d{n : M(n,y) # 0} fory > 1. Then ¢, < (logy)fﬁ, with § =1 — 11:)2)52.

Proof. The key observation is that if m|n and m is squarefree and if there is some ¢|n, such that ¢t m
and gm < y, u(m) + u(gm) = 0. Therefore, in order to have non-zero contributions to M(n,y), any
squarefree divisor m of n not divisible by P~ (n) must satisfy P~ (n)m > y. This forces m € (y/P~(n),y].
If P~ (n) is large with respect to y, n will not satisfy M (n,y) # 0. If, however, P~ (n) < v, n < z is
counted by H(z,y/v,y).

Set v := exp((logy)*), where o € (0,1) is to be chosen. This choice is natural because according to
the approach mentioned above, we expect the quantity ®(x,v) = ®y(x,v) from Theorem 2.8 to appear,
introducing a logarithmic factor 1/logv. If P~(n) > v, then n is counted by ®(x,v); conversely, if

P~(n) < v then n is counted by H(z,y/v,y). Denoting by 7(n;y, z) the number of divisors of n in the
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interval (y, z], H(z,y, z) counts the set of integers with 7(n;y, z) > 1. We therefore have

€y < lim ! Z 1+ Z 1| <« lim 27! (1 x —i—:lc(logy)‘s(lo‘)>7

r—00 T—00 oguv

n<z n<z
P~ (n)>v T(nyy/v,y)>1

by applying a frm of the upper bound implicit in (1.1). (We should mention that €, exists because
y is fixed and €, = >, d(M((L, f)Y\M((L, f — 1])), and each term in this sum exists by the inclu-

sion/exclusion principle.) The optimal choice for « is a = which proves the theorem. O

6
43>
The second application has a much more elaborate proof.

Theorem 5.2. Lett > 1,u € [0,1]. Set

1—u

S(u,t) :={neN:Imln s.t. n 7 Smgn%}.

Then h(u,t) := dS(u,t) is well-defined.

Proof. First, note that we may assume that v € (0,1): when v = 0, the two bounds are the same,
S(u,t) =0 and h(0,t) = 0 vacuously; when u = 1, every positive integer is contained in S(u,t), as 1 is
one of its divisors. Thus, h(1,t) = 1.

Next, suppose ¢ € [1,2). Given any divisor d|n, 5 is also a divisor of n. Thus, n has a divisor smaller
than n2 if, and only if, it has a divisor greater than nz. Using, this observation, we may transform the
pair (u,t) with ¢ € [1,2) into a new pair (v/,t¢") with ¢’ > 2 as follows:

i)if t € [1,2(1 —u)), 5% > I; therefore, we can set v’ := and t' := L = (1- 1_7“)71 > 2;
i) if t € [2(1 — u),2 — u), we can set v’ := 27 and ¢/ := 2;

iii) if ¢ € [2 — u,2), we can set v/ 1= F24=2 and ¢/ := 2.

Thus, in the remainder of the proof, we assume that ¢ > 2 and u € (0,1). To deal with the bounds on

_u
t+u—1

divisors depending on n, we find a suitable region in [1, z], such that the set {n : I3 m|n s.t. T <m<
:c%} is approximately the same size asymptotically in z as S(u,t). To this end, we exclude the interval
1

, é], which is small with respect to [1, ], and consider its complement (x/logx,x]. Set

H(z) :=|{z/logz <n <z:3dnst. nt<d< n%}|

Let y := 27 and z = 2%, and suppose n is counted by H(x) but not by H(x,y,z). Thus, n has a

divisor d that satisfies n 7 < d < y. Since n is constrained to the interval (z/logz,z], it is counted

ey B
by H (az, (ﬁ) ,xo‘) +H (x, (ﬁ) ,x5>, where o := 1*7“ and 8 :=t"1. (1.1) implies that each of

these terms is <, g z(log ). This is also negligibly small as  — oo. Therefore, indeed, H(z,y, z) is a
good approximation for H(x) in this interval. By showing that 2=*H (x, vy, 2) converges to a well-defined
limit as  — oo, it will follow that h(u,t) equals this limit, and the theorem will be proven.

It will be convenient to find an approximation for H(z,y,z) itself, as follows. Let ¢ > 0 and set
H(z,y,z):={n<z:3de€ (y,z]: P~(d) > y°}|. We will show that for small enough €, H(x,y, z) is
sufficiently close to H(x,y, z) that 2! (H(x,y,2) — Hc(7,y,2)) — 0 as © — oo. The extra constrain on
the divisors of n will make the evaluation of H. tractable using techniques in Sieve Theory.

If n is counted by H but not by H., there must be some divisor d of n that satisfies y < d < z and
P~ (d) < y¢. If it is the smallest such divisor of n, P_Lw) <y, as %@ itself is a divisor of n strictly
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smaller than n. Thus, d < y'*¢ and n is counted by H(z,y,y'"¢). Results in section 1 of [8] show that
H(.’E, Y, Z) - He(xa Y, Z) < H(xv Y, y1+6) < Eéxv

and, as € — 0, 27V (H(z,y,2) — He(x,y,2)) — 0, as claimed.
We may evaluate H.(z,y, z) using the inclusion/exclusion principle. Let [a, b] denote the least common
multiple of two positive integers a and b (this should hopefully not be confused with the closed interval

whose endpoints are a and b). Then,

D I D SR [ i D D D DRSS ]

k21 y<d;<...<dp<z k21 le y<dy<...<dp<z
P~ (d;)>y*® P~ (d;)>y¢,d=[dy,..., dy]
o)
k—1 pr(d)
=3 (-1 > EZero| Y @] ], (5.8)
=1 d>1 d<z
P~ (d)>y¢ P (d)>y*

where pg(d) denotes the number of k-tuples of integers in (y, z] with least common multiple d. Note
that if py(d) # 0, then k < 7(d) < 2@ and, by construction,

1
Q(d) < og T

< ogy (logz) (et~ (1 —w) 1og$)71 =t(e(1 —u))~ "t

Hence, for u,t and e fixed, the number of &k for which p; contributes to (5.8) is uniformly bounded.
Thus, 7(d) is also uniformly bounded and p(d) < (T(kd)) &y, 1. The error term in (5.8) is then
Lyt Plx,y°) <yt @; therefore, it not factor into the density calculation.

The problem is thus reduced to evaluating

z7! ZZTZ(py“pj)_l»

r>1;5>1

where the asterisk over the inner sum indicates that we only consider y* < p; < ... < p; < = with
p(p1,...,p;) = r. According to the observations above, j in (5.2) is bounded; hence, r can only take

on finitely many values, and the double sum consists of only a finite number of pairs (r,j). Let x,; :

log pi

[0,1)7 — [0,1] be the function which is 1 if its arguments are of the form Tou s

and p; ---p; satisfies
property (x), and 0 otherwise. The following lemma shows that the inner sum in (5.2) corresponding to

each of the finitely many pairs (r, j) converges to a limit, which proves the theorem.

Lemma 5.3. Letr,j > 1. Let x : R — R be a Lebesque integrable function with compact support. Then

J— log p1 log p; . /°° /°° duy  du;
xgrolo X ( IOgI ) ) lOgI’ (p17 7p]) 0 0 X(ula 7uj) U u; )

where the asterisk denotes the condition in (5.2) for the pair (r,j).

(The lemma applies to the functions x;. ;, for each relevant pair (r,j).)

Proof. Let [a,b])’ be a hypercube containing the support of x. Let v and v, be measures on [a, b’ defined

J du;
=1 wuy

usual prime counting function. Thus, v, has non-zero contributions occur when x"¢ is prime, i.e., when

by dv(ui,...,u;) = and dvg(uq,...,u;) = [[l_, 2" dr(z"%) respectively, where m(z) is the
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logp
log z

given any integrable function g on [a, b, we have [ gdvy — [ gdv, as x — co.
First, if P := []/_,[as,b;] C [a,b]7, then by Fubini’s theorem,

u; = for some prime p. We will show that the net {v,},~o converges weakly to v as x — oo, i.e.,

/Pduz(ul,..., H/ " dn(z ):H(@—T—&—logm/ | W(;;u)duZ)

i<j i<j [a;,bi]
1 1 du; d d
=11 <> <10g:c>’1+/ 2= [ S S O((log ).
i<j b a lai,b;] Us p U u]

Thus, fP dvy — fP dv as x — oo. By linearity of the integral, any simple measurable function f (i.e., a
finite linear combination of characteristic functions of subsets of [a, b}?) will also satisfy [ fdv, — [ fdv.
Let n > 0. Recall that the simple measurable functions defined on [a,b)/ are dense in L'([a,b]?). In
particular, if x is Lebesgue integrable, we can choose s1, s simple and measurable, such that s; < y < s9

and f[a W |s1 — s2|dv < 1. It then follows that for = large enough,

/ s1dv —n < / s1dvy, < / xdv, < / Sodv + 1.
[a,b)9 [a,b)9 [a,b]9 [a,b]

Because f[a i S1dv < f[a b XV < f[a pi S2dv, we produce

—/ (s2—s1)dv —n < / Xdu—/ xdv, < / (s2—s1)dv+m
[aab]j [avb]j [avb]j [avb]j

and thus | f[a b xdv — f[a b Xdvy| < 2n. This completes the proof of the lemma and the theorem. [

O

5.3 Appendix C: Arithmetical Semigroups

The purpose of this section is to provide a brief introduction to the ”abstract” Analytic Number Theory
that is used in Chapters 2 and 3.

As mentioned in Chapter 1.2, the defining property of the integral ideal space of a number field K/Q,
for instance, that makes it suitable for arithmetic is the existence and uniqueness of a factorization of
integral ideals into a product of generating elements, namely the prime ideals of Og. The Dedekind-
Weber theorem and the Prime Ideal Theorem (see the beginning of Chapter 2) describe, statistically,
the distribution of integral ideals and prime ideals, respectively, according to their norms. The complete
multiplicativity of the norm function N : {ideal space of K} — N makes the arithmetic of ideals closely
related to the arithmetic of positive integers.

By axiomatizing the above observations, Knopfmacher [18], introduced and developed the following

general class of objects.

Definition 5.4. An arithmetical semigroup is a triple (X,Px,Nx) where X is a semigroup (i.e. a
multiplicative monoid with identity) generated by a set of elements Px and Ny : X — N is a function
that satisfies the following properties:

a) If 1x denotes the identity element of X then Nx(lx) = 1;

b) For any M > 0, the set {z € X : Nx(x) < M} has finite cardinality (informally, the ball induced by
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Nx of radius z in X is finite).
¢) For any z,y € X, Nx(zy) = Nx(x)Nx (y).
When the generating set Px and norm function Nx are understood, we abuse notation and say that X

is an arithmetical semigroup.

Property b), a general version of the Dedekind-Weber theorem, is at the heart of what makes analytic
statements on X possible. The arithmetical semigroup (N, P,id) is the usual setting for number theory,

and property b) is equivalent to the statement that > 1 = |z] < oo for each . Many of the defi-

m<zx
nitions of arithmetic functions and Dirichlet series in classical Analytic Number Theory have analogues
in this setting, provided that the notion of convergence is well-defined. (In general, arithmetical semi-
groups are naturally compatible with a discrete topology; thus, convergence issues are easy to handle.

See Chapter 2 of [18]).

Definition 5.5. Let € be a category with direct product for which there exists a subcollection of objects
B such that, up to isomorphism, any object A from € is decomposable as a finite product A = H?:l P;,
where P; is an object belonging to ¥ (and P; and P; are not necessarily distinct). Let 0 denote the
trivial object of the category (satisfying A x 0 = A), and let S¢ denote the semigroup of isomorphism
classes of objects of € with the direct product operation and identity 0, generated by B. If there exists
a norm function N¢ satisfying a), b) and ¢) in Definition 5.4 defined on Se, such that (Se¢,P, Ne) is an
arithmetic semigroup, then € is called an arithmetical category.

A non-trivial example of an arithmetical category is the category of finite Abelian groups. The set of
cyclic p-groups of arbitrary prime power order forms a generating set with respect to direct products of
groups, by the Classification Theorem (Ch. 1.7 of [24]). A natural norm function, which is indeed mul-
tiplicative by the Chinese Remainder Theorem, is the counting function of the group, i.e., N(G) := |G].
Another example is provided by function fields F,(¢) and their rings of integers X = F,[t], i.e., polyno-
mials in ¢ over F,, where ¢ the power of some prime p. The set of monic, irreducible polynomials in ¢
over [F, provides the primes for X, and the map f(t) — g4e8(f) ig a norm function Ny, as in Definition
5.4: noting that the number of monic polynomials of degree k is ¢* (ranging over all ¢ elements for each
of the other k coefficients of the polynomial), the ball of radius « induced by Nx is necessarily finite,
and property b) holds.

Quantitative statements regarding objects in arithmetical categories are available under certain assump-

tions. The following hypothesis quantifying property b) holds in a variety of different settings.

Definition 5.6. An arithmetical semigroup (X, Px, Nx) is said to satisfy Aziom A if there exist positive
real numbers A and dp, and 7 € [0,dp), such that for any y > 0 large enough,

[{a € X : Nx(a) <y} = Ay™ + O(y").

In addition to the natural numbers (with A = §g = 1, n = 0) and the integral ideals of a number field
K/Q (with A = Ak in Theorem 2.1, o = 1 and n = 1 — [K : Q]7!), the arithmetical category of
finitely generated torsion modules over a finite integral domain of algebraic integers in a number field
K/Q also satisfies Axiom A. Theorem 1.1 in Ch. 5 of [18] shows that if (x denotes the Dedekind zeta
function for K, this category induces an arithmetical semigroup with A := Ag [],~5Cx(r), 6o =1 and
n < 1-2(1+[K : Q])~!. (The famous Erdds-Szekeres [6], which describes the number of finitely-generated
Z-modules, i.e., Abelian group, of cardinality at most x, is an application of the aforementioned theorem
when K =Q.)
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An abstract Prime Number Theorem can also be deduced by assuming Axiom A, using similar techniques
to those needed in the case of rational integers (One such tool in classical Analytic Number Theory which
has an analogue in the abstract theory is the Wiener-Tkehara Theorem, which yields information on the
continuity of the Riemann zeta function ((s) on the line Re(s) = 1; in particular, it allows us to deduce

a zero-free region beyond this line. See Ch. 8.3 of [25].)

Theorem 5.7 ([18], Ch. 6.1). Suppose (X, Px, Nx) is an arithmetical semigroup that satisfies Axiom
A (with A,60 > 0 and n € [0,00)). If mx(y) denotes the counting function of Px, then

yoo 1
= 1 .
mx (y) dp logy < o <10gy>)

When X =F,[t] and lgV <2 < (I +1)¢N for 0 <1< q—1,

- 1
() €Fyft] - =D <a} = (g=1) Y ¢ =gV —1x, 5w
0<k<N

Therefore, X does not satisfy Axiom A, since [ is variable as x changes. However, a Prime Number

Theorem (counting irreducibles in X), i.e.,

7,10(y) = (log q)é +O(x#+)

does hold in this context ([26], see the remark following Thm 2.2 there), for any € > 0. Axiom A is used
to determine |Ax (N)| and |A% (N)| in Chapters 2 and 3.

By analogy, we may define A (N) := {Nx(A-B): Nx(A), Nx(B) < N}. The methods used to analyze
|A% (V)| in Chapter 3 have a generalization in this more abstract setting as in Ch. 9 of [18], which we
describe below.

Let X be a commutative arithmetical semigroup. Define an equivalence relation ~ on X with the
property that a ~ o’ and b ~ V' implies that ab ~ a'b’. Define Y := X/ ~ and a product structure on
Y via [z][z'] = [xa'], where [a] denotes the equivalence class of X in Y. This is well-defined because if
x1 ~ 9 and x] ~ x4 then x129 ~ )z} by construction; hence, the equivalence class of the product is
the product of the equivalence classes. By construction, Y is a semigroup, and in certain applications
will satisfy: i) a cancellation property [z][y] = [z][z] = [y] = [z]; ii) ¥ will contain a trivial class [e], such

that [z][e] = [z] for each z € X. In these applications, Y forms an Abelian group.

Definition 5.8. Let (X, Px, Nx) be a commutative arithmetical semigroup with an equivalence relation
~ as above. An arithmetical formation is an ordered pair (X,Y) where Y := X/ ~. When Y contains

a trivial class and a cancellation property, the quotient Y is called the class group of X.

Two motivating examples are as follows:

a) Fix m € N and let X be the semigroup generated by all positive integers coprime to m. Define the
equivalence relation ~ via a ~ b if, and only if, a = b (mod m). Then, Y = X/ ~ = (Z/mZ)*.

b) Let X be the semigroup of all integral ideals of a number field K/Q. Let I be the set of all principal
ideals of X. Define an equivalence relation ~ on X via a ~ b if, and only if, there exist («), (5) € I such
that (a)a = (8)b. This is an equivalence relation by the Krull-Schmidt theorem (as all non-zero ideals
have inverses). Then, Y = X/ ~ is the familiar ideal class group of K, as I is the trivial class and all

non-zero ideals are invertible. Moreover, Y has finite cardinality ([7], Ch. 11).
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¢) Using the formalism developed in Chapter 1, let X be the Galois group of K/Q in the previous
example, and let ~ be the equivalence relation defined by conjugation, i.e., o ~ 7 if, and only if, there
is a o/ € Gal(K/Q) such that 0 = ¢’7¢’. Then, Y = X/ ~ is the set of all conjugacy classes of auto-
morphisms of K over Q. For any finite extension, the coset space Y is finite (although ¥ may not be a
group in this case).

When |Y| < oo, one can define a set of characters Y = Hom(Y,T) on Y, satisfying the usual orthogo-

nality properties:

_ )Y ifxa =xe
MXE:Y xi([y)x2([v]) = 0 otheruice (5.9)
i YL iyl =y
Xez;* X([WDx(ly) = 0 othermice | (5.10)

For each x € Y we may define an L-function L(s, y) which is expressible as

L(s,x) == Y_ x(@Nx(@) = [] (1_ Nf(((pg)s>_ : (5.11)

aeX pEPx

when o > dg. Here, x(a) := x([a]). The Euler product formula (5.11) implies that L(s, x) # 0 for o > dy
since, by definition, every prime element has Nx(p) > 1 by definition. Thus, L(s, x) has a well-defined
logarithm. It follows from (5.10) that for [a] € Y,

Y x@logL(s,x) =D Y~ > x(@x(@™) =Y Y Nx(p)* +0(1),  (5.12)

XEY * m>1 pEPX xGY* p€Elal

where the remainder term comes from the terms p™ for m > 2 (as in Corollary 2.4). One can show that
in fact L(dg,x) # 0, provided x? # xo. (When x? = xo, the argument is not valid and an alternative
must be found. This is not always possible for a given X, and may require assuming that L(do,x) is

non-vanishing, a hypothesis called ” Axiom A**”). Assuming Axiom A,

Ae):= Y xla)= ) x(a)) Y 1<Axa® Y x(la]) +O(Y]z") = O(a")

Nx (a)<z [aleY N)g(l[?)fr [aleY
€la

by applying (5.9) for x1 = xo- Thus,

S x(@)Nx(a) ™

aceX

= Z n—° Z x(a) || = Z n=* (Ay(n) — Ay(n —1))

n>1 aeX n>1
= Ny (a)=n

=D Ak (k= (k+ 1)) | =0 | Y kR ) (5.13)

k>1 k>1

Therefore, the series representation (5.11) of L(s, x) converges even when 1 < o < dg. The left side of
(5.13) is then asymptotically L(s,x0) = > ,cx Nx(a)™* as s — ;. As a result, the prime elements of

X are uniformly distributed (i.e. with proportion 1/]Y]) among the equivalence classes of Y. In the case
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c) above, if we associate a prime p with its Frébenius class o,, we get an equidistribution statement of
this type as in Chebotarev’s theorem (1.2). Therefore, the theory of arithmetical formations leads to a
generalization of Chebotarev’s theorem when Axiom A is assumed.

The theory of arithmetical formations outlined above provides an approach for the determination of
|A’ (N)|, namely using the factorization idea presented in Chapter 1, that the arithmetical semigroup
X has its prime factors partitioned according to their equivalence class in Y. By determining the
asymptotics of each subsemigroup of X generated by the primes in a given equivalence class, one can
compute |A’ (N)|. Determining |A’x (V)| may follow the same line of argument as we have presented in
Chapter 1. If D is a union of equivalence classes in Y, a number pp, corresponding to the proportion of

elements of Px belonging to D can be used, in analogy to ps (see Chapter 1.2).

5.4 Appendix D: Restricted Divisor Function for Shifted Sums

of Squares

The purpose of this section is to show that a naive study of the function H(x,y,z;7T;) (see Chapter
4), via the computation of the sums Zneg; 7(n;y, z), is insufficient to provide precise order of mag-
nitude estimates. This section describes an example of the shortcoming pointed out in Chapter 1, of
Tenenbaum’s contribution to this problem. It also complements the study of the shifted sum problem

in Chapter 4. Specifically, we prove that

> (9, 2) ~ (¢ — s)mM(s) log(=/y),

n€Ts

for a suitable constant M(s) (determined below) depending only on s. This shows, roughly speaking,
that many integers have more than one divisor between y and z. In theory, such a bound would be

useful in an inclusion-exclusion argument of the following nature:

2l * 2l—1 *
hICe VS Y, 1<H@yxT)<) (D1 > L
k=1 y<di<...<dp<z a?24b2+s<z k=1 y<di<...<dp<z a?2+b2+4s<z
where the asterisk in the sum implies that a® 4+ b% + s = 0 (mod [dy, ..., dy]) for each k-tuple of divisors
(di,...,dy), for some [ > 1. This would, however, necessitate a good pointwise estimate of the functions

Ri(m;y,2) = |{(d,...,dy) € (y,2]" :m =[dy,...,ds]}|,

for each k € N and m € (y*, 2¥]. However, these are more complicated to bound directly than 7 (see
Ch. 2.7 of [13], for example).
Let e(t) := e?™ for t € R.

Definition 5.9. Let m € N, m > 2 and let a € Z/mZ. A Gauss sum is a sum of the form
m—1
ak?
gla,m) := kz:o e <m> .

Lemma 5.10. Let m > 2 be a positive integer and let a € Z/mZ. Let r denote the smallest non-negative
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integer in the residue class of m mod 4. Then

1 ifr=1

0 fr =2
§(a,m) :=m tg(a,m)* = it

-1 ifr=3

(1+1i%)?  otherwise

Proof. See [2], section 1.5. O

Note that if ¢ is the smallest non-negative integer in the residue class of a and 4|m, we have: d(a,m) =0
ift =2; 6(a,m) =4 when ¢t = 0; §(a,m) = 2¢ when ¢ = 1; and 6(a, m) = —2¢ when ¢t = 3.

Theorem 5.11. Fiz s € Z\{0}. Let x > s and m > 2. Then

R Co ) =)

a2+b2+s§:c
a24b2+5=0 (mod m)

where, using the notation of the previous lemma,

es(m) := i e(a/s) 5(a’,m). (5.14)

Proof. Using the orthogonality properties of exponentials, we have

m—1

% X, D¢ ( (@* +v° +5)>:H(J/'al/)E(Z/mz)21$2+y2—|—850(modm)}\. (5.15)

z,y€EZ/mZ a=0

If we decompose the inner sum of (5.15) according to the ged of a and m,

m—1 m/t s m—1 a’xQ 2
,yezZ;mZaz% ( s JrS)) g": a%16<m) <;€<m/t)>

m/t—1¢—1 2 2
M+u)
> ()

2
m/t—1

> ()

=0

tlm a’=0
(a’,m)=1

m/t ,
2 a s
e $E (e
m
tlm a’=0
(a’,m)=1

gld',m/t).

Il
]
T
RS
[9)
A~ .
SREY
| »
~—— ~—
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The previous lemma then implies that

{(z,y) € (Z/mZ)* : 2* + 4> + s =0 (mod m)}| = Zt Z e(iiﬁ) a',m/t) = Zte (m/t).
(u./(%n,wjtl)*l t|m

Now,
E 1= E E 1= E E 1.
a24b24s<x (a,b)€(Z/mZ)2 A24B24s<a (a,b)€(Z/mZ)? (u,v)€Z2%:(um-+a)2+(vm+b)2<z—s
a2+4b2+4+5=0 (mod m) a24b5245=0 (mod m) (A,B)=(a,b) (mod m) a24b245=0 (mod m)

(5.16)

Note that since 0 < a,b < m, we have m?(u? +v?) < (um+a)?+ (vm+b)? < m?((u+1)2+ (v+1)2), for
any pair (u,v) in the inner sum of (5.16). Thus, if the lattice point (A, B) is contained in the positive
quadrant in R?, so is (u,v). The boundary points of the region defined by the set of pairs (u,v) are
precisely those pairs for which u? + v? < < (u+ 1)2 + (v + 1)2. They therefore satisfy

w+v < 2(u® +0?)7 <2 <x_28)
m

Let L(a,b) denote the number of lattice points (A, B) such that A = a (mod m) and B = b (mod m)
and A? + B? + 5 < z. Then,

xr— S r—S xr— S %
R( — ><L(a,b)<R ¢m2 +3<m2> , (5.17)

where R(r) = [{(u,v) € (NU{0})® : u2 + v2 < #2}| for r > 0. From (5.17), it follows that

r—S r— S r— S z
o<stan -\ < (| o5 ()

It is well-known that R(r) = (£32) w1+ O (\/>)

for a better error term, see [14]). Thus, for any pair (a,b),
T —8 T—s
L(a,b):(m2)7r+0< m2>.
Inserting (5.4) into (5.16), we get

3 1= 3 L(a,b) = <($J2S>W+O<\/T>>Ztes(m/t),

a2+b24s<a (a,b)€(2/mZ)2
a24b245=0 (mod m) a24b245=0 (mod m)

|
=

VR

=

3

[\v]

V2]

~

(for our purposes, a better error term is not needed;

which proves the theorem. O

We will need the following standard tool in Arithmetic Function Theory.
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Definition 5.12. Let r,d € N. The Ramanujan sum c.(d) is the function

cr(d) = i e (?) .

a=1
(a,r)=1

The Ramanujan sums exhibit the following properties:

Lemma 5.13. Fiz d € N. The following holds:

1) The map r +— ¢, (d) is multiplicative.

ii) The Dirichlet series Y., <, ¢, (d)r™° = o5 1(d)d="V¢(s)™!, when Re(s) > 1, where o,(n) =
Zdlnd“ for any u € C. -

i11) Let x denote the unique non-trivial Dirichlet character mod 4 and let L(s,x) denote its L-function.
Then,

Z xX(r)er(d)r™% = oy ,5-1 (d)d_(s_l)L(Sv X)_lv

r>1

where oy (d) = 3 g, x(d)d" for u € C.

It is well-known that the character in iii) satisfies x(1) =1 and x(3) = —1.

Proof. These are straightforward observations which we will prove for the sake of completeness.
i) Observe that if (r,s) = 1, the Chinese Remainder Theorem implies that a = br + ¢s for some unique
pair (b,c) € Z/sZ x Z/rZ. As (a,rs) =1 if, and only if, (b, s) = (¢,r) = 1, we have

SRS YRICOED M WRIEy

(a,rs)=1 (b g) 1 (e, 7‘) 1
> db . de
- - - — Cr d s d )
S (D) X (%) | e
(b,s)=1 (c,r)=1

as asserted.

ii) Using the definition of ¢, (d) and the properties of the Mébius function,

Sty = 3t 3 () <3S () S

r>1 r>1 r>1 a=1
(a 7) 1 e|a
k /
_ s a'd
= E wie)(ek) g e (k ) (5.18)
ek>1 a’=1

where a' := a/e and k := r/e for each simultaneous divisor e of a and r. The inner exponential sum in

(5.18) is zero unless k|d, in which case it is equal to k. Hence, we have

Zcr(d)r_s = Zu(e)e‘s Zkk‘s =((s)"ta= 7Y 213_17

r>1 e>1 k|d lld

where [ := d/k in the last equality. Thus, ii) follows. The proof of iii) is similar to that of ii), using the
complete multiplicativity of x. O
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Thus, the function es(m) in (5.14) is ¢, (s) when m is odd and (14 (—1)%)epm(s) + 2i%¢,n (s) when 4|m
(otherwise, es(m) = 0). Hence €5(m) = x(m)cm(s), with x as above when 4 { m.
Lemma 5.13 iii) will imply an expression for the inner sum in the statement of Theorem 5.11 when

s =2 (mod 4), in which case d(s, m) = 0 for any m.

Lemma 5.14. Let s =2 (mod 4) and let by (s) := 32y, Tes(t). Forx > 1 let Hy(x) := 32, hm(s).

t
Then, for any € > 0,

H,(z) = %S)L(Q,X)_lﬁ (1 +0 (emp <—(10g$)%_6))) '

where oy (s) = 0y,1(s) with the notation in Lemma 5.13.

Proof. By construction, h,,(s) is the Dirichlet convolution h,,(s) = (e * id)(m), where id denotes the
identity map, for each m € N. From Lemma 5.13, the above observations regarding €; and basic notions
of Dirichlet series, it follows that when Re(w) > 2,

> hm(s)m™ = [ D xB)er(s)E™ | | Y dd(k)k

m>1 k>1 k>1

= oy w1(5)sT @V L(w, x) "I (w — 1) =: F(w). (5.19)

H,(z) is determined via a standard application of the Effective Perron Formula (see, for example, section
I1.2 in [27]) along the line k := 2 + (log x)~!. For completeness, we give the details of this application.

Fix T > 2, to be chosen later. When Re(w) = 2, every factor in (5.19) is absolutely convergent except
for {(w — 1) (which has a simple pole at w = 2). It follows that

1 k41T d 1 T
Hy(z) = 272/ ; F(w)x“’% +0 (ﬁTl log z + B(2z) (1 e Oi )> , (5.20)

where B is some real-valued, non-decreasing function satisfying |h.,(s)| < B(m) for each m. Note
that for any d, the triangle inequality implies the trivial bound |c,.(d)] < ¢(r). Hence, |hn,(s)| <
My, ¢ <m7(m) = O(m'*<) for any € > 0. We may thus take B(z) = 2'** for some fixed .

A well-known theorem of Korobov and Vinogradov (see the notes of Chapter 6 of [29]) asserts that there
is a ¢ > 0 such that {(s) # 0 as long as Re(s) > 1— m. Set kg :=2—c¢/(logx)3 7€ and let T
denote the rectangular contour with corners at x +1¢7T, kg £¢T, traversed counterclockwise. The interior
of the contour contains only the pole at w = 2 of {(w — 1). By the Residue theorem, the main term of

(5.20) is

1 ko+iT k+1T k—1T d
— / +/ +/ —/ Faye =) po 12—, (521)
2mi r ko—iT ko+iT ko—iT w 2s

where the integrals I; are enumerated according to their order on the left side of (5.21). Their contri-
bution remains to be determined.

Write s = o + i7. From Chapter 5 in [29], |((s)| < log|7| whenever o > kg. Thus, we may bound both
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I, and I3 (in which the imaginary part is held fixed with absolute value T') as follows:

K

|| < logT/ x*

Ko

d|w| . logT
(w2 + 7)1 Lz T 7(s), (5.22)

Oy u—1+iT(8)
s T L(u 44T, x)

for j € {2,3}. The last inequality holds because |L(w, x)| > 1 whenever Re(w) > 1, and

Oxw—1(5)
Sw—l

_ SfRe(w)le ZtRe(w)fl < T(S).

tls

To bound I, we note that the integrand is bounded in the compact subinterval |Im(w)| < to of the line

Ko £ 100, where tg > 0 is fixed. By the symmetry of the integral about the real axis, we have

dt
1] < 27 (s) / (Co + i) —— < w07 (s)(log T)2, (5.23)
to<t<T (K +12)2

The combined error term from (5.20), (5.22) and (5.23) is then

log T logT
< x"7(s)(log T)?* + xQ%T(S) +2°T ogw + 2 ¢ (1 +x Og ) . (5.24)

It suffices (albeit perhaps not optimally) to select T = x. The largest error term in (5.24) is the first

one, which satisfies

log x

<, zroto® = glexp (—2
(logz)37e

+ 0(1)) = z?exp (—(logm)%_6> .
The statement of the lemma now follows. O

When s # 2 (mod 4), in contrast to (5.19), the Dirichlet series for €, is instead

Z es(m)m™" = Z em(s)m™" — Z Cm(8)m™" + (1 44%)? Z cm(8)m™"

m>1 m=1 (mod 4) m=3 (mod 4) m=0 (mod 4)
= Z x(m)em (s)ym™" + (1 +i%)%4™v Z car(s)k™".
m>1 E>1

The same argument used to prove part ii) of Lemma 5.13 demonstrates that

D ek =4 p(dyd ™y kT, (5.25)

E>1 d>1 4k|s

Clearly, this sum is zero unless 4|s. In this case, the inner sum of (5.25) is (5/4)7(1“71) ow—1(s/4). Part

iii) of Lemma 5.13 then implies that

Z es(mym™" = oy w_1(8)s " L(w,x) " + H(w),
m>1

where
qos=(w=Ng 1 (s/4)C(w)~" if s =0 (mod 4)
H(w) = .
0 otherwise
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The product H(w){(w — 1) is also evaluated with the method of Lemma 5.14 (where only the value
of the residue, which is now (8s7'o(s/4)¢(2)™' + X L(2,x) ') 22, is different). We may thus restate
Lemma 5.14 for s = 1,3 (mod 4) as well.

Lemma 5.15. With the notation of Lemma 5.14,

H,(2) = M(s)a® (1+ 0 (eap (~(log )i =) ) ),

where M (s) is defined as

(85‘10(5/4)§(2)_1 + aé—is)L(Zx)_l) if 4]s

M(s) := .
) o) 19, x) 7! otherwise
2s ’

We immediately deduce the following:

Theorem 5.16. Fiz s € Z\{0}. Let T; := {a®> +b*> +s:a,b € Z}. Put 7(m;y,2) = [{dlm:d € (y,2]}|.
Then, uniformly in 2 <y < z < :c%,

Z T(n;y,2) = (x — s)mM(s) log(z/y) + O (m%(z - y)) . (5.26)

Proof. The left side of (5.26) is

ZT(n;y,z)z Z Z 1= Z Z 1.

n<wz a24+b2+s<z dla2+b2+s y<d<z a24b2+s<a
n€Ts de(y,2] a24b2+5=0 (mod d)

By Theorem 5.11 and Lemma 5.15, we have (with the notation h4(s) from the proof of Lemma 6.3)

S e = 3 ((550)m+o(cha) ) S fet

n<a y<d<z t|d
neTs

=(z—s)7m Z %hd(s)—FO 3 Z éhd(s)

y<d<z y<d<z

=(z—s)r /yzu_Qst(u) +0 <x% /y u—lst(u))

z

= (z — s)mM(s) / %“ +0 (/ exp (—(1ogu)%*f) ‘Z‘) +0 (x%(z - y)) :

Yy Yy

With the change of variable v = logu, the first error term becomes < feeyz exp(f’u%*é)dv < 1. The
proof of (5.26) is now complete. O
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