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Abstract

The Multiplication Table Problem and its Generalizations

Alexander (Sacha) Mangerel

Masters of Science

Graduate Department of Mathematics

University of Toronto

2014

Motivated by an old question investigated by Erdős (colloquially referred to as the ”Multiplication Table”

problem) and recent developments in its study by Ford and Tenenbaum, we investigate the fundamental

problem of locating the divisors of ”most” integers in certain intervals. We generalize Erdős’ problem

to a certain class of Arithmetical Semigroups using Ford’s techniques. We generalize this problem

in a different direction by providing explicit estimates of ”restricted multiplication tables” in various

interesting cases.
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Notation

The letters x, y, z will denote positive real numbers, assumed large, while k, l,m, n, a, b, d will denote

(usually positive) integers, or elements of an arithmetical semigroup (see Definition 2.6 or Appendix

C). The letters p, q will denote prime numbers or prime elements. The letters C or C ′ will denote

positive, absolute constants, although the identity of these constants may change from line to line.

The letter ε will be used to denote an arbitrarily small quantity which also may change from line to

line. A letter written in bold typeface such as a will denote a vector, the number and type of its

components made clear by the context. We use Landau’s standard notations: if f and g are functions

of a complex argument z, then: i)f(z) = O(g(z)) whenever there exists a positive constant C > 0 such

that |f(z)| ≤ Cg(z) for each z of large enough modulus; ii) f(z) = o(g(z)) if the quotient f(z)
g(z) → 0

as z → ∞ (assuming g(z) 6= 0 from some point onwards). We will also use the Vinogradov notational

conventions: f(z) � g(z) if f(z) = O(g(z)), f(z) � g(z) if g(z) � f(z), f(z) ∼ g(z) if f(z)
g(z) → 1 as

|z| → ∞ and f(z) � g(z) if g(z) � f(z) � g(z). The implicit constants will always be independent of

other variables, unless otherwise indicated using subscripts (e.g. f(n) �M g(n) denotes the dependence

of the implicit constants on the variable M).

In the setting of Algebraic Number Theory, I, J, a, b etc. will always denote generic integral ideals, while

P, p will always denote generic prime ideals.

For d, n ∈ N, we will write d|n if there exists an integer k such that n = kd; by analogy, we will write a|c
if there exists an integral ideal b such that c = ab, noting that this means that c ⊆ a. The Galois group

of a number field K/Q will be denoted Gal(K/Q) as is standard, or by G, where the context is clear.

We will write P+(n) and P−(n) to denote the largest and smallest prime divisors of n, respectively,

and in the general context of arithmetical semigroups (which are defined in Chapter 2 and discussed in

detail in Appendix C), P±(n) will refer to the largest and smallest prime divisors n according to the size

of their norms. The functions Ω(n) :=
∑
pν ||n ν and ω(n) :=

∑
p|n 1 will denote the number of prime

factors of n, counted with and without multiplicity, respectively. We will label the arithmetic functions

defined on arithmetical semigroups that generalize the classical integer counterparts by labelling the

functions according to the semigroup, e.g. τX(n) denotes the number of divisors of an element n of an

arithmetical semigroup X.

If a, b ∈ X, we denote by (a, b) ∈ X the greatest common divisor of a and b, i.e., an element d of largest

norm (which is unique up to multiplication by elements with norm 1) such that d|a and d|b. We denote

by [a, b] the least common multiple of a and b, i.e., the element of smallest norm c such that a|c and b|c.
When more than one argument is considered, we write (a1, . . . , ak) and [a1, . . . , ak] to denote the gcd

and lcm, respectively, of the k-tuple of elements a1, . . . , ak ∈ X.

We will use logk n to denote the k-fold iterated natural logarithm, i.e., log e = 1, log1 n = log n and

logk n = log(logk−1 n) for each k ≥ 2.

If S is a finite set, then |S| will denote the cardinality of S. Whenever we deal with a sequence of integers

A, we refer to the function A(x) :=
∑

n≤x
n∈A

1 as the counting function of A.
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Chapter 1

Introduction

1.1 The Classical Multiplication Table Problem

Much of Analytic Number Theory is concerned with the behaviour of the primes, which generate the

multiplicative semigroup of natural numbers. By studying the nature and size of the prime factors

dividing integers, one can analyze the anatomy of integers. The problem of analyzing the divisors of

an integer, however, is not approachable with these methods. While the distribution and statistics of

prime numbers, described quantitatively by the Prime Number Theorem (PNT) can be used to supply

information regarding the number of integers with prime factors with certain constraints, the analogous

properties relating to divisors of integers in place of primes is much less tractable, as there is no analogue

of the PNT in this scenario.

In the 1930’s, a common investigation in Number Theory concerned the study of integer sequences and

their sets of multiples. Let A ⊆ N. The set of multiples of A, written M(A) is the set of all integers

{na : a ∈ A, n ∈ N}. It is not difficult to see that if B ⊆ A is the sequence obtained by removing, in

order, the elements of A that are divisible by smaller elements of A thenM(B) =M(A) (for if b|a then

a ∈M({b}) and henceM({a, b}) =M({b}); using this observation repeatedly, one arrives at the above

assertion). The sequence B with this property i.e., such that no two of its elements divide one another,

is said to be primitive. The study of such sequences was undertaken by Behrend, Pillai and others [12].

Definition 1.1. Let A ⊆ N and set A(x) :=
∑
a≤x, a∈A 1. The upper and lower natural densities of A

are d(A) := lim supx→∞ x−1A(x) and d(A) = lim infx→∞ x−1A(x), respectively. If d(A) = d(A), their

common value is called the natural density of A and is denoted d(A). A sequence of natural density

zero is called a null sequence.

It was conjectured that dM(A) existed for every primitive sequence A. In 1934, Besicovitch gave the

following counterexample (see Appendix A for a proof): consider intervals of integers of the form (y, 2y]

for y fixed. This is indeed a primitive sequence since 1
2 < |u/u′| < 2 for any u, u′ ∈ (y, 2y]. For any

ε > 0, it is possible to choose a sequence {yk}k growing sufficiently quickly that the sets of multiples

M((yk, 2yk]) exist but vanish as k → ∞, and that by taking A := N ∩
⋃
k≥0(yk, 2yk], d(M(A)) < ε,

while d(M(A)) ≥ 1
2 . Hence, if ε ∈ (0, 1

2 ), then M(A) does not possess natural density.

A consequence of this result is that the sequence of integers with a divisor in an interval of the form

(y, 2y] becomes null, as y →∞ (Erdős provided a more precise formulation of the above counterexample,

proving that if ψ(x)→ 0 but xψ(x) →∞ as x→∞ (e.g. ψ(x) = (log log x)−1), any interval of the form

1



Chapter 1. Introduction 2

(y, y1+ψ(y)] also has the property that (y, 2y] does [3]). That such a result was surprising suggests that

knowledge regarding the statistics of the divisors was limited.

In a seminal paper [16], Hooley introduced the function ∆(n) := maxu∈R
∑
d|n:v<d≤ev 1 and utilized it

in various applications in Number Theory. In the language of probability theory, ∆(n) is essentially

a concentration function for the divisor distribution function Fn(t) := τ(n)−1
∑
d|n,d≤t 1. From this

perspective, ∆(n) provides a tool to study the distribution of divisors of n in fixed intervals. In the early

1980’s, Hall (and subsequently Tenenbaum) systematically studied ∆(n) and its intrinsic connection to

divisor problems [13].

The following problem (colloquially christened ”The Multiplication Table Problem” by Erdős in the

1950s [4]) is relevant to the study of the distribution of divisors of an integer. Given N ∈ N, let A(N)

denote the set of all products ab, where 1 ≤ a, b ≤ N . These are precisely the entries in an N -by-

N multiplication table. How many distinct products occur, i.e., what is |A(N)|? It is an elementary

fact that on a sequence of natural density 1, the number of prime factors (counted with multiplicity)

Ω(n) ∼ log2 n, and for the significant (with respect to natural density) set of integers
√
x < n ≤ x,

Ω(n) ∼ log2 x. Therefore, on one hand
√
x < a, b ≤ x implies that x < ab ≤ x2 and for most such

products, Ω(ab) ∼ log2 x
2 ∼ log2 x. On the other hand, the complete additivity of Ω implies that

Ω(ab) = Ω(a) + Ω(b) ∼ 2 log2 x. This observation (made by Erdős) therefore suggests that the products

ab are not generally elements of this density 1 sequence (and thus, in the main, belong to a null sequence).

This immediately implies that, at least, |A(N)| = o(N2). Later work, in particular by Tenenbaum, was

done to refine this to a more quantitative statement.

The following device was introduced, both for its independent interest and in order to approach this

problem.

Definition 1.2. Let 2 ≤ y ≤ z ≤ x. The divisor distribution function is

H(x, y, z) := |{n ≤ x : ∃ d|n s.t. d ∈ (y, z]}|.

In light of the above remarks regarding the distribution of divisors of integers, a systematic investigation

of H(x, y, z) has intrinsic value and lends itself to various applications, among which (Ch. 2 [13], see

Appendix B for proofs):

i) The fundamental identity of the Möbius function is that
∑
d|n µ(d) = 0 for each n ≥ 2. In sieving

applications, one must often limit the set of divisors of n in this sum to those bounded above by a given

parameter y, and it is natural to ask how much the sum over this truncated set of divisors deviates

from zero in such a case. For y ≥ 1, Erdős and Katáı attacked this problem by studying the function

M(n, y) :=
∑

d|n
d≤y

µ(d). Erdős and Hall showed [5] that lim supy→∞ d{n : M(n, y) 6= 0} = 0. The

following is a quantitative improvement, derived using knowledge of H(x, y, z).

Theorem (Hall,Tenenbaum). Let εy := d{n : M(n, y) 6= 0} for y > 1. Then εy � (log y)−
δ

1+δ , with

δ > 0 a computable constant.

The idea behind the proof is that the integers with non-zero M(n, y) must have a divisor m ≤ y, such

that qm > y for any prime q|n not dividing m (otherwise µ(m) + µ(qm) = 0, since µ is multiplicative

and µ(q) = −1). This means that n is counted by H(x, y/q, y), where q := P−(n).

ii) One can ask how large the divisors of an integer are in proportion to the integer itself. The following

theorem, whose proof relies on the asymptotics of H(x, y, z), addresses this question.
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Theorem (Hall,Tenenbaum). Let t ≥ 1, u ∈ [0, 1]. Then h(u, t) := d{n : n
1−u
t < d ≤ n

1
t } is well-

defined.

To prove this, one first replaces the bounds on d in terms of n by bounds in terms of x when x/ log x <

n ≤ x, the remaining values of n being negligible with respect to density. By choosing y := x
1−u
t and

z := x
1
t , one can use (modulo technical refinements related to sieve methods) H(x, y, z) to count them.

Subject to the precision of the estimates being used for H(x, y, z), one can even provide quantitative

bounds for h(u, t).

The seminal paper [27] by Tenenbaum gave strong upper and lower bounds for H(x, y, z), according to

the sizes of y and z relative to x. In particular, when (y, z] ∩ N fails to be a primitive set in the sense

given earlier, say for z > 2y, there is increased interdependence among divisors d, d′ ∈ (y, z] of n, and

hence, such n will be overcounted if they are enumerated näıvely among the
⌊
x
d

⌋
integers divisible by

d, necessitating the use of different techniques to count them (we give an indication of these difficulties

in Appendix D). The main heuristic in Tenenbaum’s work is the following: suppose n is squarefree for

simplicity. Since n =
∏
p|n p and any divisor d of n is a product

∏
p∈A p, where A is a subset of the prime

factors of n, log d is a partial sum of log n =
∑
p|n log p. Relying on ideas that carry over rigorously

to the setting of divisors (Ch. 1 of [13]), Tenenbaum asserted that log d is uniformly distributed in the

logarithmic interval [0, log n] (this is discussed further below).

Tenenbaum’s estimates were later improved to an essentially best possible result by Ford. Using more

elaborate probabilistic arguments regarding so-called order statistics (see [8] for a description) and

ingenious technical manipulations, he removed the uniformity assumption, leading to upper and lower

bounds that are sharp up to multiplicative constants (depending on the values of y and z relative to x).

The main theorem in [9], in the single case z = 2y used in the applications mentioned above and in the

Multiplication Table Problem, is the following:

Theorem (Ford). Let 3 ≤ y ≤
√
x. Then

H(x, y, z) � x(log y)−δ(log log y)−
3
2 , (1.1)

where δ := 1− (1 + log log 2)(log 2)−1 > 0.

(The most general result, valid for all z ≤
√
x, is found in [8]; it is worth mentioning that Koukoulopoulos

[20] more recently generalized the Multiplication Table problem to a count of how many distinct products

d1 · · · dk emerge from multiplying k-tuples of integers (d1, . . . , dk) ∈ {1, . . . , N}k, for k ≥ 3). One can

deduce from this theorem the following corollary:

Corollary (Ford). Let N ≥ 3. We have

|A(N)| � N2

(logN)δ
(log logN)−

3
2 . (1.2)

(The proof uses arguments similar to those in Proposition 2.13).

Ford’s strategy in estimating H(x, y, z) in the context of (rational) integers is to recast the problem in

terms of the clustering of divisors. Define, for a ∈ N,

L(a) :=
⋃
d|a

(log(d/2), log d], (1.3)
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and let L(a) denote the Lebesgue measure of L(a). It is clear that L(a) ≤ (log 2)
∑
d|a 1 = τ(a) log 2, and

a large deviation from this number suggests that many intersections (log(d′/2), log d′] ∩ (log(d/2), log d]

are non-trivial, and therefore either d < d′ ≤ 2d or d′ < d ≤ 2d′. Occurrences of this kind undermine the

hypothesis that {log d : d|n, d ≤ z} is uniformly distributed in [0, log n]. Indeed, with this hypothesis,

one expects that the interval (log y, log z], of logarithmic length log(z/y) = log 2, in our case, contains a

proportion of size log 2
log a of the τ(a) divisors of a over the interval [0, log a]. Thus, the expectation value of

the measure would be τ(a) log 2, which is not the case when many intersections occur. By establishing

estimates for L(a) for appropriate choices of a, he arrives at (1.1).

1.2 A Generalization to Algebraic Number Fields

Algebraic Number Theory demonstrates an analogy between the roles of integral ideals in number fields

and integers. Let K/Q be a number field, i.e., a finite extension field of the field of rational numbers,

and let OK denote its ring of integers, i.e. the set of all α ∈ K, such that there exists f(X) ∈ Z[X] such

that f(α) = 0. The Krull-Schmidt theorem ([7], Ch. 5.3) asserts that any ideal I ⊆ OK factors uniquely

(up to a permutation in order) into prime ideals, just as rational integers factor uniquely into rational

primes, as asserted by the Fundamental Theorem of Arithmetic. The statistics of these prime ideals also

follow a Prime Number Theorem of sorts, called the Prime Ideal Theorem (see Chapter 2), proven by

Landau in the early 1900’s [22]. There are, therefore, many generalizations of results in rational Number

Theory to algebraic number fields.

Let K/Q be a number field of degree M with discriminant ∆K . For an ideal a, let N(a) = NK(a) :=

|OK/a| be its ideal norm (finite because any integral ideal is a torsion-free, finitely generated Z-module

with the same free rank as the OK , and thus has finite index), and let B(N) := {a ⊂ OK : NK(a) ≤ N},
i.e., the set of ideals with norm at most N . Define AK(N) := {ab : a, b ∈ B(N)}. In analogy to A(N),

one might ask how large AK(N) is with respect to B(N)2.

A related problem is to consider the set A′K(N) := {N(ab) : a, b ∈ B(N)} of integers equal to norms of

products of ideals. In contrast to a study of AK(N), studying A′K(N) requires, in essence, counting the

products of ideals without accounting for the multiplicity of prime ideals lying above a given rational

prime (as discussed below). To begin a discussion of the strategy behind tackling this problem in the

particular case where K is a Galois extension of the rational numbers, we need some preliminaries from

Algebraic Number Theory and Galois Theory (see, for example, [1]).

OK is a Dedekind domain and therefore admits unique factorization of integral ideals into prime ideals.

Let p ∈ N be a rational prime. Then the principal ideal pOK factors in K as a product P k1
1 · · ·P krr ,

where each Pj is a distinct prime ideal of the extension, with Pj ∩ Z = (p). Moreover, kj = 1 if and

only if p - ∆K , where ∆K denotes the discriminant of K. Because ∆K ∈ Z, it has only finitely many

prime factors and therefore, with the exception of finitely many rational primes, we need only speak of

unramified primes for which kj = 1 for all j. Let f(P ) := [OK/P : Z/pZ] denote the relative degree of the

field extension induced by p for P lying above it. Since K is Galois, Gal(K/Q) acts transitively on the

primes lying above a rational prime, and thus f(P ) = f(P ′) for each P, P ′|pOK . We may therefore refer

to the relative degree of f(P ) as a function of the rational prime p above which it lies. The prime ideals

dividing pOK satisfy the relation
∑
P |pOK f(P ) = M , and thus, according to the previous observation,

we may define ωK(p) := M/f(p) to be the number of prime ideals in the factorization of an unramified

prime p.
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Because the extension K/Q is normal, via a projection of the minimal polynomial, implicitly defined for

K, modulo P , the extension of quotient fields (OK/P )/(Z/pZ) is Galois, and its Galois group is cyclic,

generated by the Frobenius element σP of P , which lifts to an element of Gal(K/Q). As mentioned,

the Galois group of K/Q acts transitively on the primes in the factorization of p, and, under the action

of Gal(K/Q) induced on the Frobenius elements of these primes, we have τσP τ
−1 = στ(P ). When the

Galois group is Abelian, this implies that σP = σP ′ for every P, P ′|pOK . Otherwise, the action of

conjugation of Gal(K/Q) generates a non-trivial conjugacy class CP containing σP , called the Frobenius

class of P . Because conjugation is an automorphism, all elements of the conjugacy class have the same

group order. Hence, the sizes of Frobenius classes depend on the isomorphism class of the Galois group.

Let D be the union of a set of Frobenius classes. Then (Ch. 3 of [17]):

Theorem (Chebotarev). With the notation above, |{p ≤ x : σP ∈ D}| ∼ |D|
|Gal(K/Q)|

x
log x .

The remarks above imply that the set of all primes with a given relative degree form a union of conjugacy

classes, and we may thus partition the set of all prime ideals in K according to these degrees. Let S

denote the set of all rational integers that are admissible as relative degrees of primes. This set is finite

because any s ∈ S divides the degree of the extension [K : Q], which is assumed to be finite. We

can assign a number Cs ≤ |Gal(K/Q)| to the cardinality of the union of conjugacy classes of primes

with relative degree s, and set ρs := Cs[K : Q]−1, its density relative to the set of all primes in K, as

prescribed by Chebotarev’s theorem.

The ideal norm satisfies the formula NK(ab) = NK(a)NK(b) for any two integral ideals a, b. Further,

the ideal norm of a prime P lying over a rational prime with f(p) = r satisfies NK(P ) = pr. Therefore,

one may express the norm of any ideal I as

N(I) =
∏
P |I

NK(P )ν =
∏
s∈S

 ∏
P |I

f(P )=s,P∩Z=(p)

pν


s

. (1.4)

Let P denote the set of all rational primes, and for s ∈ S, let Ps := {p ∈ P : f(p) = s}. Also, let

Ns := {n ∈ N : p|n ⇒ p ∈ Ps}. It is clear that N(I) =
∏
s∈Sm

s
s, where ms ∈ Ns. Moreover, because

{Ps : s ∈ S} forms a partition of P, every ideal norm can be written uniquely in the form of (1.4), up

to permutations of divisors. Therefore, the maps

πs : N→ Ns, n 7→
∏
pν ||n
p∈Ps

pν

are well-defined for each s. By determining the number of divisors of πs(n) for each s ∈ S, we can

determine the size of A′K(N).

The above technicalities do not, however, factor into a determination of the order of magnitude of

|AK(N)|. Indeed, it will be apparent that with no more than the Prime Ideal Theorem and |B(N)|,
referred to above, we can solve that problem using Ford’s methodology. In fact, his argument can be

applied to a much broader range of settings, namely a certain class of arithmetical semigroups (for a

discussion, see Appendix C).

We will prove the following results:

Theorem 1.3. Let K/Q be a number field (not necessarily Galois). Then with the notation above, for
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x ≥ 4 and 3 ≤ y ≤
√
x,

HK(x, y, 2y) �K
x

(log y)δ(log2 y)
3
2

. (1.5)

Therefore, we have the estimate

|AK(N)| �K
N2

(logN)δ(log2N)
3
2

. (1.6)

The deduction of the second assertion from the first is made in Chapter 2 (see Proposition 2.13). Note

that this order of magnitude has the same form as that given in (1.2), modulo the dependence of implicit

constants on the choice of the number field K. The proof, as mentioned, follows Ford’s method closely

and is, at the very least, expository of his strategy.

Next, we have the following upper and lower bounds on the divisor distribution functions Hs(x, y, z),

defined for each s ∈ S, when z = 2y.

Theorem 1.4. Let N ∈ N and let K/Q be a Galois number field of degree M := [K : Q]. Let s ∈ S.

Then, uniformly for 2 ≤ y ≤
√
x,

Hs(x, y, 2y) �s
x

(log x)1−ρs(log y)1−ρs(1−δ)(log2(y))
3
2

. (1.7)

In the next section, we will deduce the following estimate for |A′K(N)| as a corollary of this last theorem

(which we quote again as Proposition 2.14).

Theorem 1.5. Let K/Q be a Galois number field and let S be the set of all possible relative degrees of

prime ideals of OK . Set t := |S| and let A′K(N) denote the set of all norms N(ab) for a, b ∈ B(N).

Then

|A′K(N)| � N2
∑

A⊆{1,...t}

N
2|A|−1(

∑
j∈A
j 6=1

s−1
j −1)

(logN)|A|δ(log2N)
3
2 |A|

. (1.8)

(The leading order term in any such sum depends on the nature of S, so we leave it in this form in

general).

Broadly, the outline of this thesis is as follows. In Chapter 2, we provide lemmata (giving full proofs

wherever necessary) to be used in the development of our main theorems. In particular, we prove that, in

order to study |AK(N)| in a general number field and |A′K(N)| in a Galois number field, it is sufficient to

quantitatively describe the functions HK(x, y, 2y) and Hs(x, y, 2y), respectively. In Chapter 3, we walk

through Ford’s strategy in a general setting which simultaneously addresses the problems of determining

|AK(N)| and |A′K(N)| by providing estimates for HK and for Hs. In Chapter 4, we show how some

of the prior arguments apply in the setting of rational integers, to cases in which the set of products is

restricted to shifted sums of squares, i.e., u2 + v2 + s = ab for s fixed and a, b ≤ N , as well as shifted

squarefree numbers, i.e., n+ s = ab where µ2(n) = 1. Chapter 5 is split into four appendices in which,

among other things, we discuss: i) applications of the function H(x, y, z) due to Hall and Tenenbaum;

ii) the subject of Arithmetical Semigroups, the theory of which provides the framework for our general

treatment of the Multiplication Table problem.



Chapter 2

Preliminaries

In this section, we prove (or cite references to proofs of) results that will be useful in Chapters 3 and

4, with a focus on clarity and completeness. Throughout, we assume that K/Q is an arbitrary (unless

otherwise specified to be Galois) number field, with discriminant ∆K and degree [K : Q]. All implied

constants, unless otherwise indicated, will depend at most on K.

It will be necessary to estimate the number of ideals with norm bounded by x that satisfy a certain

constraint on their prime ideal factors. To this end, we need an estimate for the number of ideals with

norm bounded by x.

Theorem 2.1 (Dedekind-Weber). There exists a constant AK depending only on K such that for any

x ≥ 1, ∑
N(a)≤x

1 = AKx+OK

(
x1− 1

m

)
,

where m := [K : Q].

Proof. See Theorem 11.1.5 of [7] for a guided exposition, and the precise statement of the value of AK

(the error term here is not best possible, but suffices for our application).

One relevant constraint is that an integral ideal have a large squarefull part. By a squarefree ideal, we

mean an integral ideal a = pk1
1 · · · pkmm , where each kj = 1; in contrast, a squarefull ideal has kj ≥ 2

for each 1 ≤ j ≤ m. It is thus clear that we can decompose any integral ideal a as a = bc, where b is

squarefull, c is squarefree and the two parts are coprime, by taking b to be the product of prime divisors

with kj ≥ 2.

Corollary 2.2. For any 3 ≤ y ≤
√
x, the number of integral ideals a with N(a) ≤ x and squarefull part

having norm at least (log y)4 is OK

(
x

(log y)2

)
.

Proof. This number is clearly ∑
N(bc)≤x

N(b)>(log y)4

1 =
∑

N(d)>(log y)2

∑
N(c)≤x/N(d)2

1,

7
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where d2 = b. Applying Theorem 2.1, we get a bound of

≤ 2AKx
∑

N(d)>(log y)2

1

N(d)2
≤ 2AKx

∫ ∞
(log y)2

du

u2
= OK

(
x

(log y)2

)
,

as claimed.

As in many problems in classical multiplicative Number Theory, the statistics of prime ideal divisors are

important to the arithmetic of ideals. We will thus need a description of these statistics.

Theorem 2.3 (Landau’s Prime Ideal Theorem). Let πK(x) denote the counting function of prime ideals

with norm ≤ x. Then

πK(x) =
x

log x

(
1 +OK

(
1

log x

))
Proof. See [23].

From Theorem 2.3, we may deduce the following consequences, which shall be play a role in this chapter

and the next.

Corollary 2.4 (Mertens’ Theorems for Ideals). The following holds:

i) There exists a constant cK depending at most on K such that

∑
N(p)≤x

1

N(p)
= log2 x+ cK +OK

(
1

log x

)
. (2.1)

Hence, for any u < N(p) ≤ v, ∏
u<N(p)≤v

(1−N(p)−1)−1 ∼ log v

log u
.

ii) For any α > 1,
∑
N(p)≤x

1
N(p)α = OK,α(1).

iii) We have ∑
N(p)≤x

log(N(p)) = x

(
1 +OK

(
1

log x

))
,

as well as ∑
N(p)≤x

logN(p)

N(p)
= log x+OK(1).

Proof. These are standard exercises in partial summation. The details are provided below for the sake

of completeness.

i) From the theory of Stieltjes integration, we can write

∑
N(p)≤x

1

N(p)
=

∫ x

2−

1

t
d

 ∑
N(p)≤t

1

 =

∫ x

2−

1

t
d

{
t

log t
(1 +OK(1/ log t))

}

=

∫ x

2−

dt

t log t
− bK

∫ x

2−

dt

t(log t)2
+OK

(
1

log x

)
= log2 x− log2 2− bK

1

log 2
+OK

(
1

log x

)
,
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where bK is a constant implied by the error term of Theorem 2.2. This establishes the first claim, where

cK := − log2 2− bk 1
log 2 .

We prove ii) and use it to show the second part of i). Since t−(1+ε) is an integrable function on (1,∞),

letting ε := α− 1 > 0 (completely determined by α), we have

∑
N(p)≤x

1

N(p)1+ε
=

∫ x

2−

1

t1+ε
d

 ∑
N(p)≤t

1

�
∫ x

2−

1

t1+ε
dt�ε 1.

The second statement of i) now follows:

∏
u<N(p)≤v

(1−N(p)−1)−1 = exp

− ∑
u<N(p)≤v

log(1−N(p)−1)

 = exp

 ∑
u<p≤v

N(p)−1 +
∑

u<N(p)≤v

∑
k≥2

1

kN(p)k


= exp

(
log

(
log v

log u

)
(1 + o(1))

)
∼ log v

log u
,

since the double sum in the second last line clearly satisfies

∑
N(p)≤v

∑
k≥2

1

kN(p)k
≤

∑
u<N(p)≤v

1

N(p)2

1

1−N(p)−1
�

∑
u<N(p)≤v

1

N(p)2
= O

(
1

u

)
,

by ii).

iii) Similarly, we have

∑
N(p)≤x

logN(p) =

∫ x

2−
log td

 ∑
N(p)≤t

1

 =

∫ x

2−
dt+OK

(∫ x

2−

dt

log t

)
= x+OK

(
x

log x

)
, (2.2)

since li(x) :=
∫ x

1
dt

log t ∼
x

log x as x→∞. The second assertion now follows from

∑
N(p)≤x

logN(p)

N(p)
=

∫ x

2−

1

t
d

 ∑
N(p)≤t

logN(p)


by applying (2.2).

To evaluate |A′K(N)|, i.e. the number of integers representing products of prime ideals, using Ford’s

argument, we will need an effective form (with the error term given below) of Chebotarev’s theorem in

the form of (2.1), valid for each s ∈ S (for the appropriate definitions, see Chapter 1.2).

Lemma 2.5. Let x ≥ 3 and s ∈ S. Then∑
p≤x
p∈Ps

1

p
= ρs log2 x+ c0 +Os

(
e−c1

√
log x

)

where c0, c1 are constants depending at most on s, and ρs is the ratio of the size of the union of all

conjugacy classes containing Frobenius elements of primes of relative degree s to |Gal(K/Q)| (see Chapter

1.2).
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Proof. Define

ψs(x) :=
∑

N(pm)≤x
p-∆K, f(p)=s

log(NK(p)).

Consider the subgroup H = 〈g〉 ≤ Gal(K/Q) for g an element of a conjugacy class counted by Cs, and

denote by Ĥ its group of its characters. Invoking the exact formula derived by Lagarias and Odlyzko

(Thm 7.1 in [21]), we have for any 2 ≤ T ≤ x,

ψs(x) = ρs

x−∑
χ∈Ĥ

χ(g)

 ∑
ρ=β+iγ:ζK (ρ)=0

|γ|≤T

xρ

ρ
−

∑
ρ:ζK (ρ)=0

|ρ|≤ 1
2

1

ρ


+O

(
x(log x)2

T

)
,

where ζK is the Dedekind zeta function for the extension K/Q, and the sum over ρ includes only non-

trivial zeros, i.e., excluding {−2k : k ∈ N}. The sum over ρ in brackets will be included in the error

term, and we may therefore ignore the contribution of the various characters of Ĥ.

Let ε > 0. Heath-Brown’s theorem [15] regarding zeros of Hecke L-functions shows that, uniformly in

the interval σ ∈ [ 1
2 , 1],

N(σ, T ) := |{ρ = β + iγ : ζK(ρ) = 0, β ∈ [σ, 1], |γ| ≤ T}| � T (c+ε)(1−σ)(log T )A,

where c = c(T ) ≥ 2 is a positive constant depending at most on T . By the symmetry of zeros about the

line σ = 1
2 and about the real axis,

∑
ρ:|γ|≤T

xρ

ρ
= 4

∑
1≤k≤log2 x

∑
1−2−k≤ρ<1−2−(k+1)

|γ|≤T

xρ

ρ
≤ 4x

∑
1≤k≤log2 x

x−2−(k+1)

1− 2−k
N(1− 2−k, T )

� x logA T
∑

1≤k≤log2 x

x−2−(k+1)

1− 2−k
T (c+ε)2−k = x logA T

∑
1≤k≤log2 x

(x/T 2(c+ε))−2−(k+1)

1− 2−k

≤ x log2 x logA T exp

(
log 2

log x
(log x− 2(c+ ε) log T )

)
� x logA T exp

(
−2(c′ + ε)

log T

log x

)
,

where c′ is chosen slightly smaller than c to compensate for the log2 x factor in the previous expression.

Choosing T such that log T =
√

log x, one arrives at

ψs(x) = ρsx+O
(
Csx(exp

(
−c′′

√
log x

)
(log

A
2 x+ log2 x))

)
= ρsx+O

(
Csx exp

(
−c1

√
log x

))
.

Note, from the definition of ψs, that

ψs(x) =
∑

NK (p)≤x
p-∆K, f(p)=s

log(NK(p)) +O

s ∑
pks≤x
k≥2

log p

 =
∑

NK (p)≤x
p-∆K, f(p)=s

log(NK(p)) +Os(x
1
2 log x).



Chapter 2. Preliminaries 11

Thus, by partial summation, we get

∑
p≤x
p∈Ps

1

p
=

∑
NK (p)≤x

1
s

p-∆k,f(p)=s

1

NK(p)
=

∫ x
1
s

2
1
s

1

t log t
dψs(t)

= ρs

∫ x
1
s

2
1
s

dt

t log t
+O

∫ x0

1

+

∫ x
1
s

x0

 dt

log t
exp

(
−c1

√
log t

)
= ρs log2 x+ ρs(log

1

s
− log2 2) +O

(
exp

(
−c′1

√
log x

))
,

where x0 was chosen as large as possible, such that log x0 ≥ exp(c1
√

log x0), and c′1 is chosen to bound

(log x)−1 exp(−c1
√

log x). This completes the proof.

We note here that the error term in the above is stronger (i.e., smaller) than O
(

1
log x

)
, which will be

needed later (see Lemma 2.4).

We have therefore demonstrated that the semigroups of: i) integral ideals of a number field K/Q; and

ii) integers with prime factors constrained to have a fixed relative degree, both have an associated set

of prime elements that are statistically well-described. We may therefore prove sieve estimates in the

following, more general framework, with subsequent application to our problems (for a more detailed

discussion, see Appendix C).

Definition 2.6. An arithmetical semigroup is a triple (X,PX , NX) where X is a semigroup (i.e. a

multiplicative monoid with identity) generated by a set of elements PX and NX : X → N is a function

that satisfies the following properties:

a) If 1X denotes the identity element of X then NX(1X) = 1;

b) For any M > 0, the set {x ∈ X : NX(x) ≤M} has finite cardinality (informally, the ball induced by

NX of radius x in X is finite).

c) For any x, y ∈ X, NX(xy) = NX(x)NX(y).

When the generating set and norm function NX are understood, we abuse notation and say that X is

an arithmetical semigroup.

With this greater level of generality, we will be able to tackle the estimation of both |AK(N)| in a

general number field K, and |A′K(N)| when K is Galois, using a single argument, provided in Chapter

3. We note that by assuming Axiom A (see Definition 5.6), which is the analogue of Theorem 2.1 for

the number of elements of norm NX(a) ≤ x in a general arithmetical semigroup X, we may prove the

analogues of Corollaries 2.2 and 2.4 in X (see Appendix C for an overview). These results are proven the

same way, using the norm NX in place of the norm N = NK . In our subsequent treatment, therefore,

we use the more general language of arithmetical semigroups.

Let (X,PX , NX) be an arithmetical semigroup. We will need a way to quantify the number of elements

in X whose prime divisors have large norm. This will be shown to be small, and therefore relegated to

the error term. To this end, we use the following analogue of a classical sieve result proven by Halberstam

and Richert. In the statement below, a multiplicative function is a homomorphism f from X into the

unit group of a field, i.e., satisfying f(ab) = f(a)f(b), provided that a and b share no prime divisors .

Lemma 2.7. Suppose f is a real-valued, non-negative, multiplicative function for which there exist

A,B > 0 such that:
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i)
∑
NX(p)≤x f(p) logNX(p) ≤ Ax

ii)
∑
ν≥2

∑
p f(pν)NX(p)−ν log(NX(p)ν) ≤ B. Then for any x > 1,

∑
NX(a)≤x

f(a) ≤ (A+B + 1)
x

log x

∑
NX(a)≤x

f(a)

NX(a)

Proof. Set S(x) :=
∑
NX(a)≤x f(a) and M(x) :=

∑
NX(a)≤x

f(a)
NX(a) . Then we have

S(x) log x =
∑

NX(a)≤x

f(a) logNX(a) +
∑

NX(a)≤x

f(a) log
x

NX(a)
= S1 + S2 + S3,

where, as a consequence of the equation logNX(a) =
∑
pν ||a logNX(pν), we have set

S1 :=
∑

NX(a)≤x

∑
a=mp

(m,p)=1

f(mp) logNX(p)

S2 :=
∑

NX(p)≤x

∑
ν≥2

f(pν)
∑

NX (m)≤ x
NX (p)ν

(m,pν )=1

f(m) log(NX(mpν))

S3 :=
∑

NX(a)≤x

f(a) log
x

NX(a)
.

By the trivial inequality log y ≤ y for y ≥ 1, S3 ≤ xM(x). Since log(NX(mpν)) ≤ x logNX(pν),

S2 ≤ x
∑

NX(p)≤x

∑
ν≥2

f(pν) logNX(p)ν

NX(p)ν
M(xNX(p)−ν) ≤ BxM(x).

Finally,

S1 ≤
∑

NX(m)≤x

f(m)
∑

NX(p)≤ x
NX (m)

f(p) logNX(p) ≤ AxM(x)

and the lemma follows immediately upon division by log x.

Using Lemma 2.7, we will be able to provide the upper bound implied by the following statement which

allows us to focus on elements with prime factors of small norm with negligible losses.

Theorem 2.8. Let α ∈ (0, 1] and let (X,PX , NX) be an arithmetical semigroup satisfying an α-prime

element theorem, i.e.,

πX(x) := |{NX(p) ≤ x : p ∈ Pα}| = α
x

log x

(
1 +O

(
1

log x

))
.

Write ΦX(x, z) := |{NX(n) ≤ x : NX(P−(n)) > z}|. Then, uniformly for 2 ≤ y ≤ 1
2x,

ΦX(x, z) �α
x

(log x)1−α(log z)α
. (2.3)
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Note that by partial summation (as in Corollary 2.4), the hypothesis on πX(x) implies the estimates∑
NX (p)≤x
p∈PX

NX(p)−1 = α log2 x+O(1) (2.4)

∏
u<NX (p)≤v

p∈PX

(1−NX(p)−1)−1 �
(

log v

log u

)α
. (2.5)

Proof. The proof follows a line of argument suggested in Ch. 0 of [13]. Let χ(a, z) be the characteristic

function of the set {NX(n) ≤ x : NX(P−(n)) > z}, and note that this is a multiplicative function. It is

easy to see that |χ(p, z)| ≤ 1, with |χ(p, z)| = 1 whenever NX(p) > z. For any ε ∈ (0, 1
2 ), and uniformly

for z ≤
√
x,∑

NX(p)≤x

χ(p, z) logNX(p) =
∑

z<NX(p)≤x

logNX(p)� x

∑
p,ν≥2

χ(pν , z) logNX(pν)NX(p)−ν ≤
∑
p

NX(p)−2(1−ε)
∑
ν≥0

NX(p)−ν �
∑
p

1

NX(p)2(1−ε) � 1.

Applying Lemma 2.7 and using (2.4) and (2.5), we have

ΦX(x, z) =
∑
a≤x

χ(a, z)� x

log x

∑
NX(a)≤x

χ(a, z)

NX(a)
≤ x

log x

∑
z<NX(P−(a))≤NX(P+(a))≤x

1

NX(a)

=
x

log x

∏
z<NX(p)≤x

(1−NX(p)−1)−1 � x

log x
·
(

log x

log z

)α
=

x

(log x)1−α(log z)α
.

This last upper bound holds for all x and z satisfying x > z.

For the lower bound, we consider two cases, according to whether or not x
1
4 < z ≤ 1

2x. In the first case,

the hypothesis on PX implies (counting only prime elements among those with norm > z)

ΦX(x, z) =
∑

NX (a)≤x
NX (P−(a))>z

1 ≥ πK(x)− πK(z) =

∫ x

z

dπK(t)�
∫ x

z

dt

log t
� x− z

log x
� x

(log x)1−α(log z)α
.

In the second case, i.e., when 2 ≤ x ≤ x
1
4 , let g(a) be a multiplicative function defined by g(pν) = 1 or

0 according to whether or not ν = 1 and z < NX(p) ≤ x 1
3 . From Corollary 2.4,

ΦX(x, z) log x ≥
∑

NX(a)≤x

χ(a, z) logNX(a) ≥
∑

NX(a)≤x

χ(a, z)
∑
pk||a

logNX(pk)

=
∑

z<NX(p)≤x

logNX(p)
∑

NX (m)≤ x
NX (p)

NX (P−(m))>z

1 =
∑

NX (m)≤x
NX (P−(m))>z

∑
z<NX(p)≤ x

NX (m)

logNX(p)

� x
∑

NX (m)≤x
NX (P−(m))>z

1

NX(m)
≥ x

∑
NX(m)≤

√
x

g(m)

NX(m)
,

where the last z term has been dropped because it is small compared to x/NX(m). Since g is supported
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on squarefree elements, we have

ΦX(x, z) log x =
∏

z<NX(p)≤x
1
3

(
1 +

1

NX(p)

)
−

∑
NX(m)>

√
x

g(m)

NX(m)

>
∏

z<NX(p)≤x
1
3

(
1 +

1

NX(p)

)
− 1

2

∑
NX(m)≥1

g(m)

NX(m)

logNX(m)

log x
. (2.6)

This last term is expressible as

∑
NX(m)≥1

g(m)
logNX(m)

NX(m)s
= − d

ds

 ∑
NX(m)≥1

g(m)NX(m)−s

 = − d

ds
exp

 ∑
z<p≤x

1
3

∑
k≥1

(−1)k−1NX(p)−skk−1


= exp

 ∑
z<NX(p)≤x

1
3

∑
k≥1

(−1)k−1NX(p)−skk−1

 ∑
z<NX(p)≤x

1
3

(logNX(p))
∑
k≥1

NX(p)−sk(−1)k−1

=
∏

z<NX(p)≤x
1
3

(
1 +NX(p)−s

)−1 ∑
z<NX(p)≤x

1
3

logNX(p)

NX(p)s + 1
, (2.7)

where s ∈ C satisfies Re(s) = σ > 1. In (2.7), the inner sum is log(x
1
3 z−1) + O(1) when s = 1, by

Corollary 2.4. In this case, comparing (2.7) to (2.6),

ΦX(x, z) log x >
∏

z<NX(p)≤x
1
3

(1 +NX(p)−1)

(
1− log(x

1
3 z−1) +O(1)

2 log x

)

=

(
5

6
+O((log x)−1)

) ∏
z<NX(p)≤x

1
3

(1 +NX(p)−1).

Again using Corollary 2.4, upon dividing by log x we get

ΦX(x, z)� x

log x

∏
z<NX(p)≤x

1
3

1 +NX(p)

NX(p)
=

x

log x

∏
z<NX(p)≤x

1
3

(1− (1 +NX(p))−1)−1

� x

log x

(
log x

log z

)α
=

x

(log x)1−α(log z)α
,

and the lower bound implicit in (2.3) holds in the case 2 ≤ z ≤ x 1
4 as well.

The uniformity in z then follows by taking constants for which all of the various upper and lower bounds

apply.

The special cases which are of relevance to the determination of |AK(N)| and |A′K(N)|, respectively, are

as follows.

Corollary 2.9. a) Set ΦK(x, z) := |{a ⊂ OK : N(a) ≤ x and N(P−(a)) > z}|. We have, uniformly for

2 ≤ z ≤ 1
2x, ΦK(x, z) � x

log z .

b) For each s ∈ S, set Φs(x, z) := |{n ≤ x : n ∈ Ns and P−(n) > z}|. We have, uniformly for

2 ≤ z ≤ 1
2x, Φs(x, z) � x

(log x)1−ρs (log z)ρs .
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These will be implemented in the deductions of Theorems 1.3 and 1.4 in Chapter 3.

Proof. In part a), take X to be the semigroup of integral ideals of K/Q with norm function a 7→ NK(a)

and PX to be the set of all prime ideals. By Theorem 2.3, one may take α = 1.

In part b), take X to be the semigroup of positive integers generated by Ps which, by definition, is Ns ,

and take the trivial norm function, i.e. n 7→ n. By Chebotarev’s theorem and Lemma 2.5, one may take

α = ρs.

A second sieve bound, necessary for the evaluation of a sum in Chapter 3.2, has the following analogue

in the general setting of arithmetical semigroups.

Proposition 2.10. Let f : X → R+ be an arithmetic function such that there is some C > 0 with

f(pm) ≤ Cf(m) for each (m, p) = 1. Let Ix := {a ∈ X : a is squarefree and NX(P+(a)) ≤ x}. Then

for any real h ≥ 0,

∑
a∈Ix

f(a)

NX(a) logh(NX(P+(a)) + x/NX(a))
�C,h (log x)−h

∑
a∈Ix

f(a)

NX(a)
. (2.8)

Proof. We consider two cases according to whether or not NX(a) ≤ x 1
2 . In the first case, x/NX(a) > x

1
2 ,

so that, trivially, logh(NX(P+(a))+x/NX(a)) ≥ 2−h logh x. This suffices to prove the bound in the first

case.

In the second case, fix ε ∈ (0, 1
2 ). We may restrict ourselves to the event that NX(P+(a)) ≤ xε.

Otherwise we have, as before, logh(NX(P+(a)) + x/NX(a)) ≥ ε−h logh x, which again suffices. In the

event that NX(P+(a)) ≤ xε, by applying the hypothesis on f with p = P+(a), m = ap−1 (m and p

being coprime since a is squarefree), we have by partial summation,

∑
a∈Ix

NX (a)>x
1
2 ,NX (P+(a))≤xε

f(a)

NX(a) logh(NX(P+(a)) + x/NX(a))

≤ C
∑
m∈Ix

NX (a)>x
1
2
−ε
,NX (P+(m))≤xε

f(m)

NX(m)

∑
NX (p)≤xε

NX (p)>NX (P+(m))

1

NX(p) logh(NX(p))

≤ 2C
∑
m∈Ix

NX (m)>x
1
2
−ε
,NX (P+(m))≤xε

f(m)

NX(m)

∫ xε

2−

1

t(log t)h
d

{
t

log t

(
1 +O

(
1

log t

))}

≤ 2C ′(h)
∑
m∈Ix

NX (m)>x
1
2
−ε
,NX (P+(m))≤xε

f(m)

NX(m)

∫ xε

2−

dt

t(log t)h+1

= 2Cε−h(log x)−h
∑
m∈Ix

NX (m)>x
1
2
−ε
,NX (P+(m))≤xε

f(m)

NX(m)
,

the latter being trivially bounded above by the right side of (2.8). Combining the estimates in these

cases finishes the proof.

Recall the definition (1.3) of the function L(a), which, roughly, measures the amount of clustering of the
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divisors of a. Define the following analogue:

LK(a) := meas(LK(a)) := meas

⋃
d|a

(log(N(d)/2), logN(d)]

 .

Write τK(a) :=
∑

d|a 1, which is the ideal divisor counting function on K. The following inequalities

readily follow from the definition:

Lemma 2.11. Let a, b be integral ideals in K.

i) We always have LK(a) ≤ min(τK(a) log 2, logN(a) + log 2).

ii) If (a, b) = 1 then

LK(ab) ≤ min(τK(a)L(b), τK(b)L(a)).

iii) For any k ∈ N,

LK(p1 · · · p) ≤ min
j≤k

2k−j(log 2 + logN(p1 · · · pj)).

Proof. i) For each divisor d of a, the interval (log(N(d)/2), log(N(d))] has length log 2 and there are

τK(a) divisors. Thus, the upper bound LK(a) ≤ τK(a) log 2 follows in the case of maximum measure

when all of the intervals are disjoint. The other one, i.e., LK(a) ≤ logN(a) + log 2, follows, since

0 < logN(d) ≤ logN(a) for all d|a, whence (log(N(d)/2), logN(d)] ⊂ (− log 2, logN(a)].

ii) By the translation invariance of Lebesgue measure, we have

LK(ab) = meas

⋃
d|b

{u+ logN(d) : u ∈ LK(a)}

 ≤ meas(LK(a))
∑
d|b

1 = τK(b)LK(a).

Switching the roles of a and b in the above computation yields LK(ab) ≤ τK(b)LK(a) as well, which

proves the stated upper bound.

iii) We apply i) and ii) with a = p1 · · · pj and b = pj+1 · · · pk for any 1 ≤ j ≤ k. Using τK(b) = 2k−j

(as any divisor of b corresponds to a subset of the k− j primes defining it, of which there are 2k−j), we

complete the proof.

When X is a general arithmetical semigroup with norm NX we can similarly define LX and LX , changing

the endpoints of the intervals in the definition of LK to logNX(a)/2 and logNX(a), for a ∈ X. The

proof of Lemma 2.11 with LX in place of LK is the same.

In his lower bound estimate, Ford considers a specific set of integers A, whose prime factors can be

partitioned into disjoint classes. More precisely, he defines a set B of vectors b with a fixed number of

entries (the sum of which is bounded), and indexes the size of the prime factors of a ∈ A according to

each component of the vector described. The classes that he considers are selected in a manner that

facilitates computation. We will construct these partitions, parametrized by α ∈ (0, 1], in order to treat

all arithmetical semigroups satisfying an α-prime element theorem (see Theorem 2.8).

Let λ0(α) ∈ (0, 2) and for each j ≥ 1, select λj(α) > λj−1(α) maximally such that

∑
λj−1(α)<NX(p)≤λj(α)

1

NX(p)
≤ log 2. (2.9)

Note that {λj(α)}j≥0 is well-defined by Corollary 2.4, since the sum over norms is indeed divergent.
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Since λj(α) is chosen to be maximal, if p is the prime element with smallest norm larger than λj(α)

then adding NX(p)−1 to (2.9) makes the sum exceed log 2. We now define the sets Ej := {p : NX(p) ∈
(λj−1(α), λj(α)]} and set ρ = ρ(α) := 2α

−1 ≥ 2 (this should not be confused with the notation ρs

associated with A′K(N)). These will serve to produce the partition in question,

Lemma 2.12. There exists some constant R > 0 such that ρm−R ≤ log λm(α) ≤ ρm+R for every m ≥ 1.

We henceforth fix R in this context.

Proof. Although this is proven in [20], we give a different proof. By Corollary 2.4 and telescoping, for

any m ≥ 1 we have

α(log2 λm(α)− log2 λ0(α)) =

m∑
j=1

∑
λj−1(α)<NX(p)≤λj(α)

1

NX(p)
+O

1 +

m∑
j=1

1

log λj(α)


≤ m log 2 +O

1 +

m∑
j=1

1

log λj(α)

 . (2.10)

Exponentiating, we have (henceforth omitting the dependence on α for convenience)

log λm ≤ C0ρ
mexp

C1

m∑
j=1

1

log λj

 .

Let νj denote the smallest norm of a prime larger than λj , for each 1 ≤ j ≤ m. From (2.10), we have

α(log2 λm − log2 λ0) ≥ m log 2−
m∑
j=1

1

νj
+O

(
1

log λm

)
≥ m log 2−

m∑
j=1

ρ−j/2 +O

 m∑
j=1

1

log λj


≥ m log 2 +O

1 +

m∑
j=1

1

log λj

 . (2.11)

The second last inequality above holds because for any j large enough, we trivially have 1
λj
< 1

2α
−1 log 2

and hence

λj > log λj � exp(
1

2
jα−1 log 2) = ρj/2.

Exponentiating (2.11), we see that

log λm � ρmexp

C1

m∑
j=1

1

log λj

 � ρmexp

C1

m∑
j=1

ρ−j

 � ρm
uniformly in m. Therefore, there exists a constant R large enough that ρm−R ≤ log λm(α) ≤ ρm+R.

We note here the deductions of |AK(N)| and |A′K(N)|, i.e., the number of distinct products of integer

ideals, and the number of distinct norms of products of integer ideals, respectively, from the expressions

for HK and Hs for each s.



Chapter 2. Preliminaries 18

Proposition 2.13. Let N ∈ N. Then

HK

(
N2

2
,
N

4
,
N

2

)
≤ |AK(N)| ≤ 2

∑
0≤j≤ logN

2 log 2

HK

(
N2

2j
,
N

2j+1
,
N

2j

)
.

Proof. Suppose a, b are integral ideals with N(a) ∈ (N/4, N/2] and b ∈ B(N), so that N(ab) ≤ N2/2

(every ideal counted by HK(N2/2, N/4, N/2) has this form). Then trivially, a ∈ B(N) as well; thus,

ab ∈ AK(N) which, upon taking cardinalities, establishes the lower bound.

For the upper bound, if ab ∈ AK(N) then N(b) ≤ N and N(a) ∈ (N/2j+1, N/2j ] for some j ≥ 0. Thus,

ab is counted by HK(N2/2j , N/2j+1, N/2j). It follows that the set AK(N) is covered by the union of

all sets counted by Hk(N2/2j , N/2j+1, N/2j), whose cardinality is bounded above by the sum of these

terms over all j ≥ 0. Note that if ab is counted by a term with j > logN
2 log 2 , then N2/2j ≤ N

3
2 , which

gives us ∑
logN
2 log 2<j≤

logN
log 2

HK(N2/2j , N/2j+1, N/2j)� N
3
2 logN = o(HK(N2/2, N/4, N/2)),

according to Theorem 1.3. Thus, multiplying each of the first logN
2 log 2 terms by two more than accounts

for these and produces the desired upper bound.

In light of equation (1.5) in Theorem 1.3 (which is proven in Chapter 3), we have:

|AK(N)| � N2

2(logN − log 4)δ(log(logN − log 4))
3
2

� N2

(logN)δ(log2N)
3
2

,

and

|AK(N)| �
∑

0≤j≤ logN
2 log 2

2−j
N2

(logN − (j + 1) log 2)δ(log(logN − (j + 1) log 2))

� N2

(logN)δ(log2N)
3
2

∑
j≥0

2−j � N2

(logN)δ(log2N)
3
2

whence follows (1.6) in Theorem 1.3.

The next proposition is a more technical analogue of Proposition 2.13 for |A′K(N)|. For relevant defini-

tions, see Chapter 1.2.

Proposition 2.14. Let N ∈ N, set t := |S| and let {s1, . . . , st} be the ordering of the elements of S

according to size (and thus s1 = 1). The following estimates hold:

|A′K(N)| �
∑

A⊆{1,...,t}
1∈A

Hs1

(
N2(1− 1

|A| )

4
,
N1− 1

|A|

4
,
N1− 1

|A|

2

)∏
j∈A
j 6=1

Hsj

(
N

2
|A|sj

4
,
N

1
|A|sj

4
,
N

1
|A|sj

2

)

|A′K(N)| �
∑

A⊆{1,...,t}
1∈A

∑
r∈[0, logN

2 log 2 ]|A|

Hs1

(
N2(1− 1

|A| )

2
∑
j∈A rj

,
N1− 1

|A|

2r1+1
,
N1− 1

|A|

2r1

)∏
j∈A
j 6=1

Hsj

(
N

2
|A|sj ,

N
1
|A|sj

2rj+1
,
N

1
|A|sj

2rj

)
.

Note that wherever the sum over components rj produces a power of 2 exceeding N2(1−|A|−1), it con-

tributes nothing to the upper bound.
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Proof. For the lower bound, suppose that n = ms1
1 m

s2
2 · · ·m

st
t is counted in the sum on the right

side, and let A be the set of all j ∈ {1, . . . , t} with πsj (n) = 1. Write mj = ajbj ≤ N
2
|A|sj , where

aj ∈ (N
1
|A|sj

4 , N
1
|A|sj

2 ] for each j 6= 1, and a1 ∈ (N (1−|A|−1)/4, N (1−|A|−1)/2]. It follows that b
sj
j ≤ 1

2N
1
|A|

for each j ∈ A. Hence, m1 ≤ 1
2N

2(1−1/|A|), mj ≤ 1
2N

2
|A|sj for j 6= 1 and n = ab, with

a :=
∏
j∈A

a
sj
j ≤

N

2dA
≤ N,

b :=
∏
j∈A

b
sj
j ≤

∏
j∈A
j 6=1

N
1
|A| = N,

where dA :=
∑
j∈A sj ≥ s1 = 1. Thus, a and b both correspond to norms of ideals of the form

a :=
∏
j∈A

 ∏
P |pOK
p|aj

P νp(aj)


sj

,

b :=
∏
j∈A

 ∏
P |pOK
p|bj

P νp(bj)


sj

where νp is the p-adic valuation of aj . Therefore, n is counted as an ideal norm in A′K(N).

To prove the upper bound, it should be noted that:

i) In light of Theorem 1.3, for any j 6= 1 (and hence sj ≥ 2) and rj ≤ log y
log 2 (and hence smaller than log x

2 log 2

so that
√
x ≤ x2−rj ), we have

Hsj (x
1
sj ,

y
1
sj

2(rj+1)
,
z

1
sj

2rj
)� x

1
2 ((

1

sj
log x)1−ρsj (

1

sj
log(y2−(rj+1)))ρsj )−δ(ρsj log2(y2−(rj+1)))−

3
2

� x2−rj ((log x)1−ρs1 (log(y2−(rj+1)))−ρs1 )−δ(ρs1 log2(y2−(rj+1)))−
3
2

� Hs1(x2−rj , y2−(rj+1), y2−rj ),

because ρs1 = M−1 ≤ ρsj for each sj ∈ S.

ii) If n1, n2 are integers counted by Hsj (xj , yj , zj) for j = 1, 2, respectively, then nj ≤ xj with (at

least one) of its divisors in the interval (yj , zj ]. This therefore implies that n1n2 ≤ x1x2 has a divisor

d1d2 ∈ (y1y2, z1z2], meaning that Hs1(x1, y1, z1)Hs1(x2, y2, z2) ≤ Hs1(x1x2, y1y2, z1z2). Inductively, the

same inequality holds when we replace two factors n1, n2 by any finite number of such factors.

iii) Next, we note that for any 2 ≤ y ≤
√
x, if k ≤ 1

2 log y (such that y2−k ≥ 1) then

Hs1(x, y2−k, y) =

k−1∑
j=0

Hs1(x, y2−(j+1), y2−j)�k Hs1(x, y/2, y).

We now proceed to prove the upper bound. Suppose n = N(ab) for some a, b ∈ B(N), and write

n = ms1
1 · · ·m

st
t . Put A := {j ∈ {1, . . . , t} : πsj (n) 6= 1} and B := {j ∈ A : m

sj
j > N

1
|A| }. For

j ∈ B, there is a kj ≤ |A|
2 such that mj ∈ (N (2kj−1)/|A|, N2kj/|A|] and has a proper divisor aj ∈

(N
kj
|A|sj 2−(rj+1), N

kj
|A|sj 2−rj ] for some rj ≥ 0. For j ∈ A\B, there is analogously some rj such that mj



Chapter 2. Preliminaries 20

has a divisor in (N
1
|A|sj 2−(rj+1), N

1
|A|sj 2−rj ]. If A = B then

N2 ≥ m =
∏
j∈A

m
sj
j > N

2
|A|
∑
j∈A 1 = N2,

a clear contradiction. Thus, |A\B| ≥ 1. By construction, we have

2 logN ≥ logm =
∑
j∈B

sj logmj +
∑

j∈A\B

sj logmj > 2|A|−1 logN
∑
j∈B

(kj − 1).

Therefore,
∑
j∈B(kj − 1) ≤ |A| − 1, as the left side is an integer strictly smaller than |A|.

Denote by k the integer vector with components kj for j ∈ A (with the convention that kj = 1 for

j ∈ A\B), and by r the integer vector with components rj for j ∈ A. We then see that n is counted by

∑
A⊆{1,...,t}

∑
r∈[0, logN

2 log 2 ]|A|

∗∑
k

∏
j∈B

Hsj

N kj
|A|sj ,

N
kj
|A|sj

2(rj+1)
,
N

kj
|A|sj

2rj

 ∏
j∈A\B

Hsj

(
N

1
|A|sj ,

N
1
|A|sj

2(rj+1)
,
N

1
|A|sj

2rj

)
,

where the asterisk on the sum over k indicates that the condition
∑
j∈B(kj − 1) ≤ |A| − 1 holds.

Suppose πs1(n) = 1. The number of such n is at most N , as all such numbers must be squarefull. Thus,

we may ignore this contribution (since it is negligible with respect to the upper bound being demon-

strated). We may therefore assume that πs1(n) 6= 1.

To simplify notation, for k, r andN fixed, we will writeHj(k, r, N) to denoteHsj

(
N

2kj
|A|sj

2rj
, N

kj
|A|sj

2rj+1 ,
N

kj
|A|sj

2rj

)
.

By applying remarks i), ii) and iii) successively (where kj ≤ |B| for each j) , we have∏
j∈B

Hj(k, r, N)
∏

j∈A\B

Hj(k, r, N) ≤
∏
j∈B

H1(k− 1, r, N)
∏

j∈A\{1}

Hj(1, r, N)

≤ Hs1

N 2
∑
j∈B(kj−1)

|A| ,
N

∑
j∈B(kj−1)

|A|

2r1+1
,
N

∑
j∈B(kj−1)

|A|

2r1

 ∏
j∈A\{1}

Hj(1, r, N)

≤ |B|Hs1

(
N

2(|A|−1)
|A|

2
∑
j∈A rj

,
N
|A|−1
|A|

2r1+1
,
N
|A|−1
|A|

2r1

) ∏
j∈A\{1}

Hsj

(
N

2
|A|sj ,

N
1
|A|sj

2rj+1
,
N

1
|A|sj

2rj

)

for every vector k (where 1 := (1, . . . , 1)). Since each kj ≤ |A|/2 ≤ |S|/2, there are only a finite number

of such vectors. In addition, |B| ≤ [K : Q]; thus, the upper bound in the statement of the proposition

holds.

Using Theorem 1.4, we can deduce the appropriate order of magnitude for |A′K(N)| (as we did for

|AK(N)|). Since x and y are of the same order of magnitude, (log x)1−α(log y)α � log x. For the lower
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bound in Theorem 1.5,

|A′K(N)| �
∑

A⊆{1,...,t}

N2(1−|A|−1)

4(logN)δ(1−ρs1 )(logN)ρs1δ(log2N
3
2

∏
j∈A
j 6=1

N
2
|A|sj

(logN)δ(log2N)
3
2

=
∑

A⊆{1,...,t}

N
2+2|A|−1(

∑
j∈A
j 6=1

s−1
j −1)

4(logN)|A|δ(log2N)
3
2 |A|

= N2
∑

A⊆{1,...,t}

N
|A|−1

(∑
j∈A
j 6=1

s−1
j −1

)

4(logN)|A|δ(log2N)
3
2 |A|

;

for the upper bound,

|A′K(N)| �
∑

A⊆{1,...,t}

∑
r∈[0, logN

2 log 2 ]|A|

N2(1−|A|−1)

2
∑
j∈A rj (logN)δ(log2N)

3
2

∏
j∈A
j 6=1

N2|A|−1s−1
j

(logN)δ(log2N)
3
2

� N2
∑

A⊆{1,...t}

N
2|A|−1(

∑
j∈A
j 6=1

s−1
j −1)

(logN)|A|δ(log2N)
3
2 |A|

∑
r∈[0, logN

2 log 2 ]|A|

2−
∑
j∈A rj

� N2
∑

A⊆{1,...t}

N
2|A|−1(

∑
j∈A
j 6=1

s−1
j −1)

(logN)|A|δ(log2N)
3
2 |A|

.

We have therefore proven the following theorem:

Theorem 2.15. Let K/Q be a Galois number field and let S be the set of all possible relative degrees of

prime ideals of OK . Set t := |S| and let A′K(N) denote the set of all norms N(ab) for N(a), N(b) ≤ N .

Then

|A′K(N)| � N2
∑

A⊆{1,...t}

N
2|A|−1(

∑
j∈A
j 6=1

s−1
j −1)

(logN)|A|δ(log2N)
3
2 |A|

.

This reduces to Ford’s theorem (1.1), as required, when t = 1.

Consider, for instance, the case when K := Q(
√
d), where d is a squarefree integer. In this case,

S = {1, 2}, and the sum above contains two terms (as we require all sets A to be non-empty and contain

1). The term corresponding to A = S then yields the correct order of magnitude and we have:

Corollary 2.16. If d is a squarefree integer then |A′Q(
√
d)

(N)| � N
3
2

(logN)2δ(log2 N)3 .



Chapter 3

Bounding HX(x, y, z)

We start by adapting Ford’s argument ([9], Section 2) to the setting of arithmetical semigroups (X,PX , NX)

with an α-prime element theorem, for α ∈ (0, 1] (see Definition 2.6 and Theorem 2.8 for definitions).

As discussed in Chapter 2, this more general formalism has applications in the cases where: i) X is the

semigroup of integral ideals, yielding an estimate for the number of distinct products of ideals |AK(N)|;
ii) X is the set of integers generated by the primes of the class Ps for a given s ∈ S, yielding an estimate

for the number of distinct norms of products of ideals |A′K(N)|. We deal with the lower bounds in 3.1

and the upper bounds in 3.2. Throughout Chapter 3, all bounds are dependent at most on X (e.g. via

a dependence on α), unless otherwise indicated.

3.1 Lower Bounds

The proof of the lower bound consists of reducing the estimation of HX(x, y, 2y) to a combinatorial prob-

lem regarding sets of a partition (see the remarks preceding Lemma 2.12). This interpretation derives

from an analysis of the values of LX(a) for an appropriate choice of semigroup elements a ∈ X. Some

of Ford’s argument is independent of the setting X, at which point his analysis is sufficient to complete

the argument; therefore we need only make the preparatory steps towards this general combinatorial

interpretation which is dealt with in his paper.

Theorem 3.1. If 3 ≤ y ≤
√
x then for any ε > 0,

HX(x, y, 2y)�ε
x

(log y)1+α(log x)1−α

∑
N(a)≤yε
a squarefree

LK(a)

N(a)
. (3.1)

We may clearly assume that y is sufficiently large for the arguments below to make sense. Otherwise, if

y is bounded by some fixed constant y0, an inclusion-exclusion argument regarding the divisibility of an

element a by elements b ∈ X with NX(b) ∈ (y, 2y] (a bounded number of elements if we assume Axiom

A, as described in Appendix C) akin to (5.1) in Appendix A, gives the lower bound HX(x, y, 2y)� x�
x

(log x)1−α . For in this case the log1+α y term and the sum (which has only finitely many bounded terms)

in (3.1) are bounded.

Proof. Consider the set of elements I := apb with NX(I) ≤ x, where a is squarefree and NX(a) ≤ yε, p

22
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satisfies log(y/NX(p)) ∈ LX(a), and the prime factors of b have norm either larger than 2y or contained

in the interval (yε, y1−ε] (the choice of p makes it possible for b to be trivial if only one of the constraints

on prime factors of b is assumed). We will call I with this form good. By definition, there is some

d|a, such that log(NX(d)/2) < log(y/NX(p)) ≤ log(NX(d)). Thus, exponentiating this inequality and

rearranging, one arrives at y < NX(pd) ≤ 2y. The divisor pd of I thus belongs to (y, 2y], and hence, any

good element is counted by HX(x, y, 2y). Therefore, counting the set of all good elements I provides a

lower bound for HX(x, y, 2y). By construction, 2y > p ≥ y/NX(d) ≥ y1−ε; thus, I has only one such

representation, as pb contains only prime divisors that are either smaller than 2y or found in (yε, y1−ε].

Thus, we may count good ideals according to the elements a, p and b of their unique factorizations.

Let us bound from below the number of such elements I. There are at least as many b with the above

properties as there are elements J with NX(J) ≤ x/NX(ap) and NX(P−(J)) > 2y. Theorem 2.8

demonstrates that there are � x
NX(ap)(log y)α(log x)1−α of these. Such elements will occur if x/NX(ap) >

4y, for example. If NX(b) ≤ x/NX(ap) ≤ 4y, however, the set of such b is at least as large as the set of

elements with prime divisors ≥ yε. Theorem 2.8 also shows that the number of such b in this case is also

�ε
x

NX(ap)(log x)1−α(log y)α
.

It therefore follows that

HX(x, y, 2y) ≥ |{I ∈ X : I is good}| � x

(log x)1−α(log y)α

∑
NX(a)≤yε

1

NX(a)

∑
log(y/NX(p))∈LX(a)

1

NX(p)
.

(3.2)

Finally, note that, using the analogue of Corollary 2.4 for X and Lemma 2.11, the sum over p may be

rewritten as ∑
d|a

∑
y/NX(d)<NX(p)≤2y/NX(d)

1

NX(p)
≥
∑
d|a

NX(d)

2y

∑
y/NX(d)<NX(p)≤2y/NX(d)

1

=
∑
d|a

NX(d)

2y
(πX (2y/NX(d))− πX (y/NX(d)))

� 1

log y
τ(a)� LX(a)

log y
. (3.3)

Inserting (3.3) into the lower bound (3.2) for HX(x, y, 2y) yields (3.1).

At this point, we make use of the partition over prime elements analyzed in Lemma 2.12. Let k, J and

M be parameters to be chosen, assuming for the time being that k ≥ 1 is an integer, 2J/2 > J and

2M < J . Also, define

B := {b ∈ (N ∪ {0})J : bj = 0 for i < M, bj ≤ min(Mj,M(J − j + 1)) and b1 + . . .+ bJ = k}.

For each b ∈ B, define A(b) to be the set of squarefree elements a, such that in the factorization of a

into primes, bj of them belong to the set Ej := {p : NX(p) ∈ (λj−1, λj ]}. An element a ∈ A(b) thus

has no ”small” prime factors and its distribution of prime factors is constrained in a symmetric manner.

The following lemma shows that k can be choen in such a way that a ∈ A(b) contributes to the sum in

(3.1).
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Lemma 3.2. There exists k ∈ N such that for all a ∈ A(b), NX(a)�ε y
ε.

Proof. Since p ∈ Ej implies that NX(p) ≤ λj ,

logNX(a) =
∑
j≤J

∑
p|a
p∈Ej

logNX(p) ≤
∑
j≤J

bj log λj ≤MρR(
∑

M≤j≤J/2

jρj +
∑

J/2<j≤J

(J − j + 1)ρj)

≤MρR(MρM
J/2−M∑
j=0

ρj + ρM
J/2−M∑
j=0

jρj + ρJ+1

J/2∑
l=0

lρ−l).

Evaluating these geometric series using the elementary identity

∑
j≤m

jxj = x
d

dx

∑
j≤m

xj = x
mxm−1(x− 1)− xm

(x− 1)2

for x = ρ in the middle sum and x = 1/ρ in the last sum yields an upper bound

logNX(a)�MρR(MρJ/2 + ρM+1(J/2−M)ρJ/2−M−1 + ρJ+1)�MρJ+1,

where R is the constant introduced in Lemma 2.12. We fix M to be a large constant and set J+1 = M+k

with k such that MρJ+1 < ε log y. The choice k :=
⌊

log2 y
log ρ −M

⌋
is sufficient, because Mρ−M < ε for

any ε > 0 when M is large enough.

From Theorem 3.1, we derive the following:

Lemma 3.3. Let b ∈ B. Then

∑
a∈A(b)

LX(a)

NX(a)
�

 ∑
a∈A(b)

τX(a)

NX(a)

2 ∑
a∈A(b)

WX(a)

NX(a)

−1

, (3.4)

where

WX(a) := |{(d1, d2) : dj |a and | log(NX(d1)/NX(d2))| ≤ log 2}|.

Thus, WX provides the number of intersections of intervals defining LX . The proposition below provides

an upper bound for the second factor in (3.4).

Proposition 3.4. For b as in the Lemma 3.3,

∑
a∈A(b)

WX(a)

NX(a)
≤ (2 log 2)k

bM ! · · · bJ !

J∑
j=M

ρ−j+Bj ,

where for each M ≤ j ≤ J , Bj := bM + . . .+ bj.

One sees that the upper bound in Proposition 3.4 is dependent only on the entries of the vector b, and

not its association to a set of primes. Defining the quantity

f(b) :=

J∑
j=M

ρ(bM−1)+...+(bj−1) =

J∑
j=M

ρM−1−j+Bj

for each b ∈ B, the upper bound in Proposition 3.4 becomes � (2 log 2)k

bM !···bJ ! f(b) (since M is fixed).
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Proof of Lemma 3.3. For each divisor d|a define 1d to be the characteristic function of (logNX(d/2), logNX(d)].

It follows that

τX(a)(log 2) =
∑
d|a

∫ log(NX(d))

log(NX(d)/2)

du =
∑
d|a

∫
R

1d(u)du.

By construction, LX(a) = meas ({u ∈ R : ∃d|a s.t. 1d(u) 6= 0}). Thus, by the Cauchy-Schwarz inequal-

ity,

(log 2)2

 ∑
a∈A(b)

τX(a)

NX(a)

2

≤

 ∑
a∈A(b)

LX(a)

NX(a)

 ∑
a∈A(b)

1

NX(a)

∑
d,d′|a

∫
R

1d(u)1d′(u)du

 .

The second sum on the right side has non-zero contributions for a given a if and only if 1d(u) = 1d′(u) = 1.

This occurs on intervals of length at most log 2 whenever | log(NX(d)/NX(d′))| ≤ log 2. The cardinality

of the set of such ordered pairs of divisors is precisely WX(a). It therefore follows upon rearrangement

that ∑
a∈A(b)

LX(a)

NX(a)
≥ (log 2)

 ∑
a∈A(b)

τX(a)

NX(a)

2 ∑
a∈A(b)

WX(a)

NX(a)

−1

,

which implies (3.4).

Proposition 3.4 provides a bound on the sum over WX(a)
NX(a) ; in order to evaluate the lower bound in (3.4)

we will also need a bound for the sum over τX(a)
NX(a) , which is provided by the following lemma.

Lemma 3.5. For b ∈ B, we have

∑
a∈A(b)

τX(a)

NX(a)
≥ (2 log 2)k

ebM ! · · · bJ !
. (3.5)

Proof. Each a is a squarefree product of k distinct prime elements, bj of which come from Ej for each

j. As τX(a) = 2k,

∑
a∈A(b)

τX(a)

NX(a)
≥ 2k

J∏
j=M

1

bj !

 ∑
pBj+1∈Ej

1

NX(pBj+1)

 · · ·
 ∑
pBj+1

∈Ej\{pBj+1,...,pBj+1−1}

1

NX(pBj+1)

 ,

(3.6)

where the normalization by bj ! is needed since the tuples of distinct primes from Ej are permuted (and

thus overcounted) in the above product in bj ! ways. In each successive sum, we exclude the primes

selected earlier so that all factors are distinct. From the construction of the sequence {λj}j , for each

0 ≤ j ≤ J − 1 and Bj + 1 ≤ i ≤ Bj+1, we have

∑
pi∈Ej\{pBj+1,...,pi−1}

1

NX(pi)
≥ log 2− (i−Bj − 1)

1

λj
≥ (log 2− bj/λj).

Since there are bj factors in (3.6) for each j, we may extract (log 2)k from the product to get

∑
a∈A(b)

τX(a)

NX(a)
≥ (2 log 2)k

bM ! · · · bJ !

J∏
j=M

(
1− bj

λj log 2

)bj
.
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For M sufficiently large, b2jλ
−1
j ≤ (Mj)2ρ−j+R ≤ M4ρ−M+R ≤ 1, so that 1 − bj

λj log 2 ≥ 1 − 1
bj log 2 . As

x 7→ x log(1− 1/x) is a convex function for any x > 1,

∑
a∈A(b)

τX(a)

NX(a)
≥ (2 log 2)k

bM ! · · · bJ !
exp

 J∑
j=M

bj log

(
1− 1

bj log 2

) ≥ (2 log 2)k

bM ! · · · bJ !
exp

(
k log

(
1− 1

k log 2

))

≥ (2 log 2)k

bM ! · · · bJ !
exp

(
−k
(

1

k log 2
+

1

(k log 2)2

1

1− (k log 2)−1

))
≥ (2 log 2)k

bM ! · · · bJ !
e−

1
2 log 2 ,

which yields (3.5).

From Lemma 2.4 of [9] and its related comments, it follows that
∑

b∈B
1

bM !···bJ !f(b) ≥
kk−1

2k! (the only

change to be made is to substitute xi = ρ−1+bM−i+1 in place of the same power of 2, as the same equation∑k
i=M+1(bM−i+1−1) = 0 holds in both places). Thus, assuming the validity of Proposition 3.4, applying

Lemma 3.3 and Stirling’s formula,

∑
b∈B

∑
a∈A(b)

LX(a)

NX(a)
�
∑
b∈B

(2 log 2)2k

(bM ! · · · bJ !)2

bM ! · · · bJ !

(2 log 2)kf(b)
� (2 log 2)kkk−1

k!

� (2e log 2)k

k
3
2

� (log y)α
−1(2−δ)

(log2 y)
3
2

,

where δ := 1− log2 2+1
log 2 and ρ := 2α

−1

. Theorem 3.1 then gives

HX(x, y, 2y)� x

(log y)1+α(log x)1−α
(log y)α

−1(2−δ)

(log2 y)
3
2

=
x

(log x)1−α(log y)(1+α)−α(2−δ)(log2 y)
3
2

=
x

(log x)1−α(log y)1−α(1−δ)(log2 y)
3
2

, (3.7)

which, as we will see, is of the right form to prove Theorems 1.3 and 1.4. We must now verify Proposition

3.4.

Proof of Proposition 3.4. The set of divisors d, d′|a counted by WK are in 1-1 correspondence with tuples

of subsets {Yj(d)}M≤j≤J , {Yj(d′)}M≤j≤J indexing the primes that divide them, such that

|
∑

p∈Yj4Y ′j

logNX(p)| ≤ log 2, (3.8)

where A4B denotes the symmetric difference of the sets A and B. Setting Y :=
⋃J
j=M Yj(d) and

Y ′ :=
⋃J
j=M Yj(d

′), we need to compute the number of pairs of subsets Y, Y ′ ⊆ {1, . . . , k} that satisfy

(3.8). If Y = Y ′, the sum over the symmetric difference is empty and the bound on the sum is vacuous;

thus, any of the 2k subsets corresponding to divisors of a satisfy (3.8). If Y 6= Y ′, we can partition the

set of Y ′ into classes Cj(Y ) according to the first index 0 ≤ j ≤ k − 1 at which pk−j ∈ Y differs from

qk−j ∈ Y ′ (the primes being ordered according to their norms). Only the last j + 1 elements of the pair

(Y, Y ′) differ when Y ′ ∈ Cj(Y ); we can thus choose Y ′ in 2j+1 ways for each Y . Allowing Y to vary

over all 2K subsets as before, there are thus 2j+12k = 2k+j+1 pairs (Y, Y ′) that are equal in their first
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k − j − 1 elements.

Note that the bound in (3.8) restricts the choice of only one if all others are fixed. Thus, if we allow

pj to vary for Y ′ ∈ Ck−j+1(Y ), and fix the remaining symmetric difference sum to be logU , then

logU − log 2 ≤ logNX(pj) ≤ logU + log 2, i.e., U/2 ≤ NX(pj) ≤ 2U . Letting µj denote the index l such

that NX(pj) ∈ (λl−1, λl], the α-prime element theorem and the error term in Lemma 2.12 imply that

∑
U/2≤NX(pj)≤2U

1

NX(pj)
� max

(
πX(2U)− πX(U/2)

U/2
,

1

log λµj−1
+

1

log λµj

)

� 1

max(log(2U), log λµj−1)
� ρ−µj+1.

The second last inequality holds because πX is monotone, while the last holds by Lemma 2.12. The

remaining sum over primes will still contribute (log 2)k−1 � (log 2)k. With all of this data and the fact

that ρ ≥ 2 whenever α ≤ 1, we have

∑
a∈A(b)

WX(a)

NX(a)
� 1

bM ! · · · bJ !

∗∑
Y,Y ′⊆{1,...k}
Y ′∈Cj(Y )

J∏
i=M

 ∑
pi∈Ei

1

NX(p)

bj

≤ (2 log 2)k

bM ! · · · bJ !

1 +

k∑
j=1

ρj+2−µj

 .

As µj = l whenever Bl−1 + 1 ≤ j ≤ Bl, the last sum becomes

k∑
j=1

ρj+2−µj ≤ 4

J∑
l=M

ρ−l
∑

Bl−1+1≤j≤Bl

ρj �
J∑

l=M

ρ−l+b1+...+bl ,

which completes the proof of the proposition.

When X is the arithmetical semigroup of integral ideals in K and α = 1, the results of this section give

the lower bound for HK implicit in Theorem 1.3; when X is the arithmetical semigroup of integers with

prime factors belonging to the set Ps for a given s ∈ S and α = ρs, the above gives the lower bound for

Hs implicit in Theorem 1.4.

3.2 Upper Bounds

The above combinatorial interpretation is applicable when z is any constant multiple of y (estimating

HX(x, y, Cy) instead for HX(x, y, 2y), for any fixed C > 1). In all other cases where y < z ≤
√
x, the

lower bound is analyzed using probabilistic methods independent of the setting of the problem. Ford

treats the upper bound in this way in all cases. In this section, we will provide the arguments, in the

context of a general semigroup X as in section 3.1, that lead to the application of these methods. This

also requires estimating HX , this time from above, in relation to the function LX evaluated at squarefree

arguments, where all prime divisors are distinct. The assumption of Axiom A (see Appendix C) will be

crucial for this.

Theorem 3.6. For 3 ≤ y ≤
√
x, we have uniformly

HX(x, y, 2y)� x

(log x)1−α max√
y≤t≤x

1

(log t)1+α

∑
N(P+(m))≤t
m squarefree

LX(m)

NX(m)
. (3.9)
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Proof. As suggested by the (3.9), most of the analysis will involve squarefree elements. It will be

convenient to consider a with a squarefull part bounded in norm by (log x)2γ , where γ ≥ 2 is a constant

to be chosen. By Corollary 2.2, there are O
(

x
(log x)γ

)
elements with squarefull part not satisfying this.

For large enough γ, these are negligible in number.

We decompose the remaining elements in the form a = bm, where b is squarefull, m is squarefree and

b,m coprime. If a is counted by HX , there is some pair of divisors d|b, d′|m, such that NX(dd′) ∈ (y, 2y].

Hence,

HX(x, y, 2y) =
∑

NX(b)≤(log x)2γ

∑
d|b

H∗X (x/NX(b), y/NX(d), 2y/NX(d)) +O

(
x

(log x)γ

)
, (3.10)

where H∗X is the analogue of HX that counts only those squarefree elements with a divisor in a given

interval. To bound each term H∗X here, we will dyadically decompose (x/(log x)2γ , x] into a partition

of intervals of the form (u/2, u] and count the number of contributing terms in each interval To do

this, we consider the difference H∗X(u, v1, 2v1)−H∗X(u/2, v1, 2v1) for some choice u, v1 to be determined,

assuming only that 2v2
1 < u.

The squarefree elements counted in the above difference are of the form mm′ such that NX(mm′) ∈
( 1

2u, u] and either NX(m) ∈ (v1, 2v1] or NX(m′) ∈ (v1, 2v1]. We would like to decompose mm′ according

to the size of its prime divisors as we did in 3.1. To this end, we order the prime divisors of mm′

according to norm, writing mm′ = I1I2I3, where P+(Ij) < P−(Ij+1) for j = 1, 2 and I2 is prime.

According to whether or not NX(P (m)) < NX(P+(m′)), if we choose I2 to be the largest prime factor

of m or m′ then we have either m|I1I2 or m′|I1I2. If we set w1 := 2v1, v2 := u/4v1 and w2 := u/v1 (4

appears because the product of any two numbers from (v1, w1] and (v2, w2] is between u/2 and u), we

have τ(I1I2, vj , wj) ≥ 1 for either j = 1 or 2. In either case, the fact that I1I2 has a divisor larger than

vj implies trivially that I1I2 > vj . Thus,

NX(P−(I3)) > NX(I2) ≥ vj/NX(I1).

By Theorem 2.8, the number of I3 with NX(I3) ≤ u and smallest prime divisor of norm at least NX(I2)

is � u
NX(I1I2)(log u)1−α(logNX(I2))α . If j = 1, log(2v1/NX(I2)) is in an interval of LX(mm′). If j = 2,

then one of c ∈ {1, 2}, log(2cv2/NX(I2)) is an interval of LX(mm′). It follows that

H∗X(u, vj , wj)−H∗X(u/2, vj , wj) ≤
∗∑

NX(I1I2I3)∈(x/2,x]

1

� x

(log x)1−α

∑
NX(I1)≤x

1

NX(I1)

∑
log(cvj/NX (I2))∈LK (I1)

NX (I2)>NX (P+(I1))

1

NX(I2)(logNX(I2))α
, (3.11)

where the asterisk on the sum indicates that: i) NX(P+(Ij)) < NX(P−(Ij+1)) for j ∈ {1, 2}; ii) I2

is prime. In the second line, c is either 2 or 4. It will be convenient (in order to invoke the estimate

from Proposition 2.10) to bound logNX(I2) ≥ max(log(NX(P+(I1))), log(vj/NX(I1)). The inner sum

of (3.11) becomes a sum over those primes in (cvj/NX(I1), 2cvj/NX(I1)] that exceed NX(P+(I1)).

Therefore, by applying the α-prime element theorem as in section 3.1, on each of the ≤ LK(I1)
log 2 disjoint
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intervals, we have

∗∑
I2 prime

1

NX(I2)
� LK(I1)(πK(2cvj/NX(I1))− πK(cvj/NX(I1))) min

(
1

NX(P+(I1))
,

1

vj/NX(I1)

)

� LK(I1)

log(max(NX(P+(I1)), vj/NX(I1)))
.

By reinserting this last expression into (3.11), we get

H∗X(u, vj , wj)−H∗X(u/2, vj , wj) ≤
∗∑

NX(I1I2I3)∈(u/2,u]

1

� u

(log u)1−α max√
y<t≤x

∑
P+(NX(I1))≤t

LK(I1)

NX(I1) log1+α(max(NX(P+(I1)), vj/NX(I1)))
. (3.12)

Let b ∈ X be a squarefull element that satisfies NX(b) ≤ (log x)2γ and let d|b. Dyadically decomposing

( x
(log x)2γ , x] into subinterval (x2−(l+1), x2−l] with l ≤ 2γ log2 x, as mentioned earlier, and applying this

(3.12) with u = 2−lx for each l, we get

HX

(
x

NX(b)
,

y

NX(d)
,

2y

NX(d)

)
�

∑
l≤4 log2 x

(
H∗X

(
x2−l

NX(b)
,

y

NX(d)
,

2y

NX(d)

)
−H∗X

(
x2−(l+1)

NX(b)
,

y

NX(d)
,

2y

NX(d)

))

� x

(log x)1−α max√
y<t≤x

∑
l≤4 log2 x

2−l
∑

NX(P+(m))≤t

LX(m)

NX(mb) log1+α(max(NX(P+(m)), y/NX(m)))

� x

(log x)1−α max√
y<t≤x

∑
NX(P+(m))≤t

LK(m)

NX(mb) log1+α(max(NX(P+(m)), y/NX(m)))
.

Applying Proposition 2.10 with h = 1 + α for each t, we can bound (3.10) as

HX(x, y, 2y)� x

(log x)1−α max√
y<t≤x

1

(log t)1+α

∑
NX (P+(m))≤t
m squarefree

LX(m)

NX(m)

∑
NX(b)≤(log y)2γ

∑
d|b

1

NX(b)
+O

(
x

(log x)γ

)

=
x

(log x)1−α max√
y<t≤x

1

(log t)1+α

∑
NX (P+(m))≤t
m squarefree

LX(m)

NX(m)

∑
NX(b)≤(log y)2γ

τX(b)

NX(b)
+O

(
x

(log x)γ

)
,

recalling that each b is a squarefull element. Note that the smallest possible value of the factor

(log x)−(1−α)(log t)−(1+α) is (log x)−2; we may thus choose γ = 2 + ε for any ε > 0. We will show

that the inner sum over b is then finite, which proves (3.9).

Denoting by χ the characteristic function of the set of squarefull elements, it is easy to see that

a 7→ τX(a)
NX(a)χ(a) is a multiplicative function. We therefore have the Euler product

∑
a s.full

τX(a)

NX(a)s
=

∏
p prime

1 +
∑
j≥2

τX(pj)

NX(p)js

 (3.13)
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for Re(s) > 1. This converges if, and only if,∣∣∣∣∣∣
∑
ν≥2

∑
p

ν + 1

NX(p)νs

∣∣∣∣∣∣ ≤
∑
ν≥2

∑
p

1

NX(p)(ν−ε)σ <∞.

for any ε ∈ (0, 1) [28]. Corollary 2.2 implies that this also holds for s = 1. Thus, the bound claimed in

our theorem holds uniformly over y ≤
√
x.

In order to apply Ford’s method (which involves statistics regarding the ordering of a fixed number of

random variables distributed in an interval), we need to partition the sum on the right side of (3.9)

according to the number of prime divisors of the element m. Let ωX(m) denote the number of prime

divisors of m ∈ X, and suppose ωX(m) = k, for some k ∈ N. Let P be a real number with P > e,

such that NX(P+(m)) ≤ P . Let {p1, . . . , pk} be an enumeration of the prime divisors of m, such that

NX(pi) ≤ NX(pi+1), for each 1 ≤ i ≤ k − 1. Finally, let Zj(m) :=
log2 NX(pj)

log2 P
, for 1 ≤ j ≤ k. The

random variables Z1, . . . , Zk will be analyzed using Ford’s method.

Set

Tk(P ) :=
∑

NX (P+(m))≤P,ωX (m)=k
m squarefree

LX(m)

NX(m)
.

Let v :=
⌊

log2 P
ψ

⌋
for ψ := α−1 log 2 and let β := 2 log 2. Note that if P is fixed and k ≥ βv = 2α log2 P ,

we must have τX(m) = 2k and LK(m) ≤ 2k log 2. Hence,

∑
k≥βv

Tk(P ) ≤
∑
k≥βv

2k log 2
∑

NX (P+(m))≤P
ωK (m)=k

1

NX(m)

≤
∑
k≥βv

2k

k!

 ∑
NX(p)≤P

1

N(p)

k

=
∑
k≥βv

(2α log2 P +O(1))k

k!
.

Note that

∑
k≥2t

tk

k!
=
tt

t!

1 +
∑

k≥2t+1

k−t∏
j=1

(
2 +

j

t

)−1
 ≤ tt

t!

1 +
∑
l≥1

(2 +
1

t
)−l

 =
tt

t!

(
1 +

1

1 + t−1

)
� tt

t!
.

(3.14)

Conversely, if 0 < η < 1 and we set m := bηtc+ 1,

∑
k≤δt

tk

k!
≤ tm

m!

1 +
∑
k≤δt

t−k∏
j=1

(
1− j

t

) =
tm

m!

1 +
∑
k≤δt

exp

t−k∑
j=1

log(1− j/t)


� tm

m!

∑
k≤δt

exp

(
− (t− k)(t− k + 1)

2t

)
=
tm

m!

∑
k≤δt

exp

(
−1

t
k2

)
≤ tm+1

m!
. (3.15)

For η := 1
2 log 2 , for instance, m+ 1 < t when P is large enough. In this case, which occurs, in particular,

when t = βv, the sum is bounded above by tt

t! .
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From (3.14), we have the bound

∑
k≥2βv

Tk(P )� (2α log2 P +O(1))βv

(βv)!
.

Thus, it remains to bound
∑

1≤k<2βv Tk(P ).

Theorem 3.7. Suppose 1 ≤ k < 2βv. Then

Tk(P )� (2α log2 P )k
1 + (v − k)2

(k + 1)!(2k−v + 1)
. (3.16)

Let us assume for the moment that this theorem is valid. There is a change in behaviour of (3.16) at

k = v. For k ≤ v, we have 1 + 2k−v ≤ 2, and (3.15) (because the sum converges by comparison to the

integral of x2e−x) and (3.16) therefore suggest that

∑
1≤k≤v

Tk(P )�
∑

1≤k≤v

((v − k)2 + 1)(2α log2 P )k

(k + 1)!
� (2α log2 P )v

(v + 1)!
.

When v + 1 ≤ k ≤ 2βv,

∑
v+1≤k≤2βv

Tk(P )�
∑

v+1≤k≤2βv

((v − k)2 + 1)

2k−v
(2α log2 P )k

(k + 1)!
≤ (2α log2 P )v

(v + 1)!

∑
k≥v

(v − k)2 + 1

(log 2)−(k−v)
� (2α log2 P )v

(v + 1)!
.

Hence, by Stirling’s approximation,

∑
k≥1

Tk(P )� (2α log2 Pv
−1)vvv

(v + 1)v!
� (2αeψ)v

v
3
2

� (logP )ψ
−1(log(2αeψ))

(log2 P )
3
2

. (3.17)

Since ψ = α−1 log 2, the exponent of logP in (3.17) is

1 + log(2 log 2)

α−1 log 2
− (1 + α) = α(2− δ)− (1 + α) = α(1− δ)− 1

which is clearly negative for any α ∈ (0, 1]. Thus, when P is selected from the interval [
√
y, x], (3.17) is

maximized at P =
√
y. Therefore,

HX(x, y, 2y)� x

(log x)1−α max√
y<t≤x

1

(log t)1+α

∑
k≥1

Tk(t)� max√
y<t≤x

x(log t)α(1−δ)−1

(log x)1−α(log2 t)
3
2

� x

(log x)1−α(log y)1−α(1−δ)(log2 y)
3
2

,

which is equal in magnitude to the lower bound (3.7) from Chapter 3.1. We must now prove Theorem

3.7.

Proof of Theorem 3.7. The theorem is proven by applying Ford’s order statistics method, which is es-

sentially independent of the setting of the problem. We need only provide the setup for this appli-

cation, as follows. Factor m = p1 · · · pk, where NX(pj) < NX(pj+1) for each j and NX(pk) ≤ P .

Let µj denote the index l of λl such that pj ∈ (λl−1, λl]. Let µ := (µ1, . . . , µk) and set F (µ) :=
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min1≤l≤k 2−l (ρµ1 + . . .+ ρµk + 1). By Lemma 2.12,

LX(m) ≤ min
1≤l≤k

τ(p1 · · · pl)(log 2 + logNX(p1) + . . .+ logNX(pl)) ≤ min
1≤l≤k

2l(1 + log λµ1
+ . . .+ log λµl)

≤ 2k+R min
1≤l≤k

2−l(1 + ρµ1 + . . .+ ρµl) ≤ 2kF (µ).

Let J := {j ∈ (N∪{0})k : 0 ≤ j1 ≤ . . . ≤ jk ≤ v+R+1}. Since v+1 ≥ log2 P
log ρ and µk log ρ log2NX(pµk) ≤

log2 P , the set J contains all of the vectors µ that represent orderings of prime divisors of those m which

are counted by Tk(P ). It follows that if bj denotes the number of prime factors in the set Ej , we have

Tk(P ) ≤ 2k+R
∑
j∈J

F (j)
∑

NX (p1)<...<NX (pk)
pi∈Eji

1

NX(p1) · · ·NX(pk)

≤ 2k+R
∑
j∈J

F (j)

v+R+1∏
j=0

1

bj !

∑
p∈Ej

1

NX(p)

bj

≤ 2R(2 log 2)k

b0! · · · bv+R+1!

∑
j∈J

F (j),

since b0 + . . .+ bv+R+1 = k by construction. The remainder of the argument now follows from the end

of Lemma 3.5 and Lemma 3.6 of [9] (the crucial point in the proof of Lemma 3.6 is that the series in the

last line there converges. This is not affected by putting ρ in place of 2.).

This concludes the proof of the upper bounds, with the applications to Theorems 1.3 and 1.4 described

at the end of Chapter 3.1. In light of Propositions 2.13 and 2.14, the results of this section and the

previous one are sufficient to prove (1.6) and (1.8).



Chapter 4

Restricted Multiplication Table

Problems

In [8], the classical multiplication table problem for integers, described in chapter 1.1, is generalized to

one in which the resulting products satisfy a particular condition. More precisely, suppose B ⊆ N is

an arbitrary sequence of integers. For N ∈ N, let AB(N) := |B ∩ {ab : a, b ≤ N}|. One now seeks to

estimate |AB(N)|. Ford considered the particular case B := {s+ p : p ∈ P}, where s is a fixed non-zero

integer (a sequence of shifted primes). He quantitatively described the associated divisor distribution

function H(x, y, z;B) := |B ∩ {n ≤ x : ∃d ∈ (y, z] s.t. d|n}|, making certain assumptions regarding y

and z. The problem was subsequently solved completely by Koukoulopoulos in [19]. He produced sharp

order of magnitude estimates for all values of y and z. Naturally, there are endless ways to choose B.

In [10], for example, the choice of B as an arithmetic progression to a fixed modulus was considered.

In this chapter, we investigate two examples of restricted multiplication table problems. In each case,

we are shifting the sequence by some fixed non-zero integer s. We study: i) the sequence of shifted

sums of squares Ts := {u2 + v2 + s : u, v ∈ N ∪ {0}}; ii) the sequence of shifted squarefree numbers

Us := {n + s : µ2(n) = 1}. In general, sequences that are equidistributed in residue classes modulo

primes can be evaluated using similar methods to those worked out in the previous chapter, and i) is an

example of this.

4.1 Shifted Sums of Squares

Euler proved that a rational prime p is representable as a2 + b2 for positive integers a, b if, and only if,

p ≡ 1 (mod 4). From the simple formula (a2 + b2)(c2 + d2) = (ad − bc)2 + (ac + bd)2 and induction,

it follows that any product of sums of squares is itself a sum of squares. Thus, any squarefree integer

composed of primes congruent to 1 mod 4 is a sum of squares. A converse of this also holds:

Theorem 4.1. Let m ∈ N. Then m = a2 + b2 for some a, b ∈ N∪ {0} if, and only if, any prime divisor

p of m which is not congruent to 1 mod 4 satisfies p2|m.

Proof. See [14], Chapter XX.

Based on this fact and basic techniques in Sieve Theory, we may arrive at a result reminiscent of Theorem

3.1:

33
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Lemma 4.2. If 3 ≤ y ≤
√
x then for any ε > 0,

H(x, y, 2y; Ts)�ε,s
x

(log x)
1
2 (log y)

∑
a≤yε
µ2(a)=1

L(a)

φ(a)
.

Proof. Let T := T0. As before, we choose a set of integers apb such that apb − s ∈ T , a ≤ yε and

q|b⇒ q ∈ (yε, y1−ε] or q > 2y, and log(y/p) ∈ L(a). This gives us

H(x, y, z; Ts) ≥
∑
a≤yε
µ2(a)=1

∑
log(y/p)∈L(a)

∑
b≤x/ap

P−(b)>2y,apb−s∈Ts

1. (4.1)

The inner sum can be computed as follows. For a and p fixed according to the conditions on the sums

above, let F ∈ Z[X] denote the integer polynomial F (X) := apX−s. Set A := {F (k) ≤ x : P−(k) > 2y}.
Since F is linear, A is in bijection with the set of k ≤ x−s

ap satisfying P−(k) > 2y . Hence, |A| � x
ap log y

by Theorem 2.3 in the case X = N with α = 1. Let z0, D be constants to be chosen momentarily

and let P(z0) := {p < z0 : p ≡ 3 (mod 4)}. We let S(A,P(z0)) be the sifting function for A, i.e., the

number of elements of A not divisible by any primes in P(z0). We will show that this is, in fact, a good

approximation for the inner sum in (4.1).

Denote by ρ(q) the number of solutions of F (n) ≡ 0 (mod q), where q is a prime. Since s has only a

finite number of prime factors, we may safely ignore these primes in what follows (they contribute only

a constant multiplicative factor which, for our purposes is unimportant). The equation apk ≡ s (mod q)

has, at most, one solution, with equality if, and only if, q - ap. Write

V (z0) :=
∏

q∈P(z0)

(
1− ρ(q)

q

)
�

∏
q<z0

q≡3 (mod 4)

(
1− 1

q

)∏
q|ap

(
1− 1

q

)−1

.

By the Prime Number Theorem for the arithmetic progression m ≡ 3 (mod 4) (which is, in fact, Theorem

2.3 when K = Q(i)) and partial summation,

V (z0) � (log z0)−
1
2

ap

φ(ap)
. (4.2)

Let D > 0 and for each positive integer d ≤ D let Ad := {a ∈ A : a ≡ 0 (mod d)}. A result known as

the Fundamental Lemma of Sieve Theory states that (see Corollary 6.10 of [11])

S(A,P(z0)) = |A|V (z0)
(
1 + 4θ(9κ+ 1)κe9κ−sK11

)
+ θ

∑
d<D

p|d⇒p∈P(z0)

||Ad −
ρ(d)

d
|A||, (4.3)

where s := logD
log z0

, θ ∈ [0, 1) and κ ≥ 0 and K > 1 are at our disposal. Since ρ(d) = 1 except for a finite

number of d < D, and in other cases, |Ad| =
⌊
|A|
d

⌋
, the terms in (4.3) are less than 1 for all but a finite

number of terms (and when y is larger than s, which we may assume as in Chapter 3.1, these terms

are zero). If we choose z0 = x
1
2 +η for η > 0, the only elements of S(A,P(z0)) that are not sifted by

P(z0) (i.e., that are, in fact, divisible by primes congruent to 3 mod 4) are the primes in the interval

(z0, x], since they can be divisible by at most one of these primes. This represents a remainder term of

O(x
1
2 +η′) for η′ ∈ (0, η), which is negligible. Moreover, by picking D = z0, the sum over d < D in (4.3)
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also has this order of magnitude.

Suppose m is a composite sum of squares not counted by S(A,P(z0)). Theorem 4.1 implies that it

must be divisible by the square of a prime congruent to 3 mod 4. The size of these primes is at most
√
x. By an inclusion-exclusion argument, the number of m ∈ A that are composite and not counted by

S(A,P(z0)) is bounded below by

≥ |A|

1−
∏
p≤
√
x

p≡3 (mod 4)

(
1− 1

p2

)� |A|.
Therefore, the sieve estimate derived using (4.3) has the right order of magnitude. Inserting (4.2) and

(4.3) into (4.1) and noting that a and p are coprime by construction,

H(x, y, 2y; Ts)�ε
x

(log x)
1
2 (log y)

∑
a≤yε
µ2(a)=1

1

φ(a)

∑
log(y/p)∈L(a)

1

p− 1
.

Lemma 4.1 now follows as in the conclusion of the proof of Theorem 3.1.

Since the restrictions on a and p are independent of Ts, in order to bound H(x, y, 2y; Ts) from below

one can follow the same route as that used in the course of demonstrating Theorem 1.3. In this case, we

may bound 1
φ(a) by 1

a trivially, which will be proven to suffice.

To set up the proof of the upper bounds, we will show an analogue of Theorem 3.6.

Lemma 4.3. For 3 ≤ y ≤
√
x, we have uniformly

H(x, y, 2y; Ts)�
x

(log x)
1
2

max√
y<t≤x

1

(log t)2

∑
P+(m)≤t
µ2(m)=1

L(m)

φ(m)
.

In Chapter 3, the inner sum had denominator m (when X = N) and was bounded above on sets of the

form {m : ω(m) = k}, k ≥ 1 by the products
(∑

p≤P
1
p

)k
with k ≥ 1, estimated using Mertens’ theorem.

In this case, the resulting product will be
(∑

p≤P
1
p−1

)k
, and an estimate of the form log2 P + O(1),

albeit with a different constant term, occurs as well. Therefore, all subsequent results pertaining to the

upper bounds in Chapter 3 will apply once Lemma 4.3 has been proven.

Proof. We follow the method of proof of Theorem 3.6. Let γ ≥ 2 be a parameter to be chosen. By

Corollary 2.2, we can avoid all integers with a squarefull factor in excess of (log x)2γ at the cost of a

remainder term O
(

x
(log x)γ

)
. Decomposing the interval (x/(log x)γ , x] dyadically as before, we get

H(x, y, 2y; Ts) =
∑

b≤(log x)2γ

∑
d|b

∑
a≤x/b,µ2(a)=1

τ(a,y/d,z/d)≥1,ba−s∈Ts

1 +O

(
x

(log x)γ

)

≤
∑

b≤(log x)2γ

∑
d|b

∑
r≤2 log(x/b)

∑
2−(r+1)x/b<a≤2−rx/b

µ2(a)=1,ba−s∈Ts,τ(a;y/d,z/d)≥1

1 +O

(
x

(log x)γ

)
. (4.4)

Write a = I1I2I3, where I2 is prime, P+(I1) < I2 < P−(I3), chosen such that I1I2 has a divisor either
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in (y/d, 2y/d] or in ( xd4yb ,
xd
yb ]. Then the arguments preceding (3.11), applied to (4.4), give

∑
I1≤2−rx/b
µ2(I1)=1

∑
log(cw/I2)∈L(I1)

P+(I1)<I2,I2 prime

∑
I3≤2−rx/bI1I2

P−(I3)>I2,µ
2(bI1I2I3−s)=1

1.

Using the method of Lemma 4.2 to derive an upper bound on the set of sums of squares represented by

the polynomial F (k) := bI1I2k− s for fixed b, I1, I2 and k having no small prime divisors, the inner sum

becomes

� x

2rφ(b)(log x)
1
2

∑
I1≤2−rx/b
µ2(I1)=1

1

φ(I1) log(cw)

∑
log(cw/I2)∈L(I1)

P+(I1)<I2,I2 prime

1

(I2 − 1) log(I2)
.

Bounding log(I2) ≥ max(log(w/I1), log(I1)) as before, we use the same argument as in Theorem 3.6 to

produce the overall estimate (putting m in place of I1, so that m is hence squarefree)

H(x, y, 2y; Ts)�
x

(log x)
1
2

max√
y<t≤x

∑
b≤(log x)2γ

1

φ(b)

∑
d|b

∑
r≤2γ log2 x

2−r
∑

P+(m)≤t
µ2(m)=1

L(m)

φ(m) log2(max(P+(m), y/m))

� x

(log x)
1
2

max√
y<t≤x

∑
b≤(log x)2γ

1

φ(b)

∑
d|b

∑
P+(m)≤t
µ2(m)=1

L(m)

φ(m) log2(max(P+(m), y/m))
.

Invoking Proposition 2.10 with the function f(m) = L(m)/(m/φ(m)) (which is submultiplicative since

n 7→ n/φ(n) is multiplicative) and h = 2 and setting γ = 2 + ε for any ε as in Chapter 3.2, we derive

H(x, y, 2y; Ts)�
x

(log x)
1
2

max√
y<t≤x

1

(log t)2

∑
b≤(log x)2γ

1

φ(b)

∑
d|b

∑
P+(m)≤t

L(m)

φ(m)

� x

(log x)
1
2

max√
y<t≤x

1

(log t)2

∑
P+(m)≤t

L(m)

φ(m)
. (4.5)

The last equality follows by recognizing that, in general, b/φ(b) ≤
∏
p≤b

(
1− 1

p

)−1

� log b for any b.

The Euler product here, analogous to (3.13) above is then

∑
b≥1

b squarefull

τ(b)

φ(b)2
=
∏
p

1 +
∑
j≥2

τ(pj)

φ(pj)2

 ≤∏
p

1 +
∑
j≥2

j(j + 1)(log p)2

p2j


≤
∏
p

1 +
∑
j≥2

j(j + 1)

p(2−ε)j

 ,

when s = 2. This is convergent for ε small enough, so (4.5) follows.

From the comments preceding the proof of Lemma 4.2, we see that by carrying out all of the steps in

Chapter 3 for the upper and lower bounds, we arrive at the following:

Theorem 4.4. For 3 ≤ y ≤
√
x, we have

H(x, y, 2y; Ts) �
x

(log x)
1
2 (log y)δ(log2 y)

3
2

.
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4.2 Shifted Squarefree Numbers

We may apply the strategy used in Chapter 4.1 to determine the number of shifted squarefree integers.

We need only change the sifting factors P(z0) in Lemma 4.2. In this case, we seek squarefree values of

the polynomial F (X) = apX − s, where a is squarefree and p is prime. To this end, we must sieve out

any integer with a divisor of the form p2, where p < z0. Using the formalism above, the required sifting

function takes the form

S(A,P(z0)) = |A|
∏
p<z0

(
1− 1

p2

)
+O(x

1
2 +ε).

The product over primes is convergent as z0 → ∞ (to the value ζ(2)−1). We thus recover the estimate

S(A,P(z0)) � x
log y . This has the same order of magnitude as the number of integers with smallest

prime factor strictly larger than y, by Theorem 2.8 when X = N, and this was applied in Chapter 3 in

the determination of |AX(N). Since the remainder of the argument from Chapter 3.1 is unchanged, we

have:

Lemma 4.5. If 3 ≤ y ≤
√
x then for any ε > 0,

H(x, y, 2y;Us)�ε
x

log y

∑
a≤yε
µ2(a)=1

L(a)

φ(a)
.

By the same token, the upper bounds may also be deduced using this set-up. Since the upper and lower

bounds agree for shifted sums of squares, they will also agree in this case, modulo the factor (log x)
1
2 in

the denominator. We therefore derive the same order of magnitude in this problem as in the unrestricted

problem (see (1.1)).

Theorem 4.6. We have, uniformly for 3 ≤ y ≤
√
x,

H(x, y, 2y;Us) � H(x, y, 2y).
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Appendices

5.1 Appendix A: Besicovitch’s Counterexample

(This is a solution to Exercise III.3.7-8 in [28].)

Let y ≥ 2 and A := N ∩ (y, 2y]. Set My := M(A) and εy := dMy. That εy exists follows from the

inclusion-exclusion principle. Indeed, set M(j)
y :=M({y + 1, . . . , y + j})\M({y + 1, . . . , y + j − 1}) for

each j ≥ 2 (where M(∅) = ∅). These are disjoint sets of multiples which satisfy My =
⋃

1≤j≤yM
(j)
y ;

thus, we have

x−1
∑
n≤x
n∈My

1 =
∑

1≤j≤y

x−1
∑
n≤x

n∈M(j)
y

1

=
∑

1≤j≤y

x−1

⌊ x

y + j

⌋
+

∑
1≤k≤j−1

(−1)k
∑

1≤i1<...<ik≤j−1

⌊
x

lcm(y + j, y + i1, . . . , y + ik)

⌋
=
∑

1≤j≤y

 1

y + j
+

∑
1≤k≤j−1

(−1)k
∑

1≤i1<...<ik≤j−1

1

lcm(y + j, y + i1, . . . , y + ik)

+ o(1)

(5.1)

which converges as x → ∞, provided y is fixed. Let Ω(n, y) :=
∑

pα||n
p≤y

α, i.e., the truncation of Ω(n)

to the set of prime divisors of n less than or equal to y. Setting By := {n : Ω(n, y) ≥ log2 y
log 2 }, we will

decompose My according to its intersection with By. By construction, n ∈ By if, and only if, n = ab

with P+(b) ≤ y < P−(a) and Ω(b) ≥ log2 y
log 2 . It follows that

x−1
∑
n≤x
n∈By

1 = x−1
∑

b≤x,P+(b)≤y
b∈By

∑
a≤ x

b
P−(a)>y

1 =
∑

b≤x,P+(b)≤y
b∈By

1

b
By(x/b),

where By(x) := x−1
∑
a≤x,P−(a)>y 1. A similar inclusion-exclusion argument as that in (5.1) shows

that d{n : P−(n) > y} =
∏
p≤y(1 − 1

p ) (by excluding multiples of p ≤ y). Applying a discrete form

of the Dominated Convergence Theorem (by defining the sequence of functions {gn(t)}n as gn(t) :=

38
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By(n/t)1(1,n](t), with Stieltjes integrals∫ ∞
1

gn(t)1(1,n](t)d{
∑

b≤t,P−(b)≤y

1

b
}),

(5.1) converges to

lim
x→∞

x−1
∑
m≤x
m∈By

1 =
∏
p≤y

(
1− 1

p

) ∑
P+(b)≤y
b∈By

1

b
,

as x→∞ (forcing n to infinity as well).

We bound dBy as follows, introducing a free parameter z to be optimized. The upper bound

1By (n) ≤ zΩ(n,y)−log2 y/ log 2 = zΩ(n,y)(log y)−
log z
log 2

is valid for each z ≥ 1 and n ∈ N. Thus,

x−1
∑
n≤x

1By (n) ≤ x−1exp

(
− log z

log 2
log2 y

)∑
n≤x

zΩ(n,y). (5.2)

Assume now that z ∈ [1, 2). Applying Lemma 2.7 to the setting X = N with the function f(n) := zΩ(n,y)

and noting that zΩ(pν ,y) ≤ zν if p ≤ y and 1 otherwise, we have, by Corollary 2.4,

∑
n≤x

zΩ(n,y) � x

log x

∏
p≤y

(
1− z

p

)−1 ∏
y<p≤x

(
1− 1

p

)−1

� x

log x
exp

z∑
p≤y

1

p
+
∑

y<p≤x

1

p


� x

log x
exp

(
z log2 y + log

(
log x

log y

))
(5.3)

Inserting (5.3) into (5.2), we find that

x−1
∑
n≤x

1By (n)� (log y)−1 exp

((
− log z

log 2
+ z

)
log2 y

)
. (5.4)

The critical point of the exponent in (5.4), treated as a function of z, occurs at z = 1
log 2 (in [1, 2), as

required). Inputting this optimal choice into (5.4) and taking x→∞, we get

dBy � (log y)−(1− 1+log2 2
log 2 ) = (log y)−δ. (5.5)

Consider now the set B′y :=My\By, i.e., those multiples of elements in (y, 2y] such that Ω(n, y) < log2 y
log 2 .

SinceMy and By both have natural density,My∩By does as well; hence, dB′(y) = dMy−d (My ∩ By).

In much the same way as we showed for By, the majorization

1B′y (n) ≤ zΩ(n,y)−log2 y/ log 21∃ d|n:y<d≤2y(n)
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holds when z ∈ (0, 1). Thus, when x > 2y2 (so that x/d > y for each d ∈ (y, 2y]),

x−1
∑
n≤x

1B′y (n) ≤ x−1z−
log2 y
log 2

∑
d∈(y,2y]

zΩ(d,y)
∑
m≤ xd

zΩ(m,y)

� z−
log2 y
log 2

2y

log y

∑
d∈(y,2y]

zΩ(d,y)

d

x

d log x

∑
P+(m)≤ xd

zΩ(m,y)

m

� (log x log y)−1z−
log2 y
log 2

∏
y<p≤2y

(
1− 1

p

)−2 ∏
p≤y

(
1− z

p

)−2 ∏
2y<p≤ xd

(
1− 1

p

)−1

� (log x log y)−1exp

(
2z log2 y − log z

log2 y

log 2
+ log

(
log(x/d)

log y

))
(5.6)

� (log y)−2exp

(
log2 y

(
2z − log z

log 2

))
(5.7)

The critical point of (5.7), as a function of z, is z = 1
2 log 2 , which is indeed in (0,1). Inputting this in

(5.7) ad taking x→∞, we get dB′y � (log y)−δ. Recalling that εy = dMy ≤ dBy + dB′y, the above and

(5.5) imply that εy � (log y)−δ. Thus, εy → 0 as y →∞.

Referring to the definitions stated in Chapter 1, we set A := N ∩
⋃
k≥0(yk, 2yk] and choose two infinite

sequences {xk}k and {x′k}k with xk := yk and x′k := 2yk. The first satisfies

x−1
k

∑
n≤xk

n∈M(A)

1 = y−1
k

∑
0≤j≤k−1

H(yk, yj) ≤ 2ε
∑

0≤j≤k−1

2−(j+2) ≤ ε;

the second satisfies

x′−1
k

∑
n≤x′

k
n∈M(A)

1 ≥ (2yk)−1
∑

n∈(yk,2yk]

1 =
1

2
,

as any set is a subset of its set of multiples. By definition, the lower and upper densities thus satisfy

dM(A) ≤ ε and dM(A) ≥ 1
2 . This establishes the claim asserted in Chapter 1.

5.2 Appendix B: Two Applications of H(x, y, z)

Recall the applications cited in Chapter 1 for the divisor distribution function H(x, y, z). We will prove

both (these are elaborations of the proofs given in Ch. 2.3-2.4 of [13]).

Theorem 5.1. Let εy := d{n : M(n, y) 6= 0} for y > 1. Then εy � (log y)−
δ

1+δ , with δ = 1− 1−log2

log 2 .

Proof. The key observation is that if m|n and m is squarefree and if there is some q|n, such that q - m
and qm ≤ y, µ(m) + µ(qm) = 0. Therefore, in order to have non-zero contributions to M(n, y), any

squarefree divisor m of n not divisible by P−(n) must satisfy P−(n)m > y. This forces m ∈ (y/P−(n), y].

If P−(n) is large with respect to y, n will not satisfy M(n, y) 6= 0. If, however, P−(n) ≤ v, n ≤ x is

counted by H(x, y/v, y).

Set v := exp((log y)α), where α ∈ (0, 1) is to be chosen. This choice is natural because according to

the approach mentioned above, we expect the quantity Φ(x, v) = ΦN(x, v) from Theorem 2.8 to appear,

introducing a logarithmic factor 1/ log v. If P−(n) > v, then n is counted by Φ(x, v); conversely, if

P−(n) ≤ v then n is counted by H(x, y/v, y). Denoting by τ(n; y, z) the number of divisors of n in the
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interval (y, z], H(x, y, z) counts the set of integers with τ(n; y, z) ≥ 1. We therefore have

εy ≤ lim
x→∞

x−1

 ∑
n≤x

P−(n)≥v

1 +
∑
n≤x

τ(n;y/v,y)≥1

1

� lim
x→∞

x−1

(
x

log v
+ x (log y)

−δ(1−α)

)
,

by applying a frm of the upper bound implicit in (1.1). (We should mention that εy exists because

y is fixed and εy =
∑
f≤y d(M((1, f ])\M((1, f − 1])), and each term in this sum exists by the inclu-

sion/exclusion principle.) The optimal choice for α is α = δ
1+δ , which proves the theorem.

The second application has a much more elaborate proof.

Theorem 5.2. Let t ≥ 1, u ∈ [0, 1]. Set

S(u, t) := {n ∈ N : ∃ m|n s.t. n
1−u
t ≤ m ≤ n 1

t }.

Then h(u, t) := dS(u, t) is well-defined.

Proof. First, note that we may assume that u ∈ (0, 1): when u = 0, the two bounds are the same,

S(u, t) = ∅ and h(0, t) = 0 vacuously; when u = 1, every positive integer is contained in S(u, t), as 1 is

one of its divisors. Thus, h(1, t) = 1.

Next, suppose t ∈ [1, 2). Given any divisor d|n, n
d is also a divisor of n. Thus, n has a divisor smaller

than n
1
2 if, and only if, it has a divisor greater than n

1
2 . Using, this observation, we may transform the

pair (u, t) with t ∈ [1, 2) into a new pair (u′, t′) with t′ ≥ 2 as follows:

i) if t ∈ [1, 2(1− u)), 1−u
t > 1

2 ; therefore, we can set u′ := u
t+u−1 and t′ := t

t+u−1 =
(
1− 1−u

t

)−1
> 2;

ii) if t ∈ [2(1− u), 2− u), we can set u′ := 2−t
t and t′ := 2;

iii) if t ∈ [2− u, 2), we can set u′ := t+2u−2
t and t′ := 2.

Thus, in the remainder of the proof, we assume that t ≥ 2 and u ∈ (0, 1). To deal with the bounds on

divisors depending on n, we find a suitable region in [1, x], such that the set {n : ∃ m|n s.t. x
1−u
t < m ≤

x
1
t } is approximately the same size asymptotically in x as S(u, t). To this end, we exclude the interval

[1, x
log x ], which is small with respect to [1, x], and consider its complement (x/ log x, x]. Set

H(x) := |{x/ log x < n ≤ x : ∃ d|n s.t. n
1−u
t < d ≤ n 1

t }|.

Let y := x
1−u
t and z := x

1
t , and suppose n is counted by H(x) but not by H(x, y, z). Thus, n has a

divisor d that satisfies n
1−u
t < d ≤ y. Since n is constrained to the interval (x/ log x, x], it is counted

by H
(
x,
(

x
log x

)α
, xα

)
+H

(
x,
(

x
log x

)β
, xβ
)

, where α := 1−u
t and β := t−1. (1.1) implies that each of

these terms is�α,β x(log x)−δ. This is also negligibly small as x→∞. Therefore, indeed, H(x, y, z) is a

good approximation for H(x) in this interval. By showing that x−1H(x, y, z) converges to a well-defined

limit as x→∞, it will follow that h(u, t) equals this limit, and the theorem will be proven.

It will be convenient to find an approximation for H(x, y, z) itself, as follows. Let ε > 0 and set

Hε(x, y, z) := |{n ≤ x : ∃ d ∈ (y, z] : P−(d) > yε}|. We will show that for small enough ε, Hε(x, y, z) is

sufficiently close to H(x, y, z) that x−1 (H(x, y, z)−Hε(x, y, z))→ 0 as x→∞. The extra constrain on

the divisors of n will make the evaluation of Hε tractable using techniques in Sieve Theory.

If n is counted by H but not by Hε, there must be some divisor d of n that satisfies y < d ≤ z and

P−(d) ≤ yε. If it is the smallest such divisor of n, d
P−(d) ≤ y, as d

P−(d) itself is a divisor of n strictly
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smaller than n. Thus, d ≤ y1+ε and n is counted by H(x, y, y1+ε). Results in section 1 of [8] show that

H(x, y, z)−Hε(x, y, z)� H(x, y, y1+ε)� εδx,

and, as ε→ 0, x−1(H(x, y, z)−Hε(x, y, z))→ 0, as claimed.

We may evaluate Hε(x, y, z) using the inclusion/exclusion principle. Let [a, b] denote the least common

multiple of two positive integers a and b (this should hopefully not be confused with the closed interval

whose endpoints are a and b). Then,

Hε(x, y, z) =
∑
k≥1

(−1)k−1
∑

y<d1<...<dk≤z
P−(di)>y

ε

⌊
x

[d1, . . . , dk]

⌋
=
∑
k≥1

(−1)k−1
∑
d≥1

∑
y<d1<...<dk≤z

P−(di)>y
ε,d=[d1,...,dk]

⌊x
d

⌋

=

∞∑
k=1

(−1)k−1

 ∑
d≥1

P−(d)>yε

ρk(d)

d
x+O

 ∑
d≤x

P−(d)>yε

ρk(d)


 , (5.8)

where ρk(d) denotes the number of k-tuples of integers in (y, z] with least common multiple d. Note

that if ρk(d) 6= 0, then k ≤ τ(d) ≤ 2Ω(d) and, by construction,

Ω(d) ≤ log x

ε log y
= (log x)

(
εt−1(1− u) log x

)−1
= t(ε(1− u))−1.

Hence, for u, t and ε fixed, the number of k for which ρk contributes to (5.8) is uniformly bounded.

Thus, τ(d) is also uniformly bounded and ρ(d) ≤
(
τ(d)
k

)
�u,t 1. The error term in (5.8) is then

�u,t Φ(x, yε)�u,t
x

log x ; therefore, it not factor into the density calculation.

The problem is thus reduced to evaluating

x−1
∑
r≥1

∑
j≥1

r

∗∑
(p1 · · · pj)−1,

where the asterisk over the inner sum indicates that we only consider yε < p1 ≤ . . . ≤ pj ≤ x with

ρ(p1, . . . , pj) = r. According to the observations above, j in (5.2) is bounded; hence, r can only take

on finitely many values, and the double sum consists of only a finite number of pairs (r, j). Let χr,j :

[0, 1]j → [0, 1] be the function which is 1 if its arguments are of the form log pi
log x and p1 · · · pj satisfies

property (∗), and 0 otherwise. The following lemma shows that the inner sum in (5.2) corresponding to

each of the finitely many pairs (r, j) converges to a limit, which proves the theorem.

Lemma 5.3. Let r, j ≥ 1. Let χ : Rj → R be a Lebesgue integrable function with compact support. Then

lim
x→∞

∗∑
χ

(
log p1

log x
, . . . ,

log pj
log x

)
(p1, . . . , pj)

−1 =

∫ ∞
0

· · ·
∫ ∞

0

χ(u1, . . . , uj)
du1

u1
· · · duj

uj
,

where the asterisk denotes the condition in (5.2) for the pair (r, j).

(The lemma applies to the functions χr,j , for each relevant pair (r, j).)

Proof. Let [a, b]j be a hypercube containing the support of χ. Let ν and νx be measures on [a, b]j defined

by dν(u1, . . . , uj) =
∏j
i=1

dui
uj

and dνx(u1, . . . , uj) =
∏j
i=1 x

−uidπ(xui) respectively, where π(x) is the

usual prime counting function. Thus, νx has non-zero contributions occur when xui is prime, i.e., when
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ui = log p
log x for some prime p. We will show that the net {νx}x>0 converges weakly to ν as x → ∞, i.e.,

given any integrable function g on [a, b]j , we have
∫
gdνx →

∫
gdν, as x→∞.

First, if P :=
∏j
i=1[ai, bi] ⊆ [a, b]j , then by Fubini’s theorem,

∫
P

dνx(u1, . . . , uj) =
∏
i≤j

∫
[ai,bi]

x−uidπ(xui) =
∏
i≤j

(
π(xb)

xb
− π(xa)

xa
+ log x

∫
[ai,bi]

π(xui)

xui
dui

)

=
∏
i≤j

((
1

b
− 1

a

)
(log x)−1 +

∫
[ai,bi]

dui
ui

)
=

∫
P

du1

u1
· · · duj

uj
+O((log x)−1).

Thus,
∫
P
dνx →

∫
P
dν as x→∞. By linearity of the integral, any simple measurable function f (i.e., a

finite linear combination of characteristic functions of subsets of [a, b]j) will also satisfy
∫
fdνx →

∫
fdν.

Let η > 0. Recall that the simple measurable functions defined on [a, b]j are dense in L1([a, b]j). In

particular, if χ is Lebesgue integrable, we can choose s1, s2 simple and measurable, such that s1 ≤ χ ≤ s2

and
∫

[a,b]j
|s1 − s2|dν < η. It then follows that for x large enough,

∫
[a,b]j

s1dν − η ≤
∫

[a,b]j
s1dνx ≤

∫
[a,b]j

χdνx ≤
∫

[a,b]j
s2dν + η.

Because
∫

[a,b]j
s1dν ≤

∫
[a,b]j

χdν ≤
∫

[a,b]j
s2dν, we produce

−
∫

[a,b]j
(s2 − s1)dν − η ≤

∫
[a,b]j

χdν −
∫

[a,b]j
χdνx ≤

∫
[a,b]j

(s2 − s1)dν + η

and thus |
∫

[a,b]j
χdν −

∫
[a,b]j

χdνx| < 2η. This completes the proof of the lemma and the theorem.

5.3 Appendix C: Arithmetical Semigroups

The purpose of this section is to provide a brief introduction to the ”abstract” Analytic Number Theory

that is used in Chapters 2 and 3.

As mentioned in Chapter 1.2, the defining property of the integral ideal space of a number field K/Q,

for instance, that makes it suitable for arithmetic is the existence and uniqueness of a factorization of

integral ideals into a product of generating elements, namely the prime ideals of OK . The Dedekind-

Weber theorem and the Prime Ideal Theorem (see the beginning of Chapter 2) describe, statistically,

the distribution of integral ideals and prime ideals, respectively, according to their norms. The complete

multiplicativity of the norm function N : {ideal space of K} → N makes the arithmetic of ideals closely

related to the arithmetic of positive integers.

By axiomatizing the above observations, Knopfmacher [18], introduced and developed the following

general class of objects.

Definition 5.4. An arithmetical semigroup is a triple (X,PX , NX) where X is a semigroup (i.e. a

multiplicative monoid with identity) generated by a set of elements PX and NX : X → N is a function

that satisfies the following properties:

a) If 1X denotes the identity element of X then NX(1X) = 1;

b) For any M > 0, the set {x ∈ X : NX(x) ≤M} has finite cardinality (informally, the ball induced by
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NX of radius x in X is finite).

c) For any x, y ∈ X, NX(xy) = NX(x)NX(y).

When the generating set PX and norm function NX are understood, we abuse notation and say that X

is an arithmetical semigroup.

Property b), a general version of the Dedekind-Weber theorem, is at the heart of what makes analytic

statements on X possible. The arithmetical semigroup (N,P, id) is the usual setting for number theory,

and property b) is equivalent to the statement that
∑
m≤x 1 = bxc < ∞ for each x. Many of the defi-

nitions of arithmetic functions and Dirichlet series in classical Analytic Number Theory have analogues

in this setting, provided that the notion of convergence is well-defined. (In general, arithmetical semi-

groups are naturally compatible with a discrete topology; thus, convergence issues are easy to handle.

See Chapter 2 of [18]).

Definition 5.5. Let C be a category with direct product for which there exists a subcollection of objects

P such that, up to isomorphism, any object A from C is decomposable as a finite product A =
∏k
j=1 Pj ,

where Pj is an object belonging to P (and Pi and Pj are not necessarily distinct). Let 0 denote the

trivial object of the category (satisfying A × 0 ∼= A), and let SC denote the semigroup of isomorphism

classes of objects of C with the direct product operation and identity 0, generated by P. If there exists

a norm function NC satisfying a), b) and c) in Definition 5.4 defined on SC, such that (SC,P, NC) is an

arithmetic semigroup, then C is called an arithmetical category.

A non-trivial example of an arithmetical category is the category of finite Abelian groups. The set of

cyclic p-groups of arbitrary prime power order forms a generating set with respect to direct products of

groups, by the Classification Theorem (Ch. 1.7 of [24]). A natural norm function, which is indeed mul-

tiplicative by the Chinese Remainder Theorem, is the counting function of the group, i.e., N(G) := |G|.
Another example is provided by function fields Fq(t) and their rings of integers X = Fq[t], i.e., polyno-

mials in t over Fq, where q the power of some prime p. The set of monic, irreducible polynomials in t

over Fq provides the primes for X, and the map f(t) 7→ qdeg(f) is a norm function NX , as in Definition

5.4: noting that the number of monic polynomials of degree k is qk (ranging over all q elements for each

of the other k coefficients of the polynomial), the ball of radius x induced by NX is necessarily finite,

and property b) holds.

Quantitative statements regarding objects in arithmetical categories are available under certain assump-

tions. The following hypothesis quantifying property b) holds in a variety of different settings.

Definition 5.6. An arithmetical semigroup (X,PX , NX) is said to satisfy Axiom A if there exist positive

real numbers A and δ0, and η ∈ [0, δ0), such that for any y > 0 large enough,

|{a ∈ X : NX(a) ≤ y}| = Ayδ0 +O(yη).

In addition to the natural numbers (with A = δ0 = 1, η = 0) and the integral ideals of a number field

K/Q (with A = AK in Theorem 2.1, δ0 = 1 and η = 1 − [K : Q]−1), the arithmetical category of

finitely generated torsion modules over a finite integral domain of algebraic integers in a number field

K/Q also satisfies Axiom A. Theorem 1.1 in Ch. 5 of [18] shows that if ζK denotes the Dedekind zeta

function for K, this category induces an arithmetical semigroup with A := AK
∏
r≥2 ζK(r), δ0 = 1 and

η ≤ 1−2(1+[K : Q])−1. (The famous Erdős-Szekeres [6], which describes the number of finitely-generated

Z-modules, i.e., Abelian group, of cardinality at most x, is an application of the aforementioned theorem

when K = Q.)
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An abstract Prime Number Theorem can also be deduced by assuming Axiom A, using similar techniques

to those needed in the case of rational integers (One such tool in classical Analytic Number Theory which

has an analogue in the abstract theory is the Wiener-Ikehara Theorem, which yields information on the

continuity of the Riemann zeta function ζ(s) on the line Re(s) = 1; in particular, it allows us to deduce

a zero-free region beyond this line. See Ch. 8.3 of [25].)

Theorem 5.7 ([18], Ch. 6.1). Suppose (X,PX , NX) is an arithmetical semigroup that satisfies Axiom

A (with A, δ0 > 0 and η ∈ [0, δ0)). If πX(y) denotes the counting function of PX , then

πX(y) =
yδ0

δ0 log y

(
1 +O

(
1

log y

))
.

When X = Fq[t] and lqN ≤ x < (l + 1)qN for 0 ≤ l < q − 1,

|{f(t) ∈ Fq[t] : qdeg(f) ≤ x}| = (q − 1)
∑

0≤k≤N

qk−1 = qN − 1 �q
1

l
x.

Therefore, X does not satisfy Axiom A, since l is variable as x changes. However, a Prime Number

Theorem (counting irreducibles in X), i.e.,

πFq [t](y) = (log q)
x

log x
+O(x

1
2 +ε)

does hold in this context ([26], see the remark following Thm 2.2 there), for any ε > 0. Axiom A is used

to determine |AK(N)| and |A′K(N)| in Chapters 2 and 3.

By analogy, we may define A′X(N) := {NX(A ·B) : NX(A), NX(B) ≤ N}. The methods used to analyze

|A′K(N)| in Chapter 3 have a generalization in this more abstract setting as in Ch. 9 of [18], which we

describe below.

Let X be a commutative arithmetical semigroup. Define an equivalence relation ∼ on X with the

property that a ∼ a′ and b ∼ b′ implies that ab ∼ a′b′. Define Y := X/ ∼ and a product structure on

Y via [x][x′] = [xx′], where [a] denotes the equivalence class of X in Y . This is well-defined because if

x1 ∼ x2 and x′1 ∼ x′2 then x1x2 ∼ x′1x
′
2 by construction; hence, the equivalence class of the product is

the product of the equivalence classes. By construction, Y is a semigroup, and in certain applications

will satisfy: i) a cancellation property [x][y] = [x][z]⇒ [y] = [z]; ii) Y will contain a trivial class [e], such

that [x][e] = [x] for each x ∈ X. In these applications, Y forms an Abelian group.

Definition 5.8. Let (X,PX , NX) be a commutative arithmetical semigroup with an equivalence relation

∼ as above. An arithmetical formation is an ordered pair (X,Y ) where Y := X/ ∼. When Y contains

a trivial class and a cancellation property, the quotient Y is called the class group of X.

Two motivating examples are as follows:

a) Fix m ∈ N and let X be the semigroup generated by all positive integers coprime to m. Define the

equivalence relation ∼ via a ∼ b if, and only if, a ≡ b (mod m). Then, Y = X/ ∼ ∼= (Z/mZ)∗.

b) Let X be the semigroup of all integral ideals of a number field K/Q. Let I be the set of all principal

ideals of X. Define an equivalence relation ∼ on X via a ∼ b if, and only if, there exist (α), (β) ∈ I such

that (α)a = (β)b. This is an equivalence relation by the Krull-Schmidt theorem (as all non-zero ideals

have inverses). Then, Y = X/ ∼ is the familiar ideal class group of K, as I is the trivial class and all

non-zero ideals are invertible. Moreover, Y has finite cardinality ([7], Ch. 11).
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c) Using the formalism developed in Chapter 1, let X be the Galois group of K/Q in the previous

example, and let ∼ be the equivalence relation defined by conjugation, i.e., σ ∼ τ if, and only if, there

is a σ′ ∈ Gal(K/Q) such that σ = σ′τσ′. Then, Y = X/ ∼ is the set of all conjugacy classes of auto-

morphisms of K over Q. For any finite extension, the coset space Y is finite (although Y may not be a

group in this case).

When |Y | < ∞, one can define a set of characters Ŷ := Hom(Y,T) on Y , satisfying the usual orthogo-

nality properties:

∑
[y]∈Y

χ1([y])χ2([y]) =

|Y | if χ1 = χ2

0 otherwise
(5.9)

∑
χ∈Y ∗

χ([y′])χ([y]) =

|Y | if [y] = [y′]

0 otherwise
. (5.10)

For each χ ∈ Ŷ we may define an L-function L(s, χ) which is expressible as

L(s, χ) :=
∑
a∈X

χ(a)NX(a)−s =
∏
p∈PX

(
1− χ(p)

NX(p)s

)−1

, (5.11)

when σ > δ0. Here, χ(a) := χ([a]). The Euler product formula (5.11) implies that L(s, χ) 6= 0 for σ > δ0

since, by definition, every prime element has NX(p) > 1 by definition. Thus, L(s, χ) has a well-defined

logarithm. It follows from (5.10) that for [a] ∈ Y ,

∑
χ∈Y ∗

χ(a) logL(s, χ) =
∑
m≥1

∑
p∈PX

1

mNX(p)ms

∑
χ∈Y ∗

χ(a)χ(pm) = |Y |
∑
p∈[a]

NX(p)−s +O(1), (5.12)

where the remainder term comes from the terms pm for m ≥ 2 (as in Corollary 2.4). One can show that

in fact L(δ0, χ) 6= 0, provided χ2 6= χ0. (When χ2 = χ0, the argument is not valid and an alternative

must be found. This is not always possible for a given X, and may require assuming that L(δ0, χ) is

non-vanishing, a hypothesis called ”Axiom A∗∗”). Assuming Axiom A,

Aχ(x) :=
∑

NX(a)≤x

χ(a) =
∑

[a]∈Y

χ([a])
∑

NX (b)≤x
b∈[a]

1 ≤ AXxδ
∑

[a]∈Y

χ([a]) +O(|Y |xη) = O(xη)

by applying (5.9) for χ1 = χ0. Thus,

∣∣∣∣∣∑
a∈X

χ(a)NX(a)−s

∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑
n≥1

n−s

 ∑
a∈X

NX (a)=n

χ(a)


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
n≥1

n−s (Aχ(n)−Aχ(n− 1))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k≥1

Aχ(k)
(
k−s − (k + 1)−s

)∣∣∣∣∣∣ = O

∑
k≥1

k−(2σ−η)

 . (5.13)

Therefore, the series representation (5.11) of L(s, χ) converges even when η < σ ≤ δ0. The left side of

(5.13) is then asymptotically L(s, χ0) =
∑
a∈X NX(a)−s as s → δ+

0 . As a result, the prime elements of

X are uniformly distributed (i.e. with proportion 1/|Y |) among the equivalence classes of Y . In the case
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c) above, if we associate a prime p with its Fröbenius class σp, we get an equidistribution statement of

this type as in Chebotarev’s theorem (1.2). Therefore, the theory of arithmetical formations leads to a

generalization of Chebotarev’s theorem when Axiom A is assumed.

The theory of arithmetical formations outlined above provides an approach for the determination of

|A′X(N)|, namely using the factorization idea presented in Chapter 1, that the arithmetical semigroup

X has its prime factors partitioned according to their equivalence class in Y . By determining the

asymptotics of each subsemigroup of X generated by the primes in a given equivalence class, one can

compute |A′X(N)|. Determining |A′X(N)| may follow the same line of argument as we have presented in

Chapter 1. If D is a union of equivalence classes in Y , a number ρD, corresponding to the proportion of

elements of PX belonging to D can be used, in analogy to ρs (see Chapter 1.2).

5.4 Appendix D: Restricted Divisor Function for Shifted Sums

of Squares

The purpose of this section is to show that a näıve study of the function H(x, y, z; Ts) (see Chapter

4), via the computation of the sums
∑

n≤x
n∈Ts

τ(n; y, z), is insufficient to provide precise order of mag-

nitude estimates. This section describes an example of the shortcoming pointed out in Chapter 1, of

Tenenbaum’s contribution to this problem. It also complements the study of the shifted sum problem

in Chapter 4. Specifically, we prove that∑
n≤x
n∈Ts

τ(n; y, z) ∼ (x− s)πM(s) log(z/y),

for a suitable constant M(s) (determined below) depending only on s. This shows, roughly speaking,

that many integers have more than one divisor between y and z. In theory, such a bound would be

useful in an inclusion-exclusion argument of the following nature:

2l∑
k=1

(−1)k−1
∑

y<d1<...<dk≤z

∗∑
a2+b2+s≤x

1 ≤ H(x, y, z; Ts) ≤
2l−1∑
k=1

(−1)k−1
∑

y<d1<...<dk≤z

∗∑
a2+b2+s≤x

1,

where the asterisk in the sum implies that a2 + b2 + s ≡ 0 (mod [d1, . . . , dk]) for each k-tuple of divisors

(d1, . . . , dk), for some l ≥ 1. This would, however, necessitate a good pointwise estimate of the functions

Rk(m; y, z) := |{(d1, . . . , dk) ∈ (y, z]k : m = [d1, . . . , dk]}|,

for each k ∈ N and m ∈ (yk, zk]. However, these are more complicated to bound directly than τ (see

Ch. 2.7 of [13], for example).

Let e(t) := e2πit for t ∈ R.

Definition 5.9. Let m ∈ N, m ≥ 2 and let a ∈ Z/mZ. A Gauss sum is a sum of the form

g(a,m) :=

m−1∑
k=0

e

(
ak2

m

)
.

Lemma 5.10. Let m ≥ 2 be a positive integer and let a ∈ Z/mZ. Let r denote the smallest non-negative
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integer in the residue class of m mod 4. Then

δ(a,m) := m−1g(a,m)2 =



1 if r = 1

0 if r = 2

−1 if r = 3

(1 + ia)2 otherwise

Proof. See [2], section 1.5.

Note that if t is the smallest non-negative integer in the residue class of a and 4|m, we have: δ(a,m) = 0

if t = 2; δ(a,m) = 4 when t = 0; δ(a,m) = 2i when t = 1; and δ(a,m) = −2i when t = 3.

Theorem 5.11. Fix s ∈ Z\{0}. Let x > s and m ≥ 2. Then

∑
a2+b2+s≤x

a2+b2+s≡0 (mod m)

1 =

((
x− s
m2

)
π +O

(√
x− s
m2

))∑
t|m

tεs

(m
t

)
,

where, using the notation of the previous lemma,

εs(m) :=

m∑
a′=1

(a′,m)=1

e

(
a′s

m

)
δ(a′,m). (5.14)

Proof. Using the orthogonality properties of exponentials, we have

1

m

∑
x,y∈Z/mZ

m−1∑
a=0

e
( a
m

(
x2 + y2 + s

))
= |{(x, y) ∈ (Z/mZ)

2
: x2 + y2 + s ≡ 0 (mod m)}|. (5.15)

If we decompose the inner sum of (5.15) according to the gcd of a and m,

∑
x,y∈Z/mZ

m−1∑
a=0

e
( a
m

(
x2 + y2 + s

))
=
∑
t|m

m/t∑
a′=0

(a′,m)=1

e

(
a′s

m/t

)(m−1∑
x=0

e

(
a′x2

m/t

))2

=
∑
t|m

m/t∑
a′=0

(a′,m)=1

e

(
a′s

m/t

)m/t−1∑
u=0

t−1∑
v=0

e

(
a′
(
vm
t + u

)2
m/t

)2

=
∑
t|m

t2
m/t∑
a′=0

(a′,m)=1

e

(
a′s

m/t

)m/t−1∑
u=0

e

(
a′u2

m/t

)2

=
∑
t|m

t2
m/t∑
a′=0

(a′,m)=1

e

(
a′s

m/t

)
g(a′,m/t)2.
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The previous lemma then implies that

|{(x, y) ∈ (Z/mZ)
2

: x2 + y2 + s ≡ 0 (mod m)}| =
∑
t|m

t

m/t∑
a′=1

(a′,m/t)=1

e

(
a′s

m/t

)
δ(a′,m/t) =

∑
t|m

tεs(m/t).

Now, ∑
a2+b2+s≤x

a2+b2+s≡0 (mod m)

1 =
∑

(a,b)∈(Z/mZ)2

a2+b2+s≡0 (mod m)

∑
A2+B2+s≤x

(A,B)≡(a,b) (mod m)

1 =
∑

(a,b)∈(Z/mZ)2

a2+b2+s≡0 (mod m)

∑
(u,v)∈Z2:(um+a)2+(vm+b)2≤x−s

1.

(5.16)

Note that since 0 ≤ a, b < m, we have m2(u2 +v2) ≤ (um+a)2 +(vm+b)2 < m2((u+1)2 +(v+1)2), for

any pair (u, v) in the inner sum of (5.16). Thus, if the lattice point (A,B) is contained in the positive

quadrant in R2, so is (u, v). The boundary points of the region defined by the set of pairs (u, v) are

precisely those pairs for which u2 + v2 ≤ x−s
m2 < (u+ 1)2 + (v + 1)2. They therefore satisfy

u+ v ≤ 2(u2 + v2)
1
2 ≤ 2

(
x− s
m2

) 1
2

.

Let L(a, b) denote the number of lattice points (A,B) such that A ≡ a (mod m) and B ≡ b (mod m)

and A2 +B2 + s ≤ x. Then,

R

(√
x− s
m2

)
≤ L(a, b) < R

√x− s
m2

+ 3

(
x− s
m2

) 1
2

 , (5.17)

where R(r) = |{(u, v) ∈ (N ∪ {0})2
: u2 + v2 ≤ r2}| for r > 0. From (5.17), it follows that

0 ≤ L(a, b)−R

(√
x− s
m2

)
≤ R

√x− s
m2

+ 3

(
x− s
m2

) 1
2

−R(√x− s
m2

)
.

It is well-known that R(r) =
(
x−s
m2

)
π+O

(√
x−s
m2

)
(for our purposes, a better error term is not needed;

for a better error term, see [14]). Thus, for any pair (a, b),

L(a, b) =

(
x− s
m2

)
π +O

(√
x− s
m2

)
.

Inserting (5.4) into (5.16), we get

∑
a2+b2+s≤x

a2+b2+s≡0 (mod m)

1 =
∑

(a,b)∈(Z/mZ)2

a2+b2+s≡0 (mod m)

L(a, b) =

((
x− s
m2

)
π +O

(√
x− s
m2

))∑
t|m

tεs(m/t),

which proves the theorem.

We will need the following standard tool in Arithmetic Function Theory.
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Definition 5.12. Let r, d ∈ N. The Ramanujan sum cr(d) is the function

cr(d) :=

r∑
a=1

(a,r)=1

e

(
da

r

)
.

The Ramanujan sums exhibit the following properties:

Lemma 5.13. Fix d ∈ N. The following holds:

i) The map r 7→ cr(d) is multiplicative.

ii) The Dirichlet series
∑
r≥1 cr(d)r−s = σs−1(d)d−(s−1)ζ(s)−1, when Re(s) > 1, where σu(n) :=∑

d|n d
u for any u ∈ C.

iii) Let χ denote the unique non-trivial Dirichlet character mod 4 and let L(s, χ) denote its L-function.

Then, ∑
r≥1

χ(r)cr(d)r−s = σχ,s−1(d)d−(s−1)L(s, χ)−1,

where σχ,u(d) =
∑
d|k χ(d)du for u ∈ C.

It is well-known that the character in iii) satisfies χ(1) = 1 and χ(3) = −1.

Proof. These are straightforward observations which we will prove for the sake of completeness.

i) Observe that if (r, s) = 1, the Chinese Remainder Theorem implies that a = br + cs for some unique

pair (b, c) ∈ Z/sZ× Z/rZ. As (a, rs) = 1 if, and only if, (b, s) = (c, r) = 1, we have

crs(d) =

rs∑
a=1

(a,rs)=1

e

(
ad

rs

)
=

s∑
b=1

(b,s)=1

r∑
c=1

(c,r)=1

e

(
d(br + cs)

rs

)

=

 s∑
b=1

(b,s)=1

e

(
db

s

)
 r∑

c=1
(c,r)=1

e

(
dc

r

) = cr(d)cs(d),

as asserted.

ii) Using the definition of cr(d) and the properties of the Möbius function,

∑
r≥1

cr(d)r−s =
∑
r≥1

r−s
r∑
a=1

(a,r)=1

e

(
ad

r

)
=
∑
r≥1

r−s
r∑
a=1

e

(
ad

r

)∑
e|r
e|a

µ(e)

=
∑
ek≥1

µ(e)(ek)−s
k∑

a′=1

e

(
a′d

k

)
(5.18)

where a′ := a/e and k := r/e for each simultaneous divisor e of a and r. The inner exponential sum in

(5.18) is zero unless k|d, in which case it is equal to k. Hence, we have∑
r≥1

cr(d)r−s =
∑
e≥1

µ(e)e−s
∑
k|d

kk−s = ζ(s)−1d−(s−1)
∑
l|d

ls−1,

where l := d/k in the last equality. Thus, ii) follows. The proof of iii) is similar to that of ii), using the

complete multiplicativity of χ.
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Thus, the function εs(m) in (5.14) is ±cm(s) when m is odd and (1 + (−1)s)cm(s) + 2iscm(s) when 4|m
(otherwise, εs(m) = 0). Hence εs(m) = χ(m)cm(s), with χ as above when 4 - m.

Lemma 5.13 iii) will imply an expression for the inner sum in the statement of Theorem 5.11 when

s ≡ 2 (mod 4), in which case δ(s,m) = 0 for any m.

Lemma 5.14. Let s ≡ 2 (mod 4) and let hm(s) :=
∑
t|m

m
t εs(t). For x ≥ 1 let Hs(x) :=

∑
m≤x hm(s).

Then, for any ε > 0,

Hs(x) =
σχ(s)

2s
L(2, χ)−1x2

(
1 +O

(
exp

(
−(log x)

1
3−ε
)))

,

where σχ(s) = σχ,1(s) with the notation in Lemma 5.13.

Proof. By construction, hm(s) is the Dirichlet convolution hm(s) = (εs ∗ id)(m), where id denotes the

identity map, for each m ∈ N. From Lemma 5.13, the above observations regarding εs and basic notions

of Dirichlet series, it follows that when Re(w) > 2,

∑
m≥1

hm(s)m−w =

∑
k≥1

χ(k)ck(s)k−w

∑
k≥1

id(k)k−w


= σχ,w−1(s)s−(w−1)L(w,χ)−1ζ(w − 1) =: F (w). (5.19)

Hs(x) is determined via a standard application of the Effective Perron Formula (see, for example, section

II.2 in [27]) along the line κ := 2 + (log x)−1. For completeness, we give the details of this application.

Fix T ≥ 2, to be chosen later. When Re(w) = 2, every factor in (5.19) is absolutely convergent except

for ζ(w − 1) (which has a simple pole at w = 2). It follows that

Hs(x) =
1

2πi

∫ κ+iT

κ−iT
F (w)xw

dw

w
+O

(
x2T−1 log x+B(2x)

(
1 + x

log T

T

))
, (5.20)

where B is some real-valued, non-decreasing function satisfying |hm(s)| ≤ B(m) for each m. Note

that for any d, the triangle inequality implies the trivial bound |cr(d)| ≤ φ(r). Hence, |hm(s)| ≤
m
∑
t|m φ(t)t−1 ≤ mτ(m) = O(m1+ε) for any ε > 0. We may thus take B(x) = x1+ε for some fixed ε.

A well-known theorem of Korobov and Vinogradov (see the notes of Chapter 6 of [29]) asserts that there

is a c > 0 such that ζ(s) 6= 0 as long as Re(s) > 1− c

(log x)
2
3 (log2 x)

1
3

. Set κ0 := 2− c/(log x)
2
3 +ε and let Γ

denote the rectangular contour with corners at κ± iT, κ0± iT , traversed counterclockwise. The interior

of the contour contains only the pole at w = 2 of ζ(w − 1). By the Residue theorem, the main term of

(5.20) is

1

2πi

(∫
Γ

+

∫ κ0+iT

κ0−iT
+

∫ κ+iT

κ0+iT

−
∫ κ−iT

κ0−iT

)
F (w)xw

dw

w
=
σχ(s)

2s
L(2, χ)−1x2 + I1 + I2 − I3, (5.21)

where the integrals Ij are enumerated according to their order on the left side of (5.21). Their contri-

bution remains to be determined.

Write s = σ + iτ . From Chapter 5 in [29], |ζ(s)| � log |τ | whenever σ > κ0. Thus, we may bound both
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I2 and I3 (in which the imaginary part is held fixed with absolute value T ) as follows:

|Ij | � log T

∫ κ

κ0

xu
∣∣∣∣ σχ,u−1+iT (s)

su−1+iTL(u+ iT, χ)

∣∣∣∣ d|w|
(u2 + T 2)

1
2

� xκ
log T

T
τ(s), (5.22)

for j ∈ {2, 3}. The last inequality holds because |L(w,χ)| � 1 whenever Re(w) > 1, and∣∣∣∣σχ,w−1(s)

sw−1

∣∣∣∣ = s−Re(w)+1
∑
t|s

tRe(w)−1 ≤ τ(s).

To bound I1, we note that the integrand is bounded in the compact subinterval |Im(w)| ≤ t0 of the line

κ0 ± i∞, where t0 > 0 is fixed. By the symmetry of the integral about the real axis, we have

|I1| � xκ0τ(s)

∫
t0<t≤T

|ζ(κ0 + it)| dt

(κ2
0 + t2)

1
2

� xκ0τ(s)(log T )2. (5.23)

The combined error term from (5.20), (5.22) and (5.23) is then

� xκ0τ(s)(log T )2 + x2 log T

T
τ(s) + x2T−1 log x+ x1+ε

(
1 + x

log T

T

)
. (5.24)

It suffices (albeit perhaps not optimally) to select T = x. The largest error term in (5.24) is the first

one, which satisfies

�s x
κ0+o(1) = x2exp

(
− log x

(log x)
2
3 +ε

+ o(1)

)
= x2exp

(
−(log x)

1
3−ε
)
.

The statement of the lemma now follows.

When s 6≡ 2 (mod 4), in contrast to (5.19), the Dirichlet series for εs is instead∑
m≥1

εs(m)m−w =
∑

m≡1 (mod 4)

cm(s)m−w −
∑

m≡3 (mod 4)

cm(s)m−w + (1 + is)2
∑

m≡0 (mod 4)

cm(s)m−w

=
∑
m≥1

χ(m)cm(s)m−w + (1 + is)24−w
∑
k≥1

c4k(s)k−w.

The same argument used to prove part ii) of Lemma 5.13 demonstrates that∑
k≥1

c4k(s)k−w = 4
∑
d≥1

µ(d)d−w
∑
4k|s

k−(w−1). (5.25)

Clearly, this sum is zero unless 4|s. In this case, the inner sum of (5.25) is (s/4)
−(w−1)

σw−1(s/4). Part

iii) of Lemma 5.13 then implies that∑
m≥1

εs(m)m−w = σχ,w−1(s)s−w−1L(w,χ)−1 +H(w),

where

H(w) :=

4ws−(w−1)σw−1(s/4)ζ(w)−1 if s ≡ 0 (mod 4)

0 otherwise
.
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The product H(w)ζ(w − 1) is also evaluated with the method of Lemma 5.14 (where only the value

of the residue, which is now
(
8s−1σ(s/4)ζ(2)−1 +

σχ
2s L(2, χ)−1

)
x2, is different). We may thus restate

Lemma 5.14 for s ≡ 1, 3 (mod 4) as well.

Lemma 5.15. With the notation of Lemma 5.14,

Hs(x) = M(s)x2
(

1 +O
(

exp
(
−(log x)

1
3−ε
)))

,

where M(s) is defined as

M(s) :=


(

8s−1σ(s/4)ζ(2)−1 +
σχ(s)

2s L(2, χ)−1
)

if 4|s
σχ(s)

2s L(2, χ)−1 otherwise
.

We immediately deduce the following:

Theorem 5.16. Fix s ∈ Z\{0}. Let Ts := {a2 + b2 + s : a, b ∈ Z}. Put τ(m; y, z) := |{d|m : d ∈ (y, z]}|.
Then, uniformly in 2 ≤ y < z ≤ x 1

2 ,∑
n≤x
n∈Ts

τ(n; y, z) = (x− s)πM(s) log(z/y) +O
(
x

1
2 (z − y)

)
. (5.26)

Proof. The left side of (5.26) is∑
n≤x
n∈Ts

τ(n; y, z) =
∑

a2+b2+s≤x

∑
d|a2+b2+s
d∈(y,z]

1 =
∑

y<d≤z

∑
a2+b2+s≤x

a2+b2+s≡0 (mod d)

1.

By Theorem 5.11 and Lemma 5.15, we have (with the notation hd(s) from the proof of Lemma 6.3)

∑
n≤x
n∈Ts

τ(n; y, z) =
∑

y<d≤z

((
x− s
d2

)
π +O

(
x

1
2 d−1

))∑
t|d

d

t
εs(t)

= (x− s)π
∑

y<d≤z

1

d2
hd(s) +O

x 1
2

∑
y<d≤z

1

d
hd(s)


= (x− s)π

∫ z

y

u−2dHs(u) +O

(
x

1
2

∫ z

y

u−1dHs(u)

)
= (x− s)π

(
Hs(z)

z2
− Hs(y)

y2

)
+ 2

∫ z

y

Hs(u)u−3du+O
(
x

1
2 (z − y)

)
= (x− s)πM(s)

∫ z

y

du

u
+O

(∫ z

y

exp
(
−(log u)

1
3−ε
) du
u

)
+O

(
x

1
2 (z − y)

)
.

With the change of variable v = log u, the first error term becomes �
∫ ez
ey

exp(−v 1
3−ε)dv � 1. The

proof of (5.26) is now complete.
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