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ow1. INTRODUCTIONThe interplay between the Monge-Kantorovitch mass transfer problem (MKP) and partialdi�erential equation theory has recently experienced a surge of research activity and is nowconsidered, in itself, as a branch of applied mathematics (see the surveys [12] and [16]).In Fluid Dynamics, the MKP or equivalent concepts notably intervene in the semi-geostrophic equations [11] [10] [9] [3], an intermediate model in the geostrophic to primitiveequation hierarchy used in meteorology. It is also used at the mathematical level in the existencetheory of several Fluid Mechanics equations such as incompressible Euler with prescribed initialand �nal data [8].From Monge's theory \des d�eblais et des remblais" in the late 18th century to presentdays, a considerable amount of theoretical work has been gathered. The revival of this subjectfollows the pioneering work [6]. The (once again recent) interest of applied mathematiciansin this problem has raised the question of the numerical resolution of the MKP in two andthree dimensions (the resolution being trivial in 1-D). The e�ciency of the classical Pogorelovconstruction (used in [11] and [15]) is di�cult to evaluate. After and ad-hoc discretizationthe MKP can also be cast in a combinatorial optimization framework : the linear assignmentproblem. Even though there exists an, in principle, near optimal algorithm for this more general�Correspondence to: INRIA, Domaine de Voluceau, B.P.105 78153 Le Chesnay cedex, France.Contract/grant sponsor: Publishing Arts Research Council; contract/grant number: 98{1846389 ReceivedCopyright c
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2 BENAMOU & BRENIER & GUITTETproblem [1], the bridge from theory to practice turns out to be di�cult to cross probablybecause of a huge unestimated constant a�ecting the cost of this simplex type method.We recently established a \Computational Fluid Mechanics" (CFM) type formulation forthe MKP in which the unknowns satisfy a simple gas dynamic model with prescribed initialand �nal densities [4]. Quite remarkably it is now the reverse application of CFM to theMKP which allows us to construct a robust and e�cient numerical solver. Moreover, the CFMapproach seems to be quite versatile. The formulation and the numerical method generalizesfor instance to a multi-phasic context [5] and also to a mixed MKP/L2 interpolation problem[2].This paper reviews the material contained in [4], [5], [2] and [14].2. THE MKPA simple and modern formulation of the problem is the following : two bounded, positivemeasurable functions �0 and �T with compact support in Rd are given. They are calleddensities. We further require that they have the same mass, normalized to 1 :ZRd �0(x) dx = ZRd �T (x) dx = 1: (1)The problem now is to select a mapping M from Rd to Rd which achieves the \transport"from �0 to �T in the following sense : for all Borel subsets A � Rd , M satis�esZM�1(A) �0(x) dx = ZA �T (x) dx: (2)Equation (2) is a weak formulation of the so called Jacobian equationdet(DM(x))�T (M(x)) = �0(x); (3)which can be derived when M is a smooth one-to-one map. Here det(DM) is the determinantof the Jacobi matrix of M and represents the rate of compression or spreading of the massinduced by the map x 7! M(x) (we recall that �0 and �T and M must satisfy (3)). TheJacobian problem is clearly under-determined (when transferring Dirac masses for instance,any permutation of the loaded points gives rise to an admissible mapping) and it is natural toselect among the maps satisfying (2) those which are optimal in a suitable sense. The Monge-Kantorovitch problem consists in choosing the mapping M which satis�es the constraint (2)and minimizes the \transportation" costC(M) = ZRd kx�M(x)k2�0(x)dx: (4)Roughly speaking, kx�M(x)k2�0(x) is the travelled distance squared, weighted by the amountof the transferred mass. This point-wise interpretation is restrictive and relies on the hypothesisthat M is smooth and one-to-one. The class of mappings M satisfying (2) is of course muchwider and allows for instance to pointwise \split" or \coalescing" mass. Considering this widerclass is also the key to the main theoretical results [6].Copyright c
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CFD AND MKP 3Theorem 2.1. There is a unique optimal mapping �M de�ned on the support of �0 satisfying(2). The mapping M is characterized as the unique mapping from this class which can bewritten as the gradient of a convex potential � :�M(x) = r�(x): (5)The optimal value of the cost (4) also is a distance (squared) called Wasserstein distancebetween densities �0 and �T . This distance is usually de�ned as :dWa(�0; �T )2 = inf� Z jx� yj2d�(x; y); (6)where � spans the space of probability measures Rd � Rd with marginals �0 and �T . Wetherefore have C( �M) = dWa(�0; �T )2: (7)Regarding the applications of the MKP in Fluid Mechanics, we again refer the reader to thepapers, (excellent) surveys and monographs cited in the Introduction.3. A CFM FORMULATION FOR THE MKPThe MKP problem described in the above section is a quadratic space minimization problem inM , with a non-linear, non-convex and highly degenerate constraint (2). We do not know howto numerically enforce this constraint so we instead proposed a reformulation of the problembased on the introduction of a \time" variable t. We �rst describe the CFM type problem andthen give its relationship with the classical MKP.We �x a time interval [0; T ] and consider all possible smooth enough, time-dependent, densityand velocity �elds, �(t; x) � 0, v(t; x) 2 Rd , subject to the continuity equation@t�+r:(�v) = 0 (8)for 0 < t < T and x 2 Rd , and the initial and �nal conditions�(0; :) = �0; �(T; :) = �T : (9)Then, our new problem is the minimization of the actionK(�; v) = T ZRd Z T0 �(t; x)jv(t; x)j2dxdt; (10)amongst all (�; v) satisfying (8) and (9).Let us point out that a Continuum Mechanics formulation was already implicitly containedin the original problem addressed by Monge : \le probl�eme des remblais et des d�eblais".Eliminating the time variable was just a clever way of reducing the dimension of the problem.However, from a computational point of view, reintroducing the time variable allows tosolve a convex (although not quadratic) space-time minimization problem in the density andmomentum variables, namely � and m = �v, with linear constraints. Indeed under this changeCopyright c
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4 BENAMOU & BRENIER & GUITTETof variable, the integrand of (10) is jm(t;x)j22�(t;x) which can be written as the Legendre transformof the indicatrix function of the convex set K = ffa; bg : R � Rd ! R � Rd ; s: t: a+ jbj22 �0 pointwiseg jm(t; x)j22�(t; x) = supfa;bg2K[a(t; x)�(t; x) + b(t; x):m(t; x)] (11)and K(�; v) is convex in (�;m = �v). Finally constraint (9) is unchanged but (8) becomeslinear @t�+r:m = 0: (12)This is, in our opinion, a considerable advantage, in spite of the addition of the extra (butnot arti�cial) time variable. In addition, the Continuum Mechanics formulation, provides anatural time interpolant �(t; x) of the data �0 and �T and a velocity �eld v(t; x) which moves�0 toward �T .The relation between the classical MKP and this \CFM" MKP, formally established in [4],is given by the following propositionProposition 3.1. The square of the Wasserstein distance is equal to the in�mum ofT ZRd Z T0 �(t; x)jv(t; x)j2dxdt;among all (�; v) satisfying (8) and (9).There exists moreover a unique optimal 
owX(0; x) = x; @tX(t; x) = v(t;X(t; x))given in terms of the potential �X(t; x) = x+ tT (r�(x) � x):A rigorous Hilbertian framework for this problem can be found in [14].We �nally remark that the optimality conditions of this space-time minimization problemare v(t; x) = r�(t; x); (13)where the potential � is the Lagrange multiplier associated with the constraints (8), (9), andthe Hamilton-Jacobi equation @t�+ 12 jr�j2 = 0: (14)In terms of Fluid Mechanics, it means that the optimal solution of (14) (8) is given by apressureless potential 
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CFD AND MKP 54. TWO GENERALIZATIONS OF THE MKP4.1. The multi-phasic mass transfer problemWe here consider a problem which involves multiple phases (��; v�) (� = 1;M) with theconstraint that the total mass is prescribed by a given function ��MX�=1 �� = �� (15)Each phase individually satis�es (8)@t�� +r(��v�) = 0; (16)initial and �nal conditions like (9)��(0; :) = �0�; ��(T; :) = �T� (17)where the �0� and �1� are given nonnegative functions which satisfy the compatibility conditionsZ �0�(x) dx = Z �T�(x) dx ; � = 1; ::;M: (18)and Z MX�=1 �0�(x) dx = Z ��(t; x) dx ; t 2 [0; T ]: (19)The generalization of the MKP now is to minimize the sum of the kinetic energiesK(�; v) = 12 MX�=1 Z T0 Z ��(t; x)jv�(t; x)j2dxdt (20)where � = (�1; :::; �M ) and v = (v1; :::; vM ) satisfy the constraints (15-17) above.This multi-phasic \CFM" MKP problem can be solved numerically using the same techniqueas in the mono-phasic case (see [5]). The optimality conditions for the Lagrange multipliers(��) associated to the constraints (16) and a new multiplier p for the global constraint (16)are @t�� + jrx��j22 + p�� = 0 ; � = 1; ::;M: (21)These equations are again very similar to the optimality equations for the mono-phasicproblem. However, because of the incompressibility constraint (15) a pressure p appears inthe Hamilton-Jacobi equation (21), inducing the expected coupling between all phases. Noticethat, taking �� � 1, we recover the homogenized vortex-sheet model discussed in [7] where theexistence of \variational solutions" for this problem is proven.Copyright c
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6 BENAMOU & BRENIER & GUITTET4.2. A mixed MKP/L2 interpolation problemBefore explaining this mixed problem, let us point out that it is possible to express the L2distance using a similar time-dependent formulation. We consider the minimization problemd2L2(�0; �1) = inf�;vf 1T ZRd Z T0 j@t�(t; x)j2dxdtg; (22)with (�; v) again subject to the constraints (8) and (9). The optimization problem does notdepend on v anymore and the constraint (8) is just mentioned here by analogy with section2.1. We again have a convex minimization problem. The cost function appearing on the righthand side of (22) can be di�erentiated, and the optimality conditions simply express the factthat the optimal �(t; x) satis�es (9) and @2tt� = 0: (23)The optimal solution is therefore directly given by the time interpolation formula�(t; x) = �T (x) � �0(x)T t+ �0(x): (24)Replacing @t� in (22), we obtain the claimed L2 distance.So it is quite tempting to make an intrinsic interpolation between the L2 and Wassersteindistances. The mixed distance is de�ned likewise bydwas=L2(�0; �1)2 = inf�;vfT ZRd Z T0 ��(t; x)jv(t; x)j2 + (1� �) j@t�(t; x)j22 dxdtg (25)where (�; v) must again satisfy the constraints (8) and (9). The parameter � 2 [0; 1] is theinterpolation parameter. Of course as � = 1 or � = 0 we recover respectively the Wassersteinor the L2 distances.A discussion about the motivation for this object and an illustration of the rather di�erentproperties of the L2 and Wasserstein distances can be found in [4] where a numerical methodis proposed to solve (25). 5. NUMERICAL RESOLUTIONThe L2 MKP can be written as a saddle-point problem by introducing a space-time dependentLagrange multiplier �(t; x) for constraints (8) and (9). The Lagrangian is given by :L(�; �;m) = Z T0 ZD[ jmj22� � @t���rx�:m]� ZD[�(0; :)�0 � �(T; :)�T ]; (26)where the terms involving � come from (8) by integration by part and using the boundaryconditions (9).Given initial and �nal densities �0 and �T , the L2 MKP is equivalent to the saddle-pointproblem : inf�;m sup� L(�; �;m): (27)Copyright c
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CFD AND MKP 7
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Figure 1. Contours plots of the density at successive time stepsThis saddle-point formulation can be recast (using (11)) in a form matching the problemof the elastoplastic deformation of a cylindrical rod as presented in [13]. In this note, theLagrangian is �rst \augmented" and an e�cient algorithm from [13], called ALG2, based onrelaxations of the Uzawa algorithm is used. We follow the same line as in [4] (and refer tothis paper for more details) to solve the problem. We get a three step iterative method whichconstructs a sequence converging to the saddle-point. The more expensive part of the algorithmis the iteration of a space-time Laplace equation.Our favorite test case is periodic in space and we therefore implicitly consider an in�nitegrid of similar (here square) cells. The initial density is an in�nite array of Gaussian functionscentered inside the cells and the �nal density is the same array but the Gaussian functions havebeen shifted to the corners of the cells. As discussed in [4] the optimal Wasserstein mappingsplits the Gaussian in four and sends each part to the corners. The optimal transfer is not asimple translation, as one would super�cially think, but is rather one that splits each Gaussianfunction into four pieces, sending each of them to the nearest corner (Figure 1).A second approach consists in the elimination of the \two point boundary value problem"by relaxing the �nal constraint on the density �(T; x) = �T and enforce it using a penalizationCopyright c
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8 BENAMOU & BRENIER & GUITTETterm added to the cost function. We have used this approach to treat the general mixedMKP/L2 problem to which the Augmented Lagrangian technique does not seem to apply.Thus we considerdrelax(�0; �1)2 = infm fT ZRd Z T0 � jmj22� + (1� �)� j@t�j22 dxdt+ ZRd 
 j�(T; x)� �T (x)j22 dx; g (28)where 
 is a positive penalty parameter. Note that � is no more a minimization variable but astate variable solution of (8) where m and the initial conditions �(0; x) = �0 are given (we havedropped the �nal condition). This approach simpli�es considerably this optimization problemwhich now becomes an optimal control problem. A classical technique to evaluate the gradientof the cost function is to use direct/adjoint problems. We have done so and embedded thisapproach into a conjugate gradient algorithm.We now present the computation for di�erent values of �. The test case is similar to the onepresented for the augmented Lagrangian method but a small constant has been added to thedensity. Indeed this second algorithm is very sensitive to the absence of mass. This feature isnot shared by the Augmented Lagrangian method which seems robust when dealing with zerovalues for the mass (e.g., we can treat the case involving characteristic functions).Figure 2 shows the contours plots of the densities at successive time steps for three di�erentvalues of � : � = 1 is the pure Wasserstein problem which splits the Gaussian in four parts andtranslates the mass to the corners, � = 0 is the pure L2 problem which is a simple pointwise inspace and linear in time interpolation between initial and �nal density and � = 0:5 is a mixedproblem which \interpolates" between the two extreme behavior. For all computations 
 = 10.Finally, we show a simulation of a bi-phasic transport. The global mass �� is a constant.The initial and �nal density for the �rst phase is similar to our �rst test case (�gure 1) andthe second phase is completely determined by (15). The numerical method arises from theaugmented Lagrangian technique [5].The level lines of the �rst density are given in �gure 3. The global mass �� is chosen smallenough so that the mass cannot concentrate above a given level and this e�ect competeswith the transport of the split four parts of the Gaussian observed in Figure 1. The mass istranferred in an elongated almond shape to lower its maximum level.REFERENCES1. M. L. Balinski. A competitive (dual) simplex method for the assignment problem. Math. Programming1986; 34(2):125{141.2. J.-D. Benamou, Y. Brenier. Mixed l2/wasserstein optimal mapping between prescribed density functions.J. Optim. Theory Appl. , to appear 2001; 111(2):225{271.3. J.-D. Benamou, Y. Brenier. Weak existence for the semi-geostrophic equations formulated as a coupledmonge-amp�ere/transport problem. SIAM J. Applied Math. 1998; 58(5):1450{1461.4. J.-D. Benamou, Y. Brenier. A computational 
uid mechanics solution to the monge-kantorovich masstransfer problem. Numer. Math. 2000; 84:375{393.5. J.-D. Benamou, Y. Brenier, K. Guittet. Numerical resolution of a multiphasic optimal mass transportproblem. preprint.Copyright c
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CFD AND MKP 9
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Figure 2. Contours plots of the density at successive time steps for the Conjugate Gradient algorithm,� = 1; 0:8; 0, 
 = 10.
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10 BENAMOU & BRENIER & GUITTET
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Figure 3. Contours plots of the density at successive time steps for the �rst phase(8)6. Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. PureAppl. Math. 1991; 44(4):375{417.7. Yann Brenier. A homogenized model for vortex sheets Arch. Rational Mech. Anal., 138(4):319{353, 1997.8. Yann Brenier. Minimal geodesics on groups of volume-preserving maps and generalized solutions of theEuler equations. Comm. Pure Appl. Math. 1999; 52(4):411{452.9. M. J. P. Cullen, W. Gangbo. A variational approach for the 2-d semi-geostrophic shallow water equations.preprint.10. M. J. P. Cullen, J. Norbury, R. J. Purser. Generalised Lagrangian solutions for atmospheric and oceanic
ows. SIAM J. Appl. Math. 1991; 51(1):20{31.11. M. J. P. Cullen, R. J. Purser. An extended Lagrangian theory of semigeostrophic frontogenesis. J.Atmospheric Sci. 1984; 41(9):1477{1497.12. L.C. Evans. Partial di�erential equations and Monge-Kantorovich mass transfer Lecture Notes, 1998.13. Michel Fortin, Roland Glowinski. Augmented Lagrangian methods North-Holland Publishing Co.,Amsterdam, 1983.14. K. Guittet. An hilbertian framework for the time-continuous monge-kantorovitch problem. preprint.15. Sergey A. Kochengin, Vladimir I. Oliker. Determination of re
ector surfaces from near-�eld scattering data.II. Numerical solution Numer. Math. 1998; 79(4):553{568.16. C. Villani, F. Otto, Y. Brenier. In preparation.
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